Analyzing gait using a time-of-flight camera
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Abstract. An algorithm is created, which performs human gait anal-
ysis using 3-dimensional data from a Time-of-flight camera. For each
frame in a sequence the camera supplies cartesian coordinates in space
for every pixel in the frame. By using an articulated model the subject
pose is estimated in the depth map in each frame. The pose estimation
is based on likelihood, gradient, smoothness and a shape prior used to
solve a Markov random field. Based on the pose estimates, and the prior
that movement is locally smooth, a sequential model is created, and a
gait analysis is done on this model. The output data are: Speed, Cadence
(steps per minute), Step length, Stride length (stride being two consec-
utive steps also known as a gait cycle), and Range of motion (angles of
joints). The created system produces good output data of the described
output parameters and requires no user interaction.
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1 Introduction

Recognizing and analyzing human movement in computer vision can be used
for different purposes such as biomechanics, biometrics and motion capture. In
biomechanics it helps us understand how the human body functions, and if
something is not right it can be used to correct this.

Top athletes have used high speed cameras to analyze their movement either
to improve on technique or to help recover from an injury. Using several high
speed cameras, bluescreens and marker suits an advanced model of movement can
be created, which can then be analyzed. This optimal setup is however complex
and expensive, a luxury which is not widely available. Several approaches aim
to make simpler tracking of movement.

Using several cameras but without bluescreens nor markers [10] creates a
visual hull in space from silhouettes by solving a spacial Markov random field
using graph cuts and then fitting a model to this hull.

Based on a large database [8] is able to find a pose estimate in sublinear time
relative to the database size. This algorithm uses subsets of features to find the
nearest match in parameter space.

An Earlier study uses the Time-of-flight (TOF) camera to estimate pose
using key feature points in combination with a an articulated model to solve



problems with ambiguous feature detection, self penetration and joint constraints
[12].

To minimize expenses and time spend on multi camera setups, bluescreens,
markersuits, initializing algorithms, annotating etc. this article aims to deliver
a cheap alternative that analyzes gait.

Using the Posecut algorithm [4] on output from a TOF camera with no
restrictions on neither background nor clothing a system is presented that can
deliver a gait analysis with a simple setup and no user interaction. The project
object is to broaden the range of patients benefiting from an algorithmic gait
analysis.

2 Introduction to the algorithm finding the pose

This section will give a brief overview of the algorithm used to solve the problem
of finding the pose of the subject. To do a gait analysis the pose has to be
estimated in a sequence of frames. This is done using the Posecut algorithm on
the depth stream provided by a TOF camera [1]. The Posecut algorithm uses 4
terms to define an energy minimization problem and find the pose of the subject
as well as segmenting between subject and background:

Likelihood term: This term is based on statistics of the background. It is
based on a probability function of a given pixel being labeled background.

Smoothness prior: This is a prior based on the general assumption that data
is smooth. Neighbouring pixels are expected to have the same label with
higher probability than having different labels.

Gradient term: Neighbouring pixels with different labels are expected to have
depth values that differs from one another. If the values are very similar but
the labels different, this is penalized by this term.

Shape prior: Trying to find the pose of a human, a human shape is used as a
prior.

2.1 Random fields

A frame in the sequence is considered to be a random field. A random field
consists of a set of discrete random variables {X7, Xs,...,X,,} defined on the
index set I. In this set each variable X; takes a value xz; from the label set
L ={Ly,Lo,..., L} presenting all possible labels. All values of z;, Vi € I are
represented by the vector x which is the configuration of the random field and
takes values from the label set L™. In the following the labeling is a binary
problem, where L = {subject, background}.

A neighbourhood system to X; is defined as N = {N;|i € I} for which it
holds that ¢ ¢ N; and i € N; < j € N,. A random field is said to be a Markov
field, if it satisfies the positivity property:

P(x)>0 V¥xelL" (1)



And the Markovian Property:

Pzil{z; :j € I - {i}}) = P(zil{z; : j € Ni}) 2)

Or in other words any configuration of x has higher probability than 0 and the
probability of x; given the index set I — {i} is the same as the probability given
the neighbourhood of i.

