

Data processing framework for decision making

Jan Larsen
Intelligent Signal Processing Group
Department of Informatics and Mathematical
Modelling
Technical University of Denmark
jl@imm.dtu.dk, www.imm.dtu.dk/~jl

DTU Informatics

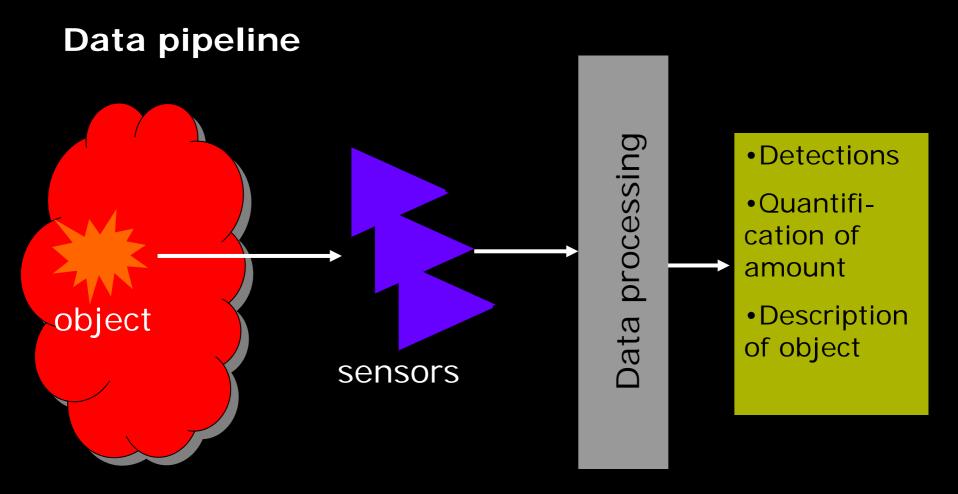
Department of Informatics and Mathematical Modeling

scientific objectives

- Obtain general scientific knowledge about the advantages of deploying a combined approach
- Eliminate confounding factors through careful experimental design and specific scientific hypotheses
- Test the general scientific hypothesis is that there is little dependence between missed detections in successive runs of the same or different methods
- To accept the hypothesis under varying detection/clearance probability levels
- To lay the foundation for new practices for mine action, but it is not within scope of the pilot project

Objective of this talk

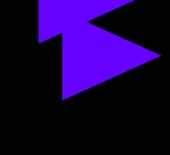
- To provide insight into some of the issues in data processing and detection systems
- To hint at possible solutions using statistical signal processing and machine learning methodologies
- To facilitate the discussion the good solution requires a cross-disciplinary effort


No math!
$$P(\theta \mid y) = \frac{P(y \mid \theta)p(\theta)}{P(y)}$$

Outline

- The data processing pipeline
- Methods for taking up the challenge: reliable detection
- Summary

Sensing


- Sensing specific primary property of the object (e.g. odor component)
- Sensing a related property (e.g. reflected light)
- Sensing a mixture of properties maybe only one is relevant
- Multiple sensors can sense different aspects

Sensing errors

- masking of related or primary property
- other properties might be too strong
- the environment is different from the environment in which the sensor was designed to work
- Errors in the sensors
 - Electrical noise
 - Drift
 - Degradation

Data processing

- Extracting relevant features from sensor data
- Suppressing noise and error
- Segregation of relevant components from a mixture
- Integration of sensor data
- Prediction:
 - Presence of object
 - Classification of object type
 - Quantification of properties of the object (e.g. amount, size)
 - Description of object

Data processing errors

- The sensed expression is too weak to make a reliable prediction of objects presence or quantification of an object property
- The processing device misinterprets the sensed expression
 - Maybe an unknown object in the environment
 - Not able to sufficiently suppress noise and errors
 - The processing can never done with 100% accuracy

Outline

- The data processing pipeline
- Methods for taking up the challenge: reliable detection
- Summary

How do we construct a reliable detector?

- Empirical method: systematic acquisition of knowledge which is used to build a mathematical model
- Specifying the relevant scenarios and performance measures end user involvement is crucial!!!
- Cross-disciplinary R&D involving very competences

Mathematical models are prevalent: you need them to generate reliable results in a real use case

Knowledge acquisition

Physical modeling

- Study physical properties and mechanism of the environment and sensors
- Describe the knowledge as a mathematical model

Statistical modeling

Require real world related data
Use data to learn e.g. the
relation between the sensor
reading and the
presence/absence of explosives

Why do we need statistical models?

