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Preface

The thesis has been prepared at Informatics and Maticahidbdeling (IMM), at the Technical
University of Denmark in the second semester of 2007. Thegbiieas been carried out in
collaboration with Briel and Kjeer Sound & Vibration Mesement A/S. It is the thesis for the
degree of Civil Engineering in Electrical & Electronic erggring.

This project is the result of my interest for intgdince signal processing which begins at DTU.
Spectral analysis and Bayesian parameter estimationtfer broad spectrum of the project.
However, this is by no means an exhaustive overvievl bbguency estimation methods
developed. Also | cannot go through every single methadgioned in the project in great details
because of time limit and it is not my goal with wrgithis thesis. It is rather the study of some
relevant and successful techniques defined as those usedthaekihg.

The aim of this thesis is to make a survey and investigatBayesian probability for fundamental
frequency estimation. The emphasis is on classpEadteal estimation and Bayesian tracking
analysis for both noisy stationary and nonstatiotiang series. Performance analyses through
computer simulations are undertaken to emphasize theirmositant results in separate points.
[llustration of estimates error sensitivity for thake of estimator comparison and hyperparameter
adjustment impact on the estimates is shown and dedlua

Acknowledgements

| would like express my deepest gratitude to my superviderYWinther professor from
Intelligence Signal Processing-Group in the departmilmfarmation Mathematic Modeling-IMM
at the Technical University of Denmark, for his guidanceugh my thesis in collaboration with
Briel & Kjeer vibration and sound Measurement A/S. His kaeivledge, patience and valuable
advices helped me to accomplish this civil engineeringslaOTU.

| am thankful to my late father, Gondo Gaston for higahsupport and his faithful protection. | am
very grateful to my coordinator Sgren Worre at Briédjéer and Thorkild Pedersen PhD for their
support and helps.

| am please to my Mother Non Monné in Cote D’lvdineory Coast) and my lovely son Jesse
Frederic Gondo in Denmark for their unconditional suppoprayers.

Finally, | would like to thank the greatest God who has gimerthe energy, the motivation and the
health to keep going despite the multiple devastatindestg®s; and who has been hugely
supportive throughout the 2 and 1/2 years it has taken tb fimysstudies at the Technical
University of Denmark.



Abstract

Analysis of rotating machines for design purpose or faaljribsis requires generally an estimation
of parameters that characterizes the vibration and goattelns. Spectral estimation methods based
on classical techniques assume stationarity and highlsig-noise ratio (SNR). The
nonstationarity of vibration and acoustic data is acnodated by the commonly used windowing
technique. This thesis explores the Bayesian fundamieatplency estimation theory and
investigates both classical and Bayesian approaches poaiblem of spectral analysis and slowly
varying frequency tracking. We use Periodogram, MUSIC, liKedman filter and Bayesian
techniques to jointly estimate and track the spectrapoments. The error sensitivity is shown and
the performance for frequency estimation is comparedh & comparison is based on stationary
time series corrupted by additive white Gaussian noiseGANV Further, the effect of the prior
hyperparameters adjustment is illustrated on the speetepsfimated. The most important results
are shown through the experiments in computer simulafibe Bayesian estimator performs well
regardless the nature of the signal. Moreover, it pes/a reliable and new way of determining the
running speed of rotating mechanical system. The marginalizptoperty of the Bayesian can be
used to remove DC component (if present) in the datdamgdt the fundamental frequency of
interest. That is, the Bayesian method can provide ererate estimation than stochastic and
classical methods when the hyperparameters are adjustedtty. The reason for such
performance status is detailed.

Bruel & Kjaer -
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I ntroduction

Frequency estimation and tracking is a topic which has seglied in several literatures. It is a one
of the important area for application concerning radaedestimation of rotational system among
others. Its importance requires a research processabeats qualitative and quantitative
approaches to data analysis. Such a study explores s@e#i of data analysis that may be
applicable and benefit to engineers and companies. Thtisesie aims to support the development
of the critical appraisal skill, thorough consideringtsysatic reviews based quantitative and
gualitative data analysis of existing techniques of frequestignation and tracking. The benefits of
frequency estimation and tracking are many and well kniovmedical sector, industries such as
Briel and Kjeer Vibration and Sound Measurement A/S. Theogserof the current thesis responds
to a new way to determine the running speed of rotating ma@mnde;an be used to assess the
application designer to improve the comfort of autowsfroducts. Frequency estimation entails
however, the introduction of parameter estimation prabtelow SNR and nonstationary
frequency tracking. The basic problem in frequency eskimag parameter estimation where we
assign probabilities to represent what we actually kabaut the noise uncertainty. As such, we
formulate our problem because we know the numberrofdwaic and constant made of the linear
regression model involved in the observations through thersgeam of the data. In Bayesian
probability theory, when these are known the probleomésof parameter estimation. When the
harmonic order or the presence of a constant is nottknibw problem can refer to model selection.
Both problems may be solved using Bayesian theorem andfrpfebability theory. However, the
parameter estimation and model selection problems hHgeedt solutions. In this thesis, we will
address the parameter estimation problem through spawaitgss and nonstationary frequency
tracking. The framework will be based on classical spkahalysis using synthetic signals plus
Gaussian noise for one hand. And in the other hand, Bayesnstationary frequency tracking
using both vibration and sound data will be investigated.€ftier we will examine the Bayesian
technique applied for stationary frequency estimatioradidition, we will compare the Bayesian
and the classical performance in noisy environment tergbshe effect of low SNR on the
estimates and also the behaviour of the estimatohé&iumve will extend such investigation to
nonstationary frequency tracking of real world sigMdreover we will use both Bruel and Kjaer
technical signal processing software package called Pulsklattab simulation of Bayesian
method based on Thorkild Pedersen’s algorithm.

Problem analysis

Learning is a reverse problem of generating sample frgivesmn model. In our work, we are given
model of the signal with the unknown parameters. Aed thur task is to estimate a fundamental
frequency parameter. We formulate the estimatich@fundamental frequency in Bayesian
perspective so that the uncertainty in our model is egpdethrough the posterior distribution over
the parameter of interest. The posterior probab#itypecified by the likelihood function and the
prior distributions. In such a formulation to parametgmneation, the major issue is the choice of
the informative prior and the determination of the optihyperparameters. In fact, it has been
shown in the literature that the incorporation ofphier distribution can yield satisfactory results.
However, if the choice of informative prior can bed@anore or less for convenience sake, the
determination of the optimal hyperparameters associatedins an ill-posed problem.

Vi



Solution strategies

In our framework, we will adopt as mentioned above thgeBian inference as an approach to
statistics in which all forms of the unknown fundanagfitequency uncertainty may be expressed in
term of probability. Although, Bayesian algorithm maywrsome limit due to process time and
high complexity, it offers more flexibility and yield agate results. Despite the vast field of its
study, we will concentrate on parameter estimation antesanalyses based on theory and
computer simulations to emphasize its performance ag@me and its ability to track
nonstationary frequency.

In order to achieve our goal, it appears necessary tmiaegaur work in different chapters:

* Chapter 1. We review the basic statistic.

Chapter 2. Basic probability theory is introduced.

» Chapter 3. Estimation method pros. & cons are tabulatgd/¢ an overview of some
existing methods performance and comparison.

» Chapter 4. Spectral analysis emphasizes the perfornsdubceh classical and Bayesian
methods.

» Chapter 5. Rotating machine based on vibration and sound analysi

» Chapter 6. The experiments results for computer sinomsre provided.

» Chapter 7. General conclusion

* Further, the appendix follows with the A general suwvkthe Bayesian analysis for linear

regression models to provide us the understanding of the backbtieeory we need to
carry out the thesis framework.

Requirement specifications

The experimental vibration, tacho and sound signale wesvided by Briel & Kjeer A/S.
Literature: Bayesian analysis of rotating machines by KiladbFin Pedersen from IMM bookstore.
Software packages: PULSE Labshop from Bruel & Kjeer, stueknsion Matlab from DTU.

Deadline

27 December 2007
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Chapter 1
Basic statistics

In this section, we describe the basic analytiodl simple nontrivial spectral estimation methods
which may be used in this thesis. The explanatbtigese basic concepts obviously will help later as
the fundament of frequency estimation to underssamde advanced related theory we may use.

1.1 Autocorrelation function

It is frequently necessary to be able to quanti& degree of interdependence of one process upon
another, or to establish the similarity between ssteof data and another. In other words, the
correlation between processes or data is sougbktnidthematical description of such a tool is as
follows

N -|k|-1
R (K) "N D x(nx(n+ [k 1), Eql
n=0
This autocorrelation is a deterministic describthe waveform which may be best modeled by a
random sequence. The usg¢lof in Eql make®, , (9ymmetric about =0.

1.2 Fourier Transform

The Discrete Fourier Transform (DFT) is a Foureniess representation where Fourier coefficients are
the samples of the sequence. In other words, Wiges the description of the sigmh) in the

frequency domain, in the sense tK#&k) represents the amplitude and phase associatedhaith
frequency component as defined bellow:

1 N1 —j n
X (K) ZNZX(”)GM oE

k=0



Chapter 2
Basic Probability Theory

In practice, data often contain some randomness@ertainty. Statistics handle such data using
methods of probability theory which concern thelgsia of random phenomena. Before we make any
informed decision, we use analysis methods baseleofollowing.

2.1 Descriptive statistics

This forms the quantitative analysis of the date. Wil use these to describe basic features ofitite
in study. Generally they provide summary of theadat this project, we will use the following:
* Mean as a measure of location

1 N

Hy = Z X(n) Eq3
N n=1

» Variance as a measure of the statistical variayili
1 N

2 _ 2
O, _NZ(X(n) _:ux) Eq4
n

» Skewness is a measure of asymmetry. It concershdpe of the distribution.
The coefficient of skewness may be positive (taght negative (left tail) or zero (symmetric).

(2o - *
skev{x(n)) = = e Eqd

« Kurtosis is a measure of the peakedness (sharpness qgfiked sf a unimodal probability
density function (pdf).

(23 [x(n) - *

N <
kur(x(n)) = p Eq5

! See page 157 — Ledermann handbook of Applicabtaéfaatics — Volume 2- Probability — Emlyn Lloyd 800



2.2 Gaussian distribution

Probability theory provides a consistent framewlorkhe quantification and manipulation of
uncertainty. It forms one of the important keygattern recognition. Therefore it appears necegsary
explore a specific probability distribution modeldaits properties. The popular Gaussian distriloutio
will provide us the opportunity to discuss soméistiaal key concepts, such as mean, variance and
Bayesian inference in the context of simple moedébte the proposed robust model. One role for the
distribution is to model the probability distribori p(x) of the random variabbefrom a given finite

setx;,....... X, of observations. This problem is known as denstineation. For that purpose, we shall

assume that the data points are all independenitiantically distributed (iid). It should be emplzzesl
that the problem of density estimation is fundarakntll-posed, because there are infinitely many
probability distributions that could have givereri® the observed data. Indeed any distributionisha
nonzero can be a potential candidate. The issukaifsing a suitable model is related to the problem
of model selection which is one of the central éssin pattern recognition. We will focus here oa th
Gaussian distribution for a simple mathematicaltédhility.

2.2.1 Introduction

We introduce one of the most important probabdistribution for continuous variables called also
normal distribution. For the case of single redlsgd variable, the Gaussian distribution is defined

by
N(X| 02):;exp{— 1 (x - )2}
H; (2rm0?) V2 202 H Eq6

which is governed by two parameteyscalled mean andr® called the variance. The square root of the

variance is called standard deviatigw® and the reciprocal of the variance, written@s 1/ o® , is
called precision. Figure 1 shows the plot of thei€3san distribution.

Variance
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Figure 1: plot of univariate Gaussian showing the meanthrdstandard deviation.



This is a common used model due to its simple ptpp€&he Gaussian distribution can arise when we
consider the sum of multiple random variables. @&tral limit theorem (due to Laplace) tells ug tha
under certain condition, the sum of a set of ranglarmable, which is also random variable, has a
distribution that becomes increasingly Gaussiamuasber in term increases (Walker 1969). The
Figure 2 shows the illustration of the central tithieorem.

0.4 =~

Jillhs |

0.05 - q

-4 -3 -2 -1 0 1 2 3 4
X

Figure 2: Central limit theorem simulated by an histogrammfing a Gaussian distribution.

From Eqg6, we se®(x | &, 0%) > 0and it is straightforward to show that the Gausgarormalized, so
that IN(X|,u,02)dx=1.

Thus Eq6 satisfies the two requirements for a vatabability density. We can then find the
expectations of function afunder the Gaussian distribution. The maximum ofGlaessian
distribution is called mode, and it coincides vilie mean. We are also interested in multivariate
Gaussian distribution defined over D-dimensionatteoeof x of continuous variables, which is given

by

1 1
N(X|u,z) =

(2]T)D/2 ‘2‘1/2

Where the D-dimensional vectgris the mean, the DxD matrkx is the covariance, ar‘|§1| is the
determinant ok .

exp| 5 (< 40" (X~ )| a7



2.2.2 Maximum Likelihood for Gaussian

* Univariate case:
One common criterion of determinipgand ¢ in such a distribution using an observed datésset
find the parameter values that maximize the likeih function. In practice, it is more convenient to
maximize the log of the likelihood function. Becauke logarithm is a monotonically increasing
function, maximizing the log of the function is @galent to maximizing the function itself. Takiniget
log not only simplifies the subsequent mathemataalysis, but also avoids underflow of the
numerical precision of the computer by using suog@fprobabilities. From Eq6 and Eq7, the log
likelihood is written in the form

|np(XI,U,02)=- 2Z(X-,U) —|n0 —|n(27T) Eq8

In practice, it is more convenlent to conS|derrlbgative log of Eq7 to find the minimum of erronsu
which is equivalent to maximizing the likelihoodhse the negative log is a monotonically decreasing
function. However, for the special case of the anate normal density, we can find the maximum
likelihood solution by analytic differentiation &8 (same procedure applies for the multivariate
case). We the obtain the maximum likelihood solutjoven by

AN

HmL = He ' Eq9

This is a sample mean, i.e. the mean of the obdesteies. Similarly differentiating eq8 with respec
to with regard to (wrtlo?, we obtain the maximum likelihood solution for thariance in the form

2 _ 2
=0
Ty =% Eq10
which is the sample variance measure wrt the samphbn. In fact, it appears at this stage necessary
point out that the maximum likelihood approach uedémates the true variance of the distribution by

factor (N-1)/N and yields the correct mean valuéotlews (Pattern Recognition and Machine
Learning — C. M. Bishop 2006).

2 | _ ,N- 2
E[O'ML] - (—N g, - Eqll
From Eq@8 it follows that the following estimate thie variance parameter is unbiased
N 1
~2-— N _ 2
ol O'ML _121(Xn M) Eq12
n=

We note that the bias problem due to the underasomof the true variance becomes less significant
as the number of N of data points increases. Whapp¥oaches infinite, the maximum likelihood
solution for the variance equals the true variasfdée distribution that generates the data. In the
multivariate case, the maximum likelihood for thauSsian yields the following parameter estimates:



* Multivariate case:
Let's consider a data s&t ={x,........ X, }" in which the observations are also assumed todwerdr

independently from a multivariate Gaussian distidou We can estimate again the parameters of the
distribution by maximum likelihood. The log likebbd function is given by

_ ND N 18 —
Inp(X | 4,2) = ===IN@m = INZ1=23 06 =4 T2, <1 eqa
n=1
Using the derivative of the log likelihood wjt is given by

0 S

0—Inp(X | 1,2) =D T7(x, — ). Eql4
a,U n=1

And setting this derivative to zero, we obtain slodution for the maximum likelihood estimate of the

mean. The maximization of the Eq13 Wit rather more involved. After some manipulatighs,

result is as expected and takes the form

1y T
2= NE(X” a ILIML)(X” B ILIML) Eqls5
But this is less than the true value. Hence iiasdd. We can correct this biased by
_ 13 T
2w = m;(xn B ILIML)(X” B ILIML) Eql6

NB: we must note that all the = 1, .



2.2.3 Bayesian Inference for Gaussian

The maximum likelihood gives the point estimatastiie parametew and> . Now we develop the
Bayesian analysis by introducing the prior disttibis over the parameters. We start by a simple
example in which we suppose that the variaoéés known and consider the task of inferring the
meanu given the data set of N observations. The likelthbmction that is the probability of observed

data give the mean is defined by
N 1 1 ZN: )
PX|4) =] p(X | ) = ——=z exp ~ (%, = 1) Eq17
| n (Zmz)N/Z 2072 ot n 9
We take the prior which has the same probabilgyrihiution over the mean parameter as the likethoo
function to yield a posterior probability with tlskame Gaussian distribution. Hence conjugacy is
obtained.

() = N(u| fo,05) Eq18
and the posterior probability distribution is givien
P(u | X)oop(X | 1) p(11) Eq19

After some manipulation involving completing theuace in the exponent the posterior distribution is
given by

p(u | X) = N(u| pty,0y) Eq20
where
_ 0o’ No;
Hy —Wﬂo "‘Wﬂm Eq21
1 _ 1 N N
aﬁl 05 02 Eqg22
2
oy :WUS Eq23

It is worth to study to mean and the variance afteor probability which are given by the
compromise between the prior and the likelihood.dafe notice that if the number of observed data
points is zero, the posterior mean is equal therpmean. For an infinitely number of N, the mean of
the posterior distribution is given by the maximlikelihood solution. When we consider the variance,
we see that there are expressed in terms of invargace, which is called precision. Furthermde,
precisions are additive, so that the precisiorhefgosterior is given by the precision of the pand

one contribution of the data precision from eacthefobserved data points. As we increase the
number of data points, the precision increasds.i#f infinitely large, the posterior variance goes

zero and the posterior distribution becomes irdigipeaked around the maximum likelihood solution.



2.3 Random walk

A random process is the stochastic process. Isesaprobabilistic description of a system develgp

or changing in time or space. Here we represeriit aygrocess by a point which moves at each trial
either one 1, 2,...steps upward (with probabilityp21....) or 1,2 steps downswards (with probabilities
g1,92,....). The unrestricted simple random walk pssS, is defined as follows:

Sr+1 = Sr + Xr+1 Eqg24

wherer =0,1,...... .S, =k (a given constant) an¥, are mutually independent random variable with a
distribution given by(X, =1) = p, P(X, =-1) =1- p =q. We are not going any further, because we
will be using only this basic property as our groda build the proposed tracking prior later irsthi
project.

2.4 Conditional probability

In the deterministic world model which is adequategreater part of the elementary science and
technology, phenomena are either independent odoather, or completely determined one by
another.

The Rules of probability theory
There only two basic rules for manipulating proliabs, the product and the sum rule; all otheerul
may be derived from them. A, B A and Cstand for three arbitrary propositions then

P(AandB)

P(B) Eq25
If A andB are independentP(Aand B) = P(A)P(B)
Thus Eq25 becomeB (A | B) = P(A) and P(B | A) = P(B)

P(A|B) =

sum rule P(A, B) = P(A| B)P(B)
product rule P(A) = Z P(A B)

According to Aristotelian logic, the propositiorA'andB” is the same asB andA” so the truth
value of the propositions must be the same in tbdyzt rule. That is the probability ofA" and B
givenC” must be equal the probability & and A givenC”, this can be defined by



P(B,A[C)=P(B|C)P(AB|C) Eq26
Likewise
P(A,B|C)=P(A|C)P(B,A|C) Eq27
These equations may be combined to obtain thewollp result
o(A|B,C) = P(AICIP(BI AC)

P(B|C) Eq28

This is also Bayes theorem. It is named after RendThomas Bayes, an"l8entury mathematician
who derived a special case of the theorem. Thassisrting point of the all Bayesian calculations.

