
Automated Planning in Computer
Games

René Bjørn Hansen

Kongens Lyngby 2008

IMM-B.Sc.-2008-02

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary

This paper introduces Hierarchical Task Networks (HTN) as an alternative to
Finite State Machines for controlling bots in Unreal Tournament. The challenges
within the domain are identified and corresponding improvements to the HTN
are proposed. Finally a solution is implemented in Java by using the GameBots
mod for Unreal Tournament.

ii

Acknowledgements

First of all I would like to thank my supervisor Thomas Bolander for agreeing
to supervise this project and always finding the time to answer my questions.

Secondly I would like to thank Jakob Udsholt for his great feedback in the
last phase of the project.

iv

Contents

Summary i

Acknowledgements iii

1 Introduction 1

1.1 Introduction . 1

1.2 Domain Analysis . 3

2 Finite State Machines and Planners 5

2.1 Finite State Machines . 5

2.2 Automated Planning . 8

2.3 Hierarchical Task Networks (HTN) 12

3 Planning in Unreal Tournament 15

3.1 Applying HTNs to a First Person Shooter 15

3.2 The Complete Planner . 21

vi CONTENTS

4 Implementing the Planner 29

4.1 Overview . 29

4.2 UT Server . 30

4.3 HTN . 32

4.4 Bot . 36

4.5 Coordinator . 37

4.6 Client/Server communication . 37

4.7 Further work . 38

5 Conclusion 41

5.1 Findings . 41

5.2 Conclusion . 43

A CD Contents 45

B Running the Program 47

C Source Code 49

C.1 ai . 49

C.2 bot . 71

C.3 state . 73

C.4 com . 89

C.5 map . 95

C.6 test . 99

CONTENTS vii

C.7 exceptions . 100

C.8 util . 101

Bibliography 103

viii CONTENTS

Chapter 1

Introduction

1.1 Introduction

This paper will study the use of artificial intelligence to control the non-player
characters (NPC) in a first person shooter (FPS). A first person shooter is a fast
pace-, highly reactive- game. The player controls his character in a 3d rendered
world where his visual perspective is that of the character. The game tests the
players skills in aiming his weapon and killing his enemies before they kill him.

The game of Unreal Tournament (UT) will mainly be used as domain. UT
is an FPS game that takes place in an arena like setting. In the classic game
type, also known as Deathmatch, every player is by himself and the main ob-
jective is to shoot and kill as many opponents as possible. Each player is aware
of his own health, weapons picked up from around the map and corresponding
ammunition. Every character can either be controlled by a player or a computer
(NPC), which in this context is referred to as a bot.

UT has several different game types besides the classical, and this paper will
mainly focus on the type called Domination. A Domination map has two or
more domination locations and the players/bots are divided into two teams.
Whenever a team member walks over a domination location, his team will then
”dominate” that location. Every domination location awards a certain amount

2 Introduction

of points every second to the team that controls it. The goal of the game is
then to control as many domination locations as possible, and get a predefined
amount of points before the opposing team [5].

Since the game concept itself is highly reactive1 it would therefore be reasonable
to make a reactive artificial intelligence. In a vast majority of FPS’ this has been
done by letting finite state machines (FSM) control the behavior of the bots2.
This seems to be the most effective approach in simple game-types such as the
classical UT, however as more and more complex game-types appear, it becomes
increasingly difficult to make an FSM that also deals with team coordination,
point domination, etc.

This paper will outline the use of automated planning as an alternative to FSMs,
more precisely the use of Hierarchical Task Networks (HTN). The purpose of
the HTN is to make a framework to specify strategies on a higher level of ab-
straction then with an FSM. This should give the designer of the bots a more
intuitive way of defining the overall strategy.

The first part of this paper will take a theoretical approach to the problem
and the second part will show how a solution to the game of Unreal Tourna-
ment is implemented.

Chapter 1 contains an introduction, section 1.1, and a domain analysis in sec-
tion 1.2.

Chapter 2 introduce and discuss Finite State Machines in section 2.1, in section
2.2 planning is introduced and in section 2.3 Hierarchical Task Networks are
given as an alternative to Finite State Machines.

Chapter 3 deals with the potential challenges and solutions when applying a
Hierarchical Task Network to a first person shooter. Section 3.1 discusses these
challenges one by one and section 3.2 rounds up and describes the theoretical
solution for a planner within the domain.

Chapter 4 deals with an implementation of the planner. Section 4.1 gives an
overview of the implementation, section 4.2 describes the UT server, section
4.3 outlines the implementation of the Hierarchical Task Network, sections 4.4
and 4.5 details the implementation of the bots and their cooperation, section
4.6 describes the client/server communication and section 4.7 is dedicated to a
discussion with regard to further work on the implementation.

1The concept of reacting to input, e.g. the bot moves around randomly, when it spots an
enemy it reacts by shooting at the enemy, when it is low on health it reacts by running away,
etc.

2See chapter 8.1 First-Person Shooter AI Architecture in [12]

1.2 Domain Analysis 3

Chapter 5 concludes the paper by outlining the results in section 5.1 and a
conclusion in section 5.2.

1.2 Domain Analysis

Unreal Tournament can be extended with a mod3 called Gamebots [8]. This
modification opens up a programming environment for creating AI controlled
bots. This programming environment follows a client/server architecture, mean-
ing that the developer can create a client that logs on to the UT server and
controls a bot. The server provides sensory information about the events in
the game and sends the information to the client in the form of asynchronous
messages.

Furthermore UT has different game types where most of them are team based,
meaning that any single bot both has friends and foes.

Time constraints: Due to the fast pace nature of an FPS game, the client has
very little time to react to sensory updates. From the point in time where the
client receives information about being attacked until it sends its counter actions
to the server, the attacker would already have gained some form of advantage.
It is therefore crucial that the client does not waste time on unnecessary com-
putations, and has to react almost instantly.

This leaves the AI developer with the task of having to create a bot that reacts
intelligently to events, with almost no computation time.

Uncertainty: The sensory data send by the server contains only information
about the bots local environment. This means that the bot does not have any
knowledge about what is going on elsewhere. Furthermore the bots opponents
act non-deterministically, rendering the world unpredictable and very hard to
reason about. An action being executed might get interrupted, and even become
impossible to finish. E.g. while a bot is running from one location to another,
it is pushed over an edge and its current path is no longer valid.

3A mod is a way to modify the rules of the game such as, goals, weapons, textures etc.

4 Introduction

Temporal actions: Most of the actions done by the bot takes an unknown
amount of time, e.g. running form one location to another, turning around,
discharging a weapon, etc. The duration is assumed to be finite, however the
bot needs to wait for the action to finish before it can start another one.

Concurrent actions: Given the domain, it is an obvious choice to make a
team of bots that coordinates their efforts in order to win. The actions of the
different bots runs concurrently. A stronger AI would take advantage of the
concurrency, making the bots act at the same time.

These four elements are the key challenges when making an AI within this
domain.

Chapter 2

Finite State Machines and
Planners

2.1 Finite State Machines

This section will first outline the use of FSMs with regard to bot AI and then
point out potential problems when implementing more complex strategies.

2.1.1 Finite State Machines in Artificial Intelligence

In a game of Deathmatch, the only objective is to kill as many opponents as
possible. In order to do so the bot will need a weapon, health and the ability
to search for opponents and kill them. A simplified version where the bot has
a weapon with unlimited ammunition and is not concerned with its health, is
modeled in figure 2.1 on the following page.

6 Finite State Machines and Planners

Figure 2.1: Simple FSM

The bot will primarily be in the Patrol state, which will make it roam the map
looking for enemies E. When the bot spots an enemy the FSM will go to the
Attack states, which will make the bot engage in combat until the enemy is
either dead or in another way out of the bots vicinity.

One of the main issues about using an FSM is when it needs to be extended. If
the FSM given, in figure 2.1, is extended with another state variable describing
the bots current amount of ammunition A, the FSM would have to be updated
with two additional states.

Figure 2.2: Updated FSM

In figure 2.2 the states Flee and Find Ammo are added. As visualized in fig-
ure 2.2 the bot might run out of ammunition while in the Attack state. In this
case the bot will flee until it either finds some more ammunition, in which case
it will resume the combat, or it actually escapes, which will make it look for
more ammunition before it can resume the patrol.

2.1 Finite State Machines 7

The last thing that needs to be added is the state variable describing the bots
health, where H describes the health being above a predefined threshold and -H

being below it. The result of this is adding four new states to the FSM (see
figure 2.3).

Figure 2.3: Final FSM

It is obvious that for each state variable added the complexity of the FSM is in-
creased. In worst case the number of states in the FSM is 2#state variables and the
worst case number of transitions would be (#state variables) · 2#state variables.

In a game of domination the bots need not only to look out for themselves,
they have to cooperate and act in their teams best interest. In order to do this,
it is needed to implement some sort of grand strategy for the bots to follow.
The bots would have different goals and thereby also perform different tasks.
Furthermore they would need to take into account the current state of the other
bots on their team. All of this would imply implementing several FSMs to con-
trol the tasks of the different bots.

8 Finite State Machines and Planners

These complexity issues are further discussed in [4], which treats the advan-
tages of using a planner over FSMs. Furthermore it is beyond the scope of this
paper to create such FSMs, however the complexity of the task is one of the
main motivations behind the paper.

