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Summary

This project concerns the development of Comstat2, a Java-based computerpro-
gram for the analysis and treatment of biofilm images in 3D. Various algorithms
for gathering knowledge on biofilm structure, etc., vil be examined. Emphasis
is put on creating a future-proof program structure and to ensure compatibility
with an earlier version of the program. An, in this area, new method for the
evaluation of biofilm thickness in 3D is introduced.
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Resumé

Denne opgave omhandler udviklingen af Comstat2, et Java-baseret computer-
program til analyse og behandling af 3D billeder af biofilm. Der vil blive gen-
nemg̊aet forskellige algoritmer til at opsamle viden om biofilms struktur, mv.
Vægten er lagt p̊a at skabe en fremtidssikret programstruktur samt at sikre
bagudkompatibilitet med en tidligere version af programmet. En, p̊a omr̊adet,
s̊a vidt vides, ny metode til bedømmelse af tykkelsen af biofilm i 3D vil blive
introduceret.
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Resumé iii

Preface v

1 Introduction 1

1.1 Reader’s guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 What is biofilm? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The Motivation for Comstat . . . . . . . . . . . . . . . . . . . . . 2

1.4 The Basis for Comstat2 . . . . . . . . . . . . . . . . . . . . . . . 3

2 Analysis 5

2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



viii CONTENTS

2.4 Class Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Design & Implementation 11

3.1 Implementing the new Comstat . . . . . . . . . . . . . . . . . . . 11

3.2 The general structure . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Specific solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 The Graphical User Interface . . . . . . . . . . . . . . . . . . . . 18

3.5 Review of classes and their functions . . . . . . . . . . . . . . . . 22

4 Functions & Algorithms 27

4.1 Connected Volume Filtering . . . . . . . . . . . . . . . . . . . . . 27

4.2 Calculation of biomass . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Thickness Distribution . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Dimensionless Roughness Coefficient . . . . . . . . . . . . . . . . 35

4.5 Area Occupied in Layers . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Maximum Thickness . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 Microcolonies at Substratum . . . . . . . . . . . . . . . . . . . . 40

4.8 Volume of Microcolonies at Substratum . . . . . . . . . . . . . . 47

4.9 Average Run Length of Colonies . . . . . . . . . . . . . . . . . . 49

4.10 The Fractal Dimension . . . . . . . . . . . . . . . . . . . . . . . . 50

4.11 Diffusion Distance in 3D . . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS ix

4.12 Local Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Test & Conclusion 61

5.1 Test of function compliance . . . . . . . . . . . . . . . . . . . . . 61

5.2 Test of additional functions . . . . . . . . . . . . . . . . . . . . . 65

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A Appendix 71

A.1 Howto... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



x CONTENTS



Chapter 1

Introduction

1.1 Reader’s guide

The idea of this report is to give the reader a good overview of the construction
of the image analysis tool Comstat2. The user will get both an in-depth look
at the structure of the program but also a run-through of the algorithms used.

Different user may not want to read the entire report, so it is divided into
chapters according to contents:

1. Analysis elaborates on the preliminary thoughts made in the process of
planning Comstat2. Also discusses the limitations set in terms of the
environment.

2. Design & Implementation focuses on the actual structure of the pro-
gramme.

3. Functions and Algorithms contains descriptions of how the function-
alities of the original Comstat were converted to Java. Also contains some
considerations on memory usage, etc.

4. Test is a summary of tests performed, including a mass-test in the field
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5. Summary of the project, including what went good/bad, concluding com-
ments, etc.

For the reader with little knowledge of biology or Comstat, the introduction is
the right place to start.

1.2 What is biofilm?

When talking of bacteria the common perception is that they are single-celled
organisms floating around in a medium (air, water, etc.) much like plancton
in water. However, another state exists in which the bacteria collaborate in
stationary groups to gain advantages. This state is called biofilm. Many types
of bacteria are capable of entering the biofilm-state under varying conditions
but not all show the same prevalence.

One of the main advantages of being in a biofilm is that the resitance against
alien threats is lowered. If biofilm is generated as part of an infection in a
chronic wound the resistance to antibiotics typically increases to a level where
the only viable cure is amputation of the infected limb. A similar pattern can
be found in cystic fibrosis patients where traditional antibiotic treatments can
be used to keep the chronic lung infections at a very low level up to the point
where a bacteria strain that creates biofilms is introduced (or triggered). From
then, the vitality of the patient unfortunately only goes down.

Even though the phenomenon is well-known, there is not much knowledge on
how bacteria in the biofilm-state behave, what triggers the contruction, how
communication is done, etc. Only by investigating these can science defeat the
abovementioned (and several other) deceases.

1.3 The Motivation for Comstat

The first Comstat was developed to be a quantitative instrument for analyzing
image stacks containing biofilms obtained using confocal microscopy. The orig-
inal version was made by Arne Heydorn and written as an extensive collection
of scripts for Matlab. Comstat has since its introduction been cited numerous
times in scientific articles.

Although the program does well, some points to be improved has surfaced along
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the way:

• Matlab is required, is very expensive

• user interface is commandline based, poor overview

• only image files that Matlab knows can be treated

• program structure difficult to outline

• no control with the source code - people can easily change and redistribute

Many of the points are with reference to Matlab. Matlab script was chosen
as platform for Comstat because it offered a vast mathematical api and i/o-
functionality straight out of the box. The alternatives at the time would have
been to either implement Comstat in C++ which would require the program-
ming of a lot of math-functionality and no platform independence or in Java
which at that time was not very popular and would still require a lot of math-
programming.

So the outline for creating a new version was to remove the bond to Matlab and
to optimize the ease of use in order to widen the group of possible users.

1.4 The Basis for Comstat2

Before the project to make Comstat2 was started it was decided to base the new
version on a free image manipulation programme called ImageJ, if possible.

ImageJ is written in Java and is completely Open Source. It supports the
addition of third-party plugins that have full access to ImageJ’s api - and can
even interact with other plugins. A great many plugins exist to do everything
from i/o-operations to advanced image analysis so some of these would hopefully
be time savers.

The main task in the development process was a trial-on-error approach to see
whether an implementation was at all possible. If so, the functionality of the
original version was to be reimplemented and new functions added as well.
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Chapter 2

Analysis

2.1 Method

Already before starting the project of developing Comstat2 it was clear that a
full-scale development scheme like OOA&D would be overkill because the appli-
cation is meant to be a single user, single computer tool for doing mathematical
analysis on images rather than a multi-role, multi-user system.

However, a certain level of control and overview is gained by giving some
thoughts to the domain of the program, so the following has been done:

• Identification of classes and events in the problem area

• A simple, structural overview

• Sketches of class behaviour

• Identification of actors

• User interface sketch

The motivation will be given in the subsequent sections.
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2.2 Classification

After a thorough evaluation, the following classes from the problem area were
identified:

• Image

• Data

• Algorithm

• User

Finding the objects of the problem area gives an idea of what the main concepts
of the program are. The following events were then found:

• load

• save

• print

• run

Connecting the above in an event table looks like:

event/class User Image Data Algorithm
load * +
save * *
print * *
run * * *

Notice that the multiplicity of the events have been included (+ for once, ∗
for many. The only event that can only happen once for an object type is the
loading of an image.

2.3 Structure

The first class diagram was then made:
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A couple of extra classes have been added to signify that an image is made up
of two entities in the current context.

2.4 Class Behaviour

Following identification of the classes comes a description of the individual
classes’ lifespan behaviour.
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2.5 Actors

The following three actors were found:

2.5.1 The Apprentice

The apprentice is being teached about biofilms and will use Comstat to confirm
important points in connection with labwork. Typically, a limited amount of
tests are made.

He has a basic knowledge of both biofilms and what the output of the program
tells but not necessarily any in-depth knowledge of computers or image analysis.

2.5.1.1 Typical usage pattern

The apprentice starts up Comstat2 after having recorded a few image stacks with
a microscope. He follows a step-by-step guide and must answer some questions
on what conclusions he can make with the given data. The process of obtaining
results is in focus. In the end, data is treated using Microsoft Excel in order to
create diagrams, etc. for a class presentation.

2.5.2 The Scientist

The scientist has a profound knowledge of biofilms and a user-level knowledge
of image analysis and computers in general. She will be using the program to
find statistical evidence in order to prove or disprove presumptions.
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2.5.2.1 Typical usage pattern

The scientist opens Comstat2 at the beginning of the day and selects a vast
number of image stacks for analysis. She makes the program run the desired
functions and leaves the machine to do the work. At the end of the day she
returns and gathers the obtained data. The data is further processed using some
statistical tools, perhaps for use in an article.

2.5.3 The Innovator

The innovator resembles the scientist but has a somewhat higher level of com-
puter knowledge.

2.5.3.1 Typical usage pattern

The innovator comes up with a brilliant new idea for a function to be imple-
mented in Comstat2. He finds relevant litterature on the algorithm and imple-
ments it in an afternoon using Comstat2’s api. He then distributes the improved
application for his peers to review.

