
A Multi-Agent Approach to Solving
NP-Complete Problems

Christian Agerbeck, Mikael O. Hansen

Kongens Lyngby 2008
IMM-Masters Thesis-2008

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

This master’s project concerns the use of multi-agent design principles in mak-
ing efficient solvers for NP-complete problems. The design of computer programs
as multi-agent systems presents a new and very promising software engineering
paradigm, where systems are described as individual problem-solving agents pur-
suing high-level goals. Recently, researchers have started to apply the multi-agent
paradigm to the construction of efficient solvers for NP-complete problems. This
has resulted in very effective tools for routing problems, graph partitioning and
SAT-solving.

The objective of the present project is to make further studies into the application
of multi-agent principles to solving NP-complete problems. More specifically, the
project has the following two goals. First, it should result in a general discussion of
the use of multi-agent approaches to solving NP-complete problems. This should
include a discussion of strengths and weaknesses compared to other approaches of
solving the same problems. Second, it should result in a concrete software tool for
solving n2 × n2 Sudoku puzzles, which is known to be an NP-complete problem.
The tool should be benchmarked against other solvers for Sudoku.

ii

Resumé

Dette eksamensprojekt beskæftiger sig med multi-agent-systemer og de design prin-
cipper, der ligger bag effektive løsningmetoder til NP-komplette problemer. Com-
puter programmer, som bygger p̊a multi-agent-systemer, er et nyt og lovende omr̊ade
inden for software udvikling. Systemerne best̊ar af individuelle agenterne, hvor hver
enkelt agent sammen søger et højerest̊aende mål. Forskerer er fornylig begyndt at
anvende multi-agent-systemer til at konstruere effektive løsningsmetoder til NP-
komplette problemer. Det har resulteret i effektive værktøjer til ruteplanlægnings-
problemer, graf-opdeling og SAT løsningsmetoder.

Form̊alet med dette projekt er at udforske anvendelse af multi-agent-systemer til
at løse NP-komplette problemer yderligere. Mere specifikt, s̊a har projektet de
følgende to mål. For det første skal opgaven indeholde en general diskussion af, hvor-
dan multi-agent-systemer bruges til at løse NP-komplette problemer. Dette skal
inkludere en diskussion af fordele og ulemper ved at anvende multi-agent-systemer
i forhold til andre fremgangsmåder, der løser de samme problemer. For det andet
skal der laves et program, der kan løse en Sudoku af størrelsen n2 × n2, som er et
velkendtNP-komplet problem. Programmet skal testet mod andre løsningsmetoder
til Sudoku.

iv

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark during the period September 2007 to February 2008.

The thesis deals with NP-complete problems and multi-agent systems. The report
consists of two parts. The first part deals with the use of multi-agent approaches
to solving NP-complete problems. The second part considers the NP-complete
problem Sudoku and utilizes the experiences gathered to develop a Sudoku puzzle
solver.

We would like to thank our supervisor Thomas Bolander, who has been very helpful
with guidance and critical comments during this work.

Lyngby, February 2008

Christian Agerbeck & Mikael Ottesen Hansen

vi

Contents

Abstract i

Resumé iii

Preface v

1 Introduction 1

2 NP-complete problems 3

2.1 Introduction . 3

2.2 Definition . 4

2.3 Common NP-complete problems . 5

2.4 Solving NP-complete problems . 6

3 Multi-Agent Systems and NP-complete problems 11

3.1 What is a multi-agent system? . 11

3.2 Multi-Agent Systems and Meta-heuristics 13

3.3 Multi-Agent Systems and distributed constrains 16

viii CONTENTS

3.4 Multi-agent Systems with different agent types 19

3.5 Conclusion . 21

4 Multi-agent systems versus common solving techniques 23

4.1 Discussion of strengths and weaknesses 23

4.2 Conclusion . 25

5 Sudoku 27

5.1 Behind the puzzle . 27

5.2 Solution strategy . 30

5.3 Sudoku is NP-complete . 32

6 Different approaches to solve Sudoku 33

6.1 Sudoku representations . 33

6.2 Solution strategies . 37

7 Sudoku solver 51

7.1 Requirements . 51

7.2 Analysis . 52

7.3 Design . 53

7.4 Implementation . 60

7.5 Test . 65

7.6 Discussion . 70

7.7 Conclusion . 72

8 Conclusion 73

CONTENTS ix

8.1 Future work . 74

A User manual 81

B Source code 87

B.1 Agent Environment . 87

B.2 Agents . 92

B.3 Messaging . 117

B.4 Data . 121

B.5 Cache . 131

x CONTENTS

Chapter 1

Introduction

NP-complete problems are a class of hard problems, which so far cannot be solved
in polynomial time. Many problems from our everyday life are NP-complete, and
although we might not be able to find an optimal solution within reasonable time,
different methods exist to find a satisfactory solution. These methods include
approximation, where a near optimal solution can be guaranteed, randomization,
where an optimal solution can be found with a certain probability, or heuristics
where a good solution can be found, but where there is no guarantee, it will be
found fast. For many problems it are difficult to devise a complete algorithm that
guaranties a optimal solution. A higher level of heuristics called meta-heuristics can
then be used to combine the solution given by heuristics and solution strategies to
obtain a better solution.

From the literature of Artificial Intelligence and Distributed Problem Solving, the
concept of Multi-Agent Systems (MAS) have emerged. MAS are inspired by the way
humans or other biological entities interact with each other. The idea is that a MAS
may be used as an intuitive approach, simulating the way humans think and interact,
to construct algorithms and heuristics that can solve NP-complete problems. The
idea for using MAS to construct a faster and/or better solution is an ongoing field of
research. However, there are already examples in the literature describing different
conceptions of the term MAS, in regards to solving NP-complete problems.

Multi-agent systems can be used as a liaison between different heuristics. [13] and
[37] explore the advantages of using a MAS to refine and combine the solutions
of meta-heuristics. The idea is to let different agents maintain responsibility of a
meta-heuristic, and then in a suitable way combine and use the solutions given by

2 Introduction

other agents for at better result of the meta-heuristic. Another approach is to use a
MAS in solving constraint satisfaction problems. The idea is to divide constraints
and variables between agents, and in a suitable manner let the individual agents
optimize their local perspective to reach an optimal common global solution. In
[16] and [22] this approach is described. The third approach is to analyze a real
world instance of the problem and in this way determine what entities are at play,
and how they interact to solve the problem, for then afterwards to make a MAS
inspired by this interaction.

In the summer of 2005 the Sudoku puzzle took the world with storm and became a
huge international hit. Today millions of people around the world are tackling one
of the hardest problems in computer science, without even knowing it. Sudoku is a
member of the NP-complete subset and is therefore an ideal problem to investigate,
when considering multi-agent systems to solve NP-complete problems.

There exist already a number of solution strategies to solve the puzzle, developed
by both the Sudoku puzzle enthusiasts and the academic community. The focus
from the enthusiasts have been on using logical reasoning, as it is intuitive for
humans, and because most of the puzzles are solvable this way. The academic
community has looked upon Sudoku as a NP-complete problem, and thereby used
techniques already known for solving NP-complete problems, as meta-heuristics
and SAT solvers.

This last part of this thesis deals with the considerations in designing a multi-agent
Sudoku solver, capable of solving various Sudoku puzzles. To be able to construct
the solver, inspiration is first gathered from other solution approaches. This will
hopefully reveal strategies that can be helpful in implementing an efficient solver.
This finally results in an actual implementation of a Sudoku solver.

Chapter 2

NP-complete problems

In this chapter the class of NP-complete problems is presented by first giving a
precise definition of the class. Afterwards examples of different problems, belonging
to the class, are listed. Finally different solution strategies are presented.

2.1 Introduction

Problems that can be solved by algorithms in polynomial time are considered to
be so called easy problems. For a problem of size n the time needed to find a
solution is a polynomial function of n. Harder problems requires on the other hand
an exponential function of n, which of course means that the execution time grows
much faster than for an easy problem, when the size of the problem increases.
NP-complete problems are hard problems to solve. They belong to a class of
computational problems, for which no deterministic polynomial algorithm has been
found.

NP-complete problems are a subset of the class NP (Non-Deterministic Polyno-
mial). A Non-deterministic algorithm is able to find a correct solution, but it is
not always guaranteed. The solution is found by making a series of guesses, and
the algorithm will only arrive at a correct solution, if the right guesses are made
along the way. A problem is called NP, if its solution can be found and verified
by a non-deterministic algorithm in polynomial time. The class has the following
definition according to [9]:

4 NP-complete problems

Definition: A yes-no-problem is in NP if there is a polynomial p and a randomized
p-bounded algorithm A such that for every input X the following holds:

True answer for X is YES then PR[A(X, R) = YES] > 0
True answer for X is NO then PR[A(X, R) = YES] = 0

where PR[Z] denotes the probability of event Z over uniform distribution of
R.

With other words this states that the class of NP problems is the set of all yes-no
problems, to which there exist polynomial yes-no algorithms that verifies them. A
yes-no problem is a depiction of a input set onto the set {yes, no}. An example could
be the graph coloring problem, with the graph G and the following yes-no problem:
is it possible to color G with k colors? Given a yes-no problem Q : l → {yes, no}
and a set J called certificates, a yes-no algorithm verifies Q, if either of the two
expressions are satisfied:

∀ x ∈ l where Q(x) = yes : there exists y ∈ J such that A(x, y) = yes
∀ x ∈ l where Q(x) = no : there does not exists y ∈ J such that A(x, y) = yes

To clarify this further the yes-no problem described above, is considered. In this
example the certificates are the different ways, the graph G can be colored. The
question is then, given the graph G and k colors (x), is it possible to find a certificate
y, such that there exists a k-coloring of the graph. If this is the case, is means that
the yes-no algorithm verifies Q (A(x, y) = yes), and i.e. the problem belongs to
NP.

2.2 Definition

A precise definition of a NP-complete problem is given in [9], where a problem P
is called NP-complete if:

P ∈ NP
∀P ′ ∈ NP : P ′ ≤p P

The first condition expresses that the problem belongs to the class NP. The second
condition expresses that the problem is at least as hard to solve as any problem in

2.3 Common NP-complete problems 5

NP. The problem is NP-complete if all other NP problems, are polynomial-time
reducible to it. This means that a instance p ∈ P , is reducible into a new problem
L with a instance l, such that the answer to l is yes, if and only if the answer to p
is yes.

The fact that NP-complete problems is reducible to other NP-complete problems,
is often used to prove that a problem is NP-complete. This is done by first showing
that the problem belongs to NP, and then reduce the problem to a new problem
that already is shown to be NP-complete.

It has long been the subject of scientific research to determine if P 6= NP or
P = NP. It is not known whether any polynomial time algorithms will ever be
found for NP-complete problems. If one is found, it means that P = NP , since
any problem belonging to this class, can be recast into any other member of the
class.

2.3 Common NP-complete problems

The list of NP-complete is long, there exits several thousands problems. They are
represented within many different areas as graph theory, network, scheduling, games
and puzzles etc..

Constraint Satisfaction Problems (CSP) are mathematical problems, where some
constraints among a group of variables are given. The goal is to find the value for
all variables that satisfy the given constraints. Many problems can be viewed as
CSP’s. A CSP is not necessarily a NP-complete problem, but many problems in
this class is NP-complete.

A Satisfiability (SAT) problem is a problem of determining, if the variables in a
boolean formula can be assigned a value, so the formula value evaluates to true.
The problem can be significantly restricted by the use of different properties and
complied into a propositional formula in conjunctive normal form (CNF). A CNF
formula is a conjunction of clauses, where a clause is a disjunction of literals, and a
literal is a propositional variable or its negation. A special case of the SAT problem
is the 3-SAT problem, which means that each clause contains three literals. The
2-SAT problem is another special case, where each clause contains two literals.

The Job Shop Scheduling problem is another NP-complete problem. It consist of
a finite set of n jobs, where each job consists of a chain of operations. In addition
it consist of a finite set of machines m, where each machine can handle at most
one operation at a time. At the same time each operation needs to be processed
during an uninterrupted period of a given length on a given machine. The purpose

6 NP-complete problems

is then to find a schedule, that is, an allocation of the operations to time intervals
to machines, that has minimal length.

The Travelling Salesman problem (TSP) is a well known NP-complete problem.
It is the problem of finding the least-cost round-trip route that visits a number of
cities exactly once and then returns to the starting city. The given information is
the cities and the costs of travelling from any city to any other city. In the M-TSP
the m-salesman has to cover the given cities and each city must be visited by exactly
one salesman. Every salesman starts from the same city, called depot, and must
return at the end of his journey to this city again. The Vehicle Routing Problem
(VRP) is the m-TSP, where a demand is associated with each city or customer and
each vehicle has a certain capacity.

The k-Graph Partitioning problem is also a NP-complete problem. It has the
following definition. Given a graph G = (V,E), where V is the set of vertex and E
the set of edges that determines the connectivity between the nodes. Both vertex
and edges can be weighted, where |v| is the weight of a vertex v, and |e| is the
weight of edge e. Then, the graph partitioning problem consists on dividing G
into k disjoint partitions. The goal is minimize the number of cuts in the edges
of the partition, and on the other hand reduce the imbalance of the weight of the
sub domains. The weight of a sub domain is the sum of the weights of the vertex
allocated in it.

The vertex cover problem for an undirected graph G = (V, E) is a subset S of its
vertices such that each edge has at least one endpoint in S. In other words, for each
edge ab in E, one of vertices, a and b, must be an element of S.

2.4 Solving NP-complete problems

There exits a number of techniques that can be used to solve NP-complete prob-
lems. The following list contains some of the well known techniques.

• Approximation

• Randomization

• Heuristics

2.4 Solving NP-complete problems 7

Approximation

In some NP-complete problems it may be enough to find a near optimal solution
to get a satisfactory result. An algorithm that returns a near optimal solutions is
called an approximation algorithm cf. [7]. The reason for finding a near optimal
solution, instead of an exact solution, is the computation cost, as it may be possible
to find a near optimal solution in polynomial time.

The travelling salesman and vertex cover problem are both problems, where a near
optimal solution could resolve in a satisfactory result. In section 35.5 in [7] approx-
imation algorithms are presented that can yield a near optimal solution for both
problems. The approximation algorithm for the vertex cover problem works the
following way: Find an uncovered edge and add both endpoints to the vertex cover
and remove them from the graph, until no vertices remain. This is constant factor
approximation algorithm with a factor of 2, since the cover is at most twice as large
as the minimum cover.

Randomization

A randomized algorithm is an algorithm that can make calls to a random number
generator during the execution of the algorithm. The algorithm typically uses the
random bits as an auxiliary input to guide its behaviour, in the hope of achieving
good performance in the average case (chapter 5 in [7]).

A motivation for using this approach is exemplified in the following. Consider the
problem of finding an 1 in an array of n elements, where the one half consists of
1’s and the second half of 2’s. The obvious approach is to look at each element of
the array, but a fast search cannot be guaranteed on all possible inputs. If e.g. the
array is ordered with 2’s first, it would take n/2 before the first 1 is found. On the
other hand, if the array elements are checked at random, then a 1 is quickly found
with high probability, whatever the input is.

Monte Carlo and Las Vegas are two kind of randomized algorithms. A Monte
Carlo algorithm runs for a fixed number of steps for each input and produces an
answer that is correct with a bounded probability. On the other hand, a Las Vegas
algorithm always produces the correct answer, but its runtime for each input is a
random variable whose expectation is bounded. See more on these two algorithms
and other randomized algorithms in [28].

8 NP-complete problems

Heuristics

Heuristics may give nearly the optimal solution or provide a solution for some
instances of the problem, but not all. In other words, a heuristic algorithm gives
up finding the optimal solution for an improvement in run time.

There is a class of general heuristic strategies called meta-heuristics, which often
use randomized search. They can be applied to a wide range of problems, but
good performance is never guaranteed. Tabu search, simulated annealing, genetic
algorithms, local search and ant colony optimization are examples of different meta-
heuristics. See more in [11] that present many different meta-heuristics, but also
gives practical guides for implementation.

Examples of solution strategies

Within the area of finding new solution strategies to solve NP-complete problems,
there exits many approaches. The objective of this section is to give an insight into
two solution strategies for two well known NP-complete problems. The problems
described are chosen, because they are similar to the ones that also have a multi-
agent solution approach. Additionally the criteria of the selection is that the articles
are recent and leading within their field. In the following the articles [26] and [10]
are presented.

Vehicle routing problem

In [26] the VRP is studied. The solution strategy is based on, what the paper
present as, bilevel programming, which is a heuristic solution strategy. This formu-
lation involves that the original problem is separated in two different sub problems.
There exits a generalized assignment problem for the assignment of the customers to
vehicles, and a TSP for the routing of the vehicles. In each of the two sub problems
two different meta-heuristics are used in continuation of each other. In the first part
a genetic algorithm is used for calculating the population of the most promising as-
signments of customers to vehicles. The second part solves a TSP independently for
each member of the population and for each assignment to vehicles. To solve the
TSP’s, an algorithm called MPNS-GRASP (Multiple Phase Neighborhood Search-
Greedy Randomized Adaptive Search Procedure) is used, which is a variant of the
GRASP algorithm that again is a modern variant of the DPLL algorithm (explained
below).

GRASP is a meta-heuristic used typically for combinatorial problems in which each
iteration consists basically of two steps: construction and local search. The con-

2.4 Solving NP-complete problems 9

struction step builds a feasible solution by a greedy randomized algorithm, and the
subsequent search step improves the solution by local search. The best overall result
is used. In [8] a detailed description of the algorithm can be found.

After the MPNS-GRASP is used, the solution is improved with yet another meta-
heuristic, called ENS (Expanding neighborhood search), which is an advanced vari-
ant of local search. This meta-heuristic is explained in [25]. When this phase of
the algorithm is finished, it starts all over with the solution found so far. This is
continued until a satisfactory result is reached.

The experimental results show that it so far is the fastest algorithm among other
meta-heuristics to solve VRP. Compared with other well known algorithms to solve
VRP, it is ranked in the tenth place among 36 algorithms.

Satisfiability problem

There exits numerous algorithms to solve SAT problems. Many of them are modern
variants of the DPLL algorithm, which is a complete backtracking algorithm used to
solve SAT problems in CNF. One of these modern variants is the Chaff algorithm
([27]), which in resent years has formed the basis of some of fastest SAT solvers, as
the zCahff algorithm ([10]).

The DPLL algorithm works by first assigning a literal a truth value. Then the
formula is simplified, by removing all clauses which become true, and all literals
that become false according to the assumption made in the first step. Additionally
it uses the two rules, Unit propagation and the Pure literal elimination, to further
simplify the formula. Afterwards a recursive procedure checks whether the formula
is satisfied. If the verification succeeds the next literal is assigned a value, else the
same recursive procedure is done again, but with the opposite truth value assigned
to the literal.

The zChaff algorithm adds a numbers of features to the DPLL algorithm to make the
solver more efficient. The two watched literal scheme and clause learning are two of
them. The two watched literal scheme, explained in [27], is used to reduces the total
number of memory accesses. Clause learning is to find and record conflict clauses. A
conflict clause represents an assignment to a subset of the variables from the problem
that can never be part of a solution. That is, finding and recording conflict clauses
prunes previously discovered sections of the search tree that can never contain a
solution. This can help improve the performance of the search. These are only two
of the features, but there exits more initiatives, which are explained in [10].

The zChaff algorithms has won the prize for best complete solver in the industrial
category in the 2005 SAT Competition. It was also among the three best algorithms

10 NP-complete problems

in the most recent competition in 2007.

Chapter 3

Multi-Agent Systems and
NP-complete problems

The design of computer programs as multi-agent systems to solve NP-complete
problems presents a new and very promising software engineering paradigm. Sofar
there exits only few articles deling with the subject ([13], [4], [37], [14], [16] and
[19]). These articles deals with the following NP-complete problems: k-Graph
Partitioning Problem, Job Shop Scheduling Problem, Travelling Salesman, SAT
problem and Vehicle Routing Problem with Time Window. In this chapter a sort
description of each article will be given, but their will also be an overall analysis of
the potential a MAS processes to solve NP-complete problems.

3.1 What is a multi-agent system?

It is assumed that the reader has some knowledge about agents and multi-agent
systems (MAS), and therefore this section will only give a brief description of agents
and multi-agent systems. Since a multi-agent system is a system consisting of
individual agents, its necessary first to define what an agent is. The following
definition is given in [36]:

An agent is a computer system that is situated in some environment,
and that is capable of autonomous action in this environment in order
to meet its design objectives.

12 Multi-Agent Systems and NP-complete problems

A MAS is a composed system of several agents which interact and work together
in order to archive certain goals. Their interactions can be either co-operative or
selfish. That is, the agents can share a common goal, or they can pursue their own
interests. The typical characteristics of MAS’s are that each agent has incomplete
information or capabilities for solving the problem. I.e. each agent can have a
local perception of the global state and need to co-operate in an autonomous and
asynchronous way with other agents in order to meet the goals of the global system.

Figure 3.1: Typical structure of a MAS. Figure from [36].

To get a more illustratively presentation of a MAS, see figure 3.1. Here is the
typical structure of a MAS shown. The system contains multiple agents who interact
through a communication protocol, which are indicated with the double pointing
arrows. The agents are able to act in the environment (grey sphere), but with
different influence on the environment. The spheres of influence show the different
parts of the environment the agents have influence over. These spheres may coincide
in some cases, which may give rise to dependency relationships between the agents.
In [36] they give the example that two agents may both be able to move through a
door, but may not be able to do so simultaneously. Additionally agents will typically
be linked by other relationships, which is show with the punctuated sphere. This
could be that an agent is the boss of another.

In the following we try to analyze the common characteristics when using MAS
in solving NP-complete problems. The usage of MAS when solving NP-complete
problems may differ from the intuitive perception of MAS. In the following we give

3.2 Multi-Agent Systems and Meta-heuristics 13

an overview of the different categories of multi-agent systems when solving NP-
complete problems.

3.2 Multi-Agent Systems and Meta-heuristics

3.2.1 Introduction

As previously described meta-heuristics are often used when solving NP-complete
constraint optimization problems. But although they provide the possibility of find-
ing a feasible solution, they might not always do so within a reasonable time. The
reason for this is that heuristic search algorithms on large optimization problems of-
ten get trapped in local optima (or minima), which they can not escape in reasonable
time. These local optima (or minima) are not necessarily the same for the different
heuristic search algorithms, as they may have different search neighbourhoods ([4]
and [37]).

An approach to improve the behaviour of a heuristic search algorithm is to use
the multi-agent paradigm to combine different meta-heuristics, so they in a co-
operative manner can complement and help each other in avoiding local optima.
This approach is described in [13], [4] and [37], which will be analysed in the fol-
lowing.

3.2.2 Analysis

The three articles ([13], [4] and [37]) are all similar in the aspect that they all try to
develop a new approach to solving a specific NP-complete problem. Furthermore
they all have identified that meta-heuristics are able to solve the given problem, but
has some shortcomings in terms of getting captured in local optima (or minima).
All three articles suggests a multi-agent system to find a better and quicker solution.

In [13] two approaches to solving the k-Graph Partitioning Problem (k-GPP) are
presented: the COSATS and the X-COSATS system. The idea in both is that
the multi-agent system consists of two agents: an agent implementing Simulated
Annealing and an agent implementing Tabu Search. The two agents co-operate by
providing each other with its local information about the search landscape. In each
agent iteration the meta-heuristic agents values its best found solution from some
evaluation criteria, and then gives its best solution to the other agent. The other
agent then takes the best from its own solution and the best from the received so-
lution and uses the new combined solution, as a starting point for its next search.
The idea is then that the agents are going to converge their search into a search

14 Multi-Agent Systems and NP-complete problems

area, where both Simulated Annealing and Tabu Search find best solutions. The
other approach, X-COSATS, extends COSATS by adding a third agent, which acts
as a middleman between the two original agents. The crossover agent creates a new
starting point for both agents based on their found solutions and a crossover oper-
ator. The test results show that the co-operation between the two meta-heuristics
actually yields a better solution, than can be obtained by the two meta-heuristics
separately. When also applying the genetic crossover principle, the solutions found
are not always better than the solutions found by COSATS. The article concludes
that the co-operation scheme has proven to be a good method for avoiding being
trapped in a local optima (or minima).

In [4] a similar approach is presented, in order to solve a Job Shop Scheduling
problem(JSSP). Here a MAS called ATeams is described. The principle in ATeams
is that a number of asynchronous autonomous agent co-operate on a shared solution
variable. The solution variable is in fact a population of solutions to the JSSP
problem, where each agent independent of each other can pick a solution from
the population and try to improve it. Each agent implements a meta-heuristic
algorithm, which it uses to try to improve the solution. In this implementation
a couple of meta-heuristic algorithms such as Simulated Annealing, Tabu Search
and Genetic Algorithms are suggested as individual agents. Each agent modifies a
solution from the population concurrently and afterwards returns the solution into
the population, based on some predefined rules. A configuration of the system is
e.g that the solutions are put back into the population in a hill-climbing manner,
meaning that only improved solutions can be returned to the population. Another
configuration is that solutions are put back no matter the improvement. In order
to ensure that the solution population does not contain bad solutions, a destroyer
agent is introduced to remove bad solutions in respect to some criteria. The ATeams
can be regarded as an advanced technique for creating hybrid algorithms. In the
experiments in [4] it is stated that the ATeams are not always effective. This is
shown by a single agent that performs better than a combined team. [4] suggests
that this is due to the similarity in the implemented agents. For a ATeam system
to be effective, it is necessary that the agents are diverse and should explore the
search space in different ways in order to avoid being captured in the same local
minima.

The last of the three articles ([37]) is designing a multi-agent system for solving the
Travelling Salesman Problem (TSP). The ideas presented are to use the multi-agent
system as a way to combine the three meta-heuristics: Ant Colony Optimization
(ACO), Genetic Algorithms (GA) and Local Search (LS). The responsibility of the
different meta-heuristics are divided into agent tasks. The agents then work in a
sequential manner on a group of solutions. The work flow is that the ACO agent,
given a list of cities, creates a group of solutions to the TSP. Afterwards a group
of agents, implementing GA principles such as crossover and mutation, optimize
the solutions in the solution group. Lastly the local search agent picks the best
found solution from the group and tries to optimize it by applying a search heuris-

3.2 Multi-Agent Systems and Meta-heuristics 15

tic in local parts of the solution. In this sequential manner the system generates
a group of solutions, optimize the entire solution group and then picks the best
solution and tries to optimize it further. As long as no found solution fulfils the
end condition, the process is started over. The system can therefore be described as
a MAS implementing a hybrid meta-heuristic between ACO, GA and local search.
The results show that the described systems performs well compared to other ACO
systems. However the test do not show significant better performance of the hybrid
multi-agent system over the other ACO systems.

The three articles show how multi-agent systems can be interpreted as a paradigm
to combine different heuristic algorithms in solving NP-complete problems, in the
following the aspects of this will be discussed.

3.2.3 Discussion

In all three articles it is described how multi-agent systems can be used to combine
meta-heuristics into a co-operative hybrid system. The reasons for combining meta-
heuristics, are to use the different strengths of the individual meta-heuristics in order
to minimize the weaknesses. [31] argues that a common reason for hybridization is
to ensure exploration, and exploitation:

Two competing goals govern the design of a metaheuristic: exploration
and exploitation. Exploration is needed to ensure that every part of
the space is searched enough to provide a reliable estimate of the global
optimum. Exploitation is important since the refinement of the current
solution will often produce a better solution.

Population based meta-heuristics, such as Genetic Algorithms and Ant Colony Op-
timization, are very powerful in exploring the search space, where they are weak in
exploiting the found solutions. Whereas local search heuristics such as Simulated
Annealing and Tabu Search, are powerful in exploiting solutions. Since the two
types of meta-heuristics have complementary strengths and weaknesses, combining
them may yield a better solution.

Both [4] and [37] combine a population based meta-heuristic with a local search
heuristic, in their multi-agent system, and gain the advantages of combining ex-
ploration and exploitation. In [13] the approach is slightly different, since the co-
operation is between two local search heuristics.

16 Multi-Agent Systems and NP-complete problems

Is hybrid meta-heuristics multi-agent systems?

Hybrid meta-heuristics need not to be implemented as a multi-agent system, but
one obvious benefit of using multi-agent system for this, is the ability to quickly
change the meta-heuristics used for the hybridization. The important thing to notice
though, is that although all implementations shows a better performance, a similar
improvement in performance could probably have been obtained, by implementing
the hybrid result as a single agent. E.g. in [37] its is obvious that the sequential
manner of the system could be obtained by one single agent, performing different
tasks during the solution process. In [13] it is possible that a single agent running
Simulated Annealing and then Tabu Search in a relay manner, could show the same
type of improvements, over Simulated Annealing and Tabu Search run separately.
Last the ATeams, in [4], could also be implemented as single agents performing
the different heuristic algorithms in some sequence, and probably also yield similar
good results.

What is the motivation for using MAS?

The obvious in [13] and [4] is that you receive a gain in computational performance
by running the algorithms in parallel. Furthermore the systems is easier to maintain,
since a single agent should be independent of the others, and could be replaced by
an agent implementing a different heuristic without affecting the stability of the
system. This could be more difficult if the heuristics where all combined in a single
hybrid agent.

3.3 Multi-Agent Systems and distributed constrains

3.3.1 Introduction

Distributed or multi-agent problem solving extends classical problem solving tech-
niques to domains, where several agents can plan and act together. There exist
many recent developments in this field that range over different approaches for dis-
tributed solving algorithms and distributed plan execution processes. One of the
reasons for using distributed solving is that it is the most appropriate way to tackle
certain kind of problems. Specially those where a centralized solving is infeasible.
An area where this approach has been used is to solveNP-complete CSP’s. If a CSP
problem is distributed among a number of agents it is called a distributed constraint
satisfaction problem (DCSP) cf. [33]. In a DSCP each agent is given the responsi-
bility for setting the value of its own allocated variable. The agents do not know the
values of any other variable, but can communicate with other agents to determine

3.3 Multi-Agent Systems and distributed constrains 17

the correct value for its variable. Some of the most popular DCSP algorithms are
the asynchronous backtracking (ABT) and asynchronous weak-commitment search
(AWC).

The distributed constraint optimization problem (DCOP) is similar to the DSCP
except that the goal is to minimize the value of the constraint violations. The
definition for the problem is the following. Given a set of variables x1, x2, . . . , xn

with domains D1, D2, . . . , Dn and a set of constraints, then find a assignment for all
the variables such that the sum of the constraints is minimized. The most common
approach to solving DCOP’s is to use a branch and bound algorithm. See more on
DCSP and DCOP in see [33].

3.3.2 Analysis

To clarify the use of this type of multi-agent systems to solve CSP problems, two
articles are analyzed. They are chosen because both of them describe a multi-agent
system that can solve a NP-complete problem. Both articles, [14] and [16], work
with the SAT problem that is a well know NP-complete problem.

In [14] the authors have developed a algorithm for solving a SAT problem. They
have distributed the variables and constraints among multiple agents to transform
the original SAT problem into a DCSP. It is not a new idea to distribute the prob-
lem, there are numerous distributed constraint satisfaction algorithms. ABT and
AWC are two of them as mentioned above. These algorithms and their descendants
contain two problems. Firstly the agents do not mutually exclude their undesirable
values, and simultaneously decide the values to their variables. Secondly both al-
gorithms can produce a huge number of nogood messages, when the problem gets
critical hard (the nogood messages are used by both algorithms to report to the
other agents that it cannot find a value for its variable). This means that both can
consume a lot of memory to record these nogoods. The algorithm described in [14]
does not have neither of these problems.