2.2 Automated Planning

As an alternative for using FSMs (see section 2.1 on page 5) in first person
shooters, planning is proposed [4] [3] [2]. This section will first outline the
general concepts of planning, and then give a comparison between the use of
FSMs and the F.E.A.R. project [4].

2.2.1 Planning

A classical planner takes a description of the initial state (s0 or set of initial
states S0), the goal state (sg or set of goal states Sg) and a set of all actions (A)
as input. It then searches through the state space by applying actions until a
goal state is reached. From that search, a sequence of actions makes up a plan
(π) that will lead from an initial state to a goal state.

In classical planning, any planning domain can be described as a state-trinsition
system:

Σ = (S,A, γ)

Where as above, S is the set of states, A is the set of possible actions and γ is
a function that produces a state s′ by adding an action to s.

An action a is usually made up by a set of preconditions precond(a) and a
set of effects effects(a). An action could be described as followes:

move1(b , l , m)
/∗ bo t b moves from l o c a t i o n l to m ∗/
precond : at (b , l)
ef fects : −at (b , l) , at (b , m)

In this case, it is required that the bot is at the location it has to move from
(at(b,l)) before this action can be applied. The result of the action removes
the bot from locaion l and places it in location m.

2.2 Automated Planning 9

Due to the large search space, several runtime problems arises with this type of
planning. Only by applying severe restrictions to the representation it is possi-
ble to minimize to a polynomial worst case running time1.

Furthermore the classical planning approaches does not account for uncertain-
ties. If the state of the world were to change while planning or while the plan
was being executed, the planner would be forced to re-plan. With the amount
of time it takes to create a plan and given the challenges with regard to the
runtime constraints identified in the domain analysis (section 1.2 on page 3),
there is a risk that the plan would keep getting invalidated.

2.2.2 Planning in F.E.A.R

The planner used in F.E.A.R [4] is based on [6] Goal Oriented Action Planner
(GOAP). Here the actions compete for activation, and as soon as an actions
preconditions are met, it is activated. The main difference between the GOAP
planner and the F.E.A.R. project is that F.E.A.R. has added a cost per action,
meaning that if action a1 with a cost of 8 and action a2 with a cost of 2 both
have their preconditions fulfilled, a2 will be used. To search for the lowest cost
action to activate, an A∗ algorithm is used [7].

The article describes, that by using a planner they only had to add actions
and goals (see figure 2.4).

Figure 2.4: Actions in the F.E.A.R engine

The planner would be in charge of connecting the actions with one another,

1See chapter 2: Representation for classical planning and chapter 3: complexity of classical
planning in [1] for further details.

10 Finite State Machines and Planners

while in an FSM this would be up to the designer of the AI (see figure 2.5).

Figure 2.5: Actions connected into an FSM

This is presented as a huge advantage, if the designer were to connect all the
actions into an FSM, adding new actions later on would be very complicated.
An example of this is given in the F.E.A.R article [4]: they wanted to get their
NPCs to turn on the light whenever entering a room. In the FSM version
they would have to modify every state that could make the given NPC enter
a room. However when using the planner, they simply had to add a LightsOn

precondition to the Goto action, which would effect every goal that was satisfied
by using the Goto action.

2.2.3 Domain Specific Planning

As shown in the domain analysis, in section 1.2 on page 3, Unreal Tournament
has four main challenges to keep in mind when creating a planner:

• (Time constraints) It is a fast paced game, so the planner has very
limited computation time when it comes to plan creation.

• (Uncertainty) The game is real-time, the opponents are unpredictable
and able to change the state at any time. This adds a high amount of
uncertainty for the planner.

• (Temporal actions) Actions take time, meaning that the planner would
have to wait for one action to complete before the next can be executed.

• (Concurrent actions) The actions of different bots happen concurrently,
so the planner has to be able to coordinate the actions of several bots.

2.2 Automated Planning 11

In [1] chapter 1.5. a restricted model is presented and eight assumptions are
given. These assumptions are a way to measure the complexity of the domain
when it comes to planning. When all of the assumptions hold, the problem can
easily be solved using classical planning. However for each assumption that does
not hold, the complexity of the problem is increased which poses as a further
challenge for the planner. These assumptions are going to be used as a guideline
to identify which problems the planner should be able to handle. Only two of
the eight assumptions hold when using this type of FPS as the domain.

The domain is simplified to only controlling one bot, team coordination will
be handled in chapter 3.

A0 (Finite Σ) The state transistion system Σ has a finite set of states. It
can seem that it is infinite, however no new objects are brought into the
world, and all possible events can be accounted for.

A1 (Fully Observable Σ) The bot is provided with sensory information,
which makes the system partially observable, hence the bot does not know
what is happening if it can’t see it.

A2 (Deterministic Σ) The bot plays against opponents that can change its
state, this results in a system that appears non-deterministic.

A3 (Static Σ) For the same reason as A2, other bots might change the system
and it is thereby dynamic and not static.

A4 (Restricted Goals) A goal is usually a specific state sg, or a set of goal
states Sg, which the system desires to reach. The goals are extended by
adding e.g. subgoals which could express intermediate states either to
avoid or to preferably reach as sub-goals. A subgoal can also be some sort
of requirement such as patrolling two locations exactly twice.

A5 (Sequential Plan) The plans can be kept sequential. Even though they
might be invalidated, a new sequential plan can be planned for. This
only holds for a planner which controls one bot, since ceveral bots would
execute their actions concurrently.

A6 Implicit Time Actions take time, running from one place to another is
not done instantaneous. This means that time is not represented implic-
itly.

A7 Offline Planning For the same reason as A2, offline planning could result
in invalid plans, and re-planning would constantly be necessary.

As shown above, only assumptions A0 and A5 holds. A domain that does not
support assumption A1, A2 and A3, can’t possibly support A7, and a solution

12 Finite State Machines and Planners

for these three assumption would also be a solution that would deal with A7.
Therefore will A7 no longer be discussed.

An alternative, to classical planning, is by describing planning problems us-
ing Hierarchical Task Networks (HTN). The main difference between classical
planning techniques and planning with HTNs are that HTNs does not search
through a state transition system trying to find a path to achieve a set of goals.
An HTN is made up of simple- and compound-tasks. Each compound task is
then decomposed into either other compound- or simple-tasks. This is continued
until there is only simple tasks left, which can then be executed (see section 2.3
for further details).

The objective in an HTN planner is therefore not to achieve a set of goals,
but to perform some set of tasks. It plans not for a complete solution and
the information it relies on depends on the domain. So even though the system
is only partially observable, an HTN planner might still be able to overcome A1.

In [1] there is not mentioned anything about uncertainty for HTN planners,
however in [2] it is mentioned that by continuously monitoring the conditions of
the topmost task. When the applicability of it falls below a certain threshold,
another task should either be selected or the current one should be re-planned.
This will be handled in section 3.1 on page 15 and deals with A2 and A3.

As explained in [1] chapter 11.8 Extended Goals, some of the extended goals are
easily overcome due to the domain specific ways HTNs are implemented, while
others need the HTN syntax to be extended. See section 3.1 on page 15

Finally the notion of time and thereby assumption A6 will also be handled
in section 3.1.

2.3 Hierarchical Task Networks (HTN)

A Hierarchical Task Network is a tree structured network of tasks. A task can ei-
ther be a compound task or a simple task. A compound task can be recursively
decomposed into other compound- or simple tasks. Simple tasks are domain
specifically implemented and corresponds to an action that changes the world
state. However decomposing compound tasks does not change the state. The
compound tasks represents higher level goals and encapsulates the strategies to
achieve them [2].

A task in an HTN is also referred to as a method. The definition of a method

2.3 Hierarchical Task Networks (HTN) 13

is in [1] given as a 4-tuple:

m = 〈name(m), task(m), subtasks(m), constraints(m)〉 (2.1)

• name(m) is an expression of the form n(x1, ..., xk), where n is a unique
method name and x1, ..., xk are all of the variable symbols that occur
anywhere in m.

• task(m) is a compound task.

• subtasks(m) is a set of compound and simple tasks.

• constraints(m) is a set of constraints, either on the use of the methods
subtasks or constraints in regards to the current state of the world.

A simple example of an HTN:

move2(b , l1 , l2 , l3) /∗method to move bo t b from l o c a t i o n l 1
to l2 , and then from l 2 to l 3 ∗/

task : move−double (b , l1 , l2 , l3)
subtasks : t1 = move−single (b , l1 , l2)

t2 = move−single (b , l2 , l3)
constraints : at (b , l1) , t1 < t2

move1(b , l1 , l2) /∗method to move bo t b from l o c a t i o n l 1
to l o c a t i o n l 2 ∗/

task : move−single (b , l1 , l2)
subtasks : t = move (b , l1 , l2)
constraints : at (b , l1)

move0(b , l1 , l2) /∗method to do noth ing i f b i s a l r eady at l 2 ∗/
task : move−single (b , l1 , l2)
subtasks : none

constraints : at (b , l2)

move1 is a compound task wrapped around the simple task move. move2 uses
move1 two times, its constraints makes sure that the two move1 calls are done in
the right order. Furthermore both methods ensures that the bot is in the correct
location, so that it is actually able to make the correct movement. move0 is an
alternative to move1 in the case where the bot is already at its destination.

The move2 call can be translated into an and/or graph (see figure 2.6 on the
next page).