2.6 Interfaces

The interface from Comstat2 to the system is given in the sense that we are to
use ImageJ’s plugin-api. Since few details on the api was known at this time,
weigth was put on the (graphical) user interface and its relation to the defined
actors. The following preliminary drawings were made:
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The two windows are the main toolbox and a separate window for manag-
ing open files. The latter is required in order to satisfy the scientists need of
overviewing a lot of open images. The choice of using small toolbox-like windows
is already made as this is the general concept of ImageJ’s gui.
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Design & Implementation

3.1 Implementing the new Comstat

This chapter is two-sided: On one hand it contains some of the considerations
and specific solutions made during the implementation phase while on the other
it contains documentation of the project in the form of classdiagrams, etc.

The chapter is divided as follows:

• General structure

• Specific solutions

• Review of classes

• Review of the GUI

3.2 The general structure

The final structure of the program can be seen in the main classdiagram, that
- due to space constraints - has been separated in two: Fig. 3.1 and 3.2.
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In total, the program ended up having 8 core-program classes and 9 function
classes - not counting the parent of functions, ComstatFunction. Some addi-
tional classes are hidden inside i.e. the LocalThickness3D-class. These are put
there in order to make the program resistent to future changes and of course
make users independent of downloading a thirdparty plugin. The thresholding
algorithms of ComstatMultiMode are also adoptions of the ones delivered with
Comstat, but they are not separated into inner classes.

The program consists of over 4500 lines lines of code. Again, not all lines are
original and some regrettable redundancy exists. See 3.2.1 for an example.

Figure 3.1: This is the main classdiagram with methods
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Figure 3.2: The second part of the classdiagram with the most important classes:
The functions.
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3.2.1 Use of inheritance

Exactly as in the first sketch-up of the problem area, the algortihms for work-
ing with the imagestacks are all derived from a single class, ComstatFunction
(See sec. 3.2. A developer can then extend it and make his own function but
still have access to all the general purpose methods that have been put into
ComstatFunction.

Unfortunately, an example of bad planning does also exist within the project:
The two modes. If these had been derived from a single class, a lot of redundant
code could have been avoided. In a future release, it would be adviseable to
refactor according to fig. 3.3

Figure 3.3: If the project is refactored, code redundancy can be lowered and the
addition of future modes would also be simpler.

3.3 Specific solutions

This is a review of some of the specific software solutions made with relations
to programs general function. Description of algorithms used in functions can
be found in chapter. 4.

3.3.1 Thresholding

The algorithms used for thresholding are the ones implemented in ImageJ. In
the future it would be nice to implement better algorithms like the one suggested
in [6]. Aside from that, the manual, eyebased method is still the best.

Even though the method for finding thresholds in ImageJ are used in Comstat-
MultiMode, the built-in way of setting it is not. Instead, a for-loop is made to
run over all pixels in the image, backgrounding any with a value less than the
found threshold in the performThresholding-method of ComstatMultiMode.
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When the MultiThresholder or the manual thresholding in ComstatMultiMode
is used, one must take notice that thresholding here means ”less than” the
threshold and not ”Less than or equal to” as in the original Comstat.

3.3.2 Dynamic addition of functions

The use of the word ”dynamic” can actually be taken to mean ”at runtime” -
this is actually possible - but is to mean that addition (or removal) of functions
at loadtime can happen easily and that the userinterface will dynamically adjust
to this when the program is run.

The way to accomplish this is to keep a list of functions within the Com-
statToolobox and let ComstatFunctions be added to this through a dedicated
method called addFunction. ComstatFunction prescribes that a Java AWT
Container named toolboxContainer be defined. The toolboxContainer is de-
signed to be the onscreen space in which the developer of the given function can
put GUI-components for interaction. When addFunction is run, it simply adds
the content of the new function’s toolboxContainer to the local toolbox-pane.
Allthough the developer has free hands to decide on how a functions GUI looks,
it is strongly recommended to at least put a CheckBox with the name of the
funtion in there. All the components added to the toolboxContainer can at
all times still be accessed by the ComstatFunction that it belongs to and thus
adjustments made by a user retrieved.

3.3.3 Running of functions

Running functions on imagestacks is what Comstat2 is all about. Imagestacks
are kept in memory by either ComstatVisualMode or ComstatMultiMode. The
two has access to the local ComstatToolbox, that has a method named run-
ThroughFunctions and takes a Vector of ComstatImageDatas as parameter. As
the name implies, the method runs through the list of functions, calling their
runIfSelected-method with the ComstatImageDatas from the Vector as parame-
ter. If the function is selected in the GUI (preferably indicated by a CheckBox),
the called runIfSelected will then take care of running the functionality offered
by the particular ComstatFunction on the given ComstatImageData.

All installed functions are run one image at a time until the entire Vector has
been emptied.
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3.3.4 Loading of files

When loading files in Comstat2, two API’s are used:

• LOCI BioFormats for reading:

– Leica Image File Format (.liff) files

– Tiff (.tif) files

• LSM Reader for reading:

– Zeiss LSM files

Both are ImageJ-plugins. The BioFormats importer is used for TIFF files even
though ImageJ natively loads them, as ImageJ cannot read LZW-compressed
ones.

The reason for using external API’s for loading images are clear from a software-
developers point of view: If someone has already made a code snippet that
implements some needed functionality it must be used. Especially if the code
has a large userbase - that per implication ensures it is relieable. It obviously
also saves some work - and with a little luck, filesupport will increase with time.
There is, however, also drawbacks. If, for instance, something central to the
API is changed, the program might stop working entirely until someone has the
time to counter the changes.

With relations to the task in focus here, the two microscope formats contain
a huge amount of metadata about everything from instrument serialnumber
to pixelsizes (and interslice distance). Implementing a filereader for such an
advanced format would be a project of it’s own.

In Comstat2, two classes uses the BioFormats and LSMReader to open image-
files:

• ComstatMultimode

• ComstatVisualMode

The way the two uses them are very similar, but the way images are kept in
memory is a bit different. See the class reviews in sec. 3.5 for a description
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3.3.5 Writing of files

In order to store results made by functions performing calculations on images-
tacks, Comstat wrote output to simple textfiles in which values where stored as
tab-separated. These could then be imported using Excel in order to make nice
graphs and otherwise treat the data.

A similar approach is taken in Comstat2. Here, the individual functions are
given the responsability of writing their output on a certain form, to allow easy
printing to log and disk.

3.3.5.1 Example: The Biomass

Let’s imagine that the biomass of an imagestack has been calculated and stored
in biomass. The name of the treated image is stored in name. A string out is
then generated:

out = BIOMASS\n
Image name\t Biomass (um^3/um^2)\n
name\t biomass\n

Now, the local ComstatMessageWindow, msgOut, has it’s setFileOutputDir
called with the path to the current imagestacks dir. Then the append method is
called with out and the ComstatImageData containing the imagestack. append
immediately prints out to the onscreen- and ondisk log (placed in the users
homedirectory) and then calls the method appendToTxt:

Cut first line of out, store in "type"
if type = BIOMASS
set output filename outName to BioMass.txt

else if type = THICKNESS
...

end if
if file outName exists in current directory
append the rest of out

else
create file outName, append a title and date
append out

end if
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The principle is, that if a new function is added to Comstat2, a new ”else if”
must be inserted in ComstatMessageWindow to check for a new type-name (like
”BIOMASS”). Of course, a new filename for the output must also be chosen.

3.4 The Graphical User Interface

One of the main reasons for doing a new version of Comstat was that the user-
interface of the original was commandline based and thus tedious and strictly
sequential in use. During the analysis phase, simple drawings where made of
how the userinterface could look.

3.4.1 Why use multiple windows?

When you create GUI’s for editing images there are commonly two ways of
setting up a GUI:

• the Adobe Photoshop way (one main window, childwindows inside)

• the GIMP way (one main toolbar, many childwindows spread over the
screen)

The Photoshop way offers the advantage of cohesion - all open images, toolboxes,
etc. are collected as a single unit whereas the GIMP fashion offers more space
for doing work (at least visually).

The reason for walking down the GIMP-road was that ImageJ already sported
this and - most importantly - the first part of the development of Comstat2
was performed on an Apple computer running Mac OS X. Tiger, as it was
nicknamed, has a set of GUI-methods named Exposé. One of these methods
(typically activated by F10) lets the user see an overview over all open windows
of the program currently in focus and choose which one to zoom in on. With
this function, the GUI of Comstat2 shines.

On Windows (XP or Vista) the userinterface gets a little more cluttered, espe-
cially when many windows are open. However, all windows will still be grouped
together on the taskbar and in Vista when Aero is running a small image of the
window pointed at will be shown when holding the mouse over the programmes
button, so no critical problems arise. Thus creating a separate GUI for Windows
would be a waste of time.
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3.4.2 The ”Comstat2”-window

The layout of the what appears to the user as the main window is straightfor-
ward: In the top, all the generic, program specific controls are placed. In the
menus, it is possible to change the current program mode, switch off the saving
of produced images, hide file-/directoryselector and finally exit the program.
The Go-button simply starts processing the desired images with the functions
added.