The algorithm works in the following way. Initially each agent is assigned multi-
ple local variables and the relevant clauses to the variables. Then a local search
procedure is performed to determine values that give a possible improvement in
the weighted sum of violated constraints. Afterwards the agents exchange these
values to resolve any emerged conflicts. This is done by redrawing any values that
increase the total weighted sum of violated clauses over the agents. The remaining
values are then sat. This is then repeated until a solution is found. This approach
is closely released to the distributed breakout algorithms mentioned in [33] and is
different from the backtracking idea used in ABT and AWC, in the sense that this
is a hill-climbing strategy. All hill-climbing algorithms suffer from the problem of
local minima (or maxima), but they have bypassed this problem by finding what

18 Multi-Agent Systems and NP-complete problems

they call a quasi-local minimum. From [33] they give the following definition:

An agent xi is in a quasi-local minimum if it is violating some constraint
and neither it nor any of its neighbors can make a change that results
in lower total cost for the system.

They authors have later on improved their algorithm to make a even better hill-
climbing strategy, by applying a random walk (see [15]). This decreases the chance
for the algorithm to get stuck in a local minima (or maxima).

The experimental results show that both algorithms perform least as good and often
better than the well known algorithms. The improved one always find a solution
for 3-SAT problems, whereas the old one cannot solve all 3-SAT problems.

The algorithm described in [16] has many similarities with the previous one. The
authors also tries to solve a SAT problem by means of dividing variable into groups,
and then represent each group with an agent. After the agent has been randomly
assigned a group, the agent system chooses their movement in their local search
space by assigning them one of three different search strategies: random-move, best-
move and better-move. The agent system will keep on dispatching agent until a
solution is found, or a certain threshold value is reached. The difference between
this approach and the previous one is the way the agents search in their local space.
So all in all the general approach are more or less the same. In this article they also
obtain comparable result with other popular algorithms.

The major difference between the two described algorithms and the solution strategy
for a DCSP is that instead of using one agent per variable, they use multiple. This
means that the communication cost is lower than for a classic DCSP.

3.3.3 Discussion

The essence of the different algorithms described is that they all perform a dis-
tributed search, where each agent has some local information. The goal is to get
all agents to set themselves to a state, such that the set of states in the system are
optimal. The agents can at any time take any of their available actions, but the
utility of their actions depends on the actions of others.

A problem is easy to represent by a MAS, if the problem has a structure that makes
it easy to transform to either DCSP or DCOP. Imagine a dinner party where the
guests are told to sit next to persons of the opposite sex. Each guest must find a
seat around the table, but the seat depends on the location of the other guests. In
this example each guest can be regarded as an agent with local information, where

3.4 Multi-agent Systems with different agent types 19

its actions depends on the actions of the other agents. This is a problem that is
easily transformed to a distributed constraint satisfaction problem.

Applying this type of multi-agent system could on the other hand also be a choice,
if the problem is to hard to solve single handed. Splitting the problem up in smaller
sub problems could help solve the problem quicker as each agent would run in
parallel. This is perhaps not always an advantage, since the communication cost
between the agents can overshadow the effect of running the program in parallel.
This is e.g. a big topic in [14], where it is attempted to use multiple agents per
variable to decrease the communication cost.

3.4 Multi-agent Systems with different agent types

3.4.1 Introduction

Another approach when using multi-agent systems to solving NP-complete prob-
lems, is to analyse a real world instance of the problem. In this way determine what
entities are at play and how they interact to solve the problem, for then afterwards
to make a MAS inspired by this interaction. This method is closely related to the
abstraction of DCSP and DCOP, in the sense that the problem is distributed among
multiple agents, with responsibility for local parts of the problem.

For most NP-complete problems it is not hard to determine a real world instance.
In [19] the Vehicle Routing Problem with Time Window (VRPTW) is an example of
a NP-complete problem, which has a real world instance. This is used to describe
a MAS for solving the VRPTW, which will be analyzed in the following.

3.4.2 Analysis

In [19] the multi-agent system is meant as an optimization scheme on an existing
solution, already determined by use of a heuristic. The VRPTW considered has
three types of entities: customers, routes and a central depot. The MAS proposed
looks at each of these entities and regards them as autonomous agents. It threats
each of the customers, the routes and the global planner as an unique agent and
allows them to exchange information.

Each separate agent (customers and route agent) has control of its own state, and
is thereby provided with some functions, it can perform in order to change its state
in the direction of a local objective. The goal of the complete system is that all the
agents have a local objective that they pursue, and in doing so the global system

20 Multi-Agent Systems and NP-complete problems

should also approach its objective. To help the local agents in co-operating towards
the common global objective, the planner agent controls the global environment
state, by guiding the local agents in the most desired direction. In practice this
is done by a move-pool, where the planner agent collects desired moves from the
local agents. A move is a change of a local agents state. An example of this is
that a customer agent makes a complete search through the solution space, and
determines at which route and time slot it minimizes the global objective function.
Every agent makes a proposition of where and how it can minimize the objective
function best. The planner agent then collects these suggestions and chooses the
move that is best for the global solution and lets the corresponding agent change
its state. Additionally the planner agent possesses the ability to optimize the global
solution, by optimizing the routes with a heuristic and trimming the problem by
removing bad routes.

In order to maintain a reasonable time complexity of the entire system, the planner
agent only requests move propositions in a given interval, and then caches the result.
This is done since the agent performs a complete search, in each agent proposition.
Likewise the planner agent performs its optimization heuristics periodically in order
to improve the solution from a global perspective.

To test the performance of the algorithm it is tested against a number of well known
solvers which implement meta-heuristics as simulated annealing, tabu search, ant
colony optimization, and genetic algorithms. The tests show that the system is able
to obtain comparable results with the listed well known solvers, but do not show a
remarkable improvement.

3.4.3 Discussion

At the first glance this approach looks very similar to the distributed constraint
optimization approach. However there are a number of significant differences. The
construction of the solution differs, since this approach optimizes on an initial so-
lution in contrast to the DCOP which constructs the solution it self. Secondly the
structure of the MAS differs in the way agents maintain their own state. In the
DCSP and DCOP approach the agents communicate directly without any global
control but in this system a planner agent maintains the control of the system. This
means that the rest of the agents are not completely autonomous, since their actions
are dependent on the choices of the planner agent.

The system described shows good results and give the indication that other related
problems could be solved in a similar way. It is obvious that the system has room for
improvement. E.g. the cached propositions, which are connected to a certain state
of the environment. This state changes after a move has been performed, hence will
the moves proposed to the planner agent gradually be outdated, since the state of

3.5 Conclusion 21

the environment changes every time, an agent performs a move. It would be optimal
if the moves, the planner bases its decisions upon, where on a updated environment.
However in this configuration, it is difficult to see a way to solve this without causing
a dramatically increase in the computational cost. Likewise it might be proven that
it is unnecessary to have up-to-date moves for every environment state, in order to
find a satisfactory solution.

Generally this approach provides a apprehensible method for dividing the solution
of a NP-complete problem into a MAS, although the abstraction of agents may be
different of what one might expect. E.g. its maybe not intuitively obvious that a
route could be regarded as an agent, however when looking at the complete system it
makes perfect sense. Although the system in the article is not matured, it provides
an indication that multi-agent abstractions in solving NP-complete problems need
not to be inspired by either hybrid meta-heuristics or distributed constraints, but
can be inspired by the problem entities and the real world instances of the problem.

3.5 Conclusion

It is obvious that multi-agent systems can be used in solving of NP-complete prob-
lems. The different applications of multi-agent systems handled in this chapter show
that multi-agent systems is still a very broad an abstract term.

In multi-agent systems and meta-heuristics it is important to notice, that the ad-
vantage of creating hybrid heuristics only exists if the different meta-heuristic parts
can be chosen in a manner where they complement each other. It is only interesting
to create a hybridization if a synergistic effect can be seen, otherwise the best of
the meta-heuristic parts could have been used alone instead.

Often it is obvious to regard NP-complete problems as DCSP and DCOP, which
means that the advantages of a fully distributed algorithm can be used. That is
allocating different parts of the problem between the multiple agents and let them
run asynchronous to help one another solve the problem. The MAS paradigm, if
used properly, provides the possibility that a solution is found quicker than with
a single agent sequential approach. The disadvantage is the communication cost.
Therefore when using the MAS paradigm it is important to consider how much the
problem is divided and distributed, since a to fine-grained division might result in
an overhead in communication cost.

The last type of MAS approaches shows, that it is also possible to get satisfactory
solutions to a NP-complete problem, by using a different abstraction of the MAS,
when dividing the problem. This approach contains aspects of the two other ap-
proaches. It combines the functionality of the MAS with a heuristic local-search,

22 Multi-Agent Systems and NP-complete problems

which is somehow similar to section 3.2, in the way that it uses heuristics to im-
prove the solution when the environment has changed. Likewise the division of the
problem entities into agents have similarities with section 3.3, in the aspect that
each entity has responsibility over its own constraints.

The use of the multi-agent paradigm when designing algorithms for NP-complete
problems is an ongoing and new field of study. In our study of the subject, we
have found that multi-agent solutions to NP-complete problems fall into the three
mentioned categories. The application of the multi-agent paradigm in the three
method varies, however they share a common abstraction of the definition of multi-
agent systems.

Chapter 4

Multi-agent systems versus
common solving techniques

In chapter 2 and 3 different solving techniques to NP-complete problems are pre-
sented. The systems are designed on the basis of respectively single-agent systems
(common techniques) and multi-agent systems. The following contains a discussion
of the strength and weaknesses of a multi-agent approach compared to the common
solving techniques. The discussion consist of two parts. The first part concerns
the difference between the approaches described in the two chapters and the second
part highlights some of the general strengths and weaknesses in a MAS.

4.1 Discussion of strengths and weaknesses

The algorithm described in section 2.4 has a strong correlation with the algorithms
presented in section 3.2, as all of them use a combination of meta-heuristics to solve
the problems. In fact, the basis principle is the same, except that the algorithms
in section 3.2 run the meta-heuristics in parallel. However, this could have been
done with a sequential approach likewise, as mentioned previously. Running the
meta-heuristics in parallel could result in a a gain in computational performance,
but the results achieved in section 2.4 produces no reason to do so. It is one of the
fastest approaches yet, compared with other meta-heuristics.

The problem worked on in section 2.4 is almost similar to the problem solved in
section 3.4, but the way to go about it is completely different. Instead of representing
each meta-heuristic with an agent, a different abstraction of the MAS is used, where

24 Multi-agent systems versus common solving techniques

each problem entity is represented by an agent. It is therefore irrelevant to compare
the two solution strategies. It is though important to mention that this system
design in section 3.4 is innovative, in the sense that it uses a different abstraction of
the MAS, when dividing the problem. It is undoubtedly slower than the algorithm
in 2.4, but could be an interesting approach in the future, when optimized further.

The zChaff algorithm, described in section 2.4, is also comparable, with some of
the MAS approaches from section 3.3, in the sense that they solve the SAT prob-
lem. There is though a big difference between the general approaches. The zChaff
algorithm is highly optimized to solve the SAT problem. It uses advanced tools
to solve the problem, whereas the multi-agent systems are based on more simple
backtracking procedures. However, one might think that the distributed system
with time could make use of some of these advanced procedures, but now it seems
that MAS cannot catch up with the SAT solvers.

In section 3.2 it was argued that some of the approaches likewise could have been
sequential approaches. However, in some domains it it necessary to use a MAS,
when designing the system.

Domains

It is not always obvious to use a MAS when designing a system. There are some
situations for which it is particular appropriate, and for other where it is not.
However in some cases the domain requires it. Consider the problem described
in section 3.3.3, but now each guest independently decides who they want to sit
next to. This can only be modelled as a MAS, since the MAS is needed to handle
their interaction. Additionally each person has different criterion to where they will
sit, which must be represented by different agents, if their criterion are to be justly
considered.

An example of a domain that does not require a MAS, but where it could be
appropriate, is the problem described in section 3.4. Here the problem can be
divided among multiple agents fairly straight forward. However, in situations where
this subdivision is not obvious, it would be foolish to force the system design to be
a MAS. This is due to that a single agent probably could do the same job as fast
as a MAS and with a simpler system design. That is, a MAS should only be used
on a domain that can benefit from it.

Parallelism

A MAS has a obvious advantage, if the problem can be spilt up in smaller sub
problems, since the sub problems can be assigned to the multiple agents. This can

4.2 Conclusion 25

help solve the problem quicker, as each agent run in parallel. In the algorithms
described in section 3.3, this approach is used. It is however not always possible to
subdivide the problem, but even in domains that are not distributable, there could
be advantages of using a MAS. Having multiple agents could speed up a systems
operations by providing a method for parallel computation.

The one major drawback using a MAS is the communication cost. It can diminish
the effect of running the program in parallel and perhaps even cause the strategy
to be slower than a solution strategy, using only a single agent. In the algorithms
described in section 3.3, they are aware of this issue, and have tried to decrease the
communication cost by assigning more variables to each agent.

Scalability

Even though the communication cost could be a problem, a MAS possess an ad-
vantage compared to a single agent system. A MAS is scalable. Since each agent is
independent of the others, it is easier to add new agents to a MAS, than it is to add
new capabilities to a single agent system. Additionally agents are easily replaced
by an agent implementing a different strategy. This could be an advantage in the
algorithms described in section 3.3, compared to the SAT solver presented in section
2.4. As different solution strategies could be tested simply by replacing a number of
agents. This could also be an advantage in the algorithms from section 3.2, where
it would be possible to test different heuristic, simply by replacing an agent.

Robustness

Robustness is a benefit of MAS that have agents that complement each other. If
control and responsibilities are sufficiently shared among different agents, the system
can tolerate failures by one or more of the agents. However, in none of the above
MAS approaches, this is used.

4.2 Conclusion

Designing systems as MAS to solve NP-complete problem, is clearly a new software
paradigm. However, it is not always an advantages to use a MAS, compared to the
well known solvers to NP-complete problems, as they are more optimized and
specialized. This is perhaps not that big of an issue, since the system likewise can
be optimized and specialized in the time to come. The key issue is that a MAS is
new way to represent the problems, not similar to any other solver. This is obvious

26 Multi-agent systems versus common solving techniques

in section 3.4, where the VRP is presented in an entirely new way. The advantage in
using a MAS is therefore not the computation speed, but the fact that the problem
is presented in a different way compared to the old strategies, which in the long run
could lead to effective solvers. It is important to mention that the system design
should only be MAS, if the system can benefit from it, but it is sometime necessary
to try to use a MAS, even though it is not obvious, in order to spot new effective
solution strategies.

Multi-agent systems own a number strengths and weaknesses compared to other
strategies that solves the same problem. First of all if the problem can be partioned,
it is possible to receive a gain in computational performance, but it is important
that the communication cost is kept down, to get a fast solution. Additionally a
MAS is scalable, which means that it is easy to change or remove agents. A MAS
is also robust, if it has agents that supplement each other.

Chapter 5

Sudoku

In this chapter a brief introduction to Sudoku is given, by presenting the terminology
and the rules in the puzzle. Then a solution strategy is presented that can help solve
the puzzle. Finally it is shown that Sudoku belongs to the class of NP-Complete
problems.

5.1 Behind the puzzle

Sudoku is not an entirely new invention. It started already in 1783 with the Swiss
mathematician Leonard Euler, who invented Latin Squares, but Sudoku puzzles, as
we know them today, were first published in 1979 under the name Number Place.
Later on the Japanese gave the puzzle the name Sudoku.

A Latin Square problem is not entirely the same as a Sudoku puzzle, but they have
many similarities. A Latin Square is a grid of size n × n, which contains all the
numbers from 1 through n exactly once in every row and column. The Sudoku
problem has the following definition.

General Sudoku:

A general Sudoku puzzle consists of a n2 × n2 grid, which is divided into n × n
squares, where n is the order of the puzzle. Throughout this thesis the following
notation of the Sudoku properties is used.

28 Sudoku

• A cell refers to one of the n4 entries in the grid.

• The value of a cell refers to the number placed in the cell.

• A row-, column- or square-domain refers to the rows, columns and squares of
the grid.

• A candidate is a number that could be placed in the cell.

• A clue is a value in a cell that is already given in the problem instance.

• The order of the puzzle refers to the size of n. A typical 9 × 9 grid, will
therefore be a puzzle of order 3.

A Sudoku puzzle has the following constraints:

• Each cell must have a value from 1 to n2.

• Each of the row, column and square domains must contain the values from 1
to n2 exactly once.

These constraints will trough out the report be referred to, as the Sudoku con-
straints.

The difference between a Latin Square and a solved Sudoku puzzle is therefore that
a Sudoku is more constrained than the Latin Square, as a valid Sudoku must also
satisfy the square constraints. The fact that each row and column constraint must
be satisfied in a valid Sudoku puzzle shows that every solved Sudoku is also a Latin
Square, but not the other way around.

At figure 5.1 a classical order 3 Sudoku grid is displayed, with and without initial
values (clues).

Not every order 3 problem instance is considered to be a real Sudoku puzzle. It is
therefore often in the literature defined that a proper problem instance satisfies the
condition:

Condition: A Sudoku problem instance must have a unique solution, which can be
determined by stepwise making logical conclusions based on the values already
present in the puzzle.

A puzzle is only considered a proper Sudoku problem instance, throughout this
thesis, if this holds.

5.1 Behind the puzzle 29

(a) Empty Sudoku grid (b) Sudoku grid with clues

Figure 5.1: Sudoku problem instances.

A Sudoku problem instance contains a number of predefined cell values, clues. The
clues provide the player with the initial information to start determining the solution
to the puzzle.

According to [24] an empty classical grid have 5.472.730.538 possible solutions, if
the puzzle does not have any clues, and symmetry is taken into account.

Rating the Sudoku puzzle

A Sudoku puzzle is usually associated with a difficulty rating, which indicates how
easy or difficult a given puzzle is to solve. The rating of a Sudoku puzzle is however
not a standardized method. The obvious factors in determining a Sudoku puzzles
rating would be the number of clues and the placement of the clues. One may
argue that intuitively a Sudoku with few clues are more difficult that a Sudoku
with many clues. Although this is right in many cases, it is not true for all Sudoku
puzzles. There exists puzzles that have many clues, but which are more difficult
than some puzzles with few clues. Likewise the placement of the clues will give rise
to different difficulties. A Sudoku puzzle with a certain placement of the clues can
be very different in rating, compared to a Sudoku puzzle with the same placement
of clues, but where the values of the clues are different. This concludes that neither
the number of clues nor the placement, is enough to determine the difficulty rating
of a puzzle.

In the Sudoku community a good rating reflects how difficult a puzzle is for a human
to solve. This could be reflected by the number and difficulty of the strategies

30 Sudoku

necessary to solve the puzzle. Recently a puzzle has been developed, known as
Qassim Hamza, which has proven to be extremely difficult to solve, because all
basic solution methods will not advance this puzzle towards a solution. See the
puzzle in figure 5.2.

Figure 5.2: Puzzle known as Qassim Hamza. Very hard puzzle to solve.

The number of clues and their placement, are not useful for determining difficulty,
but instead they are believed to be the main factors in determining if a puzzle
has a unique solution. It is not known what the minimum number of clues are,
to ensure that the puzzle has one unique solution. It is argued in [35] that the
minimum number in a classical Sudoku is 17, but this is not proved. In [24] they
give an example on a puzzle with 17 clues with one solution, but underline that
the minimum number could be even smaller. One might think that a puzzle with
many given clues is likelier to have a unique solution, but this is not necessarily the
case. In [24] they give an example of a puzzle with 29 clues that actually have two
different solution.

An important part of solving a Sudoku puzzles is to keep track of the candidates in
the undetermined cells. In figure 5.3 both the determined values and the candidates
are displayed with respectively large and small font. The candidate values are the
key for using clever strategies that can help solve the puzzle.

5.2 Solution strategy

The strategy for solving a puzzle by hand can be divided into a number of levels.
The first level is the scanning level. This level uses the two strategies Counting in
domains and Cross-hatching, which we call the 0-level strategies. The first strategy
is straight forward. The procedure is to look in each domain, to see whether all but
one has a undetermined value. If such a cell is found, it is obvious what the value

5.2 Solution strategy 31

Figure 5.3: Classical Sudoku grid with clues and candidates.

of the cell should be. The second strategy is also straight forward, but it requires
more searching. In figure 5.4 the approach for this strategy is shown. In the top
right square the green cell must contain a 5, since every other cell in the square
cannot contain a 5, because of the location of a 5 in every row and column, the
square is a part of.

Figure 5.4: The Cross-hatching technique.

Often a Sudoku is not solvable by using only 0-level strategies. Therefore more
advanced strategies have been developed to harder Sudoku puzzles. Some of these
will be explained later.

32 Sudoku

5.3 Sudoku is NP-complete

The Sudoku problem can be expressed with the notation used in 2.1 the following
way:

Let l be the set of all n2× n2 Sudoku grids with a number of clues, with the values
between 1 and n2. Additionally let Q : l → {yes, no} be the problem. For the
answer to be yes to the problem, the following should hold:

Q(x) = yes ↔ the grid x is filled in without violating any constrains

To show that Sudoku is NP-complete, it is necessary first to show that it belongs
to NP. This is fairly easy, since it is possible to verify in polynomial time that a
Sudoku grid is filled correctly, by running through each domain (rows, columns and
squares) to determine if any Sudoku constrains are violated. This take (3× n2)n2,
since the number of domains that should be visited equals 3× n2 and the number
of cells in each domain are n2. This is clearly polynomial.

It is harder to show that it is NP-complete. As mentioned previously it can be done
by a reduction one a problem that is already proven to be NP-complete problem
to Q. It will not be shown here, as it has already be proven in [30].

In [30] it is shown that the problem of solving a Sudoku puzzle on a n2 × n2

grid is a NP-complete problem. This is done by using a reduction on the Latin
Square problem, which has already be proven to be NP-complete cf. [6]. Even
though the Sudoku puzzle is NP-complete the small puzzles are easily solved by
any computer by means of a simple brute-force, backtracking or using some sort
of optimization method as simulated annealing. It is therefore interesting, when
developing a solution method to the Sudoku problem, not only to focus on the small
puzzles, but also experiment on the larger puzzles, as it is here the NP-complete
characteristics really can be seen.

It is important to mention that not all Sudoku puzzles belong to the class of NP-
complete problems. Puzzles that can be solved be use of only 0-level strategies are
polynomial time solvable (see [23]).

Chapter 6

Different approaches to solve
Sudoku

Sudoku has had an enormous public interest due to the immediate attraction of
logic puzzles. Sudoku puzzle enthusiasts have developed numerous strategies and
solution methods for the puzzle. The academic community has also given focus to
the Sudoku problem, as it is a NP-complete problem, which therefore is solvable by
some of the already known solving techniques for NP-complete problems. In this
chapter we try to examine, which approaches that have been used for solving Sudoku
puzzles, both in the academic literature and in the Sudoku enthusiasts community.

6.1 Sudoku representations

When solving a given problem, the first step is to choose a representation for the
problem. It is obvious that a Sudoku puzzle can be represented by a Sudoku puzzle
instance, but the literature also shows that the Sudoku puzzle can be represented,
as both a CSP and a SAT problem.

6.1.1 Basic

The basic representation of a Sudoku puzzle, would be to use the Sudoku puzzle
direct as the representation. In this representation a Sudoku puzzle of order n,
would consists of n4 cells placed in a grid, where i is the row, j is the column and

34 Different approaches to solve Sudoku

k is the square index. The following constraints ensure the Sudoku representation:

• There is a number between 1 and n2 in every cell:

∀i,j(celli,j ∈ {1, .., n2}) (6.1)

• Every row contains the number 1 to n2 once:

∀i

(
(∪∀jcelli,j) = {1, .., n2}) (6.2)

• Every column contains the number 1 to n2 once:

∀j

(
(∪∀icelli,j) = {1, .., n2}) (6.3)

• Every square contains the number 1 to n2 once:

∀k

(
(∪∀i,j∈kcelli,j) = {1, .., n2}) (6.4)

6.1.2 CSP

Sudoku is a CSP problem. CSP problems are mathematical problems, where one
must find states or objects that satisfy a number of constraints or criterias. In
Sudoku, these constrains are the so-called Sudoku constrains that was mentioned
in chapter 5.

There are numerous approaches to solving CSP problems, but only a general outline
of these will be described in context of solving Sudoku puzzles.

Constraint Programming

In Constraint Programming (CP), a model of the problem is created in terms of
variables belonging to the given domains and constraints that must be satisfied.
In CP a solution is found by trying all possible variable values and check if the
constraints are satisfied. Since this leads to a search space of exponential size, a
number of pruning schemes are applied in order to minimize the search space. E.g.
every constraint is associated with a filtering algorithm, which is used repeatedly in
order to filter the domains, thus called domain filtering algorithms. When a domain
filtering algorithm reduces a variable domain, all other domains containing the same
variable updates the variable domain in order to be consistent. This is ensured by
using constraint propagation algorithms. A more thorough explanation of CP and
propagation algorithms, can be found in [32].

In [29] the Sudoku is modeled as a CP problem, and different constraint propagation
algorithms are tried in order to solve the Sudoku puzzles. The focus of the article

6.1 Sudoku representations 35

is to use CP to solve the problem, without using search. This means that the
domain filtering and constraint propagation algorithms should be able to determine
a solution by only assigning unambiguous variable values. The evaluation shows
that CP is able to solve all the presented Sudoku puzzles, without using search.

Integer Programming

In relation to the CP programming, the Sudoku can also be modeled by an Integer
Programming (IP) model. This is shown by [5], but since IP in itself is NP-
complete, it is again necessary to minimize the search space. In IP this is often
done by applying Cutting Planes. The article however, does not elaborate on the
fact that solving a Sudoku puzzle by an IP model, is also NP-complete. Therefore
we will not go into detail about optimizing the IP model in order to minimize the
search space, but just state the fact that IP models also are able to solve Sudoku
puzzles.

Belief Propagation

Another approach, similar to CP, is Belief Propagation (BP) that instead of prop-
agating constraints, propagates probabilities. It is however out of the scope of this
thesis to go into details about BP and applications hereof. It is therefore only noted
that in [12], BP are suggested as an approach to solving Sudoku puzzles. BP is able
to solve the majority of the puzzles presented without search.

6.1.3 SAT

Sudoku can also be expressed as a boolean satisfiability (SAT) problem. In [23] and
[34], Sudoku is encoded and solved as a SAT problem. In this section we give a brief
introduction to a SAT encoding of Sudoku, as it provides an intuitive mathematical
understanding of the structure of the Sudoku constraints.

In [23] the authors presents two SAT encodings of the Sudoku problem. The first
is the minimal encoding, which is sufficient for describing a Sudoku problem. How-
ever, when adding a number of redundant constraints in an extended encoding the
resolution of the encoding is increased.

Below is found a minimal Sudoku encoding, as described in [23]. Here variable sxyz

is assigned true, if the entry in row x and column y has the value z:

36 Different approaches to solve Sudoku

• There is at least one number in each entry:

9∧

x=1

9∧

y=1

9∨

z=1

sxyz (6.5)

• Each number appears at most once in each row:

9∧

y=1

9∧

z=1

8∧

x=1

9∧

i=x+1

(¬sxyz ∨ ¬siyz) (6.6)

• Each number appears at most once in each column:

9∧

x=1

9∧

z=1

8∧

y=1

9∧

i=y+1

(¬sxyz ∨ ¬sxiz) (6.7)

• Each number appears at most once in each 3x3 square:

9∧

z=1

2∧

i=0

2∧

j=0

3∧

x=1

3∧

y=1

3∧

k=y+1

(¬s(3i+x)(3j+y)z ∨ ¬s(3i+x)(3j+k)z) (6.8)

9∧

z=1

2∧

i=0

2∧

j=0

3∧

x=1

3∧

y=1

3∧

k=y+1

3∧

l=1

(¬s(3i+x)(3j+y)z ∨ ¬p(3i+k)(3j+l)z) (6.9)

The constraint 6.8 ensures that each number appears at most once in the rows of
the square, and 6.9 ensures that each number appears at most once in the columns
of the square. Together this ensures that each number appears at most once in the
entire sub-grid for every sub-grid.

This is the minimal encoding of a Sudoku puzzle. Each pre-given value is encoded
as a unit clause, e.g. the unit clause s111 = 1 will denote that the value 1 is given
in the entry (1, 1).

In [23] an extended encoding is also presented. This has constraints that ensures
that:

• There is at most one number in each entry.
• Each number appears at least once in each row.
• Each number appears at least once in each column.
• Each number appears at least once in each 3x3 sub-grid.

This gives a number of redundant constraints, but during the evaluation of the
different encodings, it is noticed that the extended encoding yields the best results.
This is probably due to the increased resolution of the encoding.

6.2 Solution strategies 37

When solving a SAT problem the a number of inference techniques are usually used
in order to filter and minimize the search space. Sometimes this is done by adding
more clauses, and or eliminating variables from clauses. A number of inference
techniques are presented in [23], where the most well-known is unit propagation.
Unit propagation is based on the unit clause rule, which means that whenever a
unit clause s is identified all other clauses are updated after the following rules:

• Every clause containing s is removed.
• In every clause that contains ¬s, the literal is deleted.

This approach, to minimize the search space, is very similar to the ones used in
both constraint and belief propagation for CSP problems.

In [23] all the presented puzzles can be solved with the use of inference techniques.

6.2 Solution strategies

When solving a Sudoku problem there are different approaches. As mentioned
above the representation often gives rise to a number of techniques for minimizing
the search space. If the Sudoku puzzle is solvable by using only logical reasoning,
then these techniques are often sufficient. On the other hand, if no obvious logical
reasoning or deductions can be performed, the Sudoku can still be solved using
either search or meta-heuristics. This section describes the common techniques,
which the literature describes for solving Sudoku. Common for all these techniques
are that they all use some sort of direct representation of the Sudoku problem.

6.2.1 Search

Brute-force

When given a Sudoku puzzle, the brute force approach enumerates all the possible
permutations of values in the empty cells of the Sudoku puzzle. A candidate so-
lution is then created, when all cells have a value. If the candidate solution does
not violates the Sudoku constraints, a solution is found, otherwise the next per-
mutations of values are tried. It is obvious, that this approach of enumerating all
permutations, is computationally expensive. One may notice that a violation of the
Sudoku constraints can occur early in the creation of the candidate solution, hence
making the rest of the creation a waste of resources. The brute-force approach is
therefore often combined with a simple backtracking scheme: Instead of creating
the entire candidate solution, every decision towards the candidate solution is eval-

38 Different approaches to solve Sudoku

uated against the Sudoku constraints, and if it violates the constraints the decision
is discarded, and the next decision is tried.

A simple recursive brute-force depth first search can then be used to solve a Sudoku.
When presented a Sudoku, it finds a solution using the recursive procedure presented
in Algorithm 1.

Algorithm 1 BFS(puzzle)
if puzzle has empty cells then

r, c = row and column of next empty cell
else

return true {Solution path fully expanded}
end if
for i = 1 to i < n2 do

puzzle(r, c) ⇐ i
if the assignment doesn’t violate any constraints then

if BFS(puzzle) is true then
return true

end if
end if

end for
puzzle(r, c) ⇐ empty
return false

The procedure works by placing the value 1 in the first empty cell and checks if its
violates any constraints. If there are no violations, then the algorithm advances to
the next cell (expanding the search tree), and places the value 1 in that cell. If there
is a violation in the next value, it tries a new value until all values have been tried.
This is then repeated for every empty cell. The algorithm expands recursively, until
the value of the last empty cell is discovered.

One of the advantaged by using this method is that a solution is guaranteed, if there
exists one. Since it is a search, the solution time is not necessarily dependent of
the difficulty of the puzzle, since these are often based on logical strategies needed
in order to solve the puzzle. However, the solution time can be exponential to the
order of n4. An example of a Sudoku grid that causes a long execution time, can
be seen in figure 6.1.

Solving this puzzle by brute force requires 641.580.843 iterations ([35]), because it
only has 17 clues, and on average has 5 value choices in every empty cell. This
means that the number of choices in the worst case is 564 = 5 × 1044, which is
enormous. However the search minimizes the search tree by checking for violations
of the constraints in each iteration, so the actual worst case running time is much
smaller, but still exponential.

