
Optimizing Manpower Allocation for

Ground Handling Tasks in Airports using

Column Generation

Anders Dohn, Esben Kolind

Department of Management Engineering

Technical University of Denmark

adh@imm.dtu.dk

Abstract

The Manpower Allocation Problem with Time Windows, Job-Teaming Constraints

and a limited number of teams (m-MAPTWTC) is the problem of assigning m teams

to a number of tasks, where both teams and tasks are restricted by time windows

outside which operation is not possible. Tasks may require several individual teams

to cooperate. Cooperating teams have to be synchronized with each other. Due

to the limited number of teams, some tasks may have to be left unassigned. The

objective is to maximize the number of assigned tasks. The problem arises in various

crew scheduling contexts where cooperation between teams/workers, possibly with

different skills, is required. This study focuses on the scheduling of ground handling

tasks in some of Europe’s major airports. Any daily schedule must comply with the

time windows and skill requirements of tasks, transportation time between locations,

the working hours of the staff, synchronization requirements between teams, and

union regulations. The problem is solved using column generation in a Branch-and-

Price framework. Synchronization between teams is enforced by branching on time

windows. The resource constrained shortest path subproblem is solved by a label

setting algorithm. 12 authentic data sets from two of Europe’s major airports are

used for testing. Optimal solutions are found for 11 of the test instances.

Keywords: Manpower allocation, crew scheduling, vehicle routing with time

windows, synchronization, column generation, Branch-and-Price, time window branch-

ing, set partitioning, set covering, integer programming.

1 Introduction and problem description

The The Manpower Allocation Problem with Time Windows, Job-Teaming Con-

straints and a limited number of teams (m-MAPTWTC) arises in crew scheduling

contexts where cooperating teams/workers are required to solve tasks. An exam-

ple is the home care sector, where the personnel travel between the homes of the

patients who may demand collaborative work (e.g. for lifting). The problem also

occurs in hospitals where a number of doctors and nurses are needed for surgery

2

and the composition of staff may vary for different tasks. Another example is in the

allocation of technicians to service jobs, where a combination of technicians with

individual skills is needed to solve each task.

This study has its basis in the scheduling of cleaning personnel in two of Eu-

rope’s major airports. Between arrival and the subsequent departure of an aircraft,

numerous jobs including baggage handling and cleaning must be performed. Typi-

cally, specialized handling companies take on the jobs and assign crews of workers

with different skills. The schedule must respect the time windows and skill require-

ments of tasks, transportation time between locations, the working hours of the

staff, synchronization requirements between teams, and union regulations. It may

be necessary to have several teams cooperating on one task in order to complete

it within the time window. The workload will be divided equally among the co-

operating teams. Furthermore, all teams involved must initiate work on the task

simultaneously (synchronization of tasks), as only one of the team leaders is ap-

pointed as responsible supervisor. In the remainder of this paper, a team is a fixed

group of workers, whereas when referring to job-teaming, we refer to a temporary

constellation of teams joined together for a specific task. In the airport setting, all

tasks require exactly one skill each.

The problem instances of this paper are currently solved by a software tool built

on a Simulated Annealing heuristic. An efficiency increase of up to 20% compared

to a manual planning approach has been reported. Unfortunately, a comparison to

our approach is not possible, as the details of the heuristic are confidential.

MAPTWTC has previously been treated by Lim, Rodrigues, and Song (2004)

and Li, Lim, and Rodrigues (2005) in a metaheuristic approach. They study an

example originating from the Port of Singapore, where the main objective is to

minimize the number of workers required to carry out all tasks, rather than carrying

out the maximum number of tasks with a given workforce. Both papers describe

secondary objectives as well.