P(A|C) = [dBP(A B|C) Eq20

This is a form that the sum rule uses to removatenesting or nuisance parameters (B in this
example).

2.5 Markov chain

We now consider a more complex problem involvingi¢hain or state of evolution of the frequency.
From rotational system, the signal is the sum ofoaic related signal. The change of one will alsvay
affect the other. To express such effects in priisab model, we need to relax the independent
identical distributed (iid) assumption of the obsgion. And then consider the Markov model to
design the slowly change of the frequencies. Tomept will lay the foundation for the tracking
process of the slowly varying harmonically relabesgjuency in nonstationary environment. First order

Markov chain is defined to be a series of randorabéesw® w? ............ W such that the
following conditional independence property holds i 1{12.......N}

p(W™ Jw® WY = p(wt™ W)

Under this model the joint distribution of a segeef m observation is given by

N
P(W(m), ........... ,W(l)) = P(W(l)) r! P(W(m) |W(m—1))

Eq31

This model can be used to model distribution ofdleevly changing frequency which is characterized
by high correlation. We will see the full descrgptilater.



Chapter 3
Estimation Methods Pros. & Cons.

3.1 Pitch detection algorithms

There are two categories of pitch detection algorg: time domain and frequency domain. In this
section, we give the Pros & cons in both time aadqdency domains, and then the summary of the
frequency estimators will follow.

3.1.1 Time domain

* Autocorrelation
Pros. Relative impervious to noise.
Cons. Sensitive to sampling rate tssnllow resolution, expensive computation.

e Zero crossings
Pros. Simple, inexpensive
Cons. Inaccurate, poor with noisy sigror harmonics signals.

*  Maximum likelihood
Pros. Accuracy is high.
Cons. Complex

3.1.2 Frequency domain

* Harmonic Product SpectruPS)
Pros. Computationally inexpensive, reabdy resistant to noise, inputs dependent.
Cons. Low pitch may be tracked less eately than high pitches.

» Discrete Fourier transform (DFT)
Pros. Powerful analysis tool for stationary andquBc signals.
Cons. Inefficient to noise

This section compares four pitch detection algarghn real time pitch-detection application. Tharfo
algorithms are HPS, DFT, Maximum Likelihood and giged Autocorrelation. They mentioned the
issues on the discontinuity of the result, whichetels on the frame size of the detection windows. A
interesting point raised is the sensitivity of tigorithm to the type of input signal. Howeverddes

not contain much about the real time issues, satheawindow size and sampling frequency.

10



3.1.3 Summary of frequency estimation algorithms

In this section, we will give a brief summary arre results the frequency estimation algorithms
have achieved. For that purpose, we shall categfmrerjuency estimation algorithms as follows:

» Block estimators, where the frequency estimatédiained for fixed sample siZEin
O(T logT) or more floating point operations.

» Fast block estimators, where the sample size agdixed, but the number of operations
required i€O(T).

* On-line estimators, which allow recursively updafiedjuency estimates to be generated.

These last class of estimators is of particularedt, because they may be more amenable to extensi
to the frequency tracking problem that the bloakcpissing methods. The block processing methods
may only be used for tracking when it is known tiha instantaneous frequency does not change
significantly over known time.

* Block estimators
It has been found in the literature [1] that thestradtractive of these estimators appears to be
the estimator of Quin and Fernandes [1991], foessweasons. The estimator is unbiased,
asymptotically efficient, requires fewer operatidinan the full maximum likelihood and is
more robust to initial conditions than that algomit

» Fast block estimators:
Of the weights phase averaging estimators, thaigsed by Lovell and Williamson [1992] has
the best performance. The kay [1989] estimatorsiragar performance for small noise levels,
but its bias in the present of unbounded, in padicGaussian, noise is problem.

* On-Line estimators
Because of the frequency tracking problem, thaastancreases around on-line estimators.
The Hannan- Huang estimator has been so modifiadr{ah-Hunang [1993]) and Nehorai and
Porat frequency estimator only requires a suitebtéce of system dynamics to be used as a
frequency tracker.

From the table 1, we have found that only fouinestiors namely: Maximum Likelihood (ML),

periodogram maximizer, Fernandes-Goodwin-de Sond&lin-Fernandes achieves Cramer Rao
Bound.
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3.1.4 Cramer-Rao-Bound

A

The Cramer-Rao-Bound on the variance of an unbiestuhator of the frequencyy,, of a signal tone
in noise is
’ 12072
>
var(\\p) 2 N(NZ-1)B2 - Eq32

For the multi-harmonic frequency estimation prohl&arett and McMahon [1987] have derived the
analogous bound, which is

’ 1202
var(WO) > 5 £433
N(N?-1)> k*B?
k=1

where g?is the varianceN is the sample size an8lis the amplitude of the signal.

Frequency estimators Summary
Paradigm Algorithms Complexity AACRB
ML ML (T logT) Yes
Approximate ML Periodogram maxienis >0O(T logT) Yes
DFfeogram M O(T logT) No
Fourier coefficient FTI1 O(T logT) No
Fourier coefficient FTI2 O(T logT) No
GPIE O(T logT) No
Signal MinimuraNance o(T?) No
Subspace Barlett o(T?) No
Noise Pisarenko o(T) No
Subspace MUSIC o(T?) No
Phase Lank-Reetlon o(T) No
Weighted Kay o(T) No
Averaging Lovell o(T) Yes
Cladn o(T) No
Femdas-Goodwin-de-Souza O(T) Yes
Quternandes o(T) Yes
Filtering Hannan g N/A N/A
NediePorat N/A N/A

Table 1 Summary of frequency estimators.

2M = Maximizer. * Further investigation of the asytatic performance of this algorithm is need. Naat applicable to
online estimators. Asymptotically Achieves CrameweFBound (AACRB) 2.
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Chapter 4
Spectral Analysis

4.1 Classical methods

This section deals with transformation of data fittmme domain to frequency domain. Spectral
analysis is thus applied when the frequency prgpdrthe phenomena is investigated and when the
time contains periodicities.

4.1.1 Periodogram methodology

We consider an important class of signal charastdras stationary random process.
2

— 1 3 it
C(w) = N ;die Eq34

This is the so called periodogram. It was origpaikroduced by Schuster (1898) to detect and
measure “hidden periodicities” in data. The probteithe periodogram is that the variance of the
estimateC(w) does not decay to zerolds- «. That s, it does not converge to the true power
density spectrum. This inconsistency can be seamlie estimates fluctuate more and more wildly
from realization to realization. However the peagtam has the advantage of possible implementation
using fast Fourier transform (FFT), but with theatlvantage in the case of short data lengths @f lim
frequency resolution. The deleterious effects et$al leakage and smearing may be minimized by
windowing the data by a suitable window functidrhds been shown that averaging a number of N
realizations can significantly improve the estimaft¢he spectrum accuracy. The accuracy of the
spectra may be obtained in term of variance. Thalenvariance of the power spectral density yields
more accurate estimate. We can also decreaserihaaaby first dividing the whole data into k ejua
length section followed by zero padding, and smdaghestimate spectrum to removing randomness.
The DFT consists of harmonic amplitude and phasepcments regularly spaced in frequency. The
spacing of the spectral lines decreases with leofhe sampled waveform. If a signal component
falls between two adjacent harmonic frequency spehen it cannot be properly represented (See
computer simulations results). Its energy will bared between neighbouring harmonics and the
nearby spectral amplitude will be distorted. Winduogvis very relevant also to smooth the estimate
spectral component. However, when data is windaWvedero ends point can represent loss of
information. To avoid such loss, we need to partithe data into overlap section, say 50% to 75% to
include most of the feature. The resulting speateathen averaged to obtain an estimate of the true
spectrum.
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4.1.2 Pisarenko Harmonic Decomposition

In this section, we will discuss the Pisarenko atiduce the MUSIC techniques of frequency
estimation based on phase and autocovariance. W& spend much time in Pisarenko for the reason

that its asymptotic variance is proportionaTtbl. Any estimator which may be expressed as a

nonlinear function of these sample autocovariamgktsnherits an asymptotic variance of the same
order. The periodogram and the MLE approacheshewother hand, yield estimators with asymptotic

variances of ordéf It has been shown that the Pisarenko’s techniueh uses eigenvectors of

autocovariance matrix, is consistent when the nisisénite, but produces estimators which have
variances of a higher order than those of the MLE.

Observation model is given by:
y(n) = x(n) +w(n) Eq35

P j + . " . . . . .
where x(n) = ZA eJ @hno) w(n) is an additive white Gaussian noise with zero naahvariance
i=1

. andY’ =[y(n), y(n-1),.......... ,y(n- p)] is the observed data vector of dimension (p+1) and
W = [w(n),w(n -D,....... ,wW(n-— p)] Is the noise vector.
The autocorrelation function y(n) is

— 2
yyy(m) - yyy(m) + awa(m) m=0%1........ ,i(M —1) Eq36
Hence the M x M autocorrelation matrix for y(n) damexpressed as
] o Eq37

where[~ is the autocorrelation matrix for the signgh) and O-fv| is the autocorrelation of the
matrix of the noise. In fact, the signal matrix dsnexpressed as

p H
Fxx=iZ:12PiSS Eq38

where P = A.Zthe power of the ith sinusoidi denotes the conjugate transpose &nds a signal
vector of dimensiorM defined as
jort, _jart, j2m(M-1) fi]T

Si:[le Y < BT e Eq39
Let us perform an eigen-decomposition of the maffix . Let the eigenvaluefl } be ordered in

decreasing value with, 21, 2 A, >........... > A,, and let the corresponding eigenvectors be denoted

14



The signal correlation matrix is

P H
MW= 2AVV Eq40
i=1
In the presence of the noise, the autocorrelatiatrincan be represented by
2 2 M H
g.l =0.2V\V Eq4l
i=1
After substitution of some of the equations abeve obtain
P M P M
_ H 2 H 2 H 2 H
=2 AVV 20 V.V —Z(Aﬁa)vivi * 2O0MV Eq42
i=1 i=1 i=1 i=kp

This eigen-decomposition separates the eigenvecting sets. The se[tVi A =12,....0}

which is principal eigenvector, span the signalkpace, while the se{Vi Ji=p+l..M}

which is orthogonal to the principal vector, aralda belong to the noise space. In this contexsee

that the Pisarenko method is based on an estimattithe frequencies by using the orthogonality
property between the signal vector and vectoreénthise subspace. The frequencies can be determined
by solving for the zeros of the polynomial

=)
V(2) =D Vyu(k+Dz™ Eq43
k=0

all of which lie on the unit circle. The anglestbé roots are27f, 0 =12,....,p. When the number

of sinusoids is unknown, the determination of difScult, especially if the signal level is not
higher than the noise level. The location of thakgan the frequency estimation function is defibgd

PPl 1
Pp(f)_‘SH(f)Vpﬂr Eq44

4.1.3 Multiple Signal Classification (MUSIC)

This method is also a noise subspace frequenapasii. The estimates of the sinusoidal frequencies
are the peaks of thg,, (f)

1
Ra(f)=w— Eq4s
> s (v,
k=p+1
For further details see digital signal processprgiciples, algorithms and application, John G.aRi®,
Dimitris G. _Monalakis (3edition — 1996-page 948)d he estimation and tracking of frequency

(2001) — B.G. Quin & E.J. Hannan (p.143-179). Thgnaptotic variance is in th@(T ™).
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4.1.4 Linear Kalman Filter

Since 1960, Kalman filtering has been the subjéektensive research and application [1], partidula
in the area as diverse as aerospace, demograptalmg, manufacturing, radio communication and
other. The Kalman filter is an efficient recurshiter that estimates the states of a dynamic syste
from a series of incomplete and noisy measuremEntsher it provides computational means to
estimate the state of the process, in a way itmmgds the mean of the square error. It is appliedrnw
the dynamic and the observation equation are liwgharadditive Gaussian noise. The Kalman filters
are based on linear dynamic system discretisdaeitimne domain. They are modelled on Markov
chain built on linear operator and perturbed by<S#&n noise. In order to use the Kalman filter to
estimate the internal state of a process givemaesee of noisy observations, the process must be
modelled by specifying the matricds H, Q, R and sometime® for each time-stefik as described
below.

» Kalman filter Model
The Kalman filter model addresses the general prolf trying to estimate the statgof a discrete
time controlled process that is governed by thedirstochastic difference equation

Xk _ Axx—l + Buk—l + Wk—l Eq46
Where
A is the state transition model which is appliedwtite previous statg,

Bis the control input model which is applied to twatrol vectoru,
w, is the process noise assumed to be drawn from Gaussro mean multivariate normal distribution.

p(w)~N@O.Q)

» The observation (measurement) model
Attime k an observation (or measuremers,) of the true state, can be described by

Z, = Hx, +V Eq47
Where H is the observation model which maps the true sa&ee into the observed space apas
the observation noise which is assumed to be intkpe (of each other), white, and with normal

distributionp(v ) ~ N(O,R) .

In practice, the process noise covaridesd the measurement noise covaridhauatrices might
change with each time step or measurement, howmrerwe assume they are constant. mbxen

matrix A in the equation Eq46 relates the state at previowsstepk —1 to the state at the current step
k in either the presence of the driving functiorpoocess noise. Note that in practfemust be change
with each time step, but here we assume it is aahsthen x| matrixBrelates the optional control

input u'to the state. Thenx n matrixH in k™ measurement equation Eq47 relates the state to
p

16



measuremerd, . In practiceH might also change with each time step or measurgehhere we
assume it is constant.

» Computation origins of the filter

We definexk to be our a priori state estimate at skegiven knowledge of the process prior to

N

stepk, and x, to be our a posteriori state estimate at &tgpven measurement. We the can
define a priori and a posteriori estimate errors as

—_ N— N

ekEXk_Xk andekEXk_Xk Eq48
The a priori estimate error covariance is then

P = E| eieiT ] Eq49

and the a posteriori estimate error covariance is

P = E| ekel ] Eq50

In deriving the equations of Kalman filter, we staith a goal in finding an equation that compute t

A -

a posteriori state estimad¢_  as a linear combination of a priori estima{g _and a weighted
p R

difference between an actual measuremgiaind a predictiotH X, as shown below.

Xy :Xk+K(Zk_HXk) qel

The difference(z, — H x, ) in Eq6 is called measurement innovation, or redidize residual reflects

A

the discrepancy between the predicted measuregnt and the actual measurement A residual

of zero means that two are in complete agreemérnix m matrix Kin Egq51 is chosen to be the

gain factor that or blending factor that minimizles a posteriori error covariance Eq51. This
minimization can be achieved by substituting Eqit Eq50 and performing the indicate expectations,
then solving foK . For further details see [Maybeck 79; Brown 92Z,abs 93]. K is given by

K =R HT(HR;HT +R)™ Eq52
— Pk_HT
“ HP'HT +R EqsS3
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As we can see that when the measurement errorianearapproaches zero, the gain weights the
residual more heavilyljm K, =H ™.

Rc-0
On the other hand, as the a priori estimate ewvarianceP, approaches zero, the g&inweights

the residual less heavilyjm K, =0.

R -0
More sophisticated models of Kalman filter can denfd for the purpose of fitting model based on
nonlinear dynamic system. However, the Kalmanrfikedesigned to make a good approximation fit
when the system has a linear dynamic system.

» Kalman filter algorithm
This algorithm is based on recursive estimationvhich the only estimate needed to compute the
current state is the state from the previous titep and the current measurement. The state oiltide f
is represented by two variables:

x, the estimate of state at time k.
P, the error covariance matrix (a measure of thienas¢ accuracy of the state estimate).

Predict
A A

Predicted state Xk = AXk-1+ B Uy Eq54
Predicted estimate covariance FL_ = AFI)<—1AT + Q Eq35
Update

Innovation or measurement residual Xk - Zk - H Xk_ Eq56
Innovation (or residual) covariance i =H FI)<_H ! +R Eq57
Optimum Kalman gain Kk = FI)<_H TS<_1 Eg58
Update state estimate )zk =X+ K, X, Eq59
Update estimate covariance R< - (I - KkH)R(_ 1199
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From the above equations, we can notice that me tipdate denoted by predict project the state and
covariance estimates forward from time skepl to stegk . The first task during the measurement
update is to compute the Kalman gain and the ranwinllow as shown above.

Measurement Update (* Correct™)

Time Update (“Predict™) , .
' (1) Compute the Kalman gain

= T T
= P .H I.“H:”}L_H + R)

(1) Project the state ghead K I

" N k
X, = Ax, .+ Bu,
k k-1 k (2) Update estimate with measurement 3,
(2) Project the error covariance shead ¥. = 7 o A= ¥
] " i, = X+ K (2, -HY)
f—"k = A f—"k | AT+ Q (3) Update the error covariance

P, = (I-K H)P,

Initial estimates for X, _ | and P_‘.L__ |

Figure 3: Complete picture of the linear Kalman fiker operation

The Figure 3 shows a diagram to shortly give a amhpxplanatory of the Kalman filter operation as
designed above. In closing we note that under tionmdiwhereQand R are in fact constant, both

estimation error covariand@ and the Kalman gaid, will stabilize quickly and then remain constant.

In this case the parameter will be pre-computedind, or by determining the state value®fas
describe in [Grewal 93]. In either case, we camiobd good performance by tuning the filter
parameters. The Kalman filter is a generalizatibwiener filter. Unlike the Wiener filter, which is
designed under the assumption that the signalrenddise are stationary, the Kalman filter has the
ability to adapt itself to non-stationary environrhdf the signal and noise are jointly Gaussiae, t
Kalman filter is optimal in a minimum MSE sensethé signal and / or the noise are non-Gaussian,
then the Kalman filter is the best linear estimétat minimizes MSE among all possible linear
estimators. Moreover it is not convenient for oaloperation. It is also not shown to guarantee
bounded error variance.
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Chapter 5

Rotating Machine based on Vibration
and Sound analysis

5.1 Introduction

In rotating machines, vibration and sound analyarsyield information based on a change of system
vibration pattern which can be relevant to desiggimeer. Therefore these changes are analyzed and
used as parameters to predict fault (in conditieamitoring), improve the comfort and enhance the
design quality in automotive products. A mechansyatem which encompasses a car motor has been
used for vibration and sound measurement. We drgaiog to specify the scientific condition of the
data acquisition. We assume, that the data hasmeltan the normal scientific condition and sampled
with respect to Nyquist. In order to analysis ddtappears relevant to give a brief analysis ef th
rotating machines based on vibration analysis.pilrpose is not to provide some technical analysis
where the results can indicate a fault detectiothatk even though possible, for rotating machine
based on a change of system vibration patternitizatrelement in a system. We will thus give the
waveform characteristic of the data, the statispcaperty of the data and the data model.