6.2 Solution strategies 39

Figure 6.1: The brute force algorithm used on a grid that causes a long execution
time for the algorithm.

Backtracking

Although the described brute-force approach is a variant of the backtrack search,
backtracking is often a further refinement of the brute-force depth first search. The
refinement often consists of heuristic choices that ensures a better traversal of the
nodes in the search tree. An good idea would be to start placing values in the empty
cell with fewest candidate values, which increases the possibility of making the right
decision in creating the solution.

6.2.2 Meta-heuristics

Meta-heuristics have proven useful when solvingNP-complete problems. It is there-
fore natural to explore the possibility that meta-heuristics are also suitable for solv-
ing Sudoku puzzles. In the literature we have only found one example of the use
of meta-heuristics to solve Sudoku. Although many meta-heuristics such as Tabu
Search, Ant Colony Optimization and Genetic Algorithms probably could be used
on the Sudoku problem, it is beyond the scope of this thesis to go further into the
detail with this. In the following, it will be described, how [20] uses Simulated
Annealing to solve the Sudoku problem.

Simulated Annealing

Simulated Annealing is often used in optimization of combinatorial problems. Sim-
ulated Annealing starts with a candidate solution and an objective function. It

40 Different approaches to solve Sudoku

then tries to minimize the objective function by iteratively changing the candidate
solution. It accepts changes that decreases the objective function, but also some
changes that increases the objective function in order to avoid being trapped in
local minima/optima. The choices are accepted with a probability dependent of
the change and a factor called the temperature of the system. The temperature
decreases as the computation proceeds, making the variation of the changes lesser
and lesser as the temperature approaches zero. For a more thorough explanation of
Simulated Annealing see [17] and [18].

In [20] the general idea is to construct a random candidate solution, which then is
modified iteratively, until a valid solution is found. In constructing the candidate
solution a Sudoku is represented by a grid of cells. A value of a cell in the ith row
and jth column is denoted by celli,j . If a cell is already given a value, in the problem
instance, that cell is fixed, and every empty cell is non-fixed. The non-fixed cells are
then assigned random values in a manner that ensures that the square constraints
of the puzzle are satisfied. The remaining constraints for the rows and columns are
then used as the basis for the objective function. The objective function is then the
sum of every violation of the row and column constraints. A solved Sudoku puzzle
is therefore a puzzle where the objective function is equal to zero.

In order to ensure that the square constraints remains satisfied, the random mod-
ifications of the candidate solution only exchanges the value of two non-fixed cells
inside the same square. At each modification the change in the objective function
is calculated, and based on that value and the temperature of the system, the mod-
ification is either accepted or discarded. By making modifications iteratively the
Sudoku converges towards a solution, but in contrast to most optimization prob-
lems, we are only interested in the solution, if the objective function reaches zero.
It is possible that the system gets trapped in a local minima/optima late in the
process, where the temperature is near zero, making it difficult to escape. There-
fore the algorithm is not complete, as it does not guarantee a solution. In order to
fix this, a mechanism is added. When trapped in a local minima/optima, that can
not be escaped over a fixed number of iterations, the algorithm is re-started with
a new candidate solution. This mechanism is called a re-heat, and ensures that
the algorithm is complete. The system presented in [20] is capable of solving the
presented Sudoku puzzles of order 3 and 4, using only few re-heats.

6.2.3 Reasoning

When solving Sudoku puzzles by hand one of the most used approaches is logical
reasoning. That is, determining values of cells based solely on the already present
values in the Sudoku puzzle. This is a continuation of the solution strategy explained
in the section 5.2. As explained the next levels are more advanced, than the first
level.

6.2 Solution strategies 41

In contrast to the 0-level strategies, described earlier, which only looked at proper-
ties in a single cell, the next level of strategies (1-level) evaluate sets of cells in order
to determine some global properties, which can result in a logical deduction. These
strategies consists of Naked Pairs, Naked Triples, Hidden Pairs, Hidden Triples and
Intersection Removal (see www.scanraid.com). The 1-level strategies differ from the
0-level strategies in another important aspect, namely that they do not necessarily
determine a cell value, but instead make use of simple logic to reduce the number
of candidates in the cells. It is therefore important, after having used the 1-level
strategies successfully, to step back and use the 0-level strategies once again in case
the 1-level strategies indirectly revealed a step towards the solution.

Naked Pairs and Triples

Naked pairs is a set of two cells, belonging to the same domain, where the number
of candidates in the two cells are maximum two, and the candidates share the same
values. If a set of cells with this property exits, it can be logically concluded that
the two candidate values must be placed in either of the two cells. It is therefore
possible to eliminate the candidates present in the naked cells in every other cell
belonging to the same domain. If the naked cells share two domains, e.g. row/square
or column/square, it is possible to eliminate the candidates present in the common
domains. In figure 6.2 the Naked Pairs strategy is shown. The two cells A2 and A8
is the naked pair. It is clear that these two cells only can contain the candidates
1 and 6, hence all other candidates with value 1 and 6 can be removed in the row
(cell A3, A4, A5, A6 and A9).

Figure 6.2: Naked Pair strategy

This strategy can then be expanded to triples, i.e. a set of three cells. A Naked
Triple is therefore a set of three cells, all belonging to the same domain, where the
number of candidates in the three cells is maximum three, and the candidates share
the same values. An example could be three cells with the following candidates:
(1 2 3), (2 3) and (1 3). It can therefore again be logically concluded that the three
candidate values must be placed in either of the three cells, hence be eliminated in
every other cell in the common domains.

It can be seen that the Naked strategies can be extended to sets of size four up to
n2 − 1. It is therefore from here on regarded as a single strategy called Naked Sets.
The Naked Sets strategy can therefore be generalized as:

42 Different approaches to solve Sudoku

Naked Set: If C is the set of cells in a given domain, a Naked set is a
subset, C ′ of C, with cardinality n, where the following holds:

• If S is the union of all the candidates present in C ′, S must have
cardinality n.

• The candidates present in S can be eliminated from the cells be-
longing to the set C \ C ′.

It is obvious to see how a Naked Set is used to eliminate values, but it is also
interesting to show its equivalence in another representation. For this we have
chosen to show, the equivalent inference technique in a SAT representation.

Mathematical definition

The above description of the different levels is a very illustrative way to describe
the approach, but it can also be described in a mathematical fashion in terms of
boolean logic.

The elimination of candidates is equivalent to a removal of variables in the SAT
representation, causing the constraints to be simplified.

To help show the Naked Set inference, the pseudo Sudoku in figure 6.3 is used for the
SAT representation. For simplicity the pseudo Sudoku only consists of a single row
with five cells. It is imagined that the cells, in the presented row, is affected by other
domains, e.g. row and column domains, yielding a restriction of the candidates as
shown in figure 6.3. It is seen that there is a Naked Set containing the two cells
i = 1 and i = 3.

Figure 6.3: Pseudo Sudoku with candidates shown

The notation in figure 6.3 contains a lot of irrelevant information, when representing
it as a SAT problem, as the candidate notation cannot be directly transferred to
the SAT problem. Instead we introduce the notation of negative candidates. A
negative candidate is defined as a value that cannot be placed in a given cell, and is
denoted with a bar over the candidate. The pseudo Sudoku can then be expressed
as in figure 6.4.

The Sudoku constraints in this simple example, are defined in the following way:

6.2 Solution strategies 43

Figure 6.4: Pseudo Sudoku with negative candidates shown

5∧

i=1

5∨

j=1

sij (6.10)

5∧

j=1

4∧

i=1

5∧

k=i+1

(¬sij ∨ ¬skj) (6.11)

The boolean variable sij is true, if the cell at position i has the value j. The
constraint 6.10 states that each cell should contain one value between 1 and 5. The
constraint 6.11 ensures that each number appears at most once in the Sudoku row.

From the figure 6.4 it is obvious that the information in the Naked Set, can be
expressed directly by the negative candidates:

¬s11 ∧ ¬s13 ∧ ¬s14 ∧ ¬s31 ∧ ¬s33 ∧ ¬s34 (6.12)

The first three variables belong to the first cell and the last three variables to the
third cell. As we only observe the pseudo Sudoku, we assume that 6.12 is obtained
by influences from other domains. E.g. by unit propagation if a 1 was sat in a
domain containing the first cell. As s11 must be false, ¬s11 is true, and so forth.

If the expression 6.10 is written for the two Naked Set cells, and expression 6.12 is
used, it produces the following expression:

s11 ∨ s12 ∨ s13 ∨ s14 ∨ s15 Ã s12 ∨ s15

s31 ∨ s32 ∨ s33 ∨ s34 ∨ s35 Ã s32 ∨ s35
(6.13)

The variables contained in expression 6.12 can be ignored, since they all must be
false for the expression to evaluate to true. The expression obtained in 6.13 is the
basis of the Naked Set strategy:

(s12 ∨ s15) ∧ (s32 ∨ s35) (6.14)

44 Different approaches to solve Sudoku

The conjunction 6.14 is then combined with 6.11 for j = 2 and j = 5. This gives
the following expression. For simplicity only the clauses which contain the variables
¬s12,¬s15,¬s32 and ¬s35 are observed initially:

(¬s12 ∨ ¬s32) ∧ (¬s15 ∨ ¬s35) ∧ (s12 ∨ s15) ∧ (s32 ∨ s35)

Using the distributive law the following expression is obtained:
(
(¬s15 ∨ ¬s35) ∧ (¬s12 ∨ s15) ∧ (s32 ∨ s35)

)
∨

(
(¬s15 ∨ ¬s35) ∧ (s32 ∨ s35) ∧ (s12 ∨ s15) ∧ ¬s32

)

With the absorption-, commutative- and associative law the expression can be re-
duced to: (

s15 ∧ s32 ∧ ¬s12 ∧ ¬s35

)
∨

(
¬s15 ∧ ¬s32 ∧ s12 ∧ s35

)
(6.15)

This states exactly the Naked Set inference, i.e. that S(1) = 5 and S(3) = 2 or
S(1) = 2 and S(3) = 5.

The remainder of 6.11 for j = 2 is therefore:

(¬s12 ∨ ¬s22)︸ ︷︷ ︸
a

∧ (¬s12 ∨ ¬s42)︸ ︷︷ ︸
b

∧ (¬s12 ∨ ¬s52)︸ ︷︷ ︸
c

∧

(¬s22 ∨ ¬s32)︸ ︷︷ ︸
a

∧(¬s22 ∨ ¬s42) ∧ (6.16)

(¬s22 ∨ ¬s52) ∧ (¬s32 ∨ ¬s42)︸ ︷︷ ︸
b

∧ (¬s32 ∨ ¬s52)︸ ︷︷ ︸
c

∧(¬s42 ∨ ¬s52)

The clauses marked with a are then combined with 6.15, which using the distributive
law yields:

¬s22 ∧
((

s15 ∧ s32 ∧ ¬s12 ∧ ¬s35

)
∨

(
¬s15 ∧ ¬s32 ∧ s12 ∧ s35

))
(6.17)

It is now possible in the same way to combine the clauses marked with b and c with
6.17 yielding:

¬s22 ∧ ¬s42 ∧ ¬s52 ∧ (6.18)((
s15 ∧ s32 ∧ ¬s12 ∧ ¬s35

)
∨

(
¬s15 ∧ ¬s32 ∧ s12 ∧ s35

))

6.2 Solution strategies 45

It is then obvious, when using the absorption law that the unmarked clauses in 6.16
can be eliminated, leaving back equation 6.18. This reduction is also performed for
j = 5, giving the complete constraint expression for j = 2 and j = 5:

¬s22 ∧ ¬s42 ∧ ¬s52 ∧ ¬s25 ∧ ¬s45 ∧ ¬s55∧ (6.19)((
s15 ∧ s32 ∧ ¬s12 ∧ ¬s35

)
∨

(
¬s15 ∧ ¬s32 ∧ s12 ∧ s35

))

This is the conclusion of the Naked Set, which states that S(2) 6= 2, S(2) 6= 5,
S(4) 6= 2, S(4) 6= 5, S(5) 6= 2 and S(5) 6= 5. This proves that the Naked Set
inference is able to determine the conclusion in 6.19. This information is also showed
in figure 6.5.

Figure 6.5: Naked Set conclusion

Hidden Pairs and Triples

The principles in the Hidden Pairs strategy are similar to the Naked Sets. In Hidden
Pairs the objective is also to determine a set of cells that must contain a certain
set of candidates, hence revealing possible eliminations. A Hidden Pair is a set of
two cells, belonging to the same domain, where two of the candidates present in the
cells only appear in those cells in the domain.

The difference is that the set of candidates are hidden amongst other candidates,
whereas they before where the sets of all candidates present in the Naked Set cells.
The effect of this strategy is therefore different, as the elimination takes place in
the cells in the chosen set. An example of a Hidden Pair is shown in figure 6.6. It
is seen that the only two cells in the domain that have the candidates 3 and 5 are
cell A4 and A5. Hence all other candidates in A4 and A5 can be eliminated.

As with Naked Pairs, this strategy can also be extended to sets of cells with size
three and four up to n2−1. It is therefore from here on regarded as a single strategy
called Hidden Sets. The Hidden Sets strategy can be generalized as:

Hidden Set: If C is the set of cells in a given domain, a Hidden Set is
a subset C ′ of C with cardinality n, where the following holds:

46 Different approaches to solve Sudoku

Figure 6.6: Hidden Pair

• If S is the union of all the candidates present in C ′, there exits a
subset S′ with cardinality n, for which the candidates in S′ only
exists in the cells in C ′ in the given domain.

• The candidates belonging to S \S′ can be eliminated from the cells
belonging to C ′.

As with the Naked Sets, it is possible to show the inference of the Hidden Sets
mathematically, however as they are very similar, this is left up to the reader.

It is important to notice that there exists a strong connection between the Naked and
Hidden Set strategies. E.g. a Hidden Set becomes a Naked Set, when eliminating
the surplus candidates. In figure 6.6 it is also seen that there is a Naked Set with
cardinality four in the cells A1, A2, A6 and A7. The Naked Set yields the same
eliminations as the Hidden Set. This means that it is unimportant which of the
two strategies that are used, the result is the same. This dualism will be explained
more precisely in the following.

Duality

As mentioned above, there exits a duality between the Naked and Hidden strategy.
To explain this duality the simple pseudo Sudoku from earlier is used, which can be
seen in figure 6.7 and figure 6.8. The pseudo Sudoku consist of only a single row,
which should contain the values from 1 to 5. In order to help the visualization of
the duality, the concept of negative candidates is used again. A negative candidate
is a value that is not a option in a given cell.

In the figure 6.7a top, it is seen that the candidate values 1, 3 and 4 are not possible
in the cells marked with grey. In figure 6.7b top, it is obvious that there is a Naked
Set in cell 1 and 3, with the candidates 2 and 5. In figure 6.7a and b bottom,
the conclusions of the Naked Set are added to the Sudoku. It is seen that when
using the negative candidates, information is added to the Sudoku, but when using
positive candidates information is removed.

In figure 6.8 the Hidden strategy is used to find a hidden triple in exactly the same
complementary cells to the the Naked Set. The duality with the Naked Set is seen

6.2 Solution strategies 47

(a) Cells containing the non optional candi-
dates

(b) Cells containing candidates

Figure 6.7: Grids revealing naked candidates.

(a) Cells containing the non optional candi-
dates

(b) Cells containing candidates

Figure 6.8: Grids revealing hidden candidates.

in figure 6.8a, which shows that the cells affected by the conclusion of the Hidden
Set, is exactly the same cells from the Naked Set, and in both the negative and
positive candidate notation the conclusion obtained is the same. That is, if a Naked
Set strategy is used, it is always possible also to use the Hidden Set strategy, to get
the same result.

Intersection Removal

The last strategy 1-level strategy is the Intersection Removal strategy. The Intersec-
tion Removal strategy states that if a set of cells share two domains, i.e. row/square
or column/square, and one of the candidates present in the cells are unique within
one of the domains, the same candidate can be eliminated from the other domain.

The four types of Intersection Removal are therefore:

48 Different approaches to solve Sudoku

Intersection type 1 A candidate with value n is unique in a square - If the cells
containing the candidate are aligned on a row, n can be removed from the
rest of the row.

Intersection type 2 A candidate with value n is unique in a square - If the cells
containing the candidate are aligned on a column, n can be removed from the
rest of the column

Intersection type 3 A candidate with value n is unique in a row - If the cells
containing the candidate are in the same square, n can be removed from the
rest of the square.

Intersection type 4 A candidate with value n is unique in a column - If the cells
containing the candidate are in the same square, n can be removed from the
rest of the square.

In figure 6.9 the strategy is illustrated. In the cell A4 and A5 there is a intersection
of type 3 with the candidate 2, which means that it can be eliminated in all other
cells in the grey square, i.e. cell C5. In cell C7 and C8 another intersection of type
1 yields the same elimination in cell C5.

Figure 6.9: The Intersection Removal strategy.

The Intersection Removal strategy can be generalized as:

Intersection Removal: If C1 is the set of cells in a given domain, and
C2 is the set of cells in another domain, a Intersection Set C ′ is the
intersection of C1 and C2 with cardinality n, where the following holds:

• If S is the union of all the candidates present in C ′, there exits a
subset S′, for which the candidates in S′ only exists in the cells in
either C1 or C2.

• If ∃cell ∈ C1 with a candidate ∈ S′ the candidate can be elimi-
nated from the cells belonging to C2 \ C ′.

• Else if ∃cell ∈ C2 with a candidate ∈ S′ the candidate can be
eliminated from the cells belonging to C1 \ C ′.

6.2 Solution strategies 49

Advanced strategies

In this section we have only covered the most basic strategies. In the Sudoku
community various more advanced strategies have been developed. All describing
possible logic conclusions on the basis of advanced connections made on the the cur-
rent information contained in the Sudoku. They do not have any obvious common
characteristics, but they all use more advanced reasoning to eliminate candidates
than the described strategies. The X-Wing strategy is an example of such an ad-
vanced strategy. It can be used when a candidate appears exactly twice in two
different rows, and the four candidates lie in the same two columns. This produces
that all other candidates with this value that lie in the columns can be eliminated.

Figure 6.10: The X-Wing strategy.

In figure 6.10 the X-Wing strategy is shown. The four yellow cells marked with the
letters A, B, C and D tell that this is a X-Wing pattern with the value 6. This is
due to the their mutual location and because they are the only cells that can contain
6 in that row where they are located. From this it is possible conclude that if A
turns out to be a 6, then B cannot be a 6, and vice versa. Likewise if C turns out to
be a 6 then D cannot be, and vice versa. This again means that if A has the value
6 both C and B cannot have it, but then D must also have the value. Therefore 6
must be present at AD or BC then any other candidates with the value 6 along the
edge of the rectangle the four cells stretch are redundant. The candidates marked
with the red square are the eliminated candidates.

As mention before there exits many advanced strategies, but we will not go trough
them here. To get a insight into the advanced strategies see www.scanraid.com or
www.setbb.com.

50 Different approaches to solve Sudoku

Chapter 7

Sudoku solver

In this chapter we try to utilize our experiences from the previous chapters in
designing a multi-agent Sudoku solver. The chapter consists of a general description
of the system design, the most important implementation details and numerous tests
of the system, both individually and against others solvers.

7.1 Requirements

In making a satisfactory solver, a few goals is defined that should be met:

• It should be able to solve a Sudoku of sizes n2 × n2 (order n), with focus on
the sizes 9× 9 (order 3) and 16× 16 (order 4).

• It should try to solve any Sudoku without search (guessing).

• It should use some of the human strategies in determining a solution.

The focus is going to be on order 3 and 4 puzzles, since these are the common
Sudoku sizes, which is also comprehensible for a human. Larger puzzles are difficult
to obtain, as the Sudoku community has had focus on the human solvable puzzles.
Additionally the aim is to make the solution progress of the Sudoku solver similar to
the way humans attack the problem. That is, trying to avoid using search (guessing)
to solve the problem, but instead use the available strategies.

52 Sudoku solver

7.2 Analysis

The goal is to use the experiences learned previous to design a Sudoku solver.
Since the main focus has been on how multi-agent systems can solve NP-complete
problems, it is obvious that we should try to design a MAS, which is capable of
solving a Sudoku.

The first consideration is therefore, which of the multi-agent design paradigms
should be used in making a satisfying solver. The problem it self gives rise to a
natural partition of the problem, as Sudoku consists of multiple domains (rows,
columns and squares), which are connected in a complex manner. E.g in an order
n Sudoku each row coincides with n2 columns and n squares. That is, a change in
a cell will have impact on three domains, namely a row, column and square. This
change may propagate new changes in three domains, which again may propagate
changes in other domains, thereby expressing a complex chain of connections be-
tween the domains. To manage this interaction it could be advantageous to regard
the different domains as agents, where each Sudoku domain is capable of detecting
obvious steps towards a solution, within its own domain. This would be very similar
to the agent abstraction in section 3.4, with the entities at play being the Sudoku
domains.

There are a number of considerations to be made, before the MAS is implemented.
The domains should be managed, so the individual state changes are performed in
a synchronized manner. The easiest way to achieve this, is to centralize the control
of the domains to a coordinator agent. This is also in line with the system proposed
in section 3.4. This means that if a cell contains a single candidate, it is clear that
the candidate must be placed inside the cell, and then the domain would suggest
this state change to the coordinator agent, who would coordinate the proposed state
changes.

Our knowledge of Sudoku puzzles show that most puzzles cannot be solved com-
pletely by only looking at simple characteristics of the domains. More advanced
observations and strategies are necessary to detect possible state changes towards a
global solution. Therefore the MAS should use heuristics based on the previous dis-
cussed Sudoku strategies, in order to determine possible state changes. The chosen
strategies are therefore:

Naked Set determines if candidates can be eliminated outside a given set on the
basis of the candidates in the set. See 6.2.3 for an explanation.

Hidden Set determines if candidates can be eliminated inside a given set on the
basis of the connection of the candidates in the cells. See 6.2.3 for an expla-
nation.

7.3 Design 53

Intersection Set determines if candidates can be eliminated outside a given set
on the basis of the connection of the candidates in the set. See 6.2.3 for an
explanation.

In order to ensure scalability of the system, an agent implementation of each strategy
is appropriate. This also shares some characteristics with the approaches used in
section 3.2. Here each strategy agent can be regarded as a part of a hybrid solution
strategy. This approach also makes the system flexible, as the optimal configuration
of the solution strategies is not known before hand.

The goal of the system is to solve the Sudoku puzzles without search (guessing).
However, the strategies provided might show insufficient, when trying to solve a Su-
doku. Since we wish to be able to solve all Sudoku puzzles, a last resort mechanism
should also be provided by the system. This mechanism should use search in order
to determine the solution to the puzzle. Since Sudoku also is a SAT problem, as
described earlier, an obvious choice would be to use some of the same techniques
used in SAT solvers. SAT solvers are often based on a backtracking search, which
also could prove efficient in finding solutions to Sudoku puzzles, since the Sudoku
constraints also induce a propagation scheme, which minimizes the overall search
space.

To summarize, this means that the system is a hybrid between the algorithms
mentioned in section 3.2 and 3.4. It is similar to the approach in section 3.4 in the
aspect of the partition of the domains between the agents (domain agents). And
similar to the approaches in section 3.2, because each solution strategy is controlled
by an agent (strategy agents), which can be compared with the division of heuristics
between agents.

7.3 Design

In this section we concretize the above considerations in designing the system.

7.3.1 The overall system

The system should be able to contain different agent types. Furthermore it should
facilitate communication between the agents in an appropriate manner. One of
the common approaches, when handling agent communications, is to use the FIPA
Agent Communication Language (ACL) [36]. Finally, the system should also be
able to register and manage the state of the puzzle. To represent the puzzle a direct

54 Sudoku solver

representation is chosen. This gives the possibility of representing each cell as an
entity of the puzzle.

The functionality of the system should be handled by the different agents. Therefore
the system consists of three types as descriped previously. The three types are:

Domain agent which is responsible for a domain in the Sudoku puzzle. Its main
task is to ensure that the domain constraint is satisfied. Furthermore the
domain agent has the responsibility to inform the coordinator agent about
possible steps, it can take towards a solution of the puzzle (solution steps).
The two possible solution steps, which the agent should recognize, is:

• A cell, where the state of the domain results in a value that is unambigu-
ous (defined as a value solution step):

– A cell containing only one possible candidate, indicating that the
candidate must be placed inside this cell. This is also equivalent to
a Naked Set with cardinality 1.

– A candidate which can only be placed inside a single cell in the
domain. This is equivalent to a Hidden Set with cardinality 1.

When the domain agent suggests possible solution steps, it should use
the FIPA ACL performative Propose.

• If a value has been sat in one of its cells, it should suggest to eliminate the
candidate from every other cell in the domain (defined as an elimination
solution step).

Strategy agent which is responsible for a solution strategy heuristic. Its task is
to use its strategy to suggest possible solution steps to the coordinator agent.
The steps towards a solution, proposed by strategy agents, will always be
elimination solution steps.

Coordinator agent which maintains the state of the puzzle cell entities. It should
also manage the progress of the solution, by cooperation between the domain
and strategy agents.

The design of the three agent types will be covered in the following.

7.3.2 Coordinator Agent

The role of the coordinator agents role is to manage the solution and the state of
the puzzle. Initially, it should assign the given values to the corresponding puzzle
cells. Thereafter it executes the suggested solution steps. If the agent does not have
a possible solution step, it must first try to request one from the predefined strat-
egy agents. This should be done by a message using the FIPA ACL performative

7.3 Design 55

Request. If the puzzle is not solvable by the implemented strategies, the agent must
still be able to solve the Sudoku. Therefore it should perform a backtrack search.
The backtrack search follows the procedure:

1. Choose a cell, where the number of candidates are minimal.

2. Save this cell as the decision basis, which is saved on the decision stack.

3. Try the next candidate (decision) in the decision basis, starting with the first
candidate.

4. Let the system proceed as normal, by letting the domain agents and strategy
agents suggest possible solutions. While doing this, record the implications
(solution steps) for this decision basis.

5. If an agent detects a conflict, e.g. a value has already been used in a domain,
or a cell in a domain has no possible candidates, the coordinator agent undoes
all the implications recorded. If the current decision basis still have untried
candidates jump to step 3, otherwise continue to step 6. If the system solves
the puzzle, stop.

6. The current decision basis is discarded, and

• if the decision stack is non-empty the previous decision basis is popped
from the decision stack. If the decision basis has untried candidates jump
to step 3, otherwise continue to step 6.

• else if the decision stack is empty, then no solution can be found to the
given puzzle.

The worst-case running time of the procedure is exponential, since it uses a back-
track search, which is a refinement of the brute force search explained earlier in
section 6.2.1. However, the ensuring of the Sudoku constraints minimizes the search
space.

The coordinator agent should also be responsible for determining, if the Sudoku has
been successfully solved, and should notify interested listeners that a solution was
found.

7.3.3 Strategy Agents

The strategies used should be implemented as separate agents. This ensures scalabil-
ity and flexibility, when later determining the optimal configuration and cooperation
between the strategies. The strategy agents should be equivalent in functionality,

56 Sudoku solver

so that they operate in the same manner, but features different ways to interpret
the puzzle in terms of possible solution steps. Therefore they should be able to
interact with the other agents, in order to acquire the necessary information for
their strategies. When determining possible solution steps, they should be able to
pass this on to the coordinator agent. In the following sections the separate strategy
agents will be described.

Naked Agent

The Naked Set strategy bases its elimination on knowledge about the number of
candidates inside a set of cells, and the value of these candidates. Therefore when
the Naked Set agent is requested to perform a search1 for a Naked Set, it should
search through a given set of cells and determine, if they contain a Naked Set. It
should not search the entire puzzle at once, but instead search small parts of the
puzzle. Because the search is divided, it is possible to ensure that the agent only
searches the parts of the puzzle that are relevant. The division of the puzzle into
domain agents comes in handy at this point, as the strategy agent can request
the relevant domain agents for a list of cells, in which to search. In order to avoid
requesting the same domain multiple times, the agent should only request cells from
domains that it has not searched before, or domains that have changed since the
last time it ’visited’.

Given a list of cells, the agent should search the cells following the recursive proce-
dure shown in Algorithm 2, with the following parameters:

cell is the cell that is examined, to determine if it is contained in a Naked Set.
When the procedure first is called, this is chosen as a cell with a minimum
number of candidates.

neighbours is the neighbour cells. The neighbour cells are the remaining cells, in
which to search for a Naked Set.

choices is the candidates in the Naked Set. When the procedure is first called this
is equal to the candidates of the starting cell.

length is the number of cells in the Naked Set

maxlength is the limit size of the Naked Set.

1Note that we use the term search in to different interpretations. When solving a Sudoku we
wish to avoid using trial and error, also called guessing or search. E.g. the last resort backtrack
procedure is a search, which is based on trial and error. However, when using the word search
in the aspect of strategies, it means searching the entire puzzle domain for an unambiguous step
towards a global solution.

7.3 Design 57

Algorithm 2 NakedSetSearch(cell, neighbours, choices, length, maxlength)
{length is the number of cells in the set}
{Check if we have n cells with only n possible candidates, meaning that we are
at the endpoint of a set of naked cells}
if length = count(choices) then

return MAKE-SET(cell)
end if
while count(neighbours) > 0 do

neighbour ⇐ first(neighbours) {Get the first cell in neighbours}
if common(neighbour, choices) > 0 AND length < maxlength then
{Determine the candidates which are different}
extra ⇐ different(neighbour, choices)
choices′ ⇐ choices + extra
neighbours′ ⇐ neighbours− neighbour
nakedset ⇐

NakedSetSearch(neighbour, neighbours′,choices′,length+1,maxlength)
if nakedset is not empty then

return UNION(nakedset,MAKE-SET(cell))
end if

end if
remove neighbour from neighbours

end while
return MAKE-SET(empty) {Nothing was found}

58 Sudoku solver

The procedure determines if a Naked Set exists in a given list of cells. To illustrate
the search procedure, consider the following example. Given the following list of
cells, where X denotes the cell and [x,y,z] denotes the candidates belonging to the
cell:

A[2,3], B[1,2,3], C[4,5], D[1,3], E[1,4,5]

A cell with a minimum number of candidates is chosen, as the possible starting
point of a Naked Set. In this example cell A, C or D could be chosen. Lets chose
A, and call the procedure with the following parameters:

NakedSetSearch(A, {B, C, D, E}, {2,3}, 1, 5)

The procedure first checks if the length is equal to the number of choices. Here there
are two choices and only one possible cell in the set, so the procedure continues to
the while-loop. The first neighbour, B, is then selected, and it is seen that B and
A have two candidates in common (candidates 2 and 3). Thereafter the candidates
that are different, is added to the possible choices and the neighbour is removed
from the neighbour cells. The procedure is then called recursively:

NakedSetSearch(B, {C, D, E}, {1, 2, 3}, 2, 5)

The procedure again checks if the length is equal to the number of choices. This
is still not the case. The next neighbour, C, is then examined, and it is seen that
it has no candidates in common with cell A and B. The neighbour is discarded
and the next neighbour, D, is considered. Since the candidates in D is already
contained in the choices, D is removed from the neighbours and the procedure is
called recursively:

NakedSetSearch(D, {E}, {1, 2, 3}, 3, 5)

The procedure checks if the length is equal to the number of choices, which this time
is the case. This means that there exists 3 cells that share 3 common candidates,
hence revealing a Naked Set. The procedure therefore starts creating the Naked Set,
by making a set containing the cell D, and when returning the set, it is expanded
with the other cells in the Naked Set. Finally, the procedure will return a Naked
Set containing the cells A, B and D.

The search for a Naked Set on an input of length n is a O(n3) operation. In the
worst-case the procedure needs to compare the candidates in every cell with every

7.3 Design 59

other cell, but in each recursion a cell is removed yielding:
n∑

k=1

(k − 1)n =
1
2
n3 − 1

2
n2 ≈ O(n3)

This is however only the worst case running time. In order to ensure a reasonable
running time, the agent should only search for Naked Sets of length 1

2n. This is due
to the fact that the Naked and Hidden Set strategies are dual, hence a Naked Sets,
with cardinality larger than 1

2n, could also be determined by a Hidden Set, with
cardinality less or equal to 1

2n. It is also important to mention that a search in the
entire puzzle yields a n times O(n3) operation. This is the case for all the strategy
agents.

