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Full scale measurements of the propulsion power, ship speed, wind speed and direction, sea and air temperature,  
from four different loading conditions has been used to train a neural network for prediction of propulsion power. 
The network was able to predict the propulsion power with accuracy between 0.8-2.8%, which is about the same 
accuracy as for the measurements. The methods developed are intended to support the performance monitoring 
system SeaTrend® developed by FORCE Technology (FORCE (2008)). 
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INTRODUCTION 
As part of the Industrial PhD project ''Ship Performance 
Monitoring'' automatic data sampling equipment was installed 
on the tanker ''Torm Marie'' in January 2008 and so far data 
from four different loading conditions are available. 
Modeling of these loading conditions are fundamental to 
achieving a good solution. In the future, the variation in draught 
and trim will be added as variables. 
 
Ship propulsion performance (referred to as the performance) is 
a measure of the energy consumption at a certain state, i.e. 
speed, loading condition, weather condition and other factors. 
During the lifetime of the ship the performance will decrease 
e.g. the fuel consumption will increase at a certain state or the 
speed will decrease at a certain power setting. This is mainly 
due to fouling of the hull and propeller. A typical trend of the 
speed reduction is illustrated in Figure 1.  
 
Hence, performance evaluation is about comparing the fuel 
efficiency or propeller power at one time to another time, in 
other words to compare the ship at one state with another state. 
Since a ship is subjected to external factors such as wind, waves, 
shallow water, change in sea water temperature, etc. as 
illustrated in Figure 2, it is unlikely that the ship will ever be in 
the exact same situation more than once. Furthermore these 
external factors can be difficult to measure accurately and thus a 
similar situation will not be detected. 
 
This deterioration is only a few percent and is therefore difficult 
to detect with traditional performance monitoring methods. 
 

 
Figure 1: Increase of the fuel consumption as an effect the 
fouling 
 
 
Traditionally, the problem has been solved by calculating a 
theoretical propulsion power for the actual condition using 
standard empirical resistance and propulsion methods, for 
example Harvald, S. A. (1983) or Holtrop, J. (1984) methods. 
For the estimation of the wind resistance a method proposed by 
Isherwood, R. (1972) can be used if no wind resistance 
coefficients are available for the ship. 
 

 
Figure 2: Performance variables 
 
These empirical methods are derived from model tests and sea 
trials, and since most model test are carried out in a design 
condition (even keel) and speed, this is the region where it 
should be applied. In operation the ship will travel in many other 
conditions i.e. ballast draught and trimmed conditions. 
 
Consequently these methods give a rough estimate of the 
propulsion power rather than an accurate reference point. If 
some measured values from model tests or sea trials are 
available, they can be used to adjust the empirical data and thus 
give a more accurate result. 
 
Another part of the problem is to have sufficient input data for 
the analysis in order to capture the dynamics of the propulsion 
power. This is relevant for the traditional method and any other 
method that can be used. A short description of the input is 
given below:  
 
Draught and trim - usually these fundamental variables for the 
power estimation are found from visual observation or from the 
loading computer before departure; sometimes the arrival 
condition is determined by observations, but usually only from 
the loading computer. Some ships are equipped with dynamic 
draught measuring devices, but these are very sensitive devices 
which deliver a signal with a significant variance. Draught and 
trim have approximately an accuracy of 0.2m, as that is the 
usual scale for draughts marks.   
 
Power measurement - the power can be measured in different 
ways. Measuring the propeller shaft torque with a torsiometer, 
and the rate of revolution with a tachometer will give the direct 
power delivered to the propeller and is thus the preferable 
method.  
The main engine fuel consumption is also a fairly good 
measurement, but it is necessary to have sufficient information 
of the fuel quality. A change in the main engine performance 
will also show a change in the fuel consumption, so it can be 
difficult to determine the propeller and hull performance from 
the fuel performance alone. 
 
Speed through the water - is measured by the speed log that is 
based upon the Doppler principle. Experience shows that the 
signal from the speed logs has a tendency to drift and hence 
many ship officers do not trust the speed logs. It is also possible 
to estimate the speed through the water from the sea current 
determined by a meteorological prognosis and from the speed 
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over ground given by the GPS navigator. Although the speed 
log can drift it is expected to give more reliable results than the 
one estimated from the sea current and GPS speed. 
 
