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Preface 
 

 
The thesis has been prepared at Informatics and Mathematical Modeling (IMM), at the Technical 
University of Denmark in the second semester of 2007. The project has been carried out in 
collaboration with Brüel and Kjær Sound & Vibration Measurement A/S. It is the thesis for the 
degree of Civil Engineering in Electrical & Electronic engineering.  
 
This project is the result of my interest for intelligence signal processing which begins at DTU. 
Spectral analysis and Bayesian parameter estimation form the broad spectrum of the project. 
However, this is by no means an exhaustive overview of all frequency estimation methods 
developed. Also I cannot go through every single methods mentioned in the project in great details 
because of time limit and it is not my goal with writing this thesis. It is rather the study of some 
relevant and successful techniques defined as those used in autotracking. 
           
The aim of this thesis is to make a survey and investigate the Bayesian probability for fundamental 
frequency estimation. The emphasis is on classical spectral estimation and Bayesian tracking 
analysis for both noisy stationary and nonstationary time series. Performance analyses through 
computer simulations are undertaken to emphasize the most important results in separate points. 
Illustration of estimates error sensitivity for the sake of estimator comparison and hyperparameter 
adjustment impact on the estimates is shown and evaluated.    
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Abstract 
 

 
 
Analysis of rotating machines for design purpose or fault diagnosis requires generally an estimation 
of parameters that characterizes the vibration and sound patterns. Spectral estimation methods based 
on classical techniques assume stationarity and high signal-to-noise ratio (SNR). The 
nonstationarity of vibration and acoustic data is accommodated by the commonly used windowing 
technique. This thesis explores the Bayesian fundamental frequency estimation theory and 
investigates both classical and Bayesian approaches to the problem of spectral analysis and slowly 
varying frequency tracking. We use Periodogram, MUSIC, linear Kalman filter and Bayesian 
techniques to jointly estimate and track the spectral components. The error sensitivity is shown and 
the performance for frequency estimation is compared. Such a comparison is based on stationary 
time series corrupted by additive white Gaussian noise (AWGN). Further, the effect of the prior 
hyperparameters adjustment is illustrated on the speed profile estimated. The most important results 
are shown through the experiments in computer simulation. The Bayesian estimator performs well 
regardless the nature of the signal. Moreover, it provides a reliable and new way of determining the 
running speed of rotating mechanical system. The marginalization property of the Bayesian can be 
used to remove DC component (if present) in the data and target the fundamental frequency of 
interest. That is, the Bayesian method can provide more accurate estimation than stochastic and 
classical methods when the hyperparameters are adjusted correctly. The reason for such 
performance status is detailed. 
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Introduction 
 
Frequency estimation and tracking is a topic which has been studied in several literatures. It is a one 
of the important area for application concerning radar, speed estimation of rotational system among 
others. Its importance requires a research process that covers qualitative and quantitative 
approaches to data analysis. Such a study explores specific area of data analysis that may be 
applicable and benefit to engineers and companies. Thus the thesis aims to support the development 
of the critical appraisal skill, thorough considering systematic reviews based quantitative and 
qualitative data analysis of existing techniques of frequency estimation and tracking. The benefits of 
frequency estimation and tracking are many and well known in medical sector, industries such as 
Brüel and Kjær Vibration and Sound Measurement A/S. The purpose of the current thesis responds 
to a new way to determine the running speed of rotating machine, and can be used to assess the 
application designer to improve the comfort of automotive products. Frequency estimation entails 
however, the introduction of parameter estimation problem in low SNR and nonstationary 
frequency tracking. The basic problem in frequency estimation is parameter estimation where we 
assign probabilities to represent what we actually know about the noise uncertainty. As such, we 
formulate our problem because we know the number of harmonic and constant made of the linear 
regression model involved in the observations through the spectrogram of the data. In Bayesian 
probability theory, when these are known the problem is one of parameter estimation. When the 
harmonic order or the presence of a constant is not known, the problem can refer to model selection. 
Both problems may be solved using Bayesian theorem and rule of probability theory. However, the 
parameter estimation and model selection problems have different solutions. In this thesis, we will 
address the parameter estimation problem through spectral analysis and nonstationary frequency 
tracking. The framework will be based on classical spectral analysis using synthetic signals plus 
Gaussian noise for one hand. And in the other hand, Bayesian nonstationary frequency tracking 
using both vibration and sound data will be investigated. Therefore we will examine the Bayesian 
technique applied for stationary frequency estimation. In addition, we will compare the Bayesian 
and the classical performance in noisy environment to observe the effect of low SNR on the 
estimates and also the behaviour of the estimator. Further, we will extend such investigation to 
nonstationary frequency tracking of real world signal. Moreover we will use both Brüel and Kjær 
technical signal processing software package called Pulse and Matlab simulation of Bayesian 
method based on Thorkild Pedersen’s algorithm.  
 

Problem analysis 
 
Learning is a reverse problem of generating sample from a given model. In our work, we are given 
model of the signal with the unknown parameters. And then our task is to estimate a fundamental 
frequency parameter. We formulate the estimation of the fundamental frequency in Bayesian 
perspective so that the uncertainty in our model is expressed through the posterior distribution over 
the parameter of interest. The posterior probability is specified by the likelihood function and the 
prior distributions. In such a formulation to parameter estimation, the major issue is the choice of 
the informative prior and the determination of the optimal hyperparameters. In fact, it has been 
shown in the literature that the incorporation of the prior distribution can yield satisfactory results. 
However, if the choice of informative prior can be made more or less for convenience sake, the 
determination of the optimal hyperparameters associated remains an ill-posed problem.             



 vii  

 

 
Solution strategies  
 
In our framework, we will adopt as mentioned above the Bayesian inference as an approach to 
statistics in which all forms of the unknown fundamental frequency uncertainty may be expressed in 
term of probability. Although, Bayesian algorithm may show some limit due to process time and 
high complexity, it offers more flexibility and yield accurate results. Despite the vast field of its 
study, we will concentrate on parameter estimation and some analyses based on theory and 
computer simulations to emphasize its performance against noise and its ability to track 
nonstationary frequency. 
 
In order to achieve our goal, it appears necessary to organize our work in different chapters: 
 

• Chapter 1. We review the basic statistic. 
 
• Chapter 2. Basic probability theory is introduced. 

 
• Chapter 3. Estimation method pros. & cons are tabulated to give an overview of some 

existing methods performance and comparison.  
 

• Chapter 4. Spectral analysis emphasizes the performance of both classical and Bayesian 
methods.  

 
• Chapter 5. Rotating machine based on vibration and sound analysis 

 
• Chapter 6. The experiments results for computer simulations are provided.  

 
• Chapter 7. General conclusion 

 
• Further, the appendix follows with the A general survey of the Bayesian analysis for linear 

regression models to provide us the understanding of the background theory we need to 
carry out the thesis framework. 

 
 
 

Requirement specifications 
 
The experimental vibration, tacho and sound signals were provided by Brüel & Kjær A/S.  
Literature: Bayesian analysis of rotating machines by Thorkild Fin Pedersen from IMM bookstore.     
Software packages: PULSE Labshop from Bruel & Kjær, student version Matlab from DTU. 
 

Deadline  
 
27 December 2007   
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Chapter 1  

Basic statistics 
 

 
In this section, we describe the basic analytical and simple nontrivial spectral estimation methods 
which may be used in this thesis. The explanatory of these basic concepts obviously will help later as 
the fundament of frequency estimation to understand some advanced related theory we may use. 
 

1.1 Autocorrelation function 
 
It is frequently necessary to be able to quantify the degree of interdependence of one process upon 
another, or to establish the similarity between one set of data and another. In other words, the 
correlation between processes or data is sought. The mathematical description of such a tool is as 
follows 
 

∑
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n
xx knxnx

N
kR .                                                                                            Eq1 

This autocorrelation is a deterministic descriptor of the waveform which may be best modeled by a 
random sequence. The use of|| k  in Eq1 makes (.)xxR symmetric about 0=k . 

 
1.2 Fourier Transform 
 
The Discrete Fourier Transform (DFT) is a Fourier series representation where Fourier coefficients are 
the samples of the sequence. In other words, it provides the description of the signal )(nx in the 
frequency domain, in the sense that )(kX represents the amplitude and phase associated with the 
frequency component as defined bellow: 
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Chapter 2  

Basic Probability Theory 
 

 
In practice, data often contain some randomness or uncertainty. Statistics handle such data using 
methods of probability theory which concern the analysis of random phenomena. Before we make any 
informed decision, we use analysis methods based on the following.  
  

2.1 Descriptive statistics 
 
This forms the quantitative analysis of the data. We will use these to describe basic features of the data 
in study. Generally they provide summary of the data. In this project, we will use the following: 

• Mean as a measure of location 

∑
=

=
N

n
x nx

N 1

)(
1µ                                                                                                                    Eq3 

• Variance as a measure of  the statistical variability 

( )∑ −=
N

n
xx nx

N
22 )(

1 µσ
                                                                                               Eq4  

• Skewness is a measure of asymmetry. It concerns the shape of the distribution. 
The coefficient of skewness may be positive (right tail), negative (left tail) or zero (symmetric). 
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• Kurtosis1 is a measure of the peakedness (sharpness of the spike) of a unimodal probability 
density function (pdf). 
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1 See page 157 – Ledermann handbook of Applicable Mathematics – Volume 2- Probability – Emlyn Lloyd, 1980 
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2.2 Gaussian distribution 
 
Probability theory provides a consistent framework for the quantification and manipulation of 
uncertainty. It forms one of the important keys in pattern recognition. Therefore it appears necessary to 
explore a specific probability distribution model and its properties. The popular Gaussian distribution 
will provide us the opportunity to discuss some statistical key concepts, such as mean, variance and 
Bayesian inference in the context of simple model before the proposed robust model. One role for the 
distribution is to model the probability distribution )(xp of the random variablex from a given finite 

set Nxx ,.......,1 of observations. This problem is known as density estimation. For that purpose, we shall 
assume that the data points are all independent and identically distributed (iid). It should be emphasized 
that the problem of density estimation is fundamentally ill-posed, because there are infinitely many 
probability distributions that could have given rise to the observed data. Indeed any distribution that is 
nonzero can be a potential candidate. The issue of choosing a suitable model is related to the problem 
of model selection which is one of the central issues in pattern recognition. We will focus here on the 
Gaussian distribution for a simple mathematical tractability.     
 
2.2.1 Introduction 
      
We introduce one of the most important probability distribution for continuous variables called also 
normal distribution. For the case of single real-valued variablex , the Gaussian distribution is defined 
by 







 −−= 2

22/12
2 )(

2

1
exp

)2(

1
),|( µ

σπσ
σµ xxN                                                               Eq6 

which is governed by two parameters: µ called mean and 2σ called the variance. The square root of the 

variance is called standard deviation 2σ and the reciprocal of the variance, written as 2/1 σβ =   , is 
called precision. Figure 1 shows the plot of the Gaussian distribution.  
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Figure 1: plot of univariate Gaussian showing the mean and the standard deviation. 
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This is a common used model due to its simple property. The Gaussian distribution can arise when we 
consider the sum of multiple random variables. The central limit theorem (due to Laplace) tells us that 
under certain condition, the sum of a set of random variable, which is also random variable, has a 
distribution that becomes increasingly Gaussian as number in term increases (Walker 1969). The 
Figure 2 shows the illustration of the central limit theorem. 
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Figure 2: Central limit theorem simulated by an histogram forming a Gaussian distribution.   
 
From Eq6, we see 0),|( 2 >σµxN and it is straightforward to show that the Gaussian is normalized, so 

that ∫
∞

∞−

= 1),|( 2 dxxN σµ .     

Thus Eq6 satisfies the two requirements for a valid probability density. We can then find the 
expectations of function ofxunder the Gaussian distribution. The maximum of the Gaussian 
distribution is called mode, and it coincides with the mean. We are also interested in multivariate 
Gaussian distribution defined over D-dimensional vector of x  of continuous variables, which is given 
by  







 −ΧΣ−Χ−

Σ
=ΣΧ − )()(

2

1
exp

1

)2(

1
),|( 1

2/12/
µµ

π
µ T

D
N                                       Eq7 

Where the D-dimensional vector µ is the mean, the DxD matrixΣ  is the covariance, and Σ  is the 

determinant ofΣ .  
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2.2.2 Maximum Likelihood for Gaussian 
 

• Univariate case: 
One common criterion of determiningµ and 2σ  in such a distribution using an observed data set is to 
find the parameter values that maximize the likelihood function. In practice, it is more convenient to 
maximize the log of the likelihood function. Because the logarithm is a monotonically increasing 
function, maximizing the log of the function is equivalent to maximizing the function itself. Taking the 
log not only simplifies the subsequent mathematical analysis, but also avoids underflow of the 
numerical precision of the computer by using sum of log probabilities. From Eq6 and Eq7, the log 
likelihood is written in the form 

∑
=

−−−−=Χ
N

i
i

NN
xp

1

22
2

2 )2ln(
2

ln
2

)(
2

1
),|(ln πσµ

σ
σµ                                       Eq8                  

In practice, it is more convenient to consider the negative log of Eq7 to find the minimum of error sum 
which is equivalent to maximizing the likelihood since the negative log is a monotonically decreasing 
function. However, for the special case of the univariate normal density, we can find the maximum 
likelihood solution by analytic differentiation of Eq8 (same procedure applies for the multivariate 
case). We the obtain the maximum likelihood solution given by   

xML µµ =
^

.                                                                             -                                                      Eq9 

This is a sample mean, i.e. the mean of the observed values. Similarly differentiating eq8 with respect 
to with regard to (wrt) 2σ , we obtain the maximum likelihood solution for the variance in the form 

22
xML

σσ =                                                                                                                                    Eq10 

which is the sample variance measure wrt the sample mean. In fact, it appears at this stage necessary to 
point out that the maximum likelihood approach underestimates the true variance of the distribution by 
factor (N-1)/N and yields the correct mean value as follows (Pattern Recognition and Machine 
Learning – C. M. Bishop 2006).  

[ ] 2)
1

(
2

xN

N
E

ML σσ −= .                                                                                                              Eq11             

From Eq8 it follows that the following estimate for the variance parameter is unbiased 
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¨2~

n
MLnML

x
NN

N µσσ                                                                      Eq12 

We note that the bias problem due to the underestimation of the true variance becomes less significant 
as the number of N of data points increases. When N approaches infinite, the maximum likelihood 
solution for the variance equals the true variance of the distribution that generates the data. In the 
multivariate case, the maximum likelihood for the Gaussian yields the following parameter estimates: 
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• Multivariate case: 

Let’s consider a data set { }T
Nxx ,.......,1=Χ in which the observations are also assumed to be drawn 

independently from a multivariate Gaussian distribution. We can estimate again the parameters of the 
distribution by maximum likelihood. The log likelihood function is given by 

∑
=

− −Σ−−Σ−−=ΣΧ
N

n
n

T
n xx

NND
p

1

1 )()(
2
1

||ln
2

)2ln(
2

),|(ln µµπµ .            Eq13 

Using the derivative of the log likelihood wrt µ  is given by 

∑
=

− −Σ=ΣΧ
∂
∂∂

N

n
nxp

1

1 )(),|(ln µµ
µ .                                                                                     Eq14 

And setting this derivative to zero, we obtain the solution for the maximum likelihood estimate of the 
mean. The maximization of the Eq13 wrtΣ is rather more involved. After some manipulations, the 
result is as expected and takes the form 

∑Σ
=

−−=
N

n

T

MLnMLnML
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N 1

))((
1 µµ                                                                                       Eq15                                                 

But this is less than the true value. Hence it is biased. We can correct this biased by   

∑Σ
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1 µµ                                                                                  Eq16                                         

 
NB: we must note that all the xµµ = . 
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2.2.3 Bayesian Inference for Gaussian 
 
The maximum likelihood gives the point estimates for the parameterµ andΣ . Now we develop the 
Bayesian analysis by introducing the prior distributions over the parameters. We start by a simple 
example in which we suppose that the variance 2σ is known and consider the task of inferring the 
meanµ given the data set of N observations. The likelihood function that is the probability of observed 
data give the mean is defined by 







 −−==Χ ∑∏

==

N

n
nN

N

n
n xxpp

1

2
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)(
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)2(

1
)|()|( µ

σπσ
µµ                                Eq17 

We take the prior which has the same probability distribution over the mean parameter as the likelihood 
function to yield a posterior probability with the same Gaussian distribution. Hence conjugacy is 
obtained.  

),|()( 2
00 σµµµ Np =                                                                                                                   Eq18 

and the posterior probability distribution is given by 

)()|()|( µµµ ppp Χ∞Χ                                                                                                          Eq19 
After some manipulation involving completing the square in the exponent the posterior distribution is 
given by 

),|()|( 2
NNNp σµµµ =Χ                                                                                                       Eq20 
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=
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It is worth to study to mean and the variance of posterior probability which are given by the 
compromise between the prior and the likelihood. We can notice that if the number of observed data 
points is zero, the posterior mean is equal the prior mean. For an infinitely number of N, the mean of 
the posterior distribution is given by the maximum likelihood solution. When we consider the variance, 
we see that there are expressed in terms of inverse variance, which is called precision. Furthermore, the 
precisions are additive, so that the precision of the posterior is given by the precision of the prior and 
one contribution of the data precision from each of the observed data points. As we increase the 
number of data points, the precision increases. If N is infinitely large, the posterior variance goes to 
zero and the posterior distribution becomes infinitely peaked around the maximum likelihood solution.  
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2.3 Random walk 
 
A random process is the stochastic process. It is also a probabilistic description of a system developing 
or changing in time or space. Here we represent such a process by a point which moves at each trial 
either one 1, 2,…steps upward (with probability p1,p2,….) or 1,2 steps downswards (with probabilities 
q1,q2,….). The unrestricted simple random walk process rS  is defined as follows: 
 

 11 ++ += rrr XSS                                                                                                                      Eq24 
 
where ,.......1,.0=r , kS =0 (a given constant) and rX are mutually independent random variable with a 

distribution given by pXP r == )1( , qpXP r =−=−= 1)1( . We are not going any further, because we 
will be using only this basic property as our ground to build the proposed tracking prior later in this 
project.        

 
2.4 Conditional probability  
 
In the deterministic world model which is adequate for greater part of the elementary science and 
technology, phenomena are either independent of one another, or completely determined one by 
another.  
 