5.2 Vibration analysis

Machines are complex mechanical structures withiddted elements. The parts that are excited could
oscillate; where joint to other coupled elemerassmit such oscillations. The result is the complex
frequency spectrum that characterizes the systanh &me a behaviour of component changes one of
its mechanical characteristics because of wearamk¢a frequency component of the system will be
affected. However, in an automotive, we are moreemed with tracking the auto to translate the
rotational angular velocity into a speed profil@efefore, for our study and the requirement
specification purposes based on fundamental frexyuteacking and performance analysis, we will
focus on the technical analysis through the usaePulse software package to analyze the obtained
data by using a statistical approach called Bagyemmalysis. In such an analysis, the discrete data

is processed to track the fundamental frequeneyfirl band vibration and sound signals made of
more thanll harmonics associated with noise. Theoge of this work is to get acquainted with the
utilization of PULSE software. Moreover, it is iod the suitable parameters that yield the optimal
estimate or track the fundamental frequency otese
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5.2.1 Vibration and Sound waveforms description

In previous chapters, we have been dealing withesconcepts and some theories behind the Bayesian
analysis which may be used to get acquainted walyeBian probability theory. That is the derivation
of the posterior probability distribution and timearporation of the informative prior based on
mathematic manipulation has yielded good theoretgsalts. Now we consider vibration and sound
signals which are highly nonstationary but relefanpur study. The reason is the interests of Bgue
Kjeer to investigate a new way to determine the mmspeed of a car engine for application design
purpose. Thus we are concerned with fundamentgli&ecy tracking one of the core tasks in
automobile department at Bruel and Kjeer vibratind sound measurement A/S. The gaol is to use
these measurements to track the trajectory oftthéamental frequency. Such a goal can be reached
with a well formulated technique which can takeiatcount the practical aspect of the nonstationary
data model and the uncertainty of the stochastameter being estimated. In automotive jargors, it i
baptised auto tracking. In order to achieve out,gaappears necessary to organize the task as
follows:

« Waveform characteristic

Acoustic signal

l T T
0.5 .
0]
S i
P |
-0.5 .
_l [ [ [ [ [ [ [
0 10 20 30 40 50 60 70 80
Time [sec]
Vibration signal
l T T T
% 0.5 .
5 O] i
1
-0.5 .
1 I I i i i
0 2 4 6 8 10 12

Time [sec]

Figure 4: Acoustic (upper panel) and Vibration (lower panedveform signal. These show
amplitude plot versus time. As we see, the ampasuaf these signals are characterised by an
unpredictable fluctuation over time.
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We section the signal for the purpose of havintpser look on the waveform characteristics. The
Figure 5 shows both the tacho for each signal (tqp@mels) and the signal characteristics (upper

panel).
Acoustic signal
0.2
0.1
(]
©
2
s 0
g
0.1
0.2 : : : :
0 01 02 03 04
Time (S)
Tacho signal
1 -
© |
- 05
2
=
£
< 0
0.5 : : : :
0 01 02 03 04
Time (s)

Amplitude

Amplitude

-0.2

-0.4

-0.5

Vibration signal

0.4

0.2

0O 01 02 03 04
Time (s)
Tacho signal

0.5

0O 01 02 03 04
Time (s)

Figure 5: Acoustic and Vibration signals (upper panel) vwhéce nonharmonics signals and their
respective tacho signals dominated by several puidsdesignate the periodicities.
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5.2.2 Spectrogram of the data

Next, we consider the frequency content of thegeads. The reason is simple. We are interested to
track the fundamental frequency of the signal whiexfuires knowledge about the number of
harmonics in the signals. Thus we plot the specdragn Figure 6.

Tacho. spectrogram Sound spectrogram
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Figure 6: Spectrogram of both tacho (left) and the acoysttit) harmonics order change.

As we can see Figure 6 presents two spectrogratnstiofthe tacho (left) and the sound (right)
signals. These spectrograms show a clear pictuampfitude of several harmonics components
evolving in time. These start at the low frequen€$00 Hz with first order, then as the
frequency increases the number of dominating drideeases. Thus the amplitude of the related
harmonics changes with the fundamental frequenoyebler these spectrograms present the
energy of the frequency contents (frequency spegtaf windowed frames for the run up and run

down when the frequency changes over time.

23



Tacho. spectrogram Vibration spectrogram
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Figure 7: Spectrogram of both Tacho (left) and Vibratiaglft) harmonics order change.

These spectrograms show the amplitude of thedr@mtomponents and the frequency content of
these signals. As the harmonic order changes nipditade changes as well. This change means that
the frequency is varying over time. Thus for notistary signals, such a tool based on time-frequenc
spectrum is suitable for that purpose. Furthermwyenspection, we see that the fundamental
frequency for the acoustic has its peak at 100THe. vibration of the motor yields two pulses per
rotation represented by the tacho. That is, wheriabho has peak at 100 Hz, the vibration is #1560
(see the first harmonic on the Figure 7). Thesdrerdundamental frequencies of both the acoustic a
the vibration signals we are going to track. Moe=pthese figures present strong harmonics, DC (in
tacho spectrograms) and some aliasing (top of Bgute) for run up movement. These data have been
generated in unknown condition by Bruel & Kjeer aoasist of three signals:

* Tacho reference measured optically from a cam-gfafie engine

» Vibration (called also acceleration) in the vertichrection of the engine block measured with
accelerometer.

* Acoustic sound pressure measured with a microplappeoximately 1 meter above a car
engine.

We assume that the data have sampled accordihg feyiquist theorem.

24



5.2.3 Data model

We have seen that in the spectrogram, both thatislorand the sound signals encompass several
harmonics and other artefacts due to aliasing. Berae are concerned more with the harmonic
frequencies, we will reduce our model to the surthefsome harmonics. This will be given as follows:

X(t) = 2 (a, cos@,Q(t)) +b, sin(7,Q(t))) Eq61

where
Q(t) = .tfw(r)dr

This is the representative signal, where the furetdat frequency will be estimated with respect to
(wrt) the harmonic structure, frequency order dredamplitude of the orders. This model adds with
noise will yield the regression model describedvabdn such a case, we may determine statistical
properties of the data.

5.2.4 Descriptive statistics

In order to study the complete informative desaripbf the waveform, statistical variability, thieape
of the distribution and a quantitative analysissa®ip.

0.2 T
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Skewness
0.15+ —— — Std.dew. B

0.1f f\/\ /\/
w N T
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Figure 8: Graphical representation of the partial quantigatiescription.
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Figure 8 depicts the descriptive statistics. ttlesar that the signal is highly nonstationary duéhe
variability of the standard deviation. The skewngsg) in on the x axis tells us that the distrioat
shape of our sampled data may be symmetrical. Heaogill use the Gaussian distribution.

* Student’s t-distribution
The conjugate prior for the precision of a Gaussagiven by a Gamma distribution. If we have a

univariate Gaussian N( ¢, 7 ™) together with Gamma priggan{(r | a,b) and we integrate out the
precision, we obtain the marginal distribution

p(x| 4,ab) = [ N(x| 4,7 ™)Gan(r |a,b)d7 62
After some manipulations, we obtain the studenrtistribution defined by
F(v/2+1/2) ( A 2| 14 A(x = p)?

rvi2) % Eq63

Whered is sometimes called the precision of the t-distrdoueven though it is not in general equal to

~(v+1)/2

St(x| u,A,v) =

the inverse of the variance. The varianceagX| = %LZ andv > 2.The parametey is called the
V —

degree of freedom, and its effect can control the shape offik&ibution. For the particular case of

v =1, the t-distribution reduces to the Cauchy distribution, whikaeé limity — oo the t-distribution

St(x| i4,A,V) becomes a Gaussian K 4,7 *)with mean andu precisio .

Acoustic signal
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Figure 9ac Complete descriptive information of sound signal model.
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In the Figures 9a and 9b, we consider 3 distrimgtioamely the histogram, Gaussian and the Student’s
t-distributions representing the probability distriion of the acoustic data. The bars of the hrstag

in both right and left sides taper in the same Wénese tapering sides are called tails (or snakesl),
provide a visual shape of the distribution. Suchséribution contains both right longer tail (pogit
skew) and left longer tail (negative skew). Theriisition is said to be skewed. From equation &g,
notice that student’s t-distribution is formed lwdang up an infinite number of Gaussian distribagio
with same mean and different precisions. Thisfesrred to an infinite mixture of Gaussians. That is
the distribution has in general longer tails thabaaissian. This gives the t-distribution an impotta
property called robustness, which means thatitush less sensitive than a Gaussian to the presence
of outliers. Outliers can arise in practical apgfions either because the process that generatesitih
corresponds to a distribution having heavy tagiorply mislabelled data. Robustness is also an
important property of the regression problem.

Vibration signal
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Figure 9b: Complete descriptive information of vibrationrs&d model.

* Interpretation
lllustration of the robustness of Student’s t-disttion compared to Gaussian. Histogram distributio
of 401 data points from a maximum likelihood fittaimed from a t-distribution (red curve) and a
Gaussian distribution (dark curve). The t-distribatcontains the Gaussian as a special case.ds giv
almost the same solution as the Gaussian. The etengthtistical description of the data confirme th
the distribution of the acoustic and vibration daé&e a symmetric distribution shape. Further, the
elongation of the histogram tails confirms the heatail. However, such tails happen to be shodt an
die out faster. Therefore, we will consider the €aan distribution to be suitable probability dépsi
function (pdf) for short bandwidth. The variabilibpserved by the variance indicates that the signal
highly nonstationary.
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5.3 Robust Bayesian tracking algorithm

The previous chapters were concerned with the asbmof the stationary frequency. If the
instantaneous frequency changes substantially dode8NR, there is not much that can be done to
track the frequency as it changes. However, iftbguency is changing so slowly, then we couldkrac
the instantaneous frequency simply by estimatingdiépendently over time blocks using the above
mentioned method. In this section we are concewittdthe estimation of a stochastic variable namely
the unknown fundamental frequency from vibratiod aound data sampled uniformly.

The data record is defined by

d" = [d(tkAN)’ A(Epag)seeeeeeemeens ,d(tAN+M_1)]T Eq64

whereM is the number of samples in each record. The recane offset form each oth&X .
The parameter to track

0, E{W(F‘) 0<i <L} Eq65
The observations are defined by
D, E{d(') :Osi<L} Eq66
The likelihood function is defined by
1 1
d|d)=————exp - de—fo}

p(10)= Lo ;{ - ) -

» Parameter vector or matrix

_ T

tyg = [toreeereonens. tra
SR [ (%9 T dt,)]
Boing = [Apreeeeeon A B, B[
f=Gb
b=(G"G)G"d
d=Gb+e
V] /7 R e
Upsg = [Leoveerriennns 1]’

— T : T
Guoca =ltos  COSGLIT) SNty )
The value 0B, corresponding to the MAP estimate pf@, | D, )is the optimum track. In order to
calculate the posterior probability, we need tal fine prior model.
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5.3.1 Modeling the informative prior distribution

We know that the frequency changes slowly over tifie successive samples will not be too
different, suggesting that there is high degreeoofelation between the samples as mentioned earlie
Such effect leads us to consider a conditional gvdistic model namely Markov model. The reason is
that we need to relax the identically independésttiduted assumption of the observations; to aastu

the slowly change effects. Thus with such a maglipformation aboutw®’ from the past observation
is contained in the previous observatigh® .

OOWE WD W)

If w obeys Eq6 it is said to be P-order Markov procEls. joint posterior becomes

p@©,_ D) = pwW:™|©.,,D)pO,,1D,)
00 p(d(L_l) |W|(:L_l)) p(Wl(:L_l) |1©,.,)p(O ,|D_,)

P-1 ) ) )
o p(d® IWéO’)p(Wéo’)I_J pd® [we)p(we’ |©))

L-1
x [ p(d® |w®) p(w® |wi™,............ 2wl
1=

* The posterior probability

P-1

PO D)o p(d™ [we) POwE" )] P(A™ [ W) POAE” W™ W)
L-1 ) . . .I_l i-P

) ” p(d® | W) pw® [WE™ . W) Eq68
1=

As we can clearly see, the posterior probabilitheresultant of Bayesian inference. Three scesari
may be designed to compute the sets of the pospnbabilities which can yield the fundamental
frequency components.
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5.3.2 Tracking location parameter

As we know that the unknown parameter varies slawkr records or time, in the case of Gaussian
distribution, with the fundamental frequency cop@sding to the mean, the regression function is
linear. It may therefore be defined by

(n=K) — /(M) -
we Y =we +ak+n(n-k) Eq69
Wherenis N(0,07), 1< k < Panda is the rate of change.  is too big, the change will be too fast

and the tracker may not perform well. The othenpuaters are important and these will be given in a
simulation part.

P
Sauss veighting - =l Pooolution
‘/I4 , = Width = =
I ~ F
3 Clipped = 2 o
i:J
2
Fa Dwverlagp

RFh Sample rat=

FPrevious RFPM
E =timates

Figure 10: Tracking prior from linear regression.

The linear regression can be used to estimatedation parameter in the subsequent observation. In
the Figure 10, the description of how to deterntireeprior probability distribution is shown by lae
regression.

* Determination of the prior mean
We use a conjugate prior based on Gaussian distnibt’he determination of its parameter follows

Thorkild Pedersen procedure:

p(w® Wi WP = N(uy,02) Eq70
P _
2(2P +1) - 6k)w ™
_ Lo )~ Orwi , forP>1
Hr = P(P-1) Eq71l
wi , for P=1
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5.3.3 Procedure of fundamental frequency tracksigglinformative prior

1- Segmentation of the data set.
2- Overlap the each data segmented to each otladN € M .

3- Compute the posterior distributiop(w® |d™)of the fundamental frequency
4- Find maximum a posteriori (MAPp(®, |D,)

«  Prior information not available wriv®’ the MAP is defined by
L-1
p(©, ID) =[] p(we’ [d?)
1=0

It is defined by(w® |d©) such that

{arg max p(w’ |d”):0<i< L}

wg)

» Prior knowledge available the MAP is defined asofob

P-1
p(©. |D, ) p(d® [w) p(W£°’)|'1| pd® [w®) p(wW® Wit W)
M O ) _('> (i-1) (i-P)
| | | 1= 1=
Xl_plp(d | W) P(WE [WE ™ e, We )
1=

5- Compute the posterior probability as follows

1. Initialization

pw?), 07

2. Compute

w = arg max (p(d | w®) p(w))

3Forl £ k F< P

wo) = ar%max(p(d(k) | W) p(wt W™, ,Wéo)))
4.For P< [( <L:

i’ =argman(p(a® | ) Ol [ ... )
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Chapter 6
Results for Computer Simulations

6.1 Spectral Analysis simulation

6.1.1 Performance analysis using stationary signal

» Experiment 1: Single harmonic frequency estimation

This experiment is a simple frequency estimatioseldzon a single harmonic in sine wave. We
generate a 2501 periodic discrete time sampleswlVenention that in these experiments, we assume
that all data are uniformly sampled. We apply dhly periodogram and the student t-distribution. The
results are depicted in Figure 11.

Periodogram

1

0B — — — = — —

0B — — — = = — - —
b

04 — = = o —
‘ I
|

02| o ‘tT 77777 -
i

o

Anituce

0B — — — = = —

06| — — = = = = —

04— — — — — — — — — — — — — — — — — o~~~ o~~~ — HL# 77777 —
Il

B e —————————— ‘t 37 77777 —
J i

Frequency [Hz]

Anituce

Figurell: Spectral estimate comparison
The figure shows evidence of one peak in each p&helupper panel is the result of the periodogram

resolving perfectly the single harmonic frequendye second harmonic is also at the right position.
Hence, these two estimators have successfullysdeiide single harmonic in the signal.
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» Experiment 2: Two harmonic frequencies estimation

In this experiment, we are interest in the poweried by each line; not in the total power carid

the signal. This can be a real issue as the tves loecome closer and closer together so that pgewer
shared between them. The figure 12 shows an exashplech an issue. To illustrate this point, we
generate a discrete time sine wave sampled uniyjoivié use 2501 sampled data. We then estimate
the frequencies. Figure 12 shows the spectral caes of two closed harmonic frequencies. In the
upper panel, the periodogram shows only one pdak.&stimator has estimated a frequency which is
the average of the two frequencies. In the lowaepaf the figure, the student t- distribution stsow
two frequency peaks at wrong position. Thus thé&igion of the improper prior has enhanced the
ability of the estimator in the lowest panel to éragize the evidence of two harmonic frequencies.

Periodogram
T

1

o8

0.6
0.4

0.2

o

o5
o

-0.5

Frequency [HZz]

Figure 12 Power of the prior and spectral estimation.

Therefore, we note that prior, even uninformatisa bave a major effect on the conclusion we are abl
to draw from a given data set. This plot illustsatéearly some of the points we have been mentpnin
earlier even though the estimate of the studersttioution may seems very conservative (see Figure
12). When we increase the data size, the Figush@@s evidence of two peaks for each of these
estimators. The periodogram and the student tiHoligion yield successfully the two frequency
components as shown in both upper and lower paagpectively. As we may know from literature, it
iS not easy to retrieve too closed harmonics. Atesdimit, it may be even very difficult.

P eriodogram

Frequency [Hz]

Figure 13: Spectral analysis of too closed harmonics
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However, we can solve such an issue by applyingjkbBhood method introduced in section 5.3.
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Figure 14: Spectral analysis showing spurious peaks causedisg effect.

We now want to observe the effect of noise on tlessenators. Therefore using the same signal with
two harmonics frequencies, we increase the noisanee level beyond the fading limit say SNR set to
-40dB. In such a lower SNR we apply these estinsdtoresolve the frequencies of interest. The noise
effect has been attenuated by the ensemble avgregihnique employed on the power spectral of
each estimator. This is to reduce the variabilftthe power spectral estimates due to random noise
effect. It results that the noise is filtered ddibwever, the increase of the noise at certain lrasl
significant effect on the periodogram (see uppst panel). It presents spurious effects on itsredes
which may be considered as frequencies compon@ntthe other hand, the estimators based on the
posterior probability distribution do not suffeofn the same effects of the spurious components. The
periodogram is not even a sufficient statisticamsg environment because it becomes significantly
affected by noise (see Figure 14). We have showatttie periodogram is very powerful to single tone
signal. Despite the sample size of the data, stuegistribution can demonstrate the evidence ef th
exact number frequency present in the signal. diffisrence of resolving frequencies in a low SNR
signal is due to the additional effect of the priBuch a prior can help to enhance the ability of
emphasizing the evidence of the frequency companéhe signal. Moreover, the student t-
distribution withstands the effect of the noiseatain level. Therefore without concluding, we may
say that the marginal posterior probability remahesflexible estimator and yield good performance
with the inclusion of the prior distribution.
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» Experiment 3: Multi stationary harmonic frequensyimation

In this experiment, we generate a discrete tim®unly spaced sinusoid sample with a four low
frequencies: f1=0.1, f2=0.2, f3=0.4 and f4=0.6. Fheple size was 3001. The sampling frequency is
50 Hz. We apply the periodogram and the joint past@robability distributions with and without
knowing the variance, the results are depictetienRigure 16. Matlab code used:

bayes stationary spect_ana.m. The Figure 15 shows the results which perforrmtiodtiple stationary
frequency estimation with closed four closed hanmoglated frequencies. The results are shown in
the Figure 15.
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Figure 15 Spectrum of four related low frequencies usinthlperiodogram, the joint posterior

probability and the spectral estimatpfw) with and without variance being known. All theigsitors

show evidence of four peaks at the right positiory@he p(w) estimator shows a low amplitude of the
estimates 2f0 and 4f0 where f0=0.1.