14 Finite State Machines and Planners

Figure 2.6: And-or graph corresponding to the move2 and move1 methods

The move2 method is decomposed into its subtasks and the subtasks that are
non-simple tasks are recursively decomposed and so on. Finally move2 is fully
decomposed into simple tasks, which then formulates the plan π. In figure 2.6
the leaves of the tree represents the plan π = {move(b, l1, l2),move(b, l2, l3)} in
the case where the bot starts at location l1. The horizontal arrow indicates an
’and’ node, which means that all the nodes children must be executed in the
order denoted by the arrow. An ’or’ node is the case where there is no horizontal
arrow, meaning that only one of the children is executed, which one depends on
the constraints.

Chapter 3

Planning in Unreal
Tournament

3.1 Applying HTNs to a First Person Shooter

This section will take the challenges outlined in section 2.2.3 and discuss possible
solutions, which can then be used to modify the standard HTN description given
in section 2.3 in order to create a planner that works in the domain described
in section 1.2.

3.1.1 Domain Specific Challenges

In section 2.2.3 on page 10 eight assumption from [1] are given in order to
identify where possible difficulties might arise when planning in an FPS game.
These assumptions were analyzed and it was concluded that assumption A0 and
A5 remains, while the rest are violated by the domain. Before a planner can be
implemented the violated assumptions will be discussed, and a possible strategy
to solve them will be given.

16 Planning in Unreal Tournament

3.1.2 A1 (Fully Observable Σ)

The bot receives sensory information, and has very limited knowledge about
places it can not observe. This means that it can not rely on items that other
bots can interfere with or that the opponents are located where they were last
seen. However the bot does have information about what it observes, and the
status of the domination locations. This means that the bot can only react to
what it can see and the general status of the game. It is therefore these two
elements that make up the state of the world. Since the bot only has partial
information about the world, observations returns sets of states. Two different
states in a fully observable system, might be perceived as the same state with
partial knowledge. In classical planning this would increase the size of the search
space from the set of states in the domain, to its power set. When dealing with
HTNs there are no searches done over the state space, the HTN methods are
domain specifically designed and can therefore only use what is observable in
the given domain. It is therefore left to the design of the specific HTN methods
to deal with the problems of acting in a partially observable world.

3.1.3 A2 (Deterministic Σ) and A3 (Static Σ)

As clarified in section 2.2.3 on page 10 the world appears to be non-deterministic
and highly dynamic. The bot has no knowledge about how its opponents act/re-
act and these opponents can possibly change the state of the bot. This means
that the bot can not plan for the actions done by its opponents and its current
plan might be invalidated at any time.

This is not handled by HTNs in [1], however in [2] the applicability of the
HTN methods used are continuously evaluated. This means that if the appli-
cability of the current method falls below a predefined threshold, either a new
method is selected, or the current method is re-planned1.

Following this approach a method such as patrol-dom-location(d1,d2) (see
figure 3.1 on the next page) will evaluate to the plan π = 〈a1, a2, ..., ak〉 and
then be executed. If patrol- dom-location(d1,d2) is an HTN method that
patrols two domination locations d1 and d2 and then stocks up on ammunition,
the plan π could be described as the plan where the bot first moves to loca-
tion d1 and attacks possible bots there, then moves to d2 and attacks possible
bots there and finally stocks up on more ammunition. The actions that count
on uncertain conditions, such as whether or not an enemy is at either of the

1Meaning that the method is re-evaluated, possibly creating a new HTN tree if some of
the conditionals have changed.

3.1 Applying HTNs to a First Person Shooter 17

domination locations or whether or not the ammunition, which is planned to be
collected, will still be there, are not known during the planning phase and has
to be either simple actions, which can then act as small FSMs, or re-planned
once the knowledge is acquired.

Figure 3.1: And/or graph of patrol-dom-location(d1,d2)

Following the method described in [2], the bot would have to assume some facts
about these uncertain details, e.g. it might assume that it would encounter one
enemy at each domination location and that a certain ammunition item will be
available near location d2. However when the bot would arrive at the different
locations, its assumption would most likely be invalid and it would have to re-
plan.

Instead of following the traditional approach where the complete plan is ex-
tracted from the HTN and then executed, I propose an approach where the
actions are executed right after they are selected. Since the plan is already
represented in the HTN choosing action ai has no influence on the choice of
action aj , where i 6= j and {ai, aj} ∈ π. This means that right after a methods
conditionals are tested its actions are executed, which gives the action less time
to be invalidated due to the interference of other bots.

With this approach applied to the example given in figure 3.1, the bot will
first plan how to move to d1 and then execute it, meaning that it will move
to location d1. Then it will plan how to attack possible bots there. With the
approach described earlier it would have made some assumptions about the
conditions at d1. However now that the bot is at d1 there are no longer any

18 Planning in Unreal Tournament

uncertain conditions and the bot can plan while knowing all the facts. This
means that if there is a hostile opponent there the bot can plan how to kill it,
otherwise it will just move on and plan how to get to location d2. At location
d2 the bot again plans to kill the opponents present and then plans how to get
some more ammunition.

With the original approach the planner would most likely, in this example,
have had to re-plan three times. However by dynamically executing the actions
while traversing the HTN, less assumptions would have to be made, and the
number of re-plannings are significantly lowered.

However this approach has a downside as well. If the preconditions of action ak

can not be satisfied, actions a1 − ak−1 will still be executed since the precon-
ditions of ak are only checked right before the method is supposed to be used.
This means that the bot would have executed all the former actions, but is not
able to complete the HTN. There are two ways this could be handled:

1. All the preconditions in the HTN are verified before the HTN method
is selected. However this leaves us back at the original problem, since
the system is not fully observable, assumptions would have to be made
in regards to the preconditions that deals with uncertain elements (e.g.
whether or not a bot is at a future location).

2. Leave it to the design of the HTN to place complete and relevant precon-
ditions at the topmost HTN methods. Meaning that if it can be decided
whether or not a method can be fully executed when it is chosen, the
preconditions for this should be placed as high as possible in the HTN
tree.

Furthermore the idea of adding goals to the HTN methods are introduced. The
goals are suppose to be evaluated in the same way as the preconditions, however
if a methods goals are already fulfilled, the method will succeed without calling
any of its subtasks. The purpose of this is that if the subtask findAmmunition

is applied to a method. This subtask should have the goal hasAmmunition,
meaning that if it is called and the bot already has enough ammunition, the
subtask will simply terminate as if it is successfully completed. Otherwise it
will make the bot find ammunition.

This changes the structure on how to write HTNs. Instead of having a pre-
condition on the attack method stating that it should have ammunition, the
subtask findAmmunition should be added to the findEnemy method, causing
the bot to find ammunition before it starts looking for enemies, and in the case
it has ammunition, the findAmmunition method would have no effect.

3.1 Applying HTNs to a First Person Shooter 19

3.1.4 A4 (Restricted Goals)

As described in [1] chapter 11.8, the expressiveness of the HTN itself contains
the use of extended goals. Which is shown in the following examples:

Consider the HTN example from section 2.3 on page 12. In the case where
we would want to add a subgoal preventing the bot from moving to location
bad-loc. This can be achieved by adding a precondition to the move2 method.
Thereby preventing the move2 method from being executed in the case where
the result would move the bot to location bad-loc.

move2(b , l1 , l2 , l3) /∗method to move bo t b from l o c a t i o n l 1
to l2 , and then from l 2 to l 3 ∗/

task : move−double (b , l1 , l2 , l3)
subtasks : t1 = move−single (b , l1 , l2)

t2 = move−single (b , l2 , l3)
constraints : at (b , l1) , t1 < t2 , l2 != bad−loc ,

l3 != bad−loc

move1(b , l1 , l2) /∗method to move bo t b from l o c a t i o n l 1
to l o c a t i o n l 2 ∗/

task : move−single (b , l1 , l2)
subtasks : t = move (b , l1 , l2)
constraints : at (b , l1)

move0(b , l1 , l2) /∗method to do noth ing i f b i s a l r eady at l 2 ∗/
task : move−single (b , l1 , l2)
subtasks : none

constraints : at (b , l2)

This could of course also have been added in the move1 method, however we
might want to add a method later on called emergency-move that ignores this
extended goal. Furthermore it is desirable to put the preconditions at the high-
est level possible of the HTN.

Consider the case where we would like an extended goal stating that the bot
should move from location l1 to location l2 and back again exactly two times.
This can be done by adding the method move3 and the auxiliary method round-

trip as follows:

20 Planning in Unreal Tournament

move3(b , l1 , l2) /∗moves bo t b from l o c a t i o n l 1 to l 2 and back
back again e x a c t l y two time ∗/

task : two−times−round−trip (b , l1 , l2)
subtasks : t1 = round−trip (b , l1 , l2)

t2 = round−trip (b , l1 , l2)
constraints : at (b , l1) , t1 < t2

roundTrip (b , l1 , l2) /∗moves bo t b from l o c a t i o n l 1 to l 2 and
back back again e x a c t l y two time ∗/

task : round−trip (b , l1 , l2)
subtasks : t1 = move−single (b , l1 , l2)

t2 = move−single (b , l2 , l1)
constraints : at (b , l1) , t1 < t2

This second example can not be expressed as a classical planning problem, and
shows the expressiveness of HTNs (see [1] Chapter 11.8 Extended Goals).