The added functions graphical parts are all placed in the lower part of the win-
dow. The programmer has completely free hands to add the necessary graphi-
cal components of her function, but in the development of the basefunctions a
strict scheme with a checkbox for selection and possibly a line with a label and
a textbox has been used. The final layout actually resembles the imagined one
of the analysis quite well - see sec. 2.6.

One could argue that the looks are relatively dull, but the simplicity means that
adding extra functions dynamically works great - and that the interface actually
works across platforms (Windows XP/Vista/Vista x64/Mac OS X has been
verified). The last should be a no-worry, considering the platform-independence
of Java, but empirical evidence shows otherwise.

Figure 3.4: The Comstat2-window that is in fact part of the ComstatToolbox
class
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3.4.3 The ”File Selector”-window

The File Selector is the visualization of the class ComstatVisualMode.

If you look at fig. 3.5, the upper combobox shows the list of open imagefiles, the
lower one the images in the selected file. There is also a checkbox to indicate
whether the selected image is to be used when running functions. The next two
buttons are used for calling up the thresholding or reshowing the selected image
if it has been hidden (closed) and finally, an add and a remove button is placed
at the bottom for adding or removing files from the file combobox.

Basically, it would be simpler to have only one combobox for images - like the
design made during analysis (See sec. 2.6), but this would clutter the perception
of files as entities possibly containing multiple imagestacks.

Figure 3.5: The visual-mode file selecetor.
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3.4.4 The ”Directory Selector” window

This window is the visual representative of the ComstatMultiMode class that
again is an expression of the ”Scientist”. Thresholding is adjusted to reflect
the wishes of the user on the right. The textbox at the manual thresholding
is in fact a little too wide; this is a result of the BoxLayout used resizing the
component to the full width of the container - not much can be done about this
without excessive coding.

The list on the left contains names of directories added.

In general, the interface is kept rather simple - some would argue that it is too
simple in that it does not handle individual files (and perhaps even images-
tacks) within directories. However, the user has this functionality through the
ComstatVisualMode and she can also copy the files for a large batchrun into a
new directory - that way the resulting data will also be saved to one (for each
function) file.

Figure 3.6: The directory selector with choice of thresholding

3.4.5 The ”Log” window

The Log window is visible in both modes of operation. Since its only purpose
is to show output and status messages, it is kept very simple. The need for a
text log was not thought of in the analysis phase of the project, so no original
sketch was made. However, in its first version, the Log window (which under
the hood is contained in the ComstatMessageWindow) did indeed contain two
buttons for saving and clearing the log. This just was not smart - in a crash, the
contained text would be lost if not written to disk immediately and the clear
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button was dangerous because it migth clear the current log before it has been
written.

Figure 3.7: Simplicity. The log window to which output from functions and
status data are printed.

3.4.6 The ImageJ window

As a final remark, the ImageJ window’s status area is also used for printing
status messages while functions are run. This makes it possible for the user to
see whether the program is still running - especially when no printing to the log
has been performed for a while.

Figure 3.8: The main ImageJ window. The statusarea is the gray area at the
bottom saying ”Abort macro or plugin...”.

3.5 Review of classes and their functions

The following is a runthrough of the implemented classes and their raison d’etre.
The complete class diagram can be found in fig. 3.1 and 3.2. Some of the
methods will be mentioned in the text, but the complete overview is only shown
in the classdiagrams or in the enclosed javadoc.
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3.5.1 Comstat2

This is the main class of Comstat2. Notice the ‘ ’ in the name. It is simply
a prerequisite for ImageJ to accept the class as a plugin. Basically, the class
is responsible for creating the log-window, the file-loading windows the toolbox
and adding functions to it.

3.5.2 ComstatFunction

This class is the main skeleton for the further implementation of the functions
wanted. The class specifies that a Java SWING container called ‘toolbox-
Container’ be created. The idea of this Container is that all required GUI-
components for the function can be added to it and with ease be handled for
both showing and if updates made to the components must be retrieved. The
method runIfSelected is designed to be used to check whether the components in
the container are changed in such a way that the function of the class containing
it is to be run. The method must be overloaded in all childclasses (although it
in a code related sense is not required).

Through the development of the program, various imagemanipulation methods
have migrated from their originating classes (children) to ComstatFunction to
increase their scope to all classes that inherits it. This saves a lot of redundancy
and lowers the maintenance time required. The methods find8ConnectedBlobs
(there are two - distinct in the datatypes on which they operate) are examples
of such.

The class also contains a method for saving out imagestacks. One could with
some reason argue that this ought to be placed in either of the fileloading classes
(ComstatMultiMode or ComstatVisualMode), but due to its common use and
lack of direct link to the Mode-classes the placement seems correct.

3.5.3 ComstatImageData

The class is the designed to unite images and often-used related metadata. The
type of the images kept is simply ImageJ’s built-in, ImagePlus. This type is
very flexible w.r.t. pixeldata format and has a great viewer. It actually also
contains some of the metadata that has been put into ComstatImageData, but
it can be rather tedious to retrieve - several method-calls must be made in serial
to get to them.
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At load time the images voxelsizes (the sides of pixels, x and y) in the images
of the imagestack and the distance between slices (z) are stored along the path
to the orignal imagefile. All can later be retrieved using dedicated get’s.

The class also contains a possibility to register changes to the contained Im-
agePlus. Although ImagePlus has its own ”changes”-field, the control with it
is completely up to the method that handles the image to change it or not.
This is not always preferable - maybe changes are made to a copy of the image
and only the imagestack is copied back to the original ImagePlus and info on
changes are lost - thus, as a definition, the methods that do invasive procedures
on an ImagePlus from a ComstatImageData must call the setChanged-method
with a true-parameter. Alternatively, this method allows us to ignore the ”save
image”-dialog when closing ImageWindows because it only appears when the
windows ImagePlus has its changes set to true.

3.5.4 ComstatMessageWindow

The ComstatMessageWindow has two distinct functions:

• printing status information/data to a log

• writing results from functions to files

The two are related in the fact that most of the information logged is results
from functions. The class has a method called append that writes the string it
is called with to an onscreen log-window, the on-disk version of the log (it must
be written immediately - if the program crashes in the middle of processing a
large stack of images, valuable data that could possibly explain the crash would
else be lost) and a file in the processed image’s directory, bearing the name of
the function run. Based on the text in the string append was called with, the
writeToTxt-method decides the filename under which the data is to be stored,
either creates or reopens it and writes the necessary parts of the string. Prior
to calling append, however, the setFileOutputDir should be called with the
processed image’s path.

3.5.5 ComstatMultiMode

This class is the imprint of the ”Scientist”-actor found in the analysis process.
The ComstatMultimode does three things:
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• keeps a list of directories to be examined for CLSM-images

• loads images on request

• thresholds images according to user demands

The directory way of loading images makes it easy to process vast amounts
of images and in combination with the many thresholding options makes long
unsupervised batch runs available.

Considering the thresholding algorithms, the class implements 5:

• iso data

• maximum entropy

• mixture modeling

• Otsu’s method

• manual threshold

The last one actually is not a ”method” but a possibility to set one threshold for
all images. Its inclusion is on behalf of Arne Heydorn, the author of the original
Comstat, and the reasoning is that being able to set a manual threshold for all,
variance in output data can be made lower.

The choosing between the thresholdings is done via a window where the user can
choose between them. Once a command is received to start loading images, the
load-method is called and starts to look through the added directories in search
of microscope-files. The images found are put into memory using the appropriate
method (openInfoFile, openLIFFile, openLSMFile). The desired thresholding,
i.e. Otsu, is called with the loaded image as parameter (through the threshold-
method) , a suiting value will be found and finally the performThresholding is
called. The latter physically alters the data in the image to reflect the given
threshold, contrary to ImageJ’s built-in thresholding that just stores the value
and updates.

Note that the thresholding methods are direct adaptions of the ones that come
bundled with ImageJ. The reason for putting them directly in the code of Com-
stat2 is simply control. Including it guarantees that no incompatibilities turn
up at a later time.
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3.5.6 ComstatToolbox

This is probably the class with the most saying name. Aside from the generic
userinterface components, objects of this class holds a list of installed func-
tions, a placeholder for the installed functions GUI-components and the method
addFunction for the addition of further functionality.

ComstatToolbox also has control with the two usermodes. These can be changed
via a dropdown menu in the class window in runtime. The toolbox makes
available a method (runThroughFunctions)for running all active functions on a
given set of images delivered in a Vector.

3.5.7 ComstatVisualMode

ComstatVisualMode is the embodiment of the apprentice actor found in the
analysis phase. The interface allows him to add files containing many im-
agestacks and to treat them individually. Normally, images are rendered to
the screen to underline changes and allow the user to manually change the
colourspace used (the look-up-table) and use all other imagemanipulation tools
and plugins of ImageJ on the images, but it is also possible to hide (and reshow,
using the show method) loaded imagestacks.