We add noise a high noise level say SNR to -3B.&elond the fading criterion. And then we apply
these estimators. They successfully show four paaitee right frequencies position. Although the
success of these estimators the spectral estimattoe lowest panel appears to withstand the noise
effect. The remaining ones, periodogram and thejoind posterior probability estimators yield both
the right spectrum and also show evidence of spaneaks. This is due to the low level of the SNR.
The scenario is presented in Figure 16.
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Periodogram SNR = -35.4 dB
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Figure 16: Ensemble average spectrum when SNR is set to dBb.Z4he performance of these
estimators shows evidence of four correct peaks.
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Further, we examine the performance of these egimhahen three of these four harmonic
frequencies are too closed. These estimate suadigdke four harmonics as shown in Figure 17

noiseless

Periodogram

Amplitude

Amplitude

Amplitude

Amplitude

Frequency [Hz]

Figure 17: Ensemble average spectral estimation when tlgdrecies are clustered together.
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» Experiment 4: Multiple nonstationary harmonic freqay estimation

In this experiment, we will investigate the capipibf the periodogram and the student t-distribati
to estimate the nonstationary frequencies fromuniéormly sampled signals with two separate
frequencies and decay factor. The signal is modadefdllows:

f,(t) =[B, cos@ut) + B, sin(w,t)|@ ™ and f,(t) = [[Bs cos@w,t) + B, Sin(Wzt)]e(%H%)J

Parameters used are:
B,=15,B, =4, B =2, B, =3, w, =03 rad/sw, = 05rad/s,g =0° @ =90° fs=50Hz.

NMR Time series in channel 1 NMR Time series in channel 2
1 1
0.5 1 0.5
(]
©
2
5 0 0
g
-0.5 1 -0.5
-1 : -1 :
0 5 10 0 5 10
Time Time
Periodogram in Chl Periodogram in Ch2
(] (]
© ©
2 2
= =
E E
< <
Frequency [Hz] Frequency [Hz]

Figure 18: Performance of the spectral estimates for thmgegram.

Figure 18 shows the time series of the NMR freeiatidn decay data from two different channels
represented by channel 1 and channel 2 (upper)péméhe lowest panel, the estimates of the
periodogram are shown for of each channel. We sbeone peak for each signal or channel. This is
reasonable because each signal contains only egqasincy component. When these channels are
added or combined, the estimation of both frequemnby periodogram fails. This is due to the
incapacity of the periodogram to resolve nonstatigrirequency (see upper panel in Figure 19).
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Figure 19: Performance of the spectral analysis by the degeam and the student t-distribution.

In the lowest panel, we note the evidence of teaks at the right position of the frequencies neéede
This indicates that the frequencies of intereseagelbeen successfully estimated by the student t-
distribution. This is also in harmony with the thies in many literatures that postulate that tiuelestt
t-distribution outperforms the periodogram in cereonditions. We now add white Gaussian to our
signal model (Figure 20); and then we apply botéhgariodogram and the student t-distribution to the
unnormalized signals. The results of the experimeamiexactly the same as in Figure 19.

x 101°7 NMR Time series in channel 1

(0] 1 2 3 4 5 6 7 8 9 10
Time
x 10 1*° NMR Time series in channel 2

Figure 20: The true signals are corrupted (black) into wiitaissian noise (red).
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Now, we would like to know the behaviour of suchestimator under different condition such as
normalization and in a noisy environ. Therefore,umdertake a new experiment with the same signal
and same parameters as before. We normalize tiearsignalsf, (t) andf,(t), and then we apply
these two estimators. The results are shown inr€sgRl. We can clearly see the evidence of two
peaks in the upper and lower panels. The periodograd the student t-distribution have successfully
estimated these two frequencies.
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Figure 21: Frequency estimation under signal normalizationdition.

At last, we normalized the signals and then addevBaussian noise with variance set to 0.005. The
results are shown in the Figure 21.
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Figure 22 Performance comparison when variance is se@50.

39



It is not surprising to see that the periodograimeaes the same performance as the student t-
distribution does. Because we can see the all tastgmators yield the same result. This is simply
because of the normalization effect on the sigaatsthe axis.
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Figure 23: Performance of the periodogram vs Student tilligion in noisy environment.0.01

The normalization [15] has the following effectttre signals of interest.
* Amplification
* Base line shift
Stretch or concentration- a scale along the x-axig
Phase shift
Orientation — a rotation along the axis
Therefore the periodogram has a correct estimg@ipearance. The result is unsatisfactory although th
periodogram has yielded the two correct peakseatigint frequency positions. The estimation is
correct due to the effect of the normalization psscwhich changes the signal.

Comment

The student t-distribution works better on speatstimation. Further, we have also seen the effiect
the normalization, which amplifies noise and stttfts phase and the base line to give another signal
Thus the signals lose their intrinsic shape. Initaatd we have shown when more one channel is
present; the periodogram is not an appropriatenasdir for indication of multi nonstationary
frequencies. We have shown that the logarithmeftindent t-distribution is a proper statistic
estimator which can resolve all the peaks in tlvbsmnels, while the periodogram fails to do so.

We have also seen that prior distribution can favempact on the estimate although it is vaguesThu
the student t-distribution can be used as frequestignator in a frequency modulator system.
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6.2 Classical and Bayesian estimators’ noise seihgit

We have seen the simulated results of the Bayasehod and the periodogram in different context.
Now we want to analyze the performance of the Bayetechnique compared to the classical methods.
We use for such a purpose a synthetic data to a&tgtithe spectral components of the signal under
noiseless and noisy conditions. The difference Isetieat we focus more on the error sensitivityuIh

we implement the generation of the noisy sequeft¢and the computation of the frequency
estimation. We would note that the spectral esésat the methods applied here exhibit a significan
variability. Therefore, it is necessary to avertigenoise over several realizations for the sdtexifig

the noise and stability. We use 10000 realizatiormir current experiment. Figures 24 - 25 illura

the results obtained by running the whole progriatiab scriptmethod_sim_rev.m). We assume

that the signal being used in this experiment ifoumly sampled.

Noiseless signal

Figure 24: Noiseless sine wave
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Figure 25. Noiseless spectral components
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The Figures 24-25 show the sine wave and the ssittspectral estimation of these four estimators
except the MUSIC which shows a DC level. Now we adie and then increase it to a certain level
beyond the fading criterion. The results of suclegmeriment using the same signal are depicted in
Figures 26 and 27. We see how the additive Gaussigse corrupts the signal (see Figure 26). When
we apply the same estimators as that of abovtheske estimators yield a pronounced peak at the rig
frequency position.
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Figure 26. Single tone signal (dark) embedded in white Geumsnoise (red).

By inspection, we see that the Figure 27 showsffeguency spectral components from the
periodogram, Music, linear Kalman filter and theyBsian. However, Kalman and the periodogram
introduce spurious peaks. This is a great signstfichance; whereas the Music and the Bayesian
methods withstand such a noise level. This alsootstnates the power of eigenanalysis-based
algorithm for Music and prior for Bayesian.
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Figure 27: Single frequency spectral form classical andeB&gn estimators and noise effect.
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We increase the noise level. At this point, all séimates are affected. The result tells us treste
estimators are significantly deteriorated by this@as shown in the Figure 28.
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Figure 28: Noise effect on spectral estimators.

Figure 28 shows the effect of low SNR of the estedaspectrum by introducing several peaks.
Although the periodogram and the Kalman filter ké®pevidence of the peak, the noise has severely
deteriorates the estimator by the presence of@psigffects. The Bayesian estimator shows a less
impact to the noise due to its low spectral distnde. The Music fails to estimate the frequency of
interest. The key point in the Kalman filter the@ythat the underlying state space model is ateura
When this assumption is violated, the performarica@filter can deteriorate appreciably. The filte
sensitivity to modelling nonlinear error has ledhe development of robust state space filters.
Eventhough it is difficult to draw any conclusidhe results nevertheless demonstrate the powaeof t
posterior probability including vague prior in ré8ng the frequency component in additive noise.
Although the results were not satisfactory for MidSIC, it has been stressed out in literature [hat
the MUSIC are good estimator for sinusoids andimapplied more generally to the estimation of the
narrow band signals. Furthermore, the Bayesiamiqak used in this experiment remains a better
estimator. However it must be reinforced by a nrotrist algorithm including an informative prior
with adjustable hyperparameter to be a generalgserpstimator. Whereas the linear Kalman
assumption and adaptive capability need to be taiganst noise.
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6.3 Stationary Fundamental frequency tracking

In previous experiments, we study the performar@ipestimators with fixed frequency. This
analysis extends the ideas developed above uneleptidition in which the Bayesian algorithm with
adjustable parameters is applied to track the &aqguvariation. We then use a sine wave with
fundamental frequency which varies slowly over tiffiee slow motion of the frequency may be linear
and nonlinear. The results of the experiment aosvahn the figures below. Thus we consider the
following signal and the parameter are listed below

* Problem statement: linear fundamental frequeragking

Signal model setup
1. ff (t) = F, + 0.1t : Fundamental frequency with a low rate of change.

t
2.x(t) = sin(ZITI ff (t)), Periodic signal
0

Parameters:

Record size: 125 samples - Overlap: 100 sampl8s5 Hz - Fs: 100 Hz

Signal duration: 60 seconds

P:1 number of regression order

Variance: X
4

K: [1] order of the harmonic

Tracked freq.(Red) # fund. frequency (blue)
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Figure "29a Fitted linear fundamental frequency track whemgkgnal is noiseless.
As the Bayesian procedure has been describedrearéievill only give interpretations of the results
Thus the Figures 29a and 29b, show the linear fonedéal frequency (white line) versus the true
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fundamental frequency (blue line). Eventhough tigeife 29b does provide more information; it shows
a successful of segmentation and overlap of thee r@abrd and the tracked fundamental frequency
trajectory followed by the tracker in Figure 29 Higure 29a, successful frequency tracking is
depicted.

Marginal Post. Prob.: log P(D|D)xP (D)
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Figure 29b: Image of the linear frequency tracking procesthefoiseless signal.

Further, we will now carry out the performance t@sadding a white Gaussian noise to the signal and
simulate the impact of the decreasing SNR on the8ian performance by means of the accuracy and
error sensitivity. Let us consider by now that $ignal to be tested is as followsg(t) = x(t) + n(t) . A
regression model with additive white Gaussian nuitle variance set to 1. The result of such a test
applying Bayesian is depicted in Figure 30a and 30b
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Figure 30a Tracking (red) the true fundamental frequencuébhen the noise variance is setto 1.

Despite the noise, the model is fitted well. A ngible degradation is noted in the Figure 30a. At a

noise level set to 3, the tracker cannot followectly the true fundamental frequency as shown in
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Figure 30b. The increase of noise variance hasettdagh uncertainty in the estimates such that it
appears difficult to fit the model. This is shownthe Figure 30b, where the fitted curve (red) deg
to follow the trajectory of the detected track @)lu

Tracked freq.(Red) # fund. frequency (blue)

11

10
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[00)
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Figure 30h: High degradation of the tracker due to variaretgd® 3: model cannot be fitted well.

Comment

In this experiment, we test the performance of@ayesian algorithm including an informative prior
linear time varying frequency sigiaWe consider the signal evenly spaced for thedivaluation of

the error sensitivity. In the absence of noise tthek and the fitted curves overlap. The modéttesd
well. When increase the variance of the noisentbdel does not fit well. The effect of noise
deteriorates the performance of our Bayesian mefhiog effect of the noise is that it increases the
uncertainty of the parameter to be estimated. Tohususing the decision making process of the
posterior probability by providing wrong and inacaie estimate to adapt itself later to such a noise
level. Moreover the algorithm can yield best restdiere the model can be fitted well. However under
low SNR condition the algorithm fails to fit welié model. Therefore care should be taken to reduce
the noise or improve the algorithm. Neverthelessig shown that our algorithm can drastically
deteriorate in low SNR.

¥ NB: we must note that all the vertical axes aegtiency axe in this experiment of section 7.1.3.
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* Problem statement: nonlinear fundamental frequency

Signal model setup
1. ff (t) = F, + 25(1 - cos@rr(0.1)t)) :a fundamental frequency with a low rate of change.

t
2.X(t) = sin(2ﬂj ff (t)), periodic signalParameters are the same as the above.
0

When we consider the signal described above, anddharch range sets from 5 to 10 Hz. The Bayesian
algorithm fitting the model is shown in Figure 33&ae model is well fitted.

Tracked freq.(Red) # fund. frequency (blue)
T T T 7

)
10 20 30 40 50 60
Time [sec]

Figure 31a Satisfactory model fitting

Thus the curve of the tracked fundamental frequérexy) and the true fundamental frequency (blue)
overlap quite well (see Figure 31a). Figure 31baghtihe posterior distribution of the fundamental
frequency with the estimate tracked (white line).

Marginal Post. Prob.: log P(D|D)xP ()
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Figure 31b: Tracking fundamental frequency (white line is fitked track) in log domain.

47



We add the same Gaussian noise to the signakeBuéis show that by increasing the noise level, ou
estimator becomes sensitive to noise.

Tracked freq.(Red) # fund. frequency (blue)
T T ] T -

30
Time [sec]

Figure 32a Measurement (blue) and fitted frequency tracl)xehen the variance is 2.5.

Marginal Post. Prob.: log P(D|D)xP (D)
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Figure 32 The posterior of the underfitted fundamental érexocy when variance is 2.5.

This implies that the effect the noise disturbsd¢bemator. Consequently the model cannot be fitted
well. The reason is that the estimator cannot waths such a noise effect. Thus the posterior
probability decision yields wrong decision. Henlae estimator yields inaccurate fundamental
frequency as shown in Figure 32a -32b.

48



Now we set the variance noise level to 3. Figute S8ws the behaviour effect noise on the estimates
The Bayesian algorithm cannot fit the model. Asvgiehe tracker capability deteriorates more and
more. Hence the curve represented by the estimegadncies deviates significantly from the true
fundamental frequency trajectory. We have emphddize performance analysis and the error
sensitivity of the Bayesian algorithm when trackihg slowly change of the fundamental frequency. In
order to validate the result of the experimentfivgt test the signal without noise.

datal
4r data2 | |

\ \ \ / \ /
\ / \ / \ / \ )
\ / / \ / \ /
\ / / \ / \ /
\ / \ \ / \ /
\ / \ \ /
\ / / 1 /
- \ / \ / \ / \ /
\ / \ \ / \ /

3k

Amplitude

_5 [ L [ L [ L |
0 0.2 0.4 0.6 0.8 1 1.2 14
Time [s]

Figure 33a Tracking fundamental frequency from a signal #din noise (data2).
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Figure 33hb: Performance of the tracker when the noise lesssét 3: model cannot be fitted.

Marginal Post. Prob.: log P(D|D)xP (D)
10 0 =

9.5

8.5
¥ L 1-80
< 8
L 4-100
7.5
L 4-120
LL
.7
E L 1-140
6.5
-160
6 -180
5.5 200

5 10 15 20 25 30 35 40 45 50 55
Second [sec]

Figure 33c Posterior probability of the tracked fundamerfadjuency (white lind when noise level
is set to 3.

The Bayesian algorithm can achieve good trackinppeance of a stationary the fundamental
frequency. In a very low SNR condition the algamtican suffers from erroneous decision that yield
inaccurate estimates. Thus it fails to fit the mode

*White line in these figures is the representatibtne tracked fundamental frequency.
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6.4 Nonstationary frequency tracking

6.4.1 Bayesian Tracking analysis using vibratigmal

This experiment is the results of applying robuayé&sian algorithm to the vibration signal. Notet tha
the parameters are first selected and fixed exbeptariance. The reason is that we don’t know the
bound of the variance. Thus the choice of the magacan be time consuming when we need to
optimize the accuracy of the estimate. In our egseise the tacho as reference speed profile to
compare the estimate speed profile based on thdatmset. Before we go through it,

Tacho. spectrogram Vibration spectrogram
500;--\-.\-\_\ \|.\_.l|\.-\

50} LR e |
Lo g ok

S

4007

Time

(34a) (34b)
Figure 34: Spectrograms of the tacho (34a) and the vibrgBdb). The spectrogram is the energy in
the time-frequency spectrum.

Figure 34 denotes the time-frequency spectrum sbngiof several harmonics. These harmonics
described the frequency versus time run up sitnatfa car engine. Inspection of Figure 34a gives
starts frequency around 10 Hz. It then increasesmal 40 Hz linearly says until 5 seconds at the end
(100 Hz). This is the fundamental frequency ofithgation signal. Comparing the tacho spectrogram

with the vibration spectrogram indicates that taentonic orders in the vibration spectrogram are
th

multiple of% order. Thus we use the order moet [ 1,1.5,2]. This means the first order; the 1.5

order and the"™ order are select to be the search region. The ptirameters are variance = 0.6, the
initial guessed frequency fO = 10 Hz, the order hanK = 1:2, the frequency range is set to
[5:0.5:100] ; and the number of the previous red®rd 3. We apply the Bayesian algorithm again. The
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results from the Matlab codeon_exp _demo.m, are depicted in the following figures. Figure 35

denotes the effect of a tracking prior with normiskribution. In fact the normal distribution becesa
parabola in log domain. And then tends infinity whreoving away form its mean value as shown is
Figure 35 (upper panel). When we add the prioréisalt is shown in the lowest panel in Figure 35.

x 10% Marginal posterior prob.

‘ S|
[0} 50 100 150
Frequency [Hz]
Marginal Post. Prob.: log P(D|D)xP (D)
150 T T : :

/ 1000 2000 3000 4000 5000 6000 7000 8600 9600 10600
Time [sec]
Figure 35 The parabola curve of the posterior probabdityhe records in log domain (upper panel).
And the posterior of the fundamental frequencykeac(white line).

This is the image of the tracked fundamental indoghain. We will see later that this is a correct
fundamental frequency estimate (white line) in Fegd8.

Marginal Post. Prob.: log P(D|D)xP ()
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Figure 36. The posterior of the fundamental frequency tagy (white line).
The Figures 36 describes the MAP results for timeupuof all the records of the vibration signaleTh

algorithm has been able to handle the computaged fior drawing inference about the fundamental
frequency estimate (white line). We give an illagtsn in time domain comparison to show how
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accurate the algorithm yields the model parametierserest. Therefore we plot the noisy
observations against the tacho (green pulses).eAsan see, in the upper panel of the Figure 37, the
pulses rise at the start of each vibration sigeailoo by a close look.

True vs Noisy signal
1 T T

TN TN

True (B) vs Reconst (G)
T T

Andituoe
o)

(0]

o.5 . ) e ) e
o 50 100 150 200 250

Sample [n]

Figure 37: Signal comparison (lower panel) and period matgupper panel)

Further we compare the true signal with the recanttd signal. We see that these two signals match
each other. This comparison can also tell us betracking has been successfully done. However the
result is not perfect but satisfactory becausedference tacho speed profile (red in Figure 50\sh

a strange discrepancy due may be to our algoritioeq not start at zero on the y-axis).

Vibration Speed profile
110 ‘ T T T

100 -

90

80 -

70

60

50 -

Frequency [Hz]

40

30+~

20 -

10 | | ! ! !
(0] 2 4 6 8 10 12

Time [s]

Figure 38 Speed profile from tacho (red) and vibration €)laignals. The two speed profiles follow
each other. This tells us that the tracking has Iseecessful. The model is more or less fitted.
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6.4.2 Hyperparameter effects

If tracking is shown to be successful in one haadlameter adjustment has been creating instalwility
the shape of the estimate. One of the difficuliese has been to determine the optimal parameters.
That is the parameter which can yield the “bestrede “. This is because there is no clear bound fo
the parameter. It is vague to consider that tharpater space is defined only from on zero to ibfini
This makes the work time consuming. Because adgistie parameter, specifically, it is referred to
manipulate the shape of the prior (width by vareadjustment) and the parameter location (by the
mean through the number of previous record P). ewehen the “true parameters” have been found,
the algorithm can handle well the fundamental fexgpy tracking. The variance and the number of the
previous record (used by the mean) are the gowgpanameters. Thus the prior shows its influence
through these parameters. The wrong choice of thaseneters yields inaccurate estimates. We will
demonstrate this influence of these parameterswbeloen we use the sound signal.

