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ABSTRACT source reconstruction problem is conveniently implengnte
ip a Bayesian framework. Common to existing source local-

We propose a new EEG source localization method that s i thods is that th ¢ the i . der th
multaneously performs SOurce and FOrward MOdel REconZation methods is that they pertorm Ihe inversion under the

struction (SOFOMORE) in a hierarchical Bayesian frame-2SSumption that the forward model is known. However, many

work. Reconstruction of the forward model is motivated by?hoésr)(/a pr;OSZenSthizncgp,:ﬁéocrg'nsdeu::i?/itfogivs?rr%urgggetlé);;f;jd'ng
the many uncertainties involved in the forward model, idelu S rfacF:a and electrode positions Vzhen ’real'st"c head mod-
ing the representation of the cortical surface, condugtilis- u ' positions. st

tribution, and electrode positions. We demonstrate in botr‘?IS are constructed from tissue segmentation based on e.g.

simulated and real EEG data that reconstruction of the f0r§tructural MR, the geometry of the head mode is affected by

. o . the resolution and tissue segmentation errors. Such geomet
ward model improves localization of the underlying sources 9 ) geome
errors can be represented as small magnitude perturbations

Index Terms— EEG, source reconstruction, uncertain of the head model shape [7]. Due to the dependence of the

forward model, hierarchical Bayes, distributed model head model in the ill-posed EEG source reconstruction prob-
lem these uncertainties will also affect the source estanat
1. INTRODUCTION Here, we will make a first attempt to correct the uncertain for

ward model simultaneously with the source localizationrin o
Functional neuroimaging by PET and fMRI has added conder to obtain a more reliable source estimate. Recentlya si
siderably to our understanding of the spatial distributién ilar aim was pursued in [8, 9], however, from quite a differen
information processing in the human brain. To better underPerspective than ours. In [8] the geometric structure of the
stand the temporal aspects of systems neuroscience electferward model is assumed known, while the skull-brain con-
and magneto-encephalography (EEG, MEG) are promisinguctivity ratio is an unknown parameter which is estimated
modalities due to their high temporal resolution. In additi Simultaneously with the sources. Similar, [9] reportedabpr
EEG is attractive as it can be acquired under more naturafbilistic distributed model to account for uncertainty fret
istic conditions than PET, fMRI, and MEG. Unfortunately, skull conductivity. In this contribution, we suggest a more
brain mapping by EEG is an ill-posed problem and relativelyjuncommitted approach in which the complete forward model
strong assumptions are needed for regularization. In tise-ex is considered ‘uncertain’. Thus, we approach the EEG source
ing literature of source reconstruction significant eidrave  localization problem with a hierarchical Bayesian modatth
been devoted to methods that incorporate spatio-temporal p simultaneously perform SOurce and FOrward MOdel REcon-
ors to accommodate for focal source distributions under thatruction, in short, the SOFOMORE method.
assumption that the forward model is known. Such inverse
methods are typically classified as equivalent currentldipo 2. METHODS
(ECD) or distributed models. ECD models assume that the
sources can be described by a small number of ECDs [1R.1. The Forward Model
such that the problem is restricted to identify their locati
and orientation. Distributed models normally assume dis
tributed currents with dipoles oriented perpendicularhte t
cortical surface. To solve the inverse problem severalrprio
assumptions have been suggested such as mathematical con- M=AS+E, (1)
straints like the (weighted) minimum norm [2] and maximal
smoothness [3] properties. Other priors such as anatomicavhereA is the forward model consisting of a set of forward
physiological, and temporal information [4, 5, 6] have alsofields {a;}*, corresponding to each of the dipoles in the
been proposed. Integrating such prior assumptions into thgrimary source current denot&d= {st}f[:tl. We assume the

The relationship between the recorded EEG= {m,},"",
from an array ofV,. sensors placed on the scalp and the neural
current activity in the brain is given by



orientations of current dipoles at the vertices to be perpen bi q h hical model witkh d )
dicular to the cortical surface and the measurement rise '2Ple 1. VB updates for hierarchical model with) denoting

: -th : H -th H H
is modeled as additive zero-mean Gaussian distributed. THBE €xpectation any the;** lead field i.e.;*" rowin A. G is

forward model was estimated by the SPM5 academic soft diagonal matrix witik in the diagonaly’ () is the digamma
ware (ttp://ww.fil.ion. ucl.ac.uk/spm), based function and its derivative ig’ (). Hyperhyperparameters of

on routines from BrainStormhe t p: / / neur oi mage. usc. e formu; andg, are updated using Newton-Raphson.

edu/ brai nstornf) as a basic three-spheres (scalp, skull, 2(®) VB updates
brain) head model. N (s¢ |p, 2) p =3 (A m, (3), T = ((BATA) + (D))
Ny
Nl w) = (@104 (5) 3 (s )
2.2. SOFOMORE: A Hierarchical Bayes Approach v
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Given the linear relationship in Eq. (1) and the Gaussiasaoi

