

Statistical framework for decision making in mine action

Jan Larsen

Intelligent Signal Processing Group Informatics and Mathematical Modelling Technical University of Denmark jl@imm.dtu.dk, www.imm.dtu.dk/~jl

DTU Informatics Department of Informatics and Mathematical Modeling

How do we construct a reliable detector?

- Empirical method: systematic acquisition of knowledge which is used to build a mathematical model to generate reliable results in real use cases
- Specifying the relevant scenarios and performance measures end user involvement is crucial!!!
- Cross-disciplinary R&D involving very competences

Knowledge acquisition

Physical modeling

- Study physical properties and mechanism of the environment and sensors
- Describe the knowledge as a mathematical model

Statistical modeling

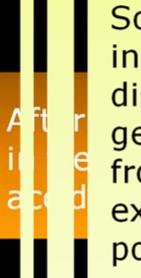
Require real world related data Use data to learn e.g. the relation between the sensor reading and the presence/absence of explosives

Why do we need statistical models and machine learning?

- Mine action is influenced by many uncertain factors
- The goals of mine action depends on difficult socio-economic and political considerations and constraints are to be built in

Scientist are born sceptical: they don't believe facts unless they see them often enough

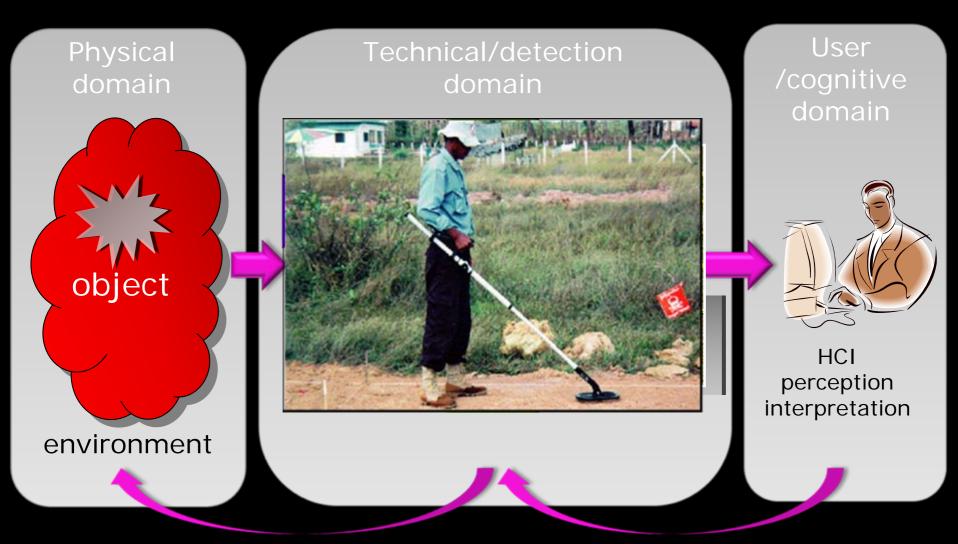
Why do we need statistical models and machine learning?


 statistical modeling is the principled framework to handle uncertainty and complexity

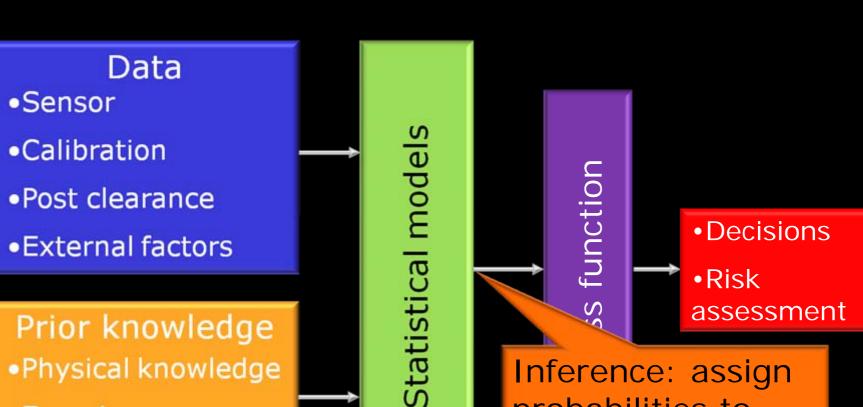
 statistical 	<u></u>	
identifyi	facts	prior information
• machine		
collectio		
new situ		
	consiste	ent and robust
	informa	tion and decisions with
	associat	ed risk estimates

There is no such thing as facts to spoil a good explanation!