Relative wind speed and direction - is measured by a doppler 
anemometer Airmar® WeatherstationTM PB100 mounted on top 
of the superstructure. At this position the wind speed and 
direction is altered from the free stream wind due to the 
presence of the ship. Traditional methods for estimating the 
wind resistance is based on wind tunnel tests and hence assumes 
that the wind speed and direction is undisturbed. Since the 
undisturbed wind speed and direction is unknown from 
measurements, the measured (disturbed) values are used directly 
in the empirical model, although this is not correct. Furthermore, 
the wind resistance coefficients are in this case determined 
empirically, which induce additional uncertainty. 
 
Air temperature - is also measured by the Airmar® 
WeatherstationTM PB100 unit. The air temperature can vary 
significantly within a few hours, which has a direct effect on the 
air density and consequently on the ship resistance, e.g. for the 
ship traveling with a speed of 15 knots in 10 m/s and 0°C 
headwind the air resistance will be 215kN and total resistance 
953+215 = 1168 kN, for the ship and wind speed, but with an air 
temperature of 10°C the wind resistance is 199kN and the total 
resistance 953+199 = 1152 kN. The difference in air density has 
a relative influence on total resistance of (1168-1152) / 1168 = 
1.4%. For the present measurement the air temperature varies 
between 24.5-28.8°C and has a variance of ~0.47. 
 
Sea water temperature - is usually measured once daily by the 
engine crew. The seawater temperature has a significant impact 
on the sea water density and viscosity, and consequently on the 
resistance. The difference between sailing in 0°C and 30° C 
seawater results in a frictional resistance around 7%, and for the 
present type of ship the frictional resistance accounts for 90% of 
the total resistance. 
 
Traditional Performance Evaluation 
Traditionally the performance has been evaluated by rather 
simple procedures, where the daily fuel consumption has been 
reported in the ''Noon Report'' together with distance traveled 
over the last 24 hours, the corresponding average observed 
speed and a single weather observation. 
 
This method gives a limited number of observations since there 
is a maximum of 365 observations per year. Then the days in 
port are deducted, together with observations including 
maneuvering, shallow water and significant changes in speed or 
heading. This might leaves 200 observations per year, each with 
only one weather observation which introduces a significant 
uncertainty, since the weather can change considerably during 
24 hours. 
 
SHIP PROPULSION THEORY 
Classical ship propulsion procedures can be used as a reference 
point for the model. In these models the effects of ocean waves 

have been neglected due to the uncertainty of both the estimate, 
the added resistance from the waves and measuring the actual 
wave height and period. 
The total resistance thus consists of the still water resistance 
RSW and the wind resistance Rwind. 
 
Resistance 
First, the still water resistance is found using the following 
equation: 

2
2
1 SUCR SWtotSW ρ=     (1) 

 
The coefficient Ctot is defined as: 

Ctot= Cv + CR + CA+ CAA   (2) 
 
Where: 
Cv, Viscous resistance coefficient: Defined as Cv=Cf (1+k) 
where the frictional part Cf, is determined from the formula:  
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Where:  
Re is the Reynolds 
 
k is the form factor that accounts for 3D flow effects around the 
hull, usually in the region 0-0.25. 

  
CR, Residual resistance coefficient is mainly accounting for the 
energy radiated by waves made by the ship. CR can be estimated 
empirically by e.g. Harvald, S. A. (1983) or Holtrop, J. (1984), 
but the discrepancies can be up to 50% possibly making CR the 
most difficult variable to determine in ship resistance.  
 
CA, Incremental resistance coefficient, accounts for differences 
in the hull roughness of the model and the ship. It is usually 
constant and in the region of 0.15-0.55 10-3 

 
CAA, Allowance includes air and steering resistance. 
 