The Rules of probability theory 
There only two basic rules for manipulating probabilities, the product and the sum rule; all other rule 
may be derived from them. IfA , BA and Cstand for three arbitrary propositions then  
   

)(

)(
)|(

BP

BandAP
BAP =                                                                Eq25 

If A  and B  are independent  )()()( BPAPBandAP =  
Thus Eq25 becomes )()|( APBAP = and )()|( BPABP =  
 

Sum rule )()|(),( BPBAPBAP =  
Product rule ∑=

Y

BAPAP ),()(  

 
According to Aristotelian logic, the proposition “AandB ” is the same as “B andA ” so the truth 

value of the propositions must be the same in the product rule. That is the probability of “A  and B  
givenC ” must be equal the probability of B and A  givenC ”, this can be defined by 
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)|,()|()|,( CBAPCBPCABP =                                                                 Eq26 
Likewise  

)|,()|()|,( CABPCAPCBAP =                                                                Eq27 
These equations may be combined to obtain the following result 

)|(

),|()|(
),|(

CBP

CABPCAP
CBAP =

                                                                   Eq28 

This is also Bayes theorem. It is named after Reverand Thomas Bayes, an 18th century mathematician 
who derived a special case of the theorem. This is a starting point of the all Bayesian calculations.  

∫= )|,()|( CBAdBPCAP                                                                                                  Eq29 

This is a form that the sum rule uses to remove uninteresting or nuisance parameters (B in this 
example).  

 
2.5 Markov chain 
 
We now consider a more complex problem involving the chain or state of evolution of the frequency. 
From rotational system, the signal is the sum of harmonic related signal. The change of one will always 
affect the other. To express such effects in probabilistic model, we need to relax the independent 
identical distributed (iid) assumption of the observation. And then consider the Markov model to 
design the slowly change of the frequencies. This concept will lay the foundation for the tracking 
process of the slowly varying harmonically related frequency in nonstationary environment. First order 
Markov chain is defined to be a series of random variables )()2()1( ....,,........., Nwww such that the 

following conditional independence property holds for { }Nm ,.......2,1∈  
 

)|()..,,.........|( )1()()1()1()( −− = mmmm wwpwwwp .      Eq30 
 
Under this model the joint distribution of a sequence of m observation is given by   
 

∏
=

−=
N

n

mmm wwPwPwwP
2

)1()()1()1()( )|()()...,,.........(
.            Eq31 

This model can be used to model distribution of the slowly changing frequency which is characterized 
by high correlation. We will see the full description later.     
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Chapter 3 

Estimation Methods Pros. & Cons. 
 

 

3.1 Pitch detection algorithms 
There are two categories of pitch detection algorithms: time domain and frequency domain. In this 
section, we give the Pros & cons in both time and frequency domains, and then the summary of the 
frequency estimators will follow.  
 

3.1.1 Time domain 
 
•  Autocorrelation 

             Pros. Relative impervious to noise. 
             Cons. Sensitive to sampling rate results in low resolution, expensive computation. 

 
•  Zero crossings  

             Pros. Simple, inexpensive 
             Cons. Inaccurate, poor with noisy signals or harmonics signals. 
 

•  Maximum likelihood  
              Pros. Accuracy is high. 
              Cons. Complex 
 

3.1.2 Frequency domain 
 

• Harmonic Product Spectrum (HPS) 
           Pros. Computationally inexpensive, reasonably resistant to noise, inputs dependent. 
           Cons. Low pitch may be tracked less accurately than high pitches.  
 

• Discrete Fourier transform (DFT) 
Pros. Powerful analysis tool for stationary and periodic signals.  
Cons. Inefficient to noise   

 
This section compares four pitch detection algorithms in real time pitch-detection application. The four 
algorithms are HPS, DFT, Maximum Likelihood and weighted Autocorrelation. They mentioned the 
issues on the discontinuity of the result, which depends on the frame size of the detection windows. An 
interesting point raised is the sensitivity of the algorithm to the type of input signal. However, it does 
not contain much about the real time issues, such as the window size and sampling frequency. 
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3.1.3 Summary of frequency estimation algorithms 
 
In this section, we will give a brief summary and some results the frequency estimation algorithms 
have achieved. For that purpose, we shall categorize frequency estimation algorithms as follows: 
 

• Block estimators, where the frequency estimate is obtained for fixed sample size T in 
)log( TTO or more floating point operations.  

 
• Fast block estimators, where the sample size again is fixed, but the number of operations 

required is )(TO . 
 

• On-line estimators, which allow recursively updated frequency estimates to be generated.  
 
These last class of estimators is of particular interest, because they may be more amenable to extension 
to the frequency tracking problem that the block processing methods. The block processing methods 
may only be used for tracking when it is known that the instantaneous frequency does not change 
significantly over known time. 
 

• Block estimators: 
It has been found in the literature [1] that the most attractive of these estimators appears to be 
the estimator of Quin and Fernandes [1991], for several reasons. The estimator is unbiased, 
asymptotically efficient, requires fewer operations than the full maximum likelihood and is 
more robust to initial conditions than that algorithm. 
 

• Fast block estimators: 
Of the weights phase averaging estimators, that proposed by Lovell and Williamson [1992] has 
the best performance. The kay [1989] estimator has similar performance for small noise levels, 
but its bias in the present of unbounded, in particular Gaussian, noise is problem.  
 

• On-Line estimators 
Because of the frequency tracking problem, the interest increases around on-line estimators. 
The Hannan- Huang estimator has been so modified (Hannan-Hunang [1993]) and Nehorai and 
Porat frequency estimator only requires a suitable choice of system dynamics to be used as a 
frequency tracker.   
 

 From the table 1, we have found that only four estimators namely: Maximum Likelihood (ML), 
periodogram maximizer, Fernandes-Goodwin-de Souza and Quin-Fernandes achieves Cramer Rao 
Bound.    
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3.1.4 Cramer-Rao-Bound 

The Cramer-Rao-Bound on the variance of an unbiased estimator of the frequency, 
0

^

w of a signal tone 

in noise is  

22

2^

)1(

12
)0var(

BNN
w

−
≥ σ

  .                                                                                                    Eq32 

For the multi-harmonic frequency estimation problem, Barett and McMahon [1987] have derived the 
analogous bound, which is 

∑
=

−
≥

p

k
kBkNN

w

1

222

2^

)1(

12
)0var(

σ
                                                                                    Eq33 

where 2σ is the variance, N is the sample size and B is the amplitude of the signal.  
 

Frequency estimators Summary 
Paradigm                          Algorithms                                   Complexity              AACRB 
ML                                         ML                                         > )log( TTO                  Yes 
Approximate ML                  Periodogram maximiser          > )log( TTO                  Yes 
                                              DF-Periodogram M2                    )log( TTO                  No 
Fourier coefficient                FTI 1                                           )log( TTO                  No 
Fourier coefficient                FTI2                                            )log( TTO                   No 
                                              GPIE                                            )log( TTO                  No 

Signal                                    Minimun Variance                      )( 3TO                         No 

Subspace                               Barlett                                          )( 3TO                         No 
Noise                                     Pisarenko                                     )(TO                           No 

Subspace                               MUSIC                                         )( 3TO                         No 
Phase                                     Lank-Reed-Pollon                        )(TO                           No 
Weighted                               Kay                                               )(TO                          No 
Averaging                             Lovell                                            )(TO                          Yes* 

                                              Clarkson                                        )(TO                          No 
                                              Fernandes-Goodwin-de-Souza     )(TO                          Yes 
                                              Quin-Fernandes                             )(TO                         Yes 
Filtering                                 Hannan-Huang                               N/A                         N/A 
                                               Nehorai-Porat                                 N/A                         N/A 
Table 1: Summary of frequency estimators. 

                                                   
2 M = Maximizer. * Further investigation of the asymptotic performance of this algorithm is need. N/A: not applicable to 
online estimators. Asymptotically Achieves Cramer-Rao-Bound (AACRB) ?.  
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Chapter 4  

Spectral Analysis 
 

 

4.1 Classical methods 
 
This section deals with transformation of data from time domain to frequency domain. Spectral 
analysis is thus applied when the frequency property of the phenomena is investigated and when the 
time contains periodicities. 
    
4.1.1 Periodogram methodology 
 
We consider an important class of signal characterized as stationary random process. 

 

2

1

1
)( ∑

=

−=
N

i

jwt
i

ied
N

wC
                                                                                                Eq34 

This is the so called periodogram. It was originally introduced by Schuster (1898) to detect and 
measure “hidden periodicities” in data. The problem of the periodogram is that the variance of the 
estimate )(wC  does not decay to zero as ∞→N . That is, it does not converge to the true power 
density spectrum. This inconsistency can be seen when the estimates fluctuate more and more wildly 
from realization to realization. However the periodogram has the advantage of possible implementation 
using fast Fourier transform (FFT), but with the disadvantage in the case of short data lengths of limit 
frequency resolution. The deleterious effects of spectral leakage and smearing may be minimized by 
windowing the data by a suitable window function. It has been shown that averaging a number of N 
realizations can significantly improve the estimate of the spectrum accuracy. The accuracy of the 
spectra may be obtained in term of variance. The smaller variance of the power spectral density yields 
more accurate estimate. We can also decrease the variance by first dividing the whole data into k equal 
length section followed by zero padding, and smooth the estimate spectrum to removing randomness. 
The DFT consists of harmonic amplitude and phase components regularly spaced in frequency. The 
spacing of the spectral lines decreases with length of the sampled waveform. If a signal component 
falls between two adjacent harmonic frequency spectra then it cannot be properly represented (See 
computer simulations results). Its energy will be shared between neighbouring harmonics and the 
nearby spectral amplitude will be distorted. Windowing is very relevant also to smooth the estimate 
spectral component. However, when data is windowed the zero ends point can represent loss of 
information. To avoid such loss, we need to partition the data into overlap section, say 50% to 75% to 
include most of the feature. The resulting spectra are then averaged to obtain an estimate of the true 
spectrum.                           
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4.1.2 Pisarenko Harmonic Decomposition 
 
In this section, we will discuss the Pisarenko and introduce the MUSIC techniques of frequency 
estimation based on phase and autocovariance. We won’t spend much time in Pisarenko for the reason 

that its asymptotic variance is proportional toT
1−
. Any estimator which may be expressed as a 

nonlinear function of these sample autocovariances will inherits an asymptotic variance of the same 
order. The periodogram and the MLE approaches, on the other hand, yield estimators with asymptotic 

variances of orderT
3−
. It has been shown that the Pisarenko’s technique which uses eigenvectors of 

autocovariance matrix, is consistent when the noise is white, but produces estimators which have 
variances of a higher order than those of the MLE.  
 
Observation model is given by: 

)()()( nwnxny +=                                                                                                                  Eq35 

where e
nfj

p

i
i

iAnx
)2(

1

)(
φπ +

=
∑=  , )(nw  is an additive white Gaussian noise with zero mean and variance 

σ 2

w
; and [ ])(...,),........1(),(' pnynynyY −−=  is the observed data vector of dimension (p+1) and 

[ ])(,),........1(),(
'

pnwnwnww −−=  is the noise vector. 

 The autocorrelation function y(n) is 

)()()( 2 mmm wyyyy δσγγ +=            )1(,,.........1,0 −±±= Mm                                             Eq36 

Hence the M x M autocorrelation matrix for y(n) can be expressed as 

ΙΓΓ += σ 2

wxxyy
                                                                                                                             Eq37 

where Γxx
 is the autocorrelation matrix for the signal )(nx and Ισ 2

w
is the autocorrelation of the 

matrix of the noise. In fact, the signal matrix can be expressed as  

∑Γ
=

=
p

i

H

iiixx ssP
1

                                                                                                                               Eq38 

where AiiP
2= the power of the ith sinusoid, H  denotes the conjugate transpose and si

 is a signal 

vector of dimension M defined as 

[ ]TfMjfjfj

i eees iii )1(242
..,,.........,,1

−= πππ
                                                                              Eq39 

Let us perform an eigen-decomposition of the matrix  Γyy
. Let the eigenvalues { }iλ  be ordered in 

decreasing value with Mλλλλ ≥≥≥≥ ............321 and let the corresponding eigenvectors be denoted 

as{ }Mi
i

,.....,2,1, =ν . We assume that the eigenvectors are normalized so that δ ijj

H

i vv =. .                                                                                                                                  
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The signal correlation matrix is 

∑Γ
=

=
p

i

H

iiixx vv
1
λ                                                                                                                              Eq40 

In the presence of the noise, the autocorrelation matrix can be represented by  

∑Ι
=

=
M

i

H

iiww vv
1

22 σσ                                                                                                                          Eq41 

After substitution of some of the equations above, we obtain 

( )∑ ∑ ∑ ∑Γ
= = = +=

++=+=
P

i

M

i

P

i

M

pi

H

iiw

H

iiii

H

iii

H

iiiyy vvvvvvvv
1 1 1 1

222 σσλσλ                                 Eq42 

This eigen-decomposition separates the eigenvectors in two sets. The set },.....2,1,{ piv
i

=    

which is principal eigenvector, span the signal subspace, while the set  },.....1,{ Mpiv
i

+=   

which is orthogonal to the principal vector, are said to belong to the noise space. In this context we see 
that the Pisarenko method is based on an estimation of the frequencies by using the orthogonality 
property between the signal vector and vector in the noise subspace. The frequencies can be determined 
by solving for the zeros of the polynomial 

∑
=

−
+ +=

P

k

k
p zkvzV

0
1 )1()(                                                                                                             Eq43 

all of which lie on the unit circle. The angles of the roots are pif i ,....,2,1,2 =π . When the number 

of sinusoids is unknown, the determination of p is difficult, especially if the signal level is not much 
higher than the noise level. The location of the peaks in the frequency estimation function is defined by 

2

1

^

)(

1)(
vs

fP
p

H

i
f

P
+

=                                                                                                             Eq44 

   
 

4.1.3 Multiple Signal Classification (MUSIC) 
 
This method is also a noise subspace frequency estimator. The estimates of the sinusoidal frequencies 
are the peaks of the )( fPM   

∑
+=

=
M

pk
k

H

vs
fP

f
M

1

2

^

)(

1)(                                                                                                             Eq45 

For further details see digital signal processing, principles, algorithms and application, John G. Proakis, 
Dimitris G. _Monalakis (3edition – 1996-page 948) and The estimation and tracking of frequency 
(2001) – B.G. Quin & E.J. Hannan (p.143-179). The asymptotic variance is in the )( 1−TO . 
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4.1.4 Linear Kalman Filter 
 
Since 1960, Kalman filtering has been the subject of extensive research and application [1], particularly 
in the area as diverse as aerospace, demographic modelling, manufacturing, radio communication and 
other. The Kalman filter is an efficient recursive filter that estimates the states of a dynamic system 
from a series of incomplete and noisy measurements. Further it provides computational means to 
estimate the state of the process, in a way it minimizes the mean of the square error. It is applied when 
the dynamic and the observation equation are linear with additive Gaussian noise. The Kalman filters 
are based on linear dynamic system discretised in the time domain. They are modelled on Markov 
chain built on linear operator and perturbed by Gaussian noise. In order to use the Kalman filter to 
estimate the internal state of a process given a sequence of noisy observations, the process must be 
modelled by specifying the matricesA , H , Q , R and sometimes B for each time-step k  as described 
below.  
 

• Kalman filter Model 
The Kalman filter model addresses the general problem of trying to estimate the state kx of a discrete 

time controlled process that is governed by the linear stochastic difference equation 

   111 −−− ++= kkxk wBuAxx                                                                   Eq46 
Where  
A  is the state transition model which is applied with the previous state 1−kx   

B is the control input model which is applied to the control vector ku  

kw is the process noise assumed to be drawn from Gaussian zero mean multivariate normal distribution. 

),0(~)( QNwp  

 
• The observation (measurement) model 

At time k  an observation (or measurement)  kz  of the true state kx  can be described by  

kkk vHxz +=                                                                                                                       Eq47 

Where H is the observation model which maps the true state space into the observed space and kv  is 

the observation noise which is assumed to be independent (of each other), white, and with normal 

distribution ),0(~)( RNvp .  

   
In practice, the process noise covarianceQand the measurement noise covarianceR matrices might 
change with each time step or measurement, however here we assume they are constant. The nxn  
matrixA  in the equation Eq46 relates the state at previous time step 1−k  to the state at the current step 
k  in either the presence of the driving function or process noise. Note that in practiceAmust be change 
with each time step, but here we assume it is constant. The lxn  matrixB relates the optional control 
input u to the state. The nxm matrixH in kth measurement equation Eq47 relates the state to 
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measurementkz . In practiceH might also change with each time step or measurement, but here we 
assume it is constant.  
 
 

• Computation origins of the filter 

We define kx
−^

 to be our a priori state estimate at step k  given knowledge of the process prior to 

stepk , and 
kx

^

to be our a posteriori state estimate at step k given measurementkz . We the can      

define a priori and a posteriori estimate errors as  

kx xe kk

−−

−≡
^

 and kxe xkk

^

−≡                                                                               Eq48 

The a priori estimate error covariance is then 

][ T
kkk eeEP −−− =                                                                                                          Eq49 

and the a posteriori estimate error covariance is 
  

][ T
kkk eeEP = .                                                                                                             Eq50 

In deriving the equations of Kalman filter, we start with a goal in finding an equation that compute the 

a posteriori state estimate kx
^

as a linear combination of a priori estimate −

−

kx
^

and a weighted 

difference between an actual measurementkz  and a prediction 

−^

kxH as shown below.  

)(
^^^ −−

−+= kkkk xHzKxx                                                                                                      Eq51 

The difference )(
^−

− kk xHz in Eq6 is called measurement innovation, or residual. The residual reflects 

the discrepancy between the predicted measurement−
−

kxH
^

and the actual measurementkz . A residual 

of zero means that two are in complete agreement. The mxn  matrix K in Eq51 is chosen to be the 
gain factor that or blending factor that minimizes the a posteriori error covariance Eq51. This 
minimization can be achieved by substituting Eq51 into Eq50 and performing the indicate expectations, 
then solving forK . For further details see [Maybeck 79; Brown 92; Jacobs 93]. K is given by  

1)( −−− += RHHPHPK T
k

T
kk                                                                                                 Eq52                          

RHHP

HP
K

T
k

T
k

k +
= −

−

                                                                                                                   Eq53 
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As we can see that when the measurement error covariance approaches zero, the gain weights the 
residual more heavily, 1

0
lim −

→
= HK k

Rk

 .  