 Pitfalls and misuse of statistic to the conclusion that they a


Some data are in the tail of the distribution: generalization from few examples i possible methods sometimes wrongly leads of little practical use

Smoking is not dangerous: mv


Most suspected areas have very few mines

Information processing pipeline

The elements of statistical decision theory

Experience

probabilities to

Outline

- The design and evaluation of mine clearance equipment the problem of reliability
 - Detection probability tossing a coin
 - Requirements in mine action
 - Detection probability and confidence in MA
 - Using statistics in area reduction
- Improving performance by information fusion and combination of methods
 - Advantages
 - Methodology
 - DeFuse and Xsense projects

Detecting a mine – tossing a coin

$Frequency = \frac{\text{no of heads}}{\text{no of tosses}}$

probability = *frequency* when infinitely many tosses

On 99,6% detection probability

$Frequency = \frac{9960}{1000} = 99,95,\%0\%$

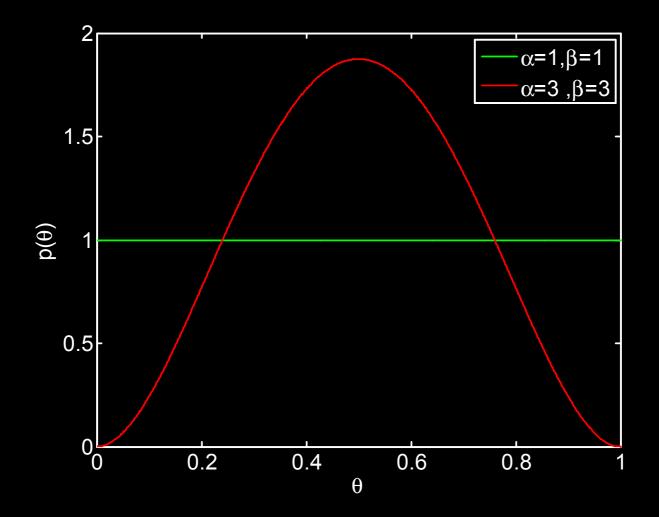
One more (one less) count will change the frequency a lot!

Detection probability - tossing a coin

- N ndependent tosses number of
- y number of heads observed
- $\boldsymbol{\theta}$ probability of heads

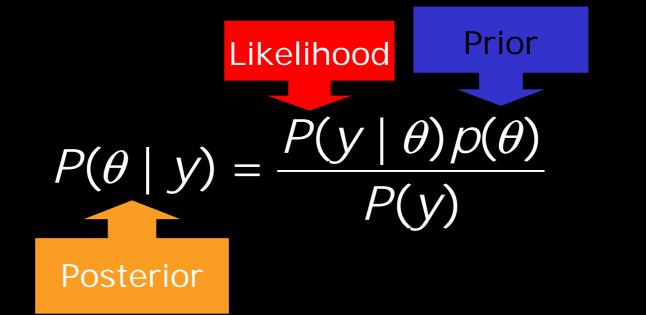
$$\hat{\theta} = \frac{y}{N}$$

$$P(y \mid \theta) = \text{Binom}(\theta \mid N) = \binom{N}{y} \theta^{y} \theta^{N-y}$$


Prior beliefs and opinions

- Prior 1: the fair coin: θ should be close to 0.5
- Prior 2: all values of heta are equally plausible