~ Ny P
model, for which we will denote the precision pythe likeli- 9 (o [Pai Co ) T = v + 31, Cos = Go + 3 2 (sh)
hood,p (M |S, A, 3), can be expressed as a product of multi- S = - N 7 1 <7 © 2>

) el e : G (i [P G =t G =Gt ( (e e
variate Gaussian distributioms, ~ N (As;, 371, ). Fig- (W i C”) e S G = G N(a B )
ure 1 is a graphical representation of the hierarchical inode ¢ (ﬂ (ﬁg,fg) Dg=vg+ 2 Cy=¢a+1 Y <(mt - Ast)2>
t=1

For _the sources we apply a ql_Jite similar _hiera_rch_ical_ [_)r:'Dr a ) o o) e )
[6], i.e. a zero-mean multivariate Gaussian distributiathw v Py (D) -1
a diagonal precision matri®, with elements = {a;} 7, =1

i.e.,s; ~ N (0, D—l). In contrast to [6] we model the uncer-

whered = {S, A, a, 3,7}, 6\s denotes parameter sgex-
cept forS, p (M, 0) is the joint distribution, ang (M) is
the marginal likelihood. Due to the hierarchical structafe
the model, the marginal likelihood becomes analytically in
tractable. Thus, approximations are needed and we will ap-
ply a standard Variational Bayesian (VB) framework [10], in
which the joint posteriop (6 |M) is approximated by a pa-
rameterized simpler distribution(@) whose parameters are
determined by maximizing the bound on the marginal likeli-
Fig. 1. Graphical representation of hierarchical model that0od obtained through Jensen’s inequality,
accounts for an uncertain forward model.

p(M,0)

tainty of the forward fields, which is performed by indepen- L= ln/p(M’e) dg = /Q(e) In q(0)
dent multivariate Gaussian distributions with prior m

and precisiony;, a; ~ N(al(.o), v; '1y,). The prior mean of
theith forward field is obtained from the solution to the for-
ward problem. An assignment of a parameter to each of th
forward fields allow us to automatically control which of the
forward fields that should be corrected if necessary. Hereby 3. EXPERIMENTS

mainly the forward fields for the active sources have to be cor

rected and the rest remain unchanged if these precisions afé® demonstrate the viability of the SOFOMORE approach
large. Conjugate priors for all the precision parametergha N simulated data and real EEG data. We will show that es-

been used, with skewness parameteand inverse scale pa- timation of the forward model matters, by comparing recon-
rameter¢,, see Fig.1, i.e. precision parameteis modeled structed sources with the corresponding model with fixed for
with a Gamma distributiog (z v, C, ) ward model. The results in this section are for clarity aledi

) . . . .
by operating directly on the measuremeiswithout pre-
processing of data like bandpass filtering or use of temporal
subspaces. Extensions to include this can be performed and
The Bayesian framework provides the complete joint poste- : : _ _
. f d t . the ob ddata INote that inversion of covariance matrices of si¥g x Ny appears
LR Sources_ and parameters giventhe o Serve_ S in the VB update equations, which in the conventional apgitocan be
a representation of the sources we use the marginal pasterigerformed efficiently with the matrix inversion lemma whanis assumed

0 . (3)

The approximate posterior is taken as fully factored in the
parameter® = {S,A,a,(,v}. The resulting sequential
\e/B updates are given in Tab!l

2.2.1. Variational Bayesian Formulation

distribution known. However, due to the inter-dependenc&afnd A the matrix inver-
sion lemma cannot be used efficiently. Thus, in the implememtat® have
» (S |M) _ p (M7 S) _ fp (M» 9) d‘9\S ) performed the VB updates in a subspace spanned by the basie tfad

p (M) p (M) ’ fields (rows inA).



will in general improve performance, future work will con- (b) as prior means& (%)) in the SOFOMORE model. Indeed

cern this important issue. the combined Bayesian estimation of forward model and
source density leads to a better estimation of the true sourc
3.1. Simulations density in both cases. Moreover, the resulting estimates ar

quite similar. However, the model with ‘correct’ prior mean
In the simulations we construct a source signal of a half sinexplains 91.7% of the data variance, which is closer to the
of duration 50ms with a starting time &t25ms for a small true value than the one with the erroneous forward model
set of sources located in the occipital lope, as illustrated taken as prior mean. Additionally, the model in Fig. 3(d) has
the SPM glass-brain representation in Fig.2(a). Note thai much larger log-evidence value, indicating a more likely
minor activity seems to appear at the inner part of the lefinodel.
hemisphere, which is due to the mapping from cortex to the
glass-brain representation. The simulated clean EEG was 256 most active dipoles 256 most active dipoles
constructed with forward model consisting of 3-sphere& wit
tissue conductivities brain:skull:scalp = 0.33:0.00433%/m g ’ L & .
(ratio 1:1/80:1) and dimensioh28 x 7204. We corrupted @ @ @

the clean EEG with ‘realistic EEG noise’ obtained from the

pre-stimulus period in an evoked EEG study described in p VE: 99.85% P VE: 99.70%
Sec. 3.2. We applied a signal-to-noise ratio SNR=10, with log-evidence: log-evidence:
SNR defined aSNR = P.geg/Paoise» Where P.gpe and ) 1014008 G 3656775
P,.isc are the power of the clean EEG and noise, respectively.