 On the other hand, as the a priori estimate error covariance −
kP  approaches zero, the gainK  weights 

the residual less heavily. 0lim
0

=
→−

k
P

K
k

. 

More sophisticated models of Kalman filter can be found for the purpose of fitting model based on 
nonlinear dynamic system. However, the Kalman filter is designed to make a good approximation fit 
when the system has a linear dynamic system.  
 

• Kalman filter algorithm 
This algorithm is based on recursive estimation by which the only estimate needed to compute the 
current state is the state from the previous time step and the current measurement. The state of the filter 
is represented by two variables: 

^
−
kx the estimate of state at time k.  

kP , the error covariance matrix (a measure of the estimate accuracy of the state estimate). 
  
Predict 

Predicted state                      kkk uBxAx += −

−

1

^^

                                            Eq54 

Predicted estimate covariance                  QAAPP T
kk += −

−
1                                          Eq55 

 
Update 

Innovation or measurement residual  

¨
^^
−−= kkk xHzx                                                     Eq56 

Innovation (or residual) covariance RHPHS T
kk += −

                                                   Eq57 

Optimum Kalman gain  
1−−= k

T
kk SHPK                                                     Eq58 

Update state estimate  

^^^
−− += kkkk xKxx                                                       Eq59 

Update estimate covariance 
−−= kkk PHKIP )(                                                  Eq60 
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From the above equations, we can notice that the time update denoted by predict project the state and 
covariance estimates forward from time step 1−k  to stepk . The first task during the measurement 
update is to compute the Kalman gain and the remaining follow as shown above.    

 
Figure 3: Complete picture of the linear Kalman filter operation  
 
The Figure 3 shows a diagram to shortly give a compact explanatory of the Kalman filter operation as 
designed above. In closing we note that under conditions where Qand Rare in fact constant, both 

estimation error covariance kP and the Kalman gainkK  will stabilize quickly and then remain constant. 

In this case the parameter will be pre-computed off-line, or by determining the state value ofkP  as 
describe in [Grewal 93]. In either case, we can obtain a good performance by tuning the filter 
parameters. The Kalman filter is a generalization of wiener filter. Unlike the Wiener filter, which is 
designed under the assumption that the signal and the noise are stationary, the Kalman filter has the 
ability to adapt itself to non-stationary environment. If the signal and noise are jointly Gaussian, the 
Kalman filter is optimal in a minimum MSE sense. If the signal and / or the noise are non-Gaussian, 
then the Kalman filter is the best linear estimator that minimizes MSE among all possible linear 
estimators. Moreover it is not convenient for online operation. It is also not shown to guarantee 
bounded error variance. 
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Chapter 5  

Rotating Machine based on Vibration 
and Sound analysis 
 

 
 
5.1 Introduction  
 
In rotating machines, vibration and sound analysis can yield information based on a change of system 
vibration pattern which can be relevant to design engineer. Therefore these changes are analyzed and 
used as parameters to predict fault (in condition monitoring), improve the comfort and enhance the 
design quality in automotive products. A mechanical system which encompasses a car motor has been 
used for vibration and sound measurement. We are not going to specify the scientific condition of the 
data acquisition. We assume, that the data has obtained in the normal scientific condition and sampled 
with respect to Nyquist. In order to analysis data, it appears relevant to give a brief analysis of the 
rotating machines based on vibration analysis. The purpose is not to provide some technical analysis 
where the results can indicate a fault detection method, even though possible, for rotating machine 
based on a change of system vibration pattern or critical element in a system. We will thus give the 
waveform characteristic of the data, the statistical property of the data and the data model.       
 

5.2 Vibration analysis  
 
Machines are complex mechanical structures with articulated elements. The parts that are excited could 
oscillate; where joint to other coupled elements transmit such oscillations. The result is the complex 
frequency spectrum that characterizes the system. Each time a behaviour of component changes one of 
its mechanical characteristics because of wear or crack, a frequency component of the system will be 
affected. However, in an automotive, we are more concerned with tracking the auto to translate the 
rotational angular velocity into a speed profile. Therefore, for our study and the requirement 
specification purposes based on fundamental frequency tracking and performance analysis, we will 
focus on the technical analysis through the use of the Pulse software package to analyze the obtained 
data by using a statistical approach called Bayesian analysis. In such an analysis, the discrete time data 
is processed to track the fundamental frequency in a full band vibration and sound signals made of 
more than11 harmonics associated with noise. The purpose of this work is to get acquainted with the 
utilization of PULSE software. Moreover, it is to find the suitable parameters that yield the optimal 
estimate or track the fundamental frequency of interest. 
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5.2.1 Vibration and Sound waveforms description  
 
In previous chapters, we have been dealing with some concepts and some theories behind the Bayesian 
analysis which may be used to get acquainted with Bayesian probability theory. That is the derivation 
of the posterior probability distribution and the incorporation of the informative prior based on 
mathematic manipulation has yielded good theoretical results. Now we consider vibration and sound 
signals which are highly nonstationary but relevant for our study. The reason is the interests of Bruel & 
Kjær to investigate a new way to determine the running speed of a car engine for application design 
purpose. Thus we are concerned with fundamental frequency tracking one of the core tasks in 
automobile department at Brüel and Kjær vibration and sound measurement A/S. The gaol is to use 
these measurements to track the trajectory of the fundamental frequency. Such a goal can be reached 
with a well formulated technique which can take into account the practical aspect of the nonstationary 
data model and the uncertainty of the stochastic parameter being estimated. In automotive jargon, it is 
baptised auto tracking. In order to achieve our gaol, it appears necessary to organize the task as 
follows:  
 
 

• Waveform characteristic 
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Figure 4: Acoustic (upper panel) and Vibration (lower panel) waveform signal. These show 
amplitude plot versus time. As we see, the amplitudes of these signals are characterised by an 
unpredictable fluctuation over time.  
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We section the signal for the purpose of having a closer look on the waveform characteristics. The 
Figure 5 shows both the tacho for each signal (lower panels) and the signal characteristics (upper 
panel). 
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Figure 5: Acoustic and Vibration signals (upper panel) which are nonharmonics signals and their 
respective tacho signals dominated by several pulses to designate the periodicities.    
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5.2.2 Spectrogram of the data 
 
Next, we consider the frequency content of these signals. The reason is simple. We are interested to 
track the fundamental frequency of the signal which requires knowledge about the number of 
harmonics in the signals. Thus we plot the spectrogram in Figure 6.      
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Figure 6: Spectrogram of both tacho (left) and the acoustic (right) harmonics order change. 
 
As we can see Figure 6 presents two spectrograms of both the tacho (left) and the sound (right) 
signals. These spectrograms show a clear picture of amplitude of several harmonics components 
evolving in time. These start at the low frequency of 100 Hz with first order, then as the   
frequency increases the number of dominating order increases. Thus the amplitude of the related 
harmonics changes with the fundamental frequency. Moreover these spectrograms present the 
energy of the frequency contents (frequency spectrum) of windowed frames for the run up and run 
down when the frequency changes over time.   
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Figure 7: Spectrogram of both Tacho (left) and Vibration (right) harmonics order change.  

 
  These spectrograms show the amplitude of the harmonic components and the frequency content of 
these signals. As the harmonic order changes, the amplitude changes as well. This change means that 
the frequency is varying over time. Thus for nonstationary signals, such a tool based on time-frequency 
spectrum is suitable for that purpose. Furthermore, by inspection, we see that the fundamental 
frequency for the acoustic has its peak at 100 Hz. The vibration of the motor yields two pulses per 
rotation represented by the tacho. That is, when the tacho has peak at 100 Hz, the vibration is at 50 Hz 
(see the first harmonic on the Figure 7). These are the fundamental frequencies of both the acoustic and 
the vibration signals we are going to track. Moreover, these figures present strong harmonics, DC (in 
tacho spectrograms) and some aliasing (top of each figure) for run up movement. These data have been 
generated in unknown condition by Bruel & Kjær and consist of three signals:  

• Tacho reference measured optically from a cam-shaft of the engine 
• Vibration (called also acceleration) in the vertical direction of the engine block measured with 

accelerometer. 
•  Acoustic sound pressure measured with a microphone approximately 1 meter above a car 

engine.     
 
We assume that the data have sampled according to the Nyquist theorem.  
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5.2.3 Data model 
 
We have seen that in the spectrogram, both the vibration and the sound signals encompass several 
harmonics and other artefacts due to aliasing. Because we are concerned more with the harmonic 
frequencies, we will reduce our model to the sum of the some harmonics. This will be given as follows: 

)))(sin())(cos(()( tbtatx nnnn Ω+Ω=∑ ηη                                                                             Eq61 

where 

∫=Ω
t

dwt
0

)()( ττ  

This is the representative signal, where the fundamental frequency will be estimated with respect to 
(wrt) the harmonic structure, frequency order and the amplitude of the orders. This model adds with 
noise will yield the regression model described above. In such a case, we may determine statistical 
properties of the data.     

 

5.2.4 Descriptive statistics  
 
In order to study the complete informative description of the waveform, statistical variability, the shape 
of the distribution and a quantitative analysis are setup.  
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Figure 8: Graphical representation of the partial quantitative description.   
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Figure 8 depicts the descriptive statistics. It is clear that the signal is highly nonstationary due to the 
variability of the standard deviation. The skewness lying in on the x axis tells us that the distribution 
shape of our sampled data may be symmetrical. Hence we will use the Gaussian distribution.  
 

• Student’s t-distribution 
The conjugate prior for the precision of a Gaussian is given by a Gamma distribution. If we have a 
univariate Gaussian N( 1,| −τµx ) together with Gamma prior ),|( baGamτ and we integrate out the 
precision, we obtain the marginal distribution 

∫
∞ −=
0

1 ),|(),|(),,|( τττµµ dbaGamxNbaxp                                             Eq62 

After some manipulations, we obtain the student’s t-distribution defined by  
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    Eq63 

Whereλ is sometimes called the precision of the t-distribution even though it is not in general equal to 

the inverse of the variance. The variance is [ ]
2

1
var

−
=Χ

ν
ν

λ
and 2>ν .The parameter ν  is called the 

degree of freedom, and its effect can control the shape of the t-distribution. For the particular case of 
ν =1, the t-distribution reduces to the Cauchy distribution, while in the limit ∞→ν the t-distribution 

),,|( νλµxSt  becomes a Gaussian N(
1,| −τµx )with mean and µ  precisionλ . 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
(x

)

Acoustic signal 

Histo.

Gauss.
t-distr.

 
Figure 9a: Complete descriptive information of sound signal model. 
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In the Figures 9a and 9b, we consider 3 distributions namely the histogram, Gaussian and the Student’s 
t-distributions representing the probability distribution of the acoustic data. The bars of the histogram 
in both right and left sides taper in the same way. These tapering sides are called tails (or snakes), and 
provide a visual shape of the distribution. Such a distribution contains both right longer tail (positive 
skew) and left longer tail (negative skew). The distribution is said to be skewed. From equation eq1, we 
notice that student’s t-distribution is formed by adding up an infinite number of Gaussian distributions 
with same mean and different precisions. This is referred to an infinite mixture of Gaussians. That is, 
the distribution has in general longer tails than a Gaussian. This gives the t-distribution an important 
property called robustness, which means that it is much less sensitive than a Gaussian to the presence 
of outliers. Outliers can arise in practical applications either because the process that generates the data 
corresponds to a distribution having heavy tail or simply mislabelled data. Robustness is also an 
important property of the regression problem.  
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Figure 9b: Complete descriptive information of vibration signal model. 
 

• Interpretation 
Illustration of the robustness of Student’s t-distribution compared to Gaussian. Histogram distribution 
of 401 data points from a maximum likelihood fit obtained from a t-distribution (red curve) and a 
Gaussian distribution (dark curve). The t-distribution contains the Gaussian as a special case. It gives 
almost the same solution as the Gaussian. The complete statistical description of the data confirms that 
the distribution of the acoustic and vibration data have a symmetric distribution shape. Further, the 
elongation of the histogram tails confirms the heavier tail. However, such tails happen to be short and 
die out faster. Therefore, we will consider the Gaussian distribution to be suitable probability density 
function (pdf) for short bandwidth. The variability observed by the variance indicates that the signal is 
highly nonstationary.  
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5.3 Robust Bayesian tracking algorithm  
 
The previous chapters were concerned with the estimation of the stationary frequency. If the 
instantaneous frequency changes substantially under low SNR, there is not much that can be done to 
track the frequency as it changes. However, if the frequency is changing so slowly, then we could track 
the instantaneous frequency simply by estimating it independently over time blocks using the above 
mentioned method. In this section we are concerned with the estimation of a stochastic variable namely 
the unknown fundamental frequency from vibration and sound data sampled uniformly.  
 
The data record is defined by 

[ ]TMNNNk
k tdtdtdd )(.....,),........(),( 11

)(
−+∆+∆∆=                                             Eq64 

whereM is the number of samples in each record. The records are offset form each otherN∆ . 
The parameter to track 
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                                                                                                           Eq65 
The observations are defined by   
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The likelihood function is defined by 
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• Parameter vector or matrix 
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The value of LΘ corresponding to the MAP estimate of )|( LL Dp Θ is the optimum track. In order to 
calculate the posterior probability, we need to find the prior model.    
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5.3.1 Modeling the informative prior distribution 
 
We know that the frequency changes slowly over time. The successive samples will not be too 
different, suggesting that there is high degree of correlation between the samples as mentioned earlier. 
Such effect leads us to consider a conditional probabilistic model namely Markov model. The reason is 
that we need to relax the identically independent distributed assumption of the observations; to captures 
the slowly change effects. Thus with such a model, all information about )(i

Fw from the past observation 

is contained in the previous observation )1( −i
Fw .  
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Fw obeys Eq6 it is said to be P-order Markov process. The joint posterior becomes  
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As we can clearly see, the posterior probability is the resultant of Bayesian inference. Three scenarios 
may be designed to compute the sets of the posterior probabilities which can yield the fundamental 
frequency components. 
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5.3.2 Tracking location parameter 
 
As we know that the unknown parameter varies slowly over records or time, in the case of Gaussian 
distribution, with the fundamental frequency corresponding to the mean, the regression function is 
linear. It may therefore be defined by 

)()()( knkww n
F

kn
F −++=− ηα  ,                                                                                     Eq69 

Where η is ),0( 2
TN σ , Pk ≤≤1 andα is the rate of change. If α is too big, the change will be too fast 

and the tracker may not perform well. The other parameters are important and these will be given in a 
simulation part.    

  

 
 

Figure 10: Tracking prior from linear regression.  
 

The linear regression can be used to estimate the location parameter in the subsequent observation. In 
the Figure 10, the description of how to determine the prior probability distribution is shown by linear 
regression.  
 

• Determination of the prior mean  
We use a conjugate prior based on Gaussian distribution. The determination of its parameter follows 
Thorkild Pedersen procedure: 
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5.3.3 Procedure of fundamental frequency tracking using informative prior  
1- Segmentation of the data set. 
2- Overlap the each data segmented to each other if N∆ < M . 
3- Compute the posterior distribution  )|( )()( kk

F dwp of the fundamental frequency   

4- Find maximum a posteriori (MAP): )|( LL Dp Θ  

• Prior information not available wrt )(i
Fw  the MAP is defined by 
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• Prior knowledge available the MAP is defined as follows  
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5- Compute the posterior probability as follows 

 
1. Initialization 
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Chapter 6  

Results for Computer Simulations 
 

 
6.1 Spectral Analysis simulation  
 
6.1.1 Performance analysis using stationary signal  
 

• Experiment 1: Single harmonic frequency estimation 
 
This experiment is a simple frequency estimation based on a single harmonic in sine wave. We 
generate a 2501 periodic discrete time samples. We will mention that in these experiments, we assume 
that all data are uniformly sampled. We apply only the periodogram and the student t-distribution. The 
results are depicted in Figure 11. 
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Figure11: Spectral estimate comparison     
 
The figure shows evidence of one peak in each panel. The upper panel is the result of the periodogram 
resolving perfectly the single harmonic frequency. The second harmonic is also at the right position. 
Hence, these two estimators have successfully yielded the single harmonic in the signal.  
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• Experiment 2:  Two harmonic frequencies estimation 
 
In this experiment, we are interest in the power carried by each line; not in the total power carried by 
the signal. This can be a real issue as the two lines become closer and closer together so that power is 
shared between them. The figure 12 shows an example of such an issue. To illustrate this point, we 
generate a discrete time sine wave sampled uniformly. We use 2501 sampled data. We then estimate 
the frequencies. Figure 12 shows the spectral components of two closed harmonic frequencies. In the 
upper panel, the periodogram shows only one peak. This estimator has estimated a frequency which is 
the average of the two frequencies. In the lower panel of the figure, the student t- distribution shows 
two frequency peaks at wrong position. Thus the inclusion of the improper prior has enhanced the 
ability of the estimator in the lowest panel to emphasize the evidence of two harmonic frequencies. 
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Figure 12: Power of the prior and spectral estimation.  
 
Therefore, we note that prior, even uninformative can have a major effect on the conclusion we are able 
to draw from a given data set. This plot illustrates clearly some of the points we have been mentioning 
earlier even though the estimate of the student t-distribution may seems very conservative (see Figure 
12). When we increase the data size, the Figure 13 shows evidence of two peaks for each of these 
estimators. The periodogram and the student t-distribution yield successfully the two frequency 
components as shown in both upper and lower panels respectively. As we may know from literature, it 
is not easy to retrieve too closed harmonics. At some limit, it may be even very difficult. 
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Figure 13: Spectral analysis of too closed harmonics. 
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However, we can solve such an issue by applying the likelihood method introduced in section 5.3.        
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Figure 14: Spectral analysis showing spurious peaks caused by noise effect.  
 