Our problem is closely related to the Vehicle Routing Problem with Time Win-

dows (VRPTW) which has been studied extensively in the literature. The most

promising recent results for exact solution of VRPTW problems use column gen-

eration. Column generation for VRPTW was initiated by Desrochers, Desrosiers,

and Solomon (1992). They solve the pricing problem as a Shortest Path Problem

with Time Windows (SPPTW). Their approach proved to be very successful and

has been applied with success by numerous authors. Recently, Feillet et al. (2004)

suggested solving the pricing problem as an Elementary Shortest Path Problem with

Time Windows (ESPPTW) building on the ideas of Beasley and Christofides (1989).

Chabrier (2006), Jepsen et al. (2008), and Desaulniers, Lessard, and Hadjar (2008)

among others have extended the ideas and achieved very promising results.

The remainder of this paper is structured as follows. First, we present the prob-

lem definitions of m-MAPTWTC. Next, the model is presented, where the problem

is decomposed into a master problem and a pricing problem. This decomposition

allows us to solve the problem using column generation in a Branch-and-Price frame-

work. In the following section, the necessary branching rules are described. This

includes branching to enforce integrality as well as synchronization of tasks. The

computational results on a number of real-life problems are presented next and the

final section concludes on the findings presented.

3

2 Problem definitions

2.1 Definition of m-MAPTWTC

Consider a set C = {1, . . . , n} of n tasks and a workforce of inhomogeneous teams

V . Each task has a number of attributes including a duration, a time window, a set

of required skills, and a location. We model the attributes in the following way. For

each task i ∈ C a time window is defined as [ai, bi] where ai and bi are the earliest

and the latest starting times for task i, respectively. ri is the number of teams

required to fully complete task i (Task i is divided into ri split tasks). Between each

pair of tasks (i, j), we associate a time tij which contains the transportation time

from i to j and the service time at task i. Further, gik is a binary parameter defining

whether team k has the required qualifications for task i (gik = 1) or not (gik = 0).

Each team k ∈ V also has a time window [ek, fk], where the team starts at the

service center at time ek and must return no later than fk. There exists only one

service center, and all teams begin their shift at this location. We refer to the service

center as location 0. The transportation time from the service center to each task

i is denoted t0i. The service time of task i plus transportation time from task i to

the service center is ti0.

We assume that ai, bi, ek, and fk are non-negative integers and that each tij is

a positive integer. We also assume that the triangular inequality is satisfied for tij.

The assumptions on tij are naturally fulfilled in all realistic problem instances as tij
includes service time at task i.

2.2 Relations to vehicle routing

As mentioned earlier, m-MAPTWTC is closely related to VRPTW. Consider the

teams as vehicles driving from one customer to another as they in m-MAPTWTC

move from one task to another. The service that the teams deliver is an amount

of their time, unlike the vehicles that deliver goods which have taken up a part of

the total volume. Hence, in that sense m-MAPTWTC is uncapacitated. Except for

the binding between teams inflicted by the possibility of synchronization of tasks,

the problem is similar to the Uncapacitated Vehicle Routing Problem with Time

Windows and a limited number of vehicles (m-VRPTW).

Column generation has proven a successful technique for exact solution of VRPTW

and hence the solution procedure in this paper is built on the principles of column

generation in a Branch-and-Bound framework (Branch-and-Price).

3 Mathematical model

We present a path based formulation of m-MAPTWTC. First, we introduce the

notion of a path. A feasible path is defined as a shift starting and ending at the

service center, obeying time windows and skill requirements, but disregarding the

constraints dealing with interaction between shifts. By this definition the feasibility

of a path can be determined without further knowledge about other paths. We

define Pk as the set of all feasible paths for team k ∈ V . Each path is defined by the

tasks it visits. Let ap
ik = 1 if task i is on path p for team k and ap

ik = 0 otherwise.

