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ABSTRACT

We propose a new EEG source localization method that si-
multaneously performs SOurce and FOrward MOdel REcon-
struction (SOFOMORE) in a hierarchical Bayesian frame-
work. Reconstruction of the forward model is motivated by
the many uncertainties involved in the forward model, includ-
ing the representation of the cortical surface, conductivity dis-
tribution, and electrode positions. We demonstrate in both
simulated and real EEG data that reconstruction of the for-
ward model improves localization of the underlying sources.

Index Terms— EEG, source reconstruction, uncertain
forward model, hierarchical Bayes, distributed model

1. INTRODUCTION

Functional neuroimaging by PET and fMRI has added con-
siderably to our understanding of the spatial distributionof
information processing in the human brain. To better under-
stand the temporal aspects of systems neuroscience electro-
and magneto-encephalography (EEG, MEG) are promising
modalities due to their high temporal resolution. In addition
EEG is attractive as it can be acquired under more natural-
istic conditions than PET, fMRI, and MEG. Unfortunately,
brain mapping by EEG is an ill-posed problem and relatively
strong assumptions are needed for regularization. In the exist-
ing literature of source reconstruction significant efforts have
been devoted to methods that incorporate spatio-temporal pri-
ors to accommodate for focal source distributions under the
assumption that the forward model is known. Such inverse
methods are typically classified as equivalent current dipole
(ECD) or distributed models. ECD models assume that the
sources can be described by a small number of ECDs [1],
such that the problem is restricted to identify their location
and orientation. Distributed models normally assume dis-
tributed currents with dipoles oriented perpendicular to the
cortical surface. To solve the inverse problem several prior
assumptions have been suggested such as mathematical con-
straints like the (weighted) minimum norm [2] and maximal
smoothness [3] properties. Other priors such as anatomical,
physiological, and temporal information [4, 5, 6] have also
been proposed. Integrating such prior assumptions into the

source reconstruction problem is conveniently implemented
in a Bayesian framework. Common to existing source local-
ization methods is that they perform the inversion under the
assumption that the forward model is known. However, many
noisy processes compromise the forward model, including
the representation of the conductivity distribution, the cortical
surface, and electrode positions. When ’realistic head mod-
els’ are constructed from tissue segmentation based on e.g.
structural MRI, the geometry of the head model is affected by
the resolution and tissue segmentation errors. Such geometric
errors can be represented as small magnitude perturbations
of the head model shape [7]. Due to the dependence of the
head model in the ill-posed EEG source reconstruction prob-
lem these uncertainties will also affect the source estimation.
Here, we will make a first attempt to correct the uncertain for-
ward model simultaneously with the source localization in or-
der to obtain a more reliable source estimate. Recently, a sim-
ilar aim was pursued in [8, 9], however, from quite a different
perspective than ours. In [8] the geometric structure of the
forward model is assumed known, while the skull-brain con-
ductivity ratio is an unknown parameter which is estimated
simultaneously with the sources. Similar, [9] reported a prob-
abilistic distributed model to account for uncertainty in the
skull conductivity. In this contribution, we suggest a more
uncommitted approach in which the complete forward model
is considered ‘uncertain’. Thus, we approach the EEG source
localization problem with a hierarchical Bayesian model that
simultaneously perform SOurce and FOrward MOdel REcon-
struction, in short, the SOFOMORE method.

2. METHODS

2.1. The Forward Model

The relationship between the recorded EEGM = {mt}Nt

t=1

from an array ofNc sensors placed on the scalp and the neural
current activity in the brain is given by

M = AS + E, (1)

whereA is the forward model consisting of a set of forward
fields {ai}Nd

i=1 corresponding to each of the dipoles in the
primary source current denotedS = {st}Nt

t=1. We assume the



orientations of current dipoles at the vertices to be perpen-
dicular to the cortical surface and the measurement noiseE

is modeled as additive zero-mean Gaussian distributed. The
forward model was estimated by the SPM5 academic soft-
ware (http://www.fil.ion.ucl.ac.uk/spm/), based
on routines from BrainStorm (http://neuroimage.usc.
edu/brainstorm/) as a basic three-spheres (scalp, skull,
brain) head model.