3.1.5 A6 (Implicit Time)

As described in section 2.2.3 on page 10 every action takes time, which means
that time is not represented implicitly. However neither time nor actions have
an absolute value. Even though the bots speed and movement distance could
be used to calculate the duration of an action, it would be highly inaccurate
due to network latency2 and possible interfering events. As described in the
domain analysis, in section 1.2 on page 3, the domain is event based so instead
of using time to represent the duration of the actions, server events will indicate
that an action has completed. E.g. when the bot is going to move from one
location to another, the planner executes the move command and then monitors
the bots sensory information. When the bot no longer has a velocity, it would
indicate that it has stopped moving, and if interfering events has not occurred
during the movement, it can then be assumed that the bot has safely reached
its destination.

By solely using sensory events to represent the duration of actions the com-
plexities of dealing with a real time system is avoided as much as possible.

2The time it takes from when the bot sends an action, to the game server receives and
executes it.

3.2 The Complete Planner 21

3.2 The Complete Planner

This section will describe the theoretical solution for an HTN inspired planner
for the domain of Unreal Tournament described in section 1.2 on page 3.

3.2.1 HTN syntax

The HTN syntax used up until now is the example syntax used in [1]. However
in order to accommodate the dynamic HTN approach suggested in section 3.1.3
on page 16, a few changes are made to the syntax.

An HTN method is made up of a 4-tuple:

m = 〈Head(m), Goals(m), P reconditions(m), Subtasks(m)〉

where each method returns success or fail.

• Head(m) is an expression of the form n(x1, ..., xk), where n is a unique
method name and x1, ..., xk are all of the arguments used by m. This is a
collapsed version of name(m) and task(m) given in section 2.3 on page 12.

• Goals(m) is a set of boolean evaluations which will instantly make m

return successfully if they all evaluate to true. These goals are described
in the same way as the preconditions, however the purpose is to make
a method return as if it has completed its task if the task were already
achieved beforehand. E.g. if a bot is to move from location l1 to location
l2, but is already located at l2 it would return successfully. This is instead
of writing a second move method with the precondition at(b,l2) that
does nothing. This goal is added to the first move method, and thereby
making the method behave as if the bot had successfully moved.

• Preconditions(m) is a set of constraints which needs to evaluate to true
for m to be applicable. Otherwise m will fail.

• Subtasks(m) is a set of compound and simple tasks. Each line in the
syntax represents an ’and’ node in the corresponding HTN tree. Meaning
that each of the lines must return successfully in order for the method to
return successfully. Each line is made up of one or more subtasks. These
subtasks act as the ’or’ nodes in the HTN tree, meaning that only one of
them needs to succeed in order for the line to succeed. If a subtask in a
line fails the next subtask is executed, if there are no more subtasks left
in the line the line fails and so does the method.

22 Planning in Unreal Tournament

Below is a small example of two HTN methods:

/∗method to move bo t b from l o c a t i o n l 1 to l2 ,
and then from l 2 to l 3 ∗/

Head move−double (b , l1 , l2 , l3)
Goals

at (b , l3)
Preconditions

none

Subtasks

move−single (b , l1 , l2)
move−single (b , l2 , l3)

/∗method to move bo t b from l o c a t i o n l 1 to l o c a t i o n l 2 ∗/
Head move−single (b , l1 , l2)
Goals

at (b , l2)
Preconditions

at (b , l1)
Subtasks

move (b , l1 , l2)

In the case where the bot is initially located at l1 both move-single methods
would be invoked and their corresponding simple tasks move would be executed.
In the case where the bot is initially located at l2 the first move-single would
instantly succeed and the second one would result in the bot executing the
corresponding move action. And finally in the case where the bot is initially at
l3, the move-double method would instantly succeed, appearing as if the bot
has moved.

Recursion: This syntax allows both direct- and indirect recursion3. However
given the undefined underlaying implementation and the complexity of trying
to solve the halting problem4. It is not possible to prevent never ending loops.
Furthermore depending on the implementation details (see chapter 4), using
recursion to keep the HTN methods from terminating could result in memory
problems.

Total Ordered Planning: Given by the syntax it is clear that the HTN
methods only supports total ordered planning (as described in [1] Chapter 11),

3Direct recursion, meaning a method that calls itself, while indirect recursion is when two
or more methods call eachother in a cyclic manner

4See http://en.wikipedia.org/wiki/Halting problem

3.2 The Complete Planner 23

meaning that two methods subtasks can not interleave with each other. The
preconditions of an HTN method only decides the methods applicability, while
the ordering of the subtasks are given by the order in which they are written.
A partially ordered approach would have left more decisions to the planner and
given a more random bot behavior, however since the approach of executing the
tasks as soon as they are found is pursued, it is not possible.

Neither [3] nor [2] describes any of these choices, however given the syntax
presented in the two papers, it seems that neither of them considers partially
ordered HTNs.

3.2.2 Time

Since there is no notion of concurrency within an HTN, the actions of a bot has
to be executed sequential. This means that when a bot is ordered to run from
one location to another, the planner has to wait for the bot to arrive at its des-
tination before it is given a new task. Because all simple tasks, and thereby the
bots actions, are domain specifically implemented, it is up to the individual task
to know when it has completed and then return5. However it could occur that
the bot got interrupted while performing a task, e.g. an unfriendly bot started
to shoot at it or someone was standing in the way and thereby blocking its path.

This problem can be handled in two ways:

1. Every kind of interference is handled within the implementation of the
simple task. This would however make the simple tasks somehow com-
plicated to implement, and it would be difficult to prove that all possible
situations were accounted for.

2. The task fails if it is interrupted, and it is left to the designer of the HTN
to create the methods so that they are able to recover from every possible
situation.

A third possibility is pursued, which is the mixture of the two. Interference
that has no direct influence with the completion of the task or that are easily
recovered from, should not make the task fail. However such a solution requires
that the implementation of the simple tasks are well documented so that their
behavior are known to the designer of the HTN.

5See chapter 4 for implementation details on how to identify when a task has completed.

24 Planning in Unreal Tournament

Other work: The notion of time is not mentioned in [1]. [2] uses the idea
of grouping bots up based on the belief that they would have a greater chance
of killing an opponent if they engage in numbers. However the paper does not
mention the issue of time or how the bots synchronize these actions.

Furthermore in [3] an HTN is used to coordinate the strategy of the bots, while
FSMs control the bots themselves and implements the tasks given by the HTN.
However it is not described how the HTN handles concurrency. If their planner
controls more than one bot and the actions of the bots takes time, it is impos-
sible to avoid concurrency issues. E.g. when one bot has completed its task,
should it then wait for all the other bots to complete theirs, or is it possible to
asses the status of the other bots and then assign a new task.

3.2.3 Team Coordination

When dealing with the coordination of a team of bots, the bots act concurrently.
Since time is handled as described in section 3.2.2 on the previous page and that
there are no simple way of converting an HTN to handle concurrency, each bot
needs an HTN of their own. However having a team of bots going about their
own business, controlled by each their HTN, does not make them cooperate to
achieve a grander goal. A coordinating program is needed.

The coordinator does not have any notion of time, and its choices are solely
based on the preconditions available.

The job of the coordinator is to assign strategies to each of the bots. This
is done by giving the individual bot a set of HTN methods it is allowed to use.
The bot repeatedly finds an applicable method, in this set, and executes it. The
coordinator can, at any time, update the set contained in any of the bots and
thereby change the behavior of the bot. The coordinator itself is controlled by
an HTN that describes the grand strategy of the team.

The coordinator can then make the bots cooperate tightly together by only
allowing them to use one method, or it can make the bots more independent by
giving them a set of possible methods. This way the bots keep their sequential
planning, while acting concurrently with one another.

This set contains only top level methods and the bots are allowed to use any
subtask used by these methods.

3.2 The Complete Planner 25

Other work: [3] also uses a bot/coordinator principle, however the bots are
controlled by FSMs and their available actions are not easily extendable. In [2]
an HTN also gives out tasks to different bots, however it is not clarified how the
coordination between the bots work.

In [10] it is proposed that the plans of different bots are summarized and then
compared, though this is mostly to prevent colliding plans. Given the compu-
tational time constraints it does not seem feasible in the domain described in
section 1.2.

3.2.4 HTN Algorithm

The HTNs are executed dynamically as previously proposed. This means that
the algorithm will traverse the corresponding HTN tree and execute the leftmost
simple task first, then the second leftmost and so on.

When an HTN method is selected it is executed by algorithm 1 on page 27.
Line 1-3 checks whether all the goals evaluate true, if they do the algorithm
will return true disregarding all preconditions. Line 4-6 checks the precondi-
tions and if one of them evaluates to false the algorithm will return false.

Given an HTN method with the following subtasks:

Subtasks

a1,a2,a3

b1

c1,c2

These subtasks can be represented as a list of lists S = 〈l1, l2, l3〉 (see figure 3.2
on the next page).

26 Planning in Unreal Tournament

Figure 3.2: Subtasks represented as a list S of lists l1, l2, l3

Considering algorithm 1, the outer foreach on line 8 iterates through S and
the inner foreach on line 10 iterates through li, where i is the current index
of S. Each element in li are called recursively, if it returns true the inner loop
breaks and the outer loop continues with its next element. If it does not return
true the inner loop continues with its next element. If none of the elements in
li returns true the result variable would not have been set to true, on line 12,
which will make the method return false on line 17.
In other words, if one of the tasks in each li returns true the method call will
return true.