Where the ComstatMultiMode used its own implementations of the thresholding
algorithms, the ComstatVisualMode uses a 3rd party plugin called MultiThresh-
older. The plugin contains all the same thresholding methods as ComstatMul-
timode but can visually show the parts that will be removed by the use of a
special lookup table. The use of the plugin is, however, a solution made due to
time constraints.

The class contains its own implementation of fileloaders. When a user presses
the ”add” button to add a file, a generic OpenDialog appears and allows the
user to select a file. Depending on the filetype, one of the implemented methods
for opening is called with the path. Then the filename is added to the filelist and
the names of the contained imagestacks are added to the images list. Internally
the imagestacks are stored in a Hashtable.



Chapter 4

Functions & Algorithms

This is a runthrough of the implemented functions. For more info on the ones
installed in the original Comstat, see [3]

4.1 Connected Volume Filtering

4.1.1 Purpose and Definition

The purpose of Connected Volume Filtering (CVF) is to remove elements that
are not part of a biofilm from an image stack. If an element in the image stack
is not in some way connected to the substratum it is not considered part of a
biofilm but rather a piece of floating debris. The debris can be of any kind, but
it is likely pieces of torn off biomaterial or even part of a biofilm connected to
the substratum outside the scope of the image stack under observation.
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4.1.2 Implementation in Comstat

In Comstat, the function takes as input a 2D matrix, startlayer containing
the substratum and a 3D matrix inmatrix containing the complete image stack.

The first layer in inmatrix is the same as startlayer. Thus, startlayer is
strictly speaking not necessary and neither is the element-by-element multipli-
cation made between the two in order to obtain the substratum of the resulting
filt_images. All elements found in the substratum are naturally touching the
substratum.

Next step is to compare the current layer pixels to those of the next. If a pixel
is set in both, its position is stored. Once the check is done for the entire layer,
the program moves on to the next layer. Here, the program uses the build-
in Matlab-function bwselect to expand from the common pixel positions in an
8-connected fashion. Once this is done, the current layer is multiplied element-
by-element by the corresponding layer from inmatrix and the result is stored
as a layer in filt_images. The current filtered layer is now used for finding
common pixels with the above layer etc. until the entire stack in inmatrix has
been processed.

4.1.3 Requirements for reimplementation

Aside from a lot of mathematical notation made possible by the use of Matlab,
the only function that takes special attention is bwlabel. Looking at Matlab’s
help entry for bwlabel one can quickly observe that it is a very far-reaching func-
tion that has a lot of unnecessary functionality (in this case, anyway) and relies
on several other build-in Matlab functions. Thus, the most fair way to reimple-
ment the functionality of bwlabel would be to make a custom implementation
that suits the purpose.

The purpose is to take some pixels as input and expand as much as possible in
an 8-connected fashion.

4.1.4 Reimplementation of Connected Volume Filtering

The general algorithm goes like this:

1. Make an outputstack the same size as the inputstack
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2. Copy the substratum from input to output. The current layer is now the
one just above the substratum.

3. Copy the previous layer to a worklayer.

4. Find common pixels and expand from them in an 8-connected fashion in
the worklayer.

5. Copy the worklayer to output.

6. The previous layer is now the old worklayer. The currentlayer is now the
next layer in input. Repeat from 4 until the entire inputstack has been
processed.

In this runthrough, the 8-connected expansion was very gently ignored. How-
ever, this is the difficult part of the algorithm.

4.1.5 8-connected Expansion

As mentioned earlier this is what bwlabel does in Comstat. Basically, there are
two ways to implement this function: An iterative and a recursive approach.
Although the recursive approach is often the most beautiful and simple, an
iterative solution was chosen because of the more transparent memory-usage
pattern. Using recursion could possibly create stack overflows.

The algorithm in Comstat2 is based on a list of not-yet visited, set pixels which
is updated until empty. Notice, that the algorithm is based on 1D-arrays as
this is the standard in ImageJ - and in this case it saves us from creating a new
datatype. The complete algorithm goes:

Create list "cmn" with indexes of common pixels
"last" is made to point at the last taken index in cmn
while cmn isn’t empty

look at pixel px with index defined by cmn[last]
set px as read by setting it to infinity
decrease last
examine px’s 8 neighbours
add neighbours index to cmn if set and not infinity
update last according to number of added neighbours

end while
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The memoryconsumption of the algorithm is linear with respect to the number
of pixels in the image (and the number of layers in the inputstack). By taking
a look at the code, one will see that several versions of the function called
find8ConnectedBlobs (See fig. 3.2) exist. this is because the function is reused
in other algorithms that are to work on other datatypes than the raw byte pixel
type used for normal images.

4.2 Calculation of biomass

4.2.1 Purpose and Definition

Biomass can be many different things. By looking in a traditional encyclopedia,
the biomass is the amount of biologic material present in a given area or sample.
In this context, however, it is defined to be:

V

a
=

[
µm3

]
[µm2]

In words, the biomass volume pr. unit area. This is an expression of how much
of the imagestack is covered by bacteria.

4.2.2 Implementation in Comstat

This is the simplest function of Comstat. The area of one pixel, the volume of
one voxel (the area of one pixel times the distance between layers) and the stack
itself is provided to the function.

After counting all occupied pixels in the stack, the biomass is calculated as:

y=count*voxel/(xyarea*size(bb,1)*size(bb,2));

bb contains the 3D-stack.

4.2.3 Reimplementation

Basically, the reimplementation is as simple as the original:
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create a variable "count"
for all layers in the imagestack

for all set pixels in the layer
increase count
end for

end for
calculate the biomass as:
biomass = count*voxel/(xyarea*stack_height*stack_width);

The biomass is then printed through the local ComstatMessageWindow. As one
of the only functions, biomass has a specific variable associated in the metadata-
file, ComstatImageData. The value is at this point stored. However, if it is to
be used later a recalculation is preferable as changes to the stack may also have
influenced the biomass.

4.3 Thickness Distribution

4.3.1 Purpose and definition

The thickness distribution is - as its name implies - a list containing the thick-
nesses found and their prevalence. Additional info such as the avg. thickness
and the projected coverage in both pixels and percent is also delivered, the
former also in a separate file.

The function is relatively primitive and can thus be tricked by holes in biofilms
or floating debris if connected volume filtering has not been performed. See fig.
4.1

4.3.2 Implementation in Comstat

As the one and only function in the original version of Comstat, the thickness
distribution runs from the top of the imagestack and down to the substratum.
Conceptually, this is the most obvious as we find the uppermost elements of the
biofilms first and not some that are later superseeded by higher occurrences.
The implementation uses little specific Matlab-notation and makes no calls to
other Matlab-functions so to avoid repetition, the algorithm is examined in the
reeimplementation.
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Figure 4.1: For the large object, the thickness (measured from the top down)
would be the same whether or not there was a hole as indicated. The height in
the part of the imagestack where the little object floats around would indicate
that the volume it projects unto the substratum was filled.

4.3.3 Reimplementation of Thickness Distribution

The original implementation took as input an imagestack and the distance be-
tween the slices in the stack. Luckily, the distance is delivered alongside images
so we only need an image. The desired output was mentioned above.

The following is the first part of the algorithm used:

ThickDist(imgStck)
create "nOfSlices" = number of slices in imgStck
create "pixelSizeZ" = pixel size in z-dir between slices in imgStck
create "binImgStck" = imgStckToBin(imgStck) //binary conversion
create array "hM" same dimensions as images of imgStck //hM = heightMatrix
hMNotEmpty = 0;
for all slices sl of binImgStck{

for all indexes i of sl
hMNotEmpty = (hM[i]>0)?1:0 //condition?true:false
superseeded = sl[i]-hMNotEmpty*sl[i]
hM[i] = (hM[i]+superseeded*pixelSizeZ*(indexOf(sl)-1));

end for
end for
//To be continued...

In words, the algorithm starts looking at the top of the imagestack (farthest from
the substratum), going down. In the beginning all elements of hM will be empty
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and thus hMNotEmpty will be false (0). This makes the variable superseeded
take the value at the current index (pixel) in the binary imagearray. The next
line will then store the thickness in hM as the distance between slices times the
height of the previous slice. If a higher placed pixel was previously registered,
hM will not be zero at that particular index which results in hMNotEmpty becom-
ing true (1) and subsequently superseeded becoming false (0). Multiplying
superseeded unto the calculation of the height of the slice, returns 0, so the
value already stored in the current index of hM will be stored back in the same
place.

Now the heights of all pixelcolumns have been found so the transform of the
data into a printable form is made. First the average thickness:

//...continued:
create "avgThickness" = 0
for all indexes i in hM

avgThickness = hM[i]+averageThickness
end for
avgThickness = avgThickness/(height(imageStack)*width(imageStack))
//To be continued...

The average thickness is calculated as a total for all pixels in the 2D image.
Alternatively, this could have been done as tavg =

∑
value(px)∑

px 6=0 , that is: as the
average of set pixels. One could argue that it would be more correct to use only
the relevant pixels but as it is now, the average tells us about the general shape
of the biofilm, especially in relation to other, similar images.