Wind Resistance 
In almost all conditions the hull and superstructure of the ship 
will result in a resistance component from the relative wind (the 
resistance can be negative, in case of strong following winds!). 
The wind resistance is calculated by  

2
2
1

RTairXwind VACR ρ=     (5) 
Where the wind resistance coefficient Cx, is determined 
empirically, by e.g. Isherwood, R. (1972), or by model tests, and 
vary with the relative wind direction, γR. AT is the transverse 
projected area above the waterline and VR is the relative wind 
speed. The wind coefficient Cx assumes that the wind speed and 
direction is undisturbed by the ship, which naturally is 
impossible for the on-board measurements. 
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Propulsion 
The efficiency of the propeller ηD behind the ship is found by 
combining the results from model tests of the propeller alone, 
the so called open water test and model tests of the ship, with 
and without the propeller. If model tests are not available the 
values, wake fraction, w, thrust deduction, t, and relative rotative 
efficiency can be estimated by e.g. Harvald, S. A. (1983) or 
Holtrop, J. (1984). This results in the overall propulsion 
efficiency ηD. 
 
Using the above described methods with the empirical method 
by Harvald, S. A. (1983) the propulsion power has been 
calculated for the measured conditions. This is illustrated in 
Figure 3. 
 
Assuming that the ship is sailing in calm and deep water 
(depth/draught>8), the propulsion power can thus be written as: 

 
( windSWDD RRUP += −1η )   (6) 

 
A non-linear method has been developed based on the relation 
in (5), but did only show slightly better results than a similar 
linear method. Both the linear and non-linear method resulted in 
a relative error above 5% and was quickly discarded. 
 

 
Figure 3: Propulsion calculation by empirical calculations, for 
data set #1 (Table 1), where Tm is the mean draught and Tr is 
the trim. 
 
 
ARTIFICIAL NEURAL NETWORK 
An artificial neural network (ANN) is an advanced form of non-
linear regression that can be used to model complex 
relationships between input and output variables. ANN can be 
described as linear combinations of nonlinear regression models, 
with nonlinear basis functions, zj. 
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Where: 
x are the measured input data. 
y are is the output, in this case the propulsion power 
 
The network being used for this problem is a so called one 
hidden layer (z1-zM). Figure 4 illustrates an equivalent network 
with multiple output variables, whereas the present method only 
uses one output (y1). 
 

 
Figure 4: A single hidden layer artificial neural network, with 
multiple outputs. 
 
The network is a non-linear regression model with 
additive Gaussian noise and trained with a Bayesian learning 
scheme.  
 
After different attempts of modeling the propulsion power by 
using the physical and empirical relation, a neural network was 
tested and immediately showed surprisingly good results. Using 
a neural network efficiently thus requires sufficient input 
variables, hidden units, as well as a sufficient amount of data to 
train with. 
 
From the physical relations of the ship propulsion theory the 
most important variables for the propulsion power, P, can be 
deducted to: ship speed, U, wind speed, VR and direction, γR, air 
temperature, Tair and seawater temperature, TSW.  
Consequently the input and output variables are defined as: 
 
 [ ]SWairRR TTVUx γ=  

 Py =  
 
The relationship between the different variables and the 
propulsion power is also known to a certain extent, e.g. the 
power is expected to be proportional to the ship speed cubed. 
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TEST DATA SET 
The data has been collected onboard the 110,000 dwt tanker 
“Torm Marie” where a number of measurement were 
continuesly logged, from where only the relevant data for this 
problem has been taken. The sampling was split into intervals of 
10 minute time series with 10 minutes intervals. The sampling 
frequency of the times series was 1 second, but many of the 
measurements had inconsistent signals, i.e. sometime more than 
10 second intervals. Power and speed were more or less 
consistently updated every 13 seconds. 
 
Naturally the recorded data included samples from non-
stationary situations as well as situations with zero forward 
speed. One significant variable to the variations in the samples 
was the change of heading. Even small changes (less than 1°) of 
the heading, had significant influence on the measured 
propulsion power. Samples with excessive variance in the 
heading have thus been excluded. 
 
The sea state has a significant influence on the ship resistance 
and hence the propulsion power. No direct measurements of the 
sea state have been made, but the wind driven waves can be 
represented by the true wind speed to a certain extent. Making 
this assumption the swell is not included. 
 