The simulation has the same scenario with the tidor@ne. The only is that we test the impact ef th
wrong adjustment on the estimate which has not dotte vibration side. The reason is that the doun
signal represents both run up and coast down. Tdrerdoing the experiment on one will give a result
for both at once. As before, we setup the parammeferd then we apply our new algorithm based on
robust Bayesian method. The results are descnb#deiFigures below.

Tacho. spectrogram Sound spectiogan
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Figure: 39: Spectrogram of the tacho (39a) and sound (3gimpsi
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Figure 39 shows the spectrogram of the sound anthttho signal. A closer look at these spectrograms
shows that in tacho spectrogram, the first harmstads around 20 Hz. It then increases to aro@®dd 1
Hz where it stays for 2.4 sec, where after it dases almost linearly to around 10 Hz until the end.

When we compare the tacho spectrogram with thedsspactrogram we observe that the harmonics
th

orders in the sound (acoustic signal) are multi[bﬂnez as .the vibration one. In this way, we select

the model order to b& =[1,15, 2].

Figure 40 describes the result of the marginalgyast probability distribution in log domain. Werca
see the fundamental frequency which has been tlaakeectly (see Figure 41).

Marginal Post. Prob.: log P(D|D)xP ()
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Figure 40: Tracking successfully with the prior the fundatatifrequency estimated (white line).
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Figure 41 Speed profile estimated (measurement) overlapihiegeference (tacho): model is fitted.
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Figure 41 shows the true speed profile and itsesponding estimate determined by applying the
robust Bayesian algorithm. The estimate speedlpr@fieasurement) is virtually identical to the exac
speed profile (tacho). The result tells us thaft@ameters fit well the data model. This is beedhs
estimates speed profile is in good agreement \wéhrue speed profile. These two speed profiles

describe the run up and run down situation of secaine. Hence we see that tracking has been

achieved successfully. The algorithm has been waglable to track the precise fundamental frequency.
However the task has not been so easy because adljistment of the parameters time consuming.

Alternatively, we can also compare the true anddgenstructed signals. And then the error is

computed. The results appear in Figures (42-43).
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Figure 42 Image of the signals and the error.
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Reconst. vs true + Error
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Figure 43 The reconstructed and true signal plus the reoacted error.

Although the information from this comparison magt be objective, it gives quite good impression of
the reliability and the robustness of the Bayesigorithm by looking at Figures 43. The result was
shown to be successful.

Now, we are concerned with the behaviour of therigm while adjusting the parameters of interest.
We will be using the variance, the number of theord (includes in the mean) and may be the number
of order to test their effect. The results whendienot adjust correctly the parameter of the Bayes
algorithm is shown in Figure 44.
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Sound Speed profile
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Figure 44: Speed profile being controlled by adjustable peters. K =[1.5 2], var =1/4, P=3.
In this case the model is not fitted.

As we can see from Figure 44, when we change ther & parameter value, the algorithm tracks the

run up and deviates to follow the run down. Thilstes that the order parameter controls the search
region of the fundamental frequency (see Figure Bdis is also true, because it is the order K Wwhic
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allows tracking the right fundamental frequencynkkethe search region depends on the parameter K.
Sound Speed profile
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Figure 45: Speed profile being controlled by adjustable peters. K=[1.5 2]; var = 0.3, P=3.
The model is not fitted because the parameters@mized.

We now fix the other parameter and then changedhance value, shape of the speed profile changes
as shown in Figure 45. The tracker cannot follogvriim down properly. This change has a harmful
impact on the performance of our robust algoritfitris is also expected because the variance controls
the width of the prior distribution which is vemypportant for the posterior probability to draw

inference about parameters to be estimated. Wedtated earlier that the prior probability disttion

is a Gaussian bell-shaped curve. And the standanatibn (square root of the variance) controls the
width of the prior distribution. Any change of vamice value will imply changes in the prior shape.
Consequently, the change in the prior shape wiliemce the posterior probability decision. The

model won’t be fitted well with such parametersrtRarmore the deterioration of the performance can
result as shown in the Appendix C.
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Chapter 7
General Conclusion

In this thesis we have investigated the classjpatal and Bayesian tracking analysis. The
performance analysis of the overall estimatorsIvea in this work is emphasized through the
experiment simulations. The investigation and asialworks are described through xxx fundamental
and complementary processes:
1. Basic statistics and probability theory
2. Estimation methods pros. And cons
3. Spectral analysis methodologies
» Periodogram
« MUSIC
* Linear Kalman filter
» Pisarenko
4. Bayesian analysis for linear regression models
* Maximum likelihood for regression
» Likelihood procedure for low SNR, too closed freqogand low frequency estimation
* Vague and conjugate prior introduction
Bayesian parameter estimation-case study
» Bayesian tracking analysis using vibration and atiowsignals
5. Performance analysis using stationary time seties\phite Gaussian noise
» Single harmonic frequency estimation
* Two harmonic frequency estimation
» Multi-stationary harmonic frequency estimation
» Multiple nonstationary harmonic frequencies estiorat
6. Comparison of low SNR effect on both classical Bagesian estimates
7. Slowly time varying fundamental frequency trackirging noisy time series
8. Robust Bayesian tracking analysis and proceduneqgsad

We have established a relation between theory agmheering technical software application in a
broad field of Classical spectral and Bayesiarkiraganalysis in rotating mechanical system. Ineord
to understand and implement the statistical appro@the fundamental frequency tracking problem
using vibration and acoustic data, we have singalithe random parameter estimation problem at
stationary noisy time series level in accordandé wiy supervisor at DTU. We have given a survey of
Bayesian analysis for linear regression modelsyipeal a possibility of understanding the Bayesian
parameter estimation technique, comparing the pagnce of both classical and Bayesian and
analysing the error sensitivity and the effecthaf hyperparameter on the estimates through computer
simulations experiments. We have found that fogleitnarmonic frequency estimation provided it is
not too closed to zero, the periodogram performis wkthough the periodogram can estimate multi-
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stationary harmonic frequencies in the presenceanfssian noise, the log Student t-distributiondgel
better estimates. For two closed stationary harmfsagquencies with short data size, we have regorte
that the introduction of uninformative prior hasedfect to emphasize the evidence of these
frequencies although uncorrected.

We have given some basic methods and the summapnoé previous estimators which are used in
both off line and on-line frequency estimationBg.doing so, we have been able understand the
strength and the accuracy in function of the CraRer-Bound (CRB) of these frequency estimators.
From the summary it has been shown that only maxirikelihood, the periodogram, Fernandes-
Goodwin-de-Souza and Quin-Fernandes asymptotiaalyeves Cramer-Rao-Bound. That is, these
can be used to provide good estimates in the atjglicof interest.

Bayesian parameter estimation technique for linegression models has been investigated. It been
derived that the posterior probability distributisrproportional to the product of the likelihood
function and the prior. Our focus has been on hmdetermine the hyperparameters of the prior
distribution in parameters estimation problem.ds lheen found that for optimal determination oféhe
hyperparameters, we could use empirical Bayes, 2ypeaximum likelihood, general maximum
likelihood or evidence approximation. Further iétprior is flat, the evidence is obtained by
maximizing the likelihood function. If we define @agate (Gamma) prior distribution over the
hyperparameters, then the marginalization oveethgperparameters can be performed analytically to
give student t-distribution. Alternatively the expation maximization (EM) algorithm provides
practical evidence framework if the integral islanger analytically tractable.

It is relevant to mention that there other methddclv can be used such as Monte Carlo simulation or
importance sampling (see section 6.4 in Bayesiathte 2005). These estimators can yield good
results at the expense of high complexity.

Time constraint for the sake of efficiency requitleat simple algorithms are preferable and some
trade-off between algorithms complexity, accuraigiay and quality must be made to select the
desired estimator scheme.

For the sake of accuracy, comparison and relighilifundamental frequency estimation, we have
considered to perform spectral analysis of clakaicd Bayesian methods. Therefore we have
simulated six experiments using sinusoidal disdiate series added to white Gaussian noise. Since
sinusoids plus additive white Gaussian noise dessnvell stationary signal, we have simulated sing|
stationary harmonic frequency estimation, multtisteary harmonic frequencies estimation and
nonstationary harmonic frequency estimation. Tiselte of these experiments have proved that
although, the periodogram achieved a better pedoom when frequencies are separated, it introduces
spurious peaks and deteriorates significantly @StHR becomes small. The linear Kalman filter can
yield good performance in high SNR. It is a betihestor when the signal and noise are non-Gaussian.
The performance of Kalman filter is not optimatlire presence of Gaussian noise. It has also been
found the MUSIC algorithm achieves good performamakit cannot ensure Cramer-Rao-Bound. All
these classical estimators, despite these effopgertform well sometimes, the posterior probability
including prior knowledge outperforms all of the$ais is due the power of the prior to yield cotrec
We have seen also that the prior has am impadt@pdsterior distribution. Therefore if the prisr i
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vague, the posterior results become conservativeveder the estimates or results from the posterior
probability distribution are corrected if the pagse distribution is based on informative prior.

These experiments have been simulated successfuligdition we have simulated the error
sensitivity of the Bayesian method. It has beemdbthat Bayesian method shows an undesirable effect
and moreover, it yields bad performance. This behavs comprehensible because it is beyond the
fading limit or the normal experimental limit. Fhermore, we have simulated the effect of the
adjustable hyperparameters of the prior distributio tracking the fundamental frequency. It hasibee
shown that when these hyperparameters are noadjelted, wrong estimates can be yielded out by
the robust Bayesian scheme. If the hyperparamatersetup correctly, the Bayesian achieved
successfully correct results. Although the robusgdsian remains the reference in our case for
tracking speed profile, it is sensitive to noiges lvery simple and provides good quality and high
accuracy despite the noisy nonstationary signalstefest.

The main problem about the robust Bayesian algorithplementation is the choice of the optimal
hyperparameters to accurately create the religlziéihdition in tracking speed profile. We have fdun
through our simulations, a bound for the varianue the way of setting up the number of order to
avoid a long time consuming. Hence we have fouatttie variance can be found setup between an
interval of [0.1 0.6] and the number of order tack depending of the real application, we haveuin o
case found that it may be assigned to [1 1.5 2ighvineans the 1 for the first order, 1.5 for slighift
of the first order frequency due may be to the imer effect of the system. Therefore the region of
tracking of the fundamental frequency in such addbon will take into account both first frequency,
the slight shift first frequency and the secondeof the harmonic which is designated by 2. We
consider 1.5 order as the fundamental frequency and the frexyuemge is fixed and of course
known.

We have found that these hyperparameter contrdd¢haviour of the prior. Specially, the variance
controls the width of the prior distribution. Moresr, the adjustment of the hyperparameter offers
more flexibility to the Bayesian algorithm to ad#gelf to any type of parameter estimation problem
We have little prior is available, the posteriotimates reduces to the maximum likelihood estimates

The principle of least square or maximum likelihgudvides no way to eliminate nuisance
parameters, and thus oblige to seek a global mawimwa space of much high dimensionality, which
requires an heavy computation burden. Having fahatl they only provide the sampling distribution
in a longer calculation which does not answer tinesgjon of interest. Thus they cannot assess the
accuracy of the estimates.

We have also found that although the vibration degjreed profile was successfully achieved, however
its representation by tacho suffers from my code@dacy to yield a correct size of the speed peofi

In other side, the Bayesian method achieves sucdlgdbe tracking process for both vibration and
acoustics nonstationary signals.

The future works to improve the robust Bayesiathod are:

* Robbin —Monro method to estimate the stochastiatioo parameter in nonstationary data.
* Improvement Bayesian algorithm using robust Kalriléering or Particle filtering
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Appendix

A Review materiel for Bayesian linear regression

Bayesian Analysis for Linear
Regression Models

A.1 Bayesian parameter estimation

A.1.1 Linear model for regression

Linear regression model is a mathematic methodadetthe relationship between the dependent
variables and independent variables. The genaedtiregression model

M-1

— /T

Y(X,W) = weg (X) =W d(X)
j=0

Where® =(q,..........., @,)" andW = (w,,..........., Wy, )"

A simple model equation is represented in Figurel4# figure shows the linear regression model (a

straight line governed by = w, +w,x) and data points.

Eq72
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Figure 46: linear regression and data point plot of y veligpsit x.

Much of our discussion in this section will be apgble to situation in which the vectd¥(X) of basis
functions is simply the identi@(X) = X . Further, we will derive the maximum likelihooddan

Bayesian treatment of linear regression model apthen how to determine the hyperparameters of the
prior distribution.

A.1.2 Maximum likelihood for regression

We have seen several times that the maximizatitdimeolikelihood function under conditional
Gaussian noise distribution for linear model isieglent to minimizing the sum square error function
Before we derive such an error function, let usstablish the equation. This will be repeated even
though there may similar formula above for the psgof conformity between variables. We may
assume that the target variable is defined by #terdhinistic function with a Gaussian noise asfoH

L= y(X ’W) T & Eq73

whereg is zero mean Gaussian random variable with preci@verse variancej. Thus the
likelihood function is

p(t|X1W1/8) = N(tly(\/\/,X),ﬂ_l) Eq74

Making the assumption that these data point anerdmadependently from the distribution Eq63 we
obtain the following likelihood expression

BT IXW,8) = [N, IWT®(X,). ) cars

Because in this supervised learning problem suchgression, we are not seeking to model the
distribution of the input variables, therefore weplthe input variable form now to keep the notatio
uncluttered.p(T | X,Wp) = p(T |W, B) . Taking the logarithm of the likelihood functiondamaking

use of the standard form (1.46) for multivariateu&aan, we have
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In p(T W, 8)= Y InN(t, W g(x,),87) 7o

N N
= Eln B —Eln(2ﬂ) - PE (W)
This is called the maximum likelihood. Where thensof the square error function is defined by

1Q ?

Ew) =5 2 1t ~Wax, )]
N 2
Wy = (CDTCD)_chTt andﬁiwIL - % n:1{tn _WJL(”(Xn)}

In practice we are not interested in finding thiugaofw itself but rather making a prediction bffor
new values ox. This requires that we integrate over the parametd his is called marginalization.
We thus evaluate the predictive distribution dedilg

p(tIT,a,ﬁ)=Ip(tIW,ﬁ)p(\NIT,a,ﬁ)dW Eq78
in whichT is the vector of the target values from the tragset. The result is as follows
p(t| X, T,a,B) = N(t|mi@x),0 () Eq79
where the predictive variance is given by

1
oy (X) :E+¢(X)T SyAX) Eq80

The first term represents the noise of the dataedsethe second term is the uncertainty associated
with parameterg . The conditional distribution fop(t | X,W, ) of the target variables is given in
Eqg5 without X and the posterior weight distribution is given by

p(\NlT):N(mN’SN) =0o[S
where

my =Sy (Sy'my + SO'T) Eq82
Sy =S, +p/P'd _—

If we consider a broader pri&, =a™l with a - 0, the mearm, of the posterior distribution
reduces to the maximum likelihood value given by ( (3.15) in fPatézognition for Machine Learning
— C. M. Bishop, 2006). Similarly, if N=0, then the posterior res/éotthe prior. Furthermore, if the
data arrive sequentially, the posterior distribution at any stetgeas the prior distribution for the
subsequent data point., such that new posterior distribtiagain given by Eq70.
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A.1.3 Evidence approximation

In Bayesian treatment of the linear basis functatiough we can integrate over the hyperparameters
w, the complete marginalization over these varsideanalytically intractable. We will adopt helne t
popular approximation method of determining thedrparameters. This can be achieved by
maximizing the marginal likelihood function obtathby first integrating over the parameter w. This i
known in the literature asmpirical BayegBernardo and Smith, 19994; Gelman et al., 2004ype2
maximum likelihoodBerger, 1985), ogeneralized maximum likelihog@/ahba, 1975), and in the
machine learning literature is also calladdence approximatiofGull, 1999; MacKay, 1992a). If we
now introduce hyperpriors ovarandg, the predictive distribution is obtained by masadiration over

w,a andg so that

p(tT) = [[[ p(t W, B) pW | T, @, B) p(a, B|t)dWdadp Eq84

wherep(t |W, B) is given by (3.8 — page 140) amdW | T, a, B3) is given by ((3.49) — page 153) in
“Pattern recognition and Machine Learning, C. Mstgip 2006”.From Bayesian theorem the posterior
distribution fora andg is given by

p(a.B|T) e p(T |a,B)p(a.pf) Eq85

If the prior is flat, then the values @fandg can be determine through the maximization of the
marginal likelihood. If we define conjugate (Gammapr distribution overr andg, then the
marginalization over theses hyperparameters in Eqide performed analytically to give a student t-
distribution ovew .However, the integrand as a functiomdfas a strong skewed mode so that the
Laplace approximation fails to capture the bulkhef probability mass, leading to poorer results tha
those obtained by maximizing the evidence (MacKa99). In the evidence frame work, there are two
approaches that e can take to the marginalizafitogeevidence. We can evaluate the evidence
function analytically and then set its derivatieezero to obtain re-estimation equationsd@nd .
Alternatively, we use the expectation maximum (E\gorithm. Thus we derive the marginal
likelihood function by integrating over the weighdrameters as follows

p(T [a,8) = [ p(T |W,8) pW | a)dW Eq8s
From some manipulations we obtain,

ﬁ N/2 a M /2
(T 1a A= L] (4] [el-Ewlow coe?
The integral over w can be evaluated as follows
[ expE(w)dw = exp{- E(my)}(27)" "* | A[? a®
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Using equation Eql3 we can then write the log nmadikelihood in the form

M N 1 N
Inp(T [@,8) == Ina+— A~ E(m,) = In| A= In(27) cas

which is the required expression for the evidencetion. We first finda by using ((3.81*) and
(3.82*) and (3.86*), page 167) in “*Pattern recdgm and Machine Learning, C. M. Bishop 2006”
and also adding the fact that A has eigenvedu%slI , we have

—I A——In A+a)=—> In(A +a
nIAE G100 = z< )Zha Eqo0
Thus rearranging the equation, we obtaln
M 1 1 1
0=—-=mim,-=> Eq91
2a 2 A+a
Rearranging we obtain
=M - aZ Eq92

/1+a

Since there are M terms in the sum over |, whemukiply by2a through some manipulations we
obtain

VZ

/1 +a Eq93
From Eq80, we can derive the valueadhat maximizes the marginal likelihood as follows
a = —y
mL mN Eq94

To find £, we maximize the log marginal likelihood with respegftdro do this, we denote that the
eigenvalues), defined in ((3.87), page 168 *). Hendd, /dS3 = A, / B giving by

d d 1 1 y
—In|AE—> In(A +q)== -7
The stationary point of the marginal likelihood therefeagisfies

N _13 PN Y
=— =2y it —miAX,) — ==
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And rearranging we obtain

1 1 O - 2
—=— > {t, —my@AX
ﬁ N _ y n:1{ n Na n)} Eq97

Both a andf can be calculated by iterative procedure by chmgpan initial values using (3.53*) and
(3.95") respectively. For further information see the\abthe above mentioned book from “C. M.
Bishop, 2006”. In the case that the number of @ goints is large in relation to the number ef th
parameters, all the parameters will be well deteeahiby the data becauge ® from (3.83*) involves
an implicit sum over data points, and re-estimaéiqoations for and become

M
a=_———"—-— Eq98
2E,, (my)
_ N
& 2E,(my) Eq99

WhereE,, andE, are defined by (3.25*) and (3.26*) respectively.