We now want to observe the effect of noise on these estimators. Therefore using the same signal with 
two harmonics frequencies, we increase the noise variance level beyond the fading limit say SNR set to 
-40dB. In such a lower SNR we apply these estimators to resolve the frequencies of interest. The noise 
effect has been attenuated by the ensemble averaging technique employed on the power spectral of 
each estimator. This is to reduce the variability of the power spectral estimates due to random noise 
effect. It results that the noise is filtered out. However, the increase of the noise at certain level has 
significant effect on the periodogram (see upper first panel). It presents spurious effects on its estimates 
which may be considered as frequencies components. On the other hand, the estimators based on the 
posterior probability distribution do not suffer from the same effects of the spurious components. The 
periodogram is not even a sufficient statistic in noisy environment because it becomes significantly 
affected by noise (see Figure 14). We have shown that the periodogram is very powerful to single tone 
signal. Despite the sample size of the data, student t-distribution can demonstrate the evidence of the 
exact number frequency present in the signal. This difference of resolving frequencies in a low SNR 
signal is due to the additional effect of the prior. Such a prior can help to enhance the ability of 
emphasizing the evidence of the frequency component in the signal. Moreover, the student t-
distribution withstands the effect of the noise at certain level. Therefore without concluding, we may 
say that the marginal posterior probability remains the flexible estimator and yield good performance 
with the inclusion of the prior distribution.       
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• Experiment 3: Multi stationary harmonic frequency estimation 
 

In this experiment, we generate a discrete time uniformly spaced sinusoid sample with a four low 
frequencies: f1=0.1, f2=0.2, f3=0.4 and f4=0.6. The sample size was 3001. The sampling frequency is 
50 Hz. We apply the periodogram and the joint posterior probability distributions with and without 
knowing the variance, the results are depicted in the Figure 16. Matlab code used: 
bayes_stationary_spect_ana.m. The Figure 15 shows the results which perform the multiple stationary 
frequency estimation with closed four closed harmonic related frequencies. The results are shown in 
the Figure 15. 
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Figure 15: Spectrum of four related low frequencies using both periodogram, the joint posterior 

probability and the spectral estimator )(
^

wp  with and without variance being known. All the estimators 

show evidence of four peaks at the right position.Only the )(
^

wp estimator shows a low amplitude of the 
estimates 2f0 and 4f0 where f0=0.1.  
 
 We add noise a high noise level say SNR to -35.4 dB beyond the fading criterion. And then we apply 
these estimators. They successfully show four peaks at the right frequencies position. Although the 
success of these estimators the spectral estimator in the lowest panel appears to withstand the noise 
effect. The remaining ones, periodogram and the two joint posterior probability estimators yield both 
the right spectrum and also show evidence of spurious peaks. This is due to the low level of the SNR. 
The scenario is presented in Figure 16. 
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Figure 16: Ensemble average spectrum when SNR is set to -35.4 dB. The performance of these 
estimators shows evidence of four correct peaks.   
 
Further, we examine the performance of these estimators when three of these four harmonic 
frequencies are too closed. These estimate successfully the four harmonics as shown in Figure 17.     
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Figure 17: Ensemble average spectral estimation when the frequencies are clustered together. 
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• Experiment 4: Multiple nonstationary harmonic frequency estimation 
 
In this experiment, we will investigate the capability of the periodogram and the student t-distribution 
to estimate the nonstationary frequencies from two uniformly sampled signals with two separate 
frequencies and decay factor. The signal is modeled as follows: 

[ ]e
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twBtwBtf
)(

12111
11)sin()cos()(

φα ++=  and [ ][ ]e
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24232
22)sin()cos()(
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Parameters used are:  

5.11 =B , 41 =B , 21 =B , 31 =B , 3.01 =w  rad/s, 5.01 =w rad/s, 0
1 0=φ , 0

2 90=φ 50=fs Hz. 
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Figure 18: Performance of the spectral estimates for the periodogram. 
 
Figure 18 shows the time series of the NMR free induction decay data from two different channels 
represented by channel 1 and channel 2 (upper panel). In the lowest panel, the estimates of the 
periodogram are shown for of each channel. We see only one peak for each signal or channel. This is 
reasonable because each signal contains only one frequency component. When these channels are 
added or combined, the estimation of both frequencies by periodogram fails. This is due to the 
incapacity of the periodogram to resolve nonstationary frequency (see upper panel in Figure 19).  
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Figure 19: Performance of the spectral analysis by the periodogram and the student t-distribution. 
 
 In the lowest panel, we note the evidence of two peaks at the right position of the frequencies needed. 
This indicates that the frequencies of interested have been successfully estimated by the student t-
distribution. This is also in harmony with the theories in many literatures that postulate that the student 
t-distribution outperforms the periodogram in certain conditions. We now add white Gaussian to our 
signal model (Figure 20); and then we apply both the periodogram and the student t-distribution to the 
unnormalized signals. The results of the experiment are exactly the same as in Figure 19. 
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Figure 20: The true signals are corrupted (black) into white Gaussian noise (red).  
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Now, we would like to know the behaviour of such an estimator under different condition such as 
normalization and in a noisy environ. Therefore, we undertake a new experiment with the same signal 
and same parameters as before. We normalize the original signals )(1 tf and )(2 tf , and then we apply 
these two estimators. The results are shown in Figures 21. We can clearly see the evidence of two 
peaks in the upper and lower panels. The periodogram and the student t-distribution have successfully 
estimated these two frequencies.   
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Figure 21: Frequency estimation under signal normalization condition. 
 
At last, we normalized the signals and then add white Gaussian noise with variance set to 0.005. The 
results are shown in the Figure 21.     
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Figure 22: Performance comparison when variance is set to 0.005 
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It is not surprising to see that the periodogram achieves the same performance as the student t-
distribution does. Because we can see the all these estimators yield the same result. This is simply 
because of the normalization effect on the signals and the axis.   
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Figure 23:  Performance of the periodogram vs Student t-distribution in noisy environment.0.01 
 
The normalization [15] has the following effect on the signals of interest. 

• Amplification  
• Base line shift 
• Stretch or concentration- a scale along the x-or y axis 
• Phase shift 
• Orientation – a rotation along the axis 

Therefore the periodogram has a correct estimator appearance. The result is unsatisfactory although the 
periodogram has yielded the two correct peaks at the right frequency positions. The estimation is 
correct due to the effect of the normalization process which changes the signal.  
 
Comment:  
The student t-distribution works better on spectral estimation. Further, we have also seen the effect of 
the normalization, which amplifies noise and shifts the phase and the base line to give another signal.  
Thus the signals lose their intrinsic shape. In addition, we have shown when more one channel is 
present; the periodogram is not an appropriate estimator for indication of multi nonstationary 
frequencies. We have shown that the logarithm of the student t-distribution is a proper statistic 
estimator which can resolve all the peaks in these channels, while the periodogram fails to do so. 
We have also seen that prior distribution can have an impact on the estimate although it is vague. Thus 
the student t-distribution can be used as frequency estimator in a frequency modulator system. 
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6.2 Classical and Bayesian estimators’ noise sensitivity 
 
We have seen the simulated results of the Bayesian method and the periodogram in different context. 
Now we want to analyze the performance of the Bayesian technique compared to the classical methods. 
We use for such a purpose a synthetic data to estimate the spectral components of the signal under 
noiseless and noisy conditions. The difference here is that we focus more on the error sensitivity. Thus 
we implement the generation of the noisy sequence y(t) and the computation of the frequency 
estimation. We would note that the spectral estimates of the methods applied here exhibit a significant 
variability. Therefore, it is necessary to average the noise over several realizations for the sake filtering 
the noise and stability. We use 10000 realizations in our current experiment. Figures 24 - 25 illustrate 
the results obtained by running the whole program (Matlab script: method_sim_rev.m). We assume 
that the signal being used in this experiment is uniformly sampled. 
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Figure 24:  Noiseless sine wave  
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Figure 25: Noiseless spectral components  
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The Figures 24-25 show the sine wave and the successful spectral estimation of these four estimators 
except the MUSIC which shows a DC level. Now we add noise and then increase it to a certain level 
beyond the fading criterion. The results of such an experiment using the same signal are depicted in 
Figures 26 and 27. We see how the additive Gaussian noise corrupts the signal (see Figure 26). When 
we apply the same estimators as that of above, all these estimators yield a pronounced peak at the right 
frequency position.          
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Figure 26:  Single tone signal (dark) embedded in white Gaussian noise (red).  
 
 By inspection, we see that the Figure 27 shows four frequency spectral components from the 
periodogram, Music, linear Kalman filter and the Bayesian. However, Kalman and the periodogram 
introduce spurious peaks. This is a great sign of disturbance; whereas the Music and the Bayesian 
methods withstand such a noise level. This also demonstrates the power of eigenanalysis-based 
algorithm for Music and prior for Bayesian.           
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Figure 27:  Single frequency spectral form classical and Bayesian estimators and noise effect. 
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We increase the noise level. At this point, all the estimates are affected. The result tells us that these 
estimators are significantly deteriorated by the noise as shown in the Figure 28. 
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Figure 28:  Noise effect on spectral estimators. 
 
Figure 28 shows the effect of low SNR of the estimated spectrum by introducing several peaks. 
Although the periodogram and the Kalman filter keep the evidence of the peak, the noise has severely 
deteriorates the estimator by the presence of spurious effects. The Bayesian estimator shows a less 
impact to the noise due to its low spectral disturbance. The Music fails to estimate the frequency of 
interest. The key point in the Kalman filter theory is that the underlying state space model is accurate. 
When this assumption is violated, the performance of the filter can deteriorate appreciably. The filter 
sensitivity to modelling nonlinear error has led to the development of robust state space filters. 
Eventhough it is difficult to draw any conclusion, the results nevertheless demonstrate the power of the 
posterior probability including vague prior in resolving the frequency component in additive noise. 
Although the results were not satisfactory for the MUSIC, it has been stressed out in literature [18] that 
the MUSIC are good estimator for sinusoids and can be applied more generally to the estimation of the 
narrow band signals. Furthermore, the Bayesian technique used in this experiment remains a better 
estimator. However it must be reinforced by a more robust algorithm including an informative prior 
with adjustable hyperparameter to be a general purpose estimator. Whereas the linear Kalman 
assumption and adaptive capability need to be robust against noise.          
 
 
 
 
 



 44

6.3 Stationary Fundamental frequency tracking  
 

In previous experiments, we study the performance of our estimators with fixed frequency. This 
analysis extends the ideas developed above under the condition in which the Bayesian algorithm with 
adjustable parameters is applied to track the frequency variation. We then use a sine wave with 
fundamental frequency which varies slowly over time. The slow motion of the frequency may be linear 
and nonlinear. The results of the experiment are shown in the figures below. Thus we consider the 
following signal and the parameter are listed below. 
 

• Problem statement:  linear fundamental frequency tracking  
 

Signal model setup:     
1. tFtff 1.0)( 0 += : Fundamental frequency with a low rate of change.  

2. ))(2sin()(
0
∫=
t

tfftx π , Periodic signal  

Parameters: 
Record size: 125 samples - Overlap: 100 samples - F0: 5 Hz - Fs: 100 Hz 
Signal duration: 60 seconds 
P:1 number of regression order 

Variance: 
4

1  

K: [1] order of the harmonic  
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Figure ´29a: Fitted linear fundamental frequency track when the signal is noiseless. 
As the Bayesian procedure has been described earlier, we will only give interpretations of the results. 
Thus the Figures 29a and 29b, show the linear fundamental frequency (white line) versus the true 
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fundamental frequency (blue line). Eventhough the Figure 29b does provide more information; it shows 
a successful of segmentation and overlap of the data record and the tracked fundamental frequency 
trajectory followed by the tracker in Figure 29b. In Figure 29a, successful frequency tracking is 
depicted.      
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Figure 29b: Image of the linear frequency tracking process of the noiseless signal. 
 
Further, we will now carry out the performance test by adding a white Gaussian noise to the signal and 
simulate the impact of the decreasing SNR on the Bayesian performance by means of the accuracy and 
error sensitivity. Let us consider by now that the signal to be tested is as follows: )()()( tntxty += . A 
regression model with additive white Gaussian noise with variance set to 1. The result of such a test 
applying Bayesian is depicted in Figure 30a and 30b. 
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Figure 30a: Tracking (red) the true fundamental frequency (blue) when the noise variance is set to 1. 
Despite the noise, the model is fitted well. A negligible degradation is noted in the Figure 30a. At a 
noise level set to 3, the tracker cannot follow correctly the true fundamental frequency as shown in 
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Figure 30b. The increase of noise variance has created high uncertainty in the estimates such that it 
appears difficult to fit the model. This is shown in the Figure 30b, where the fitted curve (red) deviates 
to follow the trajectory of the detected track (blue).   
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Figure 30b: High degradation of the tracker due to variance set to 3: model cannot be fitted well. 
 
 
Comment: 
In this experiment, we test the performance of our Bayesian algorithm including an informative prior 
linear time varying frequency signal3. We consider the signal evenly spaced for the first evaluation of 
the error sensitivity. In the absence of noise, the track and the fitted curves overlap. The model is fitted 
well. When increase the variance of the noise, the model does not fit well. The effect of noise 
deteriorates the performance of our Bayesian method. This effect of the noise is that it increases the 
uncertainty of the parameter to be estimated. Thus confusing the decision making process of the 
posterior probability by providing wrong and inaccurate estimate to adapt itself later to such a noise 
level. Moreover the algorithm can yield best result where the model can be fitted well. However under 
low SNR condition the algorithm fails to fit well the model. Therefore care should be taken to reduce 
the noise or improve the algorithm. Nevertheless it has shown that our algorithm can drastically 
deteriorate in low SNR.                  
 
 
 
 
 
 
 

                                                   
3 NB: we must note that all the vertical axes are frequency axe in this experiment of section 7.1.3. 
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• Problem statement: nonlinear fundamental frequency  
 

Signal model setup:     
1. )))1.0(2cos(1(5.2)( 0 tFtff π−+= :a fundamental frequency with a low rate of change.  

2. ))(2sin()(
0
∫=
t

tfftx π ,  periodic signal. Parameters are the same as the above. 

 
 
When we consider the signal described above, and the search range sets from 5 to 10 Hz. The Bayesian 
algorithm fitting the model is shown in Figure 33a. The model is well fitted.     
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Figure 31a:  Satisfactory model fitting   
 
Thus the curve of the tracked fundamental frequency (red) and the true fundamental frequency (blue) 
overlap quite well (see Figure 31a). Figure 31b shows the posterior distribution of the fundamental 
frequency with the estimate tracked (white line).   
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Figure 31b: Tracking fundamental frequency (white line is the fitted track) in log domain. 
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 We add the same Gaussian noise to the signal. The results show that by increasing the noise level, our 
estimator becomes sensitive to noise.  
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Figure 32a: Measurement (blue) and fitted frequency track (red) when the variance is 2.5. 

 

Figure 32b: The posterior of the underfitted fundamental frequency when variance is 2.5. 
 
 
This implies that the effect the noise disturbs the estimator. Consequently the model cannot be fitted 
well. The reason is that the estimator cannot withstand such a noise effect. Thus the posterior 
probability decision yields wrong decision. Hence the estimator yields inaccurate fundamental 
frequency as shown in Figure 32a -32b.      
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Now we set the variance noise level to 3. Figure 33b shows the behaviour effect noise on the estimates. 
The Bayesian algorithm cannot fit the model. As shown the tracker capability deteriorates more and 
more. Hence the curve represented by the estimate frequencies deviates significantly from the true 
fundamental frequency trajectory. We have emphasized the performance analysis and the error 
sensitivity of the Bayesian algorithm when tracking the slowly change of the fundamental frequency. In 
order to validate the result of the experiment, we first test the signal without noise. 
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Figure 33a: Tracking fundamental frequency from a signal (data1) in noise (data2).  
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Figure 33b: Performance of the tracker when the noise level is set 3: model cannot be fitted. 
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Figure 33c: Posterior probability of the tracked fundamental frequency (white line4) when noise level 
is set to 3. 
 
The Bayesian algorithm can achieve good tracking performance of a stationary the fundamental 
frequency. In a very low SNR condition the algorithm can suffers from erroneous decision that yield 
inaccurate estimates. Thus it fails to fit the model.   

                                                   
4 White line in these figures is the representation of the tracked fundamental frequency. 
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6.4 Nonstationary frequency tracking    
 
6.4.1 Bayesian Tracking analysis using vibration signal   
 
This experiment is the results of applying robust Bayesian algorithm to the vibration signal. Note that 
the parameters are first selected and fixed except the variance. The reason is that we don’t know the 
bound of the variance. Thus the choice of the variance can be time consuming when we need to 
optimize the accuracy of the estimate. In our case we use the tacho as reference speed profile to 
compare the estimate speed profile based on the real data set. Before we go through it,    
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                                (34a)                                                                   (34b) 
Figure 34: Spectrograms of the tacho (34a) and the vibration (34b). The spectrogram is the energy in 
the time-frequency spectrum.  
 
Figure 34 denotes the time-frequency spectrum consisting of several harmonics. These harmonics 
described the frequency versus time run up situation of a car engine. Inspection of Figure 34a gives 
starts frequency around 10 Hz. It then increases around 40 Hz linearly says until 5 seconds at the end 
(100 Hz). This is the fundamental frequency of the vibration signal. Comparing the tacho spectrogram 
with the vibration spectrogram indicates that the harmonic orders in the vibration spectrogram are 

multiple of 
th

2

1
order. Thus we use the order model [ ]2,5.1,1=K . This means the first order; the 1.5th 

order and the 2nd order are select to be the search region. The other parameters are variance = 0.6, the 
initial guessed frequency f0 = 10 Hz, the order number K = 1:2, the frequency range is set to 
[5:0.5:100] ; and the number of the previous record P = 3. We apply the Bayesian algorithm again. The 
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results from the Matlab code: non_exp_demo.m, are depicted in the following figures. Figure 35 
denotes the effect of a tracking prior with normal distribution. In fact the normal distribution becomes a 
parabola in log domain. And then tends infinity when moving away form its mean value as shown is 
Figure 35 (upper panel). When we add the prior the result is shown in the lowest panel in Figure 35.  
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Figure 35:  The parabola curve of the posterior probability of the records in log domain (upper panel). 
And the posterior of the fundamental frequency tracked (white line).  
 
This is the image of the tracked fundamental in log domain. We will see later that this is a correct 
fundamental frequency estimate (white line) in Figure 48.    
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Figure 36:  The posterior of the fundamental frequency trajectory (white line).  
 