In the case where the task executed is a simple task it will still check both
the goals and the preconditions. Whether or not the execution of the task
returns true or false, in lines 21-27, depends on the implementation of the
specific task and whether or not it gets interrupted.

3.2 The Complete Planner 27

Algorithm 1: HTN-Execute(Task t)

Data: G set of goals, P set of preconditions, S list of lists of subtasks
Input: HTN task
Output: true if the task succeeds, otherwise false

if All the goals in G evaluate to true then1

return true2

end3

if There exists a precondition in P that evaluates to false then4

return false5

end6

if t is a compound task then7

foreach Sublist l in S do8

result ← false;9

foreach Subtask u in l do10

if HTN-Execute(u) = true then11

result ← true;12

break;13

end14

end15

if result = false then16

return false17

end18

end19

return true20

else t is a simple task21

Make the bot execute the task;22

if the bot is interrupted then23

return false24

else25

return true26

end27

end28

28 Planning in Unreal Tournament

3.2.5 Further Work

Many extensions could be added to the syntax given in section 3.2.1 on page 21.

• The use of boolean operators when defining the goals and the precondi-
tions. As it is now the different evaluations are separated by conjunctions.

• Return values from subtasks, which could be used in other subtasks.

• Arithmetic operators both to be used on return values and when defining
goals and preconditions.

• List manipulation, so e.g. a list of possible targets could be handled in
some cyclic manner.

One of the major difficulties is to keep track of concurrent actions within an
HTN. An interesting topic for further research would be to expand the HTN
syntax to include a concurrent operator (⊕). This operator should make it pos-
sible to execute tasks concurrently and then rendezvous when both tasks have
terminated. E.g. making two bots attack the same enemy at the same time by
calling:

attack(b1,t1) ⊕ attack(b2,t1)

Or making two bots meet up at a specific location:

moveTo(b1,l1) ⊕ moveTo(b2,l1)

Chapter 4

Implementing the Planner

This chapter will describe the relevant implementation details of an HTN in-
spired artificial intelligence for controlling a team of bots in the game of Unreal
Tournament.

4.1 Overview

The implementation consists of four major parts:

• Coordinator: The coordinator tells the bots which of the available HTN
methods they should pursue.

• Bot: The bots get input from the coordinator and sensory information
from the server, which they use to chose and execute HTN methods.

• HTN: The HTN which the bots processes in order to plan their actions.

• ComHandler: The ComHandler deals with all communication to and
from the UT server.

See figure 4.1 on the next page.

30 Implementing the Planner

Figure 4.1: Implementation overview

As shown in figure 4.1 the coordinator has any number of bots, which makes up
the team. Every bot has its own HTN and server communication.

4.2 UT Server

The UT server runs a map which consist of domination locations, navigational
nodes and inventory nodes.

4.2 UT Server 31

Figure 4.2: Map DomStalwart

Figure 4.2 is a screenshot from the program tclviz that visualizes the activities
on the UT server without having to load the game. The domination locations
are the white marks outlined with a white circle and when a bot runs over a
domination location it changes color to match the bots team. The blue marks
represents navigational nodes that the bot can use for orientation. The inven-
tory nodes are represented by the pink marks and indicate that an inventory
item will be at that location.

The sensory information sent by the server contains all nodes and domination
locations visible to the bot.

32 Implementing the Planner

4.3 HTN

4.3.1 Syntax

The HTN methods are described in almost the same syntax as given in sec-
tion 3.2.1 on page 21. However a few simple changes have been made to ease
the parsing.

First of all the simple tasks and the compound tasks are written in two different
files. This does not effect the workings of the HTNs, however when the syntax
is parsed it is not needed to identify the simple tasks among the compound ones.

Secondly the parenthesis around the arguments are removed and the arguments
are separated by a space instead of a comma. Furthermore if a subtask uses one
of the arguments, given to the method, it is identified by its position and not
by its name. E.g. if a subtask is to use the first argument it should be identified
by $0, the second by $1 and so on. It is also possible, for the designer of the
HTN, to use predefined values instead of the arguments.

Head RunTo destination

Goals

At $0

Preconditions

neighborTo $0

The RunTo method is a simple task, which means that its action is implemented.
The goal At uses the first argument given in the argument list and so does the
precondition neighborTo.

In this second example the RunAround method does not use any arguments,
however it uses two simple tasks: RunToRandom, which makes the bot run to
a random visible node, if there are no visible nodes in sight the task fails and
Rotate, which makes the bot rotate a given number of UT units1. RunAround

shows how a compound task can have a predefined value as an argument for the
Rotate method.

12π = 65535 UT units

4.3 HTN 33

Head RunAround

Goals

Preconditions

Subtasks

RunToRandom , Rotate 2000
RunAround

4.3.2 Data structure

The abstract class Task contains the common elements from the two subclasses
SimpleTask and CompoundTask. The common elements include the name, goals,
preconditions and methods to evaluate the preconditions and the goals. Further-
more the Task class has an abstract method doTask, which must be implemented
in both subclasses.

SimpleTask implements doTask by implementing lines 1-6 and lines 21-27 as
described by algorithm 1 on page 27.

CompoundTask implements doTask by implementing lines 1-6 and lines 7-20 as
described by algorithm 1 on page 27. This means that when doTask is called, the
if statement on line 7 is handled by the polymorphic structure of SimpleTask,
CompoundTask and their common superclass Task. See figure 4.3.

Figure 4.3: UML diagram of Task

CompoundTask has a list of lists of SubTasks. A SubTask contains a Task,
meaning either a SimpleTask or a CompoundTask.

34 Implementing the Planner

4.3.3 Parsing

The file containing the SimpleTasks are parsed first. A SimpleTask has no sub-
tasks, meaning there are no recursions to keep in mind when parsing these. The
SimpleTasks are parsed line by line and the different goals and preconditions
are added as they are identified. If a SimpleTask can not be matched with its
corresponding implementation, an exception is thrown.

When parsing the CompoundTasks the parser runs through the file creating an
’empty’ CompoundTask for each method. Then the parser runs through the file
again adding all the elements such as the goals, preconditions and subtasks.
The file has to be parsed in two iterations since the first compoundTask could
potentially have the last CompoundTask as a subtask.

4.3.4 Execution

The HTN is executed as described in algorithm 1 on page 27. However a few
details need to be clarified in regards to time and concurrency.

When a SimpleTask is executed it sends a message to the server giving the
bot a corresponding command. Then the SimpleTask has to wait for the out-
come, of the given action, before it can return. This is controlled by a monitor.
When a movement action is initiated the bot first calls a method on the mon-
itor, which makes it record the bots position. Then the movement command
is sent to the server and a method waitForMovement is called on the monitor.
The monitor will then put the executing thread to sleep, making it wait for the
state where its current position is different from the one recorded and the bot
no longer has a velocity. If the bot has not been interrupted during the action,
it is assumed that the task has been executed correctly and therefore returns
true.

Conditionals: The goals and preconditions used in the HTN has to have cor-
responding implemented methods. The syntax does not support any form of
arithmetics or boolean expressions in regards to the conditionals. The Condi-

tionals class has a public method checkConditional which takes the name
of the conditional, given in the syntax, and its list of arguments. The check-

Conditional then identifies and executes the corresponding implementation. If
the conditional does not exist the method will throw an exception.

Following is a complete list of all the implemented conditionals:

4.3 HTN 35

• At loc - returns true if the bot is at location loc.

• neighborTo loc - returns true if the bot has a direct passage to location
loc.

• hasWeapon - returns true if the bot has a weapon equipped.

• hasMoreAmmoThan amount - returns true if the bot has more ammo than
specified by amount.

• hasMoreHealthThan amount - returns true if the bot has more health
than specified by amount.

4.3.5 Simple Tasks

This is a complete list of all simple tasks implemented:

• RunTo loc - Makes the bot turn and run to location loc. Fails if the bot
does not have direct passage to loc.

• RunToRandom - Makes the bot run to a random visible node. Fails if there
is no nodes in line of sight of the bot.

• Rotate yaw - Makes the bot rotate yaw amount of UT units2.

• TravelTo loc - Makes the bot travel to the location defined by loc. Fails
if the bot is killed.

• ShootAtEnemy - If there is an enemy in line of sight the bot will open fire.
If the enemy dies or runs out of line of sight the bot will shoot at the next
enemy in sight. This will continue until there are no more enemies in sight
of the bot. If there were no enemies visible to begin with, the method will
retun false and otherwise true.

• RunToRandomINV - Makes the bot travel to a random inventory node.

• AddBot name team - Adds a bot to the game with the given name and on
the specified team.

• StartBot name - starts the bot identified by name.

• AssignTask botName taskName - Assigns the task specified by taskName

to bot botName.

22π = 65535 UT units

36 Implementing the Planner

• ClearTasks botName - Removes all tasks from the bot specified by botName.

The last three methods are mainly there for the coordinator, however it is pos-
sible for the bots to assign tasks to each other through the coordinator.

4.4 Bot

The Bot class extends the Thread class so it can be run concurrently. Further-
more it has a State which maintains the actual state of the world such as visible
enemies, current ammo, weapons, health, etc. The ComHandler takes care of the
communication with the UT server and it updates the State whenever messages
are received. The State is also used to access the monitors needed when the
thread has to wait while an action is taking place.

