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What is SPM?
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Figure 1: Histogram of used analysis software
as recorded in the Brede Database, see ori-
ginal at http://hendrix.imm.dtu.dk/services/jerne/-
brede/index bib stat.html

A method for processing and ana-

lysis of neuroimages.

A method for voxel-based analysis

of neuroimages using a ‘general lin-

ear model’.

The summary images (i.e., result

images) from an analysis: Statisti-

cal parametric maps.

A Matlab program for processing

and analysis of functional neuroim-

ages — and molecular neuroimages.

SPM is very dominating in func-

tional neuroimaging
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SPM — the program

Figure 2: Image by Mark Schram Christensen.

Image registration, seg-

mentation, smoothing, al-

gebraic operations

Analysis with general lin-

ear model, random field

theory, dynamic causal

modeling

Visualization

Email list with ∼ 2000

subscribers
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Data transformations
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Image registration

Figure 3: Main window of SPM2. Image registration
are the three left upmost buttons.

Image registration: Move and warp

brain

Motion realignment of consecutive

scans (‘realign’). Within subject

Coregistration or intermodality reg-

istration, e.g., to registation a PET

and an MRI. Wihtin subject.

Spatial normalization: Deform brain

to a template. ‘MNI’ Templates are

distributed with SPM. Between sub-

jects.
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Realignment

Several images in the same modality from the same subject

Two-stage procedure:

1. Estimate movement. SPM: ‘Determine parameters’

2. Resample images based on estimated movement

In SPM resampling can be postponed and the estimated movement saved

in a .mat file with the ‘transformation matrix’.
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Coregistration

(a) PET template from SPM. (b) MRI T1 template from SPM.

Figure 4: The areas with the highest values in two modalities of PET and MRI brain scans: For registration
the problem is that they are different!
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Spatial normalization

Figure 5: Warp of right subject to left subjects brain. Result in the middle. Image by Ulrik Kjems using
MRIwarp (Kjems et al., 1999a; Kjems et al., 1999b).
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Spatial normalization in SPM

Two-stage procedure:

1. Determine warp parameters by matching a subjects anatomical MRI

(‘Source image’) to a template (‘Determine parameters’).

These parameters are stored in a file with the postfix sn.mat

2. Apply (‘Write normalised’) the warp parameter to warp the anatomical

(T1 MRI) and the functional image (fMRI or PET) (‘Images to write’)

The new files have the prefix ‘w’ for warp.

By default SPM is normalizing to so-called ‘MNI-space’ which is slightly

different from the original ‘Talairach atlas’ (Talairach and Tournoux,

1988; Brett, 1999a; Lancaster et al., 2007).
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. . . Spatial normalization in SPM

Warping may not work properly: Check the result, e.g., with ‘Check Reg.’

button in SPM.

There are a number of hidden parameters in SPM: smoothing, regular-

ization, ‘cutoff’ (how many basis functions), interpolation, bounding box,

etc.

‘[. . . ] if your normalized images appear distorted, then it may be

an idea to increase the amount of regularization’ (spm normalise ui.m)

If adjusting these parameters does work try to skull strip the volumes.
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Spatial smoothing

(a) Unsmoothed original. (b) Smoothed. FWHM=10mm.

Figure 6: T1 single subject template from SPM99.
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Spatial smoothing
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Figure 7: Histogram of smoothing width
in the Brede database, see original at
http://hendrix.imm.dtu.dk/services/jerne/-
brede/index bib stat.html

Accounts for anatomical variability.

Might increase signal to noise ratio.

Increase validity of SPM inference

Usually performed with with an

Gaussian kernel.

SPM command line

spm smooth(filenameIn, filenameOut, 16);

Here 16 is the ‘full width half max-

imum’ in millimeters

FWHM =
√

8 ln2 σ ≈ 2.35σ.

An ‘s’ is prefixed on the filename.
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Spatial masks

Spatial mask: Exclude voxels from the statistical analysis, e.g., non-brain

voxels and brain voxels not (likely) ‘significant’.

SPM terminology

• Threshold, ‘absolute’, ‘relative’ (‘Grey matter threshold’).

• ‘Implicit mask’: Omit voxels that are zero or NaN.

• ‘Explicit mask’: A volume file specifying the which voxels to include

(ones and zeros).

• So-called ‘F-masking’ appeared in early versions of SPM: SPM94/5/6.
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Spatial mask — Global mean
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Figure 8: Example of a histogram from a PET vol-
ume (Noll et al., 1996).