Scientist and engineers are born sceptical: they don't believe facts unless they see them often enough

- The process is influenced by many uncertain factors which makes classical physical modeling insufficient
- We can never achieve 100% accuracy hence an estimate of the reliability is needed

There is no such thing as facts to spoil a good explanation!

 Pitfalls and misuse of statistical r conclusion that they are of little; nods sometimes wrongly leads to the ical use

Some data are in the tail of the distribution: generalization from few examples is not possible

The number of hazardous objects is very small

his live

Why do we need statistical models and machine learning?

- statistical modeling is the principled framework to handle uncertainty and complexity
- Statistic modeling usually focuses on identifying important parameters
- Estimation of performance and reliability is an integral part
- machine learni optimal pred

facts prior information

consistent and robust information and decisions with associated risk estimates

Four examples of using statistical modeling

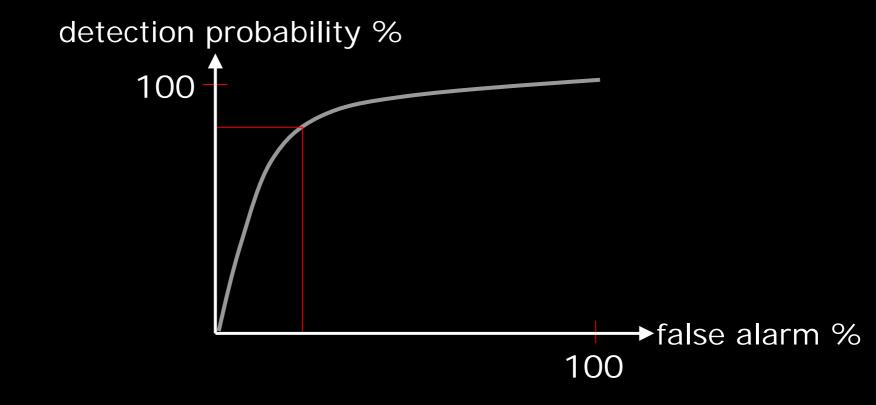
- Reliable detection
- Increasing detection rate by combining sensors
- Efficient MA as an hierarchical approach
- Segregation of mixed signals in order to reduce disturbances

Reliable detection of hazardous object – tossing a coin

$$Frequency = \frac{\text{no of heads}}{\text{no of tosses}}$$

probability = frequency when infinitely many tosses

To achieve 99,6% detection probability


$$Frequency = \frac{9960}{10000} = 99560\%$$

One more (one less) count will change the frequency a lot!

You need 747 examples to be 95% sure that detection is better than 99,6% even if you detected all cases

Receiver operation characteristic (ROC)

Two types of errors in relation to ROC

Example: odor

Example: dog

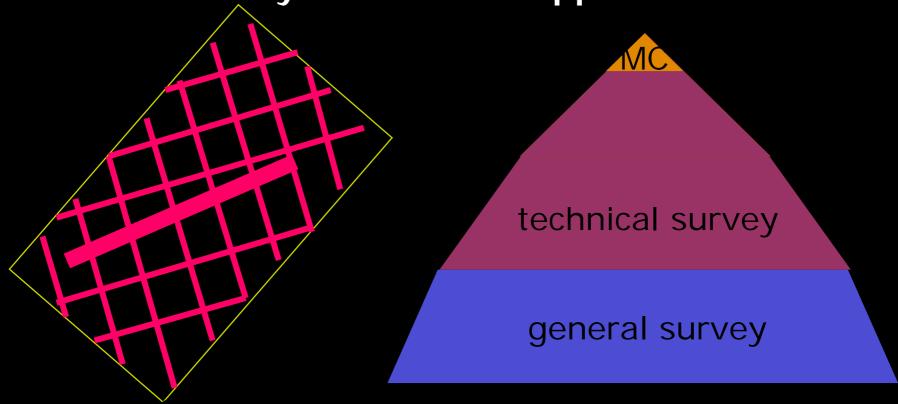
- Sensing error:has little explosition
 - Decision error:
 bee-wax was fou
- Sensing error: the TNT leakage from the object was too low
- Decision error: the dog handler misinterpreted the dogs indication