If the agent determines that a Naked Set exits, the agent should inform the coordi-
nator agent about the possible steps towards a solution. This should be done using
the FIPA ACL performatives Propose. If no set is found in the part of the puzzle
searched the agent should continue to another relevant part. If no such part exists,
it should inform the coordinator agent that it is refusing to find a Naked Set, taking
advantage of the FIPA ACL performative Refuse.

Hidden Agent

The hidden agent should be similar to the naked agent. Therefore the considerations
about the design will be briefly covered. The difference between the hidden and
naked agent, is the strategy that they use. The hidden agent tries to determine
Hidden Sets and in doing so, it requires a different input than the naked agent.
Instead of looking on cells and candidates, it should consider the connection of
candidates in different cells. A connection of candidates is defined as a unique
chain, e.g. if the value 1 can only be placed in cell A, B, C and D, they form a
unique chain of value 1 in the considered domain. The hidden agent therefore uses
unique chains, as its search data instead of cells. However, the search procedure is
equivalent to the one of the naked agent. Starting with a unique chain with few
cells, it considers the neighbouring chains and tries to build a set of unique chains,
which represents a Hidden Set. Since the search procedure is equivalent to the
naked agent, the running time is also the same. The duality between the two agents
is also a factor in the hidden agent, and therefore it only considers unique chains of
length 1

2n.

Intersection Agent

The intersection agent uses a slightly different strategy, than the previous two
agents. In order to determine a Intersection Set, the agent needs to know the

60 Sudoku solver

unique chains within a domain, and thereafter determine if any of the unique chains
also share a second domain. As explained earlier, the Intersection Set always is a in-
tersection between a square domain, and either a row or column domain. Therefore
the relevant parts to search in this agent, is the square domains, since all intersec-
tion sets are also within a square domain. The agent should therefore acquire the
unique chains from a relevant square domain, and determine if one of the chains
also is part of a row or column domain. This can be determined fairly simple by
running through the unique chains, and explore if all the cells share two common
domains. On an input of n unique chains, only the chains with a length of

√
n is

considered. The reason for this is that longer chains do not share more than one
domain. The operation is therefore a O(n

3
2) operation.

7.3.4 Domain Agent

The row, column and square domains are all represented by a domain agent. To
ensure that the domain constraint is satisfied, the agent should hold a reference
to all the cells in its domain. When a value is sat in a cell, the domain agent
should inform the coordinator agent about all the elimination solution steps, it can
perform. E.g. if a value of 2 was sat in cell A, and cell B and C had 2 as a possible
candidate value, the agent would propose to eliminate 2 from cell B and C.

In order to recognize possible value solution steps, the domain agent should manage
the connections between the cells. It is simplest described by an example: if a
candidate of value 1 can only be placed in cell A, B and C in a domain, there
would be a unique chain (value dependency) on the value 1 between the cells A,
B and C. It is important that the unique chains are up-to-date, therefore they
should be updated every time the domain registers a state change. This can be
done in O(n) time, if the state change is a elimination, since the chain containing
the elimination value needs to be updated. The chain can be found in constant
time, with an appropriate data structure. The removal of the cell from the unique
chain can be done in linear time, which in the worst-case is an O(n) operation. If
the state change is a value solution step the update is an O(n2) operation. This is
because the cell, in the worst-case, needs to be removed from every unique chain.

The last task of the domain agent is to act on conflicts of the domain constraint.
This minimizes the search space for the backtracking search.

7.4 Implementation

In this section the implementation of the Sudoku solver will be described. Only the
interesting aspects will be covered, and the GUI plus the testing environment will

7.4 Implementation 61

not be covered, as the implementation is straightforward. The entire source code is
however included on the attached CD.

The implementation is made in C# 3.0, since it provides a good developing and
debugging environment through Visual Studio. Furthermore, it is our preferred
programming language, so it was natural to use it for this project as well.

7.4.1 Implementation of MultiAgentSudokuSolver

The solver is named MultiAgentSudokuSolver (MASS), and the implementation is
structured as shown in figure 7.1. An arrow from a class A to a class B indicates
that the class A contains an instance of class B.

Figure 7.1: Class diagram.

In the different classes not all the functions are listed, but the most important
aspects are shown. It is not a complete image of the class structure, but it is an
overview of the most important classes and members.

62 Sudoku solver

The overall system

The system is constructed as a dynamic linked library (dll), which can be used by
other assemblies, such as the GUI or test engine. The agent system is based on the
class AgentEnvironment, which both initializes all the agent threads, and handles
the communication between them. Each agent runs in a separate thread, making
the system asynchronous. The communication is therefore handled in the following
manner. An agent can send a message by raising the SendMessage event. This
event is handled by the AgentEnvironment, which invokes the MessageReceived
method on the recipient agent. The MessageReceived method enqueues the incom-
ing message on the agents message queue, which is processed continuously by the
agent. When an agent processes a message the method HandleMessage is used to
determine the action to take in response to the message.

The AgentEnvironment also represents the Sudoku puzzle as an array of PuzzleCell
objects. These objects manages the events in every puzzle cell, which means they
are able to raise events, whenever the cells state changes. Since every domain
agent must be able to propose state changes, they must have knowledge about the
state of the puzzle cells inside their domains. Therefore the DomainAgent objects
have a reference to the puzzle cells in their own domain, to be able to handle the
state change events in a proper manner, in order to suggest a state change to the
CoordinatorAgent. The CoordinatorAgent handles the coordination of the do-
main and strategy agents. Furthermore it is capable of performing a backtracking
search, if the system is unable to solve a given puzzle. The detailed implementation
of the separate agents, will be covered in the following sections.

Figure 7.2: Event and message system

7.4 Implementation 63

The Domain agents

The agent holds a reference to all the cells in its domain, and in order to satisfy the
domain constraint the domain catches events, when a state change occurs in a cell.
When a value is sat in a cell, the ValueChanged event is caught and handled by the
DomainAgent. Every cell is contained in 3 domain agents, so the event is caught in 3
different agents, all performing the same evaluation in respect to their own domain.
When noticing a ValueChanged event, the agent composes a message containing all
the eliminations it can perform in its domain. This proposition is then send to the
CoordinatorAgent. See figure 7.2 for an overview of the event and message flow.

In order to recognize when a cell is eliminating a value, the CandidatesChanged
event is caught, as seen in figure 7.2. If a cell only has one candidate value left, the
DomainAgent creates a ValueSolutionStep and proposes this to the CoordinatorAgent.
The detection of a value solution step is therefore done in linear time.

To manage the unique chains, the DomainAgent holds a reference to a special object,
namely the ValueDependencyMap. The ValueDependencyMap is a construct, which
is used to manage the connections between the cells. The unique chain is encapsu-
lated in a UniqueChain object. The ValueDependencyMap therefore has a reference
to all the value dependencies inside a domain. It is important that this map is up-to-
date, therefore it is updated every time the domain registers a CandidatesChanged
or ValueChanged event. In every update the ValueDependencyMap throws an
UniqueValueFound event, if a UniqueChain only contains a single cell. If this
event is caught, the DomainAgent creates a ValueSolutionStep and proposes this
to the CoordinatorAgent. The detection is therefore done in O(n2) time, since it
takes either O(n) time to update the map if an elimination occurred, or O(n2) if a
value was sat according to the Design section.

Finally, the DomainAgent is able to respond to requests from the strategy agents,
by returning either a CellMessage, containing the appropriate cells for the naked
agent, or by returning a ValueDependencyMessage containing the unique chains of
the domain to the hidden or intersection agent.

The Coordinator agent

The CoordinatorAgent manages the entire agent system. The steps towards the
solution are executed in a synchronized manner. This is ensured by only executing
solution steps, when it receives a NextStepMessage, indicating that the system is
ready to perform the next step. It is however the coordinator agent itself, which
sends these messages in appropriate situations. E.g. when the domain agent exe-
cutes a value solution step, it waits to execute any other value solution steps, until it
has received a EliminationStrategyMessage from the three affected DomainAgent

64 Sudoku solver

threads. The different messages and performatives can be seen in table 7.1

Content message Performative Sender Reciever
NextStepMessage Request CA CA
StrategyMessage Request CA HA, NA, IA

Refuse HA, NA, IA CA
CellMessage Request NA DA

Inform DA NA
ValueDependencyMessage Request HA, IA DA

Inform DA HA, IA
ConflictMessage Inform DA CA
SolutionStepMessage Propose DA CA
EliminationStrategyMessage Propose HA, NA, IA, DA CA
SolutionMessage Inform CA -

Table 7.1: Message types. The following abbreviations of the agents is used. Coor-
dinatorAgent = CA, HiddenAgent = HA, NakedAgent = NA, IntersectionAgent =
IA, DomainAgent = DA

When the coordinator agent is no longer able to execute a solution step, it requests
a solution step from one of the configured strategy agents. This is done by sending
a StrategyMessage to the appropriate strategy agent.

If the strategy agents are unable to find further solution steps, the backtracking
procedure is started. Here the domain agent sends a ConflictMessage to the
CoordinatorAgent, if a conflict is detected in the DomainAgent.

When a solution is found, the coordinator sends the SolutionMessage, which has
no receiver, but causes the AgentEnvironment to raise the SolutionFound event.
The coordinator determines that a solution is found, when every cell in the puzzle
has a value. Since the domain agents ensures the domain constraints, it is certain
that it is a valid solution.

In figure 7.3 the flow of a single solution step is shown. The figure shows the events
and messages caused, when a value is sat in a PuzzleCell.

The Strategy agents

The implementation of the strategy agents closely follows the description in the
Design section. When a strategy agent receives a StrategyMessage, it tries to
request a DomainAgent for the appropriate information. The selection of domains
to search is random, however the following criteria is also applied: The state of
the domain chosen, must have changed since the last time the agent ’visited’. This

7.5 Test 65

Figure 7.3: Flow of a single solution step. DomainAgent = DA, AgentEnvironment
= AE

ensures that no domain is searched unnecessary. If it has searched all domains, or
the domains have not changed, the agent refuses the StrategyMessage giving the
CoordinatorAgent a chance to pursue other strategies or backtrack search.

7.5 Test

The main goal of this section is to firstly evaluate the performance of the multi-
agent Sudoku solver with different configurations, and secondly compare it to other
solution methods.

First, the Sudoku solver is run with different combinations of the strategies used.
This will indicate how well the strategies perform separately and hopefully show
that a combination has a synergistic effect on the performance.

Since Sudoku is a fairly new research subject, only few benchmark sets are available.
However, solving Sudoku puzzles and creating solvers for Sudoku has been the goal
for many people in the Sudoku community. The data sets used is therefore found
through the Sudoku community 2. Since most order 3 Sudoku puzzles are quickly
solved by an average Sudoku solver, the following two benchmark sets are used,
which contain some of the hardest order 3 puzzles:

sudoku17 Gordon Royle’s collection of Sudoku Puzzles with 17 clues. As men-
tioned earlier, 17 clues is believed to be the minimum number of clues. The

2http://www.setbb.com/phpbb/ - sudoku programmers forum

66 Sudoku solver

data set is used throughout the community, as a common benchmark ([1]).

top1465 A list which is claimed to be the top 1465 hardest Sudoku puzzles of order
3. This data set is also a common benchmark in the community. ([3])

The order 4 Sudoku puzzles or higher, do not get as much attention in the Sudoku
community, because they are a lot more difficult to solve for a human. Secondly,
the main focus of the Sudoku community is to discover new ways to aid humans in
solving classical Sudoku puzzles. This means that it is difficult to find benchmark
sets containing the bigger puzzles. However, the following benchmark sets have
been chosen, but it only contains a few puzzles compared to the benchmarks sets
for the order 3 puzzles:

menneske.no Data set constructed from the order 4 puzzles presented at
http://menneske.no

7.5.1 Test of configuration

In this test the configuration of the agent system is evaluated. The test is performed
with the following combinations of strategies. All the tests are run on a Pentium
Core2Duo 2,17 Mhz with 2 GB of RAM:

• Hidden Set Strategy (H) • Hidden- and Intersection Set Strategies (HI)
• Naked Set Strategy (N) • Naked- and Intersection Set Strategies (NI)
• Intersection Set Strategy (I) • Hidden-, Naked- and Intersection Set Strategies (HNI)

The test is performed on a representative part of the sudoku17 benchmark set,
namely the 1500 first entries. The results are shown in figure 7.2.

It is obvious that the optimal configuration, in regards to puzzles solved without
search, is the NHI configuration, although only marginally better than HI. The
strategy that alone performs best is the Intersection Set strategy. It is seen that
the three combinations of strategies all have a synergistic effect with respect to avg.
guesses and the percentage solved without search. However, the avg. solution time
does not receive a corresponding synergistic effect. This is due to the fact that
the more strategies used, the bigger is the actual search space, since every strategy
searches the entire puzzle for occurrences of its target strategy set.

7.5 Test 67

Strategy Avg. time (ms) Avg. guesses % solved without search
H 14,8 4 64,9
N 14,8 6 64,5
I 10,9 4 75,5

HI 14,3 4 83,5
NI 14,3 4 82,0

NHI 17,2 3 85,3

Table 7.2: Test results on the first 1500 puzzles of the sudoku17 benchmark set

7.5.2 Test of order 3 puzzles

Since the foremost goal is to solve the Sudoku puzzles quickly without the use of
search, the optimal configuration is NHI. This configuration is therefore used on a
significantly more difficult benchmark set, the top1465. The results are shown in
figure 7.3.

Strategy Avg. time (ms) Avg. guesses % solved without search
NHI 76,5 11 15,6

I 31,7 18 2,7

Table 7.3: Test results on the first 1500 puzzles of the sudoku17 benchmark set

It is clearly seen that the solver is unable to solve the majority of the puzzles without
search. This is most possible due to the fact that the puzzles in this benchmark set
does not contain very many clues, which the three strategies can detect. Here much
more advanced strategies are needed.

It is worth to note that the puzzles in the top1465 benchmark are significantly more
difficult than a puzzle rated difficult in the local newspaper. This argument is based
on the fact that the majority of a random sample of the puzzles in the benchmark
set, could not be solved by any of the currently known strategies that does not
involve guessing. The test was carried out on www.scanraid.com/sudoku.htm, which
implements the majority of the known Sudoku strategies.

7.5.3 Test of order 4 Sudoku

With the optimal configuration in place, the same test is performed on the order 4
benchmark set. The result is seen in figure 7.4.

It is seen that the solver is able to solve order 4 Sudoku puzzles within reasonable
time. The test also shows that the benchmark set is difficult to solve without

68 Sudoku solver

Strategy Avg. time (ms) Avg. guesses % solved without search
NHI 311 7 35,7

I 118 29 3,6

Table 7.4: Test results on the menneske.no benchmark set

search. This indicates that the complexity of the benchmark set is more similar to
the top1465 benchmark set, than the sudoku17 benchmark set.

7.5.4 Comparison with other solvers

In order to evaluate how efficient the solver is, it is measured against other Sudoku
solvers and a single SAT solver in the following. Thereafter the results from the
previous tests are compared with test results presented in [23].

The Sudoku solvers are chosen through the Sudoku community, which recommends
the following solvers:

Sudoku1 The solver uses depth first and/or breadth first tree search with con-
straint propagation to prune the search for the next best move (forms of
forward checking). The common characteristic for all constraints, here and
elsewhere, is that they avoid trial and error ([2]).

Suexg Based on a Dancing Links Engine. In computer science, Dancing Links,
also known as DLX, is the technique suggested by Donald Knuth to efficiently
implement his Algorithm X. Algorithm X is a recursive, nondeterministic,
depth-first, brute-force algorithm that finds all solutions to the exact cover
problem. [3]

Before the SAT solver can be used to solve any puzzle, it has to be converted to a
SAT instances in CNF format using the tool provided in [3]. The solver chosen for
the comparison is:

SATZ Is based on a DPLL backtracking algorithm, which as explained earlier is a
common SAT solving technique. The SATZ implementation is based on [21].

With three other solvers a comparison with ours can be made. The three solvers
have tried to solve the sudoku17, top1465 and menneske.no benchmark sets. The
results are shown in figure 7.5.

7.5 Test 69

Solver No. puzzles Benchmark Avg. time (ms)
Solver1 1500 sudoku17 1
Solver1 1465 top1465 60
Solver1 28 mennesko.no N/A
Suexg 1500 sudoku17 1
Suexg 1465 top1465 2
Suexg 28 menneske.no 6
SATZ 1500 sudoku17 57
SATZ 1465 top1465 64
SATZ 28 menneske.no 200
MASS 1500 sudoku17 18(11)
MASS 1465 top1465 80(32)
MASS 28 menneske.no 311(118)

Table 7.5: Comparison of solvers

It can be seen that our solver (MASS) cannot compete with the specialized Sudoku
solvers when all strategies are used, but when only the intersection strategy is used
(shown in the brackets), it performs better than the Sudoku1 solver for the top1465
benchmark. Additionally it is noticed that our solver, when using all strategies,
in one case outperforms the SAT solver. When using the fast configuration it
outperforms the SAT solver on all the benchmarks. It can therefore be concluded
that our solver is able to solve Sudoku puzzles in comparable time or better than
the SAT solver, but stands little chance against the specialized solvers.

In [23] the performance of the solver is measured on percentage of Sudoku puzzles
solved without search. The article uses the sudoku17 benchmark and four different
propagation schemes, namely:

• Unit propagation (up);

• Unit propagation + failed literal rule (up+flr);

• Unit propagation + hyper-binary resolution (up+hypre);

• Unit propagation + binary failed literal rule (up+binflr).

For an explanation see [23].

When using the minimal encoding (described earlier), the maximum encoding (de-
scribed in the article), and the four propagation schemes, the following results are
obtained. See table 7.6.

70 Sudoku solver

% solved without search
Minimal, up 0
Minimal, up+flr 1
Minimal, up+hypre 25
Minimal, up+binflr 69
Maximal, up 47
Maximal, up+flr 100
Maximal, up+hypre 100
Maximal, up+binflr 100
MASS (NHI) 85

Table 7.6: Comparison of solvers

It is seen that our solver actually is better than the SAT solver to determine solutions
without search, when the minimum encoding is used. It is also comparable to the
SAT solver, when the maximal encoding is used.

7.6 Discussion

The tests show that our Sudoku solver is able to solve every puzzle, we have pre-
sented. Furthermore it shows that the configuration of the system can be adjusted
to either accommodate solution without search using all the strategies implemented,
or accommodate a fast solution by only using the Intersection Set strategy.

The configuration which utilize all the implemented strategies are not able to solve
the most difficult Sudoku puzzles without search. This is due to the limitations in
the implemented strategies. However, some of the puzzles are so difficult to solve
that even an implementation of all known strategies would not yield a solution. It
is therefore obvious that our system has a shortcoming, when solving puzzles where
the strategies are not sufficient. If a puzzle has few or no solution steps, which can be
detected by the strategies, the work of the strategies is redundant. It is however as
we know, impossible to know beforehand, if a strategy can be used. A possible area
of research is to improve this shortcoming by classifying, when certain strategies
are suitable in respect to certain puzzle characteristics such as the puzzles difficulty.
This has however been outside the scope of this thesis. The other approach is to
abandon the requirement of solving the Sudoku without search and instead use a
dedicated search algorithm.

The test also shows that compared with the other solvers, our solver was not superior
in respect to running time. Some of the important reasons for this are:

7.6 Discussion 71

• Our strategies are to specific, as they only search for specific patterns. It is
very time consuming to use these strategies, if no solution steps are found.
This could perhaps be improved, if the strategies where defined on a higher
level of abstraction, meaning that a search could satisfy more than one strat-
egy.

• Even though our system is a multi-agent system, the strategy agents act in a
sequential manner. Running them in parallel could most likely result in a gain
in performance. This is however only the case when the system is running on
a machine with multiple processors.

• The need for communication and synchronization between the agents is also
a possible bottleneck for the systems performance.

Even though the specialized Sudoku solvers are faster than our implementation in
most cases, the tests shows that in the fastest configuration our solver outperforms
the SAT solver for the given benchmarks. This indicates that the system is actually
capable of competing with some of the well known solving techniques for NP-
complete problems. Furthermore, the solver is able to solve almost as many puzzles
without search as the SAT solver covered in [23]. This aspect of our solver could
obviously be improved, if more strategies where implemented.

Building and testing our solver has given some insights into the subject of multi-
agent systems versus single-agent systems. In our case the multi-agent system
was chosen for scalability and flexibility, however if this was irrelevant, it would
undoubtedly be more efficient to implement the system as a single agent. This
would improve the performance by removing the synchronization issues and the
communication costs. The decision of whether it should be a multi- or single-agent
system is therefore dependent of the requirements of the system. The advantages
by using a multi-agent system is that the system is not as strongly coupled as a
single-agent system. This gives more flexibility to test different configurations. This
could be useful in the process of determining a good solution strategy or heuristic to
a problem. In our example it gave us the possibility to test different configurations
of the strategies, which showed that if the goal was to solve the puzzles without
search all of the strategies worked together in a synergistic way. However, if the
goal was to solve the puzzles quickly, the fastest strategy (Intersection Set) was
sufficient.

Another important aspect of our solution is to evaluate how general it is in aspect
of solving a NP-complete problem. It is obvious that it is not capable of competing
with the most evolved Sudoku solvers, instead the approach is a more generalized
solution strategy similar to the ones mentioned in Chapter 3. The structure of a
Sudoku puzzle is very similar to a SAT problem therefore with a few changes our
system would most likely be able to solve certain SAT instances.

72 Sudoku solver

7.7 Conclusion

In this chapter we have successfully designed, implemented and tested a multi-agent
Sudoku solver. The solver has proven efficient in respect to solve the puzzles without
search. It has also shown a comparable performance against a SAT solver, but it is
outperformed by specialized Sudoku solvers.

We have elaborated on the aspects of using a multi-agent system for our solver, and
can conclude that it has advantages in respect to scalability and flexibility, but has
some disadvantages in respect to performance and simplicity. A single-agent system
could have been constructed in a more clear fashion. Our system is not matured,
and several improvements can be made, which is mentioned in the discussion and
will be covered in the final conclusion.

Chapter 8

Conclusion

The project had two goals. Firstly, it should include a general discussion of the use
of multi-agent approaches to solving NP-complete problems, and additionally a
discussion of the strengths and weaknesses compared to other approaches of solving
the same problems. Secondly, a concrete software tool should be implemented for
solving the NP-complete problem Sudoku. The following conclusion will therefore
consists of two parts; one for each of the two objectives.

From the analysis of the different MAS approaches to solving NP-complete prob-
lems, it was obvious that a MAS can be used in solving these problems, but we
found that there is different conceptions of the term MAS in regards to solving the
problems. A multi-agent system can be used as a liaison between different meta-
heuristics, where each heuristic is represented by an agent. The meta-heuristic
agents then cooperate by sharing their solutions with each other, to achieve a bet-
ter result. Another approach is to use a MAS in solving constraint satisfaction
problems. The idea is to divide constraints and variables between agents, and in a
suitable manner let the individual agents optimize their local perspective to reach
an optimal common global solution. The third and last approach was a new way
to represent the problems, not similar to any other solvers. It works by analysing a
real world instance of the problem and in this way determine what entities are at
play and how they interact to solve the problem, for then afterwards to make a MAS
inspired by this interaction. The conclusion is therefore that the term multi-agent
system can be used as a design paradigm when solving complex problems. The
multi-agent paradigm attacks the problem from a high level of abstraction and can
therefore result in many different interpretations.

74 Conclusion

The comparison between the multi-agent systems and the common approaches
showed that multi-agent systems possess a number of advantages. First of all if
the problem can be divided into smaller problems, you can receive a gain in compu-
tational performance. Additionally a MAS is scalable, which means that it is easy
to change or remove agents and thereby test new strategies or heuristics. A MAS is
also robust if it has agents that complement each other, meaning that a part of the
system can fail, but the overall system can still succeed. However, the communica-
tion cost can be factor for the performance of the system. It is therefore important
that the communication cost is kept down, to get a fast solution. Besides these
general considerations, the comparison also showed that the common approaches
are more optimized and specialized than the MAS, hence undoubtedly faster than
the MAS algorithms. However, it is to soon to abandon the MAS approach, since it
is a new way to represent the problem, which in the long run could lead to effective
solvers, when further optimized and specialized.

Finally it can be concluded that a MAS can successfully be applied in designing
a Sudoku solver. The solver is capable of solving the presented puzzles, which
includes the most common benchmarks. It has proven efficient in solving these
puzzles, but the system is not fully matured. As it exists today, it is outperformed
by the specialised Sudoku solvers, however the solver was not intended to be a
specialized solver, but a more general approach in solving a NP-complete problem.
The advantages of our system is that it is scalable and flexible. A new strategy can
be added to the system with a minimum amount of effort. Likewise it is possible to
change the configuration to fit certain problem instances fairly easy. Some of the
disadvantages of our system is the performance compared to specialized solvers.

8.1 Future work

As discussed previously our solution gives rise to a couple of improvements. First
of all the current strategies could be optimized. An obvious optimization is to
improve the way the strategy agents searches for new solution steps. A more clever
heuristic could perhaps minimize the search space that the strategy agents traverse,
by determining when it is undesirable to continue the search. Another improvement
is to make the strategy agents more cooperative, e.g. by sharing knowledge about
their individual search space, and perhaps helping each other in fulfilling their design
objectives.

The human way of solving a Sudoku puzzle is sequential, and as our solver tries
to mimic human solving techniques the construction of the solution is done in a
sequential manner. This does not exploit the full potential of a multi-agent system.
Therefore an improvement would be to try and run parts of the system in parallel.
The performance of the strategy agents could for instance be improved by running

8.1 Future work 75

them in parallel.

In this scope, not all of our plans where possible within the time frame. In the future
it could therefore be interesting to both implement more advanced strategies, look
into training of our agents and consider even larger Sudoku puzzles.

Finally the overall architecture of the system could possibly be improved. It could
also be interesting to transfer our system to an existing multi-agent platform, in
order to receive the benefits of an matured agent environment.

76 Bibliography

Bibliography

[1] http://people.csse.uwa.edu.au/gordon/sudokumin.php.

[2] http://www.research.att.com/ gsf/.

[3] http://magictour.free.fr/sudoku.htm, 2005.

[4] M. Emin Aydin and Terence C. Fogarty. Teams of autonomous agents for
job-shop scheduling problems: An experimental study. Journal of Intelligent
Manufacturing, 15(4):455–462, 2004.

[5] Andrew C. Bartlett and Amy N. Langville. An integer programming model for
the sudoku problem, 2006.

[6] Charles J. Colbourn. The complexity of completing partial latin squares. Dis-
create Applied Mathematics, (8):25–30, 1984.

[7] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press, September 2001.

[8] T. Feo and M. Resende. Greedy randomized adaptive search procedures, 1995.

[9] Paul Fischer. Computationally Hard Problems. IMM, DTU, 2006.

[10] Zhaohui Fu, Yogesh Marhajan, and Sharad Malik. zchaff sat solver. Technical
report, Princeton University, 2005.

[11] Fred W. Glover and Gary A. Kochenberger. Handbook of Metaheuristics (In-
ternational Series in Operations Research & Management Science). Springer,
January 2003.

[12] Jacob Goldberger. Solving Sudoku Using Combined Message Passing Algo-
rithms. PhD thesis, School of Engineering, Bar-Ilan University.

78 BIBLIOGRAPHY

[13] Moez Hammami and Khaled Ghédira. Cosats, x-cosats: Two multi-agent sys-
tems cooperating simulated annealing, tabu search and x-over operator for the
k-graph partitioning problem. In KES (4), pages 647–653, 2005.

[14] Katsutoshi Hirayama and Makoto Yokoo. Local search for distributed sat with
complex local problems. In AAMAS ’02: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems, pages 1199–
1206, New York, NY, USA, 2002. ACM Press.

[15] Katsutoshi Hirayama and Makoto Yokoo. The distributed breakout algorithms.
Artif. Intell., 161(1-2):89–115, 2005.

[16] Xiaolong Jin and Jiming Liu. Multiagent sat (massat): Autonomous pattern
search in constrained domains. In IDEAL ’02: Proceedings of the Third Inter-
national Conference on Intelligent Data Engineering and Automated Learning,
pages 318–328, London, UK, 2002. Springer-Verlag.

[17] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing,
1983.

[18] P. J. M. Laarhoven and E. H. L. Aarts, editors. Simulated annealing: theory
and applications. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

[19] Hon Wai Leong and Ming Liu. A multi-agent algorithm for vehicle routing
problem with time window. In SAC ’06: Proceedings of the 2006 ACM sympo-
sium on Applied computing, pages 106–111, New York, NY, USA, 2006. ACM.

[20] Rhyd Lewis. Metaheuristics can solve sudoku puzzles. Journal of Heuristics,
13(4):387–401, 2007.

[21] Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfia-
bility problems. In IJCAI (1), pages 366–371, 1997.

[22] JyiShane Liu and Katia Sycara. Distributed problem solving through coordina-
tion in a society of agents. In Proceedings of the 13th International Workshop
on Distributed Artificial Intelligence, 1994.

[23] Inês Lynce and Jöel Ouaknine. Sudoku as a sat problem. In Proceedings of
the Ninth International Symposium on Artificial Intelligence and Mathematics
(AIMATH 2006), January 2006.

[24] Agnes M. Herzberg and M. Ram Murty. Sudoku squares and chromatic poly-
nomials. Notices of the AMS, 54(6), 2007.

[25] Yannis Marinakis, Athanasios Migdalas, and Panos M. Pardalos. Expanding
neighborhood search – grasp for the probabilistic traveling salesman problem.
Optimization Letters, 2007.

BIBLIOGRAPHY 79

[26] Yannis Marinakis, Athanasios Migdalas, and Panos M. Pardalos. A new bilevel
formulation for the vehicle routing problem and a solution method using a
genetic algorithm. J. of Global Optimization, 38(4):555–580, 2007.

[27] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: engineering an efficient sat solver. In DAC ’01: Proceed-
ings of the 38th conference on Design automation, pages 530–535, New York,
NY, USA, 2001. ACM Press.

[28] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge
University Press, New York, NY, USA, 1995.

[29] Helmut Simonis. Sudoku as a constraint problem. In Brahim Hnich, Patrick
Prosser, and Barbara Smith, editors, Proc. 4th Int. Works. Modelling and Re-
formulating Constraint Satisfaction Problems, pages 13–27, 2005.

[30] Yato Takayuki and Seta Takahiro. Complexity and completeness of finding an-
other solution and its application to puzzles. Technical report, The University
of Tokyo, 2003.

[31] E.-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of Heuristics,
8(5):541–564, 2002.

[32] W. van Hoeve. The alldifferent constraint: A survey, 2001.

[33] José M. Vidal. Fundamentals of Multiagent Systems: Using NetLogo Models.
Unpublished, 2006. http://www.multiagent.com/fmas.

[34] Tjark Weber. A SAT-based Sudoku solver. In Geoff Sutcliffe and Andrei
Voronkov, editors, LPAR-12, The 12th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning, Short Paper Proceedings,
pages 11–15, December 2005.

[35] Wikipedia. http://en.wikipedia.org/wiki/Mathematics of Sudoku, 2007.

[36] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2002.

[37] T. Zhou, Yihong Tan, and L. Xing. A multi-agent approach for solving traveling
salesman problem. Wuhan University Journal of Natural Sciences, 11(5), 2005.

80 BIBLIOGRAPHY

Appendix A

User manual

To visualize the function of the multi-agent Sudoku solver a graphical user interface
is constructed. The following is a user manual for the GUI that illustrates the
different functionalities and describes how to use them. The program can be found
in the attached CD in the folder Multi-agent Sudoku Solver.