2.2 The likelihood function

The likelihood energy is based on the negative log likelihood and for the back-
ground distribution defined as:

&(D|z; = background) = — log p(D|z;) (3)

Using the Gibbs measure without the normalization constant this energy be-
comes:

2
&(D|x; = background) = (D QMbaCkground’l> (4)
Ubackground,i
With no distribution defined for pixels belonging to the subject, the subject
likelihood function is set to the mean of the background likelihood function. To
estimate a stable background a variety of methods is available. A well known
method, models each pixel as a mixture of Gaussians and is also able to update
these estimates on the fly [9]. In our method a simpler approach proved sufficient.
The background estimation is done by computing the median value at each pixel
over a number of frames. Figure 1(a) shows the background depth model, while
Figure 1(b) shows a frame with the subject.

(a) Background model (b) Subject depth image

Fig. 1. Depth images of background and subject, both images are rotated to emphasize
the spatial properties.



2.3 The smoothness prior

This term states that generally neighbours have the same label with higher
probability, or in other words that data are not totally random. The generalized
Potts model where j € N; is given by:

_ Ky wmiF
¢($27$J) - { 0 T = (5)
This term penalizes neighbours having different labels. In the case of segmenting
between background and subject, the problem becomes binary and is referred
to as the Ising model [3]. The parameter K;; determines the smoothness in the
resulting labeling.

2.4 The contrast term

It is expected that two adjacent pixels with the same label have similar camera
distances, which implies that adjacent pixels with different labels have different
distances. By decreasing the cost of neighbouring pixels with different labels
exponentially with an increase in difference in intensity, this term favours neigh-
bouring pixels with similar distance to have the same label. This function is

defined as:
v(i,j) = Aexp <_g(”)> (6)
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Where ¢2(i, j) is the gradient in the depth map and approximated using convo-
lution with gradient filters. The parameter A controls the cost of the contrast
term, and the contribution to the energy minimization problem becomes:

T e R S ©
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2.5 The shape prior

To ensure that the segmentation is human like and wanting to estimate a human
pose, a human shape model consisting of ellipses is used as a prior. The model is
based on measures from a large Bulgarian population study [7], and the model
is simplified such that it has no arms, and the only restriction to the model is
that it cannot overstretch the knee joints. The hip joint is simplified such that
the hip is connected in one point as studies shows that a 2D model can produce
good results in gait analysis [2]. Pixels near the shape model in a frame are more
likely to be labeled subject, while pixels far from the shape are more likely to
be background.
The cost function for the shape prior is defined as:

®(;|®) = —log(p(2i|©)) (®)



Where © contains the pose parameters of the shape model being position, height
and joint angles. The probability p(z;|®) of labeling subject or background is
defined as follows:

1

1+ exp(p * (dist(i,®) — d,.))

9)
The function dist(¢, ®) is the distance from pixel i to the shape defined by O,
d, is the width of the shape, and u is the magnitude of the penalty given to
points outside the shape. To calculate the distance for all pixels to the model,
the shape model is rasterized and the distance found using the Signed Fuclidian
Distance Transform (SEDT) [11]. Figure 2 shows the rasterized model and the
distances calculated using the SEDT.

p(x; = subject|®) = 1 — p(z; = background|®) =

) Rasterized model ) Distance map

Fig. 2. Raster model and the corresponding distance map.

2.6 Energy minimization

Combining the four energy terms a cost function for the pose and segmentation
becomes:

U(x,0) =Y | DDlz;) + D(x:|0) + Y ((ws,x;) + S(Dls,z;)) | (10)
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This Markov random field is solved using Graph Cuts [5], and the pose is opti-
mized in each frame using the pose from the previous frame as initialization. To
find an initial frame and a pose, the frame that differs the most from the back-
ground is chosen based on the background log likelihood function. As a rough



guess on where the subject is in this frame, the log likelihood is summed first
along the rows and then along the columns. These two sum vectors are used to
guess the first and last rows and columns that contains the subject (Fig 3(a)).
From the initial guess the pose is optimized according to the energy problem
by searching locally. Figure 3(b) shows the optimized pose, notice that the legs
change place during the optimization. This is done based on the depth image
such that the closest leg is also closest in the depth image (green is the right side
in the model), which solves an ambiguity problem in silhouettes.