4

3.1 Master problem

In the Integer Master Problem we solve the problem of optimally choosing one

feasible path for each team, maximizing the total number of assigned tasks. We

are in this model not able to enforce synchronization between tasks directly, and

this hence has to be enforced by the branching scheme. We choose to consider the

problem as a minimization problem by introducing δi as the number of unassigned

split tasks of task i. Finally, to decrease the size of the problem, a set of promising

paths P ′

k (⊆ Pk) is used instead of Pk. In a column generation context P ′

k contains

all paths generated for team k in the pricing problem so far. We introduce the binary

decision variable λp
k, which for each team k is used to select a path p from P ′

k. To

be able to solve the model efficiently λp
k and δi are LP-relaxed. We arrive at the

Restricted Master Problem (RMP):

min
∑

i∈C

δi (1)

δi +
∑

k∈V

∑

p∈P ′

k

ap
ikλ

p
k ≥ ri ∀i ∈ C (2)

∑

p∈P ′

k

λp
k = 1 ∀k ∈ V (3)

λp
k ≥ 0 ∀k ∈ V,∀p ∈ P ′

k (4)

δi ≥ 0 ∀i ∈ C (5)

The master problem has the form of a generalized set-covering problem. The

sum of δi over all tasks is minimized (1). (2) penalizes inadequate assignment to a

task by incrementing δi sufficiently. (3) ensures that exactly one path is selected for

each team. (4) and (5) are non-negativity constraints on our decision variables.

This formulation allows tasks to be assigned more times than required, which

is useful in a column generation setting, as it improves the estimates of the final

dual variables (see Kallehauge et al. 2005). On the downside, any solution may

contain overcovering, i.e. we may have tasks which are assigned to more teams

than requested. However, in this formulation, overcovering can be removed without

altering the objective value by unassigning the superfluous number of teams for each

task. In the case of overcovering of task i we avoid the unassignment-penalty (i.e.

δi = 0), but the additional team assignments to the task do not improve the objective

value further as δi is a non-negative variable. Hence, by removing all but ri of the

assignments, the objective value remains unchanged (we still have: δi = 0). The

modified solution is still feasible and the overcovering can hence easily be removed

from an optimal solution. The formulation of the master problem as a set covering

problem instead of a set partitioning problem hence only affects the computational

aspects of the algorithm.

If the master problem contains no columns representing paths from the outset

of the column generation procedure, the problem will be infeasible due to the team

constraints (3). Therefore, we add an empty path λ0
k (a0

ik = 0,∀i ∈ C) for each team

to ensure feasibility, whether regular paths are present or not.

The solution to the restricted master problem may not be integer. In addition,

we have relaxed the constraint on synchronization of tasks. Both of these properties

must be enforced by a branching scheme. The solution to the restricted master

problem is not guaranteed to be optimal either, since only a small subset of feasible

5

paths is considered. For each primal solution λ to the restricted master problem we

obtain a dual solution [π, τ], where π and τ are the dual variables of constraints (2)

and (3), respectively.

In column generation, the dual solution is used in the pricing problem to ensure

the generation of columns leading to an improvement of the solution to the master

problem. In our case, the gain of including the tasks in the path (the sum over πi

for all tasks i in the path) must be larger than the cost of moving the team from

the route they would otherwise be assigned to (τk).

3.2 Pricing problem

The pricing problem specifies all the requirements of a feasible path. The objective

is to find the path with the lowest possible reduced cost. In m-MAPTWTC with

inhomogeneous teams as described above, we obtain m = |V | separate pricing prob-

lems. Each pricing problem is an Elementary Shortest Path Problem with Time

Windows (ESPPTW). We only include tasks where πi > 0 as other tasks are certain

not to be in an optimal path. Further, we only consider tasks where the team has

the required skill and where team time windows and respective task time window

have an overlap. If this is not the case, such a task is not in any feasible path.