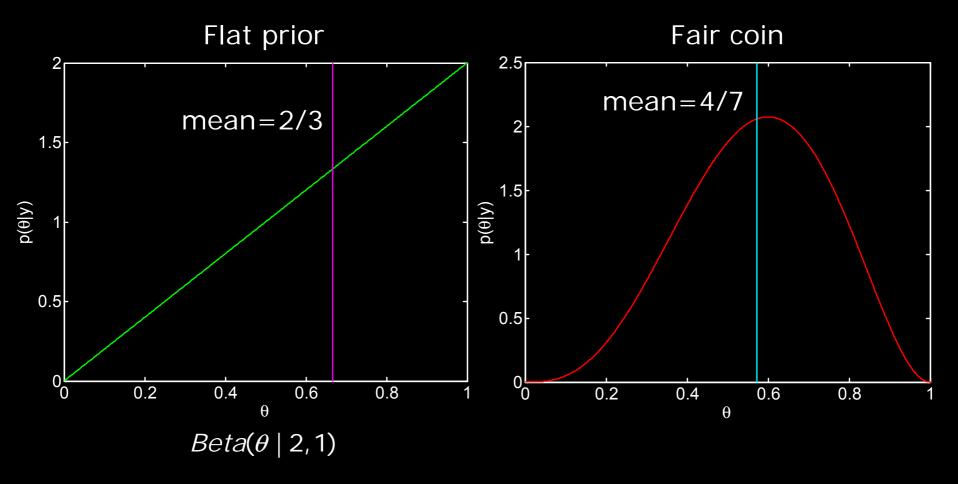
$p(\theta) = Beta(\theta \mid \alpha, \beta)$



Prior beliefs and opinions

Bayes rule: combining data likelihood and prior

 $P(\theta \mid y) = Beta(\theta \mid y + \alpha, \beta + n - y) \sim \theta^{y + \alpha} \theta^{n - y + \beta}$



Posterior probability is also Beta

$P(\theta \mid y) = Beta(\theta \mid y + \alpha, \beta + n - y) \sim \theta^{y + \alpha} \theta^{n - y + \beta}$

Posteriors after observing one head

Outline

- The design and evaluation of mine clearance equipment the problem of reliability
 - Detection probability tossing a coin
 - Requirements in mine action
 - Detection probability and confidence in MA
 - Using statistics in area reduction
- Improving performance by information fusion and combination of methods
 - Advantages
 - Methodology
 - DeFuse and Xsens projects

What are the requirements for mine action risk

- Tolerable risk for individuals comparable to other natural risks
- As high cost officiones as possible requires detailed risk
 99.6% detection is not an unrealistic requirement
- but... today's methods achieve at most 90% and are hard to evaluate!!!

management and control involving all partners (MAC, NGOs, commercial etc.)

GICHD and FFI are currently working on such methods [Håvard Bach, Ove Dullum NDRF SC2006]

A simple inference model – assigning probabilities to data

- The detection system provides the probability of detection a mine in a specific area: Prob(detect)
- The land area usage behavio encounter: Prob(mine encour
 Prob(casualty)=(1-Prob(d
 For discussion of assumptions and involved factors see
 "Risk Assessment of Minefields in HMA – a Bayesian Approach"
 PhD Thesis, IMM/DTU 2005 by Jan Vistisen

A simple loss/risk model

- Minimize the number of casualties
- Under mild assumptions this equivalent to minimizing the probability of casualty

Maximum yearly footprint area in m²

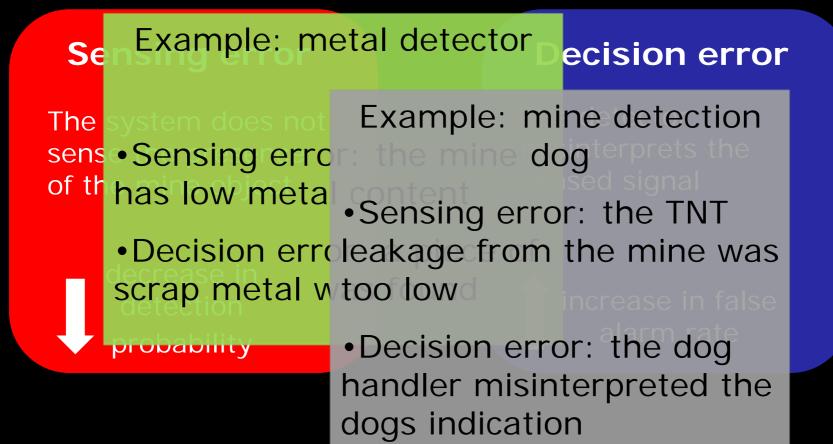
P(detection)	ρ : mine density (mines/km²)					
, , , , , , , , , , , , , , , , , , ,	0.1	1	10	100	1000	
0.996	25000	2500	250	25	2.5	
0.9	1000	100	10	1	0.1	