The Figures 36 describes the MAP results for the run up of all the records of the vibration signal. The 
algorithm has been able to handle the computation need for drawing inference about the fundamental 
frequency estimate (white line). We give an illustration in time domain comparison to show how 
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accurate the algorithm yields the model parameters of interest. Therefore we plot the noisy 
observations against the tacho (green pulses). As we can see, in the upper panel of the Figure 37, the 
pulses rise at the start of each vibration signal period by a close look. 
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Figure 37:  Signal comparison (lower panel) and period matching (upper panel) 
 
Further we compare the true signal with the reconstructed signal. We see that these two signals match 
each other. This comparison can also tell us that the tracking has been successfully done. However the 
result is not perfect but satisfactory because the reference tacho speed profile (red in Figure 50) shows 
a strange discrepancy due may be to our algorithm (does not start at zero on the y-axis).  
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Figure 38: Speed profile from tacho (red) and vibration (blue) signals. The two speed profiles follow 
each other. This tells us that the tracking has been successful. The model is more or less fitted.     
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6.4.2 Hyperparameter effects    
 
If tracking is shown to be successful in one hand, parameter adjustment has been creating instability in 
the shape of the estimate. One of the difficulties here has been to determine the optimal parameters. 
That is the parameter which can yield the “best estimate “. This is because there is no clear bound for 
the parameter. It is vague to consider that the parameter space is defined only from on zero to infinity. 
This makes the work time consuming. Because adjusting the parameter, specifically, it is referred to 
manipulate the shape of the prior (width by variance adjustment) and the parameter location (by the 
mean through the number of previous record P). However when the “true parameters” have been found, 
the algorithm can handle well the fundamental frequency tracking. The variance and the number of the 
previous record (used by the mean) are the governing parameters. Thus the prior shows its influence 
through these parameters. The wrong choice of these parameters yields inaccurate estimates. We will 
demonstrate this influence of these parameters below when we use the sound signal.          
The simulation has the same scenario with the vibration one. The only is that we test the impact of the 
wrong adjustment on the estimate which has not done in the vibration side. The reason is that the sound 
signal represents both run up and coast down. Therefore doing the experiment on one will give a result 
for both at once. As before, we setup the parameters. And then we apply our new algorithm based on 
robust Bayesian method. The results are described in the Figures below.      
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                                   (39a)                                                                      (39b) 
Figure: 39: Spectrogram of the tacho (39a) and sound (39b) signal.   
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Figure 39 shows the spectrogram of the sound and the tacho signal. A closer look at these spectrograms 
shows that in tacho spectrogram, the first harmonic starts around 20 Hz. It then increases to around 100 
Hz where it stays for 2.4 sec, where after it decreases almost linearly to around 10 Hz until the end. 
When we compare the tacho spectrogram with the sound spectrogram we observe that the harmonics 

orders in the sound (acoustic signal) are multiple of the
th

2

1
as .the vibration one. In this way, we select 

the model order to be [ ]2,5.1,1=K .   
 
Figure 40 describes the result of the marginal posterior probability distribution in log domain. We can 
see the fundamental frequency which has been tracked correctly (see Figure 41).   
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Figure 40: Tracking successfully with the prior the fundamental frequency estimated (white line).   
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Figure 41: Speed profile estimated (measurement) overlapping the reference (tacho): model is fitted.    
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Figure 41 shows the true speed profile and its corresponding estimate determined by applying the 
robust Bayesian algorithm. The estimate speed profile (measurement) is virtually identical to the exact 
speed profile (tacho). The result tells us that the parameters fit well the data model. This is because the 
estimates speed profile is in good agreement with the true speed profile. These two speed profiles 
describe the run up and run down situation of a car engine. Hence we see that tracking has been 
achieved successfully. The algorithm has been well capable to track the precise fundamental frequency. 
However the task has not been so easy because of the adjustment of the parameters time consuming. 
Alternatively, we can also compare the true and the reconstructed signals. And then the error is 
computed. The results appear in Figures (42-43).    
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Figure 42: Image of the signals and the error.  
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Figure 43: The reconstructed and true signal plus the reconstructed error.  
 
Although the information from this comparison may not be objective, it gives quite good impression of 
the reliability and the robustness of the Bayesian algorithm by looking at Figures 43. The result was 
shown to be successful. 
Now, we are concerned with the behaviour of the algorithm while adjusting the parameters of interest. 
We will be using the variance, the number of the record (includes in the mean) and may be the number 
of order to test their effect. The results when we did not adjust correctly the parameter of the Bayesian 
algorithm is shown in Figure 44. 
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Figure 44: Speed profile being controlled by adjustable parameters. K =[1.5 2], var =1/4, P=3. 
In this case the model is not fitted. 
 
As we can see from Figure 44, when we change the order K parameter value, the algorithm tracks the 
run up and deviates to follow the run down. This tells us that the order parameter controls the search 
region of the fundamental frequency (see Figure 44). This is also true, because it is the order K which 
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allows tracking the right fundamental frequency. Hence the search region depends on the parameter K. 
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Figure 45: Speed profile being controlled by adjustable parameters.  K=[1.5 2]; var = 0.3, P=3. 
The model is not fitted because the parameters are optimized. 
 
We now fix the other parameter and then change the variance value, shape of the speed profile changes 
as shown in Figure 45. The tracker cannot follow the run down properly. This change has a harmful 
impact on the performance of our robust algorithm. This is also expected because the variance controls 
the width of the prior distribution which is very important for the posterior probability to draw 
inference about parameters to be estimated. We have stated earlier that the prior probability distribution 
is a Gaussian bell-shaped curve. And the standard deviation (square root of the variance) controls the 
width of the prior distribution. Any change of variance value will imply changes in the prior shape. 
Consequently, the change in the prior shape will influence the posterior probability decision. The 
model won’t be fitted well with such parameters. Furthermore the deterioration of the performance can 
result as shown in the Appendix C.         
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Chapter 7 

General Conclusion 
 

 
In this thesis we have investigated the classical spectral and Bayesian tracking analysis. The 
performance analysis of the overall estimators involved in this work is emphasized through the 
experiment simulations. The investigation and analysis works are described through xxx fundamental 
and complementary processes: 

1. Basic statistics and probability theory 
2. Estimation methods pros. And cons 
3. Spectral analysis methodologies 

• Periodogram 
• MUSIC 
• Linear Kalman filter 
• Pisarenko 

4. Bayesian analysis for linear regression models  
• Maximum likelihood for regression 
• Likelihood procedure for low SNR, too closed frequency and low frequency estimation 
• Vague and conjugate prior introduction  
Bayesian parameter estimation-case study 
• Bayesian tracking analysis using vibration and acoustic signals 

5. Performance analysis using stationary time series plus white Gaussian noise 
• Single harmonic frequency estimation 
• Two harmonic frequency estimation 
• Multi-stationary harmonic frequency estimation 
• Multiple nonstationary harmonic frequencies estimation 

6. Comparison of low SNR effect on both classical and Bayesian estimates 
7. Slowly time varying fundamental frequency tracking using noisy time series 
8. Robust Bayesian tracking analysis and procedure proposal 

 
We have established a relation between theory and engineering technical software application in a 
broad field of Classical spectral and Bayesian tracking analysis in rotating mechanical system. In order 
to understand and implement the statistical approach to the fundamental frequency tracking problem 
using vibration and acoustic data, we have simplified the random parameter estimation problem at 
stationary noisy time series level in accordance with my supervisor at DTU. We have given a survey of 
Bayesian analysis for linear regression models, provided a possibility of understanding the Bayesian 
parameter estimation technique, comparing the performance of both classical and Bayesian and 
analysing the error sensitivity and the effect of the hyperparameter on the estimates through computer 
simulations experiments. We have found that for single harmonic frequency estimation provided it is 
not too closed to zero, the periodogram performs well. Although the periodogram can estimate multi-
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stationary harmonic frequencies in the presence of Gaussian noise, the log Student t-distribution yields 
better estimates. For two closed stationary harmonic frequencies with short data size, we have reported 
that the introduction of uninformative prior has en effect to emphasize the evidence of these 
frequencies although uncorrected. 
 
We have given some basic methods and the summary of some previous estimators which are used in 
both off line and on-line frequency estimation to. By doing so, we have been able understand the 
strength and the accuracy in function of the Cramer-Rao-Bound (CRB) of these frequency estimators. 
From the summary it has been shown that only maximum likelihood, the periodogram, Fernandes-
Goodwin-de-Souza and Quin-Fernandes asymptotically achieves Cramer-Rao-Bound. That is, these 
can be used to provide good estimates in the application of interest.     
 
Bayesian parameter estimation technique for linear regression models has been investigated. It been 
derived that the posterior probability distribution is proportional to the product of the likelihood 
function and the prior. Our focus has been on how to determine the hyperparameters of the prior 
distribution in parameters estimation problem. It has been found that for optimal determination of these 
hyperparameters, we could use empirical Bayes, type 2- maximum likelihood, general maximum 
likelihood or evidence approximation. Further if the prior is flat, the evidence is obtained by 
maximizing the likelihood function. If we define conjugate (Gamma) prior distribution over the 
hyperparameters, then the marginalization over these hyperparameters can be performed analytically to 
give student t-distribution. Alternatively the expectation maximization (EM) algorithm provides 
practical evidence framework if the integral is no longer analytically tractable.   
It is relevant to mention that there other method which can be used such as Monte Carlo simulation or 
importance sampling (see section 6.4 in Bayesian Method, 2005). These estimators can yield good 
results at the expense of high complexity.  
 
Time constraint for the sake of efficiency requires that simple algorithms are preferable and some 
trade-off between algorithms complexity, accuracy, delay and quality must be made to select the 
desired estimator scheme.  
 
For the sake of accuracy, comparison and reliability in fundamental frequency estimation, we have 
considered to perform spectral analysis of classical and Bayesian methods. Therefore we have 
simulated six experiments using sinusoidal discrete time series added to white Gaussian noise. Since 
sinusoids plus additive white Gaussian noise describes well stationary signal, we have simulated single 
stationary harmonic frequency estimation, multi-stationary harmonic frequencies estimation and 
nonstationary harmonic frequency estimation. The results of these experiments have proved that 
although, the periodogram achieved a better performance when frequencies are separated, it introduces 
spurious peaks and deteriorates significantly as the SNR becomes small. The linear Kalman filter can 
yield good performance in high SNR. It is a best estimator when the signal and noise are non-Gaussian. 
The performance of Kalman filter is not optimal in the presence of Gaussian noise. It has also been 
found the MUSIC algorithm achieves good performance but it cannot ensure Cramer-Rao-Bound. All 
these classical estimators, despite these efforts to perform well sometimes, the posterior probability 
including prior knowledge outperforms all of these. This is due the power of the prior to yield correct. 
We have seen also that the prior has am impact on the posterior distribution. Therefore if the prior is 
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vague, the posterior results become conservative. However the estimates or results from the posterior 
probability distribution are corrected if the posterior distribution is based on informative prior. 
These experiments have been simulated successfully. In addition we have simulated the error 
sensitivity of the Bayesian method. It has been found that Bayesian method shows an undesirable effect 
and moreover, it yields bad performance. This behaviour is comprehensible because it is beyond the 
fading limit or the normal experimental limit. Furthermore, we have simulated the effect of the 
adjustable hyperparameters of the prior distribution on tracking the fundamental frequency. It has been 
shown that when these hyperparameters are not well adjusted, wrong estimates can be yielded out by 
the robust Bayesian scheme. If the hyperparameters are setup correctly, the Bayesian achieved 
successfully correct results. Although the robust Bayesian remains the reference in our case for 
tracking speed profile, it is sensitive to noise. It is very simple and provides good quality and high 
accuracy despite the noisy nonstationary signals of interest.     
 
The main problem about the robust Bayesian algorithm implementation is the choice of the optimal 
hyperparameters to accurately create the reliability condition in tracking speed profile. We have found, 
through our simulations, a bound for the variance and the way of setting up the number of order to 
avoid a long time consuming. Hence we have found that the variance can be found setup between an 
interval of [0.1 0.6] and the number of order to track depending of the real application, we have in our 
case found that it may be assigned to [1 1.5 2], which means the 1 for the first order, 1.5 for slight shift 
of the first order frequency due may be to the nonlinear effect of the system. Therefore the region of 
tracking of the fundamental frequency in such a condition will take into account both first frequency, 
the slight shift first frequency and the second order of the harmonic which is designated by 2. We 
consider 1.5th order as the fundamental frequency and the frequency range is fixed and of course 
known.  
 
We have found that these hyperparameter control the behaviour of the prior. Specially, the variance 
controls the width of the prior distribution. Moreover, the adjustment of the hyperparameter offers 
more flexibility to the Bayesian algorithm to adapt itself to any type of parameter estimation problem.  
We have little prior is available, the posterior estimates reduces to the maximum likelihood estimates. 
 
The principle of least square or maximum likelihood provides no way to eliminate nuisance 
parameters, and thus oblige to seek a global maximum in a space of much high dimensionality, which 
requires an heavy computation burden. Having found that, they only provide the sampling distribution 
in a longer calculation which does not answer the question of interest. Thus they cannot assess the 
accuracy of the estimates.     
 
We have also found that although the vibration tacho speed profile was successfully achieved, however 
its representation by tacho suffers from my code deficiency to yield a correct size of the speed profile. 
In other side, the Bayesian method achieves successfully the tracking process for both vibration and 
acoustics nonstationary signals. 
 
  The future works to improve the robust Bayesian method are: 

• Robbin –Monro method to estimate the stochastic location parameter in nonstationary data.  
• Improvement Bayesian algorithm using robust Kalman filtering or Particle filtering  
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Appendix 
 

 
A Review materiel for Bayesian linear regression 
 

 

Bayesian Analysis for Linear 
Regression Models 

 
 
 
A.1 Bayesian parameter estimation 
 
A.1.1 Linear model for regression  
 
Linear regression model is a mathematic method to model the relationship between the dependent 
variables and independent variables. The general linear regression model 
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φ                                                                                 Eq72 

Where T
M )...,,.........( 1 φφ=Φ  and T

MwwW )...,,.........( 1=  
A simple model equation is represented in Figure 48. The figure shows the linear regression model (a 
straight line governed by xwwy 10 += ) and data points.   
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Figure 46: linear regression and data point plot of y versus input x.   
 
Much of our discussion in this section will be applicable to situation in which the vector )(XΦ of basis 
functions is simply the identity XX =Φ )( . Further, we will derive the maximum likelihood and 
Bayesian treatment of linear regression model and explain how to determine the hyperparameters of the 
prior distribution. 
 
 

A.1.2 Maximum likelihood for regression  
 
We have seen several times that the maximization of the likelihood function under conditional 
Gaussian noise distribution for linear model is equivalent to minimizing the sum square error function. 
Before we derive such an error function, let us re-establish the equation. This will be repeated even 
though there may similar formula above for the purpose of conformity between variables. We may 
assume that the target variable is defined by the deterministic function with a Gaussian noise as follows  

ε+= ),( WXyt                                                                                                       Eq73 
whereε is zero mean Gaussian random variable with precision (inverse variance)β . Thus the 
likelihood function is  

)),,(|(),,|( 1−= ββ XWytNWXtp .                                                              Eq74 
Making the assumption that these data point are drawn independently from the distribution Eq63 we 
obtain the following likelihood expression  
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Because in this supervised learning problem such as regression, we are not seeking to model the       
distribution of the input variables, therefore we drop the input variable form now to keep the notation 
uncluttered. ),|(),|( ββ WTpWXTp = . Taking the logarithm of the likelihood function and making 
use of the standard form (1.46) for multivariate Gaussian, we have 
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This is called the maximum likelihood. Where the sum of the square error function is defined by  
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In practice we are not interested in finding the value ofw itself but rather making a prediction of t  for 
new values ofx . This requires that we integrate over the parameter w . This is called marginalization. 
We thus evaluate the predictive distribution defined by 

∫= dWTWpWtpTtp ),,|(),|(),,|( βαββα                                                    Eq78 

in whichT is the vector of the target values from the training set. The result is as follows 
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where the predictive variance is given by  
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The first term represents the noise of the data whereas the second term is the uncertainty associated 
with parametersw . The conditional distribution for ),,|( βWXtp  of the target variables is given in 
Eq5 without X and the posterior weight distribution is given by 

),()|( NN SmNTWp =                                                                                                    Eq81 
where 
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If we consider a broader prior IS 1
0

−= α   with 0→α , the mean Nm of the posterior distribution 

reduces to the maximum likelihood value given by ( (3.15) in Pattern recognition for Machine Learning 
– C. M. Bishop, 2006). Similarly, if N=0, then the posterior reverts to the prior.  Furthermore, if the 
data arrive sequentially, the posterior distribution at any stage acts as the prior distribution for the 
subsequent data point., such that new posterior distribution is again given by Eq70.     
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A.1.3 Evidence approximation   
 
In Bayesian treatment of the linear basis function, although we can integrate over the hyperparameters 
w, the complete marginalization over these variables is analytically intractable. We will adopt here the 
popular approximation method of determining the hyperparameters. This can be achieved by 
maximizing the marginal likelihood function obtained by first integrating over the parameter w. This is 
known in the literature as empirical Bayes (Bernardo and Smith, 19994; Gelman et al., 2004), or type 2 
maximum likelihood (Berger, 1985), or generalized maximum likelihood (Wahba, 1975), and in the 
machine learning literature is also called evidence approximation (Gull, 1999; MacKay, 1992a). If we 
now introduce hyperpriors overα andβ , the predictive distribution is obtained by marginalization over 

α,w andβ  so that 

∫∫∫= βαβαβαβ ddWdtpTWpWtpTtp )|,(),,|(),|()|(                               Eq84 

where ),|( βWtp is given by (3.8 – page 140) and ),,|( βαTWp is given by ((3.49) – page 153) in 
“Pattern recognition and Machine Learning, C. M. Bishop 2006”.From Bayesian theorem the posterior 
distribution forα andβ  is given by 

),(),|()|,( βαβαβα pTpTp ∞                                                                        Eq85 
If the prior is flat, then the values ofα andβ can be determine through the maximization of the 
marginal likelihood. If we define conjugate (Gamma) prior distribution overα andβ , then the 
marginalization over theses hyperparameters in Eq73 can be performed analytically to give a student t-
distribution overw .However, the integrand as a function ofwhas a strong skewed mode so that the 
Laplace approximation fails to capture the bulk of the probability mass, leading to poorer results than 
those obtained by maximizing the evidence (MacKay,1999). In the evidence frame work, there are two 
approaches that e can take to the marginalization of log evidence. We can evaluate the evidence 
function analytically and then set its derivative to zero to obtain re-estimation equations forα andβ . 
Alternatively, we use the expectation maximum (EM) algorithm. Thus we derive the marginal 
likelihood function by integrating over the weight parameters as follows 
 