2.2. SOFOMORE: A Hierarchical Bayes Approach

Given the linear relationship in Eq. (1) and the Gaussian noise
model, for which we will denote the precision byβ, the likeli-
hood,p (M |S,A, β ), can be expressed as a product of multi-
variate Gaussian distributionsmt ∼ N

(
Ast, β

−1
INc

)
. Fig-

ure 1 is a graphical representation of the hierarchical model.
For the sources we apply a quite similar hierarchical prior as
[6], i.e. a zero-mean multivariate Gaussian distribution with
a diagonal precision matrixD, with elementsα = {αi}Nd

i=1,
i.e.,st ∼ N

(
0,D−1

)
. In contrast to [6] we model the uncer-

Fig. 1. Graphical representation of hierarchical model that
accounts for an uncertain forward model.

tainty of the forward fields, which is performed by indepen-
dent multivariate Gaussian distributions with prior meana

(0)
i

and precisionγi, ai ∼ N (a
(0)
i , γ−1

i INc
). The prior mean of

the ith forward field is obtained from the solution to the for-
ward problem. An assignment of a parameter to each of the
forward fields allow us to automatically control which of the
forward fields that should be corrected if necessary. Hereby,
mainly the forward fields for the active sources have to be cor-
rected and the rest remain unchanged if these precisions are
large. Conjugate priors for all the precision parameters have
been used, with skewness parameterνx and inverse scale pa-
rameterζx, see Fig.1, i.e. precision parameterx is modeled
with a Gamma distributionG (x |νx, ζx ).

2.2.1. Variational Bayesian Formulation

The Bayesian framework provides the complete joint poste-
rior of sources and parameters given the observed dataM. As
a representation of the sources we use the marginal posterior
distribution

p (S |M ) =
p (M,S)

p (M)
=

∫
p (M,θ) dθ\S

p (M)
, (2)

Table 1. VB updates for hierarchical model with〈·〉 denoting
the expectation andlj thejth lead field i.e.jth row inA. G is
a diagonal matrix withλ in the diagonal,ψ (·) is the digamma
function and its derivative isψ′ (·). Hyperhyperparameters of
the formνx andζx are updated using Newton-Raphson.
q (θ) VB updates

N (st |µt,Σ ) µt = Σ 〈A〉T mt 〈β〉, Σ =
(〈
βAT

A
〉

+ 〈D〉
)−1

N
(
lj

∣∣ηj ,Ψ
)

ηj = Ψ

(
〈G〉 l(0)j + 〈β〉

Nt∑
t=1

〈st〉mjt

)

Ψ =

(
〈G〉 + 〈β〉

Nt∑
t=1

〈
sts

T
t

〉)−1

G
(
αi

∣∣∣ν̂αi
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)
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= ναi
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+ 1
2
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2
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whereθ = {S,A,α, β,γ}, θ\S denotes parameter setθ ex-
cept forS, p (M,θ) is the joint distribution, andp (M) is
the marginal likelihood. Due to the hierarchical structureof
the model, the marginal likelihood becomes analytically in-
tractable. Thus, approximations are needed and we will ap-
ply a standard Variational Bayesian (VB) framework [10], in
which the joint posteriorp (θ |M ) is approximated by a pa-
rameterized simpler distributionq (θ) whose parameters are
determined by maximizing the bound on the marginal likeli-
hood obtained through Jensen’s inequality,

L = ln

∫
p (M,θ) dθ ≥

∫
q (θ) ln

p (M,θ)

q (θ)
dθ . (3)

The approximate posterior is taken as fully factored in the
parametersθ = {S,A,α, β,γ}. The resulting sequential
VB updates are given in Tab.11.

3. EXPERIMENTS

We demonstrate the viability of the SOFOMORE approach
on simulated data and real EEG data. We will show that es-
timation of the forward model matters, by comparing recon-
structed sources with the corresponding model with fixed for-
ward model. The results in this section are for clarity obtained
by operating directly on the measurementsM without pre-
processing of data like bandpass filtering or use of temporal-
subspaces. Extensions to include this can be performed and

1Note that inversion of covariance matrices of sizeNd × Nd appears
in the VB update equations, which in the conventional approach can be
performed efficiently with the matrix inversion lemma whenA is assumed
known. However, due to the inter-dependence ofS andA the matrix inver-
sion lemma cannot be used efficiently. Thus, in the implementation we have
performed the VB updates in a subspace spanned by the basis of the lead
fields (rows inA).



will in general improve performance, future work will con-
cern this important issue.

3.1. Simulations

In the simulations we construct a source signal of a half sine
of duration 50ms with a starting time att=25ms for a small
set of sources located in the occipital lope, as illustratedin
the SPM glass-brain representation in Fig.2(a). Note that
minor activity seems to appear at the inner part of the left
hemisphere, which is due to the mapping from cortex to the
glass-brain representation. The simulated clean EEG was
constructed with forward model consisting of 3-spheres with
tissue conductivities brain:skull:scalp = 0.33:0.0041:0.33S/m
(ratio 1:1/80:1) and dimension128 × 7204. We corrupted
the clean EEG with ‘realistic EEG noise’ obtained from the
pre-stimulus period in an evoked EEG study described in
Sec. 3.2. We applied a signal-to-noise ratio SNR=10, with
SNR defined asSNR = PcEEG/Pnoise, wherePcEEG and
Pnoise are the power of the clean EEG and noise, respectively.
Conductivity errors were added to one of the forward models
used in the source localization. In the source reconstruction
we used a cortical resolution of 4004 vertices, such that the
‘true’ forward model has a higher spatial resolution. Figures
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Fig. 2. Simulated source density and EEG. VE: Variance ex-
plained.