Solution methods to the Shortest Path Problem with Time Windows have been

studied extensively in the literature and successful algorithms for solving SPPTW

have been built on the concept of dynamic programming. We solve the elementary

version of the problem (ESPPTW), where no cycles are allowed. Dror (1994) proves

that the problem is NP-hard in the strong sense and thus no pseudo-polynomial

algorithms are likely to exist. We use a label setting algorithm built on the ideas

of Chabrier (2006) and Jepsen et al. (2008). The authors of both papers have

recently succeeded in solving previously unsolved VRPTW benchmarking instances

(from the Solomon Test-sets, Solomon 1987) by ESPPTW-based column generation.

Furthermore, Feillet, Dejax, and Gendreau (2005) and Feillet et al. (2004) address

the Vehicle Routing Problem with Profits (similar to the Vehicle Routing Problem

with a limited number of vehicles) and state that solving the elementary shortest

path problem as opposed to the relaxed version is essential to obtain good bounds.

We will not go into the details of the label setting algorithm, since the problem

is almost identical to the pricing problem of VRPTW. We have a shortest path

problem where all arc costs out of a node are identical and hence can be moved to

the node. The pricing problems are first solved in a heuristic label setting approach

and if no columns can be added, we switch to the exact label setting algorithm.

4 Branching

When an optimal solution to the relaxed master problem is reached, and when the

solution is not feasible in the original problem, branching is applied. The branching

is carried out in the master problem. Branching decisions are transmitted to the

pricing problem when they have an impact.

4.1 Branching to get integral solutions

Various branching strategies for VRPTW have been proposed. See (Kallehauge et al.

2005) for a more thorough review of branching strategies for VRPTW.

6

We focus on a 0-1 branching on
∑

j xijk. For a chosen (i, k), each branching

decision fixes
∑

j xijk = 0 and
∑

j xijk = 1, respectively. This implies that team k is

either forced to or banned from task i. In the pricing problem, the node correspond-

ing to task i is either removed from the network (along with all arcs incident to it)

or given a very low (negative) cost to ensure its inclusion in any optimal solution.

4.2 Synchronization using branching

Consider an optimal solution to the relaxed master problem, fractional or integral,

and let sp
i be the point in time where execution of task i begins on path p (if i is not

a part of p, sp
i is irrelevant). The solution violates the synchronization constraint

for some task i if there exist positive variables λp1

k1
and λp2

k2
associated with the two

paths p1 and p2 (p1 6= p2), both containing i where

sp1

i 6= sp2

i

If the solution is fractional, the teams k1 and k2 may be identical.

Define s∗i = ⌈(sp1

i + sp2

i) /2⌉ as the split time. Now, split the problem into two

branches and define new time windows for task i as

[ai; s
∗

i − 1] and [s∗i ; bi]

respectively. Existing columns not satisfying the new time windows are removed

from the corresponding child nodes and new columns generated must also respect

the updated time window. In this way, the current solution is cut off in both branches

and the new subspaces are disjoint. Since time has been discretized the branching

strategy is guaranteed to be complete.

The idea behind this branching scheme is to restrict the number of points in

time, where the execution of task i can begin. If the limited time window makes

it inconvenient for the teams to do task i, the lower bound will increase and the

branch is likely to be pruned at an early stage. On the other hand, if the limited

time window contains an optimal point in time for the execution of task i, it may

be necessary to continue the time window branching until a singleton interval is

reached. However, since the label setting algorithm for the pricing problem aims at

placing tasks as early as possible (see Desrochers, Desrosiers, and Solomon 1992),

the actual number of different positions in time for any task is rather small. In fact,

as the time windows are reduced, the tasks are more and more likely to be placed at

the very beginning of their time window. This property greatly reduces the number

of branching steps needed.

Using time window branching, the solution will eventually become feasible with

respect to the synchronization constraint. It is not guaranteed to be integral, though,

and it may therefore be necessary to apply the regular
∑

j xijk branching scheme,

branching on a combination of a task and a team. As both schemes have a finite

number of branching candidates, the solution algorithm will terminate when they

are used in combination. In general, when none of the feasibility criteria (integrality

and synchronization) are fulfilled, we have a choice of branching scheme.