∫= dWWpWTpTp )|(),|(),|( αββα                                                                        Eq86 

From some manipulations we obtain, 
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The integral over w can be evaluated as follows 
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Using equation Eq13 we can then write the log marginal likelihood in the form 
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which is the required expression for the evidence function. We first find α by using ((3.81*) and 
(3.82*) and (3.86*), page 167) in “*Pattern recognition and Machine Learning, C. M. Bishop 2006” 
and also adding the fact that A has eigenvalues iλα + , we have  
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Thus rearranging the equation, we obtain 
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Rearranging we obtain 
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Since there are M terms in the sum over I, when we multiply by α2  through some manipulations we 
obtain 
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From Eq80, we can derive the value ofα that maximizes the marginal likelihood as follows 
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To find β , we maximize the log marginal likelihood with respect toβ . To do this, we denote that the 

eigenvalues iλ  defined in ((3.87), page 168 *). Hence βλβλ // ii dd =  giving by 
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The stationary point of the marginal likelihood therefore satisfies 
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And rearranging we obtain 
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Both α andβ  can be calculated by iterative procedure by choosing an initial values using (3.53*) and 
(3.95*5) respectively. For further information see the above the above mentioned book from “C. M. 
Bishop, 2006”. In the case that the number of the data points is large in relation to the number of the 
parameters, all the parameters will be well determined by the data because ΦΦT from (3.83*) involves 
an implicit sum over data points, and re-estimation equations forα andβ become  
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Where WE  and DE are defined by (3.25*) and (3.26*) respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                   
5 * refers to Pattern Recognition and machine Learning – C.M Bishop 
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A.1.4 Case study: Inference for normal mean with known variance  
 
Take { }NyyY ,..........,.........1= to denote a random sample from a normal distribution with unknown 

meanθ and known variance2τ . Then the likelihood function ofθ , given the observationY is  
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The likelihood may be expressed more simply by noting that  
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The known situation will seldom arise in practice. However, for normal meanθ , we first consider a 
conjugate prior distribution, which is normal with mean µ and variance 2σ .This may be justifies by 
Boltzamann’s maximum entropy theorem (Cercignami, 1988; Rosenkrantz, 1989). Suppose, we specify 
can only the meanµ  and the variance2σ but nothing else about our prior distribution. Therefore we 
will choose the prior distribution )(θp that maximize the entropy 

∫−=
0

)(log)()( θθθϕ dppp ,                                                                                           Eq103 

But subject to the meanµ  and the variance2σ of the being equal to our specified values forµ  

and 2σ .A straightforward calculation (BellMan, 1971, chapter 4) tells us that our optimal prior is 
normal ),( 2σµN . This is the special case of Boltzmann’s theorem ( Bayesian Methods, 2005, p122 ): 
 
 
 The density )(θp that maximizes )( pϕ , subject to the constraints  

[ ] ii ttE =)(θ                             )...,,.........1( qi =                                                                    Eq104 
 
takes the parameter exponential family form 

{ })(.......)()(exp)( 2211 θλθλθλθ qqtttp +++∞                  )( Θ∈θ ,                     Eq105 

where qλλλ ....,,........., 21 can be determined, via the p-constraints, in terms of qttt ....,,........., 21 . 
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Under the maximum entropy ),( 2σµN  prior distribution, the hyperparameters µ can be specified as a 

prior estimate ofθ , and 2σ denotes the prior standard deviation. With  
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The signal-to-noise ratio is 
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Then the posterior probability density ofθ is  
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The close form of the posterior probability density can be found by using the lemma below. 
 
Lemma (Completing the square): For any constants aBA ,, and b  

21112*22 )()())(()()( baBABAbBaA −++−+=−+− −−−θθθθ                  Eq110 
where 

)()( 1* BbAaBA ++= −θ .                                                                                                 Eq111 
NB: notice that we are not going to prove all these results. For more information about these see 
“Bayesian Methods, 2005, page 123”. Thus, when we apply these results to the posterior density, we 
obtain   
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In other words,θ is a posteriori normally )|( * νθN distributed. This is the maximum entropy 

distribution, given the posterior mean *θ and varianceν . The expressions in Eq113 define the posterior 
mean, mode and median ofθ , since these are identical for normal distribution.  
They all equal the weighted average  
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N
 describes the “reliability” of y the as an estimator ofθ . Equation Eq112 tell 

us that the posterior precision 1−ν equal the sum of the sampling precision and the prior precision. 
Therefore the posterior variance is, in this special case, less than both the prior variance 2σ and the 

sampling variance 21τ−N of y . This is not generally the case. Posterior probabilities can be calculated 
from  
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Under a general prior density xx )(θp for normal meanθ , the posterior density ofθ  is    
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Note that the prior predictive density of the sample mean y is 
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Then the first two of )(log yp , with respect to (wrt), satisfy 
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Therefore the general expressions for the posterior mean and variance ofθ are    
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These results relate to the regression in classical theory. Dawid (1973) and Leonard (1974) address the 
issue that the estimator in Eq114 based on the conjugate prior, can discredit the prior estimate 

asy moves large away form µ . Thus they show in their analysis that the prior distribution with thicker 
tails yield possibly more desirable properties. There Dawid recommends a generalized t-prior density, 
taking the form 
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In situations where the parameters spaceΘ is unbounded, Bayesian theory is faced with the problem 
that their estimates are generally quite sensitive to the thickness of the tails of the prior density. 
However, in practice it quite difficult to model the thickness of the tails based upon the prior 
information, for example how to determine the value of ν  in Eq115. Therefore in practice, we refer to 
the entropy criterion Eq103 and a conjugate normal prior. Further we may point out that the posterior 
expectations of bounded function of unbounded parametersθ  are not as sensitive to the tail behaviour 
of the prior density as the posterior mean ofθ . Sensitivity issues are discussed by lavine (1991), and 
robust estimates of location are considered by Doksum and Lo (1990). We will consider the analytical 
procedure to estimate the parameter by using type2-maximu likelihood or empirical Bayes techniques. 
Before lounging into depth, we give a brief description of the improper prior and its relevance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 73

A.1.5 Vague prior     
 
In a situation of complete prior ignorance (which may happened rarely) regarding the unknown 
parameterθ , we may consider vague prior information. The Bayesian paradigm cannot formally handle 
complete prior ignorance. In such situation, we can use likelihood methods if a sampling model 
available. However, Bayesian analysis can handle situations where prior information is fairly vague. 
For a clear explanation, let us consider a ),( 2σµN normal prior distribution where the normal mean µ  

is unknown and the variance2σ is known. A small value of 2σ indicate the feeling thatθ  is quite likely 
to be close toµ . As 2σ increases, the prior density becomes more and more dispersed aroundµ . Then 

the limit as ∞→2σ , the prior Κ→)(θp  for allθ , where the constant K is arbitrary and does not 
depend on upon θ , that is  

1)( ∞θp          .      )( ∞<<−∞ θ                                                                                        Eq125 
The limit is not a density, since it does not integrate to unity. The prior distribution of θ  becomes 
improper. It represents a specific prior information that θ  is equally likely to fall in the interest search 
interval. Under such a prior distribution, the posterior density for a normal meanθ  reduce to a 

),( 21τ−NyN density. We can therefore state that the posterior probability thatθ  lies in the 95% 

confidence interval )/96.1,/96.1( 2

1

2

1

NyNy ττ +− is 0.95% (Bayesian method, 2005, p134). 
However, under a wide range of regularity conditions, it is true that any )%1(100 ∈− Bayesian region 
will give frequency coverage approaching )%1(100 ∈− as N gets large and for any prior density 

)(θp forθ . 
 
Now we consider another way of choosing a vague prior distribution. The general Jeffrey’s prior which 
yields excellent frequency properties (Bayesian methods, 2005).We will only set up the way to derive 
such popular prior. Thus the Jeffreys’ invariant prior (Berger, 1985, p.390) more generally can be 
defined by 
 

2

1

|)(|)( θθ Fp = ,                                                                                                                  Eq126 
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denotes fisher’s information forθ . The choice of these prior distributions is situation dependent. That 
is, in some cases, both can yield good results. When using the improper distribution in prior  
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A.1.6 Conjugate priors  
 
Given a distributional choice, the prior parameters are chosen to interject the least information possible. 
We will illustrate the conjugate prior distributions in different situations. 
 
Case 1: variance known and we should infer the mean given the observation  
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Figure 47:  The posterior probability distribution formed by likelihood and the conjugate prior 
As we can observe, the prior distribution shape increases with the variance value. Thereby, the 
posterior distribution shape also increases. The prior has a strong impact on the posterior probability 
distribution. This is due to first the standard deviation which controls the width of the prior and the 
sample size. It is stated in the literature that the larger the sample size, the less impact the prior has on 
the posterior probability distribution.   
 
Case 2: Mean known and we wish to infer the variance itself      
In such a situation, the conjugate prior used is the inverse Gamma. We simulate the inverse Gamma 
distribution using : alpha=[1 6 3 4 3 3]; beta=[1  .5 1 2 1 .5] for the prior.  
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Figure 48: Bayesian theorem simulated using inverse Gamma conjugate prior. 
This inverse Gamma conjugate distribution is convenient in the situation, in which we suppose that the 
mean is known and we wish to infer the variance. Now suppose both mean and precision are unknown.  
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Case 3: Mean is known and we want to infer the precision λ .    

It turns out to be most convenient to work with precision
2

1

σ
λ = . In this situation, the conjugate prior 

distribution corresponds to the Gamma distribution: )exp(
)(

1
),|( 1 bxxb

a
baxGamma aa −

Γ
= − ,   where 

)!1()( −=Γ aa  if a  is an integer.   
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Figure 49: Gamma conjugate prior distribution simulated using a = 3 and b = 1/2.     
  
Case 4: Mean and the precision are unknown. The conjugate is thus a normal Gamma distribution.  
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Figure 50: Simulation of the normal Gamma prior distribution 
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Case 5: Mean and the variance are unknown. The convenient conjugate prior distribution is the 
normal inverse Gamma distribution which is not plotted.  
 
 
Comment 
The illustration of the prior probability is in fact an experiment in which we demonstrate the desirable 
convenience and its important role played in the Bayesian analysis. We have seen that the shape of the 
prior, when the size of the data is small can contribute more in the decision making process of the 
posterior probability. Further, the flexibility in change of the shape can accurately yield best estimate 
with high frequency resolution, as we can see when the shape of the prior is very small. However, such 
a shape becomes insignificant in participating to the decision when the observation of interest in too 
large. In this experiment, we have not included the constant normalization factor and the log terms. We 
have only focus on the conjugate prior which is our focus in our framework. Moreover, the results 
show that the incorporation of the prior in the Bayesian analysis is can deal effective with the standard 
uncertainty associated with the best estimate and yield a supplement of information to estimate and 
track the parameter of interest. In addition, we have found that the selection of the conjugate prior 
distribution depends on the parameters mean and the variance. Such information is relevant for the 
posterior distribution and the accuracy of the estimate. The only issue we will outline is that if there are 
outliers in the data, the Gaussian model which has light tail cannot cope with it. We will need other 
distribution which present heavy tail such as student-t distribution or stable distribution to take into 
account such an outlier or trend if present in the observation data.  
 
 

A.2 Stationary frequency estimation 
 
Data modeled as a sum of sinusoids or exponentials arise in many areas of science namely nuclear 
magnetic resonance (NMR), functional magnetic resonances imagine (FRMI), auto tracking and more. 
However parameter estimation is a challenging problem. In this section we will present frequency 
parameter estimation theory in stationary case and nonstationary case as well. In the stationary case, we 
will introduce the signal harmonic case to followed by the multi-harmonic case to continue the analyses 
started by Larry Bretthorst in “Bayesian Spectrum analysis and parameter estimation” and Lars Kai 
Hansen, Finn Årup and Jan Larsen6 in their Bayesian framework about the “Exploring fMRI data for 
periodic signal components”. The use of such data are relevant because many studies are non-standard, 
and it is not always possible to provide a complete convincing analysis based upon pre-existing 
techniques. Therefore our study based on pre-existing algorithms to continue to develop the available 
understanding and apply these to specific knowledge. Thus the basic methods and two robust parameter 
estimation algorithms are presented. Several methods have been considered, trying to deal with such a 
problem by locating the maxima of an approximately periodic function. In this way, the least square 
method has been considered by Gauss [1] to estimate model parameters in noisy data. In this procedure, 
the problem is formulated in term of minimizing the sum of the discrepancies between the model and 
the data. Ideally, the problem will be formulated in such a way that only the frequency remains, but it is 

                                                   
6 All names mentioned above are professors in Intelligence Signal Processing (ISP) group from IMM at DTU. 
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not possible with direct least square, which require us to fit all the model parameters. The method of 
least squares may be difficult in practice even though it is well understood. Under Gaussian noise 
assumption, the least squares estimates are simply the parameter values that maximize the probability 
that we would obtain the data given the parameters.   
The spectral method of dealing with this problem is based on the popular and powerful tool Fourier 
transform which is often used to estimate the frequency of the signal. The discrete Fourier transform 
(DFT) is a different method that can estimate the spectrum of the original discrete time series.  
Even though such technique is well defined analysis tool, it does not work well when the signal to 
signal-to-noise ratio (SNR) of the data is small or when the data are nonstationary. Then it appears 
necessary to use the probability theory. The technique of the DFT has also been a problem when the 
signal is other than simple harmonic frequency. For example the chirped signal. The peak will spread 
out relative to a simple harmonic spectrum. This creates the noise to interfere with parameter 
estimation problem much more severely, and probability theory becomes essential.  
In reaction against these difficulties encountered by DFT, Arthur Schuster [3] introduces the 
periodogram method of detecting a periodicity and estimating its frequency. The periodogram is based 
on averaging the square magnitude of the DFT and does yield useful frequency estimates under a wide 
range of conditions. Due to its statistical relevance in parameter estimation, Jaynes [4] establishes it as 
a “sufficient statistic” for inferences about single stationary frequency or discrete time sampled data set 
under Gaussian noise assumption. That is, the periodogram which summarises all the information in the 
data can be used to estimate the frequency under certain condition. We will investigate the basic 
methods, implement the probability theory behind the Bayesian analysis and combine the experimental 
and computational resources to the usefulness of the data. Further we will compare some classical and 
Bayesian spectral estimators through a Matlab simulation to analyze the performance and the error 
sensitivity of the Bayesian method.     

 
A.2.1 Single harmonic estimation 
 
We construct the likelihood model defined by ),|( IHDP because it is dependence of the parameters 
which concerns us here. The time series we are )(ty  we are considering is postulated to contain a 
single stationary harmonic )(tf  plus noise )(tε . The basic model is always we are recorded a discrete 

time data set ).,,.........( 1 NddD = ; sampled from )(ty  at discrete time { }Ntt ,,.........1 ; with a model 
equation 

,)()( iiii etftyd +==     )1( Ni ≤≤ .                                                                               Eq128 
We will follow up the analysis of the Larry Bretthorst by introducing the prior probability for the 
amplitudes, which simplifies the calculation but has no effect on the final result. And also to discuss 
and introduce the calculation techniques without the complex model functions confusing the issues.  
The model is described as follows 

)sin()cos()( 21 wtBwtBtf +=                                                                             Eq129 

which has three parameters ),,( 21 wBB  that may be estimated from the observation data. There are 
several ways of estimating the parameters of interest. The problem to be solved is to compute the 
probability of the frequency wconditional on the data and the prior information, this is abbreviated 
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as ),|( IDwP . But when we take the equation Eq4, there are four parameters{ }σ,,, 21 BBw . In this 

problem the two parameters 1B and 2B are referred to nuisance parameter, because the probability 
distribution that is to be calculated does not depend on these parameters. To perform this calculation 
we will apply the Bayes theorem to compute the joint probability of the all the parameters and them use 
the sum rule to eliminate the nuisance parameters.  
 
Applying Bayesian theorem gives: 
 

),|(

)|,,,(),,,,|(
),,|,,( 2121

21 IDP

IBBwPIBBwDP
IDBBwP

σ
σσσ =                            Eq130 

 
which indicates that to compute the joint probability density, we must obtain three terms:  

• ),,,,|( 21 IBBwDP σ  is the likelihood function of the data given the parameters and the 
information I.   

• )|,,,( 21 IBBwP σ is the prior probability distribution of the parameter given only the 
information. 

• ),|( IDP σ is the probability of the data given only the information I. It is called the 
normalization constant. 

 
 
 
 
The sum rule can be applied to remove the dependence on the amplitudes:   
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Assigning the likelihood function  
This is equivalent at inserting the single stationary sinusoid frequency model in the expression of the 
noise .fde −= changing f to indicate that it is the parameter that interest us, we obtain 
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                                                                                                                                                         Eq132 
Assigning the prior probability 
Assigning the prior probability is one of the most controversial area in Bayesian probability. Yet, to a 
Bayesian it is the most natural of things. The controversy arises when we try solve a problem in which 
we have a little prior information. If one has highly informative prior measurement, there is little 
discussion on how to assign the priors: the posterior probability derived in analyzing the previous 
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measurement can be used as the prior probability for the current measurement. But this delays the 
problem of how to assign probability of knowing little. In assigning the prior probability  

 )|(),|,()|,,( 2121 IwPIwBBPIBBwP =                                                       Eq133 
The prior probability of the frequency must be assigned completely independent of the amplitudes 
values. Here the only thing know about the frequency is that the data has been sampled uniformly, thus 
frequency values greater that than the Nyquist frequency are aliased. So the frequency must be bounded 
between 0 andπ2 . Using this bound and the normalization constraint in a maximum entropy 
calculation results in the assignment of 

π2

1
)|( =IwP                                                                                                                                Eq134 

as a prior probability of the frequency. Of course this is not the only prior probability that could be 
assigned. There is no contradiction in arriving at different prior probability assignments. The two 
different assignments correspond to being in different stage of knowledge, and different prior 
information result in different assignments. But this different assignment represent knowing little, 
effectively nothing, and regardless of what functional form one assigns to the prior; if the prior is 
slowly varying compared to the likelihood function, the prior will look like a constant over the range of 
the values where the likelihood is sharply peaked and its behaviour outside of this region will make 
little effectively no difference in the results. It is only when the width of the prior is comparable to the 
width of the likelihood function that it can have any significant effect.  
Equation Eq9 becomes then 

π2

),|,(
)|,,( 21

21

IwBBP
IBBwP =                                                                          Eq135 

The probability of the amplitudes depends explicitly on the value of the frequency. In this calculation, 
it will be assumed that knowing the frequency tells us nothing about the amplitudes. This is not true in 
general, for example if the experiment is repeatable and a previous measurement is available, 
knowledge of the frequency will relevant about the value of amplitude. But if knowledge of the 

frequency does not tell us anything about the amplitudes then )|,(),|,( 2121 IBBPIwBBP =   
and the joint prior probability of all the parameters may be written as 

π2

)|,(
)|,,( 21

21

IBBP
IwBBP =

                                                                           Eq136 

In order to state what we know about the amplitudes, we suppose that we repeat this experiment a 
number of times. The signal is a stationary sinusoid. When the experiment is repeated, each of the 
amplitudes will take on both positive and negative values, (the phase will be different in each run of the 
data). Thus the average value of the amplitudes will be zero, but the mean square value will be 
nonzero. Applying the principle of maximum entropy will result in assigning a Gaussian prior 
probability to the amplitudes: 
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where 2δ  represents the uncertainty in the amplitude. If this prior probability is to represent little 
knowledge, then δ  must be very large. But ifδ is very large this prior probability is effectively a 
uniform prior probability over the range where the likelihood function is peaked. Due to the lack of 
information, we use uniform prior. This will yield conservative results. It is called improper prior.  
 