Prob(causality) = 10⁻⁵ per year

Reference: Bjarne Haugstad, FFI

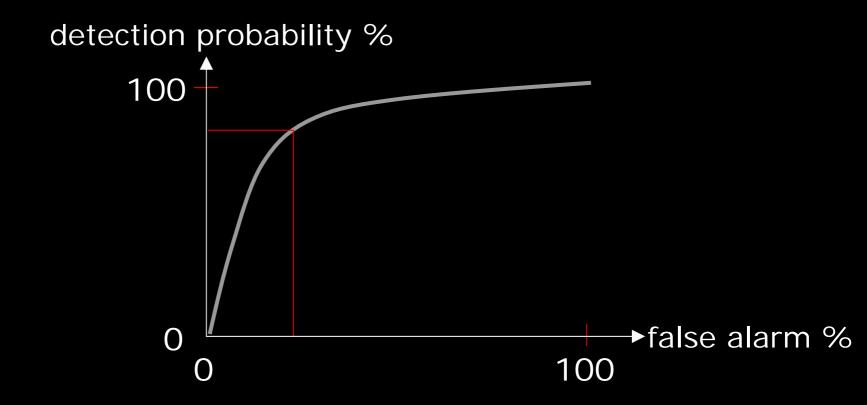
Outline

- The design and evaluation of mine clearance equipment the problem of reliability
 - Detection probability tossing a coin
 - Requirements in mine action
 - Detection probability and confidence in MA
 - Using statistics in area reduction
- Improving performance by information fusion and combination of methods
 - Advantages
 - Methodology
 - DeFuse and Xsense projects


Evaluation and testing in MA

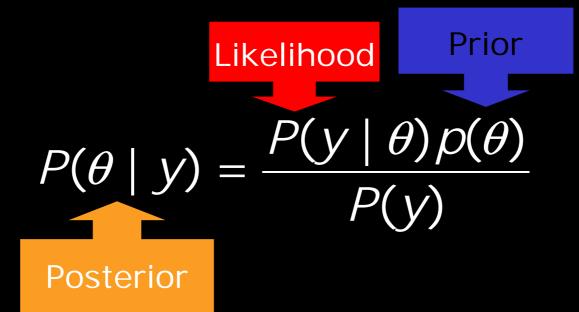
- How do we assess the performance/detection probability?
- What is the confidence?

Two types of error in detection of mines

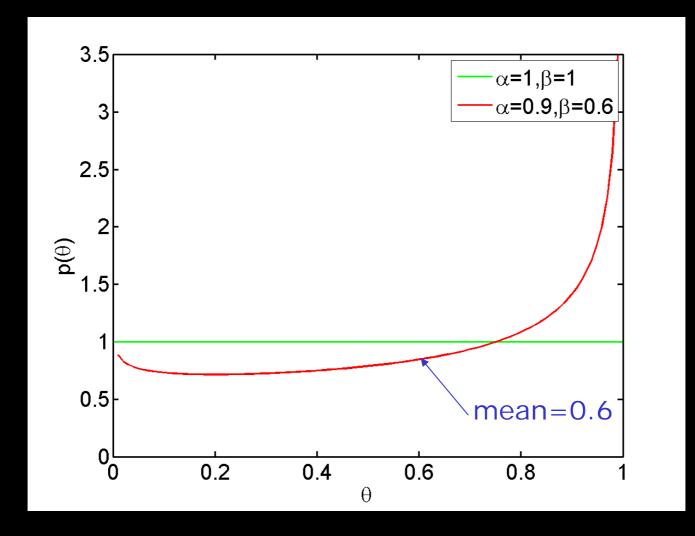


Confusion matrix in system design and test phase which should lead to certification

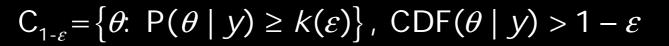
		True		
		yes	no	 Detection probability (sensitivity): a/(a+c)
ated	yes	а	b	 False alarm: b/(a+b) False positive (specificity): b/(b+d)
Estimated	no	С	d	