Figure 4.4: UML diagram of Bot

CCBot is the bot version that works with the Coordinator. The State and the
ComHandler are placed in its superclass so other bot implementations would
work on the same framework. The CCBot uses the Planner in order to build
the HTN and execute the different tasks. The Task knows the State so that it
has access to its monitors and is able to evaluate the conditionals. Furthermore
the Task has access to the ComHandler so that the actions can be send directly
to the server.

4.5 Coordinator 37

The CCBot has a list of task names which it iterates through repeatedly and
executes one by one. This list can be concurrently manipulated through meth-
ods provided by the CCBot.

4.5 Coordinator

There Coordinator has been designed using the singleton pattern, meaning that
only one instance of the class can exist at any time. The instance is obtained
through a static method making it accessible to all CCBots. The Coordinator

has a HashMap of all the CCBots and methods to manipulate their list of task
names. The Coordinator is a subclass of CCbot which makes it inherit the list
of task names and it too iterates through and executes this list. Furthermore
the Coordinator is an entry in its own CCBot HashMap, which means that meth-
ods can also be assigned to the coordinator. Since the Coordinator is known
to all bots it is possible for the bots to assign each other tasks through the
Coordinator.

When the program is started the HTN method named Main is assigned to the
Coordinators task list. Through the HTN definition of this method it is hereby
possible to create bots and assign tasks without having to recompile the pro-
gram. This makes the Main method the default entry point.

4.6 Client/Server communication

All communication between the client and the server is done over a TCP socket.
This means that when the server is running the client will open a socket and
connect to the server. The network API uses a String protocol where every
message is on the form:

\texttt{MSGTYPE {arg1 arg1value} {arg2 arg2value} ... {argn argnvalue}

E.g. to initialize a bot on the server, after a connection has been established,
the following command is sent:

INIT {Team 1} {Name Bob}

38 Implementing the Planner

which will create a bot on team 1, with the name Bob.

The client will then start receiving sensory updates from the server. These
update messages are either synchronous or asynchronous. The synchronous
messages are periodic blocks of updates containing the state of the bot and its
surrounding environment. While these blocks are being transmitted no asyn-
chronous messages will be sent by the server. The synchronous messages include:

• Status of the bot: current rotation, location, velocity, name, team, health,
weapons, armor, etc.

• Information about the game such as score and domination status.

• Everything visible to the bot such as: Objects on the ground, navigational
nodes, other bots, etc.

Whenever an event occurs the bot receives an asynchronous message with the
update. The asynchronous messages include:

• Inventory items picked up.

• Chat messages.

• Collisions with walls and other bots.

• Sound information: footsteps, bots picking up inventory items and shoot-
ing.

• Damage done/taken.

For full network API see [9].

4.7 Further work

As described under further work in section 3.2.5 on page 28 a lot of extensions
could be made to the syntax. Furthermore it might be worth considering making
the implementation in a functional language due to the functional definition of
the HTN syntax. A functional language might provide an easier implementation
of possible return values and list manipulation. Furthermore it might be pos-
sible in such a language to make the underlaying implementation tail recursive
and thereby avoid memory problems with non terminating recursive calls.

4.7 Further work 39

The implementation is created as a proof of concept for this paper and has
not gone through any extensive testing. Any bugs that might occur, related
related to incorrect syntax, might not produce insightful output. It was never
the intention to make a robust system, the purpose was to make a testbed for
the use of HTNs in Unreal Tournament. I leave it as future task to shape these
ideas into a robust framework.

40 Implementing the Planner

Chapter 5

Conclusion

Chapter 5 will identify and discuss possible findings discovered by using the
HTN inspired planner outlined in chapter 3 to control a team of bots in the
game of Unreal Tournament as implemented in chapter 4. These findings will
then be used to draw up the final conclusion.

5.1 Findings

The map shown in figure 4.2 on page 31 is used as a test map to run the im-
plementation on. It contains three domination locations and a large number of
navigational- and inventory-nodes.

When it comes to formalizing a strategy the HTN really shows its worth.
With only a handful of HTN methods it quickly becomes possible to describe
quite complex strategies. A good example of this is the top level methods
DefendDomPoint and Defend.

42 Conclusion

Head DefendDomPoint domPoint

Goals

Preconditions

Subtasks

GetWeapon

GetAmmo

Defend $0

Head Defend domPoint

Goals

Preconditions

hasWeapon

hasMoreAmmoThan 1
Subtasks

TravelTo $0

ShootAtEnemy , Rotate 7000

The DefendDomPoint makes the bot find a weapon, then ammunition and then
execute the Defend method. Both GetWeapon and GetAmmo has goal predi-
cates describing that if the bot already has a weapon and ammunition, they
will instantly return successfully. This means that once the bot has acquired
a weapon and some ammunition it will constantly call the Defend method. If
the bot should run out of ammunition the Defend method will no longer be
applicable and the GetAmmo will once again make the bot find ammunition. The
Defend method makes the bot travel to the specified location and then contin-
uously rotate until an enemy is spotted, which will then be attacked.

The path finding implemented in the UT server works great and there is no
reason to believe that any other AI would be able to do this more effectively.
By running the program several times and letting two teams of bots fight against
each other, it has become obvious that a lot more simple tasks are needed. E.g.
the current TravelTo method only gets interrupted if the bot is killed, this
means that even though the bot is attacked it continues to its destination. It
would be convenient to have a version where the bot would stop if it got at-
tacked, so that it would be possible to fight back, and even to have a version
where the bot would get interrupted if it spotted an enemy so that this could
be used as a ”patrol” task.

Shooting at the opponents, trying to kill them, is a big part of the domain
and the ShootAtEnemy is a very simple way to try and implement this. The
bot is stationary while performing this action so the outcome of the battle is
really a matter of which bot spotted the other bot first. It seems reasonable to
conclude that the abilities needed to be a dangerous adversary would be to avoid

5.2 Conclusion 43

incoming fire and have a perfect aim. These two abilities are purely reactive and
are not something that needs a great deal of planning. It would require a lot of
simple tasks to reach this level of reactiveness, however it might still be more
effective to have small FSMs controlling the combat. The difference between a
simple task and a small FSM is that the FSM maintains several actions and the
simple task only performs one. Furthermore a small FSM would integrate well
into the framework since it would appear and behave as any other simple task.

5.2 Conclusion

Unreal Tournament is a domain that is non-deterministic, highly dynamic and
the AI has very limited computation time to calculate intelligent behavior. It is
understandable that Finite State Machines has been the dominating solution,
however as the game types evolve the AI strategies needs to be more and more
comprehensive which makes the state machines explode in complexity.

A total ordered Hierarchical Task Network is presented as a possible solution.
Plan creation is well within the required computation time and by extending the
original approach, by dynamically executing its tasks, it seems that the chal-
lenges in connection with the dynamic environment are reduced to a minimum.
However when the bot engages in combat and its reactiveness gets put to the
test, the use of small state machines as actions might be needed for the bot to
prevail.

The real power of the HTN is expressed when complex strategies needs to be
implemented. The designer of a strategy starts out by making simple methods,
then these simple methods are used to create more complex methods and so on.
With an FSM it is required for the designer of the AI to have a profound knowl-
edge of the underlaying implementation, however with a solid HTN framework
it becomes possible to apply complex bot strategies without any such insight.

Since there are neither any non-deterministic choices or machine learning in-
tegrated into the HTN, it might be argued that this type of AI is just another
way of representing an FSM. However the purpose of this paper was to shape a
framework containing a more intuitive way of describing bot behavior and where
the creation of more complex strategies would be lifted to an abstraction level
impossible with FSMs. By using this approach, and with the expressiveness
of the HTN syntax, complex and coordinating strategies can be defined in a
matter of minutes.

Furthermore the ability for a bot/coordinator to drastically change another

44 Conclusion

bots strategy, while the game is running, is well beyond the capabilities of any
normal FSM.

Appendix A

CD Contents

A CD is attached to the report which contains the following:

• Executables - All programs needed to run the implementation (see ap-
pendix B).

• Source - Contains all the source code.

• UTBot - The executable Jar file and example HTN definitions.

• IMM-B.Sc.-2008-02 - This report.

46 CD Contents

Appendix B

Running the Program

The ”Executables” folder on the CD, handed in with the report, contains all
the installations needed in order to run the program.

1. Extract and install the ”UTServer428-2.zip” to install the Unreal Tourna-
ment server.

2. Run the ”Gamebots.umod” to modify the server.

3. Extract and install the ”TclViz.zip” to install the visualizer.

Everything should now be installed correctly.

Run the server with the command:

ucc server dom-stalwart?game=FriendlyBotAPI.FriendlyBotDomination

Finally run the visualizer and then the UTBot.jar program:

java -jar UTBot.jar simpleTasks.htn compoundTask.htn

48 Running the Program

The simpleTasks.htn is the name of the file with the HTN simple tasks
and compoundTask.htn is the file with the compound tasks. Notice that the
Stalwart file needs to be in the same library as the UTBot.jar. This file contains
map information needed by the program.

Appendix C

Source Code

Following is all the source code used in the implementation. The source code is
also included on the CD attached to this paper.