This prior is needed to ensure that the total probability is one. So in parameter estimation problem, this 
prior is not relevant and can be dropped provided that the probability is normalized at the end of the 
calculation.    
 
After manipulations involving elimination of nuisance parameter and removing constant, we obtain the 
likelihood function as defined below. 
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The prior probability distribution is as follows 

σ
σ 1

)( =P .                                                                                                                                 Eq139 

This is Jeffreys prior, which can yield conservative result. Thus we obtain the posterior probability if 
the variance 2σ  is known by 
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We see that the conditional posterior probability is related to the periodogram. 
 
 
However, when the noise information is not available, the variance is unknown. To determine the 
posterior probability, we multiply the prior distribution and the likelihood function. Then we integrate 
out the variance parameter.  
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Thus we obtain the posterior probability called student t-distribution 
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In our case it is the posterior probability density that a stationary harmonic frequencyw is present in the 
data when no prior information aboutσ . These two posterior probabilities show why the discrete 
Fourier transform tends to peak at the location of a frequency when the data are noisy. Namely the 
discrete Fourier transform is directly related to the probability that a single harmonic frequency is 
present in the data, even when noise level is unknown. If the signal, being analysed, is a simple 
harmonic frequency plus noise, then the maximum of the periodogram will be the “best” estimate of 
the frequency that we can make in the absence of additional information about it. We now see the 
Fourier transform in a entirely new light: the highest peak in the discrete Fourier transform (DFT) is an 
optimal frequency estimator for data set which contains a single harmonic frequency in the present of 
Gaussian white noise.      
 

• Power Spectral density: 
We will express the result in probabilistic term to simplify the comparison between techniques, 
although there is no correspondence between a spectral density defined with reference to a stochastic 
model and one that pertains to a parameter estimation model.   
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                                                                                                                                                         Eq143a 
This is the probabilistic meaning of the power spectral density (psd) defined by integrating the product 
of the total energy carried by the signal (not the noise) during our observation time by the joint 
posterior probability distribution for all the parameters. We now see that the peak of the periodogram is 
indicative of the total energy carried by the signal. One interesting thing this formula, is that the 
probability theory will handle those secondary maxima (side lobes) that occur in the periodogram by 
assigning them negligible weight.  If the noise variance is known, Eq133a may be approximated by  
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   Eq143b                      

for most purposes. But for the term2σ , the peak of the periodogram is, in the model, nearly the total 
energy carried by the signal. These formulae can be useful in some context, we will show later in the 
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and for two channels the student-t distribution is the product of two posterior distributions (Eq142).  
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simulation part of the project. For more information see computer simulation in section 6.1.1. Although 
these formulae can all be useful at certain level in stationary environment, the problem of estimating 
too closed harmonic frequencies remain. It has been notice that in Larry Bretthorst analysis that the 
student t-distribution Eq132 and Equation Eq133a are for most purposes. However, we may notice that 
these formulae result in yielding conservative results due to the incorporation of the improper prior in 
the Bayesian analysis. Therefore it appears necessary to describe a technique of parameter estimation 
of stationary signal which can yield satisfactory result while using proper informative prior. Such a 
technique is detailed below for multi-harmonic frequency estimation and also model comparison.           
 
 
A.2.2 Model selection    
 
As introduced above, in this section we will show the method of calculation for parameter estimation in 
stationary signal. Such a topic has been treated by several signal processing groups. Among those, Lars 
Kai, Finn Årup Niesen and Jan Larsen professors at Technical University of Denmark from 8ISP group 
in Informatic Mathematic Modeling department has provided a paper entitled “Exploring FMRI data 
for periodic signal components”. In these frameworks, the technique of parameter estimation has 
explored. In this analyze to perform the parameter estimation technique; we will introduce their method 
used in accordance with a linear regression, while the basis function is typically sinusoidal function. 
The technique of calculation to find an informative conjugate prior id described below. The signal will 
be modelled as a sum of multi-harmonic components plus noise. The most general form of the model is 
as follows: 
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txbtf j
1

)()( ,   Nt ,,.........2,1=                                                                         Eq144 

Where N is the number of the data set, )(tx j is a set of periodic basic function such that and 

)cos()( 02 tjtx j ω= , bj
is a j  linear amplitude parameter, Kj ,.......,2,1=  is the number 

)sin()( 012 tjtx j ω=+ of harmonics (model order) and 0ω  is the nonlinear fundamental 

frequency parameter. In matrix form, equation Eq144 may be written as  

Xbf =                                                                                                                                         Eq145 
However, more often than not, when the data is measured, it comes with noise, which can often be 
assumed to be additive. A model of the data might therefore be.   

)()()( tntfty +=                                                                                                                      Eq146 

Where )(tn is the additive white noise with zero mean and unknown variance 2σ .  

                                                   
8 ISP means Intelligence Signal Processing  
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This difference equation forms a general linear regression model with a model of jK 2=   basis 

function and j2 dimension amplitudes vectorb .  

A fundamental problem we encounter is that the parameters { }σω ,,, 0 kb are unknown. In this way, 
the estimation of the fundamental frequency parameter will be posed in Bayesian term. That is we will 
develop a Bayesian paradigm that allows us to make inference about these parameters independently to 

the amplitude b  and phase of harmonic independently of the noise variance 2σ . We are only interested 

in estimating 0ω  the fundamental frequency and K the number of harmonics. This can be achieved by 
using nuisance parameters elimination technique. 
  
 

• Calculation technique for parameter estimations 
 
We will introduce the calculation method to introduce how to eliminate the other unknown parameter 
(nuisance parameters) which we don’t need and also how to determine the hyperparameters of both the 

prior and the posterior probability. What we need here is only  0ω  and K the fundamental frequency 
and the harmonic order respectively. We can thus eliminate the unneeded parameters by explicit 
integration. Before we do so, it appears necessary to specify the Bayes theorem to clearly formulate our 
aim. 
  
Problem statement 2:  estimation of the posterior probability density )|,( yKP ω     
Solution strategy:  

)(
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                                                          Eq147                                                                      

Where ),|( 0 KyP ω  is the likelihood function, ),( 0 KP ω is the prior distribution and )(yP is the 
normalization factor. For the fixed set the joint likelihood function; i.e the conditional probability 
density of the measurement given the parameters may be written as  
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σ
πσσω                          Eq148 

 
Since we are only interested in estimating { }K,0ω the fundamental frequency and the number of 

harmonic (model order) respectively, and the amplitudeb  and the noise variance 2σ are unknown, we 
consider them as nuisance parameters to be eliminated. To do this, we use the prior distribution 

),( 2σbP  which quantifies the general knowledge we have on the domain and which potentially 
depends on the given basis set and model order.  
We proceed to formulate explicitly the prior distribution  by including some new hyper-parameter 

Vm, denoted mean and variance of b and ad, designating mean and precision respectively for 2σ .     
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The likelihood function has a normal distribution with the mean and variance unknown and assuming 
dependence on the likelihood function. Thus the convenient conjugate prior distribution to be chosen is 
the Normal Inverse Gamma (NIG), with four prior hyper-parameters { }aVdm ,,, and also four posterior 

hyper-parameters { }pppp aVdm ,,,  (see table of conjugate distribution in the Appendix). There are 

many different proprieties of conjugate distributions. To find the conjugate prior we consider the 
dependence of the likelihood function on the mean and the variance. In the following Figures, we show 
two examples for the sake of illustration of Gaussian and Inverse Gamma priors respectively.  
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Figure 51: Illustration likelihood function which is normal with known variance and unknown mean, 
thus the prior is Gaussian distribution.    
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Figure 52: Continuous distribution with Normal likelihood function, Inverse Gamma conjugate prior  
 
As we can notice in all these Figures, the priors have the same distribution as the posterior probability 
distribution as shown in the lowest panel in Figures 51-52. This is the key idea of the prior conjugacy. 
 
 
More explanation about the prior distribution is comprehensively described in the literatures. The main 
idea is to choose the prior distribution such that the posterior probability density has the same form but 
with “updated ” i.e data dependent parameters. In our linear regression model presented above as a 
combination of systematic and Gaussian noise, the conjugate prior which can derive is the Normal 
Inverse Gamma or NIG(a,d,m,V). 

),|(),,,,|(),,,,|,( 22 daPVmKdabPVmKdabP σσ =                   Eq150 
Where 
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We obtain the marginal prior distribution over the amplitudes b  as follows 
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Where T means transpose. This is a multivariate t-distribution with mean m  and covariance 

determined by )
2

( V
d

a

−
, and centred at m  with heavier tails than the normal distribution. The 

marginal prior distribution of the noise variance 2σ is given by 
 

)
2

1
exp(

)2/(
)()2/(

),|( 2

2 2/)2(2/
2

|

a
d

a
daP

dd

σ
σσ −

Γ
=

+−−
                                       Eq153 

 

The prior distribution over noise is the Inverse Gamma distribution of mean 
2−d

a
 with 2>d . 

Hence the Normal Inverse Gamma distribution defined by equation Eq30 is explicitly expressed as 
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Now, we must give a parameters value, so that for long time series, their minimal influence on the 
result vanishes completely. Thus we set the prior mean to the observed signal variance 
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2 . The result of this calculation yield a small variance of the observation noise 

which is lower than that of the total observed variance. 3=d  is a small noise value for which the prior 
noise variance is finite, i.e hence the weak the prior. 0=m . The form of the prior covariance is 
determined by 1vV = , where 1 is a unit matrix. The parameter vwill be determined by 
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Where Tr is a Matlab function called trace.m. This function calculates the sum of diagonal elements of 
an input matrix or the sum of the eigenvalues of an input. After integration and multiplication 
manipulations, we obtain the likelihood function 
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Where the parameters can be determined as follows: 
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When we use our specification, we obtain 
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We can observe that the influence of the prior choice of a and d is weak for 1>>N , because the prior 
contributions are of order one relative to N in equation Eq163 and Eq164 respectively. The 
probabilities of the complete set of hypotheses (parameterized by 0ω andK ) including the null –

hypothesis are then given by 
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This algorithm has been designed based on Bayesian probability theory to detect periodic components 
in fMRI data. The requirement specification has involved the fundamental for Bayesian analysis using 
a specific linear regression model. It allows us to get also acquainted and understand the underlying 
calculation procedure for parameter estimation. And also it provides insight to master how to determine 
hyperparameter in in practical situation. Although, the simulation of this algorithm in Matlab did not 
work perfectly at the end, we have explored the technique and the capability of the algorithm to 
estimate the multi harmonic frequency and the order from the noisy signal. Thus the algorithm may be 
used with more flexibility to estimate the fundamental frequency and also detect the correct number of 
harmonics in periodic signal even though the fundamental frequency is beyond the Nyquist interval.  
Moreover, the result is useful for signal detection to localize the regions of periodicity. Such an 
technique can be useful in medical application, whereby may be used to localize region of highly 
affected by periodic physiological artefacts, such as cardiac pulsation.  
 

 
A.3 Nonstationary frequency tracking  
 
A.3.1 Likelihood method 
 
The more important problem of frequency estimation is where the frequency is changing over time and 
frequency being grouped very close together. However, situation arises where frequencies are fixed. To 
cope with these problems, we treat the changing frequency as constant over intervals where barely 
changing and to estimate the frequency over each interval. The model considered here is defined by 
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The parameters to be estimated are thus µ  and rjwba jjj ,......2,1,,, =  

We shall fist take r  as known and later discuss its estimation. The observation noise )(tn  will be 

generated by a stationary process with zero mean and variance 2σ .  
Let  
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a column vector of T elements and let TX  be the matrix of whose t th row, 1,.......,1,0 −= Tt , is  
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The likelihood function is  
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The log-likelihood is, for )(tn  Gaussian, )|(log TT XyP  
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We put ΓT
 for the T x T matrix with )( stn −γ in rows s, column t, where  
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The reduced likelihood, i.e the likelihood with matrix is replaced by its estimator, is 
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where 
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Which we called the “regressison sum squares”. It is evident that must TQ
~

be maximized with respect 

to jw in order to find the maximum likehood estimator (MLE) of the jw . After some manipulations and 

if the noise )(tn  is Gaussian white noise, eq174 becomes  
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where the variance of the noise is2σ . Ignoring the variance, we obtain  

yXXXXyQ
TTTTTTrww

'1''

1

~

)(),...( −=                                                                 Eq176 

After some manipulation eq176 becomes 
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The estimator may be obtained by choosing the locations of the r  greatest maxima of )(wC , ignoring 
local maxima so close to others that may be assumed to be due to “sidelobes”. The estimator obtained 
by the method cited above (via maximization of Eq174, Eq176 and )(wC ) will, under more general 
condition, have the same asymptotic properties. For more details see the “Estimation and Tracking of 
Frequency, 2001- by B.G Quin & E.J. Hannan”. It is somewhat more difficult to use Eq176 rather than 
a periodogram. But there is a good argument for using it. The reasons to use the Likelihood method can 
be described through some simulation later (see section 6.1.1).     
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A.3.2 Likelihood Procedure   
 

Use )(
~

wQT , with 1=r or )(wC , computed from yty −)( , to obtain 1

^

w as the maximizer value. 

Compute 1
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a  and 1
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Il is necessary we can perform a further iteration, by beginning from the residuals from the regression 

on )cos(
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tjw , and  )sin(
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tjw , rj ,........,2=  to re-estimate 1

^

w doing the same as above by omitting 

2

^

w from the regression procedure, and replacing 1

^

w by new estimate of 01w xx, to get a new 

estimate of 02w  and so on. For details see Bloomfield (1976).  

 
• Discussion 

Estimating a fundamental frequency depends also on which context and the application. If we are 

concerned with some frequencies near zero or are close together, then ( )rww
TQ ,.....1 should be used to 

evaluate the maximum likelihood estimators of the frequency. In other words, the full likelihood 
procedure for the Gaussian white noise case should be used, not that of the periodogram )(wC .Of 
course, if it were known that the frequencies were separate from each other and far from zero except 

for pair of close frequencies, we might use ( )21,ww
TQ  for the pairs. Similary, if we knew that there 

was only one frequency close to zero, we would use( )w
TQ  for that frequency. In either case of these 

cases, we would use the periodogram )(wC for the remainder. 
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A.4 Robust Bayesian tracking supplement  
 

• Harmonic  model 
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where Fkk ww η=  and kη is the known harmonic order then the parameters to be estimated are 
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When estimating the fundamental frequency, we must consider the other parameter as nuisance. We 
need integrate them out of the joint posterior probability; we need to assign them to suitable priors that 
reflect the knowledge we have.  
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The evidence and the prior are constant. 
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After some analytical manipulations, we obtain 
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B Matlab code 
 

• Main.m  
 
close all; 
clear all; 
 
%sound signal 
[Acous_sig, Fs_a,Nbits]=wavread('Lyd og tacho signal'); 
 
% Vibration signal 
%[Vibro_sig,Fs_v,Nbits]=wavread('Vibration og tacho signal'); 
 
% the time series data  
%y=Vibro_sig(:,1); 
y=Acous_sig(:,1); 
 
%parameters 
%fs=Fs_v;        % sampling frequency 
fs=Fs_a;        % sampling frequency 
 
len=length(y);  % length of the measurement 
%n=(0:length(y)-1)/Fs_v; % time vector 
n=(0:length(y)-1)/Fs_a; % time vector 
 
 
% Reduce sample rate to 1 kHz i.e. important frequencies are 
% below 500 Hz 
nr=64; 
fs=fs/nr; 
y=resample(y,1,nr); 
n=(0:length(y)-1)/fs; 
%specgram(y ,fs/4, fs) 
% Inspection of spectrogram indicates the fundamental frequency is in the 
% range of 10 to 100 Hz. 
%nr=64;fs=fs_v/nr;specgram(resample(Vibro_sig(:,1),1,nr),fs/4,fs_) 
%nr=64;fs=fs_v/nr;specgram(resample(Vibro_sig(:,2),1,nr),fs/4,fs_) 
 
 
%aply bayes 
recsize=250;    % Segmentation  
overlap=200;    % overlap parameter 
 
% segment the signal 
%% the function recodize100.m segements the signal and and overlap them 
%% sequentially.  
[X,Xt] = recordize100(y,recsize,overlap);  
  
 
% apply bayes to generate the l)og probability 
Trec = Xt/fs;    % time vector  
Lbf=5;%3;          % lower bound frequency(Lbf) 
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Ubf=100;%150;%50;%40;         % Upper bound frequency(Ubf) 
df=0.5;%0.25;        % step size 
Ff=(Lbf:df:Ubf)'; % frequency vector including the frequency band interval of the machine  
                 % (In this example we are from f0 til 3*f0=[min_f max_f]=[lbf ubf]. 
                  