®* refers to Pattern Recognition and machine Leayri C.M Bishop
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A.1.4 Case study: Inference for normal mean witbviam variance

TakeY ={yl, ................. . yN}to denote a random sample from a normal distributigh unknown
meargdand known variancg’. Then the likelihood function &, given the observatiofis
1 N
2
p(Y | &) ex o2 ;(Yi o) (=0 < 6 < o) Eq100
1=

The likelihood may be expressed more simply byngpthat

N —
Dy, —0)?* =s*+n(y-6)* Eq101
i=0

_ N _
Where yis the sample mean ared = )_(y; - y)?. Consequently, as function &f

i=1

1 )2
p(Y | 6)oex - (G-y) £q102
The known situation will seldom arise in practiewever, for normal meah, we first consider a
conjugate prior distribution, which is normal witrean 1 and variancer® .This may be justifies by
Boltzamann’s maximum entropy theorem (Cercignai®88t Rosenkrantz, 1989). Suppose, we specify
can only the mean and the variancg® but nothing else about our prior distribution. Téfere we
will choose the prior distributiop(€) that maximize the entropy

#(p) =~ p(6)log p(6)dE Eq103

But subject to the mean and the varianceg? of the being equal to our specified valuestfor

ando? .A straightforward calculation (BellMan, 1971, chep4) tells us that our optimal prior is
normalN(x, o?) . This is the special case of Boltzmann'’s theo¢(@ayesian Methods, 2005, p122 ):

The densityp(8) that maximizeg(p), subject to the constraints

E[ti (9)] =t (i=1.......... ,0) Eq104
takes the parameter exponential family form

P(8) expAL, () + Aty (6) + ...t At (O)f 600), Eq105
whered; | A,,............ A, can be determined, via the p-constraints, in tefrg,t,,............ Ly
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Under the maximum entropy(u, o) prior distribution, the hyperparametenscan be specified as a
prior estimate of , and o denotes the prior standard deviation. With

g° = e
- Eq106
k q
The prior sample is
2
Kk = 4
-2 Eq107
o q
The signal-to-noise ratio is
L _0°
k™ = ? Eq108

Then the posterior probability density&is
1 N
P(E|Y)eo exp{— 7(0-1)° -
20

o7 (9‘9)2} Eq109

The close form of the posterior probability densiayn be found by using the lemma below.

Lemma (Completing the square): For any const#gB,aandb

A(@-a)* +B(@-b)*=(A+B)(@-8)*+(At+B)*(a-b)? Eq110
where
g =(A+B)*(Aa+Bb). Eq11

NB: notice that we are not going to prove all theesaults. For more information about these see
“Bayesian Methods, 2005, page 123". Thus, when ppdyahese results to the posterior density, we
obtain

PO 1Y) expl - 217 (0-6')| oo
Where B B
g - Nr2y+o™u _ Ny+k

N7z 2+g72 N +k Eqlls
And
vi=Nr?+g7 :T_Z(N+k)_ Eqll4
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In other words@is a posteriori normallyN(&" |v ) distributed. This is the maximum entropy

distribution, given the posterior me#hand variance . The expressions in Eq113 define the posterior
mean, mode and median&fsince these are identical for normal distribution
They all equal the weighted average

. —
0 =py+Q1-pu =T
-2 _
% describes the “reliability” ofy the as an estimator 6f Equation Eq112 tell
r“+o0
us that the posterior precision' equal the sum of the sampling precision and ther priecision.
Therefore the posterior variance is, in this sgexiae, less than both the prior varianceand the

sampling varianceN 72 of 9 This is not generally the case. Posterior prdligsi can be calculated
from

pa<6<bly) :da(%)—da(ag ) cq116

Under a general prior density y¢&) for normal mead, the posterior density éfis

p(8]Y)w p(6) exp{— N (9—9)2} 117

wherep =

2r
Note that the prior predictive density of the saemplean§/ is

00

p(y) = [ p(y16) p(6)d6 Eq11s
_ ( 2)‘; [ N V)2
=\27r __[OeX —2—T2(‘9 -Yy)* ;p(6)dé Eq119

Then the first two ofog p(?/) , With respect to (wrt), satisfy

0 Ioga(gpl)(y)) =-N72y+ Nr‘zE[(H |Y)] Eq120

and

_2 —

d Ic;g_(zp(y)) =-N72 - N2 vai(9]Y)] Eq121

y
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Therefore the general expressions for the postarean and variance 6are

— . .2 0log(p(y
E[(6]Y)]=y+N77? ga(g(y)) Eq122
and
, _
val{(é’ |Y)] =N77?+N°r* 0 Ioéqg(/f(y)) Eq123

These results relate to the regression in clastfiealy. Dawid (1973) and Leonard (1974) address th
issue that the estimator in Eq114 based on theigate prior, can discredit the prior estimate

asgl moves large away fornu . Thus they show in their analysis that the pristribution with thicker

tails yield possibly more desirable properties.f€hawid recommends a generalized t-prior density,
taking the form

p(8) o[ + (6 - 1)?] cq124

In situations where the parameters sgaceunbounded, Bayesian theory is faced with thélpra

that their estimates are generally quite sensitivtee thickness of the tails of the prior density.
However, in practice it quite difficult to modelkhhickness of the tails based upon the prior
information, for example how to determine the vatfie in Eq115. Therefore in practice, we refer to
the entropy criterion Eq103 and a conjugate nopmal. Further we may point out that the posterior
expectations of bounded function of unbounded patargy are not as sensitive to the tail behaviour
of the prior density as the posterior mead ofensitivity issues are discussed by lavine (1,9891d
robust estimates of location are considered by okand Lo (1990). We will consider the analytical
procedure to estimate the parameter by using type@mu likelihood or empirical Bayes techniques.
Before lounging into depth, we give a brief desaip of the improper prior and its relevance.

S
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A.1.5 Vague prior

In a situation of complete prior ignorance (whichynnappened rarely) regarding the unknown
parameteé, we may consider vague prior information. The Béye paradigm cannot formally handle
complete prior ignorance. In such situation, we esa likelihood methods if a sampling model
available. However, Bayesian analysis can hantlatsns where prior information is fairly vague.

For a clear explanation, let us consideX gz, o) normal prior distribution where the normal mean
is unknown and the varianog is known. A small value af?indicate the feeling th&t is quite likely
to be close tg . Asg?increases, the prior density becomes more and dispersed around. Then
the limit aso® - o, the prior p(d) — K for all@, where the constant K is arbitrary and does not
depend on upo#, that is

p(f) » 1 . (~w<B<w) Eq125
The limit is not a density, since it does not imétg to unity. The prior distribution &f becomes
improper. It represents a specific prior informatibat & is equally likely to fall in the interest search
interval. Under such a prior distribution, the gogtr density for a normal meé@nreduce to a

N (y, N _1T2) density. We can therefore state that the postprmvability tha® lies in the 95%
1 1

confidence intervaly—196r/N?2,y+196r/N?)is 0.95% (Bayesian method, 2005, p134).

However, under a wide range of regularity condgianis true that ang00(1- [1)% Bayesian region

will give frequency coverage approachlii(1l- ()% as N gets large and for any prior density

p(@)foré.

Now we consider another way of choosing a vaguar plistribution. The general Jeffrey’s prior which
yields excellent frequency properties (Bayesianhoes, 2005).We will only set up the way to derive
such popular prior. Thus the Jeffreys’ invarianbp(Berger, 1985, p.390) more generally can be
defined by

1
p() =|F(O) |, Eq126
where
021 Y |6
F(6) :‘y'Ei Oggg | )} Eq127

denotes fisher’s information fér. The choice of these prior distributions is silratependent. That
is, in some cases, both can yield good results.\Mseng the improper distribution in prior
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A.1.6 Conjugate priors

Given a distributional choice, the prior parameteeschosen to interject the least information jdess
We will illustrate the conjugate prior distributi®m different situations.

Case lwariance known and we should infer the mean given the observation

Likelihood
—— — Prior —
—— — — Posterior

Figure 47: The posterior probability distribution formed likelihood and the conjugate prior

As we can observe, the prior distribution shapesiases with the variance value. Thereby, the
posterior distribution shape also increases. Thog pas a strong impact on the posterior probabilit
distribution. This is due to first the standard idéien which controls the width of the prior aneéth
sample size. It is stated in the literature thatliiger the sample size, the less impact the pasron
the posterior probability distribution.

Case 2:Mean known and we wish to infer the variance itself
In such a situation, the conjugate prior usedesittrerse Gamma. We simulate the inverse Gamma
distribution using : alpha=[1 6 3 4 3 3]; beta=A 1 2 1 .5] for the prior.

Likelihood function with unknown mu and sigma

0.8 . —— ‘ ‘
0.6 / \ 4
% 0.4 - / \ —
0.2+ / \ —
o /V I I \V\ I I3 I
(o] 100 200 300 400 500 600 700 800
x
Conjugate prior: Inverse Gamma Pdf P osterior probability distribution
1 r 2
[ \ 1.5
g os ‘ ‘H ] % 1
L
0.5
\
\\
(o] — (o]
(o] 200 400 600 800 (o] 200 400 600 800

Figure 48: Bayesian theorem simulated using inverse Gammgpugate prior.
This inverse Gamma conjugate distribution is commnin the situation, in which we suppose that the
mean is known and we wish to infer the variancewNappose both mean and precision are unknown.
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Case 3:Mean isknown and we want to infer the precision A.

It turns out to be most convenient to work withqisenA = iz In this situation, the conjugate prior
o

distribution corresponds to the Gamma distributiBammdx | a,b) = iab""x""'l expFbx), where

r(a)

(@) =(a-1! if a is an integer.

Likelihood function

0.8 = T T T
$ oar y \ ]
0.2r / \
o — L I \1\ - L i
(o} 100 200 300 400 500 600 700 800
X
Conjugate prior: Gamma Pdf Posterior probability distribution
1 7~ 0.03
foN
8 / ' 5 0.02
% 0.5} | \ %
v] / U o.01
,
o — o
(o} 200 400 600 800 (o} 200 400 600 800
X X

Figure 49: Gamma conjugate prior distribution simulated usirg3 and b = 1/2.
Case 4:Mean and the precision are unknown. The conjugate is thus a normal Gamma distribution.

Likelihood function

0.8 T 7 T T T T
0.6 \ -
g \
§ 0.4 / -
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o — 1 I \‘» B I I
(0] 100 200 300 400 500 600 700 800
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Conjugate prior: Gaussian Gamma Pdf x 10 4 Posterior probability
1 1
|
| E
é 0.5 ‘ ‘ 1 § os
/| :
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(0] 200 400 600 800 (0] 200 400 600 800
X X

Figure 50: Simulation of the normal Gamma prior distribution
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Case 5:Mean and the variance are unknown. The convenient conjugate prior distribution isthe
normal inver se Gamma distribution which is not plotted.

Comment

The illustration of the prior probability is in fean experiment in which we demonstrate the delgirab
convenience and its important role played in thgeBan analysis. We have seen that the shape of the
prior, when the size of the data is small can douate more in the decision making process of the
posterior probability. Further, the flexibility change of the shape can accurately yield best a@im
with high frequency resolution, as we can see whershape of the prior is very small. However, such
a shape becomes insignificant in participatindiedecision when the observation of interest in too
large. In this experiment, we have not includeddbestant normalization factor and the log terms. W
have only focus on the conjugate prior which isfoeus in our framework. Moreover, the results
show that the incorporation of the prior in the Bsign analysis is can deal effective with the steshd
uncertainty associated with the best estimate &ld § supplement of information to estimate and
track the parameter of interest. In addition, weenfaund that the selection of the conjugate prior
distribution depends on the parameters mean andatimnce. Such information is relevant for the
posterior distribution and the accuracy of thereate. The only issue we will outline is that if taere
outliers in the data, the Gaussian model whichighastail cannot cope with it. We will need other
distribution which present heavy tail such as st elistribution or stable distribution to takean
account such an outlier or trend if present inahservation data.

A.2 Stationary frequency estimation

Data modeled as a sum of sinusoids or exponeutigls in many areas of science namely nuclear
magnetic resonance (NMR), functional magnetic rasoas imagine (FRMI), auto tracking and more.
However parameter estimation is a challenging mobln this section we will present frequency
parameter estimation theory in stationary casenandtationary case as well. In the stationary case,
will introduce the signal harmonic case to followsdthe multi-harmonic case to continue the analyse
started by Larry Bretthorst in “Bayesian Spectruralgsis and parameter estimation” and Lars Kai
Hansen, Finn Arup and Jan Lar8emtheir Bayesian framework about the “ExploringfI data for
periodic signal components”. The use of such degtaedevant because many studies are non-standard,
and it is not always possible to provide a comptetevincing analysis based upon pre-existing
techniques. Therefore our study based on pre-egisiigorithms to continue to develop the available
understanding and apply these to specific knowle@igas the basic methods and two robust parameter
estimation algorithms are presented. Several msthade been considered, trying to deal with such a
problem by locating the maxima of an approximapsyiodic function. In this way, the least square
method has been considered by Gauss [1] to estimadel parameters in noisy data. In this procedure,
the problem is formulated in term of minimizing them of the discrepancies between the model and
the data. Ideally, the problem will be formulatadsuch a way that only the frequency remains, tagt i

® All names mentioned above are professors in ig&ite Signal Processing (ISP) group from IMM atlDT

76



not possible with direct least square, which rezjus to fit all the model parameters. The method of
least squares may be difficult in practice evemugfioit is well understood. Under Gaussian noise
assumption, the least squares estimates are sthejarameter values that maximize the probability
that we would obtain the data given the parameters.

The spectral method of dealing with this problerbased on the popular and powerful tool Fourier
transform which is often used to estimate the femgy of the signal. The discrete Fourier transform
(DFT) is a different method that can estimate fiectrum of the original discrete time series.

Even though such technique is well defined analysi§ it does not work well when the signal to
signal-to-noise ratio (SNR) of the data is smalvben the data are nonstationary. Then it appears
necessary to use the probability theory. The tegtendf the DFT has also been a problem when the
signal is other than simple harmonic frequency.ds@mple the chirped signal. The peak will spread
out relative to a simple harmonic spectrum. Theates the noise to interfere with parameter
estimation problem much more severely, and prolbaltileory becomes essential.

In reaction against these difficulties encountdred®FT, Arthur Schuster [3] introduces the
periodogram method of detecting a periodicity astiheating its frequency. The periodogram is based
on averaging the square magnitude of the DFT aed gield useful frequency estimates under a wide
range of conditions. Due to its statistical relesam parameter estimation, Jaynes [4] establiglass

a “sufficient statistic” for inferences about siagitationary frequency or discrete time sampled set
under Gaussian noise assumption. That is, thegmgram which summarises all the information in the
data can be used to estimate the frequency undairceondition. We will investigate the basic
methods, implement the probability theory behinel Bayesian analysis and combine the experimental
and computational resources to the usefulnesseaddta. Further we will compare some classical and
Bayesian spectral estimators through a Matlab sitimr to analyze the performance and the error
sensitivity of the Bayesian method.

A.2.1 Single harmonic estimation

We construct the likelihood model defined BYD |H, 1) because it is dependence of the parameters
which concerns us here. The time series weyéire we are considering is postulated to contain a
single stationary harmoni€ (t) plus noises(t). The basic model is always we are recorded aetescr

time data seD =(d,,......... ,d,); sampled fromy(t) at discrete timg t,,........,t, };with a model
eguation
di :y(ti):f(ti)+e|, L<i<N). Eql28

We will follow up the analysis of the Larry Brettisp by introducing the prior probability for the
amplitudes, which simplifies the calculation busim effect on the final result. And also to discus
and introduce the calculation techniques withoatdbmplex model functions confusing the issues.
The model is described as follows

f (t) = B, cos(wt) + B, sin(wt) Eq129

which has three paramete(B,, B,,w) that may be estimated from the observation datard are

several ways of estimating the parameters of iatefde problem to be solved is to compute the
probability of the frequency conditional on the data and the prior informatithris is abbreviated

77



asP(w| D, 1) . But when we take the equation Eq4, there aregatameteriw, B,,B,, o} . In this
problem the two parameteB and B, are referred to nuisance parameter, because tbalplity

distribution that is to be calculated does not depen these parameters. To perform this calculation
we will apply the Bayes theorem to compute thetjpmobability of the all the parameters and them us
the sum rule to eliminate the nuisance parameters.

Applying Bayesian theorem gives:

_P(D|w,B,B,,0,1)P(w,B,,B,,0]|l)
B P(D|ao,1) Eq13C

P(w,B,B,|D,o,l)

which indicates that to compute the joint prob&pdiensity, we must obtain three terms:
« P(D|w,B,,B,,0,l) is the likelihood function of the data given trergmeters and the
information |I.
« P(w,B,B,,0]|l)is the prior probability distribution of the parat@egiven only the
information.
* P(D|a,l)is the probability of the data given only the imf@tion 1. It is called the
normalization constant.

The sum rule can be applied to remove the depeedanthe amplitudes:
P(D|w,B,,B,,o,1)P(w,B,,B,,o,l)
P(D|1)

P(w|D,o,1) =jP(w, B,,B,,0,1)dBdB, =j dB,dB,
0 0
Eql31
Assigning the likelihood function
This is equivalent at inserting the single statrigrenusoid frequency model in the expression ef th
noisee=d — f.changing f to indicate that it is the parameter that intetsstwe obtain

1 & : 2
o ;[di - B, cosfam;) — B, sinwt,)]* }

P(D|w,B,,B,,0,1)= 2m) ™ ?exg -

Eql32
Assigning the prior probability
Assigning the prior probability is one of the mosnhtroversial area in Bayesian probability. Yetato
Bayesian it is the most natural of things. The cwrdrsy arises when we try solve a problem in which
we have a little prior information. If one has Higinformative prior measurement, there is little
discussion on how to assign the priors: the pasterobability derived in analyzing the previous
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measurement can be used as the prior probabilithé&current measurement. But this delays the
problem of how to assign probability of knowingdlét In assigning the prior probability

P(W,B,,B, |1)=P(B,B, [w,1)P(w[l) Eq133

The prior probability of the frequency must be gssd completely independent of the amplitudes
values. Here the only thing know about the freqyescthat the data has been sampled uniformly, thus
frequency values greater that than the Nyquistuieegy are aliased. So the frequency must be bounded
between 0 an@l7z . Using this bound and the normalization constrairg maximum entropy

calculation results in the assignment of

1
P(w|l) = o Eq134

as a prior probability of the frequency. Of couttsis is not the only prior probability that could b
assigned. There is no contradiction in arrivindiierent prior probability assignments. The two
different assignments correspond to being in dfi¢istage of knowledge, and different prior
information result in different assignments. Bus thifferent assignment represent knowing little,
effectively nothing, and regardless of what funeéibform one assigns to the prior; if the prior is
slowly varying compared to the likelihood functighe prior will look like a constant over the rarafe
the values where the likelihood is sharply peakmsdlies behaviour outside of this region will make
little effectively no difference in the resultsidtonly when the width of the prior is comparatalehe
width of the likelihood function that it can haweyasignificant effect.