Load and solve a puzzle

When the program is executed the window in figure A.1 is displayed. From here it
is possible to load a puzzle by clicking on the button Load. To test the program
numerous puzzles are available in a folder called Data placed in the same location
as the program. There are only puzzles of order 3 and 4, as the GUI only handles
these sizes even though the solver is capable of solving puzzles of any order.

When the puzzle is loaded the clues are displayed in a grid. In figure A.2 a puzzle
is loaded containing 18 clues, where the number of clues can be found in the shaded
box called Info. If the button Solve is pressed, the puzzle is solved.

Analyze the result

In figure A.3 a solution is found to the puzzle loaded. A number of information
concerning the solution can be found in the info box. In the lower left corner of

82 User manual

Figure A.1: The solver is started.

Figure A.2: A puzzle is loaded.

the info box the correctness of the solution is displayed. In this case the solution is
correct. Above the solution verification, the execution time can be found in a text
box. It is important to mention that this is not the correct execution time, as it
includes both the solution time for the Sudoku solver and the caching during the
computation of the solution. In the same text it it additionally displayed whether
the solution is found using only strategies or with search. It is seen that the current
solution is found with search, since it was only possible to solve the puzzle using
strategies to step 21. A step contains all the eliminations performed until it is

83

Figure A.3: The puzzle is solved.

possible to place an unambiguous value in a cell. That is, a order 3 puzzle has
81 steps and a order 4 puzzle has 256 steps if search is not used. In the text box
there are furthermore information about how many times the different strategies
are used. The number of strategies used only reflect the steps where the strategies
cause eliminations. However, there can be more hidden, naked and intersection sets
found in the steps not yielding any eliminations for the strategies.

Figure A.4: The Run box is used.

84 User manual

Go trough the solution

In the run box it it possible to go back and forth between the different steps as well
as going to a specific step. To go to a specific step you need to type in the desired
step number in the text box left to the button go and press the button afterwards.
In figure A.4 the step number 19 is displayed, where the green cell indicates that
this cell was the latest cell assigned a value in the puzzle.

Figure A.5: Tips for the next step.

To get information about the next step, it is possible to press the button Tips for
next step to show the eliminations performed to determined the next value. In
figure A.5 the result is shown after the button is pressed for the step showed in the
previous figure. The candidate highlighted with green indicates the next value, and
the candidates highlighted with red indicate the eliminated candidates that cause
the value to be sat.

A deeper explanation to the eliminations can be displayed, if the strategies are
used, by clicking on one of the buttons above the grid that was enabled, when the
tip button was clicked. In the step in figure A.4 every strategy is in use, as all of
the buttons are enabled. In figure A.6, A.7 and A.8 respectively the hidden set
strategy, the naked set strategy and the intersection set strategy is displayed. In
figure A.6 two hidden sets are shown both with 3 and 5 as the hidden values. The
candidates highlighted with the dark green are the eliminated candidates in the
strategy. In figure A.7 one naked candidate set is shown with the value set 3 and
5. The eliminated candidates are highlighted with dark green. In figure A.8 one
intersection set is shown with the value 1. The eliminated candidates are highlighted
with dark green. To show all the eliminations again you can click on the button

85

Show all.

Figure A.6: Hidden strategy.

Figure A.7: Naked strategy.

86 User manual

Figure A.8: Intersection strategy.

Appendix B

Source code

B.1 Agent Environment

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections;

5 using System.Collections.ObjectModel;

6 using MultiAgentSudokuSolver.Messaging;

7 using MultiAgentSudokuSolver.Agents;

8 using MultiAgentSudokuSolver.Data;

9 using System.Threading;

10 using MultiAgentSudokuSolver.Cache;

11
12
13 namespace MultiAgentSudokuSolver

14 {

15 /// <summary >

16 /// Class that handles the communication between agents , and records the state of the puzzle

17 /// </summary >

18 public class AgentEnvironment

19 {

20 #region Variables

21 private readonly int puzzleSize , puzzleOrder;

22 private string [] data;

23 private PuzzleCell [,] cells;

24 private Queue <EventArgs <FIPAAclMessage >> messageQueue = new Queue <EventArgs <FIPAAclMessage >>();

25
26 private bool useCache;

27 private SolutionBuilder solution;

28 private CacheSolutionStep currentSolutionStep;

29
30 #endregion Variables

31
32 #region Agents

33 private CoordinatorAgent coordinatorAgent;

34 private NakedAgent nakedAgent;

35 private HiddenAgent hiddenAgent;

36 private IntersectionAgent intersectionAgent;

37 private List <DomainAgent > squareAgents;

38 private List <DomainAgent > rowAgents;

39 private List <DomainAgent > columnAgents;

40 #endregion Agents

41
42 Thread coordinatorThread;

43 Thread nakedThread;

44 Thread hiddenThread;

88 Source code

45 Thread intersectionThread;

46
47 List <Thread > domainThreads;

48
49 private delegate void SendMessageDelegate(object sender , EventArgs <FIPAAclMessage > e);

50
51 public AgentEnvironment(string [] data , bool useCache)

52 {

53 this.data = data;

54 puzzleSize = (int)Math.Sqrt(data.Length);

55 puzzleOrder = (int)Math.Sqrt(puzzleSize);

56 this.useCache = useCache;

57 solution = new SolutionBuilder(puzzleSize);

58 currentSolutionStep = new CacheSolutionStep(puzzleSize);

59 this.Initialize ();

60 }

61
62 public void InvokeSendMessage(object sender , EventArgs <FIPAAclMessage > e)

63 {

64 SendMessageDelegate del = new SendMessageDelegate(this.agent_SendMessage);

65 del(sender , e);

66 }

67
68 internal void Register(IAgent agent)

69 {

70 agent.SendMessage += new EventHandler <EventArgs <FIPAAclMessage >>(agent_SendMessage);

71 }

72
73 public PuzzleCell [,] GetPuzzleCells ()

74 {

75 return cells;

76 }

77
78 public void Initialize ()

79 {

80 // Set up agents

81 coordinatorAgent = new CoordinatorAgent(puzzleSize);

82 nakedAgent = new NakedAgent(puzzleSize);

83 hiddenAgent = new HiddenAgent(puzzleSize);

84 intersectionAgent = new IntersectionAgent(puzzleSize);

85
86 Register(coordinatorAgent);

87 Register(nakedAgent);

88 Register(hiddenAgent);

89 Register(intersectionAgent);

90
91 coordinatorThread = new Thread(new ThreadStart(coordinatorAgent.Run));

92 coordinatorThread.Start();

93
94 nakedThread = new Thread(new ThreadStart(nakedAgent.Run));

95 nakedThread.Start();

96
97 hiddenThread = new Thread(new ThreadStart(hiddenAgent.Run));

98 hiddenThread.Start();

99
100 intersectionThread = new Thread(new ThreadStart(intersectionAgent.Run));

101 intersectionThread.Start();

102
103 squareAgents = new List <DomainAgent >(puzzleSize);

104 rowAgents = new List <DomainAgent >(puzzleSize);

105 columnAgents = new List <DomainAgent >(puzzleSize);

106
107 DomainAgent rowAgent , columnAgent , squareAgent;

108 for (int i = 0; i < puzzleSize; i++)

109 {

110 rowAgent = new DomainAgent(puzzleSize);

111 columnAgent = new DomainAgent(puzzleSize);

112 squareAgent = new DomainAgent(puzzleSize);

113
114 squareAgents.Add(squareAgent);

115 rowAgents.Add(rowAgent);

116 columnAgents.Add(columnAgent);

117
118 hiddenAgent.AddDomain(squareAgent);

119 hiddenAgent.AddDomain(rowAgent);

120 hiddenAgent.AddDomain(columnAgent);

121 nakedAgent.AddDomain(squareAgent);

122 nakedAgent.AddDomain(rowAgent);

123 nakedAgent.AddDomain(columnAgent);

124 intersectionAgent.AddSquareDomain(squareAgent);

125 intersectionAgent.AddColumnDomain(columnAgent);

126 intersectionAgent.AddRowDomain(rowAgent);

127
128 Register(squareAgent);

129 Register(rowAgent);

130 Register(columnAgent);

Agent Environment 89

131 }

132
133 PuzzleCell cell;

134 cells = new PuzzleCell[puzzleSize , puzzleSize];

135 int square;

136
137 // Add PuzzleCells to the correct domain agents , and register events

138 for (int i = 0; i < puzzleSize; i++)

139 {

140 for (int j = 0; j < puzzleSize; j++)

141 {

142 square = (int)((j / puzzleOrder) + (i / puzzleOrder) * puzzleOrder);

143 cell = new PuzzleCell ((int)puzzleSize , i, j, square);

144 cells[j, i] = cell;

145 cells[j, i]. CandidatesChanged += new EventHandler <EventArgs <int >>(

AgentEnvironment_CandidatesChanged);

146 cells[j, i]. ValueChanged += new EventHandler <EventArgs <Nullable <int >>>(

AgentEnvironment_ValueChanged);

147 squareAgents[square]. AddCell(cell);

148 rowAgents[i]. AddCell(cell);

149 columnAgents[j]. AddCell(cell);

150 }

151 }

152
153 Thread agentThread;

154 domainThreads = new List <Thread >(3 * puzzleSize);

155 // Start the domain agent threads

156 for (int i = 0; i < puzzleSize; i++)

157 {

158 agentThread = new Thread(new ThreadStart (((DomainAgent)squareAgents[i]).Run));

159 agentThread.Start ();

160 domainThreads.Add(agentThread);

161 agentThread = new Thread(new ThreadStart (((DomainAgent)rowAgents[i]).Run));

162 agentThread.Start ();

163 domainThreads.Add(agentThread);

164 agentThread = new Thread(new ThreadStart (((DomainAgent)columnAgents[i]).Run));

165 agentThread.Start ();

166 domainThreads.Add(agentThread);

167 }

168
169 coordinatorAgent.InitializeBoard(cells , data , (int)puzzleSize);

170
171 }

172
173 /// <summary >

174 /// Cleanup

175 /// </summary >

176 public void DestroyAgents ()

177 {

178 coordinatorThread.Interrupt ();

179 nakedThread.Interrupt ();

180 hiddenThread.Interrupt ();

181 intersectionThread.Interrupt ();

182
183 coordinatorThread.Join();

184 nakedThread.Join();

185 hiddenThread.Join();

186 intersectionThread.Join();

187
188 foreach (Thread agent in domainThreads)

189 {

190 agent.Interrupt ();

191 agent.Join();

192 }

193
194 domainThreads.Clear ();

195
196 for (int i = 0; i < puzzleSize; i++)

197 {

198 for (int j = 0; j < puzzleSize; j++)

199 {

200
201 cells[j, i]. CandidatesChanged -= new EventHandler <EventArgs <int >>(

AgentEnvironment_CandidatesChanged);

202 cells[j, i]. ValueChanged -= new EventHandler <EventArgs <Nullable <int >>>(

AgentEnvironment_ValueChanged);

203 cells[j, i] = null;

204 }

205 }

206
207 cells = null;

208 coordinatorAgent.SendMessage -= new EventHandler <EventArgs <FIPAAclMessage >>(

agent_SendMessage);

209 nakedAgent.SendMessage -= new EventHandler <EventArgs <FIPAAclMessage >>(agent_SendMessage);

210 hiddenAgent.SendMessage -= new EventHandler <EventArgs <FIPAAclMessage >>(agent_SendMessage);

90 Source code

211 intersectionAgent.SendMessage -= new EventHandler <EventArgs <FIPAAclMessage >>(

agent_SendMessage);

212
213 coordinatorAgent = null;

214 nakedAgent = null;

215 hiddenAgent = null;

216 intersectionAgent = null;

217
218 for (int i = 0; i < puzzleSize; i++)

219 {

220 squareAgents[i]. SendMessage -= new EventHandler <EventArgs <FIPAAclMessage >>(

agent_SendMessage);

221 rowAgents[i]. SendMessage -= new EventHandler <EventArgs <FIPAAclMessage >>(

agent_SendMessage);

222 columnAgents[i]. SendMessage -= new EventHandler <EventArgs <FIPAAclMessage >>(

agent_SendMessage);

223
224 squareAgents[i] = null;

225 rowAgents[i] = null;

226 columnAgents[i] = null;

227 }

228
229 squareAgents.Clear();

230 rowAgents.Clear();

231 columnAgents.Clear();

232
233 }

234
235 #region EventHandler methods

236 /// <summary >

237 /// EventHandler method that handles the mapping of FIPAAclMessage objects to the correct

agents

238 /// </summary >

239 public void agent_SendMessage(object sender , EventArgs <FIPAAclMessage > e)

240 {

241 switch (e.Value.MessagePerformative)

242 {

243 case FIPAAclMessage.Performative.Inform:

244 if (e.Value.Content is ValueDependencyMessage)

245 {

246 if (e.Value.Receiver is HiddenAgent)

247 {

248 hiddenAgent.MessageReceived(sender , e);

249 }

250 else if (e.Value.Receiver is IntersectionAgent)

251 {

252 intersectionAgent.MessageReceived(sender , e);

253 }

254 }

255 else if (e.Value.Content is SolutionMessage)

256 {

257 OnSolutionFound (((SolutionMessage)e.Value.Content).Log);

258 }

259 else if (e.Value.Content is CellMessage)

260 {

261 nakedAgent.MessageReceived(sender , e);

262 }

263 else if (e.Value.Content is ConflictMessage)

264 {

265 coordinatorAgent.MessageReceived(sender , e);

266 }

267 break;

268 case FIPAAclMessage.Performative.Propose:

269 if (e.Value.Content is SolutionStepMessage)

270 {

271 coordinatorAgent.InvokeMessageReceived(sender , e);

272 }

273 else if (e.Value.Content is EliminationStrategyMessage)

274 {

275 EliminationStrategyMessage content = (EliminationStrategyMessage)e.Value.

Content;

276 switch (content.StrategyType)

277 {

278 case "NakedAgent":

279 solution.NakedCount ++;

280 break;

281 case "HiddenAgent":

282 solution.HiddenCount ++;

283 break;

284 case "IntersectionAgent":

285 solution.IntersectionCount ++;

286 break;

287 case "DomainAgent":

288 break;

289 default:

290 break;

Agent Environment 91

291 }

292
293 if (useCache)

294 {

295 currentSolutionStep.AddEliminationStep(content);

296 }

297 coordinatorAgent.InvokeMessageReceived(sender , e);

298 }

299 break;

300 case FIPAAclMessage.Performative.Request:

301
302 if (e.Value.Content is NextStepMessage)

303 {

304 if (((NextStepMessage)e.Value.Content).IsSearch)

305 {

306 useCache = false;

307 solution.Guesses ++;

308 solution.IsSearched = true;

309 }

310 coordinatorAgent.InvokeMessageReceived(sender , e);

311
312 }

313 else if (e.Value.Content is StrategyMessage)

314 {

315 if (((StrategyMessage)e.Value.Content).Strategy.Equals("Hidden"))

316 {

317 hiddenAgent.InvokeMessageReceived(sender , e);

318 }

319 else if (((StrategyMessage)e.Value.Content).Strategy.Equals("Naked"))

320 {

321 nakedAgent.InvokeMessageReceived(sender , e);

322 }

323 else if (((StrategyMessage)e.Value.Content).Strategy.Equals("Intersection"))

324 {

325 intersectionAgent.InvokeMessageReceived(sender , e);

326 }

327 }

328
329 else if (e.Value.Content is ValueDependencyMessage)

330 {

331 if (e.Value.Receiver != null)

332 {

333 ((DomainAgent)e.Value.Receiver).InvokeMessageReceived(sender , e);

334 }

335 }

336 else if (e.Value.Content is CellMessage)

337 {

338 if (e.Value.Receiver != null)

339 {

340 ((DomainAgent)e.Value.Receiver).InvokeMessageReceived(sender , e);

341 }

342 }

343 break;

344 case FIPAAclMessage.Performative.Refuse:

345 if (e.Value.Content is StrategyMessage)

346 {

347 coordinatorAgent.InvokeMessageReceived(sender , e);

348 }

349 break;

350 default:

351 break;

352 }

353 }

354
355 void AgentEnvironment_ValueChanged(object sender , EventArgs <Nullable <int >> e)

356 {

357 if ((sender as PuzzleCell).CellValue.HasValue)

358 {

359 if (useCache)

360 {

361 PuzzleCell cell = (PuzzleCell)sender;

362 // Save solutionstep (i.e. candidate events , strategy events and value event).

363 currentSolutionStep.AddValueStep(cell);

364 solution.SaveSolutionStep ((CacheSolutionStep)currentSolutionStep.Clone ());

365 currentSolutionStep.RemoveStrategies ();

366 }

367 }

368 }

369
370
371 void AgentEnvironment_CandidatesChanged(object sender , EventArgs <int > e)

372 {

373 if (useCache)

374 {

375 currentSolutionStep.AddCandidateStep ((PuzzleCell)sender);

376 }

92 Source code

377 }

378 #endregion EventHandler methods

379
380 #region Events

381 public event EventHandler <EventArgs <List <Object >>> DisplayEvent;

382
383 private void OnDisplayEvent(List <Object > e)

384 {

385 if (DisplayEvent != null)

386 {

387 this.DisplayEvent(this , new EventArgs <List <Object >>(e));

388 e.Clear();

389 }

390 }

391
392 public event EventHandler <EventArgs <Solution >> SolutionFound;

393
394 private void OnSolutionFound(LogElement log)

395 {

396 if (SolutionFound != null)

397 {

398 Solution finalSolution = new Solution(solution.GetSolutionSteps (),solution.Guesses ,

solution.IsSearched , solution.NakedCount , solution.HiddenCount , solution.

IntersectionCount);

399 this.SolutionFound(this , new EventArgs <Solution >(finalSolution));

400 }

401 }

402
403 #endregion Events

404 }

405 }

B.2 Agents

IAgents.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections.ObjectModel;

5 using MultiAgentSudokuSolver.Messaging;

6 using MultiAgentSudokuSolver.Data;

7
8 namespace MultiAgentSudokuSolver.Agents

9 {

10 public interface IAgent

11 {

12 Guid AgentID { get; }

13
14 event EventHandler <EventArgs <FIPAAclMessage >> SendMessage;

15
16 void OnSendMessage(EventArgs <FIPAAclMessage > e);

17
18 void MessageReceived(object sender , EventArgs <FIPAAclMessage > e);

19
20 void InvokeMessageReceived(object sender , EventArgs <FIPAAclMessage > e);

21
22 void Run();

23
24 }

25 }

DomainAgent.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections;

5 using System.Collections.ObjectModel;

Agents 93

6 using MultiAgentSudokuSolver.Messaging;

7 using MultiAgentSudokuSolver.Data;

8 using System.Threading;

9 using System.Diagnostics;

10
11
12 namespace MultiAgentSudokuSolver.Agents

13 {

14 /// <summary >

15 /// Handles the domains of the puzzle , e.g. row , columns and squares

16 /// </summary >

17 public class DomainAgent : IAgent

18 {

19 private const string AGENT_TYPE = "DomainAgent";

20
21 #region Variables

22 private Guid agentID = Guid.NewGuid ();

23 private List <PuzzleCell > cells;

24 private ValueDependencyMap valueDependencies;

25 private int freeCells;

26 private Queue <EventArgs <FIPAAclMessage >> messageQueue = new Queue <EventArgs <FIPAAclMessage >>();

27 private delegate void MessageReceivedDelegate(object sender , EventArgs <FIPAAclMessage > e);

28 private bool[] usedValues;

29 Dictionary <IAgent , bool > changeMap = new Dictionary <IAgent , bool >();

30 #endregion

31
32 #region Properties

33
34 public int FreeCells

35 {

36 get { return freeCells; }

37 }

38
39 /// <summary >

40 /// Returns a boolean indicating if the domain is satisfied.

41 /// </summary >

42 public bool Satisfied

43 {

44 get { return freeCells == 0; }

45 }

46 #endregion

47
48 public DomainAgent(int puzzleSize)

49 {

50 cells = new List <PuzzleCell >(puzzleSize);

51 valueDependencies = new ValueDependencyMap(puzzleSize);

52 usedValues = new bool[puzzleSize];

53 }

54
55 #region Public Methods

56 public void AddCell(PuzzleCell cell)

57 {

58 cells.Add(cell);

59 // Subscribe to events

60 cell.ValueChanged += new EventHandler <EventArgs <Nullable <int >>>(InvokeValueChanged);//

CellValueChanged);

61 cell.CandidatesChanged += new EventHandler <EventArgs <int >>(CellCandidatesChanged);

62 cell.CandidatesAdd += new EventHandler <EventArgs <int >>(CellCandidatesAdd);

63 // Make sure that valueDependencies are initialized

64 if (valueDependencies != null)

65 {

66 valueDependencies.AddCell(cell);

67 }

68
69 // Add domain reference to cell

70 cell.AddDomain(this);

71
72 if (!cell.CellValue.HasValue)

73 {

74 freeCells ++;

75 }

76 }

77
78 public void RemoveCell(PuzzleCell cell)

79 {

80 cells.Remove(cell);

81 // Unsubscribe events

82 cell.ValueChanged -= new EventHandler <EventArgs <Nullable <int >>>(CellValueChanged);

83 cell.CandidatesChanged -= new EventHandler <EventArgs <int >>(CellCandidatesChanged);

84 cell.CandidatesAdd -= new EventHandler <EventArgs <int >>(CellCandidatesAdd);

85 valueDependencies.RemoveCell(cell);

86
87 // Remove domain reference from cell

88 cell.RemoveDomain(this);

89
90 if (!cell.CellValue.HasValue)

94 Source code

91 {

92 freeCells --;

93 }

94 }

95
96 /// <summary >

97 /// Returns a snapshot of the cells belonging to the domain agent.

98 /// This collection can be modified without affecting the internal cell collections of the

domain agent

99 /// </summary >

100 /// <returns >A collection of cells belonging to the domain agent. </returns >

101 public Collection <PuzzleCell > GetCells ()

102 {

103 return new Collection <PuzzleCell >(new List <PuzzleCell >(cells));

104 }

105
106 /// <summary >

107 /// Returns a boolean value indicating if the domain has changed since last time

108 /// a given strategy agent visited the environment . Return true if the domain has changed ,

109 /// or the strategy agent has not visited the domain. Otherwise false.

110 /// </summary >

111 public bool IsChanged(IAgent strategyAgent)

112 {

113 if (changeMap.ContainsKey(strategyAgent))

114 {

115 return changeMap[strategyAgent];

116 }

117 return true;

118 }

119 #endregion

120
121 #region Private Methods

122 private void Initialize ()

123 {

124 // Initialize used values array

125 usedValues = new bool[cells.Count];

126 foreach (PuzzleCell cell in cells)

127 {

128 if (cell.CellValue.HasValue)

129 {

130 usedValues[cell.CellValue.Value - 1] = true;

131 }

132 }

133
134 if (valueDependencies != null)

135 {

136 // Subscribe to valuedependencies

137 this.valueDependencies.UniqueValue += new EventHandler <EventArgs <SolutionStep >>(

UniqueValueFound);

138 }

139 }

140
141 private void HandleMessage(EventArgs <FIPAAclMessage > e)

142 {

143 switch (e.Value.MessagePerformative)

144 {

145 case FIPAAclMessage.Performative.Request:

146 // A strategy agent has requested some information .

147
148 // Record , that a strategy agent has visited the domain.

149 if (changeMap.ContainsKey ((IAgent)e.Value.Sender))

150 {

151 changeMap [(IAgent)e.Value.Sender] = false;

152 }

153 else

154 {

155 changeMap.Add((IAgent)e.Value.Sender , false);

156 }

157
158 if (e.Value.Content is ValueDependencyMessage)

159 {

160 ValueDependencyMessage content = new ValueDependencyMessage ();

161
162 foreach (UniqueChain chain in valueDependencies.Values)

163 {

164 if (chain.Count > 0)

165 {

166 content.AddValueDependency(chain);

167 }

168 }

169 // Return the value dependencies

170 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Inform , this , e.Value.Sender , content)));

171 }

172 else if (e.Value.Content is CellMessage)

173 {

Agents 95

174 CellMessage content = new CellMessage ();

175 foreach (PuzzleCell cell in cells)

176 {

177 if (!cell.CellValue.HasValue)

178 {

179 content.AddCell(cell);

180 }

181 }

182 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Inform , this , content)));

183 }

184 break;

185 default:

186 break;

187 }

188 }

189
190 #endregion

191
192 #region Event Handlers

193
194 private delegate void ValueChangedDelegate(object sender , EventArgs <Nullable <int >> e);

195 public void InvokeValueChanged(object sender , EventArgs <Nullable <int >> e)

196 {

197 ValueChangedDelegate del = new ValueChangedDelegate(this.CellValueChanged);

198 del(sender , e);

199 }

200
201
202 // O(n^2)

203 private void CellValueChanged(object sender , EventArgs <Nullable <int >> e)

204 {

205 PuzzleCell senderCell = (PuzzleCell)sender;

206 Message content;

207
208 // If senderCell has been given a value

209 if (!e.Value.HasValue)

210 {

211 int value = senderCell.CellValue.Value;

212
213 // If the value just sat , has already been used in the domain we have a conflict

214 if (usedValues[value - 1])

215 {

216 // Notify the CoordinatorAgent that a conflict has occured

217 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Inform , this , new ConflictMessage ())));

218 content = new EliminationStrategyMessage(AGENT_TYPE , new List <

EliminationSolutionStep >(), new List <PuzzleCell >(), new List <int >());

219 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Propose , this , content)));

220 return;

221 }

222 else // Otherwise remember that the value has been used in the domain

223 {

224 usedValues[value - 1] = true;

225 freeCells --;

226 }

227
228 // Update the valuedependencies

229 if (valueDependencies != null)

230 {

231 valueDependencies.RemoveValue(value);

232 // O(n^2)

233 valueDependencies.RemoveCell(senderCell);

234 }

235
236 List <EliminationSolutionStep > eliminations = new List <EliminationSolutionStep >();

237
238 // Compose the eliminations that occur on basis of the value sat in the current cell

239 foreach (PuzzleCell cell in cells)

240 {

241 if (cell != senderCell && !cell.CellValue.HasValue)

242 {

243 eliminations.Add(new EliminationSolutionStep(cell , value));

244 }

245 }

246
247 // Notify the CoordinatorAgent about the possible eliminations

248 content = new EliminationStrategyMessage(AGENT_TYPE , eliminations , new List <PuzzleCell

>(), new List <int >());

249 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Propose , this , content)));

250 }

251 else // Otherwise if sender has not been given a value , it must be because the cell has

been "undone" by backtrack search

252 {

96 Source code

253 // Undo the value of the cell.

254 usedValues[e.Value.Value - 1] = false;

255
256 // Make sure that valueDependencies are initialized

257 if (valueDependencies != null)

258 {

259 valueDependencies.AddCell(senderCell);

260 }

261 }

262 }

263
264 /// <summary >

265 /// Eventhandler called when a cell candidate is changed

266 /// </summary >

267 private void CellCandidatesChanged(object sender , EventArgs <int > e)

268 {

269 PuzzleCell cell = sender as PuzzleCell;

270
271 // If the cell no longer contains candidates , there is a conflict

272 if (cell.Candidates.Count == 0)

273 {

274 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Inform , this , new ConflictMessage ())));

275 }

276
277 // The domain has changed , record the change so that strategy agents can

278 // aquire the information later on.

279 List <IAgent > keys = new List <IAgent >(changeMap.Keys);

280 foreach (IAgent key in keys)

281 {

282 changeMap[key] = true;

283 }

284
285 // Make sure that valueDependencies are initialized

286 if (valueDependencies != null)

287 {

288 // Update valuedependencies

289 valueDependencies.RemoveCellAt(e.Value , cell);

290 }

291 if (cell.UniqueValue.HasValue)

292 {

293 // If the elimination has revealed a unique candidate value , inform the

CoordinatorAgent about it

294 SolutionStepMessage content = new SolutionStepMessage(new ValueSolutionStep(cell , cell.

UniqueValue.Value));

295 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Propose , this , content)));

296 }

297 }

298
299 /// <summary >

300 /// EventHandler called when a candidate is added to a cell.

301 /// Is used in Backtrack search.

302 /// </summary >

303 private void CellCandidatesAdd(object sender , EventArgs <int > e)

304 {

305 PuzzleCell cell = sender as PuzzleCell;

306 // Make sure that cellDependencies are initialized

307 if (valueDependencies != null)

308 {

309 // Update the valuedependencies , so that the domain is up to date

310 valueDependencies.AddCellAt(e.Value , cell);

311 }

312 }

313
314 void UniqueValueFound(object sender , EventArgs <SolutionStep > e)

315 {

316 SolutionStepMessage content = new SolutionStepMessage(e.Value);

317 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.Performative.

Propose , this , content)));

318 }

319 #endregion

320
321 #region IAgent Members

322
323 public Guid AgentID

324 {

325 get { return agentID; }

326 }

327
328 public event EventHandler <EventArgs <FIPAAclMessage >> SendMessage;

329
330 public void OnSendMessage(EventArgs <FIPAAclMessage > e)

331 {

332 SendMessage(this , new EventArgs <FIPAAclMessage >(e.Value));

333 }

Agents 97

334
335 public void InvokeMessageReceived(object sender , EventArgs <FIPAAclMessage > e)

336 {

337 MessageReceivedDelegate del = new MessageReceivedDelegate(this.MessageReceived);

338 del(sender , e);

339 }

340
341 public void MessageReceived(object sender , EventArgs <FIPAAclMessage > e)

342 {

343 lock (messageQueue)

344 {

345 messageQueue.Enqueue(e);

346 Monitor.Pulse(messageQueue);

347 }

348 }

349
350 public void Run()

351 {

352 EventArgs <FIPAAclMessage > message = null;

353 bool interrupted = false;

354
355 Initialize ();

356
357 while (! interrupted)

358 {

359 try

360 {

361 lock (messageQueue)

362 {

363 while (messageQueue.Count == 0)

364 {

365 Monitor.Wait(messageQueue);

366
367 }

368 message = messageQueue.Dequeue ();

369 }

370 HandleMessage(message);

371 }

372 catch (ThreadInterruptedException)

373 {

374 // Clean up

375 interrupted = true;

376 foreach (PuzzleCell cell in cells)

377 {

378 cell.ValueChanged -= new EventHandler <EventArgs <Nullable <int >>>(

CellValueChanged);

379 cell.CandidatesChanged -= new EventHandler <EventArgs <int >>(

CellCandidatesChanged);

380 cell.CandidatesAdd -= new EventHandler <EventArgs <int >>(CellCandidatesAdd);

381
382 // Remove domain reference from cell

383 cell.RemoveDomain(this);

384 }

385
386 if (valueDependencies != null)

387 {

388 valueDependencies.UniqueValue -= new EventHandler <EventArgs <SolutionStep >>(

UniqueValueFound);

389
390
391 for (int i = 0; i <= 9; i++)

392 {

393 valueDependencies.RemoveValue ((int)i);

394 }

395 valueDependencies = null;

396 }

397 cells.Clear();

398 }

399 }

400 }

401 #endregion

402
403 public override string ToString ()

404 {

405 StringBuilder s = new StringBuilder ();

406
407 foreach (PuzzleCell c in cells)

408 {

409 s.Append(c.ToString ());

410 }

411 return s.ToString ();

412 }

413 }

414 }

98 Source code

NakedAgent.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections.ObjectModel;

5 using System.Threading;

6 using MultiAgentSudokuSolver.Data;

7 using MultiAgentSudokuSolver.Messaging;

8
9 namespace MultiAgentSudokuSolver.Agents

10 {

11 /// <summary >

12 /// Agent implementing the Naked Set strategy

13 /// </summary >

14 public class NakedAgent : IAgent

15 {

16 private const string AGENT_TYPE = "NakedAgent";

17
18 #region Variables

19 private Guid agentID = new Guid();

20 private Queue <EventArgs <FIPAAclMessage >> messageQueue = new Queue <EventArgs <FIPAAclMessage >>();

21 private List <DomainAgent > excluded;

22 private Dictionary <DomainAgent , List <PuzzleCell >> usedCells;

23 private List <DomainAgent > domains;

24 private LogElement log = new LogElement("NakedAgent");

25 #endregion Variables

26
27 private delegate void MessageReceivedDelegate(object sender , EventArgs <FIPAAclMessage > e);

28
29 public NakedAgent(int puzzleSize)

30 {

31 excluded = new List <DomainAgent >(3* puzzleSize);

32 usedCells = new Dictionary <DomainAgent , List <PuzzleCell >>(3* puzzleSize);

33 domains = new List <DomainAgent >(3* puzzleSize);

34 }

35
36 public void AddDomain(DomainAgent domain)

37 {

38 domains.Add(domain);

39 usedCells.Add(domain , new List <PuzzleCell >(domain.FreeCells));

40 }

41
42 public void RemoveDomain(DomainAgent domain)

43 {

44 domains.Remove(domain);

45 usedCells.Remove(domain);

46 }

47
48 /// <summary >

49 /// Recursive search for a chain of naked cells

50 /// </summary >

51 /// <param name =" cell">Current focus cell </param >

52 /// <param name =" neighbours ">Possible neighbours </param >

53 /// <param name =" choices">The current number of candidate choices in the chain </param >

54 /// <param name =" length">The length of the chain </param >

55 /// <param name =" maxLength">The max. length of the chain </param >

56 /// <returns >Return a collection of cells representing a chain of naked cells </ returns >

57 private Collection <PuzzleCell > NakedSearch(PuzzleCell cell , Collection <PuzzleCell > neighbours ,

Collection <int > choices , int length , int maxLength)

58 {

59 PuzzleCell neighbour;

60 List <int > temp;

61 List <PuzzleCell > cells;

62
63 if (length == choices.Count)

64 {

65 cells = new List <PuzzleCell >(length);

66 cells.Add(cell);

67 return new Collection <PuzzleCell >(cells);

68 }

69
70 // O(3(n -1)) = O(n)

71 while (neighbours.Count > 0)

72 {

73 neighbour = neighbours [0];

74
75 // O(n)

76 Collection <int > extra = neighbour.CandidatesDifferent(choices);

77
78 int candidates = neighbour.Candidates.Count; // No. of candidates in neighbour cell

79 int common = candidates - extra.Count; // No. of common candidates

80
81 // Check if we have n cells with only n possible candidates , meaning that we are at the

endpoint

Agents 99

82 // of a chain of naked cells.