In Table 1 the key figures for each dataset are outlined. It is 
noted that the ship speed intervals are approximately in the same 
region for each sample. The distributions of the ship and true 
wind speed are illustrated in Figure 5-Figure 8. It should be 
noted that the Beaufort wind force (BF) 5 starts at 
approximately 16 knots wind speed. In this condition the wind 
driven waves are around 2 m high, which is when the sea state 
starts to influence the added resistance. From Figure 5 and 
Figure 6 it is noted that only a few occurrences are above this 
level and thus data sets #1 and #2 can be regarded as calm water 
conditions. Data set #3 and #4 on the other hand has a more 
significant contribution of measurements above BF 5 and the 
added resistance must be regarded as an extra contribution. 
 
Table 1: Trained data sets, where N represents the number of 10 

minute recording windows 
Data 
set 

Number 
of 

Samples 

Mean 
draught, 

Tm 

Trim 
Ta-
Tf 

Umin-
Umax 

Pmin-Pmax 

M N [m] [m] [knots] [kW] 

1 238 12.4 0.0 13.6-
15.2 8139- 11111 

2 236 7.4 2.4 14.3- 
16.2 7574- 11283 

3 142 7.85 2.7 13.6- 
15.2 

7750- 
9248.5 

4 63 12.15 0.0 13.4- 
16.1 9764- 11216 

 
The input data are the mean values of the 10 minutes time 
series. In order to justify this, spreading of the signal has been 

analyzed, for the ship speed, U, propulsion power, P and 
apparent wind speed, VR. The air temperature has been neglected 
since it is very stable. For every 10 minute period the relative 
standard deviation, (σx,n,/μx,n) has been found and for every 
dataset the average of the relative standard deviation, Mσ  has 
been determined: 
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Where: 
σx,n is the standard deviation for the n’th time series 
μx,n is the mean value for the n’th time series  
x indicate the input input/output variable (U, P, VR, γR) 

 
Similarly the average of the relative standard deviation 
μn, Mx,μ , can be found. 
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The average of the relative standard deviation Mx,μ and the 

average of the relative standard deviation Mx,σ are shown for 
every dataset in Table 2 and Table 3. It is noted that both the 
measured power and ship speed are all less than 1, but for the 
wind speed there are significant variations. 
 
Table 2: The average of the relative standard deviation 

M N Uμ  
Pμ  

RVμ  

1 238 0.6% 0.8% 10.0% 
2 236 0.6% 0.7% 18.0% 
3 142 0.6% 0.6% 12.4% 
4 63 0.6% 1.0% 7.9% 

 
Table 3: The standard deviation of the relative standard 
deviation 

M N 
Uσ  

Pσ  
RVσ  

1 238 0.2% 0.4% 5.9% 
2 236 0.3% 0.2% 13.7% 
3 142 0.2% 0.2% 7.2% 
4 63 0.3% 0.5% 4.8% 
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Figure 5: Ship speed and true wind speed distribution of sample 
#1 

 
 

 
Figure 6: Ship speed and true wind speed distribution of sample 
#2 

 

 

Figure 7: Ship speed and true wind speed distribution of sample 
#3 

 

 
Figure 8: Ship speed and true wind speed distribution of sample 
#4 

 
 
TRAINING 
The training and test has been performed by a neural network 
(DTU toolbox (2002) Larsen, J. (1993), MacKay, D. J. C. 
(1992), Pedersen, M. (1997), Svarer, C.; Hansen, L. & Larsen, J. 
(1993)) 
 
The training procedure has been restarted 10 times in order to 
ensure that the network found the best possible solution for that 
particular case. 
 
In order to cross validate, each data test set (1-4 in Table 1) has 
been divided into 5 training and test subsets, where 20% of the 
data set has been left only for testing and the remaining part for 
training. Before the subdivision the data set was permutated 
randomly. 
 
In order to find the best number of hidden units the network has 
been trained with respectively 5, 10, 15 and 20 hidden units. 
 
RESULTS 
Due to the nature of the input data which is the mean values of 
the time series of 10 minutes, the resulting network is able to 
predict the mean propulsion power for a period of 10 minutes. 
 