Our algorithm has been set to use time window branching whenever applicable.

The restricted time windows reduce flexibility in the column generation which, in

turn, limits the possibilities of combining fractional columns when solving the master

problem. Thus, time window branching is also expected to have a positive influence

7

on the integrality of the solution as observed by Gélinas et al. (1995) for VRPTW.

This property has also been observed in practice when testing the algorithm, hence

the choice of prioritizing time window branching.

5 Computational results

The Branch-and-Price algorithm has been implemented in the Branch-and-Cut-and-

Price framework of COIN-OR (Coin 2006) and tests have been run on 2.7 GHz AMD

processors with 2 GB RAM. The implementation has been tuned to the problems at

hand and parameter settings have been made on the basis of these problems. The

algorithm is set to do strong branching (Achterberg, Koch, and Martin 2005) with

25 branching candidates. Up to 10 columns with negative reduced cost are added

per pricing problem.

The test data sets originate from real-life situations faced by ground handling

companies in two of Europe’s major airports. This gives rise to four different problem

types, since the two airports each produce problems of two distinctive types. Each

type is represented by three problem instances, thus a total of 12 test instances are

available. Each instance spans approximately one 24-hour day.

Generally, the four problem types can be summarized as (In brackets: The total

number of tasks after splitting into requested split tasks):

Type A Small instances, Airport 1. 12-13 teams and 80 (120) tasks
Type B Medium instances, Airport 2. 27 teams and 90 (150) tasks.
Type C Small instances, Airport 2. 15 teams and 90 (110) tasks.
Type D Large instances, Airport 1. 19-20 teams and 270 (300) tasks.

The problem instance A.1 and its optimal solution is illustrated in Figure 1.

The figure depicts the distribution of tasks over the day and the skill requirements

for these. The execution time of tasks and the length of their time windows are

similar in the other problem types. In our problem instances, each team must

be given a predefined number of breaks during their day and within certain time

windows. Breaks are treated as regular tasks, with the exceptions that they can only

be assigned to the related team, and they cannot be left unassigned in a feasible

solution.

The individual schedules of the teams are captured in the 13 boxes, which clearly

show the start and end time of each shift. Each task is represented by one or more

small boxes labeled with the task ID (Breaks have ID: ”BR”). The superscript

denotes the number of teams that the task must be split between. This number

therefore corresponds to the total number of boxes labeled with the task ID of

this task. Above each task is a thin box depicting the time window of the task.

Furthermore, each task has a color pattern revealing its skill requirement. Each

team has between one and three skills, identified by the small squares to the left of

the team ID. To assign a task to a team, the color pattern of the task must match

the pattern of one of these squares.

To illustrate how to read the figure, we go through the work plan of team 9. The

first task carried out is task 6 which requires skill C. The task is scheduled from

6:10 to 7:10 and hence the time window of the task is respected, since execution

cannot start before 6 o’clock and must be finished by 7:30. The task is completed

in collaboration with team 6. The light gray box in front of the task gives the

8

Figure 1: Problem instance A.1 and its optimal solution.

required travel time. Next, the team takes care of task 52 (requires skill A), this time

cooperating with team 7. After this, team 9 is given their daily break. Subsequently,

they will carry out 71, 49, and 22, where task 49 and task 22 are dealt with by team

9 alone.

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 ∗ 7 1 0 3 5 ∗ 3 ∗ 6 ∗ 10 ∗ 29 24 ∗ 31
Lower Bound 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 133 OM 2663 120 172 97 OM OM OM TO 2719 TO
- LP (%) 15 46 20 10 10 11 29 9 34 2 5 3
- Branching (%) 68 7 70 82 82 78 34 81 32 5 10 4
- Pricing Problem (%) 4 8 2 1 2 2 4 4 9 93 83 91
- Overhead (%) 13 39 8 7 6 9 33 6 25 0 2 2

Tree size 605 42435 3207 537 597 507 188623 87843 69637 4961 487 2741
Max. depth 160 162 168 264 291 253 122 166 204 219 235 228
Pricing Problems 13292 3 · 106 107320 15554 17240 14813 3 · 106 2 · 106 2 · 106 379799 20728 247634
Vars added 12268 2 · 106 109810 4074 5223 4321 2 · 106 1 · 106 1 · 106 231209 16659 204614

Table 1: Results of the Branch-and-Price algorithm with no initial solution.