Now, the distribution itself is made from hM:

//...continued
make array "thickness" with nOfSlices elements
make array "spots" with nOfSlices elements
make array "spotsPercent" with nOfSlices elements

for i=1 to nOfSlices
sl = imgStck[i]
for all pixels px in hM

if value(px) = pixelSizeZ *(i-1)
spots[i-1] = spots[i-1]+1

end if
end for
thickness[i-1] = pixelSizeZ *(i-1);
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spotsPercent[i-1] = 100*(spots[i-1]]
/(height(imageStack)*width(imageStack)))

end for
//The End!

The contents of thickness, spots and spotsPercent are now the possible
thicknesses, how many pixelcolumns have that thickness and the same number
given as a percentage. The values (including the average thickness) is printed
using the local ComstatMessageWindow.

Please note that the algorithm of the old Comstat, although identical in function,
worked a little different in some points, i.e. when finding indices with the same
value in the height matrix. Here the old version makes all the occurences of the
sought value zero and then the function find is used to find all non-zero indices,
that are then counted. This has a much higher complexity, so it is no surprise
that the new implementation runs faster, albeit improvements are possible.

Finally, the algorithm for converting the imagestack to binary form:

imgStckToBin(imgstack):
make new image stack "output" same size as imgstack
for all slices sl in imagestack

for all pixels px in sl
if value(px)>0

pixel at px’s place in output, px_out = 1
else

pixel at px’s place in output, px_out = 0
end if

end for
end for
return output

”Binary” is not related to the datatype used but rather that 1 and 0 are the
only values used a la the normal use in C++.
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4.4 Dimensionless Roughness Coefficient

4.4.1 Definition and purpose

The definition of the roughness coefficient stems from the original definition of
the average roughness coefficient, Ra, given by

Ra =
1
L

∫ x=L

x=0

|y| dx

in 1D. Fig. 4.2 explains the terms.

Figure 4.2: The term Ra simply covers the average height of a function

However, it has been extended to

R∗a =
1

N · tavg

slices∑
i=1

spots[i] · (thickness[i]− tavg)

where N is the total number of spots found (See 4.3), spots[i] contains the spots
of slice i and thickness[i] contains the thickness defined by slice i. tavg is the
average thickness as found in 4.3.

In words, R∗a is the average deviation from the average thickness pr. spot,
normalised and dimensionless.

The origin of this definition is an article printed in Biotechnology and bioengi-
neering that has not been recovered.
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4.4.2 Implementation in Comstat

In the original program, the thickness distribution was first found and then R∗a
calculated as:

N=sum(height_distri(:,2)); % Total number of thickness points
ialt=0;
for ii=1:length(height_distri(:,1))

ialt=ialt+abs(height_distri(ii,2)*(height_distri(ii,1)
-average_height));

end
if average_height~=0

Ra_star=1/N/average_height*ialt;
else

Ra_star=0;
end

4.4.3 Reimplementation in Comstat2

The relatively simple algorithm uses no advanced Matlab functions, so reimple-
menting was straight-forward:

Run ThicknessDistribution
for i=0 to slices

N = N + spots[i]
ialt = ialt + |spots[i]*(thickness[i]-averageThickness)|

end for
if(averageThickness!=0){

RaStar = ((1/N)/(averageThickness))*ialt
else

RaStar = 0
end if

RaStar is then just printed the traditional way.
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4.5 Area Occupied in Layers

4.5.1 Definition and purpose

The functionality of this function is very clear given its name: For all layers in
an imagestack, the number of set pixels must be found, the area found using
the known pixel size and the covered area as a percentage of the total slice size

The area occupied is another expression of how much biomaterial is in the
imagestack, however, with a possibility of seeing the distribution over the layers.

4.5.2 Implementation in Comstat

The original version does not print the three numbers mentioned above, but
only the coverage as a percentage. The calculation itself is:

imagestack //the CVF-filtered imagestack
create array bactCover with as many elements as

slices in imagestack
for all slices sl

bactCover[numberOf(sl)] = number of non-0 elements in sl
/(width(imagestack)*height(imagestack))

end for

The result in bactCover was then multiplied by 100 and printed as a percentage.

4.5.3 Reimplementation

All the numbers discussed in sec. 4.5.1 are available through the calculation
of the coverage percentage and thus they might as well be printed. Although
the percentage does give a good relative estimate of how much biomaterial is in
the layers, small differences will not appear from a percentage so there is good
reason to print the absolutes as well. One should, however, notice that there
is a higher risk of the thresholding influencing on the absolute number of set
pixels than on the percentages.

The implementation is made in a more or less similar fashion:
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AreaOccupiedInLayers(imagestack)
create array bactCover with as many elements as

slices in imagestack
for all slices sl

bactCover[numberOf(sl)] = number of non-0 elements in sl
bactAreal[numberOf(sl)] = bactCover[numberOf(sl)]

*pixelSizeX*pixelSizeY;
bactPercent[numberOf(sl)] = 100 * bactCover[numberOf(sl)]

/(width(imagestack)*height(imagestack))
end for

Again, the values for each slice are printed to file and log using the local
ComstatMessageWindow.

4.6 Maximum Thickness

4.6.1 Purpose and definition

When comparing names, maximum thickness resembles the thickness distribu-
tion a lot. And one might ask oneself why one does not just look at the greatest
thickness found doing the thickness distribution. The two functions are, though
they have similar names, distinct in their way of defining the thickness. Whereas
the method used in finding the thickness distribution disregards holes and other
cavities and just registers the highest set pixel in each pixelcolumn as seen from
above, the maximum thickness finds the compacted thickness as illustrated by
fig. 4.3. Thus no information on the general shape of biofilms is found in the
maximum thickness.

4.6.2 Implementation in Comstat

The original implementation in Comstat was based on the same method as the
thickness distribution, that is: It does not regard holes in biofilms. It simply
goes like:

imagestack //prefiltered using CVF
if more than 1 slice in imagestack

for all slices sl in imagestack, starting from substratum+1
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Figure 4.3: Due to the nature of the Maximum Thickness function, the two
thicknesses T1 and T2 are equal. Only slices with contents are observed.

sum all values in sl, save in "tot_px"
if tot_px>0

"max_thick" = pixelSizeZ * (numberOf(sl)-1)
//-1 is because the thickness starts below current sl

end if
end for

else
max_thick = 1;

end if

Strictly speaking, the algorithm is inefficient, as it would save a lot of time if the
algorithm started from the top of the imagestack instead of the bottom. The
thickness value in max_thick could then be printed.

4.6.3 Reimplementation

Since all elements in each layer of the imagestacks was observed under all cir-
cumstances in the old algorithm, it is nearly costless to find the thickness in
each pixelcolumn as seen from above and store it in a new array. Then, when
all slices have been observed, the maximal thickness can be found as the largest
index. The algorithm:

imagestack
create "max_thick"=1
create array "height" the size of a slice of imagestack
if more than 1 slice in imagestack
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for all slices sl in imagestack, starting from substratum+1
for all elements i of sl

if sl[i]!=0
height[i] = height[i]+1

end if
end for

end for
for all elements i of height[]

if height[i]>max_thick
max_thick = height[i]

end if
end for

end if
max_thick = max_thick * pixelSizeZ

//max_thick-1 depending on indexing method

The thickness found is the compacted thickness as described in the definition.

However, since Comstat2 must return the same result as the original, the defini-
tion used in the original is the one implemented. That one simply runs through
the layers from the bottom and finds the highest one that has set pixels. The
maximum thickness is then:

max_thick = (nOf(sl)-1) * pixelSizeZ

4.7 Microcolonies at Substratum

4.7.1 Definition

As the name implies this function finds the microcolonies present at the substra-
tum of an image stack and identifies them uniquely. Unlike all other functions
in Comstat2 Microcolonies at Substratum (MaS for short) only works on the
first image in the stack (alternatively, the two first if smacking is used).

4.7.2 Implementation in Comstat

The original implementation of MaS takes as input an image containing the
substratum and an integer describing the minimum number of pixels required
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in a connected group in order to define a colony.

In the other end, a list of the size-distribution of the contained colonies, an
image of the resulting substratum (with all colonies smaller than the defined
value and single pixel noise removed) and an image in which all colonies are
identified using unique colours are returned.

Under the hood, input images first have single-pixel (salt’n’pepper) noise re-
moved and are then median- and erosionfiltered using the Matlab-function ord-
filt2. The latter filters are also applied to remove noise; the median filter will
lower the immediate changes in areas with great contrasts and the erosion filter
vil remove thin, long filaments along the edges of colonies. The importance of
these filterings surfaces in the next step: Pixels that are 8-connected are found
and coloured similarly using the function bwlabel - and all groups (of pixels)
with less than the specified number of members are made background. Had the
images not been filtered, colonies would perhaps be in-/excluded or erroneously
seen as a single colony based on noise.