Equation Eq9 becomes then

P(B.,B, |w,|
P(W1 Bl’ BZ | I) = - 2]2T| ) EQql35

The probability of the amplitudes depends expliaith the value of the frequency. In this calculatio
it will be assumed that knowing the frequency tasothing about the amplitudes. This is not tnue
general, for example if the experiment is repeatabld a previous measurement is available,
knowledge of the frequency will relevant aboutvha&ie of amplitude. But if knowledge of the

frequency does not tell us anything about the aogeis thenP(Bl, 82 |W, | ) = P(Bl, 82 | | )
and the joint prior probability of all the parammstenay be written as

P(B,,B, |I)
P(B,,B,,w|l) = 127_[2 | Eq136

In order to state what we know about the amplitudessuppose that we repeat this experiment a
number of times. The signal is a stationary simdisédhen the experiment is repeated, each of the
amplitudes will take on both positive and negatighies, (the phase will be different in each ruthef
data). Thus the average value of the amplituddsweizero, but the mean square value will be
nonzero. Applying the principle of maximum entropiyl result in assigning a Gaussian prior
probability to the amplitudes:
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_B'+B,

— -1
P(B,,B,|J,1) = (2®) *ex =13 17
20
where 5° represents the uncertainty in the amplitude.i#f ghior probability is to represent little
knowledge, therd must be very large. Butdfis very large this prior probability is effectivedy
uniform prior probability over the range where likelihood function is peaked. Due to the lack of
information, we use uniform prior. This will yietmbnservative results. It is called improper prior.

This prior is needed to ensure that the total gndibais one. So in parameter estimation probléms
prior is not relevant and can be dropped provithed the probability is normalized at the end of the
calculation.

After manipulations involving elimination of nuisaaparameter and removing constant, we obtain the
likelihood function as defined below.

P(D|w,0,1)oc™ % ex

_l[az_ZC(W)}

20.2 N Eq138§
The prior probability distribution is as follows
1
P(o) = s Eq139

This is Jeffreys prior, which can yield conservatresult. Thus we obtain the posterior probabifity
the variances? is known by

P(W| D,a,l)ooexp{c(\;v }
o)

We see that the conditional posterior probabilityelated to the periodogram.

Eq140

However, when the noise information is not avagalthe variance is unknown. To determine the
posterior probability, we multiply the prior diditition and the likelihood function. Then we intdgra
out the variance parameter.

P(w|D,1) :TP(D lw,o,1)P(w|o,l)do Eq141
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Thus we obtain the posterior probability calleddstot t-distribution
2-N

2C 2
P(w|D,| )0{1‘#} Eqi4]

™Y

In our case it is the posterior probability denglitgt a stationary harmonic frequencis present in the
data when no prior information abaut These two posterior probabilities show why thecrhte

Fourier transform tends to peak at the locatioa stEquency when the data are noisy. Namely the
discrete Fourier transform is directly relatedie probability that a single harmonic frequency is
present in the data, even when noise level is unkndf the signal, being analysed, is a simple
harmonic frequency plus noise, then the maximuth@periodogram will be the “best” estimate of
the frequency that we can make in the absencediti@ual information about it. We now see the
Fourier transform in a entirely new light: the heghpeak in the discrete Fourier transform (DFBns
optimal frequency estimator for data set which aor# a single harmonic frequency in the present of
Gaussian white noise.

* Power Spectral density
We will express the result in probabilistic termstmplify the comparison between techniques,
although there is no correspondence between arapdensity defined with reference to a stochastic
model and one that pertains to a parameter estmatodel.

p(AW) :%IdBide(Bf +BZ)P(W,B,,B, |D,,1) =20 + C(w)|P(w| D, 0, 1)

Eql43a
This is the probabilistic meaning of the power sp@density (psd) defined by integrating the prctdu
of the total energy carried by the signal (notribese) during our observation time by the joint
posterior probability distribution for all the pamaters. We now see that the peak of the periodogram
indicative of the total energy carried by the sig@me interesting thing this formula, is that the
probability theory will handle those secondary maxi(side lobes) that occur in the periodogram by
assigning them negligible weight. If the noiselamace is known, Eq133a may be approximated by

N N

|A3(W)= g’ +C(w)||d(w—w)+d(w+ w) cq1ah

for most purposes. But for the teey, the peak of the periodogram is, in the modelrlgglae total
energy carried by the signal. These formulae camskéul in some context, we will show later in the

- 1 N
"Whered = — Z di2 and for two channels the student-t distributiothes product of two posterior distributions (Eq142).
i=1
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simulation part of the project. For more informatgee computer simulation in section 6.1.1. Althoug
these formulae can all be useful at certain lavstationary environment, the problem of estimating
too closed harmonic frequencies remain. It has beéne that in Larry Bretthorst analysis that the
student t-distribution Eq132 and Equation Eql3&af@r most purposes. However, we may notice that
these formulae result in yielding conservative ftssiue to the incorporation of the improper piror

the Bayesian analysis. Therefore it appears negessdescribe a technique of parameter estimation
of stationary signal which can yield satisfactaegult while using proper informative prior. Such a
technique is detailed below for multi-harmonic fneqcy estimation and also model comparison.

A.2.2 Model selection

As introduced above, in this section we will shove tmethod of calculation for parameter estimation i
stationary signal. Such a topic has been treatestigral signal processing groups. Among thoses, Lar
Kai, Finn Arup Niesen and Jan Larsen professof@ehnical University of Denmark frofiSP group

in Informatic Mathematic Modeling department hasviated a paper entitled “Exploring FMRI data

for periodic signal components”. In these framewoptke technique of parameter estimation has
explored. In this analyze to perform the parameséimation technique; we will introduce their metho
used in accordance with a linear regression, whéebasis function is typically sinusoidal function
The technique of calculation to find an informatoenjugate prior id described below. The signal wil
be modelled as a sum of multi-harmonic componelts poise. The most general form of the model is
as follows:

K
f(t):;bjxj (t) S t=12,........ .N Eql44
Where N is the number of the data SXE('[) is a set of periodic basic function such that and

ij (t) = COS(j wot) , bj isa J linear amplitude parametej=12......! K is the number

X2j+1(t) = Sin( J wot) of harmonics (model order) arfd} is the nonlinear fundamental
frequency parameter. In matrix form, equation Eqi¥d/ be written as
f =Xb Eq145

However, more often than not, when the data is oreds it comes with noise, which can often be
assumed to be additive. A model of the data migtetfore be.

y(t) = f(t)+n(t) Eq146

Where n(t) is the additive white noise with zero mean and omkmvariancer?.

81SP means Intelligence Signal Processing
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This difference equation forms a general lineareegion model with a model & = 2j basis
function and2 j dimension amplitudes vector.

A fundamental problem we encounter is that therpatars{b, w, k,U} are unknown. In this way,

the estimation of the fundamental frequency parameill be posed in Bayesian term. That is we will
develop a Bayesian paradigm that allows us to nrdkeence about these parameters independently to

the amplitudeb and phase of harmonic independently of the nasiances®. We are only interested

in estimating& the fundamental frequency amdthe number of harmonics. This can be achieved by
using nuisance parameters elimination technique.

» Calculation technique for parameter estimations

We will introduce the calculation method to intradthow to eliminate the other unknown parameter
(nuisance parameters) which we don’t need andhalgaoto determine the hyperparameters of both the
prior and the posterior probability. What we needehis only &uy and K the fundamental frequency

and the harmonic order respectively. We can thusirghte the unneeded parameters by explicit
integration. Before we do so, it appears necessaspecify the Bayes theorem to clearly formulate o
aim.

Problem statement 2: estimation of the posterior probghdiensityP(«,K | y)
Solution strategy:

(K [y) = PO G0 K)Pl K)

P(y) Eq147

WhereP(y | w,, K) is the likelihood functionP(cw,, K) is the prior distribution andP(y) is the

normalization factor. For the fixed set the joikelihood function; i.e the conditional probability
density of the measurement given the parametersomayritten as

P(y|aw,,b,K,0%) = 2mo?) ™% exp-—— (y —bX)?) Eq148

20°

Since we are only interested in estimat{ng, K}the fundamental frequency and the number of
harmonic (model order) respectively, and the amgdib and the noise varianag® are unknown, we
consider them as nuisance parameters to be eledin&b do this, we use the prior distribution
P(b,o?) which quantifies the general knowledge we havéherdomain and which potentially

depends on the given basis set and model order.
We proceed to formulate explicitly the prior distrtion by including some new hyper-parameter

m,V denoted mean and variancelodéind d, a designating mean and precision respectivelyddr
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P(b,o%) =P(b|c?)P(c?) =P(b|o?,mV)P(c? |d,a)
P(y|w,, K) = jdazjdbp(b,az)P(ymo,b, K,o?))

P(y|ay,K) = | do’ [ dbP(b,0*)(2mr%) T2 exp(—(yz_f:?()) Eq1%

The likelihood function has a normal distributioittwthe mean and variance unknown and assuming
dependence on the likelihood function. Thus thevearent conjugate prior distribution to be chosen i
the Normal Inverse Gamma (NIG), with four prior Iayﬂaarameter{;m,d,v,a} and also four posterior

hyper-parameterfmp,dp,Vp,ap} (see table of conjugate distribution in the Apgigh There are

many different proprieties of conjugate distribu8oTo find the conjugate prior we consider the
dependence of the likelihood function on the meahthe variance. In the following Figures, we show
two examples for the sake of illustration of Gaassand Inverse Gamma priors respectively.

Likelihood function Prior distribution: P (@)
0.04 0.04
0.03 g 0.03
g )
0.02 0.02
B T
0.01 - 0.01
(0] (0]
-50 (0] 50 100 -50 (0] 50 100
Posterior probability=likelihood x prior
0.04
0.03 B
~
'@ 0.02 B
ot
0.01 B
O I L I L i L
-40 -20 (0] 20 40 60 80 100

a

Figure 51 lllustration likelihood function which is normalith known variance and unknown mean,
thus the prior is Gaussian distribution.
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Likelihood function with unknown mu and sigma
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Figure 52 Continuous distribution with Normal likelihoodrfation, Inverse Gamma conjugate prior

As we can notice in all these Figures, the pri@nghthe same distribution as the posterior prolabil
distribution as shown in the lowest panel in Figusé-52. This is the key idea of the prior conjygac

More explanation about the prior distribution ismgmrehensively described in the literatures. Thenmai
idea is to choose the prior distribution such thatposterior probability density has the same fouin
with “updated ” i.e data dependent parametersulrinear regression model presented above as a
combination of systematic and Gaussian noise,ahg@igate prior which can derive is the Normal
Inverse Gamma or NIG(a,d,m,V).

P(b,o”|a,d,K,mV) =P(b|a,d,K,mV)P(c* |a,d) £q150
Where
P(b|a,d,K,mV) = [do*P(b,o” | m,K) Eqi51

We obtain the marginal prior distribution over #maplitudesb as follows

al2)""r((d+K)/2)
(m V[ T(d/2)

PO M) - [+ o-m)T (@) Yo-m)}

B2
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Where T means transpose. This is a multivariaisttddution with meamm and covariance

determined byd;aZV), and centred atn with heavier tails than the normal distributiomer

marginal prior distribution of the noise variangéis given by

(3./2 —d/2(0_2)—(d+2)/2

rd/2)

P(c?la,d)=

exp "~ a Eq1583
o] o2 )|

T .. o a :
The prior distribution over noise is the Inversentaaa distribution of mealq—2 with d > 2.

Hence the Normal Inverse Gamma distribution defined by equit30 is explicitly expressed as

-(d+K+2)

(@l2)"(o?)
@m V[ T(d/2)

P(b,c%la,dmK\V) = exp(b-m)' (aV) ™ (b-m))

qEA

Now, we must give a parameters value, so thabfog time series, their minimal influence on the
result vanishes completely. Thus we set the prisamto the observed signal variance

a__ .Yy

d-2 - Uy N The result of this calculation yield a small wate of the observation noise

which is lower than that of the total observed amace.d =3 is a small noise value for which the prior
noise variance is finite, i.e hence the weak th@pm=0. The form of the prior covariance is
determined by =v1, where 1 is a unit matrix. The parametavill be determined by

T
V= TI’|XXT | where we let variance be equal to the variandbeomeasured signal.

N

The prior covariance of the fitted signgﬂ Is given by

<§/T y> | N :T{XXT<bbT> /N} - Tr[XXT]/N Eq154

(d-2)

Prior

Where Tr is a Matlab function called trace.m. Thisction calculates the sum of diagonal elements of
an input matrix or the sum of the eigenvalues ahgut. After integration and multiplication
manipulations, we obtain the likelihood function
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via® | T(de/2)

D

P(Yla,K) = Eq156
Vi), 7| T(d/2)

Where the parameters can be determined as follows:

11T Eql57
V=V +X' X q

_ -1 T Eq158

Me=Vp(V 'm+X"y) q
aP:a+nJV’%n+yTy—n$VB%np Eq159
a-=d+N Eq160
When we use our specification, we obtain

-1
V. =vl+XTX Eq161
m=V, X'y Eq162

=(N+)g2 -y’ T Eq163
a oy~Yy XVp X'y g
d.=3+N Eq164

We can observe that the influence of the priorahoif aand d is weak forN >>1, because the prior

contributions are of order one relative to N in equation Eq163 gt@4respectively. The

probabilities of the complete set of hypotheses (parametkby «y,andK ) including the null —

hypothesis are then given by

P(Yla,K)
P(YI0)+2 .k P(Ylay,K)

P(yD)
POY) = By (0)+2apx Pyl K)

P(w, Kly)=

Eq165

Eql66
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This algorithm has been designed based on Baypsuability theory to detect periodic components
in fMRI data. The requirement specification hasiwed the fundamental for Bayesian analysis using
a specific linear regression model. It allows ugabalso acquainted and understand the underlying
calculation procedure for parameter estimation. Alsg it provides insight to master how to detesmin
hyperparameter in in practical situation. Althoutlte simulation of this algorithm in Matlab did not
work perfectly at the end, we have explored thanejpie and the capability of the algorithm to
estimate the multi harmonic frequency and the ofien the noisy signal. Thus the algorithm may be
used with more flexibility to estimate the fundart@rrequency and also detect the correct number of
harmonics in periodic signal even though the funelata frequency is beyond the Nyquist interval.
Moreover, the result is useful for signal detectiofocalize the regions of periodicity. Such an
technique can be useful in medical application,bg may be used to localize region of highly
affected by periodic physiological artefacts, saslcardiac pulsation.

A.3 Nonstationary frequency tracking

A.3.1 Likelihood method

The more important problem of frequency estimatsowhere the frequency is changing over time and
frequency being grouped very close together. Howesiteiation arises where frequencies are fixed. To
cope with these problems, we treat the changirquéecy as constant over intervals where barely
changing and to estimate the frequency over edehval. The model considered here is defined by

r
yt)=p+) (aj cosfvt) +b, sin(wjt))+ n(t)
j=1 '
The parameters to be estimated are thuanda,; ,b;,w;, j=12,...r
We shall fist taker as known and later discuss its estimation. Themsion noisen(t) will be
generated by a stationary process with zero meduwaianceo? .

Eql67

Let
vy =[y@,y@)eoeeeee.... YT -] Eq168
a column vector of T elements and )t be the matrix of whoseth row,t = 01,....... T-1,is
[1 cosfvt) sin(wt)........... cos.t) sinfw.t) ] Eq169
The likelihood function is

1 1 1 _—
P(yr [ X1) = T12 72 X~ 5 (Vr = X:B) [, (¥ = X;B) Eq170

@) 2 |
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The log-likelihood is, fom(t) GaussianlogP(y; | X;)

1 1 e
log P(y; | X;) = constant _Elog‘rT‘ _E(yT - X;B) rTl(yT - X;B) Eql71
We put[", for the T x T matrix withy, (t —s)in rows s, column t, where
y(s) = E[((9)n(s+1)] - 4 = En(s)n(s + )] - E[nO]°

WhereB ={u,a,.b,,......... ,a,,b,.}. For the moment, we assume tifatis known and maximise
Eq160 as though they, were known, depending only om, . Since

B ) = (X, T3 X XY, cq172
The reduced likelihood, i.e the likelihood with mais replaced by its estimator, is

Constant_% log|["| —% yT r;l A +QT P W, ) Eql173

where

Qr (W) = YT X OG T X XETT Y, Eq174

Which we called the “regressison sum squaress. évident that mus@T be maximized with respect

to w; in order to find the maximum likehood estimator (ELof thew;, . After some manipulations and
if the noisen(t) is Gaussian white noise, eq174 becomes

Q(Wl,---Wr) =0’ y'T X (K X)X Y. Eq175

where the variance of the noiserfs. Ignoring the variance, we obtain

Q)= Y. X, (X; X X Y, cai7s

After some manipulation eq176 becomes

Q... Wr)=T92+Zr_:C(Wk) qE7

The estimator may be obtained by choosing theilmesibf ther greatest maxima @f(w) , ignoring

local maxima so close to others that may be assuoned due to “sidelobes”. The estimator obtained
by the method cited above (via maximization of E41Hq176 an@(w) ) will, under more general
condition, have the same asymptotic propertiesniare details see the “Estimation and Tracking of
Frequency, 2001- by B.G Quin & E.J. Hannan”. kasnewhat more difficult to use Eq176 rather than
a periodogram. But there is a good argument fargugi The reasons to use the Likelihood method can
be described through some simulation later (setose@.1.1).
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A.3.2 Likelihood Procedure

UseQT (W) , with r =1or C(w), computed fromy(t) —;l, to obtain\/\&as the maximizer value.

Compute@, and byregressingy(t)—?l on cosf/\ t) andsin(\\4 t) , and comput (l)(w)or
& .

N

C" (w) from the residualy/(t) — y- alCOSNVJ_t) + blSin(Wlt) . Determine\\,, as the

n A

maximising value of one or the other of these, smdn. Having founWl, ............. \\/, » recompute
aj andbj c =k ,r by computing

Blw,: i =1x)= (X, X.J X0y,

Il is necessary we can perform a further iteratimpnbeginning from the residuals from the regrassio

N N

on cos(\Nj t), and sin(\Nj t) j=2,....... I to re-estimatev\&doing the same as above by omitting

W2 from the regression procedure, and replaquby new estimate oWOl XX, to get a new

estimate oT\/V02 and so on. For details see Bloomfield (1976).

» Discussion
Estimating a fundamental frequency depends alsehoch context and the application. If we are

concerned with some frequencies near zero or ase ¢bgether, the@.l_ (w,,....w. )should be used to

evaluate the maximum likelihood estimators of ttegjfiency. In other words, the full likelihood
procedure for the Gaussian white noise case sheuldsed, not that of the periodogr&tw) .Of
course, if it were known that the frequencies vegmgarate from each other and far from zero except

for pair of close frequencies, we might L@r (w,,w, ) for the pairs. Similary, if we knew that there

was only one frequency close to zero, we woulc[gﬁﬁ(w) for that frequency. In either case of these
cases, we would use the periodogr@iw) for the remainder.
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A.4 Robust Bayesian tracking supplement

Harmonic model

K
d(t) = A +> (A cost) + B sinyt)) +et), &) ~N@O.0°) 178
k=1
wherew, =7,w. and7,is the known harmonic order then the parametel® testimated are

9:{A0,A1, ....... ALB... ,Bk,WF,JZ} Eq179
d=Gb+ethene=d-Gb: f =G(G'G)"'G"d E@L8

When estimating the fundamental frequency, we roossider the other parameter as nuisance. We
need integrate them out of the joint posterior ptolity; we need to assign them to suitable pribet
reflect the knowledge we have.

p(d[1,) =k, Eql81

1
oll,)=—
p(all,) - Eq182

oo 10,1, [ HE .21 ||o|(5| BICII I -

The evidence and the prior are constant.