OM = Out-of-Memory. TO = The Time-Out limit of 10 hours was reached.
∗ The solution given is the best feasible solution found.

In Table 1 the results from the 12 datasets are given. From the table we conclude

the following. 6 of the 12 datasets were solved to optimality within one hour. The

remaining 6 instances are split in two cases: one case for the small and medium-

sized problems (Type A-C) and one case for the large instances (Type D). For

the unsolved problems of Type A-C we see an explosion in the size of the branching

9

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3 D.1 D.2 D.3

Unassigned split tasks 9 7 1 0 3 5 × 3 4 9 ∗ 29 24 31
Lower Bound 9 6 1 0 3 5 2 4 9 27 24 30

Time (s) 0.84 0.80 36 0.97 TO 235
- LP (%) 33 25 21 17 0 5
- Branching (%) 5 8 25 8 0 0
- Pricing Problem (%) 18 6 14 8 100 95
- Overhead (%) 44 61 40 67 0 0

Tree size 11 19 981 59 447 9
Max. depth 3 5 46 28 40 4
Pricing Problems 530 561 32921 1358 42284 6415
Vars added 785 758 16406 475 37212 6104

Table 2: Results of the Branch-and-Price algorithm with initial solution from the

test of Table 1.

TO = The Time-Out limit of 10 hours was reached.
∗ The solution given is the best feasible solution found.
× After encountering Out-of-Memory on the first run, the pricing problem solver was in

this case changed to not create heuristic columns.

tree. In these cases the time-out limit is never reached, since we run out of memory

before time out. The reported results for these instances have been recorded after 2

hours, which in these cases is just before the memory limit is reached. For Type D

the results indicate that the generation of columns is now in itself a time consuming

task and time-out is encountered with a relatively small tree size. The lower bounds

reported in the table are calculated by relaxation of the synchronization constraint.

The branching trees from the above test have been built without a good initial

solution. For each of the unfinished problems, we restart the algorithm with an

initial solution, namely the best feasible solution of Table 1. The results of the new

test are displayed in Table 2.

It is interesting that most of these instances are now solved to optimality within

seconds. It clearly indicates that inexpedient branching decisions were made in

the first run and more reliable branching is possible when promising columns exist

initially. Another observation is that solving C.1 under default settings leads to

another out-of-memory failure, whereas changing the settings slightly gives an op-

timal solution within one second. This is another indication of the importance of

making the right branching decisions and the consequence of not doing so. It has

been tested that the settings giving a fast solution in this case are not superior in

general.

6 Conclusions

The practical Manpower Allocation Problem with Time Windows, Job-Teaming

Constraints and a limited number of teams is successfully solved to optimality us-

ing a Branch-and-Price approach. By relaxing the synchronization constraint, the

problem is divided into a generalized set covering master problem and an elemen-

tary shortest path pricing problem. Applying branching rules to enforce integrality

as well as synchronized execution of divided tasks, enables us to arrive at optimal

solutions in half of the test instances. Running a second round of the optimization,

initiated from the best solution found in round one, uncovers the optimal solution

to all but 1 of the 12 test instances. The test instances are all full-size realistic

10

problems originating from scheduling problems of ground handling tasks in major

airports. Synchronization between teams in an exact optimization context has not

previously been treated in the literature. We have successfully integrated the extra

requirements into the solution procedure and the results are promising.