83 if (length == (choices.Count + extra.Count))

84 {

85 cells = new List <PuzzleCell >(length);

86 cells.Add(cell);

87 return new Collection <PuzzleCell >(cells);

88 }

89
90 // Neighbour cell has candidates in common with parent cell

91 if (common > 0)

92 {

93 if (length < maxLength)

94 {

95 temp = new List <int >(choices);

96 temp.AddRange(extra);

97 cells = new List <PuzzleCell >(maxLength);

98
99 List <PuzzleCell > neighbourList = new List <PuzzleCell >(neighbours);

100 neighbourList.Remove(neighbour);

101
102 // Recursive call

103 cells.AddRange(NakedSearch(neighbour , new Collection <PuzzleCell >(neighbourList)

, new Collection <int >(temp), length + 1, maxLength));

104
105 // The chain is starting to build , meaning that this cell is also part of it

106 if (cells.Count > 0)

107 {

108 cells.Add(cell);

109 return new Collection <PuzzleCell >(cells);

110 }

111 }

112 }

113
114 // this neighbour gave nothing , remove it and try another

115 neighbours.Remove(neighbour);

116 }

117
118 // Return empty collection

119 return new Collection <PuzzleCell >();

120 }

121
122 /// <summary >

123 /// Heuristic for the NakedAgent

124 /// </summary >

125 private Collection <PuzzleCell > PerformSearchAction(Collection <PuzzleCell > cells , int maxLength)

126 {

127 // Find the puzzle cell with minimum candidates

128 PuzzleCell start = SetFunctions.Min <PuzzleCell >(cells);

129
130 Collection <PuzzleCell > nakedCells = new Collection <PuzzleCell >();

131 List <PuzzleCell > neighbours;

132
133 // Searching for a list of naked cells

134 while (nakedCells.Count < 1 && cells.Count > 0)

135 {

136 // Remove chosen cell as it should only be treated once

137 cells.Remove(start);

138
139 neighbours = new List <PuzzleCell >(cells.Count);

140 neighbours.AddRange(cells);

141
142 nakedCells = NakedSearch(start , new Collection <PuzzleCell >(neighbours), start.

Candidates , 1, maxLength);

143
144 if (cells.Count > 0)

145 {

146 start = cells [0];

147 }

148 }

149
150 return nakedCells;

151 }

152
153
154 private void Request ()

155 {

156 // if agent has searched all domains

157 if (excluded.Count == domains.Count)

158 {

159 // Reset excluded domains - coordinater agent ensures that this agent is

160 // only called again when the state of the puzzle has changed.

161 excluded.Clear();

162
163 // Refuse the search message

164 StrategyMessage content = new StrategyMessage("Naked");

100 Source code

165 FIPAAclMessage message = new FIPAAclMessage(FIPAAclMessage.Performative.Refuse , this ,

content);

166 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

167 }

168 else

169 {

170 // Start with one domain agent

171 Random random = new Random ();

172 DomainAgent start = domains[random.Next() % domains.Count];

173 while (excluded.Contains(start))

174 {

175 start = domains[random.Next() % domains.Count];

176 }

177 FIPAAclMessage message = new FIPAAclMessage(FIPAAclMessage.Performative.Request , this ,

start , new CellMessage ());

178 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

179 }

180 }

181
182 private void SelectAction(DomainAgent sender , CellMessage message)

183 {

184 Collection <PuzzleCell > cells = message.Cells;

185
186 // Only search cells that are not already found as naked in the given domain

187 // O(n)

188 foreach (PuzzleCell cell in usedCells[sender])

189 {

190 cells.Remove(cell);

191 }

192
193 // If there is cells to search

194 if (cells.Count > 1)

195 {

196 Collection <PuzzleCell > nakedCells = PerformSearchAction(cells ,(int)Math.Ceiling ((double

)(cells.Count / 2)));

197
198 if (nakedCells.Count == 0)

199 {

200 // We found nothing

201 // Don ’t bother to search this domain again before the global state changes.

202 excluded.Add(sender);

203 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Request , this , new StrategyMessage("Naked"))));

204 }

205 else

206 {

207 // We have found some naked cells

208 usedCells[sender]. AddRange(nakedCells);

209 // Compose and send elimination message

210 EliminationStrategyMessage content = ComposeEliminations(nakedCells);

211 if (content != null)

212 {

213 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Propose , this , content)));

214 OnLog(log);

215 }

216 else

217 {

218 // If no eliminations where possible , continue search.

219 SelectAction(sender , message);

220 }

221
222 }

223
224 }

225 else // Otherwise try another domain

226 {

227 excluded.Add(sender);

228
229 Request ();

230 }

231 }

232
233 private EliminationStrategyMessage ComposeEliminations(Collection <PuzzleCell > nakedCells)

234 {

235 // Helper lists , to determine which candidates to eliminate , and in which domains

236 List <int > eliminateCandidates;

237 List <DomainAgent > domains;

238 Collection <DomainAgent > commonDomains;

239
240 eliminateCandidates = new List <int >();

241 domains = new List <DomainAgent >();

242 commonDomains = new Collection <DomainAgent >();

243
244 // Determine how many domains the cells have in common; must be either 1 or 2.

245 // and determine the union candidate set for the cells.

Agents 101

246 // O(maxCount *(2+ maxCount)) = O(n^2)

247 foreach (PuzzleCell cell in nakedCells)

248 {

249 if (commonDomains.Count == 0)

250 {

251 commonDomains = cell.Domains;

252 }

253 else

254 {

255 IEnumerable <DomainAgent > o = SetFunctions.Intersect <DomainAgent >(commonDomains ,

cell.Domains);

256 commonDomains = new Collection <DomainAgent >(new List <DomainAgent >(o));

257 }

258
259 foreach (int candidate in cell.Candidates)

260 {

261 if (! eliminateCandidates.Contains(candidate))

262 {

263 eliminateCandidates.Add(candidate);

264 }

265 }

266 }

267
268 List <PuzzleCell > eliminationCells = new List <PuzzleCell >();

269 List <EliminationSolutionStep > eliminations = new List <EliminationSolutionStep >();

270
271 log.Information = "NakedÃcellsÃfoundÃin:";

272 // Ensure that found naked cells are remembered , so we don ’t search them again.

273 // O(2* maxcount) = O(n)

274 foreach (DomainAgent domain in commonDomains)

275 {

276 foreach (PuzzleCell cell in domain.GetCells ())

277 {

278 if (nakedCells.Contains(cell))

279 {

280 log.Information = String.Concat(log.Information , "\n", cell.ToString ());

281 }

282 else

283 {

284 if (! eliminationCells.Contains(cell) && cell.Candidates.Count > 0 && !cell.

CellValue.HasValue)

285 {

286 eliminationCells.Add(cell);

287 foreach (int candidate in eliminateCandidates)

288 {

289 eliminations.Add(new EliminationSolutionStep(cell , candidate));

290 }

291 }

292 }

293 }

294 }

295
296 log.StopTimer ();

297 if (eliminations.Count > 0)

298 {

299 EliminationStrategyMessage content = new EliminationStrategyMessage(AGENT_TYPE ,

eliminations , new List <PuzzleCell >(nakedCells), eliminateCandidates);

300 return content;

301 }

302 else return null;

303 }

304
305 /// <summary >

306 /// Parses and handles a given FIPA acl message

307 /// </summary >

308 /// <param name ="e">The message to be handled </param >

309 private void HandleMessage(EventArgs <FIPAAclMessage > e)

310 {

311 switch (e.Value.MessagePerformative)

312 {

313 case FIPAAclMessage.Performative.Inform:

314 if (e.Value.Content is CellMessage)

315 {

316 SelectAction ((DomainAgent)e.Value.Sender , (CellMessage)e.Value.Content);

317 }

318 break;

319 case FIPAAclMessage.Performative.Request:

320 if (e.Value.Content is StrategyMessage)

321 {

322 if (e.Value.Sender is CoordinatorAgent)

323 {

324 // Ask each domain if it has changed since last time the strategy visited

325 foreach (DomainAgent domain in domains)

326 {

327 if (domain.IsChanged(this))

328 {

102 Source code

329 excluded.Remove(domain);

330 }

331 }

332 }

333 Request ();

334 }

335 break;

336 default:

337 break;

338
339 }

340 }

341
342 #region IAgent Members

343
344 public Guid AgentID

345 {

346 get { return agentID; }

347 }

348
349 public event EventHandler <MultiAgentSudokuSolver.Data.EventArgs <MultiAgentSudokuSolver.

Messaging.FIPAAclMessage >> SendMessage;

350
351 public void OnSendMessage(MultiAgentSudokuSolver.Data.EventArgs <MultiAgentSudokuSolver.

Messaging.FIPAAclMessage > e)

352 {

353 if (SendMessage != null)

354 {

355 SendMessage(this , e);

356 }

357 }

358
359 public event EventHandler <EventArgs <LogElement >> Log;

360
361 protected void OnLog(LogElement log)

362 {

363 if (Log != null)

364 {

365 Log(this , new EventArgs <LogElement >(log));

366 }

367 }

368
369 public void InvokeMessageReceived(object sender , EventArgs <FIPAAclMessage > e)

370 {

371 MessageReceivedDelegate del = new MessageReceivedDelegate(this.MessageReceived);

372 del(sender , e);

373 }

374
375 public void MessageReceived(object sender , EventArgs <FIPAAclMessage > e)

376 {

377 lock (messageQueue)

378 {

379 messageQueue.Enqueue(e);

380 Monitor.Pulse(messageQueue);

381 }

382 }

383
384 public void Run()

385 {

386 EventArgs <FIPAAclMessage > message = null;

387 bool interrupted = false;

388 while (! interrupted)

389 {

390 try

391 {

392 lock (messageQueue)

393 {

394 while (messageQueue.Count == 0)

395 {

396 Monitor.Wait(messageQueue);

397
398 }

399 message = messageQueue.Dequeue ();

400 }

401 HandleMessage(message);

402 }

403 catch (ThreadInterruptedException)

404 {

405 interrupted = true;

406 }

407 }

408 }

409 #endregion

410 }

411 }

Agents 103

HiddenAgent.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections.ObjectModel;

5 using System.Threading;

6 using MultiAgentSudokuSolver.Data;

7 using MultiAgentSudokuSolver.Messaging;

8
9 namespace MultiAgentSudokuSolver.Agents

10 {

11 /// <summary >

12 /// Agent implementing search for Hidden Sets

13 /// </summary >

14 public class HiddenAgent : IAgent

15 {

16 private const string AGENT_TYPE = "HiddenAgent";

17
18 #region Variables

19 private Guid agentID = new Guid();

20 private Queue <EventArgs <FIPAAclMessage >> messageQueue = new Queue <EventArgs <FIPAAclMessage >>();

21 private List <DomainAgent > excluded;// = new List <DomainAgent >();

22 private Dictionary <DomainAgent , List <UniqueChain >> usedChains;// = new Dictionary <DomainAgent ,

List <UniqueChain >>();

23 private List <DomainAgent > domains;// = new List <DomainAgent >();

24 private LogElement log = new LogElement("HiddenAgent");

25 #endregion Variables

26
27 private delegate void MessageReceivedDelegate(object sender , EventArgs <FIPAAclMessage > e);

28
29 public HiddenAgent(int puzzleSize)

30 {

31 excluded = new List <DomainAgent >(3* puzzleSize);

32 usedChains = new Dictionary <DomainAgent , List <UniqueChain >>(3* puzzleSize);

33 domains = new List <DomainAgent >(3* puzzleSize);

34 }

35
36 // Add the domains to be searched

37 public void AddDomain(DomainAgent domain)

38 {

39 domains.Add(domain);

40 usedChains.Add(domain , new List <UniqueChain >(domain.FreeCells));

41 }

42
43 public void RemoveDomain(DomainAgent domain)

44 {

45 domains.Remove(domain);

46 usedChains.Remove(domain);

47 }

48
49 // Search for Hidden Sets

50 private Collection <UniqueChain > Search(UniqueChain chain , Collection <UniqueChain >

neighbourChains , Collection <PuzzleCell > choices , int length , int maxLength)

51 {

52 UniqueChain neighbour;

53 List <PuzzleCell > temp;

54 List <UniqueChain > chains;

55
56 // If we have found x (= length) chains which share y (= choices.Count) cells we have a

Hidden Set

57 if (length == choices.Count)

58 {

59 // Add this chain to the Hidden Set

60 chains = new List <UniqueChain >();

61 chains.Add(chain);

62 return new Collection <UniqueChain >(chains);

63 }

64
65 // We have not yet found a Hidden Set , but still have neighbour chains to examine

66 while (neighbourChains.Count > 0)

67 {

68 neighbour = neighbourChains [0];

69
70 Collection <PuzzleCell > extra = neighbour.GetDifferentCells(choices);

71
72 int candidates = neighbour.Count;

73 int common = candidates - extra.Count;

74
75 // If the chosen chain has cells in common with the allready chosen cells

76 if (common > 0)

77 {

78 if (length < maxLength)

79 {

80 temp = new List <PuzzleCell >(choices);

104 Source code

81 // Add the new cells from the chain to the allready chosen cells

82 temp.AddRange(extra);

83 chains = new List <UniqueChain >();

84
85 List <UniqueChain > neighbourList = new List <UniqueChain >(neighbourChains);

86 neighbourList.Remove(neighbour);

87
88 // Recursive call

89 chains.AddRange(Search(neighbour , new Collection <UniqueChain >(neighbourList),

new Collection <PuzzleCell >(temp), length + 1, maxLength));

90
91 // The chain is starting to build , meaning that this cell is also part of it

92 if (chains.Count > 0)

93 {

94 chains.Add(chain);

95 return new Collection <UniqueChain >(chains);

96 }

97 }

98 }

99
100 // this neighbour gave nothing , remove it and try another

101 neighbourChains.Remove(neighbour);

102 }

103
104 // Return empty collection

105 return new Collection <UniqueChain >();

106 }

107
108 private Collection <UniqueChain > PerformSearchAction(Collection <UniqueChain > chains , int

maxLength)

109 {

110 Collection <UniqueChain > hiddenChains = new Collection <UniqueChain >();

111 List <UniqueChain > neighbours;

112
113 // Find the shortest chain

114 UniqueChain start = SetFunctions.Min <UniqueChain >(chains);

115
116 if (start.Count > chains.Count)

117 {

118 // No reason to continue the search

119 return hiddenChains;

120 }

121
122 // Map each puzzlecell to all the unique chains it is a part of

123 Dictionary <PuzzleCell , List <UniqueChain >> chainMap = new Dictionary <PuzzleCell , List <

UniqueChain >>();

124 foreach (UniqueChain chain in chains)

125 {

126 foreach (PuzzleCell cell in chain.GetCells ())

127 {

128 if (! chainMap.ContainsKey(cell))

129 {

130 chainMap.Add(cell , new List <UniqueChain >());

131 }

132 chainMap[cell].Add(chain);

133 }

134 }

135
136 while (hiddenChains.Count < 1 && chains.Count > 0)

137 {

138 chains.Remove(start);

139
140 neighbours = new List <UniqueChain >();

141
142 // Find neighbour chains to the starting UniqueChain

143 foreach (PuzzleCell cell in start.GetCells ())

144 {

145 foreach (UniqueChain chain in chainMap[cell])

146 {

147 if (! neighbours.Contains(chain)) //&& ! usedChains .Contains(chain))

148 {

149 neighbours.Add(chain);

150 }

151 }

152 }

153 neighbours.Remove(start);

154
155 // Start the search for a Hidden Set

156 hiddenChains = Search(start , new Collection <UniqueChain >(neighbours), start.GetCells (),

1, maxLength);

157
158 if (chains.Count > 0)

159 {

160 start = chains [0];

161 }

162 }

Agents 105

163
164 return hiddenChains;

165 }

166
167 private void Request ()

168 {

169 // if hidden has searched all domains

170 if (excluded.Count == domains.Count)

171 {

172 // Reset excluded domains - coordinater agent ensures that this agent is

173 // only called again when the state of the puzzle has changed.

174 excluded.Clear();

175
176 // Refuse the search message

177 StrategyMessage content = new StrategyMessage("Hidden");

178 FIPAAclMessage message = new FIPAAclMessage(FIPAAclMessage.Performative.Refuse , this ,

content);

179 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

180 }

181 else

182 {

183 // Start with one domain agent

184 Random random = new Random ();

185 DomainAgent start = domains[random.Next() % domains.Count];

186 while (excluded.Contains(start))

187 {

188 start = domains[random.Next() % domains.Count];

189 }

190 FIPAAclMessage message = new FIPAAclMessage(FIPAAclMessage.Performative.Request , this ,

start , new ValueDependencyMessage ());

191 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

192 }

193 }

194
195 private void SelectAction(DomainAgent sender , ValueDependencyMessage message)

196 {

197 Collection <UniqueChain > chains = message.GetValueDependencies ();

198
199 foreach (UniqueChain chain in usedChains[sender])

200 {

201 chains.Remove(chain);

202 }

203
204 if (chains.Count > 1)

205 {

206 Collection <UniqueChain > hiddenChains = PerformSearchAction(chains , (int)Math.Ceiling ((

double)(sender.FreeCells / 2)));

207
208 if (hiddenChains.Count == 0)

209 {

210 // We found nothing

211 // Don ’t bother to search this domain again before the global state changes.

212 excluded.Add(sender);

213 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Request , this , new StrategyMessage("Hidden"))));

214 }

215 else

216 {

217 // We have found some naked cells

218 usedChains[sender]. AddRange(hiddenChains);

219 // Compose and send elimination message

220 EliminationStrategyMessage content = ComposeEliminations(hiddenChains);

221 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Propose , this , content)));

222 }

223 }

224 else // Otherwise try another domain

225 {

226 excluded.Add(sender);

227
228 Request ();

229 }

230 }

231
232 /// <summary >

233 /// Compose the eliminations which is a result of the found Hidden Set

234 /// </summary >

235 /// <param name =" hiddenChains ">A collection of UniqeChain objects containing the Hidden Set </

param >

236 /// <returns >An EliminationStrategyMessage containing all possible elimination on basis of the

Hidden Set </ returns >

237 private EliminationStrategyMessage ComposeEliminations(Collection <UniqueChain > hiddenChains)

238 {

239 List <PuzzleCell > eliminationCells = new List <PuzzleCell >();

240 List <int > excludedCandidates = new List <int >();

241 List <int > eliminationCandidates = new List <int >();

106 Source code

242
243 foreach (UniqueChain chain in hiddenChains)

244 {

245 excludedCandidates.Add(chain.Value);

246
247 foreach (PuzzleCell cell in chain.GetCells ())

248 {

249 if (! eliminationCells.Contains(cell) && !cell.CellValue.HasValue)

250 {

251 eliminationCells.Add(cell);

252 }

253 }

254 }

255
256 List <EliminationSolutionStep > eliminations = new List <EliminationSolutionStep >();

257 foreach (PuzzleCell cell in eliminationCells)

258 {

259 foreach (int candidate in cell.Candidates)

260 {

261 if (! excludedCandidates.Contains(candidate))

262 {

263 eliminations.Add(new EliminationSolutionStep(cell , candidate));

264 }

265 }

266 }

267
268 EliminationStrategyMessage content = new EliminationStrategyMessage(AGENT_TYPE ,eliminations

, eliminationCells , eliminationCandidates);

269 return content;

270 }

271
272
273 private void HandleMessage(EventArgs <FIPAAclMessage > e)

274 {

275 switch (e.Value.MessagePerformative)

276 {

277 case FIPAAclMessage.Performative.Inform:

278 if (e.Value.Content is ValueDependencyMessage)

279 {

280 SelectAction ((DomainAgent)e.Value.Sender , (ValueDependencyMessage)e.Value.

Content);

281 }

282 break;

283 case FIPAAclMessage.Performative.Request:

284 if (e.Value.Content is StrategyMessage)

285 {

286 if (e.Value.Sender is CoordinatorAgent)

287 {

288 // Start using strategy

289
290 // First check if some domains are excluded

291 if (excluded.Count > 0)

292 {

293 // Ask each domain if it has changed since last time the strategy

visited

294 foreach (DomainAgent domain in domains)

295 {

296 if (domain.IsChanged(this))

297 {

298 excluded.Remove(domain);

299 }

300 }

301 if (excluded.Count > 0)

302 {

303 int i = excluded.Count;

304 }

305 }

306
307 }

308 Request ();

309 }

310 break;

311 default:

312 break;

313 }

314 }

315
316 #region IAgent Members

317
318 public Guid AgentID

319 {

320 get { return agentID; }

321 }

322
323 public event EventHandler <MultiAgentSudokuSolver.Data.EventArgs <MultiAgentSudokuSolver.

Messaging.FIPAAclMessage >> SendMessage;

Agents 107

324
325 public void OnSendMessage(MultiAgentSudokuSolver.Data.EventArgs <MultiAgentSudokuSolver.

Messaging.FIPAAclMessage > e)

326 {

327 if (SendMessage != null)

328 {

329 SendMessage(this , e);

330 }

331 }

332
333 public void MessageReceived(object sender , MultiAgentSudokuSolver.Data.EventArgs <

MultiAgentSudokuSolver.Messaging.FIPAAclMessage > e)

334 {

335 lock (messageQueue)

336 {

337 messageQueue.Enqueue(e);

338 Monitor.Pulse(messageQueue);

339 }

340 }

341
342 public void InvokeMessageReceived(object sender , MultiAgentSudokuSolver.Data.EventArgs <

MultiAgentSudokuSolver.Messaging.FIPAAclMessage > e)

343 {

344 MessageReceivedDelegate del = new MessageReceivedDelegate(this.MessageReceived);

345 del(sender , e);

346 }

347
348 public void Run()

349 {

350 EventArgs <FIPAAclMessage > message = null;

351 bool interrupted = false;

352 while (! interrupted)

353 {

354 try

355 {

356 lock (messageQueue)

357 {

358 while (messageQueue.Count == 0)

359 {

360 Monitor.Wait(messageQueue);

361
362 }

363 message = messageQueue.Dequeue ();

364 }

365 HandleMessage(message);

366 }

367 catch (ThreadInterruptedException)

368 {

369 interrupted = true;

370 }

371 }

372 }

373
374 #endregion

375 }

376 }

IntersectionAgent.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using MultiAgentSudokuSolver.Data;

5 using MultiAgentSudokuSolver.Messaging;

6 using System.Collections.ObjectModel;

7 using System.Threading;

8
9 namespace MultiAgentSudokuSolver.Agents

10 {

11 /// <summary >

12 /// Agent implementing the Intersection Set strategy

13 /// </summary >

14 public class IntersectionAgent : IAgent

15 {

16 struct Intersection

17 {

18 public DomainAgent domain;

19 public UniqueChain chain;

20 }

21

108 Source code

22 private const string AGENT_TYPE = "IntersectionAgent";

23
24 #region Variables

25 private Guid agentID = new Guid();

26 private Queue <EventArgs <FIPAAclMessage >> messageQueue = new Queue <EventArgs <FIPAAclMessage >>();

27 private List <DomainAgent > excluded;

28 private Dictionary <DomainAgent , List <UniqueChain >> usedChains = new Dictionary <DomainAgent ,

List <UniqueChain >>();

29 private List <DomainAgent > rows;

30 private List <DomainAgent > columns;

31 private List <DomainAgent > squares;

32 private LogElement log = new LogElement("IntersectionAgent");

33
34
35 #endregion Variables

36
37 public IntersectionAgent(int puzzleSize)

38 {

39 excluded = new List <DomainAgent >(3 * puzzleSize);

40 rows = new List <DomainAgent >(puzzleSize);

41 columns = new List <DomainAgent >(puzzleSize);

42 squares = new List <DomainAgent >(puzzleSize);

43 }

44
45 private delegate void MessageReceivedDelegate(object sender , EventArgs <FIPAAclMessage > e);

46
47 public void AddRowDomain(DomainAgent domain)

48 {

49 rows.Add(domain);

50 usedChains.Add(domain , new List <UniqueChain >(domain.FreeCells));

51 }

52 public void RemoveRowDomain(DomainAgent domain) { rows.Remove(domain); }

53
54 public void AddColumnDomain(DomainAgent domain)

55 {

56 columns.Add(domain);

57 usedChains.Add(domain , new List <UniqueChain >(domain.FreeCells));

58 }

59 public void RemoveColumnDomain(DomainAgent domain) { columns.Remove(domain); }

60
61 public void AddSquareDomain(DomainAgent domain)

62 {

63 squares.Add(domain);

64 usedChains.Add(domain , new List <UniqueChain >(domain.FreeCells));

65 }

66 public void RemoveSquareDomain(DomainAgent domain) { squares.Remove(domain); }

67
68
69 private Intersection PerformSearchAction(Collection <UniqueChain > chains , DomainAgent sender)

70 {

71 UniqueChain pointingChain = null;

72 DomainAgent intersectionDomain = null;

73 List <DomainAgent > commonDomains;

74 UniqueChain start;

75
76 while (pointingChain == null && chains.Count > 0)

77 {

78 start = chains [0];

79 chains.Remove(start);

80
81 commonDomains = new List <DomainAgent >();

82
83 Collection <PuzzleCell > chainCells = start.GetCells ();

84 commonDomains.AddRange(chainCells [0]. Domains);

85
86 foreach (PuzzleCell cell in chainCells)

87 {

88 commonDomains = new List <DomainAgent >(SetFunctions.Intersect <DomainAgent >(cell.

Domains , new Collection <DomainAgent >(commonDomains)));

89 }

90
91 if (commonDomains.Count == 2)

92 {

93 // Pointing pair found

94 commonDomains.Remove(sender);

95 pointingChain = start;

96 intersectionDomain = commonDomains [0];

97 }

98
99 }

100 Intersection intersection;

101 intersection.chain = pointingChain;

102 intersection.domain = intersectionDomain;

103 return intersection;

104 }

105

Agents 109

106
107 private void SelectAction(DomainAgent sender , ValueDependencyMessage message)

108 {

109 Collection <UniqueChain > chains = message.GetValueDependencies ();

110 List <UniqueChain > reduced = new List <UniqueChain >();

111 Intersection intersection;

112 intersection.chain = null;

113 intersection.domain = null;

114
115 foreach (UniqueChain chain in chains)

116 {

117 if (chain.Count <= Math.Sqrt(sender.GetCells ().Count) && !usedChains[sender]. Contains(

chain))

118 {

119 reduced.Add(chain);

120 }

121 }

122
123 if (reduced.Count > 0)

124 {

125 // If we have some chains to examine , search for a intersection set

126 intersection = PerformSearchAction(new Collection <UniqueChain >(reduced), sender);

127 }

128
129 if (intersection.chain == null)

130 {

131 // We found nothing

132 // Don ’t bother to search this domain again before the global state changes.

133 excluded.Add(sender);

134 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Request , this , new StrategyMessage("Intersection"))));

135 }

136 else

137 {

138 usedChains[sender].Add(intersection.chain);

139 // Compose and send elimination message

140 EliminationStrategyMessage content = ComposeEliminations(intersection.chain ,

intersection.domain , sender);

141 if (content != null)

142 {

143 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Propose , this , content)));

144 }

145 else

146 {

147 // Continue with search of intersections

148 SelectAction(sender , message);

149 }

150 }

151 }

152
153 private void Request ()

154 {

155 // if agent has searched all domains

156 if (excluded.Count == squares.Count)

157 {

158 // Refuse the search message

159 StrategyMessage content = new StrategyMessage("Intersection");

160 FIPAAclMessage message = new FIPAAclMessage(FIPAAclMessage.Performative.Refuse , this ,

content);

161 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

162 }

163 else

164 {

165 // Start with one domain agent

166 Random random = new Random ();

167 DomainAgent start = squares[random.Next() % squares.Count];

168 while (excluded.Contains(start))

169 {

170 start = squares[random.Next() % squares.Count];

171 }

172 FIPAAclMessage message = new FIPAAclMessage(FIPAAclMessage.Performative.Request , this ,

start , new ValueDependencyMessage ());

173 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

174 }

175 }

176 private EliminationStrategyMessage ComposeEliminations(UniqueChain intersectionChain ,

DomainAgent intersection , DomainAgent excluded)

177 {

178 List <EliminationSolutionStep > eliminations = new List <EliminationSolutionStep >();

179
180 List <int > eliminationCandidates = new List <int >();

181
182 eliminationCandidates.Add(intersectionChain.Value);

183 Collection <PuzzleCell > excludedCells = excluded.GetCells ();

184

110 Source code

185 foreach (PuzzleCell cell in intersection.GetCells ())

186 {

187 if (! excludedCells.Contains(cell) && cell.Candidates.Contains(intersectionChain.Value)

&& !cell.CellValue.HasValue)

188 {

189 eliminations.Add(new EliminationSolutionStep(cell , intersectionChain.Value));

190 }

191 }

192
193 if (eliminations.Count > 0)

194 {

195 EliminationStrategyMessage content = new EliminationStrategyMessage(AGENT_TYPE ,

eliminations , intersectionChain.GetCells (), eliminationCandidates);

196 return content;

197 }

198
199 return null;

200 }

201
202 /// <summary >

203 /// Parses and handles a given FIPA acl message

204 /// </summary >

205 /// <param name ="e">The message to be handled </param >

206 private void HandleMessage(EventArgs <FIPAAclMessage > e)

207 {

208 switch (e.Value.MessagePerformative)

209 {

210 case FIPAAclMessage.Performative.Inform:

211 if (e.Value.Content is ValueDependencyMessage)

212 {

213 SelectAction ((DomainAgent)e.Value.Sender , (ValueDependencyMessage)e.Value.

Content);

214 }

215 break;

216 case FIPAAclMessage.Performative.Request:

217 if (e.Value.Content is StrategyMessage)

218 {

219 if (e.Value.Sender is CoordinatorAgent)

220 {

221 // Ask each domain if it has changed since last time the strategy visited

222 foreach (DomainAgent domain in squares)

223 {

224 if (domain.IsChanged(this))

225 {

226 excluded.Remove(domain);

227 }

228 }

229 }

230 Request ();

231 }

232 break;

233 default:

234 break;

235 }

236 }

237
238 #region IAgent Members

239
240 public Guid AgentID

241 {

242 get { return agentID; }

243 }

244
245 public event EventHandler <MultiAgentSudokuSolver.Data.EventArgs <MultiAgentSudokuSolver.