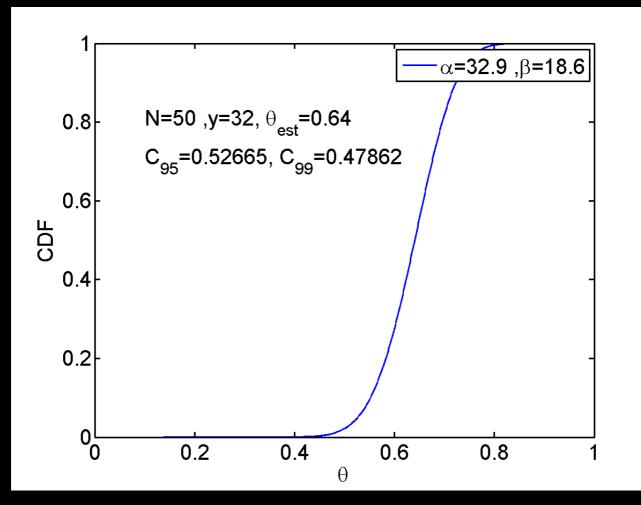


Receiver operation characteristic (ROC)



Bayes rule: combining data likelihood and prior




Prior distribution

HPD credible sets – the Bayesian confidence interval

The required number of samples N

 We need to be confident about the estimated detection probability

 $Prob(\theta > 99.6\%) = C_{1-\epsilon}$

	$C_{95\%}$	C _{99%}		$C_{_{95\%}}$	$C_{_{99\%}}$
$\theta_{est} = 99.7\%$	9303	18994	$\theta_{est} = 99.7\%$	8317	18301
$ heta_{est} = 99.8\%$	2285	3995	$\theta_{est} = 99.8\%$	2147	3493

Uniform prior

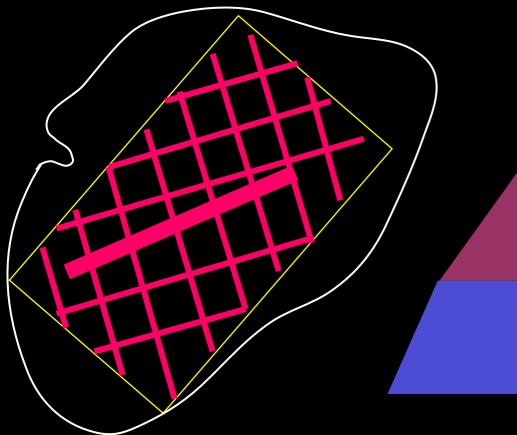
Informative prior α =0.9, β =0.6

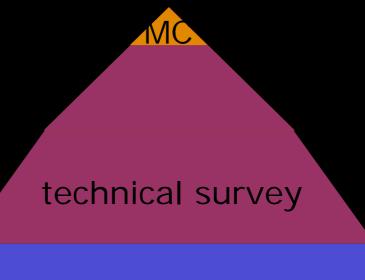
Prior info reduces the need for samples

Credible sets when detecting 100%

Minimum number of samples N

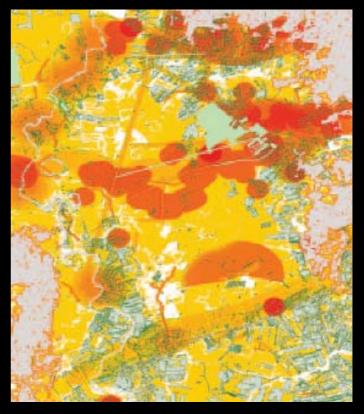
	Prob(<i>θ</i> > 80%)	Prob(θ > 99.6%)	Prob(<i>θ</i> > 99.9%)
C _{95%}	13	747	2994
C _{99%}	20	1148	4602




Outline

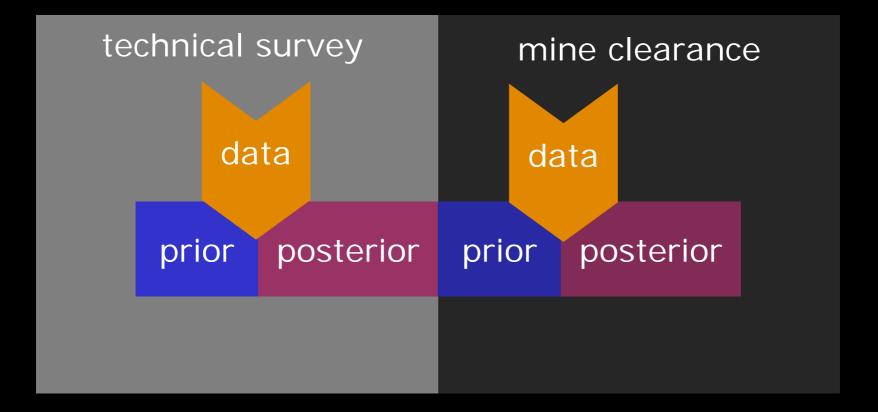
- The design and evaluation of mine clearance equipment the problem of reliability
 - Detection probability tossing a coin
 - Requirements in mine action
 - Detection probability and confidence in MA
 - Using statistics in area reduction
- Improving performance by information fusion and combination of methods
 - Advantages
 - Methodology
 - DeFuse and Xsense projects