1
p(we |d, 1) [ p(d |We,0,d,1,)—dbdo Eq184

_ T TAT _ TAT
- ”(Zmz)r\l/zexp{_d d+b GZGat; 2b'G Gd}%dbda

After some analytical manipulations, we obtain
-N+2K

Td-d"G(G"G)'GTd) :
JdetG™G) =

-N+2K

[@7a-17¢) >

/det(GT G) Eq186

P(We |d’||<)°°(d

p(We |d, I )
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B Matlab code

« Main.m

close all;
clear all;

%sound signal
[Acous_sig, Fs_a,Nbits]=wavread('Lyd og tacho sigtiy

% Vibration signal
%[Vibro_sig,Fs_v,Nbits]=wavread('Vibration og tacho signal’);

% the time series data
%y=Vibro_sig(:,1);
y=Acous_sig(;,1);

Y%parameters
%fs=Fs_v; % sampling frequency
fs=Fs_a; % sampling frequency

len=length(y); % length of the measurement
%n=(0:length(y)-1)/Fs_v; % time vector
n=(0:length(y)-1)/Fs_a; % time vector

% Reduce sample rate to 1 kHz i.e. important frequecies are

% below 500 Hz

nr=64;

fs=fs/nr;

y=resample(y,1,nr);

n=(0:length(y)-1)/s;

Y%specgram(y ,fs/4, fs)

% Inspection of spectrogram indicates the fundamerat frequency is in the
% range of 10 to 100 Hz.
%nr=64;fs=fs_v/nr;specgram(resample(Vibro_sig(:,111,nr),fs/4 fs )
%nr=64;fs=fs_v/nr;specgram(resample(Vibro_sig(:,2J1,nr),fs/4 fs )

Y%aply bayes
recsize=250; % Segmentation
overlap=200; % overlap parameter

% segment the signal

%% the function recodize100.m segements the signahd and overlap them
%% sequentially.

[X,Xt] = recordize100(y,recsize,overlap);

% apply bayes to generate the l)og probability
Trec = Xt/fs; % time vector
Lbf=5;%3; % lower bound frequency(Lbf)
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Ubf=100;%150;%50;%40; % Upper bound frequercy (Ubf)
df=0.5;%0.25; % step size

Ff=(Lbf:df:Ubf)"; % frequency vector including the frequency band interval of the machine

% (In this example we are from f@il 3*fO=[min_f max_f]=[Ibf ubf].

% number of the harmonics in the signals

%K = 1:0.5:3; % works well for Fund. Fred. (max top @ 50 Hz)%1:0.5:6;
K=[1 1.5 2]; % works well for the Fund. freq. (top @ 100 Hz)for acoustic
%K=1:2; % vibration

%K=[1.5 2];

VW.P = 2;%3;%3;%1; %3 % Number of regression recads

vW.var = 1/4%,;0.1%0.2;%/4,%0.1,%,1/16;%1/4,%1/4,%1/ 8; % variance
%vW.var=0.60 ; % vibration

f=(0:len-1)/len*fs;

% determine the maximum likelihood using Lp=p(d|w)
[Lp,Qf,F_] = bayes_w(X,Ff,K,n(1:size(X,1))";

% track the fund. frequency using posterior probability z=p(w|d)
% the conjugate prior is computed by using p(w|w,.w) in the

% following function btrack100.m

%f0 = 10; % start frequnecy

f0=15;

[Ftrack,z] = btrack100(Ipnorm(Lp),Ff,f0,vW);

% The reconstruction is done by using process
[Xr] = bayes_r100(X,Ftrack,K,n(1:size(X,1))");

t=n(1:250);
[Acous, Fs_a,Nbits]=wavread('Lyd og tacho signal’;

% assign the pulse per revolution=one revolution irl pulse
PulsePerRevolution=1; % for acoustic signal
%PulsePerRevolution=2; % for vibration signal

%tacho=Vibro_sig(:,2);
%tacho=Vibro(:,2);
tacho=Acous(:,2);

% assign tacho signal
%tacho=vibro(1:end,2);
%tacho=acous(1:end,2);

% compute the trigger level
triglevel=min(tacho)+max(tacho)/2;

% compute sequence which exceeds level
levelExceedVector=tacho>=triglevel,
% find the corresponding values

%EdgelndexVector=0;
EdgelndexVector=zeros(1,length(levelExceedVector));

% K=[1 2.5 3]

93



ni=1,;

for n2=2:length(levelExceedVector)
if levelExceedVector(n2)==1
if levelExceedVector(n2-1)==0
EdgelndexVector(nl)=n2;
nl=nl+1;
end
end
end
EdgelndexVector = EdgelndexVector(1:n1-1);

% convert the edage index vector in second
%EdgelndexVectorinSecond=EdgelndexVector/Fs_v;
EdgelndexVectorinSecond=EdgelndexVector/Fs_a;
%

% % plot

% figure(1)

% clf

% plot(tacho)

% hold on

% plot(levelExceedVector,'g")

% plot(EdgelndexVector,1,'r*")

% hold off

% zoom on

% grid on

% title('Time signal’)

% xlabel('Sample index")

% compute the delta time
deltatime=diff(EdgelndexVectorinSecond);

ff=zeros(1,length(deltatime));
uf=zeros(1,length(deltatime));

for n=1:length(EdgelndexVector)-1

T(n)=(EdgelndexVectorinSecond(n)+EdgelndexVecttnSecond(n+1))/2; % midle point of the pulse
%ff(n)=1/(2*(EdgelndexVectorinSecond(n+1)-EdgehdexVectorinSecond(n)+eps)); % for vibration signal
ff(n)=1/(1*(EdgelndexVectorinSecond(n+1)-EdgeldexVectorinSecond(n)+eps)); % for acoustics signal

end

figure(1);

subplot(311); plot(Ff,lpnorm(Lp));xlabel('Freq [Hz] *); ylabel(log P");title('log P Records')
subplot(312); imagesc(Trec,Ff,Ipnorm(Lp)), axis xytitle(log P")

xlabel('Time [s]),ylabel('Freq [Hz]")

subplot(313);

plot(Trec,Ftrack);xlabel('Time [s]);ylabel('Freq [Hz]");title('Tracked Frequency')

subplot(312);

hold on;
plot(Trec,Ftrack,'w');
hold off;
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figure(2)
%fs=Fs_v;nr=64;fs_=fs/nr;specgram(resample(Vibro_ig(:,2),1,nr),fs_/4,fs_)
fs=Fs_a;nr=64;fs_=fs/nr;specgram(resample(Acous_gi¢?),1,nr),fs_/4.fs )
titte('Tacho. spectrogram’)

figure(3)
%fs=65536;nr=64;fs_=fs/nr;specgram(resample(Vibro_ig(:,1),1,nr),fs_/4,fs_)
%title('Vibration spectrogram’)
fs=32768;nr=64;fs_=fs/nr;specgram(resample(Acousig¢:,1),1,nr),fs_/4,fs )
title('Sound spectrogram’)

% plot the speed profile

figure(4);

nn=(0:max(size(z))-1)/fs;

plot(nn(1:length(Ftrack)),Ftrack),xlabel('Time [s]"),ylabel('Frequency [Hz]') title('Speed profile’)

figure(5);

subplot(211),plot(Ff,z),xlabel('Frequency [Hz]),yhbel('log P(d|D)") title('"Marginal posterior prob.")
subplot(212), imagesc(Xt,Ff,z),axis xy,xlabel('Fragency [Hz]"),colorbar,

ylabel(log P(@|D)"), hold on;

plot(Xt,Ftrack,'w")

xlabel('Time [sec]’),ylabel('Fund. Frequency') tite('Marginal Post. Prob.: log P(D|@)xP(J)")

figure(6);

subplot(221),imagesc(X),axis xy,xlabel('Number dfame [n]’),

ylabel('Frame size [samples]'),title('Noisy obserations')
subplot(222),imagesc(Xr),xlabel('Number of framelfi]'),axis xy,title('Reconst. true signal’)
subplot(223),imagesc(X-Xr),axis xy title('Error sgnal’),

xlabel('Number of frame [n]'),ylabel('Frame size [samples]’)
subplot(224),plot(t,X(:,1),'’k"),hold on,plot(t,Xr(:,1),'g"),plot(t,X(:,1)-Xr(:,1),'r),
xlabel('Time [s]"),xlim([0 0.5]),ylabel('Amplitude"),title('Reconst. vs true + Error’)

figure(7);

[M,N]=size(Xr); xr=reshape(Xr,1,M*N);

subplot(211),plot(xr(1:250),k"),hold on,plot(y(1:50),'g"),ylabel('Amplitude"),title('True vs Noisy signal’)
subplot(212),plot(xr(1:250),'k"),hold on,plot(xr(1:250),'g-"),xlabel('Sample [n])

ylabel('Amplitude"), title('True (B) vs Reconst (G)')

figure(8);

%imagesc(Xt,Ff,z),axis xy,xlabel('"Fundamental Freqency [Hz]'),colorbar,
% for FFmax = 100 Hz

%imagesc(Xt,[0 150],z),axis xy,xlabel('FundamentaFrequency
%[Hz]"),colorbar,

% for FFmax =50 Hz

imagesc(Xt,[0 100],z),axis xy,xlabel('Fundamentalfequency [Hz]'),colorbar,

%imagesc(t1,[0 4],Pp

ylabel(log P(@|D)"), hold on;

plot(Xt,Ftrack,'w")

xlabel('Time [sec]’),ylabel('Fund. Frequency') tite('Marginal Post. Prob.: log P(D|9)xP(J)")
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figure(9)
%tau=1:length(tacho)/Fs_v;
tau=1:length(tacho)/Fs_a;

uf=interp1(T,ff,tau,'nearest’);

plot(tau,uf,'r--','LineWidth',2),ylabel('Speed [Hz] ") title('Tacho speed profile’)

%hold on,plot(Xt(1:end-10)/100,Ftrack(1:end-10),'b),xlim([0 10]),xlabel('Time [s]),ylabel('Frequency
[Hz]),title('Vibration Speed profile")

hold on,plot(Xt(1:end-20)/500,Ftrack(1:end-20),'k"LineWidth',2),xlabel('Time [s]'),ylabel('Frequency
[Hz]),title('Sound Speed profile")

Jegend('Tacho','Fund. Freq. Estimate )

figure(10)

plot(tau,uf,'r--','LineWidth',2),ylabel('Speed [Hz] ") title('Tacho speed profile’)

%hold on,plot(Xt(1:end-10)/100,Ftrack(1:end-10),'b),xlim([0 10]),xlabel('Time [s]),ylabel('Frequency
[Hz]),title('Vibration Speed profile")

hold on,plot(Xt(1:end)/500,Ftrack(1:end),'k','LineWidth',2),xlabel('Time [s]),ylabel('Frequency [Hz]"),title('Sound
Speed profile’)

Jegend('Tacho','Fund. Freq. Estimate )

* m-files
recordize100.m segementsthe signal and overlap the different records.

function [X,Xt] = recordize100(x,recsize,overlap)

% Synopsis:

% [X, Xt] = recordize(x,recsize,overlap)

% Input:

% X - data vector to segmentize

% recsie - size of segments

% overlap - number of samples each segment ovplaf overlap < 1
% it is taken as the percentage of threcordsize.
% Output:

% X [recsize,M] - segemented data

% Xt[recsize,1] - Indice in X of firs value in records

if abs(overlap)<1,
overlap = fix(overlap*recsize);
end

N = length(x);

i = (L:recsize)

j = O:recsize-overlap:N-recsize;

X =x(i*ones(1,length(j)) + ones(recsize,1)*));
Xt=j+1;

Bayes_w.m determines the ML

function [Lp,Qf,F_] = bayes_w(D,Ff,K,t)
% Synopsis:

%

% Lp =bayes_w(D,FfK,t)
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%
% Description:
%
% Does bayesian frequency estimation on the colurann D.
%
% Input:
%
% D [NxM] - Data matrix
% Ff[NFx1] - Frequencies for which to compute p{|D), where w =
% 2*pi*Ff.
% K [NKx1] - Vector with the harmonic orders in signal.
% t [Nx1] - Time vector. Used to construct basivectors,
% G =[ cos(2*pi*Ff*t) sin(2*pi*Ff*t) ... sin(2*pi*F*K*t)]
%
% Output:
%
% Lp [NFxM] - Log of probability
%
% TFP 2002/2/21
if ~exist('K"), K =1;end

[SzRec,NRec] = size(D);

NFreq = length(Ff);
NK = length(K);
Lp = zeros(NFreqg,NRec);
% Er = zeros(NFreq,NRec);
Qf = zeros(size(Ff));
F_ = zeros(NFreq,NRec);
d_ =sum(D.*D); % sum all rows in the ratrix

dof = SzRec-(2*NK+1);

% % Normalize data for unit energy

% dmin = min(d_)/dof;

% d_=d_/dmin;

% D = D/sqrt(dmin);
Fs=1/(t(2)-t(1)); % sampling frequency
ndiv = floor(NFreq/20); % number of division
for i=1:20;fprintf("X");end;
fprintf('\r");

for i=1:NFreq
if ~mod(i,ndiv),
%disp(sprintf('Ff=%gq",Ff(i)));
fprintf('.");
end

% Avoiding aliasing
% ix =find((Ff(i)*K/Fs<0.5).*(Ff(i)*K>min (Ff))); % Min & max
% ix =find(Ff(i)*k>min(Ff));% Min only
ix = find(Ff(i)*K/Fs<0.5); % Max only
% ix = find(Ff(i)>0); % ALL
nk = length(ix);
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W = 2*pirt*Ff(i)*K(ix); % w=2*pi*f*t where f =Ff*K
G =exp(li*W); %

% G =[ones(size(t)),reshape([real(G);imag(GpzRec,2*NK)];
G =[ones(size(t)),reshape([real(G);imag(GgzRec,2*nk)];
Q =G"*G;, %

B =inv(Q)*G"D; %
F =G*B; % estimate of the record

f  =sum(F.*F); % energy of the reconstruad signal

detQ = det(Q);

F (i,)=f;
Qf(i) = detQ;

% Equaiton from book:
Ip  =-0.5*size(G)*[1;-1]*log((d_-f_)+eps) log(detQ+eps)/2; % the likelihood function P(w|dk)-->eq(4.15)
% Ip =-0.5*(size(G,1)-2*length(K)-1)*log((d -f )) -
% log(detQ)/2; % different scaling
% Equation modified to relative difference:
% Ip =-0.5*dof*log((1-f_./d_)) - log(detQ)2;

Lp(i,)) = Ip;
% B_=G"D;
% F_=G*B_;
% Er(i,)) =d_ - sum(F_*F_);
end

btrack100.m tracks the fundamental frequency usig prior
function [f0,z] = btrack100(Lpw,Ff,f0,vW)
%function z = btrack(Lpw,Ff,f0,vW)
% tracking prior from linear regression
%
% Lpw =likelihood probability density P(d|w)
% Ff = fundamental frequencies from c(w)=abs(fft(d).2
% periodogram
% f0 = initialize fundament frequency
% z = estimates frequencies
%
%
z=Lpw,

P = 2; % number of record
u =1; % mean value

if ~exist('vW"), vW = 2; end
if isstruct(vW),

P=vW.P;

vW = vW.var;
end

% compute tracking mean
k=1:P;
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if P>1,
%u=(2*(2*P+1)-6*(1:P))/(P*(P-1));
u=(2*(2*P+1)-6*k")/(P*(P-1));
u=flipud(u); % revere the column in the up/downdirection
end

if ~exist(‘f0")| f0<0,
[zx,zi]=max(sum(z(:,1:8),2));
fo = Ff(zi);

end

f0 = repmat(f0(1),1,size(z,2));

for i=1:size(z,2),
if i<P+1,
f_ =[repmat(fO(1),1,P-i+1),f0(1:i-1)];%
else
f_=1f0(i-P:i-1);
end
% p2=log(exp(-1/(2*sigma)*(w-uT)))
%p2 = -0.5VW(i)*(Ff-f_*u)."2; % prior distribu tion
p2 = -0.5NW*(Ff-f_*u).”2; % prior distribution
pw = z(5,)+p2; % log (p(d(K)Iw(k))*p(w(k)w(k-1),...w(k-p)))
[px,ix] = max(pw); % estimate of the frequency nean
z(:,)) =pw; % fundamental frequency estimates
fo(i) = Ff(ix); % frequency sampling points
end

bayes r100.m reconstructs the true signal

function [f0,z] = btrack100(Lpw,Ff,f0,vW)
%function z = btrack(Lpw,Ff,f0,vW)

% tracking prior from linear regression
%
% Lpw =likelihood probability density P(d|w)

% Ff = fundamental frequencies from c(w)=abs(fft(d).2
% periodogram

% f0 = initialize fundament frequency

% z = estimates frequencies

%

%

z=Lpw,

P = 2; % number of record
u=1; % mean value

if ~exist('vW"), vW = 2; end
if isstruct(vW),

P=vW.P;

vW = vW.var;
end

% compute tracking mean
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k=1:P;
if P>1,
%u=(2*(2*P+1)-6*(1:P))/(P*(P-1));
u=(2*(2*P+1)-6*k")/(P*(P-1));
u=flipud(u); % revere the column in the up/downdirection
end

if ~exist(‘f0")| f0<0,
[zx,zi]=max(sum(z(:,1:8),2));
fo = Ff(zi);

end

f0 = repmat(f0(1),1,size(z,2));

for i=1:size(z,2),
if i<P+1,
f_ =[repmat(fO(1),1,P-i+1),f0(1:i-1)];%
else
f_=1f0(i-P:i-1);
end
% p2=log(exp(-1/(2*sigma)*(w-uT)))
%p2 = -0.5NVW(i)*(Ff-f_*u)."2; % prior distribu tion
p2 = -0.5NW*(Ff-f_*u).”2; % prior distribution
pw = 2(5,)+p2; % log (p(d(K)Iw(k))*p(w(k)w(k-1),...w(k-p)))
[px,ix] = max(pw); % estimate of the frequency nean
z(:,)) =pw; % fundamental frequency estimtes
fo(i) = Ff(ix); % frequency sampling points
end

I[pnorm.m normalizes the joint posterior probability

function [LPN,Lnorm] = Ipnorm(LP)

% LPN = Ipnorm(LP)

% Probability normalization of estimate og log p()for each column
% in LP

[M,N] = size(LP);

Lmax = max(LP);

LPN =LP -ones(M,1)*Lmax;

Lnorm = log(sum(exp(LPN)));

LPN =LPN - ones(M,1)*Lnorm;

* For the rest of the Matlab codes see CD ROM atthche
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C Figures

Performance deterioration due to wrong parametapde demonstrate one of the issues in prior

parameters adjustment problems.
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Figure 3c
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Vibration Speed profile
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