4.7.3 Requirements for reimplementation

In order to implement the MaS in Comstat2 using Java, the following was ob-
viously needed:

• a single pixel filter

• a filter-function similar to ordfilt2

• a function for finding connected components

At the time of the implementation 2 distinct solutions for the filters were pos-
sible: Either a complete implementation of ordfilt2 (and the remaining code
copied from the original Comstat) or specific implementations of the filters
should be made. As ordfilt2 consists of several hundred lines of code and relies
heavily on the matlab api the decision to make specific implementations seems
most logic.

4.7.4 The Single Pixel Noise Filter

The original implementation of this filter actually also uses ordfilt2. This is,
however, unnecessary as the operation of the filter is straightforward. It goes as
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follows:

for all pixels:
if any surrounding pixel is set

leave the current
else

make the current pixel background
end if

end for

Once the algorithm has been run, it must be run again with the meaning of fore-
and background reversed. It will thus remove single pixel noise within colonies.

4.7.5 The Median Filtering

The essence of median filtering is to observe a pixel px and its neighbourhood
(3× 3, 5× 5, etc.) and find the median of the set made up of the pixel values.
Consider the following example:

A =

 1 2 1
2 2 2
1 2 1

 B =

 0 0 0
0 px 0
0 0 0


Where px = 0. We now apply a 3× 3 median filter to input:

medfilt

 1 2 1
2 2 2
1 2 1

→
px = median (1, 1, 1, 1, 2, 2, 2, 2, 2) = 2

and the output becomes:

B =

 0 0 0
0 px 0
0 0 0

 =

 0 0 0
0 2 0
0 0 0


The above example is overly simplified as we are only able to find the median
of the center pixel - px is in the general case not the center pixel. For all other
pixels in A we will touch the edge. The solution chosen is to always make sure
that the input has a frame of 0’s added before filtering and then letting the
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algorithm start with an offset of 1 into it in both directions. This solution will
often lower the median at the edges but the alternative is not to have a value
at all.

The filtering is performed on all pixels in succession, but cannot be done in
place. The space requirements of the algorithm is 2n with n being the number
of pixels. The pseudocode algorithm goes as follows:

make an empty array "out" the same size as the input
for all pixels px in the input

put the eight neighbour pixels and px in an array
sort the array in a- or descending order
store the 5th element of the array in px’s place in out

end for

The 5th element (no pun intended) is chosen because it is the middle element in
an array with 9 elements and thus will contain the median if the array is sorted
in either fashion.

4.7.6 Erosion Filtering

As with a median filter, the erosionfilter is based on observing a pixel px and
its neighbourhood. However, a structuring element is involved here. Consider
the following example:

A =


0 0 0 0 0
0 0 1 1 0
0 1 1 1 0
0 1 1 0 0
0 0 0 0 0

 struct =

 0 1 0
1 1 1
0 1 0



Bbefore =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 Bafter =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0


In A, 0’es are already padded along the edges so the filter may be applied directly
with an offset of 1 in both directions. The application itself is done by centering
struct on all pixels px in A and checking whether all non-zero compnents of the
structuring element (struct) are covered by non-zero elements in A. Only if this
is true the pixel in px’s place in B will become set. In the example only the
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centerpixel of B gets set. This filter can, as implied in the necessity of B, not
be applied in place so again 2n is the space requirement, n being the number of
pixels.

The algorithm implemented goes as follows:

create empty array "out"
for all pixels px

put px’s 3x3 neighbourhood in an array (not px)
sort the array in ascending order
put the first element of the array in pxs place in out

end for

The algorithm only works because we make sure that the image is in a binary
state before execution and because we are using

struct =

 1 1 1
1 0 1
1 1 1


as structuring element. Thus if we take the eight elements around px in the
input, sort them and find 0 as the smallest element we know that one or more
of the neighbours are 0.

4.7.7 Connected Components Analysis

Connected components analysis (CCA) has already been implemented in con-
nected volume filtering (CVF). In CVF the algorithm works in 3D to determine
if pixels are somehow connected to the substratum. Here, CCA is to work only
in 2D and with a slightly different purpose.

The function bwlabel from Matlab takes as input a 2D array (i.e. an image),
finds the connected components (either 4- or 8-connected) and labels all elements
according to grouping. The following examples show how bwlabel would work
on a matrix A using 8-connection:

A =


1 3 4 0 3
2 1 0 0 2
0 0 1 0 2
0 0 0 0 1
0 0 0 0 0

 Alabeled =


1 1 1 0 2
1 1 0 0 2
0 0 1 0 2
0 0 0 0 2
0 0 0 0 0
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The CCA implemented in CVF is based on an iterative algorithm that will only
find all connected elements and keep them in the image but not label them.
The CVF’s CCA is working great so it is reused and a labeling algorithm is
implemented.

4.7.7.1 The Recursive Blob Colouring Algorithm

The algorithm for colouring blobs can be seperated in a part for locating the
blobs in the image and a part for colouring. Before using this algorithm on an
input matrix (image) A, it is necessary to ensure that all elements of A are in
a binary form so that all background pixels are 0 and foreground ones are 1.
This way, the locating algorithm will have to look only for ones and need not
take the value of previous colourings into account. The locating algorithm is
the one called when blob colouring is to be performed and hence, it has been
named ColourAllBlobs:

ColourAllBlobs(A):
set initial colour = 2
for all pixels px

if value(px)==1
call ColourBlob with px and colour

end if
colour++

end for

The part of the algorithm doing the actual colouring:

ColourBlob(pixel,colour):
set value(pixel) = colour
if any neighbour npx in 8-connected neighbourhood is !=1

call ColourBlob with npx and current colour
end if

In line 3 it is very important only to search for 1 in the neighbouring pixels. If
the check was changed to 6= 0 or > 0, pixels previously coloured would be called
with ColourBlob again and the program end up in a possibly-neverending state.

The recursiveness of ColourBlob ensures that the algorithm does not go ”bot-
toms up” before all pixels in a blob have been coloured and since ColourAllBlobs
observes all pixels in the input image, all blobs will be found and coloured in a
unique way.
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4.7.8 Preparation of data

After labelling the colonies, data must be harvested. First the sizes of the
colonies are found and all that are smaller than the preset minimum size re-
moved. One could argue that this should be done prior to the colouring, but
at that time no unique identification of the blobs were available and so the re-
moval would have to be done in a fashion resembling the colouring and be pretty
expensive.

After the removal of lesser than wanted colonies, there may be vacant indexes
in terms of colour value in the colony image, so compacting must be performed.
The algorithm is quite simple:

find largest colour value max_c
while max_c has not been reached

find smallest colour value > 1 and store in min_c
subtract 1 from all colour values greater than min_c
update max_c

end while

- yet rather uneffective.

4.7.8.1 Data required

In accordance with the original Comstat, MaS must print:

• Number of microcolonies

• Areadistribution of microcolonies

• Average colony size

• Average pixel intensity of colony pixels

The number of found microcolonies is ncol = maxc − 1 where maxc is the
maximum colour index after compacting.

The area distribution is found by going through the labeled image counting the
number of pixels with a given index. Since this is to be done for all indexes in
the image it can be done like this:
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create an array dist with n_col elements
for all px in labeled image

dist[value(px)]++
end for

The distribution can now be printed; the colony number (colour) is the offset
into dist and the value at that place is the size in pixels. Since the area of
a pixel is known ahead, the actual physical-world size can be determined as
areal = npx · apx where npx is the number of pixels, apx is the area of one pixel.

The average colony size is just the total amount of set pixels divided by ncol.
The average pixel intensity pxi is not really linked to the labeled image but is:

pxi =
Σ(value(px))

ntot

where px are the pixels of the original input substratum with the lesser colonies
removed and ntot is the total number of pixels in the image.

All output is written using the asociated ComstatMessageWindow (See xxx).

4.8 Volume of Microcolonies at Substratum

4.8.1 Purpose and definition

This function is related to Micro Colonies at Substratum in the sense that the
latter is used to find microcolonies and the first expands them in the imagestack
to find the volumes they fill.

Since only 2D images arranged with a predefined distance between them are
available, we must defined how we measure volumes. The chosen solution is:
For all all layers starting from the substratum, if a pixel is set, the voxel defined
by the perpendicular projection of the pixel onto the next layer is part of the
total volume of the current colony.
For the top layer, the projection just goes d into the void, where d is the distance
between layers. For an illustration, see fig. 4.4

Techically, this means that the function ”just” has to find all pixels belonging
to a colony and multiply with the x, y and z sizes of voxels to find the desired
volume. The trouble comes in as we only have the substratum with separated
colonies.
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Figure 4.4: Left: The substratum (layer 1) seen from above. 1 pixel is set.
Right: The same substratum with the set pixel projected onto the second layer.