Late integration – decision fusion

Independent error assumption

 Combination leads to a possible exponential increase in detection performance

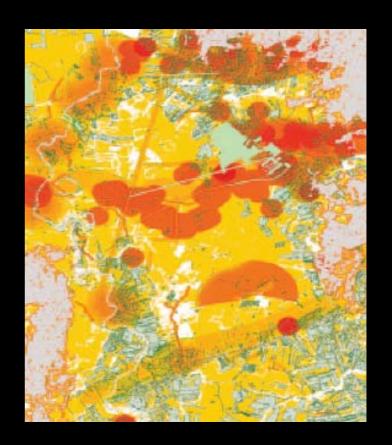
System 1: 80%


System 2: 70%

Combined system: 94%

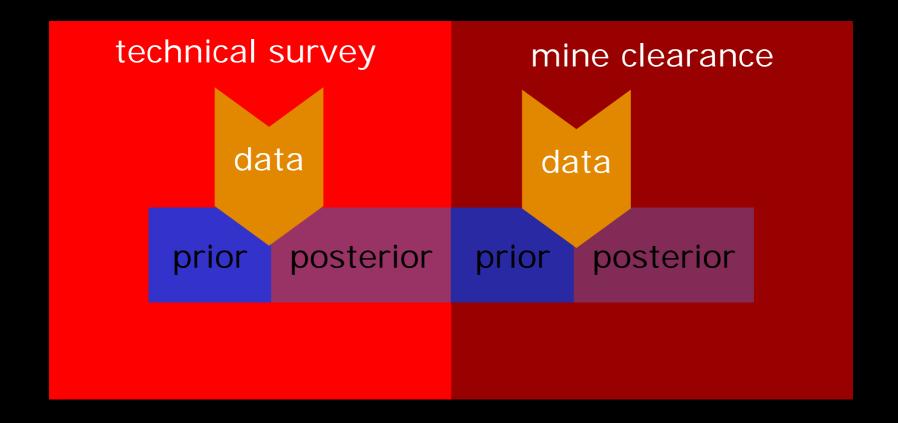
Combination leads to better robustness against changes in environmental conditions

Efficient MA by hierarchical approaches



Ref: Håvard Bach, Paul Mackintosh

Danger maps


- The outcome of a hierarchical surveys
- Information about mine types, deployment patterns etc. should also be used
- Could be formulated/interpreted as a prior probability of mines

SMART system described in GICHD: Guidebook on Detection Technologies and Systems for Humanitarian Demining, 2006

Sequential information gathering

Statistical information aggregation

- e=1 indicates encounter of a mine in a box at a specific location
- probability of encounter P(e=1) from current danger map
- d=1 indicates detection by the detection system
- probability of detection P(d=1) from current accreditation

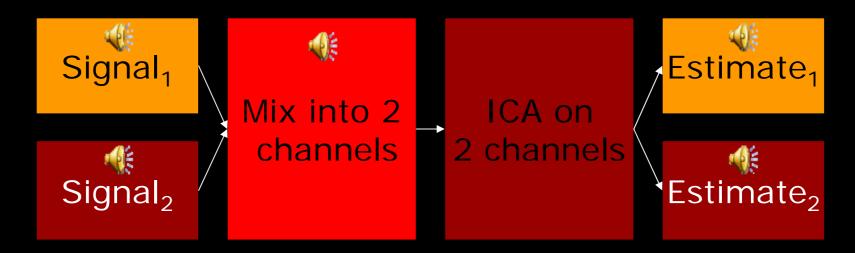
$$P(e = 1 \land d = 0) = P(e = 1)(1 - P(d = 1))$$

 $P(\text{no mine}) = 1 - P(e = 1 \land d = 0)$

Statistical information aggregation

Example: flail in a low danger area

$$P(e = 1) = 0.2$$
, $P(d = 1) = 0.8$
 $P(\text{no mine}) = 1 - P(e = 1 \land d = 0) = 1 - 0.2 * 0.2 = 0.96$


Example: manual raking in a high danger area

$$P(e = 1) = 1$$
, $P(d = 1) = 0.96$
 $P(\text{no mine}) = 1 - P(e = 1 \land d = 0) = 1 - 1 * 0.04 = 0.96$

Segregation of signals

- Independent Component Analysis of audio signals
 - Cocktail Party Problem
 - Two people talking together, recording two mixtures
 - Example: Molgedey and Schuster's algorithm (1994)

Summary

- A cross-disciplinary effort is required to obtain sufficient knowledge about physical, operational and processing possibilities and constraints as well as clear definition of a measurable goal – the right tool for the right problem
- Statistical modeling is essential optimal handling of prior information, empirical evidence, robustness and uncertainty
- It is very hard to assess the necessary high performance which is required to have a tolerable risk of casualty
- The use of sequential information aggregation is promising for developing new hierarchical survey schemes (SOPs)
- Combination of methods is a promising avenue to overcome current problems