Conductivity errors were added to one of the forward models (a) Ratios 1:1/15:1 (b) Ratios 1:1/80:1
used in the source localization. In the source reconstmicti 256 most active dipoles 256 most active dipoles

we used a cortical resolution of 4004 vertices, such that the

‘true’ forward model has a higher spatial resolution. Fegur p g :
256 most active dipoles Q O # Q @ O

EEG measurements

’_ VE: 94.04% & VE: 91.67%
'r ‘ _ log-evidence: f log-evidence:
Z 389929.2 908427.7
-r VE: 88.18% E . . . .
(c) Initratios 1:1/15:1 (d) Init ratios 1:1/80:1
R Fig. 3. Estimated activity at = 50ms and weighted by the
(a) True sources (b) EEG with noise square root of the inverse varianag(i.e. s;;/a;). First row:

No corrections of forward fields. Second row: Correctiores ar
Fig. 2. Simulated source density and EEG. VE: Variance exintegrated into the source localization method. Differeont-
plained. ductivity ratios are used. Figs.(a)+(b) misleading attiim-

side circles - compare with Fig.2(a). VE: Variance expldine
3(a) and 3(b) show the estimated source densities at the time
t=50ms, which corresponds to the time point where we have
the mgximum amplitude of_the EEG. In these ﬁgure_s N0 5 Real EEG data
corrections of the forward fields are performed but differ-
ent conductivities have been used. In both cases erroneolibis EEG data set is part of a multi-modal study on face
activity is estimated in the right pre-motor area (indichte perception, where faces and scrambled faces were presented
with a circle in the figure). However, a ‘correct’ choice of for 600ms every 3600ms to a subject. A detailed descrip-
conductivities also leads to quite good localization of thetion of the experiment is given in [11] artat t p: / / vwww.
true sources. In contrast an erroneous choice of conducti¥-i | . i on. ucl . ac. uk/ spm(where the data is available
ities in Fig.3(a) results in poorer reconstruction of theetr for download). In this contribution we reconstruct the aver
sources. The poorer reconstruction can also be seen froage event related potential (ERP) of trials involving realds
a lower log-evidence value and an increase in the variancas stimuli. In Figs. 4(a) and 4(b) the estimated activity-is i
explained (VE) compared to the correct one in Fig.2(a). Théustrated at=170ms after stimulus, without and with integra-
percentages of variance explained in both models are largépbn of the reconstruction of the forward fields respectivel
than the ‘true’ value (88.2%), indicating some overfittimg.  When there is no correction of the forward fields the recon-
Figs.3(c)-(d) we use the same forward models as in Figs.3(a¥truction results in quite scattered activity, with a proemt



voxel located in the right temporal lope and less prominent

voxels in the right occipital region. In contrast the SOFO-
MORE model leads to improved localization of activity in
the visual cortex with minor activity in the fusiform gyrus,

(2]

which is known to be connected with face processing. This

result is well-aligned with results reported in [12]. Pleaste

that no spatial smoothing has been performed in our resultsy3;
which would probably give better localized sources for the

case without corrections &f. Moreover, the columns of the

forward matrix can be normalized such that the enhancement

of the superficial sources is reduced.

256 most active dipoles 256 most active dipoles

- 15y

VE: 99.83% VE: 99.24%

®

log-evidence:
5838971.3

log-evidence:
20264819.3

L {3

(a) No corrections oA (b) Corrections ofA

Fig. 4. Estimated activityt = 170ms after stimulus and

weighted by the square root of the inverse variamaehen no

[4]

(5]

[6]

corrections of forward fields are performed and when correc—[ ]

tions are integrated into the source localization methask T

sue conductivities brain:skull:scalp = 0.33:0.0041:9./33
are used. VE: Variance explained.

4. CONCLUSION

(8]

We proposed a hierarchical Bayesian framework for simul-
taneous source and forward model reconstruction aimed at §9] S.M. Plis, J.S. George, S.C. Jun, D.M. Ranken, P.L.
improved source density estimate. Results from simulation

and real EEG data illustrated the applicability of the model

We found that the combined reconstruction resulted in more

localized activity with fewer large distance errors, in quari-

son with a similar model with a fixed forward model. Overfit-
ting is a serious concern in the extended model. By invokin 10
a flexible prior on the forward model corrections relative to
the prior mean - the standard forward model - are only mad
where it is necessary, hence reducing overfit. Future wor

po

concerns the performance of the SOFOMORE model on more
realistic head models based on boundary element method and
finite element method and more realistic priors with tempora

structure.
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