4.8.2 Implementation in Comstat

The original version of this function uses bwlabel to find colonies in a binary
version of the first image of an imagestack. bwlabel enumerates the colonies so
everyone has its own index. Further, the algorithm does:

inmatrix //imagestack
startImg //substratum
if startImg contains colonies

lbld_start = bwlabel(startImg)
max = max(lbld_start)//1 = substratum
for all colonies in substratum

area_in_layer = set all other colonies 0, current to 1
sum_voxs = sum pixels in area_in_layer
for all slices sl //substratum not included

com_px = common between prev. and cur. slice
coords = coordinates of set pixels in com_px
area_in_layer = bwselect(sl,coords,8)//8 as 8-conn.
sum_voxs = sum_voxs + sum of pixels in area_in_layer

end for
col_vol_dist[valueOf(slice)] = sum_vox

end for
sort(col_vol_dist)

else
col_vol_dist = 0

Finally, the values in col vol dist are multiplied by the voxelsize and printed
one by one.
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4.8.3 Reimplementation

The old implementation for finding the volumes of microcolonies relied heavily
on the bwlabel and bwselect that was previously delt with in section 4.7. The
idea is to find all 8-connected elements given some starting point(-s) - exactly
the same problem that was solved by find8ConnectedBlobs.

As the two implementations are practically only different in the way connected
pixels are found and the, only the inner for-loop is shown in text here:

startImg = MicroColoniesAtSubstratum(imagestack)
\\...
for all slices sl //substratum not included

com_px = common between prev. and cur. slice
area_in_layer = find8ConnectedBlobs(com_px,sl)
sum_voxs = sum_voxs + sum of pixels in area_in_layer

end for
\\...

startImg contains the colonies of the substratum. Technically, the algortihm
resembles the Connected Volume Filtering a lot. Voxelsize is found because the
pixelsize in the x, y, and z direction are delivered alongside an imagestack.

4.9 Average Run Length of Colonies

This function is all new. The idea is to find all lengths of colonies in the
substratum. The length is measured as consecutive set horizontal or vertical
pixels as shown in fig. 4.5. This function first identifies all colonies at the
substratum and then the length is found for all vertical and horizontal lines in
the colony and the average is found. The inclusion of the runlength is inspired
by [1].

4.9.1 Implementation in Comstat2

There is already a function implemented for finding the individual colonies, so
this is of course used. Then we do as follows:

subst = colonies in substratum of imagestack
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Figure 4.5: A colony and its horizontal and vertical runlengths.

for all colonies col in subst
disregard all other colonies in subst
px_tot = number of pixels in col
columns = columns in col
rows = rows in col
avgRunLengthH[col] = px_tot/columns
avgRunLengthV[col] = px_tot/rows

end for

Finally, avgRunLengthH and avgRunLengthV can be printed.

4.10 The Fractal Dimension

4.10.1 Purpose and definition

The subject of Fractal Dimension has no fixed definition. The definition used
here is based on work done by Mandelbrot. He showed in his paper how the
length of the British coastline depended upon the length of the measure used.
In his own words: ”Given a yardstick of length ε, walk the yardstick along the
coastline. The number of steps multiplied by ε is an approximate length L (ε)
of the coastline. For a coastline, when ε becomes smaller, the observed length
L (ε) increases without limit”. In his paper, he further used work by Richardson
who defined the fractal dimension from the equation

L (ε) = Mε(1−D) (4.1)
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as D where D > 1 and M is some positive constant. The term fractal dimension
was, however, not used in the paper.

In Allen et al. several measures for obtaining D are found. Especially the
method where a stick 2ε1 long is held perpendicular (ε to each side) to the coast
as one walks along it was interesting. When the traversal is done, the area
covered acoast can be calculated and the process repeated using another stick
2ε2 long. Subsequently, the length can be found as

L (ε) =
acoast

2ε

for both ε1 and ε2. Now, this does not give us the fractal dimension but we
can plot the results as in fig. 4.6 and see the slope s = (1−D). s can also be
calculated as

s =
log (L (ε1))− log (L (ε2))

log (ε1)− log (ε2)
→ D = 1− s

And thus the fractal dimension is found from it.

Figure 4.6: Plotting log (L (ε)) vs. log (ε), we can find the slope to be (1-D).

4.10.2 Implementation in Comstat

The fractal dimension was in fact implemented in the original Comstat in a
different form. However, it often returned erroneous results, so it was disabled.
The function implemented was based on the so-called Minkowski-sausage logic,
but as it did not work, there is only little point to going in detail with the
implementation.
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4.10.3 New implementation in Comstat2

The function fractalDimension will look at the substratum of an imagestack and
find fractal dimensions for all colonies found.

The main algorithm is:

find all blobs in image input using getBlobs
for all blobs b in input

disregard all other blobs in input
find a random background pixel px outside the blob
call colourBackground starting at px
All background left must be a sea in the current blob
colour background the same colour as the current blob
call outline on image
call calculateFD
add FD to sum of FD’s
print FD

end for
divide sum of FD’s by number of blobs and print

The algorithm to find blobs:

getBlobs:
make the substratum binary
remove single pixel noise
do erosion filtering
do median filtering
find 8 connected blobs
colour all blobs
remove all blobs less than 10 pixels
return substratum

All subfunctions of getBlobs are described elsewhere (filters, find8ConnectedBlobs
and colourAllBlobs can be found in the section on Micro Colonies at Substra-
tum)

The algorithm that outlines blobs:

outline(inarray):
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create "outarray" the same size as inarray
for all px in inarray

if px is set and either 8-connected neighbour is not set
set pixel at same position as px in outarray

end if
end for

Most of the above algorithms all delt with the preparation for finding the fractal
dimension. The algorithm itself is based on the procedure desribed in the defi-
nition and a paper by Flook on using dilation logic to find the fractal dimension:

CalculateFD(outlined_image):
dilate(outlined_image, small) and save number of set pixels in "a1"
L1 =a1/3
epsilon_1 = 3/2 //because struc is 2*epsilon in diameter.
dilate(outlined_image, big) and save number of set pixels in "a2"
L2 =a2/7
epsilon_2 = 7/2
"s"=log(L1/L2) / log(epsilon_1/epsilon_2) //slope
"FD" = abs(1-s)
return FD

The dilation is implemented as a specific implementation. This can be argued,
but it would be rather simple to expand to using a structuring element after
own choice instead of two predefined ones. The current procedure is:

dilate(in,struc_size):
make new array "out" same size as in
if struc_size=big

use circular struc w/diam. 7
else

use circular struc w/diam. 3
end if
for all pixels px in image

if px is set
insert struc centered on px in out

end if
end for
return out

Instead of the variable that decides whether to use the large structuring element,
one could imagine using an array to supply ones own. A little change would
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Figure 4.7: The two structuring elements used for dilation

have to be made to the part that writes in out (due to the spread out over the
neighbourhood)

4.11 Diffusion Distance in 3D

4.11.1 Purpose and definition

The diffusion distance is the minimum distance from a living cell to the void.
Void could potentially contain nutrients, oxygen, etc., so the diffusion distance
plays a serious role in the development of biofilms.

Luckily, the problem of finding the minimum distance is well-known from other
areas such as mathematics and digital image analysis. Here it is known as the
Euclidean distance. The term ”Euclidean” is used to signify that we are capable
of moving in any direction when measuring distance from point to point in space.
Other distances include the Manhattan- and Chebyshev distance.

The generic method for calculating the Euclidean Distance Map for all voxels
in an imagestack is very well described in [4]:

Let a binary 3D image be defined by

F = fijk, {i ∈ [1;L], j ∈ [1;M ], k ∈ [1;N ]}

The image F is the altered by

gijk = minx{(i− x)2; fxjk = 0, x ∈ [1, L]}
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That is to say that the minimum distance in the i-direction to a background
pixel is found for all voxels fijk. On the resultant image, G, a similar operation
is performed in the j-direction:

hijk = miny{giyk + α(j − y)2, y ∈ [1,M ]} (4.2)

...to find the minimum distance on all ij-planes. α is the relationship between
the length of voxels in the j- and the i-direction. The output 3D matrix, H, has
it’s voxels treated by

sijk = minz{hijz + β(k − z)2, z ∈ [1, N ]}

so that what is now stored in S is the squared Euclidean Distance Map of F .
In order to obtain D, the Euclidean distance map, we must than calculate the
square root of all elements in S. β is the relationship between the k- and the
i-direction w.r.t. voxels. The proof of the algorithm can be found in [5] and [4].

4.11.2 Implementation in Comstat

In the original Comstat, the diffusion distance was implemented through two
functions: diffudist func and edm 3d biofilm func. The first uses the second to
obtain the EDM and then prints the distribution of distances, etc. Focus is here
put on the calculation of the EDM.

The algorithm used here is - of course - compatible with the definition of the
EDM made previously but in logic it is slightly different.

First, the maximum length possible within a given imagestack is found - it is
given by the distance from one corner to the opposite - and then a quantity of
1 is added in order to ensure that no equality problems occur. Note that the
imagestack is always cuboid.

Then, a 3 dimensional structuring element is defined. The elements in the struct
are valued according to their distance to the kernel of it:

m = ceil(struc_side/2)
for k = 1:struc_side
for j = 1:struc_side
for i = 1:struc_side
struct[i,j,k] = -sqrt((m-k)^2+(m-j)^2+(m-i)^2))

end for
end for

end for
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In order to allow cuboid voxels, it is possible to multiply the distances being
squared with the voxel size in the i, j and k-directions.