What is the mean value of a brain

scan?

A simple mean will be affected by

the number of non-brain voxels.

These are around zero.

A more robust ‘global mean’

can be calculated in two-stages:

First the ordinary mean is com-

puted, then the mean of values

above mean/8. (Computed in

spm global.m and spm global.c avail-

able at SPM.xGX.rg)

The value is used for confounds and

masking operations.
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Noll’s PET motor SPM masking example

Figure 9: PET motor, left hand finger opposition
task, 12 scans: Odd activation, even baseline (Noll
et al., 1996). Red is without mask. Yellow with
mask. Thresholded at t = 2.76 (P < 0.01).

SPM analysis: two-sample test, ‘no

grand mean scaling’, ‘omit global

calculation’.

‘Single-subject: conditions & co-

variates’, 0 covariates and nuisances

‘no global normalization’, ‘no grand

mean scaling’, mask (fullmean/8

mask).

Without a mask many non-brain

voxels appear with high statistics.
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Analysis with the general linear model

• The general linear model has the form (Mardia et al., 1979, eq. 6.1.1)

Y = XB + U,

where Y(scans×voxels) is the image data, X(scans×design variables)

is the ‘design matrix’ and B(design variables × voxels) contains para-

meters to be estimated and tested. The residuals U are usually as-

sumed Gaussian.

• Encapsulates many statistical models: t-test (paired, un-paired), F -

test, ANOVA (one-way, two-way, main effect, factorial), MANOVA,

ANCOVA, MANCOVA, simple regression, linear regression, multiple

regression, multivariate regression, . . .

• Widely used in functional neuroimaging through the SPM program

where it is performed in a mass-univerate setting — in parallel over

the columns of Y (Friston et al., 1995).
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Process for analysis

Specify design - Estimate - Test

Specify design: Set up the design matrix X

Estimate: Find the parameters B and the residuals U

Test: Specify a test (a ‘contrast’) and test-statistic threshold and view

the results.
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Basic models

Figure 10: SPM 2 main interface window with ‘Basic
models’ button high lighted.

‘Basic models’ of SPM:

One-sample t-test, two-sample t-

test, paired t-test, one-way ANOVA,

one-way ANOVA with constant,

one-way ANOVA ‘within-subjects’,

simple regression (correlation), mul-

tiple regression, multiple regression

with constant, ANCOVA.

The models only vary because of

difference in specification of the de-

sign matrix.
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Simple regression
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Figure 11: Simple regression.

In simple regression (e.g., one

voxel) is univariate and the matri-

ces from the general linear model

become vectors or scalars: Y → y,

X → x and B → b

y = xb + u,

where y is the dependent variable

(usually measured), x is the inde-

pendent variable (design variable)

and b is the parameter (regression

coefficient).
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Regression model

y

= b
1

x
1

+ b
2

x
2

+

u

Figure 12: Regression model. One voxel with 120 scans.
Gray level indicate the value.

Regression model

y = b1x1 + b2x2 + u,

where y contains the values of

a specific voxels across scans.

x1 models, e.g., activation/rest

or patients/controls.

x2 models, e.g., the intercept,

— a constant value

u the noise/residual/error
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Categorical variables in design matrix

Categorical variable can be coded in two different ways:

‘Sigma-restricted’, where two groups (e.g., male and female) are coded

in one design variables, e.g., male +1 and female −1

x(1) =
[

1, −1, 1, −1, 1, −1,
]T

,

that leads to a design matrix with full rank.

‘Overparameterized’, where two groups are coded in two design variables

X(1:2) =

[

1 0 1 0 1 0
0 1 0 1 0 1

]T

,

that leads to a design matrix of degenerate rank.

(terminology from www.statsoftinc.com)

The overparameterized version is often preferred due to better ‘ordnung’.
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ANCOVA — ANalysis of COVAriance
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Figure 13: ANCOVA. Two groups (e.g., normals and
patients) with and age-effect. Normals/patients in-
dicator variable (x1), age nuisance variable (x2) and
intercept (x3).

1) Model with categorical and con-

tinuous design variables.

2) Conditions + Nuisances (covari-

ates, e.g., age)

An instance of multiple regression.