3(a) and 3(b) show the estimated source densities at the time
t=50ms, which corresponds to the time point where we have
the maximum amplitude of the EEG. In these figures no
corrections of the forward fields are performed but differ-
ent conductivities have been used. In both cases erroneous
activity is estimated in the right pre-motor area (indicated
with a circle in the figure). However, a ‘correct’ choice of
conductivities also leads to quite good localization of the
true sources. In contrast an erroneous choice of conductiv-
ities in Fig.3(a) results in poorer reconstruction of the true
sources. The poorer reconstruction can also be seen from
a lower log-evidence value and an increase in the variance
explained (VE) compared to the correct one in Fig.2(a). The
percentages of variance explained in both models are larger
than the ‘true’ value (88.2%), indicating some overfitting.In
Figs.3(c)-(d) we use the same forward models as in Figs.3(a)-

(b) as prior means (A(0)) in the SOFOMORE model. Indeed
the combined Bayesian estimation of forward model and
source density leads to a better estimation of the true source
density in both cases. Moreover, the resulting estimates are
quite similar. However, the model with ‘correct’ prior mean
explains 91.7% of the data variance, which is closer to the
true value than the one with the erroneous forward model
taken as prior mean. Additionally, the model in Fig. 3(d) has
a much larger log-evidence value, indicating a more likely
model.

256 most active dipoles

VE: 99.85%

log−evidence:
101400.8

(a) Ratios 1:1/15:1

256 most active dipoles

VE: 99.70%

log−evidence:
365677.5

(b) Ratios 1:1/80:1
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VE: 94.04%

log−evidence:
389929.2

(c) Init ratios 1:1/15:1
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log−evidence:
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(d) Init ratios 1:1/80:1

Fig. 3. Estimated activity att = 50ms and weighted by the
square root of the inverse varianceα (i.e. sit

√
αi). First row:

No corrections of forward fields. Second row: Corrections are
integrated into the source localization method. Differentcon-
ductivity ratios are used. Figs.(a)+(b) misleading activity in-
side circles - compare with Fig.2(a). VE: Variance explained.

3.2. Real EEG data

This EEG data set is part of a multi-modal study on face
perception, where faces and scrambled faces were presented
for 600ms every 3600ms to a subject. A detailed descrip-
tion of the experiment is given in [11] andhttp://www.
fil.ion.ucl.ac.uk/spm (where the data is available
for download). In this contribution we reconstruct the aver-
age event related potential (ERP) of trials involving real faces
as stimuli. In Figs. 4(a) and 4(b) the estimated activity is il-
lustrated att=170ms after stimulus, without and with integra-
tion of the reconstruction of the forward fields respectively.
When there is no correction of the forward fields the recon-
struction results in quite scattered activity, with a prominent



voxel located in the right temporal lope and less prominent
voxels in the right occipital region. In contrast the SOFO-
MORE model leads to improved localization of activity in
the visual cortex with minor activity in the fusiform gyrus,
which is known to be connected with face processing. This
result is well-aligned with results reported in [12]. Please note
that no spatial smoothing has been performed in our results,
which would probably give better localized sources for the
case without corrections ofA. Moreover, the columns of the
forward matrix can be normalized such that the enhancement
of the superficial sources is reduced.

256 most active dipoles

VE: 99.83%

log−evidence:
5838971.3

(a) No corrections ofA

256 most active dipoles

VE: 99.24%

log−evidence:
20264819.3

(b) Corrections ofA

Fig. 4. Estimated activityt = 170ms after stimulus and
weighted by the square root of the inverse varianceα when no
corrections of forward fields are performed and when correc-
tions are integrated into the source localization method. Tis-
sue conductivities brain:skull:scalp = 0.33:0.0041:0.33S/m
are used. VE: Variance explained.

4. CONCLUSION

We proposed a hierarchical Bayesian framework for simul-
taneous source and forward model reconstruction aimed at a
improved source density estimate. Results from simulations
and real EEG data illustrated the applicability of the model.
We found that the combined reconstruction resulted in more
localized activity with fewer large distance errors, in compari-
son with a similar model with a fixed forward model. Overfit-
ting is a serious concern in the extended model. By invoking
a flexible prior on the forward model corrections relative to
the prior mean - the standard forward model - are only made
where it is necessary, hence reducing overfit. Future work
concerns the performance of the SOFOMORE model on more
realistic head models based on boundary element method and
finite element method and more realistic priors with temporal
structure.
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