The results of each network have been evaluated by the relative 
sum of the errors squared, σ: 
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The mean of the relative error has also been found in order to 
give more  

∑
= ′
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N 1 ,

,,
ˆ1ω    (12) 

Where:  are the predicted values of the test data ntestP ,
ˆ

ntestP ,′ are the test samples from the cross validation set 
N  is number of test set 

 
Every dataset set has been trained with a network 5, 10, 15 and 
20 hidden units. Each of these networks has been trained five 
times in order to alternately use 20% of the data set for testing. 
In order to validate the results the cross validation error ω  and 
the cross validation error squaredσ~ : 

∑
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Where K is the total number training/test set (5). 
 
In Table 4 these two quantities are shown for each of the data 
sets. It is noted that data set #3 and  #4 are much better results 
than #1 and  #2, this is most likely because the limited dataset 
(142 and 63), are sampled around the same time, and thus have 
very little variation in the input variables. This is particularly 
pronounced in Figure 7 where the ship speed has been 14.5-5 
knots about 90% of the time. 
 
Taking this into account one should be careful using this 
network for ship speeds out of this range! 
 
In the error plots of the best solutions, shown in Figure 9-Figure 
12, the majority of the predictions are within an error of 500 kW. 
The prediction error distribution is illustrated in Figure 13-
Figure 16, in the same plot a Gaussian distribution (shown as a 
blue line) has been generated using the mean value and the 
variance of the predicted errors. For #1 and #2 the normal 
distribution fits the histograms very well. For #3 the distribution 
is skewed due to a few outliers and for #4 the data set is most 
likely too small to be used, for this purpose, both #3 and #4 have 
a small spread, thereby justifying their use.  
 
 
 
 
 
 
 
 
 
 
 

Table 4: Best results and related errors. 

M N Mean 
draught 

Trim 
Ta-
Tf 

No 
Hidden 
Units 

cross 
validation 

error 
squared 

cross 
validation 

error 

  [m] [m]  σ~  ω  
1 238 12.4 0.0 20 0.13% 2.56% 
2 236 7.4 2.4 15 0.15% 2.69% 
3 142 7.85 2.7 20 0.03% 0.82% 
4 63 12.15 0.0 20 0.04% 1.24% 
 
Furthermore the cross validation error ω  and the cross 
validation error squaredσ~ has been calculated for the two 
empirical performance evaluation methods, Harvald, S. A. 
(1983) and Holtrop, J. (1984). The results are shown in Table 5 
and as expected these methods gives rather poor results 
compared with the data driven methods. 
 
Table 5: Cross validation errors for the empirical methods. 

  
Harvald, 

S. A. 
(1983) 

Harvald, 
S. A. 

(1983) 

Holtrop, J. 
(1984) 

Holtrop, J. 
(1984) 

M N 

cross 
validation 

error 
squared 

cross 
validation 

error 

cross 
validation 

error 
squared 

cross 
validation 

error 

  σ~  ω  σ~  ω  
1 238 3.63% 17.92% 6.13% 23.74% 
2 236 7.47% 26.48% 8.18% 27.78% 
3 142 5.68% 22.35% 7.93% 27.41% 
4 63 10.75% 23.14% 9.70% 28.14% 

 
 

 
Figure 9: Prediction errors for sample #1 
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Figure 10: Prediction errors for sample #2 
 

 
Figure 11: Prediction errors for sample #3 
 

 
Figure 12: Prediction errors for sample #4 
 

 
Figure 13: Relative distribution of the predicted errors for 
sample #1 
 

 
Figure 14: Relative distribution of the predicted errors for 
sample #2 
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Figure 15: Relative distribution of the predicted errors for 
sample #3 
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Figure 16: Relative distribution of the predicted errors for 
sample #4 
 
CONCLUSIONS 
It is possible to predict the propulsion power with a relative 
error of less than 2.7%, using a single hidden layer neural 
network while classical methods have an relative error of more 
than 5%. The prediction was carried out for four different states 
with the following input variables: ship speed, relative wind 
speed and direction, air temperature and sea water temperature. 
It is emphasized that the prediction should only be used with 
variables that lie within the training variable boundaries. As 
more data is collected onboard the vessel the model will 
gradually be extended. 
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