Why ANCOVA? Because the vari-

ance induced by the covariates

might make the test less powerful!

t-statistics for the example:

tordinary = −3.1 (1)

tANCOVA = −5.0 (2)
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Interactions

With ‘linear’ interactions (aka moderator effects)

y = x1b1 + x2b2 + (x1 ⊙ x2)b3 + +b4 + u,

where ⊙ is an elementwise multiplication: x3 = x1 ⊙ x2, e.g., for the first

scan: x1,3 = x1,1x1,2.
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Design matrix for paired t-test
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Figure 14: Design matrix X for paired t-test with 12
scans, i.e., 6 pairs of scans. For each element black
indicates a one while white indicates a zero.

Paired t-test example

y =
[

d1,2, d3,4, . . . , d11,12

]T
,

where, e.g., d1,2 = y1 − y2

Degrees of freedom is lost com-

pared to the unpaired t-test.

New degrees of freedom:

r = N − rank(X)

= 12 − 7 = 5
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Estimation

Estimation requires only the but-

ton press of the user.
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Estimation of parameters

The ‘normal equation’ to estimate the parameters in the beta matrix

B(design variables× voxels)

B̂ = (XTX)−1XTY,

or with the pseudo-inverse † (pinv in Matlab)

B̂ = X†Y.

The pseudo-inverse will also work for design matrices of degenerate rank.

Each row in B̂ is a volume.

In SPM the parameters are saved in files with the beta prefix.
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Estimation of error

The “fitted’ error matrix’ Û (Mardia)

Û = Y − XB̂.

The residual sum of squares and products (SSP) matrix ÛTÛ is a (voxels×
voxels)-matrix.

In a mass-univariate test only the diagonal is used s(voxels × 1)

s = diag(ÛTÛ)

With degrees of freedom ν normalization

r = s/ν

In SPM the volume of residuals is saved in ResMS
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Statistical inference

The statistical inference entails

the specification of a so-called

‘contrast’ and the comparison of

the result of the contrast to a

statistical distribution.
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Example contrasts

Figure 15: SPM2 contrast manager.

Not all testable contrast are appro-

priate.

F -contrast for ANOVA with 3

groups encoded in an overparametrized

design matrix (cf. SPM2 spm conman.m)

C =

[

+1 −1 0 0
0 +1 −1 0

]

t-contrast with 2 groups, one co-

variate and one grand mean

C =
[

+1 −1 0 0
]
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‘General Linear Hypothesis’

Hypothesis for a univariate t-test with the contrast vector c as a row

vector

H0 : cb = 0.

A univariate F -test with the constrast matrix C as a row vector

H0 : Cb = 0.

In SPM the values cB̂ from a t-test are stored in volume files with con

prefix.

The t-test allows one to say something about the direction of the effect.

An F -test does not allow it.
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Hypothesis test example with t-test
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Figure 16: Histogram of the lower tail
area of the t-value: 1 − p-value.

Matlab program with a random design
matrix and random image data:

X = rand(12, 5);
Y = randn(size(X,1), 4000);

B = pinv(X) * Y;
dof = size(X,1) - rank(X);
U = Y - X*B;
SSE = diag(U’*U)’;
MSSE = SSE / dof;
SE = sqrt(MSSE);

C = [ 1 -1 0 0 0 ];
T = C*B ./ (SE * sqrt(C*pinv(X’*X)*C’));
P = brede_cdf_t(T, dof);

figure
hist(P, sqrt(length(P)));
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Multiple testing problem

Uncorrected

No p−values

Uncorrected+Corrected

Corrrected

Figure 17: Distribution of coordinates in the Brede
database where the ‘uncorrected’ or ‘corrected’ P -
values are given.

If 20.000 voxels are tested and a

statistical threshold on 0.05 is used

then around 1000 will be declared

active (significant) if the null hy-

pothesis is true: ‘uncorrected p-
values’.

Usually this is dealt with by using

random field theory: ‘corrected p-
values’.

Not always(!) according to the in-

formation in the Brede database.

If multiple contrasts are performed

this should also be corrected. This

is almost never done!

Finn Årup Nielsen 31 February 8, 2008



Statistical Parametric Mapping (SPM) 2008

Multiple testing corrections

Bonferroni correction

αBonferroni = α/N,

where N is the number of voxels, e.g., 0.05/20000 = 0.00000025

Random field theory

False discovery rate

Maximum statistics permutation testing
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Random field theory

Independent Gaussian noise
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Figure 18: Matthew Brett’s example. From (Brett, 1999b).

The ‘Euler characteris-

tics’ (EC) property counts

the number of blobs mi-

nus the number of holes

in a binary image

On high threshold there

are no holes, i.e., EC =

#blobs

On high threshold: The

expected EC ≈ P(EC =

1) = P(max > u)

Formulas for expected EC

exist for, e.g., Gaussian

random field.
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False discovery rate

Signal + Gaussian white noise
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Figure 19: Multiple comparison corrections. Example by Keith
Worsley (Worsley, 2004, figure 3).