Messaging.FIPAAclMessage >> SendMessage;

246
247 public void OnSendMessage(MultiAgentSudokuSolver.Data.EventArgs <MultiAgentSudokuSolver.

Messaging.FIPAAclMessage > e)

248 {

249 if (SendMessage != null)

250 {

251 SendMessage(this , e);

252 }

253 }

254
255 public event EventHandler <EventArgs <LogElement >> Log;

256
257 protected void OnLog(LogElement log)

258 {

259 if (Log != null)

260 {

261 Log(this , new EventArgs <LogElement >(log));

262 }

263 }

264
265 public void InvokeMessageReceived(object sender , EventArgs <FIPAAclMessage > e)

Agents 111

266 {

267 MessageReceivedDelegate del = new MessageReceivedDelegate(this.MessageReceived);

268 del(sender , e);

269 }

270
271 public void MessageReceived(object sender , EventArgs <FIPAAclMessage > e)

272 {

273 lock (messageQueue)

274 {

275 messageQueue.Enqueue(e);

276 Monitor.Pulse(messageQueue);

277 }

278 }

279
280 public void Run()

281 {

282 EventArgs <FIPAAclMessage > message = null;

283 bool interrupted = false;

284 while (! interrupted)

285 {

286 try

287 {

288 lock (messageQueue)

289 {

290 while (messageQueue.Count == 0)

291 {

292 Monitor.Wait(messageQueue);

293 }

294 message = messageQueue.Dequeue ();

295 }

296 HandleMessage(message);

297 }

298 catch (ThreadInterruptedException)

299 {

300 interrupted = true;

301 }

302 }

303 }

304 #endregion

305 }

306 }

CoordinatorAgent.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Collections.ObjectModel;

4 using System.Globalization;

5 using System.Text;

6 using System.Threading;

7 using MultiAgentSudokuSolver.Messaging;

8 using MultiAgentSudokuSolver.Data;

9
10 namespace MultiAgentSudokuSolver.Agents

11 {

12 /// <summary >

13 /// CoordinatorAgent coordinates the MultiAgent system.

14 /// It controls when a value should be sat in the Sudoku puzzle.

15 /// It controls when and which strategies to try

16 /// It controls the backtrack search which is used as a last resort.

17 /// </summary >

18 public class CoordinatorAgent : IAgent

19 {

20 private enum Strategies { Hidden , Naked , Intersection };

21
22 #region Variables

23 private Guid agentID = Guid.NewGuid ();

24 private Queue <SolutionStep > queue;

25 private Queue <SolutionStep > eliminationQueue;

26 private Queue <EventArgs <FIPAAclMessage >> messageQueue = new Queue <EventArgs <FIPAAclMessage >>();

27 private List <PuzzleCell > cells;

28 private int domainAnswers;

29 private Queue <Strategies > availableStrategies = new Queue <Strategies >();

30
31 // Backtrack variables

32 private Stack <DecisionBasis > decisions;

33 private Dictionary <int , Collection <SolutionStep >> implicationsMap;

34 private List <SolutionStep > implications;

35 private bool recordImplications = false;

36 private bool conflict = false;

112 Source code

37
38 // Statistics

39 private int backtrackcount;

40 private int searchcount;

41 private LogElement log = new LogElement("CoordinatorAgent");

42 #endregion Variables

43
44 private delegate void MessageReceivedDelegate(object sender , EventArgs <FIPAAclMessage > e);

45
46 public CoordinatorAgent(int puzzleSize)

47 {

48 cells = new List <PuzzleCell >(puzzleSize);

49 queue = new Queue <SolutionStep >(puzzleSize * puzzleSize);

50 eliminationQueue = new Queue <SolutionStep >(puzzleSize * puzzleSize * puzzleSize);

51 decisions = new Stack <DecisionBasis >(puzzleSize * puzzleSize);

52 implications = new List <SolutionStep >(puzzleSize * puzzleSize * puzzleSize);

53 implicationsMap = new Dictionary <int , Collection <SolutionStep >>(puzzleSize * puzzleSize);

54 }

55
56 #region Public Methods

57 public void InitializeBoard(PuzzleCell [,] cells , string [] data , int gridSize)

58 {

59 // Add the possible strategies

60 availableStrategies.Enqueue(Strategies.Intersection);

61 availableStrategies.Enqueue(Strategies.Hidden);

62 availableStrategies.Enqueue(Strategies.Naked);

63
64 // Create a list containing all PuzzleCell objects of the puzzle

65 foreach (PuzzleCell cell in cells)

66 {

67 this.cells.Add(cell);

68 }

69
70 int column = 0, row = 0;

71
72 // Parse the data array

73 foreach (string n in data)

74 {

75 if (!n.Equals(".") && !n.Equals("0"))

76 {

77 queue.Enqueue(new ValueSolutionStep(cells[column , row], int.Parse(n.ToString ())));

78 }

79
80 column ++;

81 if (column == gridSize)

82 {

83 column = 0;

84 row++;

85 }

86 }

87 }

88 #endregion

89
90 #region Backtrack search

91
92 /// <summary >

93 /// Determine the next cell to use as decision basis. Sort the cell list , in respect to number

of candidates

94 /// Choose the cell with the fewest candidates and no value.

95 /// </summary >

96 /// <returns >Returns a cell with fewest candidates </ returns >

97 private PuzzleCell NextDecisionCell ()

98 {

99 cells.Sort(delegate(PuzzleCell a, PuzzleCell b) { return a.Candidates.Count.CompareTo(b.

Candidates.Count); });

100 return cells.Find(delegate(PuzzleCell cell) { return cell.Candidates.Count > 0 && !cell.

CellValue.HasValue; });

101 }

102
103 private void Backtrack ()

104 {

105 backtrackcount ++;

106
107 // Undo implications

108 foreach (SolutionStep step in implications)

109 {

110 step.Undo();

111 }

112
113 if (decisions.Count > 0)

114 {

115 NextStepMessage content;

116
117 // Try decision basis in all ways.

118 if (! decisions.Peek().IsEmpty ())

119 {

Agents 113

120 conflict = false;

121 implications.Clear ();

122 queue.Clear();

123 queue.Enqueue(decisions.Peek().NextDecision ());

124 content = new NextStepMessage(true);

125 }

126 else

127 {

128 // Backtrack to previous.

129 conflict = true;

130 queue.Clear();

131 decisions.Pop();

132 //if (decisions .Count == 0)

133 // return;

134 implications = new List <SolutionStep >(implicationsMap[decisions.Count]);

135 content = new NextStepMessage ();

136 }

137
138
139 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Request , this , content)));

140 }

141 else

142 {

143 // No solution!

144 }

145 }

146
147 public void Search ()

148 {

149 searchcount ++;

150
151 // Reset availableStrategies .

152 if (availableStrategies.Count == 0)

153 {

154 if (! availableStrategies.Contains(Strategies.Intersection)) availableStrategies.Enqueue

(Strategies.Intersection);

155 if (! availableStrategies.Contains(Strategies.Hidden)) availableStrategies.Enqueue(

Strategies.Hidden);

156 if (! availableStrategies.Contains(Strategies.Naked)) availableStrategies.Enqueue(

Strategies.Naked);

157
158 }

159
160 PuzzleCell start = NextDecisionCell ();

161
162 // If no decisioncells can be found , all cell has values , and a solution is found.

163 // otherwise if no decision cells can be found and not all cell has values , the given

sudoku is invalid

164 if (start == null)

165 {

166 // Solution found

167 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Inform , this , new SolutionMessage(true , null))));

168 return;

169 }

170
171 int dl = decisions.Count; // Decision Level

172 // Save the implications of the current decision level.

173 if (dl > 0)

174 {

175 if (implicationsMap.ContainsKey(dl))

176 {

177 implicationsMap.Remove(dl);

178 }

179 implicationsMap.Add(dl , new Collection <SolutionStep >(new List <SolutionStep >(

implications)));

180 implications.Clear();

181 }

182
183 DecisionBasis basis = new DecisionBasis(start);

184
185 // Push the next decision basis on the decisions stack.

186 decisions.Push(basis);

187
188 recordImplications = true;

189
190 // Start with the first decision in the decision basis , meaning a guess of which value

should be sat in the cell.

191 // The guess is represented by a ValueSolutionStep .

192 queue.Enqueue(basis.NextDecision ());

193 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.Performative.

Request , this , new NextStepMessage(true))));

194 }

195 #endregion

196

114 Source code

197 #region Private Methods

198 private void HandleMessage(EventArgs <FIPAAclMessage > e)

199 {

200 switch (e.Value.MessagePerformative)

201 {

202 case FIPAAclMessage.Performative.Inform:

203 if (e.Value.Content is ConflictMessage)

204 {

205 conflict = true;

206 }

207 break;

208 case FIPAAclMessage.Performative.Propose:

209 if (e.Value.Content is SolutionStepMessage)

210 {

211 SolutionStepMessage content = e.Value.Content as SolutionStepMessage;

212
213 // In the case of eliminations execute them right away , since an elimination

214 // cannot trigger any further SolutionStepMessages .

215 if (content.Step is EliminationSolutionStep)

216 {

217 (content.Step as EliminationSolutionStep).Execute ();

218 if (recordImplications)

219 {

220 implications.Add(content.Step);

221 }

222 }

223 else

224 {

225 // In the case of any other solution step (currently there is only one

other , namely

226 // ValueSolution step , enque it for later execution. A ValueSolution step

can trigger

227 // further SolutionStepMessages , therefore is it later executed in a

syncronized manner.

228 if (! queue.Contains(content.Step as SolutionStep))

229 {

230 queue.Enqueue(content.Step as SolutionStep);

231 }

232 }

233 }

234 else if (e.Value.Content is EliminationStrategyMessage)

235 {

236 EliminationStrategyMessage content = e.Value.Content as

EliminationStrategyMessage;

237
238 bool eliminated = false;

239 foreach (EliminationSolutionStep elimination in content.Eliminations)

240 {

241 if (elimination.Execute ())

242 {

243 // If a candidate has been eliminated

244 eliminated = true;

245 if (recordImplications)

246 {

247 implications.Add(elimination);

248 }

249 }

250 }

251
252 // If sender is DomainAgent , the elimination message , is based on an event in a

cell.

253 if (e.Value.Sender is DomainAgent)

254 {

255 domainAnswers ++;

256 // Each cell belongs to three domains , therefore wait until all domains

have processed

257 // the event.

258 if (domainAnswers == 3)

259 {

260 domainAnswers = 0;

261 // Send NextStepMessage indicating that the execution of solutionsteps

safely can continue.

262 FIPAAclMessage message = new FIPAAclMessage(FIPAAclMessage.Performative

.Request , this , new NextStepMessage ());

263 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

264 }

265 }

266 else // If the sender is a strategy agent

267 {

268 // If nothing has been eliminated , signal the running strategy agent to

continue its search

269 if (! eliminated)

270 {

271 FIPAAclMessage message;

272 if (e.Value.Sender is HiddenAgent)

273 {

Agents 115

274 message = new FIPAAclMessage(FIPAAclMessage.Performative.Request ,

this , new StrategyMessage("Hidden"));

275 }

276 else if (e.Value.Sender is NakedAgent)

277 {

278 message = new FIPAAclMessage(FIPAAclMessage.Performative.Request ,

this , new StrategyMessage("Naked"));

279 }

280 else if (e.Value.Sender is IntersectionAgent)

281 {

282 message = new FIPAAclMessage(FIPAAclMessage.Performative.Request ,

this , new StrategyMessage("Intersection"));

283 }

284 else

285 {

286 message = null;

287 }

288
289 if (message != null)

290 {

291 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

292 }

293 }

294 else

295 {

296 // If something has been eliminated , add the eliminating strategy to

available strategies

297 if (e.Value.Sender is HiddenAgent)

298 {

299 availableStrategies.Enqueue(Strategies.Hidden);

300 }

301 else if (e.Value.Sender is NakedAgent)

302 {

303 availableStrategies.Enqueue(Strategies.Naked);

304 }

305 else if (e.Value.Sender is IntersectionAgent)

306 {

307 availableStrategies.Enqueue(Strategies.Intersection);

308 }

309 // Send NextStepMessage indicating that the execution of solutionsteps

safely can continue.

310 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(

FIPAAclMessage.Performative.Request , this , new NextStepMessage ()))

);

311 }

312 }

313 }

314 break;

315 case FIPAAclMessage.Performative.Request:

316 if (e.Value.Content is NextStepMessage)

317 {

318 if (! conflict)

319 {

320 // There is solution steps to execute

321 if (queue.Count > 0)

322 {

323 SolutionStep step = queue.Dequeue ();

324 if (step.Cell.CellValue.HasValue)

325 {

326 // if the cell in a ValueSolutionStep already has a value , there is

a conflict.

327 conflict = true;

328 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(

FIPAAclMessage.Performative.Request , this , new NextStepMessage

())));

329 return;

330 }

331
332 step.Execute ();

333
334 if (recordImplications)

335 {

336 implications.Add(step);

337 }

338 }

339 else // there is no solution steps to execute

340 {

341 if (availableStrategies.Count > 0)

342 {

343 // If we have a strategy available use it.

344 Strategies strategy = (Strategies)availableStrategies.Dequeue ();

345
346 Message content = new StrategyMessage(Enum.GetName(typeof(

Strategies), strategy));

347 FIPAAclMessage message = new FIPAAclMessage(FIPAAclMessage.

Performative.Request , this , content);

116 Source code

348 OnSendMessage(new EventArgs <FIPAAclMessage >(message));

349 }

350 else

351 {

352 // If there is no strategies to try , then the only option is to

start the backtrack search.

353 Search ();

354 }

355 }

356 }

357 else // if there is a conflict

358 {

359 // Backtrack , and undo the implications .

360 Backtrack ();

361 }

362 }

363 break;

364 case FIPAAclMessage.Performative.Refuse:

365 if (e.Value.Content is StrategyMessage)

366 {

367 OnSendMessage(new EventArgs <FIPAAclMessage >(new FIPAAclMessage(FIPAAclMessage.

Performative.Request , this , new NextStepMessage ())));

368 }

369 break;

370 default:

371 break;

372 }

373 }

374 #endregion

375
376 #region IAgent Members

377
378 public Guid AgentID

379 {

380 get { return agentID; }

381 }

382
383 public event EventHandler <EventArgs <FIPAAclMessage >> SendMessage;

384
385 public void OnSendMessage(EventArgs <FIPAAclMessage > e)

386 {

387 SendMessage(this , new EventArgs <FIPAAclMessage >(e.Value));

388 }

389
390 public void InvokeMessageReceived(object sender , EventArgs <FIPAAclMessage > e)

391 {

392 MessageReceivedDelegate del = new MessageReceivedDelegate(this.MessageReceived);

393 del(sender , e);

394 }

395
396 public void MessageReceived(object sender , EventArgs <FIPAAclMessage > e)

397 {

398 lock (messageQueue)

399 {

400 messageQueue.Enqueue(e);

401 Monitor.Pulse(messageQueue);

402 }

403 }

404
405 public void Run()

406 {

407 EventArgs <FIPAAclMessage > message = null;

408 bool interrupted = false;

409 while (! interrupted)

410 {

411 try

412 {

413 lock (messageQueue)

414 {

415 while (messageQueue.Count == 0)

416 {

417 Monitor.Wait(messageQueue);

418
419 }

420 message = messageQueue.Dequeue ();

421 }

422 HandleMessage(message);

423 }

424 catch (ThreadInterruptedException)

425 {

426 interrupted = true;

427 }

428 }

429 }

430 #endregion

431 }

Messaging 117

432 }

B.3 Messaging

Message.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Messaging

6 {

7 public abstract class Message

8 {

9
10 }

11 }

ConflictMessage.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Messaging

6 {

7 public class ConflictMessage : Message

8 {

9 }

10 }

FIPAACLMessage.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Messaging

6 {

7 public class FIPAAclMessage

8 {

9 private Performative performative;

10 private Message content;

11 private object sender;

12 private object receiver;

13
14 public Performative MessagePerformative

15 {

16 get { return performative; }

17 }

18
19 public Message Content

20 {

21 get { return content; }

22 }

23
24 public object Sender

25 {

26 get { return sender; }

27 }

28
29 public object Receiver

30 {

118 Source code

31 get { return receiver; }

32 }

33
34 // String aclReceiver , aclReplyTo , aclContent , aclLanguage , aclEncoding ;

35 // String aclOntology , aclProtocol , aclConversationId , aclReplyWith , aclInReplyTo , aclReplyBy ;

36
37 /// <summary >

38 ///

39 /// </summary >

40 public enum Performative { Inform , Propose , AcceptProposal , RejectProposal , Request , Refuse };

41
42 /// <summary >

43 /// Constructor

44 /// </summary >

45 /// <param name ="?" ></ param >

46 public FIPAAclMessage(Performative performative , object sender , Message content)

47 {

48 this.performative = performative;

49 this.sender = sender;

50 this.content = content;

51 }

52
53 public FIPAAclMessage(Performative performative , object sender , object receiver , Message

content)

54 {

55 this.performative = performative;

56 this.sender = sender;

57 this.receiver = receiver;

58 this.content = content;

59 }

60
61
62 }

63 }

NextStepMessage.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Messaging

6 {

7 public class NextStepMessage : Message

8 {

9 private bool isSearch;

10
11 public bool IsSearch { get { return isSearch; } }

12
13 public NextStepMessage ()

14 {

15 isSearch = false;

16 }

17
18 public NextStepMessage(bool isSearch)

19 {

20 this.isSearch = isSearch;

21 }

22
23 }

24 }

SolutionStepMessage.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using MultiAgentSudokuSolver.Data;

5
6 namespace MultiAgentSudokuSolver.Messaging

7 {

8 class SolutionStepMessage : Message

9 {

10 private SolutionStep step;

Messaging 119

11
12 public SolutionStep Step

13 {

14 get { return step; }

15
16 }

17
18 public SolutionStepMessage(SolutionStep step)

19 {

20 this.step = step;

21 }

22 }

23 }

ValueDependencyMessage.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using MultiAgentSudokuSolver.Data;

5 using System.Collections.ObjectModel;

6
7 namespace MultiAgentSudokuSolver.Messaging

8 {

9 public class ValueDependencyMessage : Message

10 {

11 List <UniqueChain > chains = new List <UniqueChain >();

12
13 public void AddValueDependency(UniqueChain chain)

14 {

15 chains.Add(chain);

16 }

17
18 public Collection <UniqueChain > GetValueDependencies ()

19 {

20 return new Collection <UniqueChain >(chains);

21 }

22 }

23 }

CellMessage.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using MultiAgentSudokuSolver.Data;

5 using System.Collections.ObjectModel;

6
7 namespace MultiAgentSudokuSolver.Messaging

8 {

9 public class CellMessage : Message

10 {

11 private List <PuzzleCell > cells = new List <PuzzleCell >();

12
13 public void AddCell(PuzzleCell cell) {

14 cells.Add(cell);

15 }

16
17 public Collection <PuzzleCell > Cells

18 {

19 get { return new Collection <PuzzleCell >(cells); }

20 }

21 }

22 }

EliminationStrategyMessage.cs

120 Source code

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using MultiAgentSudokuSolver.Data;

5 using System.Collections.ObjectModel;

6
7 namespace MultiAgentSudokuSolver.Messaging

8 {

9 public class EliminationStrategyMessage : Message

10 {

11 private string strategyType;

12
13 public string StrategyType { get { return strategyType; } }

14
15 private ReadOnlyCollection <PuzzleCell > strategyCellSet;

16
17 public ReadOnlyCollection <PuzzleCell > StrategyCellSet

18 {

19 get { return strategyCellSet; }

20 }

21
22 private ReadOnlyCollection <int > strategyCandidateSet;

23
24 public ReadOnlyCollection <int > StrategyCandidateSet

25 {

26 get { return strategyCandidateSet; }

27 }

28
29 private ReadOnlyCollection <EliminationSolutionStep > eliminations;

30
31 public ReadOnlyCollection <EliminationSolutionStep > Eliminations

32 {

33 get { return eliminations; }

34 }

35
36 public EliminationStrategyMessage(string strategyType , IList <EliminationSolutionStep >

eliminations , IList <PuzzleCell > strategyCellSet , IList <int > strategyCandidateSet)

37 {

38 this.strategyType = strategyType;

39 this.eliminations = new ReadOnlyCollection <EliminationSolutionStep >(eliminations);

40 this.strategyCellSet = new ReadOnlyCollection <PuzzleCell >(strategyCellSet);

41 this.strategyCandidateSet = new ReadOnlyCollection <int >(strategyCandidateSet);

42 }

43 }

44 }

SolutionMessage.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using MultiAgentSudokuSolver.Data;

5
6 namespace MultiAgentSudokuSolver.Messaging

7 {

8 public class SolutionMessage : Message

9 {

10 private bool solved;

11 private LogElement log;

12
13 public bool Solved { get { return solved; } }

14 public LogElement Log { get { return log; } }

15
16 public SolutionMessage(bool solved , LogElement log)

17 {

18 this.solved = solved;

19 this.log = log;

20 }

21 }

22 }

StrategyMessage.cs

Data 121

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Messaging

6 {

7 public class StrategyMessage : Message

8 {

9 private readonly string strategy;

10
11 public string Strategy { get { return strategy; } }

12
13 public StrategyMessage(string strategy)

14 {

15 this.strategy = strategy;

16 }

17
18 }

19 }

B.4 Data

EliminationSolutionStep.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Data

6 {

7 public class EliminationSolutionStep : SolutionStep

8 {

9 public EliminationSolutionStep(PuzzleCell cell , int value) : base(cell , value) { }

10
11 public override bool Execute ()

12 {

13 return Cell.Eliminate(Value);

14 }

15
16 public override void Undo()

17 {

18 Cell.Add(value);

19 }

20 }

21 }

LogElement.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Data

6 {

7 public class LogElement

8 {

9 private String agentId;

10 private DateTime startTime , endTime;

11 private String information;

12
13 public LogElement(String agentId)

14 {

15 this.agentId = agentId;

16 }

17
18 public void StartTimer ()

19 {

20 startTime = DateTime.Now;

21 }

122 Source code

22
23 public void StopTimer ()

24 {

25 endTime = DateTime.Now;

26 }

27
28 public TimeSpan ExecutionTime

29 {

30 get

31 {

32 if (startTime != null && endTime != null)

33 {

34 return endTime - startTime;

35 }

36 }

37 }

38
39 public String Information

40 {

41 get { return information; }

42 set { information = value; }

43 }

44
45 }

46 }

SetFunctions.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections;

5
6 namespace MultiAgentSudokuSolver.Data

7 {

8
9 /// <summary >

10 /// Helper functions

11 /// </summary >

12 public static class SetFunctions

13 {

14 /// <summary >

15 /// Determine the minimum element of a collection , e.g. the chain with the least cells

16 /// or the cell with the least candidates .

17 /// </summary >

18 public static T Min <T>(IEnumerable <T> collection) where T :System.IComparable <T>

19 {

20 T minimum = default(T);

21 foreach (T element in collection)

22 {

23 if (minimum == null)

24 {

25 minimum = element;

26 }

27 else if (element.CompareTo(minimum) < 0)

28 {

29 minimum = element;

30 }

31 }

32 return minimum;

33 }

34
35 /// <summary >

36 /// Determine the intersection between two sets

37 /// </summary >

38 public static IEnumerable <T> Intersect <T>(IEnumerable <T> first , IEnumerable <T> second)

39 {

40 Dictionary <T, object > dict = new Dictionary <T, object >();

41 foreach (T element in first) dict[element] = null;

42 foreach (T element in second)

43 {

44 if (dict.ContainsKey(element)) dict[element] = dict;

45 }

46 foreach (KeyValuePair <T, object > pair in dict)

47 {

48 if (pair.Value != null) yield return pair.Key;

49 }

50 }

51 }

52 }

Data 123

UniqueChain.cs

1 using System;

2 using System.Collections;

3 using System.Collections.Generic;

4 using System.Collections.ObjectModel;

5 using System.Text;

6
7 namespace MultiAgentSudokuSolver.Data

8 {

9 public class UniqueChain : IComparable <UniqueChain >

10 {

11 private List <PuzzleCell > list;

12 private int value;

13 private int maxLength;

14
15 /// <summary >

16 /// Represents the connection between puzzle cells that lie in the same

17 /// domain and shares a candidate value.

18 /// </summary >

19 /// <param name =" value">The value of the chain , e.g. the common candidate value </param >

20 /// <param name =" maxLength">The maximum chain length , e.g the size of the domain </param >

21 public UniqueChain(int value , int maxLength)

22 {

23 this.value = value;

24 this.maxLength = maxLength;

25 list = new List <PuzzleCell >(maxLength);

26 }

27
28 public Collection <PuzzleCell > GetCells ()

29 {

30 return new Collection <PuzzleCell >(list);

31 }

32
33 /// <summary >

34 /// Compares the given puzzlecells to the cells in the UniqueChain , and returns

35 /// a collection containing the cells in the UniqueChain which is not present in

36 /// the given collection of puzzlecells

37 /// </summary >

38 /// <param name =" chain">A collection of cells to compare with </param >

39 /// <returns >The cells from this UniqueChain which is not present in the given chain </ returns >

40 public Collection <PuzzleCell > GetDifferentCells(Collection <PuzzleCell > chain)

41 {

42 List <PuzzleCell > different = new List <PuzzleCell >();

43 foreach (PuzzleCell cell in list)

44 {

45 if (!chain.Contains(cell))

46 {

47 different.Add(cell);

48 }

49 }

50 return new Collection <PuzzleCell >(different);

51 }

52
53 public PuzzleCell this[int index]

54 {

55 get { return list[index]; }

56 }

57
58 public int Value

59 {

60 get { return value; }

61 }

62
63 public int Count

64 {

65 get { return list.Count; }

66 }

67
68 public bool ContainsCell(PuzzleCell cell)

69 {

70 return list.Contains(cell);

71 }

72
73 // O(n)

74 public void AddCell(PuzzleCell cell)

75 {

76 if (!list.Contains(cell))

77 {

78 list.Add(cell);

79 OnChainChanged ();

80 }

81 }

82
83 // O(n)

124 Source code

84 public void RemoveCell(PuzzleCell cell)

85 {

86 list.Remove(cell);

87 OnChainChanged ();

88 }

89
90 public event EventHandler ChainChanged;

91
92 private void OnChainChanged ()

93 {

94 if (ChainChanged != null)

95 {

96 this.ChainChanged(this , EventArgs.Empty);

97 }

98 }

99
100 public override string ToString ()

101 {

102 return list.ToString ();

103 }

104
105 #region IComparable <AdvancedUniqueChain > Members

106
107 public int CompareTo(UniqueChain other)

108 {

109 return this.Count - other.Count;

110 }

111
112 #endregion

113 }

114 }

ValueSolutionStep.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Data

6 {

7 public class ValueSolutionStep : SolutionStep

8 {

9 public ValueSolutionStep(PuzzleCell cell , int value)

10 : base(cell , value)

11 {

12 }

13 public override bool Execute ()

14 {

15 Cell.SetPrevious(Cell.CellValue);

16 Cell.CellValue = Value;

17 return true;

18 }

19
20 public override void Undo()

21 {

22 if (Cell.CellValue.HasValue)

23 {

24 Cell.SetPrevious(value);

25 Cell.CellValue = null;

26 }

27 }

28 }

29 }

DecisionBasis.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections.ObjectModel;

5
6 namespace MultiAgentSudokuSolver.Data

7 {

8 /// <summary >

Data 125

9 /// Represents the basis of a decision.