The pose in the remaining frames is found using the previous frame as an ini-
tial guess and then optimizing this. This generally works very well, but problems
sometimes arise when the legs pass each other as feet or knees of one leg tend
to get stuck on the wrong side of the other leg. This entanglement is avoided by
not allowing crossed legs as an initial guess and instead using straight legs close
together.

(a) Initial guess (b) Optimized pose

Fig. 3. Initialization of the algorithm.

3 Analyzing the gait

From the markerless tracking a sequential model is created. To ensure local
smoothness in the movement before the analysis is carried out a little postpro-
cessing is done.

3.1 Post processing

The movement of the model is expected to be locally smooth, and the influence
of a few outliers is minimized by using a local median filter on the sequences of
point and then locally fitting polynomials to the filtered points. As a measure of
ground truth the foot joints of the subject has been annotated in the sequence



to give a standard deviation in pixels of the foot joint movement. Figure 4 shows
the movement of the feet compared to the annotated points and the resulting
error. The figure shows that the curve fitting of the points gives an improvement
on the accuracy of the model, resulting in a standard deviation of only a few
pixels. If the depth detection used to decide which leg is left and which is right
fails in a frame, comparing the body points to the fitted curve can be used to
detect and correct the incorrect left right detection.
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(¢) Error of right foot (d) Error of left foot

Fig. 4. 4(a) shows the vertical movement of the feet for annotated points, points from
the pose estimate, and for curve fittings. 4(b) shows the points for the horizontal
movement. 4(c) shows the pixelwise error for the right foot for each frame and the
standard deviation for each fitting. 4(b) shows the same but for the left foot.

3.2 OQOutput parameters

With the pose estimated in every frame the gait can now be analyzed. To find
the steps during gait, the frames where the distance between the feet has a



local maximum are used. Combining this with information about which foot is
leading, the foot that is taking a step can be found. From the provided Cartesian
coordinates in space and a timestamp for each frame the step length (Fig. 5(a)
and 5(b)), stride length, speed and cadence (Fig. 5(c)) are found. The found
parameters are close to the average found in a small group of subjects aging 17
to 31 [6], even though based only on very few steps and therefore expected to
have some variance, this is an indication of correctness. The range of motion is
found as the clockwise angle from the x-axis in positive direction for the inner
limbs (femurs and torso) and the clockwise change compared to the inner limbs
for the outer joints (ankles and head). Figure 5(d) shows the angles and the
model pose throughout the sequence.

— 0 — Left Step Length (m): 0.75878 — 0 — Right Step Length (m): 0.72624]

- s o
et S b

(b) Right step length

— 0 — Stride Length (m): 1.4794 00 000000 644600 © © [0 Back -95°| 86"
¢S // /)0 Neck: 15° | 41°
%0 o0 0| —e—Hip: 61°|110°
1 ‘ ¢ ""9 *.“ ||| —@—kKnee: 0° | 62°
I || e Hip: 62°]112°

“\\‘J\H“‘H+Knee:v°|74“

| |

|| |

(c) Stride length, speed and cadence (d) Range of motion

Fig. 5. Analysis output.



4 Conclusion

A system is created that autonomously produces a simple gait analysis. Because
a depth map is used to perform the tracking rather than an intensity map,
there are no requirements to the background nor to the subjects clothes. No
reference system is needed as the camera provides a such. Compared to manual
annotation in each frame the error is very little. For further analysis on gait the
system could easily be adapted to work on a subject walking on a treadmill. The
adaption would be that there is no longer a movement in space (it is the treadmill
conveyor belt moving) hence speed and stride lengths should be calculated using
step lengths. With the treadmill adaption averages could be found of the different
outputs as well as standard deviations.

Currently the system uses a 2 dimensional model and to optimize precision
in the joint angles the subject should move in an angle perpendicular to the
camera. While the distances calculated depends little on the angle of movement
the joint angles have a higher dependency. The dependence of the joint angles
could be minimized using a 3 dimensional model. It does however still seem
reasonable that the best results would come from movement perpendicular to
the camera, whether using a 3 dimensional model or not.

The camera used is the SR-3000 at a framerate of about 18 Fps, which is
on the low end in tracking movement, which is why a better precision could
be obtained with a higher framerate. Due to the fact that movement from one
frame to the next will be relatively shorter, the processing time would not be
augmented greatly, bearing in mind that the pose from the previous frame is
used as an initialization for the next.
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