Efficient MA by hierarchical approaches


general survey

Refs: Håvard Bach, Paul Mackintosh

Danger maps


- The outcome of a hierarchical surveys
- Information about mine types, deployment patterns etc. should also be used
- Could be formulated/interpreted as a prior probability of mines

SMART system described in GICHD: Guidebook on Detection Technologies and Systems for Humanitarian Demining, 2006

Sequential information gathering

Statistical information aggregation

- e=1 indicates encounter of a mine in a box at a specific location
- probability of encounter P(e = 1) from current danger map
- d=1 indicates detection by the detection system
- probability of detection P(d = 1) from current accreditation

$$P(e = 1 \land d = 0) = P(e = 1)(1 - P(d = 1))$$

P(no mine) = 1 - P(e = 1 \land d = 0)

Statistical information aggregation

P(e = 1) = 0.2, P(d = 1) = 0.8 $P(\text{no mine}) = 1 - P(e = 1 \land d = 0) = 1 - 0.2 * 0.2 = 0.96$

P(e = 1) = 1, P(d = 1) = 0.96 $P(\text{no mine}) = 1 - P(e = 1 \land d = 0) = 1 - 1 * 0.04 = 0.96$

Outline

- The design and evaluation of mine clearance equipment the problem of reliability
 - Detection probability tossing a coin
 - Requirements in mine action
 - Detection probability and confidence in MA
 - Using statistics in area reduction
- Improving performance by information fusion and combination of methods
 - Advantages
 - Methodology
 - DeFuse and Xsense projects

Where are we and how do we get further?

- No single existing method deliver sufficient detection performance
- No universal best method exists every method has its pros and cons
- Fusion of sensors have been suggested in

"Analysis and Fusion using Belief Function Theory of Multisensor Data for Close-range Humanitarian Mine Detection.

PhD Thesis RMA, 2001 by Nada Milisavljević

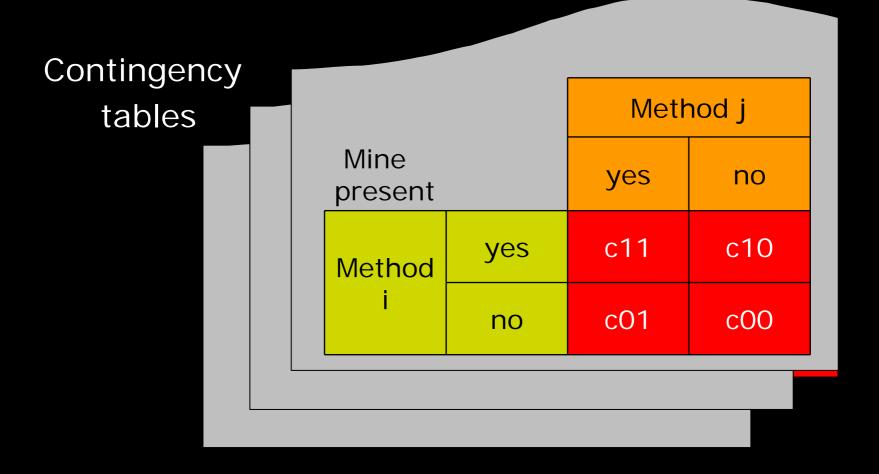
Does not immediately apply to fusion of heterogenous methods

Advantages

- Combination leads to a possible exponential increase in detection performance
- Combination leads to better robustness against changes in environmental conditions

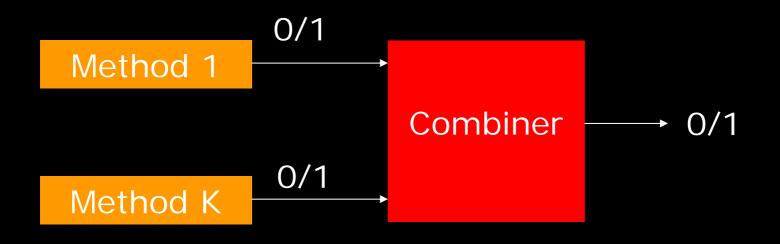
Challenges

- Need for certification procedure of equipment under wellspecified conditions (ala ISO)
- Need for new procedures which estimate statistical dependences between existing methods
- Need for new procedures for statistically optimal combination