References

Achterberg, T., T. Koch, and A. Martin. 2005. “Branching Rules Revisited.”

Operations Research Letters 33 (1): 42–54.

Beasley, J. E., and N. Christofides. 1989. “An Algorithm for the Resource Con-

strained Shortest Path Problem.” Networks 19:379–394.

Chabrier, A. 2006. “Vehicle Routing Problem with Elementary Shortest Path Based

Column Generation.” Computers and Operations Research 33 (10): 2972–2990.

Coin. 2006. COmputational INfrastructure for Operations Research (COIN-OR).

http://www.coin-or.org/.

Desaulniers, G., F. Lessard, and A. Hadjar. 2008. “Tabu Search, Partial Elemen-

tarity, and Generalized k-Path Inequalities for the Vehicle Routing Problem

with Time Windows.” Transportation Science 42 (3): 387.

Desrochers, M., J. Desrosiers, and M. M. Solomon. 1992. “A New Optimization

Algorithm for the Vehicle Routing Problem with Time Windows.” Operations

Research 40:342–354.

Dror, M. 1994. “Note on the Complexity of the Shortest Path Models for Column

Generation in VRPTW.” Operation Research 42 (5): 977–978.

Feillet, D., P. Dejax, and M. Gendreau. 2005. “Traveling Salesman Problems with

Profits.” Transportation Science 39 (2): 188–205.

Feillet, D., P. Dejax, M. Gendreau, and C. Gueguen. 2004. “An Exact Algorithm for

the Elementary Shortest Path Problem with Resource Constraints: Application

to some Vehicle Routing Problems.” Networks 44 (3): 216–229.

Gélinas, S., M. Desrochers, J. Desrosiers, and M. M. Solomon. 1995. “A New

Branching Strategy for Time Constrained Routing Problems with Application

to Backhauling.” Annals of Operations Research 61:91–109.

Jepsen, M., B. Petersen, S. Spoorendonk, and D. Pisinger. 2008. “Subset-Row

Inequalities Applied to the Vehicle-Routing Problem with Time Windows.” Op-

erations Research 56 (2): 497–511.

Kallehauge, B., J. Larsen, O. B. G. Madsen, and M. M. Solomon. 2005. Chapter 3 of

Vehicle Routing Problem with Time Windows, 67–98. Desaulniers G., Desrosiers

J., Solomon M.M.: Column Generation, Springer, NY.

Li, Y., A. Lim, and B. Rodrigues. 2005. “Manpower Allocation with Time Windows

and Job-Teaming Constraints.” Naval Research Logistics 52:302–311.

Lim, A., B. Rodrigues, and L. Song. 2004. “Manpower Allocation with Time

Windows.” Journal of the Operational Research Society 55:1178–1186.

Solomon, M. M. 1987. “Algorithms for the Vehicle Routing and Scheduling Prob-

lems with Time Window Constraints.” Operations Research 35 (2): 254–265.

11

	Abstract
	1 Introduction
	2 Aircraft Routing
	5 Conclusion and Further Research
	6 References
	Abstract
	1 Introduction
	2 Multicast routing cost allocation
	2.1 Problem definition
	2.2 Mechanism requirements
	3 Marginal-cost mechanism
	4 Profit-guaranteeing mechanism
	5 Results
	5.1 10-node networks
	5.2 50-node networks

	6 Conclusions
	7 References

	Exploring the Elder Care Conundrum using SSM and TOC
	Abstract
	1 Introduction
	2 Applying SSM to the elder care conundrum
	2.1 SSM Methodologies
	2.2 Applying SSM to the elder care situation
	2.3 The processes involved in moving to elder care facilities
	2.4 Development of a Model of the System
	2.5 Thoughts and Discussion following the SSM analysis
	2.6 SSM and Other Systems Methodologies
	3 The Elder Care Conundrum viewed as a Dilemma using TOC’s Evaporating Cloud.

	4 Conclusions
	5 References