False discovery rate (Gen-

ovese et al., 2002; Wors-

ley, 2004).

Find the largest k in or-

dered P -values: P1 ≤
P2 ≤ . . . ≤ PN

Pk < αk/N.

P1 . . . Pk declared signifi-

cant.
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Maximum statistics permutation

Permutation (resampling without replacement) of the labels of the scans

(the interesting variables of the design matrix) (Holmes et al., 1996;

Nichols and Holmes, 2001).

Create a statistics, e.g., a ordinary t-statistcs

Take the maximum statistics across all voxels.

Iterate many times (several 1000 times) to generate a histogram of max-

imum values.

The multiple comparison problem can be accounted for — both over

voxels and contrasts. ‘Non-parametric’: No assumption of Gaussianity.

But the scans should be ‘exchangeable’ (not BOLD fMRI).
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Maximum statistics permutation

0 0.5 1 1.5 2 2.5

x 10
4

0

100

200

300

400

500

600
Thermal pain

F
re

qu
en

cy

P=0.000

0 0.5 1 1.5 2 2.5

x 10
4

0

100

200

300

400
Visual object recognition

F
re

qu
en

cy

Maximum statistics

P=0.029

Figure 20: Histogram of resampling distribution. The thick
red lines indicate the maxima.

Example data set with 8 scans

with two states: ABABABAB.

Statistical parametric map:

t = (AAAA)− (BBBB)

Permutations

t1 = (ABAA) − (BBAB)

t2 = (BBAA) − (AABB)
...

The P-values are the ratios of

max(tr) for r = 1 . . . R larger

than t
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Lyngby Toolbox

Figure 21: One of the windows in the Lyngby toolbox

Programmed by Matthew Lip-

trot, Lars Kai Hansen, Finn

Årup Nielsen, . . . (Hansen et al.,

1999)

Multivariate analyses: Clus-

ter analysis, canonical correla-

tion, independent component

analysis
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Brede Toolbox

Matlab toolbox with mul-

tivariate analysis, meta-

analytic modeling, visual-

izations, . . .

Graphical user interface for

partial correlation analysis,

suitable for data sets that

contain multiple variables

that should be tested, e.g.,

personality scores across

many regions. Includes

maximum statistics permu-

tation.
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Brede database

Brede Database records Ta-

lairach/MNI coordinates from

experiments.

Online search from

http://hendrix.imm.dtu.dk

Example with online search on

two coordinates in left and right

amygdala in the experiments.

Finn Årup Nielsen 39 February 8, 2008



Statistical Parametric Mapping (SPM) 2008

SPM plugins — third party software

Batch processing. Programs to construct batch jobs. Included in SPM5

with spm jobman.

INRIAlign. Robust motion alignment.

Diffusion. Functions for DWI MRI

Region of interest modeling (MarsBar, WFUPickAtlas),

Multivariate analysis (MM Toolbox),

‘Statistical Parametric Mapping Diagnosis’

Non-parametric permutation test (SnPM) (Holmes et al., 1996; Nichols

and Holmes, 2001)

. . .
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MRIcro

MRIcro programmed by Chris
Rorden for PC versions of Linux

and Microsoft Windows.

Slice view and volume rendering
view. Overlay of functional im-
ages on structural, drawing of re-
gions and extraction of the brain

Includes a labeled volume (ALL)

based on lobar anatomy (Tzourio-
Mazoyer et al., 2002), a la-
beled volume (brodmann) based

on Brodmann areas, and a stan-
dard high-resolution single sub-
ject MR image with scull (ch2)
and without scull (ch2bet)
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More information

SPM wiki, http://en.wikibooks.org/wiki/SPM and

http://en.wikipedia.org/wiki/Statistical parametric mapping

Email list, http://www.jiscmail.ac.uk/lists/SPM.html

Short Course on Statistical Parametric Mapping,

ftp://ftp.fil.ion.ucl.ac.uk/spm/course/notes04/slides/london2004.htm

‘Human Brain Function’ book. The methodological part is available on

the Internet, http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2/

‘fMRI Neuroinformatics’ overview article (Nielsen et al., 2006).

Jonathan Taylors notes for his ‘stats191’ course: http://www-

stat.stanford.edu/˜jtaylo/courses/stats191/
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