10 /// </summary >

11 public class DecisionBasis

12 {

13 private PuzzleCell cell;

14 private Collection <int > unusedCandidates;

15
16 public DecisionBasis(PuzzleCell cell)

17 {

18 this.cell = cell;

19 this.unusedCandidates = new Collection <int >(new List <int >(cell.Candidates));

20 }

21
22 public bool IsEmpty ()

23 {

24 return (unusedCandidates.Count == 0);

25 }

26
27 // Returns the next possible decision in the basis

28 public ValueSolutionStep NextDecision ()

29 {

30 if (unusedCandidates.Count == 0) throw new Exception("DecisionBasisÃisÃempty");

31
32 int value = unusedCandidates [0];

33 unusedCandidates.RemoveAt (0);

34 return new ValueSolutionStep(cell , value);

35 }

36 }

37 }

EventArgs.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4
5 namespace MultiAgentSudokuSolver.Data

6 {

7 public class EventArgs <T> : EventArgs

8 {

9 public EventArgs(T value)

10 {

11 this.value = value;

12 }

13
14 private T value;

15
16 public T Value

17 {

18 get { return value; }

19 }

20 }

21 }

PuzzleCell.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Collections;

4 using System.Text;

5 using System.Threading;

6 using System.Collections.ObjectModel;

7 using MultiAgentSudokuSolver.Agents;

8
9 namespace MultiAgentSudokuSolver.Data

10 {

11 public class PuzzleCell : IComparable <PuzzleCell >

12 {

13 private Nullable <int > cellValue;

14 private Nullable <int > previous;

15 private List <int > candidates;

16 private List <DomainAgent > domains;

17
18 private readonly int puzzleSize;

126 Source code

19 private readonly int row , column , square;

20
21 private Nullable <int > uniqueValue;

22
23 public Nullable <int > UniqueValue

24 {

25 get { return uniqueValue; }

26
27 }

28
29 public int Row { get { return row; } }

30 public int Column { get { return column; } }

31 public int Square { get { return square; } }

32
33 public PuzzleCell(int puzzleSize , int row , int column , int square)

34 {

35 this.puzzleSize = puzzleSize;

36 this.row = row;

37 this.column = column;

38 this.square = square;

39 candidates = new List <int >(puzzleSize);

40 for (int i = 0; i < puzzleSize; i++)

41 {

42 candidates.Add((int)(i + 1));

43 }

44 domains = new List <DomainAgent >(3);

45 }

46
47 public void AddDomain(DomainAgent domain)

48 {

49 domains.Add(domain);

50 }

51
52 public void RemoveDomain(DomainAgent domain)

53 {

54 domains.Remove(domain);

55 }

56
57 public Collection <DomainAgent > Domains

58 {

59 get { return new Collection <DomainAgent >(domains); }

60 }

61
62 public Nullable <int > CellValue

63 {

64 get { return cellValue; }

65 set

66 {

67 cellValue = value;

68 OnValueChanged(previous);

69 }

70 }

71
72 public void SetPrevious(Nullable <int > prev)

73 {

74 previous = prev;

75 }

76
77 public Collection <int > Candidates

78 {

79 get { return new Collection <int >(candidates); }

80 }

81
82 public bool Add(int candidate)

83 {

84 if (candidate <= 0 || candidate > puzzleSize)

85 {

86 throw new ArgumentOutOfRangeException("number", "numberÃmustÃbeÃbetweenÃ1ÃandÃ" + this.

puzzleSize);

87 }

88
89 if (! candidates.Contains(candidate))

90 {

91 candidates.Add(candidate);

92 if (candidates.Count == 1)

93 {

94 uniqueValue = candidates [0];

95 }

96 else uniqueValue = null;

97 OnCandidatesAdd(candidate);

98 return true;

99 }

100 // Do not make a changed event , if no candidates has been eliminated

101 return false;

102 }

103

Data 127

104
105 public bool Eliminate(int candidate)

106 {

107 if (candidate <= 0 || candidate > puzzleSize)

108 {

109 throw new ArgumentOutOfRangeException("number", "numberÃmustÃbeÃbetweenÃ1ÃandÃ" + this.

puzzleSize);

110 }

111
112 if (candidates.Contains(candidate))

113 {

114 candidates.Remove(candidate);

115 if (candidates.Count == 1)

116 {

117 // If there is only one candidate , it must be placed in this cell

118 uniqueValue = candidates [0];

119 }

120 OnCandidatesChanged(candidate);

121 return true;

122 }

123 // Do not make a changed event , if no candidates has been eliminated

124 return false;

125 }

126
127 /// <summary >

128 /// Compare a PuzzleCell to this cell and determine if they contain the same candidates

129 /// </summary >

130 public bool CandidatesEquals(PuzzleCell cell)

131 {

132 bool bEqual = this.candidates.Count == cell.candidates.Count;

133 if (bEqual)

134 {

135 for (int i = 0, nCount = this.candidates.Count; nCount > i; i++)

136 {

137 if (!this.candidates[i]. Equals(cell.candidates[i]))

138 {

139 bEqual = false;

140 break;

141 }

142 }

143 }

144 return bEqual;

145 }

146
147 /// <summary >

148 /// Determine the difference in candidates

149 /// </summary >

150 public Collection <int > CandidatesDifferent(Collection <int > candidates)

151 {

152 List <int > different = new List <int >();

153 for (int i = 0, nCount = this.candidates.Count; nCount > i; i++)

154 {

155 if (! candidates.Contains(this.candidates[i]))

156 {

157 different.Add(this.candidates[i]);

158 }

159 }

160 return new Collection <int >(different);

161 }

162
163 public override string ToString ()

164 {

165 StringBuilder result = new StringBuilder ();

166 result.Append("CellÃvalue:Ã" + this.CellValue + "\n");

167 result.Append("Candidates:Ã");

168 for (int i = 0; i < Candidates.Count; i++)

169 {

170 result.Append(Candidates[i] + "Ã");

171 }

172
173 return result.ToString ();

174 }

175
176 #region ValueChanged event

177
178 public event EventHandler <EventArgs <Nullable <int >>> ValueChanged;

179
180 public void OnValueChanged(Nullable <int > internalChange)

181 {

182 if (ValueChanged != null)

183 {

184 ValueChanged(this , new EventArgs <Nullable <int >>(internalChange));

185 }

186 }

187 #endregion

188

128 Source code

189 #region CandidatesChanged event

190
191 public event EventHandler <EventArgs <int >> CandidatesChanged;

192
193 public void OnCandidatesChanged(int candidate)

194 {

195 if (CandidatesChanged != null)

196 {

197 CandidatesChanged(this , new EventArgs <int >(candidate));

198 }

199 }

200 #endregion

201
202 #region CandidatesAdd event

203
204 public event EventHandler <EventArgs <int >> CandidatesAdd;

205
206 public void OnCandidatesAdd(int candidate)

207 {

208 if (CandidatesAdd != null)

209 {

210 CandidatesAdd(this , new EventArgs <int >(candidate));

211 }

212 }

213 #endregion

214
215
216 #region IComparable <List <int >> Members

217
218 public int CompareTo(PuzzleCell other)

219 {

220 return this.candidates.Count - other.Candidates.Count;

221 }

222
223 #endregion

224
225 }

226 }

SolutionStep.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Threading;

5
6 namespace MultiAgentSudokuSolver.Data

7 {

8 public abstract class SolutionStep

9 {

10 private PuzzleCell cell;

11 protected readonly int value;

12
13 public PuzzleCell Cell

14 {

15 get { return cell; }

16 }

17
18 public int Value

19 {

20 get { return value; }

21 }

22
23 protected SolutionStep(PuzzleCell cell , int value)

24 {

25 this.cell = cell;

26 this.value = value;

27 }

28
29 public abstract bool Execute ();

30
31 public abstract void Undo();

32
33 public override bool Equals(object obj)

34 {

35 return (this.cell == (obj as SolutionStep).cell) & (this.value == (obj as SolutionStep).

value);

36 }

37
38 public override int GetHashCode ()

Data 129

39 {

40 return base.GetHashCode ();

41 }

42 }

43 }

ValueDependencyMap.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections;

5
6 namespace MultiAgentSudokuSolver.Data

7 {

8 /// <summary >

9 /// Class for managing the valuedependencies in a domain.

10 /// </summary >

11 public class ValueDependencyMap

12 {

13 #region Variables

14 Dictionary <int , UniqueChain > valueDependencyMap;// = new Dictionary <int , UniqueChain >();

15 Dictionary <int , List <UniqueChain >> chainLookupTable;// = new Dictionary <int , List <UniqueChain

>>();

16 Dictionary <UniqueChain , int > chainLengthTable;// = new Dictionary <UniqueChain , int >();

17 int maxChainLength;

18 #endregion

19
20 public ValueDependencyMap(int puzzleSize)

21 {

22 valueDependencyMap = new Dictionary <int , UniqueChain >(puzzleSize);

23 chainLookupTable = new Dictionary <int , List <UniqueChain >>(puzzleSize +1);

24 chainLengthTable = new Dictionary <UniqueChain , int >(puzzleSize);

25 maxChainLength = puzzleSize;

26 }

27
28 #region Properties

29 /// <summary >

30 /// Gets or sets the unique chain which represents all the cells that are dependent on the

31 /// value supplied.

32 /// </summary >

33 /// <param name =" key">Value </param >

34 /// <returns > UniqueChain containing all the cells dependent on the value key </ returns >

35 public UniqueChain this[int key]

36 {

37 get { return (UniqueChain)valueDependencyMap[key]; }

38 set { valueDependencyMap[key] = value; }

39 }

40
41 /// <summary >

42 /// Returns a collection of the keys in the ValueDependencyMap

43 /// </summary >

44 public ICollection Keys { get { return (valueDependencyMap.Keys); } }

45
46 /// <summary >

47 /// Returns a collection of the values in the ValueDependencyMap

48 /// </summary >

49 public ICollection Values { get { return (valueDependencyMap.Values); } }

50
51 #endregion

52
53 #region Public methods

54 /// <summary >

55 /// Adds a PuzzleCell to the ValueDependencyMap .

56 /// For each candidate in the cell , the cell is added to the

57 /// corresponding entry in the ValueDependencyMap .

58 ///

59 /// Runs in O(n^2).

60 /// </summary >

61 /// <param name =" cell">The cell to be added to the ValueDependencyMap </param >

62 public void AddCell(PuzzleCell cell)

63 {

64 UniqueChain chain;

65 int key;

66
67 for (int i = 0; i < cell.Candidates.Count; i++)

68 {

69 key = cell.Candidates[i];

70 if (! valueDependencyMap.ContainsKey(key))

71 {

130 Source code

72 chain = new UniqueChain(key , maxChainLength);

73 chain.ChainChanged += new EventHandler(chain_ChainChanged);

74 valueDependencyMap.Add(key , chain);

75 chainLengthTable.Add(chain , 0);

76 }

77 valueDependencyMap[key]. AddCell(cell);

78 }

79 }

80
81 /// <summary >

82 /// Remove a value from the ValueDependencyMap , meaning that no cells in this map

83 /// are longer dependent on this value.

84 ///

85 /// Runs in O(n)

86 /// </summary >

87 /// <param name =" value">The candidate value to be removed </param >

88 public void RemoveValue(int value)

89 {

90 if (valueDependencyMap.ContainsKey(value))

91 {

92 // Unsubsribe event.

93 valueDependencyMap[value]. ChainChanged -= new EventHandler(chain_ChainChanged);

94 // Remove reference from lookup table

95 chainLengthTable.Remove(valueDependencyMap[value]);

96 valueDependencyMap.Remove(value);

97 }

98 }

99
100 /// <summary >

101 /// Removes all references to a given cell from this ValueDependencyMap .

102 ///

103 /// Runs in O(n^2)

104 /// </summary >

105 /// <param name =" cell">The cell to be removed </param >

106 public void RemoveCell(PuzzleCell cell)

107 {

108 List <int > removeKeys = new List <int >();

109
110 for (int i = 0; i < cell.Candidates.Count; i++)

111 {

112 if (cell.Candidates[i] != cell.CellValue.Value)

113 {

114 if (valueDependencyMap[cell.Candidates[i]]. ContainsCell(cell))

115 {

116 valueDependencyMap[cell.Candidates[i]]. RemoveCell(cell);

117 }

118 }

119 }

120 }

121
122 /// <summary >

123 /// Returns an iterator that iterates through the ValueDependencyMap

124 /// </summary >

125 public IEnumerator GetEnumerator ()

126 {

127 return valueDependencyMap.GetEnumerator ();

128 }

129
130 /// <summary >

131 /// Remove a cell from a given value dependency .

132 ///

133 /// Runs in O(n)

134 /// </summary >

135 /// <param name =" value">The value that the cell is no longer dependent of </param >

136 /// <param name =" cell">The cell that is no longer dependent of the value </param >

137 public void RemoveCellAt(int value , PuzzleCell cell)

138 {

139 if (valueDependencyMap.ContainsKey(value))

140 {

141 UniqueChain chain = ((UniqueChain)valueDependencyMap[value]);

142 chain.RemoveCell(cell);

143 }

144 }

145
146 /// <summary >

147 /// Add a cell to a given value dependency .

148 ///

149 /// Runs in O(n)

150 /// </summary >

151 /// <param name =" value">The value that the cell should be dependent of </param >

152 /// <param name =" cell">The cell that are dependent of the value </param >

153 public void AddCellAt(int value , PuzzleCell cell)

154 {

155 // O(n)

156 if (! valueDependencyMap.ContainsKey(value))

157 {

Cache 131

158 valueDependencyMap.Add(value , new UniqueChain(value , maxChainLength));

159 valueDependencyMap[value]. ChainChanged += new EventHandler(chain_ChainChanged);

160 chainLengthTable.Add(valueDependencyMap[value], 0);

161 }

162
163 UniqueChain chain = valueDependencyMap[value];

164 // O(n)

165 if (! chain.ContainsCell(cell))

166 chain.AddCell(cell);

167 }

168 #endregion

169
170 #region Eventhandlers

171 /// <summary >

172 /// Eventhandler for the ChainChanged event. Updates the lookuptables , so

173 /// the chain can be located by length.

174 ///

175 /// Runs in O(n)

176 /// </summary >

177 /// <param name =" sender">The chain that has been changed </param >

178 /// <param name ="e">Not used </param >

179 private void chain_ChainChanged(object sender , EventArgs e)

180 {

181 UniqueChain chain = sender as UniqueChain;

182
183 int previousLength = chainLengthTable[chain];

184 int newLength = chain.Count;

185
186 // O(n)

187 if (chainLookupTable.ContainsKey(previousLength))

188 {

189 chainLookupTable[previousLength]. Remove(chain);

190 }

191 // O(n)

192 if (! chainLookupTable.ContainsKey(newLength))

193 {

194 chainLookupTable.Add(newLength , new List <UniqueChain >());

195 }

196 // O(n)

197 chainLookupTable[newLength].Add(chain);

198 chainLengthTable[chain] = chain.Count;

199
200 // If chain is decremented and chain length is 1

201 // we have a unique value

202 if ((previousLength > newLength) && chain.Count == 1)

203 {

204 // Raise event

205 OnUniqueValue(new ValueSolutionStep(chain[0], chain.Value));

206 }

207 }

208 #endregion

209
210 #region Events

211 public event EventHandler <EventArgs <SolutionStep >> UniqueValue;

212
213 private void OnUniqueValue(SolutionStep step)

214 {

215 if (UniqueValue != null)

216 {

217 this.UniqueValue(this , new EventArgs <SolutionStep >(step));

218 }

219 }

220 #endregion

221 }

222 }

B.5 Cache

Solution.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections.ObjectModel;

5
6 namespace MultiAgentSudokuSolver.Cache

132 Source code

7 {

8 public class Solution

9 {

10 // The steps along the way to the solution

11 private Collection <CacheSolutionStep > steps;

12 public Collection <CacheSolutionStep > Steps

13 {

14 get { return steps; }

15 }

16 private int nakedCount;

17 public int NakedCount

18 {

19 get { return nakedCount; }

20 }

21 private int hiddenCount;

22 public int HiddenCount

23 {

24 get { return hiddenCount; }

25 }

26 private int intersectionCount;

27 public int IntersectionCount

28 {

29 get { return intersectionCount; }

30 }

31
32 private int guesses;

33 public int Guesses

34 {

35 get { return guesses; }

36 }

37
38 private bool isSearched;

39 public bool IsSearched

40 {

41 get { return isSearched; }

42 }

43
44
45 public Solution(Collection <CacheSolutionStep > steps , int guesses , bool isSearched , int

nakedCount , int hiddenCount , int intersectionCount)

46 {

47 this.steps = steps;

48 this.guesses = guesses;

49 this.isSearched = isSearched;

50 this.nakedCount = nakedCount;

51 this.hiddenCount = hiddenCount;

52 this.intersectionCount = intersectionCount;

53 }

54 }

55 }

CacheSolutionStep.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Drawing;

5 using MultiAgentSudokuSolver.Messaging;

6 using MultiAgentSudokuSolver.Data;

7
8 namespace MultiAgentSudokuSolver.Cache

9 {

10 // Status for the entire puzzle grid

11 public class CacheSolutionStep : ICloneable

12 {

13 // The cells in the grid

14 private CacheCell[,] cells;

15 public CacheCell [,] Cells { get { return cells; } }

16
17 // The latest cell assigned a value

18 private CacheCell newestCell;

19 public CacheCell NewestCell { get { return newestCell; } }

20
21 // The size of the puzzle

22 private int puzzleSize;

23
24 // Times the naked strategy is used

25 private int nakedCount;

26 public int NakedCount

27 {

Cache 133

28 get { return nakedCount; }

29 }

30
31 // Times the hidden strategy is used

32 private int hiddenCount;

33 public int HiddenCount

34 {

35 get { return hiddenCount; }

36 }

37
38 // Times the intersection strategy is used

39 private int intersectionCount;

40 public int IntersectionCount

41 {

42 get { return intersectionCount; }

43 }

44
45 public CacheSolutionStep(int puzzleSize)

46 {

47 // Initialize the grid and assigned all cells to be empty

48 this.puzzleSize = puzzleSize;

49 cells = new CacheCell[puzzleSize , puzzleSize];

50 for (int column = 0; column < puzzleSize; column ++)

51 {

52 for (int row = 0; row < puzzleSize; row ++)

53 {

54 cells[column , row] = new CacheCell(column , row);

55 cells[column , row].Type = CacheCell.StateChange.Empty;

56 }

57 }

58 }

59
60 // Clone the current CacheSolutionStep

61 internal CacheSolutionStep(CacheSolutionStep step)

62 {

63 // Save a copy of the grid by cloning the current state

64 this.cells = new CacheCell[step.puzzleSize , step.puzzleSize];

65 this.puzzleSize = step.puzzleSize;

66 this.nakedCount = step.nakedCount;

67 this.hiddenCount = step.hiddenCount;

68 this.intersectionCount = step.intersectionCount;

69
70 for (int column = 0; column < puzzleSize; column ++)

71 {

72 for (int row = 0; row < puzzleSize; row ++)

73 {

74 this.cells[column , row] = (CacheCell)step.cells[column , row].Clone ();

75 }

76 }

77 // Save the latest value placed on the Sudoku grid

78 if (step.newestCell != null)

79 this.newestCell = step.newestCell.Clone() as CacheCell;

80 }

81
82 // Add the current value to the CacheCell

83 public void AddValueStep(PuzzleCell cell)

84 {

85 cells[cell.Column , cell.Row].Value = cell.CellValue;

86 newestCell = cells[cell.Column , cell.Row];

87 cells[cell.Column , cell.Row].Type = CacheCell.StateChange.Value;

88 }

89
90 // Add the current candidates to the CacheCell

91 public void AddCandidateStep(PuzzleCell cell)

92 {

93 cells[cell.Column , cell.Row]. Candidates.Clear();

94 cells[cell.Column , cell.Row]. Candidates.AddRange(cell.Candidates);

95 cells[cell.Column , cell.Row].Type = CacheCell.StateChange.Candidate;

96 }

97
98 // Remove flag that indicates that a hidden , naked or intersection strategy has been used to

99 // elimate candidate(s). Remove the flag indicating that the cell is affected by a strategy.

100 public void RemoveStrategies ()

101 {

102 for (int column = 0; column < puzzleSize; column ++)

103 {

104 for (int row = 0; row < puzzleSize; row ++)

105 {

106 cells[column , row]. NakedCand = false;

107 cells[column , row]. HiddenCand = false;

108 cells[column , row]. IntersectionCand = false;

109 cells[column , row]. AffectedByStrategy = false;

110 }

111 }

112 }

113

134 Source code

114 // Save what have been eliminated so far to the current solution step.

115 public void AddEliminationStep(EliminationStrategyMessage elimination)

116 {

117 CacheCell cell;

118
119 // Count the times the different strategies are used

120 switch (elimination.StrategyType)

121 {

122 case "NakedAgent":

123 if (elimination.Eliminations.Count > 0)

124 nakedCount ++;

125 break;

126 case "HiddenAgent":

127 if (elimination.Eliminations.Count > 0)

128 hiddenCount ++;

129 break;

130 case "IntersectionAgent":

131 if (elimination.Eliminations.Count > 0)

132 intersectionCount ++;

133 break;

134 default:

135 break;

136 }

137
138 // Save each elimination performed by the strategies

139 if (elimination.Eliminations.Count > 0)

140 {

141 foreach (PuzzleCell c in elimination.StrategyCellSet)

142 {

143 cell = cells[c.Column , c.Row];

144 // Save the candidates used as part of the strategy

145 foreach (int candidate in elimination.StrategyCandidateSet)

146 {

147 if (!cell.StrategyCand.Contains(candidate))

148 {

149 cell.StrategyCand.Add(candidate);

150 }

151 }

152
153 // Determine the strategy which has performed the elimination

154 switch (elimination.StrategyType)

155 {

156 case "NakedAgent":

157 cell.NakedCand = true;

158 // Run through all the eliminations

159 foreach (EliminationSolutionStep eliminationStep in elimination.

Eliminations)

160 {

161 cell = cells[eliminationStep.Cell.Column , eliminationStep.Cell.Row];

162 // Set the flag AffectedByStrategy to indicate that the elimination in

the cell

163 //is influenced by the strategy

164 cell.AffectedByStrategy = true;

165 // Add to the cell the candidate that has been eliminated

166 if (!cell.EliminationByNaked.Contains(eliminationStep.Value))

167 {

168 cell.EliminationByNaked.Add(eliminationStep.Value);

169 }

170 }

171 break;

172 case "HiddenAgent":

173 cell.HiddenCand = true;

174 // Run through all the eliminations

175 foreach (EliminationSolutionStep eliminationStep in elimination.

Eliminations)

176 {

177 cell = cells[eliminationStep.Cell.Column , eliminationStep.Cell.Row];

178 // Set the flag AffectedByStrategy to indicate that the elimination in

the cell

179 //is influenced by the strategy

180 cell.AffectedByStrategy = true;

181 // Add to the cell the candidate that has been eliminated

182 if (!cell.EliminationByHidden.Contains(eliminationStep.Value))

183 {

184 cell.EliminationByHidden.Add(eliminationStep.Value);

185 }

186 }

187 break;

188 case "IntersectionAgent":

189 cell.IntersectionCand = true;

190 // Run through all the eliminations

191 foreach (EliminationSolutionStep eliminationStep in elimination.

Eliminations)

192 {

193 cell = cells[eliminationStep.Cell.Column , eliminationStep.Cell.Row];

Cache 135

194 // Set the flag AffectedByStrategy to indicate that the elimination in

the cell

195 //is influenced by the strategy

196 cell.AffectedByStrategy = true;

197 // Add to the cell the candidate that has been eliminated

198 if (!cell.EliminationByIntersection.Contains(eliminationStep.Value))

199 {

200 cell.EliminationByIntersection.Add(eliminationStep.Value);

201 }

202 }

203 break;

204 default:

205 break;

206 }

207 }

208 }

209
210
211 // Save each elimination performed by the domain agents

212 if (elimination.StrategyType == "DomainAgent")

213 {

214 // Run through all the eliminations

215 foreach (EliminationSolutionStep step in elimination.Eliminations)

216 {

217 cell = cells[step.Cell.Column , step.Cell.Row];

218 // Add to the cell the candidate that has been eliminated

219 if (!cell.EliminationByDomain.Contains(step.Value))

220 {

221 cell.EliminationByDomain.Add(step.Value);

222 }

223 }

224 }

225
226 // Save all the eliminated candidate (s) to the CacheCell .

227 foreach (EliminationSolutionStep eliminationStep in elimination.Eliminations)

228 {

229 cell = cells[eliminationStep.Cell.Column , eliminationStep.Cell.Row];

230 if (!cell.EliminatedCand.Contains(eliminationStep.Value))

231 {

232 cell.EliminatedCand.Add(eliminationStep.Value);

233 }

234 }

235
236 }

237
238 #region ICloneable Members

239
240 public object Clone ()

241 {

242 return new CacheSolutionStep(this); ;

243 }

244
245 #endregion

246 }

247 }

CacheCell.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Drawing;

5
6 namespace MultiAgentSudokuSolver.Cache

7 {

8 public class CacheCell :ICloneable

9 {

10 // The cell can be either empty , assigned to a value or

11 // contain candidate(s)

12 public enum StateChange { Empty , Value , Candidate}

13
14 // The state of the cell

15 private StateChange type;

16 public StateChange Type

17 {

18 get { return type; }

19 set { type = value; }

20 }

21
22 // The candidates in the cell

136 Source code

23 private List <int > candidates;

24 public List <int > Candidates

25 {

26 get { return candidates; }

27 set { candidates = value; }

28 }

29
30 // The eliminated candidates in the cell

31 private List <int > eliminatedCand;

32 public List <int > EliminatedCand

33 {

34 get { return eliminatedCand; }

35 set { eliminatedCand = value; }

36 }

37
38 // The candidates eliminated by the hidden strategy

39 private List <int > eliminationByHidden;

40 public List <int > EliminationByHidden

41 {

42 get { return eliminationByHidden; }

43 set { eliminationByHidden = value; }

44 }

45
46 // The candidates eliminated by the naked strategy

47 private List <int > eliminationByNaked;

48 public List <int > EliminationByNaked

49 {

50 get { return eliminationByNaked; }

51 set { eliminationByNaked = value; }

52 }

53
54 // The candidates eliminated by the intersection strategy

55 private List <int > eliminationByIntersection;

56 public List <int > EliminationByIntersection

57 {

58 get { return eliminationByIntersection; }

59 set { eliminationByIntersection = value; }

60 }

61
62 // The candidates eliminated by the domain agents

63 private List <int > eliminationByDomain;

64 public List <int > EliminationByDomain

65 {

66 get { return eliminationByDomain; }

67 set { eliminationByDomain = value; }

68 }

69
70 // The candidates used in a strategy

71 private List <int > strategyCand;

72 public List <int > StrategyCand

73 {

74 get { return strategyCand; }

75 set { strategyCand = value; }

76 }

77
78 // The value in the cell

79 private Nullable <int > _value;

80 public Nullable <int > Value

81 {

82 get { return _value; }

83 set { _value = value; }

84 }

85
86 //Is it used in a naked strategy

87 private bool nakedCand;

88 public bool NakedCand

89 {

90 get { return nakedCand; }

91 set { nakedCand = value; }

92 }

93
94 //Is it used in a hidden strategy

95 private bool hiddenCand;

96 public bool HiddenCand

97 {

98 get { return hiddenCand; }

99 set { hiddenCand = value; }

100 }

101
102 //Is it used in a intersection strategy

103 private bool intersectionCand;

104 public bool IntersectionCand

105 {

106 get { return intersectionCand; }

107 set { intersectionCand = value; }

108 }

Cache 137

109
110 //Is it affected by a strategy

111 private bool affectedByStrategy;

112 public bool AffectedByStrategy

113 {

114 get { return affectedByStrategy; }

115 set { affectedByStrategy = value; }

116 }

117
118 // Column location

119 private int column;

120 public int Column

121 {

122 get { return column; }

123 }

124
125 // Row location

126 private int row;

127 public int Row

128 {

129 get { return row; }

130 }

131
132 public CacheCell(int column , int row)

133 {

134 this.column = column;

135 this.row = row;

136 this.nakedCand = false;

137 this.hiddenCand = false;

138 this.intersectionCand = false;

139 this.affectedByStrategy = false;

140 this.candidates = new List <int >();

141 this.eliminatedCand = new List <int >();

142 this.strategyCand = new List <int >();

143 this.eliminationByHidden = new List <int >();

144 this.eliminationByNaked = new List <int >();

145 this.eliminationByIntersection = new List <int >();

146 this.eliminationByDomain = new List <int >();

147
148 }

149
150 // Clone the current cell

151 internal CacheCell(CacheCell cell)

152 {

153 this.row = cell.row;

154 this.column = cell.column;

155 this.type = cell.type;

156 this._value = cell._value;

157 this.hiddenCand = cell.hiddenCand;

158 this.nakedCand = cell.nakedCand;

159 this.intersectionCand = cell.intersectionCand;

160 this.affectedByStrategy = cell.affectedByStrategy;

161 this.candidates = new List <int >();

162 this.candidates.AddRange(cell.candidates.ToArray ());

163 this.eliminatedCand = new List <int >();

164 this.eliminatedCand.AddRange(cell.eliminatedCand.ToArray ());

165 this.strategyCand = new List <int >();

166 this.strategyCand.AddRange(cell.strategyCand.ToArray ());

167 this.eliminationByHidden = new List <int >();

168 this.eliminationByHidden.AddRange(cell.eliminationByHidden.ToArray ());

169 this.eliminationByNaked = new List <int >();

170 this.eliminationByNaked.AddRange(cell.eliminationByNaked.ToArray ());

171 this.eliminationByIntersection = new List <int >();

172 this.eliminationByIntersection.AddRange(cell.eliminationByIntersection.ToArray ());

173 this.eliminationByDomain = new List <int >();

174 this.eliminationByDomain.AddRange(cell.eliminationByDomain.ToArray ());

175
176 }

177
178 #region ICloneable Members

179
180 public object Clone ()

181 {

182 return new CacheCell(this);

183 }

184
185 #endregion

186 }

187 }

138 Source code

SolutionBuilder.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using System.Collections.ObjectModel;

5
6 namespace MultiAgentSudokuSolver.Cache

7 {

8 // Used to save a CacheSolutionStep each time a cell is assigned a value

9 class SolutionBuilder

10 {

11 // Size of the puzzle

12 private int puzzleSize;

13 // List containing the different steps

14 private List <CacheSolutionStep > stepList;

15
16 private int nakedCount;

17
18 public int NakedCount

19 {

20 get { return nakedCount; }

21 set { nakedCount = value; }

22 }

23
24 private int hiddenCount;

25
26 public int HiddenCount

27 {

28 get { return hiddenCount; }

29 set { hiddenCount = value; }

30 }

31
32 private int intersectionCount;

33
34 public int IntersectionCount

35 {

36 get { return intersectionCount; }

37 set { intersectionCount = value; }

38 }

39
40 private int guesses;

41 public int Guesses

42 {

43 get { return guesses; }

44 set { guesses = value; }

45 }

46
47 private bool isSearched;

48 public bool IsSearched

49 {

50 get { return isSearched; }

51 set { isSearched = value; }

52 }

53
54 // The numbers of steps so far

55 public int CurrentStepIndex { get { return stepList.Count; } }

56
57 public SolutionBuilder(int puzzleSize)

58 {

59 this.puzzleSize = puzzleSize;

60 stepList = new List <CacheSolutionStep >(puzzleSize * puzzleSize);

61 }

62
63 // Save the current step

64 public void SaveSolutionStep(CacheSolutionStep step)

65 {

66 stepList.Add(step);

67 }

68
69 // Get a Cell at the index given by stepIndex

70 public CacheCell GetCellAtStepIndex(int stepIndex , CacheCell cell)

71 {

72 return stepList[stepIndex].Cells[cell.Column , cell.Row];

73 }

74
75 // Return copy of current stepList

76 public Collection <CacheSolutionStep > GetSolutionSteps ()

77 {

78 return new Collection <CacheSolutionStep >(new List <CacheSolutionStep >(stepList));

79 }

80 }

81 }

Cache 139

PuzzleValidator.cs

1 using System;

2 using System.Collections.Generic;

3 using System.Text;

4 using MultiAgentSudokuSolver.Data;

5
6 namespace MultiAgentSudokuSolver.Cache

7 {

8 // Validate the puzzle

9 public class PuzzleValidator

10 {

11 public static bool Validate(PuzzleCell [,] cells , int puzzleSize)

12 {

13 bool result = false;

14 // Run trough each cell

15 for (int column = 0; column < puzzleSize; column ++)

16 {

17 for (int row = 0; row < puzzleSize; row ++)

18 {

19 // Validate the cell

20 if (ValidateCell(cells , cells[column , row], puzzleSize))

21 {

22 result = true;

23 }

24 // All cells must validate for the entire grid to validate

25 else

26 {

27 return false;

28 }

29 }

30 }

31
32 return result;

33 }

34
35
36 private static bool ValidateCell(PuzzleCell [,] cells , PuzzleCell cell , int puzzleSize)

37 {

38 List <int > valueList;

39 int puzzleOrder = (int)Math.Sqrt(puzzleSize);

40 int square = (cell.Row / puzzleOrder) + (cell.Column / puzzleOrder) * puzzleOrder;

41
42 // Validate Column

43 valueList = new List <int >();

44 // Run trough all cells in the column belonging to the current cell

45 for (int column = 0; column < puzzleSize; column ++)

46 {

47 // Add all cell values to valueList except the value in the current cell

48 if (column != cell.Column)

49 {

50 valueList.Add((int)cells[column , cell.Row]. CellValue.Value);

51 }

52 }

53 //If the value in the current cell is contained in valueList , the value

54 //is present in the column more than once -> constraints are violated

55 if (valueList.Contains(cell.CellValue.Value))

56 {

57 return false;

58 }

59
60 // Validate Row

61 valueList = new List <int >();

62 // Run trough all cells in the row belonging to the current cell

63 for (int row = 0; row < puzzleSize; row++)

64 {

65 // Add all cell values to valueList except the value in the current cell

66 if (row != cell.Row)

67 {

68 valueList.Add(cells[cell.Column , row]. CellValue.Value);

69 }

70 }

71 //If the value in the current cell is contained in valueList , the value

72 //is present in the row more than once -> constraints are violated

73 if (valueList.Contains ((cell.CellValue.Value)))

74 {

75 return false;

76 }

77
78 // Validate Square

79 valueList = new List <int >();

80 int lowerGlobalX = (square % puzzleOrder) * puzzleOrder;

81 int lowerGlobalY = (square / puzzleOrder) * puzzleOrder;

82 int upperGlobalX = lowerGlobalX + puzzleOrder - 1;

83 int upperGlobalY = lowerGlobalY + puzzleOrder - 1;

140 Source code

84 // Run trough all cells in the sqaure belonging to the current cell

85 for (int i = lowerGlobalX; i <= upperGlobalX; i++)

86 {

87 for (int j = lowerGlobalY; j <= upperGlobalY; j++)

88 {

89 // Add all cell values to valueList except the value in the current cell

90 if (cells[j, i] != cell)

91 {

92 valueList.Add(cells[j, i]. CellValue.Value);

93 }

94 }

95 }

96 //If the value in the current cell is contained in valueList , the value

97 //is present in the square more than once -> constraints are violated

98 if (valueList.Contains(cell.CellValue.Value))

99 {

100 return false;

101 }

102
103 return true;

104 }

105 }

106 }