C.1 ai

C.1.1 ai.Planner.java

1 package ai;
2

3 import com.ComHandler;
4 import exceptions.DuplicateTaskException;
5 import java.io.FileNotFoundException;
6 import java.io.IOException;
7 import java.util.HashMap;
8 import map.Map;
9 import state.State;

10 import util.Log;
11

12 /**
13 * The planner is a container and access point to the HTN
14 * @author Rene B. Hansen
15 */
16 public class Planner {
17

18 private State state;
19 private HashMap <String ,Task > HTN;

50 Source Code

20 private Conditionals conditionals;
21 private ComHandler com;
22

23

24 /**
25 * Creates a new instance of Planner
26 * @param state state.State
27 * @param com com.ComHandler
28 * @throws java.io.FileNotFoundException
29 * @throws java.io.IOException
30 * @throws exceptions.DuplicateTaskException
31 */
32 public Planner(State state ,ComHandler com) throws FileNotFoundException ,

IOException , DuplicateTaskException {
33 this.state = state;
34 conditionals = new Conditionals(state);
35 this.com = com;
36 this.createHTN ();
37 }
38

39 /**
40 * Creates the HTN by using the HTNBuilder
41 * @throws java.io.FileNotFoundException
42 * @throws java.io.IOException
43 * @throws exceptions.DuplicateTaskException
44 */
45 private void createHTN () throws FileNotFoundException , IOException ,

DuplicateTaskException{
46 HTNBuilder b = new HTNBuilder(conditionals ,com ,state);
47 HTN = b.createHTN ();
48 }
49

50 /**
51 * Executes the HTN task given by taskName
52 * @param taskName Name of a Task
53 * @param arg Arguments that the task should be executed with
54 */
55 public void doTask(String taskName ,String[] arg){
56 if (HTN.containsKey(taskName)){
57 if (HTN.get(taskName).doTask(arg)){
58 // System.out.println ("Bot:"+ state.getSLF().getName ()+" Task:

"+ taskName +" completed ");
59 }else /* System.err.println ("Bot:"+ state.getSLF().getName ()+" Task

: "+ taskName +" failed")*/;
60 } else /* System.err.println ("Bot:"+ state.getSLF().getName ()+" No such

task: "+ taskName)*/;
61 }
62

63 }

C.1.2 ai.HTNBuilder.java

1 package ai;
2

3 import com.ComHandler;
4 import exceptions.DuplicateTaskException;
5 import java.io.BufferedReader;
6 import java.io.FileNotFoundException;
7 import java.io.FileReader;
8 import java.io.IOException;
9 import java.util.ArrayList;

10 import java.util.HashMap;
11 import state.Rotation;

C.1 ai 51

12 import state.State;
13 import test.Main;
14

15 /**
16 * Class to parse and build the HTNs
17 * @author Rene B. Hansen
18 */
19 public class HTNBuilder {
20

21 private String HTNCompundFile;
22 private String HTNSimpleFile;
23 private FileReader fstream;
24 private BufferedReader in;
25 private ComHandler com;
26

27 private HashMap <String ,Task > tasks;
28

29 private Conditionals conditionals;
30 private State state;
31

32 /**
33 * Creates a new instance of HTNBuilder
34 * @param conditionals used to evaluate conditionals
35 * @param com com.Comhandler
36 * @param state state.State
37 * @throws java.io.FileNotFoundException
38 */
39 public HTNBuilder(Conditionals conditionals ,ComHandler com , State state)

throws FileNotFoundException {
40 this.HTNSimpleFile = Main.simpleTasks;
41 this.HTNCompundFile = Main.compoundTasks;
42 this.conditionals = conditionals;
43 this.state = state;
44 this.com = com;
45 tasks = new HashMap <String , Task >();
46 }
47

48 /**
49 * Creates a comple HTN from the two files
50 * @return A hashmap with all HTN methods
51 * @throws java.io.IOException
52 * @throws exceptions.DuplicateTaskException
53 */
54 public HashMap <String ,Task > createHTN () throws IOException ,

DuplicateTaskException{
55

56 this.createAllSimpleTasks ();
57

58 fstream = new FileReader(HTNCompundFile);
59 in = new BufferedReader(fstream);
60

61 String temp = in.readLine ();
62 String[] elem;
63 CompoundTask t = null;
64 while (temp != null){
65 elem = temp.split(" ");
66 if (elem.length > 0){
67 if (elem [0]. equals("Head")){
68 if (tasks.containsKey(elem [1])) throw new

DuplicateTaskException("Method head: "+elem [1]+" not
unique");

69 t = new CompoundTask(elem[1], conditionals ,state);
70 tasks.put(t.name ,t);
71 }
72 }

52 Source Code

73 temp = in.readLine ();
74 }
75 in.close();
76 fstream = new FileReader(HTNCompundFile);
77 in = new BufferedReader(fstream);
78

79 temp = in.readLine ();
80

81 boolean inPreconditionals = false;
82 boolean inGoals = false;
83 boolean inSubtasks = false;
84

85 while (temp != null){
86

87 elem = temp.split(" ");
88 if (temp.trim().length() > 0){
89 if (elem [0]. equals("Head")){
90 t = (CompoundTask)tasks.get(elem [1]);
91 inGoals = false;
92 inPreconditionals = false;
93 inSubtasks = false;
94 } else if (elem [0]. equals("Goals")){
95 inGoals = true;
96 inPreconditionals = false;
97 inSubtasks = false;
98 } else if (elem [0]. equals("Preconditions")){
99 inGoals = false;

100 inPreconditionals = true;
101 inSubtasks = false;
102 } else if (elem [0]. equals("Subtasks")){
103 inGoals = false;
104 inPreconditionals = false;
105 inSubtasks = true;
106 } else if (inGoals){
107 t.addGoal(temp.trim());
108 } else if (inPreconditionals){
109 t.addPrecondition(temp.trim());
110 } else if (inSubtasks){
111 String [] commaDel = temp.split(",");
112 ArrayList <SubTask > result = new ArrayList <SubTask >();
113 for (String c : commaDel){
114 elem = c.split(" ");
115 SubTask s = new SubTask(tasks.get(elem [0]),c.

substring(elem [0]. length()).trim());
116 result.add(s);
117 }
118 t.addSubTask(result);
119 } else { System.err.println(elem [0] + " did not equal

anything");}
120

121 }
122 temp = in.readLine ();
123 }
124

125 in.close();
126 return tasks;
127 }
128

129 /**
130 * Parses and creates all the simple tasks
131 * @throws java.io.FileNotFoundException
132 * @throws java.io.IOException
133 */
134 private void createAllSimpleTasks () throws FileNotFoundException ,

IOException{

C.1 ai 53

135 fstream = new FileReader(HTNSimpleFile);
136 in = new BufferedReader(fstream);
137

138 SimpleTask t = null;
139

140 String temp = in.readLine ();
141 String[] elem;
142

143 boolean inPreconditionals = false;
144 boolean inGoals = false;
145

146 while (temp != null){
147 elem = temp.split(" ");
148 if (temp.trim().length() > 0){
149 if (elem [0]. equals("Head")){
150 t = createSimpleTask(elem [1]);
151 tasks.put(t.name ,t);
152 inGoals = false;
153 inPreconditionals = false;
154 } else if (elem [0]. equals("Goals")){
155 inGoals = true;
156 inPreconditionals = false;
157 } else if (elem [0]. equals("Preconditions")){
158 inGoals = false;
159 inPreconditionals = true;
160 } else if (elem [0]. equals("Subtasks")){
161 inGoals = false;
162 inPreconditionals = false;
163 } else if (inGoals){
164 t.addGoal(temp.trim());
165 } else if (inPreconditionals){
166 t.addPrecondition(temp.trim());
167 } else { System.err.println(elem [0] + " did not equal

anything");}
168 }
169 temp = in.readLine ();
170 }
171 in.close();
172 }
173

174 /**
175 * Identifies and instantiates the corresponding simpletask identified by

the name
176 * @param name task name
177 * @return SimpleTask
178 */
179 private SimpleTask createSimpleTask(String name){
180 SimpleTask t = null;
181 if (name.equals("RunTo")){
182 t = new RunTo(conditionals ,com ,state);
183 } else if (name.equals("RunToRandom")){
184 t = new RunToRandom(conditionals ,com ,state);
185 } else if (name.equals("Rotate")){
186 t = new Rotate(conditionals ,com ,state);
187 } else if (name.equals("AddBot")){
188 t = new AddBot(conditionals ,com ,state);
189 } else if (name.equals("StartBot")){
190 t = new StartBot(conditionals ,com ,state);
191 } else if (name.equals("AssignTask")){
192 t = new AssignTask(conditionals ,com ,state);
193 } else if (name.equals("ClearTasks")){
194 t = new ClearTasks(conditionals ,com ,state);
195 } else if (name.equals("TravelTo")){
196 t = new TravelTo(conditionals ,com ,state);
197 } else if (name.equals("ShootAtEnemy")){

54 Source Code

198 t = new ShootAtEnemy(conditionals ,com ,state);
199 } else if (name.equals("RunToRandomINV")){
200 t = new RunToRandomINV(conditionals ,com ,state);
201 }else {
202 System.err.println(" !!! ERROR : Simple task >"+name+"< does not

exist !!!");
203 }
204 return t;
205 }
206 }

C.1.3 ai.Coordinator.java

1 package ai;
2

3 import bot.CCBot;
4 import com.ComHandler;
5 import exceptions.DuplicateTaskException;
6 import java.io.FileNotFoundException;
7 import java.io.IOException;
8 import java.util.ArrayList;
9 import java.util.HashMap;