% number of the harmonics in the signals 
%K = 1:0.5:3; % works well for Fund. Fred. (max top @ 50 Hz)%1:0.5:6;      % K=[1 2.5 3]  
K=[1 1.5 2];  % works well for the Fund. freq. (top @ 100 Hz)for acoustic  
 %K=1:2;   % vibration 
%K=[1.5 2]; 
vW.P = 2;%3;%3;%1;  %3  % Number of regression records 
vW.var = 1/4%;0.1%0.2;%/4;%0.1;%,1/16;%1/4;%1/4;%1/ 8; % variance 
%vW.var=0.60 ; % vibration 
f=(0:len-1)/len*fs; 
 
% determine the maximum likelihood using Lp=p(d|w) 
[Lp,Qf,F_] = bayes_w(X,Ff,K,n(1:size(X,1))'); 
 
% track the fund. frequency using posterior probability z=p(w|d) 
% the conjugate prior is computed by using p(w|w,...w) in the  
% following function btrack100.m  
%f0 = 10; % start frequnecy 
f0=15; 
[Ftrack,z] = btrack100(lpnorm(Lp),Ff,f0,vW); 
 
% The reconstruction is done by using process 
[Xr] = bayes_r100(X,Ftrack,K,n(1:size(X,1))'); 
 
 t=n(1:250); 
 
[Acous, Fs_a,Nbits]=wavread('Lyd og tacho signal'); 
 
% assign the pulse per revolution=one revolution in 1 pulse 
PulsePerRevolution=1;  % for acoustic signal 
%PulsePerRevolution=2;  % for vibration signal 
 
%tacho=Vibro_sig(:,2); 
%tacho=Vibro(:,2); 
tacho=Acous(:,2); 
% assign tacho signal 
%tacho=vibro(1:end,2); 
%tacho=acous(1:end,2); 
 
% compute the trigger level 
triglevel=min(tacho)+max(tacho)/2; 
 
% compute sequence which exceeds level 
levelExceedVector=tacho>=triglevel; 
 
 
% find the corresponding values 
 
%EdgeIndexVector=0; 
EdgeIndexVector=zeros(1,length(levelExceedVector)); 
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n1=1; 
 
for n2=2:length(levelExceedVector) 
    if levelExceedVector(n2)==1 
        if levelExceedVector(n2-1)==0 
            EdgeIndexVector(n1)=n2; 
            n1=n1+1; 
        end 
    end  
end 
EdgeIndexVector =  EdgeIndexVector(1:n1-1); 
 
% convert the edage index vector in second 
%EdgeIndexVectorInSecond=EdgeIndexVector/Fs_v; 
EdgeIndexVectorInSecond=EdgeIndexVector/Fs_a; 
%  
% % plot 
% figure(1) 
% clf 
% plot(tacho) 
% hold on 
% plot(levelExceedVector,'g') 
% plot(EdgeIndexVector,1,'r*') 
% hold off 
% zoom on 
% grid on 
% title('Time signal') 
% xlabel('Sample index') 
 
 
% compute the delta time 
deltatime=diff(EdgeIndexVectorInSecond); 
 
ff=zeros(1,length(deltatime)); 
uf=zeros(1,length(deltatime)); 
 
for n=1:length(EdgeIndexVector)-1 
    T(n)=(EdgeIndexVectorInSecond(n)+EdgeIndexVectorInSecond(n+1))/2; % midle point of the pulse 
    %ff(n)=1/(2*(EdgeIndexVectorInSecond(n+1)-EdgeIndexVectorInSecond(n)+eps)); % for vibration signal 
    ff(n)=1/(1*(EdgeIndexVectorInSecond(n+1)-EdgeIndexVectorInSecond(n)+eps)); % for acoustics signal 
end 
 
figure(1); 
subplot(311); plot(Ff,lpnorm(Lp));xlabel('Freq [Hz] '); ylabel('log P');title('log P Records') 
subplot(312); imagesc(Trec,Ff,lpnorm(Lp)), axis xy, title('log P') 
xlabel('Time [s]'),ylabel('Freq [Hz]') 
 
 subplot(313); 
 plot(Trec,Ftrack);xlabel('Time [s]');ylabel('Freq [Hz]');title('Tracked Frequency') 
 subplot(312); 
 hold on;  
 plot(Trec,Ftrack,'w'); 
 hold off; 
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 figure(2) 
 %fs=Fs_v;nr=64;fs_=fs/nr;specgram(resample(Vibro_sig(:,2),1,nr),fs_/4,fs_) 
fs=Fs_a;nr=64;fs_=fs/nr;specgram(resample(Acous_sig(:,2),1,nr),fs_/4,fs_) 
 title('Tacho. spectrogram') 
figure(3) 
%fs=65536;nr=64;fs_=fs/nr;specgram(resample(Vibro_sig(:,1),1,nr),fs_/4,fs_) 
%title('Vibration spectrogram') 
 fs=32768;nr=64;fs_=fs/nr;specgram(resample(Acous_sig(:,1),1,nr),fs_/4,fs_) 
title('Sound spectrogram') 
 
% plot the speed profile 
figure(4); 
 nn=(0:max(size(z))-1)/fs; 
 plot(nn(1:length(Ftrack)),Ftrack),xlabel('Time [s] '),ylabel('Frequency [Hz]'),title('Speed profile') 
 
figure(5); 
subplot(211),plot(Ff,z),xlabel('Frequency [Hz]'),ylabel('log P(Ø|D)'),title('Marginal posterior prob.' ) 
subplot(212), imagesc(Xt,Ff,z),axis xy,xlabel('Frequency [Hz]'),colorbar, 
ylabel('log P(Ø|D)'), hold on; 
 plot(Xt,Ftrack,'w') 
 xlabel('Time [sec]'),ylabel('Fund. Frequency'),title('Marginal Post. Prob.: log P(D|Ø)xP(Ø)') 
 
figure(6); 
 subplot(221),imagesc(X),axis xy,xlabel('Number of frame [n]'), 
 ylabel('Frame size [samples]'),title('Noisy observations') 
 subplot(222),imagesc(Xr),xlabel('Number of frame [n]'),axis xy,title('Reconst. true signal') 
 subplot(223),imagesc(X-Xr),axis xy,title('Error signal'), 
 xlabel('Number of frame [n]'),ylabel('Frame size [samples]') 
 subplot(224),plot(t,X(:,1),'k'),hold on,plot(t,Xr( :,1),'g'),plot(t,X(:,1)-Xr(:,1),'r'), 
 xlabel('Time [s]'),xlim([0 0.5]),ylabel('Amplitude '),title('Reconst. vs true + Error') 
 
 figure(7); 
[M,N]=size(Xr); xr=reshape(Xr,1,M*N); 
subplot(211),plot(xr(1:250),'k'),hold on,plot(y(1:250),'g'),ylabel('Amplitude'),title('True vs Noisy signal') 
subplot(212),plot(xr(1:250),'k'),hold on,plot(xr(1:250),'g-'),xlabel('Sample [n]') 
ylabel('Amplitude'), title('True (B) vs Reconst (G)') 
 
figure(8); 
%imagesc(Xt,Ff,z),axis xy,xlabel('Fundamental Frequency [Hz]'),colorbar, 
% for FFmax = 100 Hz 
%imagesc(Xt,[0 150],z),axis xy,xlabel('Fundamental Frequency 
%[Hz]'),colorbar, 
% for FFmax = 50 Hz 
imagesc(Xt,[0 100],z),axis xy,xlabel('Fundamental Frequency [Hz]'),colorbar, 
 
 
%imagesc(t1,[0 4],Pp 
ylabel('log P(Ø|D)'), hold on; 
 plot(Xt,Ftrack,'w') 
 xlabel('Time [sec]'),ylabel('Fund. Frequency'),title('Marginal Post. Prob.: log P(D|Ø)xP(Ø)') 
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figure(9) 
%tau=1:length(tacho)/Fs_v; 
tau=1:length(tacho)/Fs_a; 
 
uf=interp1(T,ff,tau,'nearest'); 
plot(tau,uf,'r--','LineWidth',2),ylabel('Speed [Hz] '),title('Tacho speed profile') 
%hold on,plot(Xt(1:end-10)/100,Ftrack(1:end-10),'b'),xlim([0 10]),xlabel('Time [s]'),ylabel('Frequency 
[Hz]'),title('Vibration Speed profile') 
hold on,plot(Xt(1:end-20)/500,Ftrack(1:end-20),'k','LineWidth',2),xlabel('Time [s]'),ylabel('Frequency  
[Hz]'),title('Sound Speed profile') 
,legend('Tacho','Fund. Freq. Estimate ') 
 
 
figure(10) 
plot(tau,uf,'r--','LineWidth',2),ylabel('Speed [Hz] '),title('Tacho speed profile') 
%hold on,plot(Xt(1:end-10)/100,Ftrack(1:end-10),'b'),xlim([0 10]),xlabel('Time [s]'),ylabel('Frequency 
[Hz]'),title('Vibration Speed profile') 
hold on,plot(Xt(1:end)/500,Ftrack(1:end),'k','LineWidth',2),xlabel('Time [s]'),ylabel('Frequency [Hz]' ),title('Sound 
Speed profile') 
,legend('Tacho','Fund. Freq. Estimate ') 
 

• m-files 
 
recordize100.m segements the signal and overlap the different records.   
 
function [X,Xt] = recordize100(x,recsize,overlap) 
% Synopsis: 
%    [X, Xt] = recordize(x,recsize,overlap) 
% Input: 
%    x       - data vector to segmentize 
%    recsie  - size of segments 
%    overlap - number of samples each segment ovelap, if overlap < 1 
%              it is taken as the percentage of the recordsize. 
% Output: 
%    X [recsize,M] - segemented data 
%    Xt[recsize,1] - Indice in X of firs value in records 
 
if abs(overlap)<1, 
  overlap = fix(overlap*recsize); 
end 
 
N = length(x); 
i = (1:recsize)'; 
j = 0:recsize-overlap:N-recsize; 
X = x(i*ones(1,length(j)) + ones(recsize,1)*j); 
Xt= j+1; 
 
Bayes_w.m determines the ML 
 
function [Lp,Qf,F_] = bayes_w(D,Ff,K,t) 
% Synopsis:  
% 
%  Lp = bayes_w(D,Ff,K,t) 
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% 
% Description: 
% 
%  Does bayesian frequency estimation on the columns in D. 
%   
% Input: 
% 
%  D  [NxM]   - Data matrix 
%  Ff [NFx1]  - Frequencies for which to compute p(w|D), where w = 
%               2*pi*Ff. 
%  K  [NKx1]  - Vector with the harmonic orders in signal. 
%  t  [Nx1]   - Time vector. Used to construct basis vectors, 
%               G = [ cos(2*pi*Ff*t) sin(2*pi*Ff*t)  ... sin(2*pi*Ff*K*t)] 
% 
% Output:   
% 
%  Lp [NFxM]  - Log of probability 
% 
% TFP 2002/2/21   
  if ~exist('K'),  K =1;end 
   
  [SzRec,NRec] = size(D); 
  NFreq        = length(Ff); 
  NK           = length(K);   
   
  Lp           = zeros(NFreq,NRec); 
% Er           = zeros(NFreq,NRec); 
  Qf           = zeros(size(Ff)); 
  F_           = zeros(NFreq,NRec); 
 
  d_  = sum(D.*D);          % sum all rows in the matrix 
  dof = SzRec-(2*NK+1); 
%   % Normalize data for unit energy 
%   dmin = min(d_)/dof; 
%   d_ = d_/dmin; 
%   D  = D/sqrt(dmin); 
  Fs=1/(t(2)-t(1));         % sampling frequency 
  ndiv = floor(NFreq/20);   % number of division 
  for i=1:20;fprintf('X');end; 
  fprintf('\r'); 
   
  for i=1:NFreq 
    if ~mod(i,ndiv), 
      %disp(sprintf('Ff=%g',Ff(i))); 
      fprintf('.'); 
    end 
     
    % Avoiding aliasing 
    %    ix   = find((Ff(i)*K/Fs<0.5).*(Ff(i)*K>min (Ff))); % Min & max 
    %    ix   = find(Ff(i)*K>min(Ff));% Min only  
        ix   = find(Ff(i)*K/Fs<0.5); % Max only 
    %    ix = find(Ff(i)>0); % ALL 
    nk   = length(ix); 
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    W    = 2*pi*t*Ff(i)*K(ix); % w=2*pi*f*t where f =Ff*K 
    G    = exp(1i*W);          %  
     
%    G    = [ones(size(t)),reshape([real(G);imag(G)],SzRec,2*NK)]; 
    G    = [ones(size(t)),reshape([real(G);imag(G)],SzRec,2*nk)]; 
    Q    = G'*G;      %  
 
    B  = inv(Q)*G'*D; %  
    F  = G*B;          % estimate of the record 
     
    f_   = sum(F.*F);   % energy of the reconstructed signal 
    detQ = det(Q); 
     
    F_(i,:) = f_; 
    Qf(i)   = detQ; 
     
%   Equaiton from book: 
    lp      = -0.5*size(G)*[1;-1]*log((d_-f_)+eps) - log(detQ+eps)/2; % the likelihood function P(w|d,Ik)-->eq(4.15) 
%   lp      = -0.5*(size(G,1)-2*length(K)-1)*log((d_-f_)) - 
%   log(detQ)/2; % different scaling 
%   Equation modified to relative difference: 
%   lp      = -0.5*dof*log((1-f_./d_)) - log(detQ)/2; 
    Lp(i,:) = lp; 
 
%    B_ = G'*D; 
%    F_ = G*B_; 
%    Er(i,:) = d_ - sum(F_.*F_); 
  end 
 
  btrack100.m tracks the fundamental frequency using prior 
function [f0,z] = btrack100(Lpw,Ff,f0,vW) 
%function z = btrack(Lpw,Ff,f0,vW) 
% tracking prior from linear regression 
%------------------------------------------------ 
% Lpw =likelihood probability density P(d|w) 
% Ff  = fundamental frequencies from c(w)=abs(fft(d)).2 
% periodogram 
% f0  = initialize fundament frequency 
%  z  = estimates frequencies 
%  
% 
z = Lpw; 
 
P = 2; % number of record 
u = 1; % mean value 
 
if ~exist('vW'), vW = 2; end 
if isstruct(vW), 
  P=vW.P; 
  vW = vW.var; 
end 
 
% compute tracking mean 
k=1:P; 
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if P>1, 
    %u=(2*(2*P+1)-6*(1:P)')/(P*(P-1)); 
    u=(2*(2*P+1)-6*k')/(P*(P-1)); 
    u=flipud(u); % revere the column in the up/down direction 
end 
 
if ~exist('f0')| f0<0, 
  [zx,zi]=max(sum(z(:,1:8),2)); 
  f0 = Ff(zi); 
end 
 
f0 = repmat(f0(1),1,size(z,2)); 
 
 
for i=1:size(z,2), 
   if i<P+1, 
     f_ = [repmat(f0(1),1,P-i+1),f0(1:i-1)];% 
   else 
     f_ = f0(i-P:i-1); 
   end 
   % p2=log(exp(-1/(2*sigma)*(w-uT))) 
   %p2 = -0.5/vW(i)*(Ff-f_*u).^2;  % prior distribu tion   
   p2 = -0.5/vW*(Ff-f_*u).^2;  % prior distribution    
   pw = z(:,i)+p2; % log (p(d(k)|w(k))*p(w(k)|w(k-1),...w(k-p))) 
   [px,ix] = max(pw); % estimate of the frequency mean  
   z(:,i)  = pw;      % fundamental frequency estimates 
   f0(i) = Ff(ix);    % frequency sampling points 
end 
    
bayes_r100.m reconstructs the true signal 
 
function [f0,z] = btrack100(Lpw,Ff,f0,vW) 
%function z = btrack(Lpw,Ff,f0,vW) 
% tracking prior from linear regression 
%------------------------------------------------ 
% Lpw =likelihood probability density P(d|w) 
% Ff  = fundamental frequencies from c(w)=abs(fft(d)).2 
% periodogram 
% f0  = initialize fundament frequency 
%  z  = estimates frequencies 
%  
% 
z = Lpw; 
 
P = 2; % number of record 
u = 1; % mean value 
 
if ~exist('vW'), vW = 2; end 
if isstruct(vW), 
  P=vW.P; 
  vW = vW.var; 
end 
 
% compute tracking mean 
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k=1:P; 
if P>1, 
    %u=(2*(2*P+1)-6*(1:P)')/(P*(P-1)); 
    u=(2*(2*P+1)-6*k')/(P*(P-1)); 
    u=flipud(u); % revere the column in the up/down direction 
end 
 
if ~exist('f0')| f0<0, 
  [zx,zi]=max(sum(z(:,1:8),2)); 
  f0 = Ff(zi); 
end 
 
f0 = repmat(f0(1),1,size(z,2)); 
 
 
for i=1:size(z,2), 
   if i<P+1, 
     f_ = [repmat(f0(1),1,P-i+1),f0(1:i-1)];% 
   else 
     f_ = f0(i-P:i-1); 
   end 
   % p2=log(exp(-1/(2*sigma)*(w-uT))) 
   %p2 = -0.5/vW(i)*(Ff-f_*u).^2;  % prior distribu tion   
   p2 = -0.5/vW*(Ff-f_*u).^2;  % prior distribution    
   pw = z(:,i)+p2; % log (p(d(k)|w(k))*p(w(k)|w(k-1),...w(k-p))) 
   [px,ix] = max(pw); % estimate of the frequency mean  
   z(:,i)  = pw;      % fundamental frequency estimates 
   f0(i) = Ff(ix);    % frequency sampling points 
end 
    
lpnorm.m normalizes the joint posterior probability  
 
function [LPN,Lnorm] = lpnorm(LP) 
% LPN = lpnorm(LP) 
% Probability normalization of estimate og log p() for each column 
% in LP 
[M,N] = size(LP); 
Lmax  = max(LP); 
LPN   = LP - ones(M,1)*Lmax; 
Lnorm = log(sum(exp(LPN))); 
LPN   = LPN - ones(M,1)*Lnorm; 
 

• For the rest of the Matlab codes see CD ROM attached 
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C Figures  
Performance deterioration due to wrong parameter setup to demonstrate one of the issues in prior 
parameters adjustment problems.  
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Figure 1c: K=[1 1.5 2]; var = 1/4; P=3 
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Figure 2c: K=[1 1.5 2]; var = 0.1, P=3 
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Figure 3c:  K=[1.5 2]; var = 0.3, P=3. 
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Figure 4c: K=[1.5 2]; var = 0.5; P = 3 
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Figure 5c: K=[1.5 2]; var = 0.6; P = 3; 
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Figure 6c: K=[1.5 2]; var = 5; P=3 
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