Now, the imagestack is copied to a new variable, D. D is padded with ones and
all non-zero elements are set to the maximum length. The top layer of D is set
to zero.

Hereafter, the structuring element is repeatedly run over all elements in D,
adding it to the surroundings, corresponding to the size of the struct (The
struct is always centered at the current element) and the minimum value found
is stored as current element. The process is repeated until no further changes
occur in D at which point the EDM has been found.

The distributions of the EDM-values in D can then be found and printed. This
is done in diffudist func.

4.11.3 Reimplementation in Comstat2

Although the method used in the old version of Comstat is understandable when
examined, it does not run very fast. Thus, a search for a better algorithm was
performed - and a very good one was found in [5].

The algorithm here is taken directly from [5] and altered in the way that step 3
is explicitly shown and the α and β values in case of cuboid voxels are added.

for(k=1:N) {
//forward scan
for(j= 1:M) {
df= L;
for (i = 1:L) {
if (f_ijk!=O)
df =df + 1;

else
df = 0;

end if
f_ijk = df^2

}
}

}
for(k=1:N) {
//backward scan
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for(j= 1:M){
db = L
for (i=L:1){
if(f_ijk!=0)
db=db+l;

else
db = 0;
f_ijk = min(f_ijk,db^2);

end if
}

}
//(Step 2)
for(k=l:N){
for (i=1:L){
for(j=1:M){
buff(j) = f_ijk

}
for(j=1:M){
d = buff(j)
if(d!=0)
rMax = int(sqrt(d))+1
rStart = min(rMax, (j-1))

rEnd = min(rMax, (M- j))
for(n =-rStart:rEnd) {

w = buff(j+n)+alfa*n^2
if(w<d)
d = w

end if
}
end if
f_ijk = d
}

}
}
//(Step 3)
for(k=l:N){
for (i=1:L){
for(j=1:M){
buff(j) = f_ijk

}
for(k=1:N){
d = buff(k)
if(d!=0)
rMax = int(sqrt(d))+1
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rStart = min(rMax, (k-1))
rEnd = min(rMax, (N-k))
for(n =-rStart:rEnd) {

w = buff(k+n)+beta*n^2
if(w<d)
d = w

end if
}
end if
f_ijk = d
}

}
}

After the algorithm has been run, the distribution of values in the resultant
image can be found simply by running through it and registering occurences of
values. The values can be put in bins according to the maximum value in the
image and the desired amount of intervals.

4.12 Local Thickness

4.12.1 Purpose and definition

The motivation for including the Local Thickness in Comstat2 even though
two other thickness functions are implemented, was that none of the included
functions were particularly clever - they are both easily tricked by cavities. The
local thickness is not. It is most simply defined by:

”The diameter of the largest sphere that fits inside the object and
contains the point”

The ”object” mentioned could very well be a biofilm in an imagestack and the
point a voxel in it.

4.12.2 A basic look at the algorithm

The algorithm runs in three steps:
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• Perform an Euclidean distance transform on the input imagestack

• Find distance ridges in the EDM

• Obtain the local thickness using the distance ridges

The first step of the algorithm in the original plugin, the distance transform, has
been changed to our implementation because the provided one was somewhat
slower - presumably because of multithreading overhead. The second step is
kept; it is about removing as many points from the EDM while preserving the so-
called distance ridges. Centered on the ridges are all non-redundant points. By
redundancy is meant points, whose maximum-sphere can be covered completely
by that of another point. Finally, the local thickness can be found as a function
of the nearest distance ridge point. For a closer review of the algorithm, see
[2].



60 Functions & Algorithms



Chapter 5

Test & Conclusion

5.1 Test of function compliance

One of the main points of the project has been to create a new version that could
find the same values as the original. In this chapter, the functions of the old
Comstat and those of the new, has been put to work on 10 imagestacks of the
oldfashioned info-type. The results of the two are then compared using graphs
(generated with Microsoft Excel). Some of the functions cannot be compared
directly, because the two versions differ in implementation so alternative tests
have been made.

5.1.1 The biomass

As can be seen from fig. 5.1, the function is acceptable - the two versions return
the same result for all imagestacks.
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Figure 5.1: The differences in the biomass are neglectable and related to rounding

5.1.2 The thickness distribution

Of fig. 5.2 it is evident that the average thicknesses of the two version are the
same. The likeliness of the thickness distribution being wrong is thus very little.

5.1.3 The dimensionless roughness coefficient R∗
a

The new version of the function delivers no measureable difference from the
predecessor. See fig.5.3.

5.1.4 The area occupied in layers

The area in layers functions agree on the values calculated. See fig. 5.4.

5.1.5 Maximum thickness

Agreement between versions. See fig.5.5.
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Figure 5.2: The average thickness is used as comparison. Again, rounding is the
source of error

Figure 5.3: R∗a. For once, rounding is not a source error. The rounding done
on the coefficient has eliminated all noise.
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Figure 5.4: Again, rounding is the errorsource

Figure 5.5: A low precision also makes deviations very low



5.2 Test of additional functions 65

5.1.6 Microcolonies at substratum

The number of microcolonies are unanimous through all imagestacks. See fig.5.6

Figure 5.6: The number of colonies found using both the old and new version of
microcolonies at substratum are the same.

5.1.7 Volume of microcolonies at substratum

In this test, the first obstacle is hit. The volume found in one of the ten tests
deviated a little from version to version. However, the difference is not neces-
sarily an error as the deviation is possibly very small compared with the volume
measured - and could thus be a roundingerror again.

5.2 Test of additional functions

Some of the functions implemented cannot be tested against old version for one
or another reason. Different testmethods have been applied to see if they work.
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Figure 5.7: Volume of found microcolonies. Notice the peak at test 9

5.2.1 The fractal dimension

In our definition, the fractal dimension will be 1 for a perfect circle, so three
circles with varying size where drawn in an info-stack (See fig.5.8) and the
function was called upon.

The results of running was:

Colony FD
1 1.0309
2 1.0302
3 1.0307
4 1.0293
5 1.0305

Average fractal dimension 1.0303

The expected result was a value of 1 for all complete circles. Even though the
values are slightly higher, the result is satisfactory because the numbers shows
that a small difference is present. This is due to the circles being different sizes
and discrete - they are not perfect circles and thus are affected by scaling.
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Figure 5.8: The substratum used to test the fractal dimension
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5.2.2 The diffusion distance

As expected, this function returns a completely different result than the old one.
This is due to the very different methods. The new one has - aside from the fact
that it is a direct implementation of the algorithm described in [5] - been com-
pared to the multithreaded implementation from the original LocalThickness-
plugin. Both algorithms come to the same result. So the output made is correct.
To demonstrate the algorithm, it has been run on the image of fig.5.8 to produce
the result in fig.5.9

Figure 5.9: The substratum of the EDM of perfect circles

5.3 Conclusion

What has been accomplished during this project:
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• To implement most functions with a satisfactory result

• Gained a lot of knowledge on using Java for manipulating images

• A reasonably easy-to-extend framework

• A very small, very easy to distribute program

• A very stable program

• A huge speed jump compared to Comstat

• A fairly good GUI

What should have been better:

• One of the original functions was forgotton and has thus not been imple-
mented yet (surface to volume ratio, 10 in Comstat)

• Better version tracking should have been made

• Continuous checking of function compliance. Several working functions
decayed in the run of the project and had to be reestablished at the end.

• The interface of the multimode image choosing

• Focus on the use of inheritance (w.r.t. the prevention of code redundancy)

• Test of average runlength missing because of trouble with the algorithm
not running properly when very few colonies are present.
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Appendix A

Appendix

A.1 Howto...

Here’s a short guide to the enclosed CD

A.1.1 ...run Comstat2 off the CD

Go to /ImageJ/ and run Comstat2.bat. For non-Windows users: Go to /Im-
ageJ/ run the command

javaw -Xms64m -Xmx768m -Xss32m -jar ij.jar

A.1.2 ...use Comstat2

Go to /Comstat2 man/ and read Comstat2.doc.
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A.1.3 ...setup the workspace with Eclipse

The workspace used for developing Comstat2 can be found at: /kode/workspace/.
A guide for setting up Eclipse can be found at: http://www.cs.dartmouth.edu/k̃imo/blog/computer/imagej eclipse.html

A.1.4 ...see the code without installing Eclipse

Go to /kode/pure source/ where all the original java-files can be found. Don’t
try to compile, though.

A.1.5 ...see the files used for testing

Point Comstat2 (or another image manipulation program) at /test/ where both
imagefiles and outputfiles can be found.

A.1.6 ...find the original Comstat for comparison

Look in /comstat-v1.01/ - it can be run from Matlab by calling comstat in the
directory containing the images to load. Add the comstat folder to the path
first.

A.1.7 ...se the javadoc

Go take a look at /javadoc/index.html
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