Outline

- The design and evaluation of mine clearance equipment the problem of reliability
 - Detection probability tossing a coin
 - Requirements in mine action
 - Detection probability and confidence in MA
 - Using statistics in area reduction
- Improving performance by information fusion and combination of methods
 - Advantages
 - Methodology
 - DeFuse and Xsense projects



Dependencies between methods

Optimal combination

Optimal combination depends on contingency tables

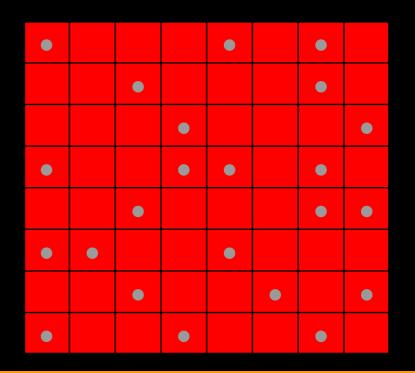
Optimal combiner

Method		Combiner						
1	2	1	2	3	4	5	6	7
0	0	OR rule is optimal for independent methods					0	0
Ο	1	U	U	U		_	1	1
1	0	0	1	1	0	0	1	1
1	1	1	0	1	0	1	0	1
-2^{K-1}								

 $2^{2^{-1}} - 1$ possible combiners

Example

$$p_{d1} = 0.8, p_{fa1} = 0.1$$
 $p_{d2} = 0.7, p_{fa2} = 0.1$
 $p_d = 1 - (1 - 0.8) \cdot (1 - 0.7) = 0.94$
 $p_{fa} = 1 - (1 - 0.1) \cdot (1 - 0.1) = 0.19$


Exponential increase in detection rate Linear increase in false alarm rate

Joint discussions with: Bjarne Haugstad

Artificial example

- N=23 mines
- Method 1 (flail): P(detection)=0.8, P(false alarm)=0.1
- Method 2 (metal detector): P(detection)=0.7, P(false alarm)=0.1
- Resolution: 64 cells

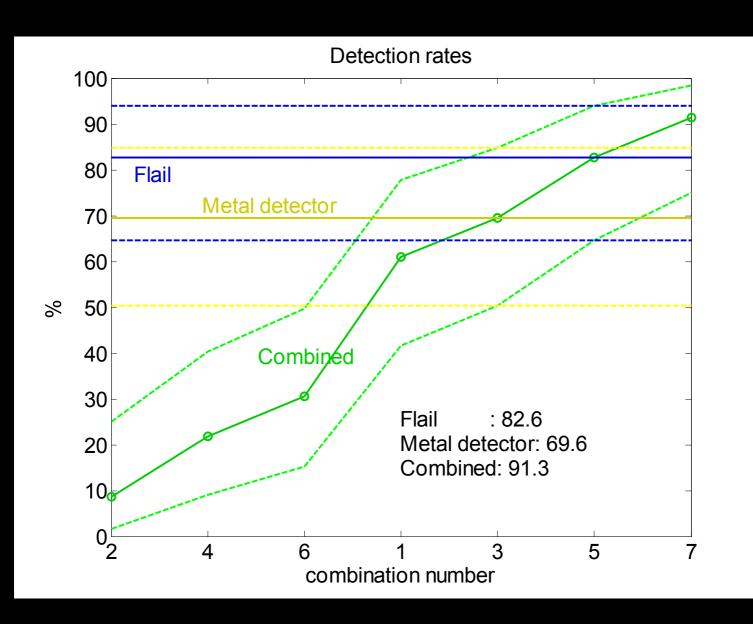
How does detection and false alarm rate influence the possibility of gaining by combining methods?

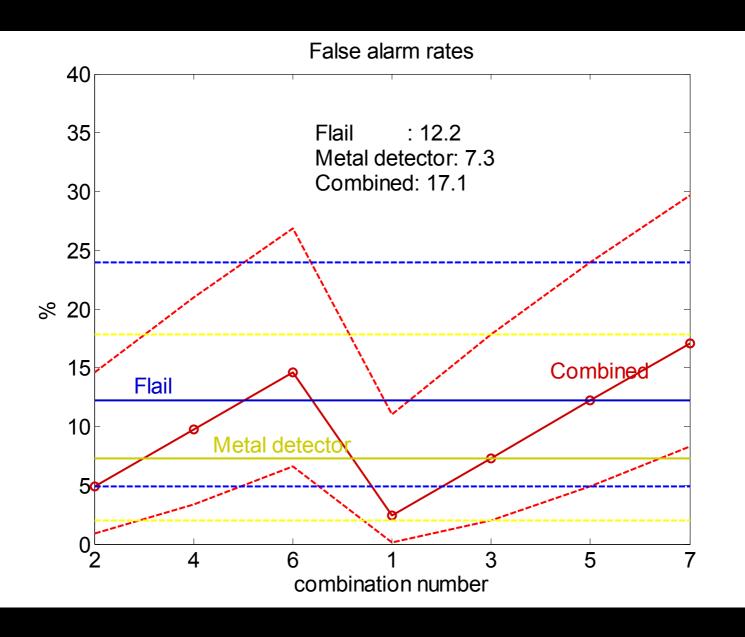
Confusion matrix for method 1

		True		
		yes	no	
ated	yes	19	5	
Estimated	no	4	36	

Confidence of estimated detection rate

• With *N*=23 mines 95%-credible intervals for detection rates are extremely large!!!!


[64.5% 82.6% 93.8%] [50.4% 69.6% 84.8%]


Confidence for false alarm rates

- Determined by deployed resolution
- Large resolution many cells gives many possibilities to evaluate false alarm.
- In present case: 64-23=41 non-mine cells

[4.9% 12.2% 24.0%]

DTU

DTU

Comparing methods

- Is the combined method better than any of the two orginal?
- Since methods are evaluated on same data a paired statistical McNemar with improved power is useful

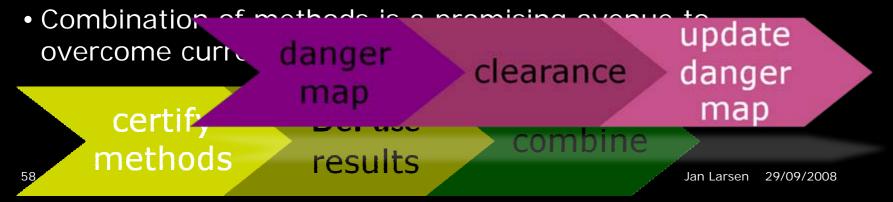
Method1 (flail): 82.6% < 91.3% Combined

Method2 (MD): 69.6% < 91.3% Combined

Outline

- The design and evaluation of mine clearance equipment the problem of reliability
 - Detection probability tossing a coin
 - Requirements in mine action
 - Detection probability and confidence in MA
 - Using statistics in area reduction
- Improving performance by information fusion and combination of methods
 - Advantages
 - Methodology
 - DeFuse and Xsens projects

- Obtain general scientific knowledge about the advantages of deploying a combined approach
- Eliminate confounding factors through careful experimental design and specific scientific hypotheses
- Test the general scientific hypothesis is that there is little dependence between missed detections in successive runs of the same or different methods
- To accept the hypothesis under varying detection/clearance probability levels
- To lay the foundation for new practices for mine action, but it is not within scope of the pilot project



- The scope of the Xsense program is to realize a reliable, sensitive, portable and low-cost explosive detector
- The detector will be miniaturized and will therefore be highly suitable for use in anti terror efforts, boarder control, environmental monitoring and demining
- The sensitivity will be optimized by a concentrated effort in data processing (reducing noise and pattern recognition) and emerging sensing principles
- The reliability of the detector will be ensured by combining several independent sensor technologies

Conclusions

- A cross-disciplinary effort is required to obtain sufficient knowledge about physical, operational and processing possibilities and constraints as well as clear definition of a measurable goal – the right tool for the right problem
- Statistical decision theory and modeling is essential for optimal use of prior information and empirical evidence
- It is very hard to assess the necessary high performance which is required to have a tolerable risk of casualty
- The use of sequential information aggregation is promising for developing new hierarchical survey schemes (SOPs)