10 import map.Stalwart;
11 import state.State;
12

13 /**
14 * The coordinator is used to control the task lists of all the bots. When

the
15 * coordinator is started , it adds the Main htn method to its task list.
16 * @author Rene B. Hansen
17 */
18 public class Coordinator extends CCBot {
19

20 private HashMap <String ,CCBot > bots;
21 private static Coordinator coordinator;
22

23 /**
24 * Creates a new instance of Coordinator
25 * @throws java.io.IOException
26 * @throws exceptions.DuplicateTaskException
27 */
28 private Coordinator () throws IOException , DuplicateTaskException {
29 super(/*new Stalwart (),*/"Coordinator" ,-1);
30 bots = new HashMap <String ,CCBot >();
31 bots.put(this.name ,this);
32 Coordinator.coordinator = this;
33 this.run();
34 }
35

36 /**
37 * Starts the coordinator
38 */
39 public void run() {
40 this.addTask("Main");
41 while(true){
42 try {
43 this.doTasks(this.getNextTask ());
44 } catch (InterruptedException ex) {
45 ex.printStackTrace ();
46 }
47 }
48 }
49

C.1 ai 55

50

51 /**
52 * Adds a bot to the game
53 * @param name bot name
54 * @param team team number
55 * @throws java.io.IOException
56 * @throws exceptions.DuplicateTaskException
57 */
58 public void addBot(String name , int team) throws IOException ,

DuplicateTaskException{
59 bots.put(name ,new CCBot(/*new Stalwart (),*/name ,team));
60 }
61

62 /**
63 * Initialzes and starts a previously added bot on the server
64 * @param name bot name
65 */
66 public void startBot(String name){
67 if (bots.containsKey(name)){
68 Thread b = bots.get(name);
69 if (!b.isAlive ()){
70 b.start();
71 }
72 } else System.err.println("No such bot - "+name);
73 }
74

75 /**
76 * Removes all tasks from a bot
77 * @param bot name
78 */
79 public void clearAllTasks(String bot){
80 if (bots.containsKey(bot)){
81 bots.get(bot).clearAllTasks ();
82 }
83 }
84

85 /**
86 * Adds a task to a bot
87 * @param bot name
88 * @param task taskName
89 */
90 public void addTask(String bot , String task){
91 if (bots.containsKey(bot)){
92 bots.get(bot).addTask(task);
93 }
94 }
95

96 /**
97 * Return this coordinator , if the coordinator has not been instanciated

a new one
98 * is
99 * @return this coordinator

100 */
101 public static Coordinator getInstance () {
102 if (Coordinator.coordinator == null){
103 try {
104 return Coordinator.coordinator = new Coordinator ();
105 } catch (DuplicateTaskException ex) {
106 ex.printStackTrace ();
107 } catch (IOException ex) {
108 ex.printStackTrace ();
109 }
110 }
111 return Coordinator.coordinator;
112 }

56 Source Code

113 }

C.1.4 ai.Conditionals.java

1 package ai;
2

3 import state.State;
4 import map.Map;
5 import util.Log;
6

7 /**
8 * Class used to evaluate all conditionals
9 * @author Rene B. Hansen

10 */
11 public class Conditionals {
12

13 private State state;
14 private Map map;
15

16 /**
17 * Creates a new instance of Conditionals
18 * @param state state.State
19 */
20 public Conditionals(State state) {
21 this.state = state;
22 this.map = state.getMap();
23 }
24

25 /**
26 * Evaluates the given conditional
27 * @param condition String name of the conditional to be evaluated
28 * @param arg Argument list that the conditional might use
29 * @return true if the conditional evaluates to true , otherwhise false.
30 */
31 public boolean checkConditional(String condition , String[] arg){
32

33 String[] con = condition.split(" ");
34

35 if (con [0]. equals("At")) return At(con[1],arg);
36 else if (con [0]. equals("neighborTo")) return neighborTo(con[1],arg);
37 else if (con [0]. equals("hasWeapon")) return hasWeapon ();
38 else if (con [0]. equals("hasMoreAmmoThan")) return hasMoreAmmoThan(con

[1],arg);
39 else if (con [0]. equals("hasMoreHealthThan")) return hasMoreHealthThan

(con[1],arg);
40 else return false;
41 }
42

43 /**
44 * Evaluate the At conditional
45 * @param id value or argument identifier
46 * @param arg list of arguments
47 * @return true if it evaluates to true
48 */
49 private boolean At(String id, String[] arg){
50 boolean result;
51 String output = "";
52 if (id.startsWith("$")) {
53 result = state.getSLF().getTarget ().equals(arg[Integer.parseInt(

id.substring (1))]);
54 output = arg[Integer.parseInt(id.substring (1))];
55 }
56 else {

C.1 ai 57

57 result = state.getSLF().getTarget ().equals(id);
58 output = id;
59 }
60 return result;
61 }
62

63 /**
64 * Evaluate the neighborTo conditional
65 * @param id value or argument identifier
66 * @param arg list of arguments
67 * @return true if it evaluates to true
68 */
69 private boolean neighborTo(String id, String[] arg){
70 boolean result;
71 String output;
72 if (id.startsWith("$")){
73 result = map.neighbours(arg[Integer.parseInt(id.substring (1))],

state.getSLF().getTarget ());
74 output = arg[Integer.parseInt(id.substring (1))];
75 }
76 else{
77 result = map.neighbours(id,state.getSLF().getTarget ());
78 output = id;
79 }
80 return result;
81 }
82

83 /**
84 * Evaluate the hasMoreAmmoThan conditional
85 *
86 * @return true if it evaluates to true
87 */
88 private boolean hasWeapon (){
89 boolean result = !state.getSLF().getWeapon ().equals("None");
90 return result;
91 }
92

93 /**
94 * Evaluate the neighborTo conditional
95 * @param value value or argument identifier
96 * @param arg list of arguments
97 * @return true if it evaluates to true
98 */
99 private boolean hasMoreAmmoThan(String value ,String[] arg){

100 boolean result;
101 int temp;
102 if (value.startsWith("$")) {
103 temp = Integer.parseInt(arg[Integer.parseInt(value.substring (1))])

;
104 } else {
105 temp = Integer.parseInt(value);
106 }
107 result = state.getSLF().getCurrentAmmo () > temp;
108 return result;
109 }
110

111 /**
112 * Evaluate the neighborTo conditional
113 * @param value value or argument identifier
114 * @param arg list of arguments
115 * @return true if it evaluates to true
116 */
117 private boolean hasMoreHealthThan(String value , String[] arg){
118 boolean result;
119 int temp;

58 Source Code

120 if (value.startsWith("$")){
121 temp = Integer.parseInt(arg[Integer.parseInt(value.substring (1))

]);
122 }else {
123 temp = Integer.parseInt(value);
124 }
125 result = state.getSLF().getHealth () > temp;
126 return result;
127 }
128 }

C.1.5 ai.Task.java

1 package ai;
2

3 import java.util.ArrayList;
4 import state.State;
5

6 /**
7 * SuperClass of all SimpleTasks and CompoundTasks
8 * @author Rene B. Hansen
9 */

10 public abstract class Task {
11

12 public final String name;
13

14 protected ArrayList <String > preconditions;
15 protected ArrayList <String > goals;
16 protected Conditionals conditionals;
17 protected State state;
18

19 /**
20 * Creates a new instance of Task
21 * @param name Task name
22 * @param conditionals Conditional
23 * @param state state.State
24 */
25 public Task(String name , Conditionals conditionals , State state) {
26 this.name = name;
27 this.conditionals = conditionals;
28 this.state = state;
29

30 this.goals = new ArrayList <String >();
31 this.preconditions = new ArrayList <String >();
32 }
33

34 /**
35 * Used by the parser to add goals to this Task
36 * @param goal String conditional
37 */
38 public void addGoal(String goal){
39 goals.add(goal);
40 }
41

42 /**
43 * Used by the parser to add preconditions to this Task
44 * @param constraint string conditional
45 */
46 public void addPrecondition(String constraint){
47 preconditions.add(constraint);
48 }
49

50 /**

C.1 ai 59

51 * Evaluates the goals of the task
52 * @param arg Arguments that the goals are to be evaluated with
53 * @return true all the goals evaluate to true
54 */
55 protected boolean checkGoals(String[] arg){
56 // Checking that the goal of the task is not already fullfilled
57 for (String s : goals){
58 if (conditionals.checkConditional(s,arg)){
59 return true;
60 }
61 }
62 return false;
63 }
64

65 /**
66 * Evaluates the preconditions of the task
67 * @param arg Arguments that the preconditions are to be evaluated with
68 * @return false if one of the preconditions returns false
69 */
70 protected boolean checkConstraints(String[] arg){
71 for (String s : preconditions){
72 if (! conditionals.checkConditional(s,arg)){
73 return false;
74 }
75 }
76 return true;
77 }
78

79 /**
80 * Abstract method which is to be implemented in the instantiating

subclass
81 */
82 public abstract boolean doTask(String[] arg);
83

84 }

C.1.6 ai.CompoundTask.java

1 package ai;
2

3 import java.util.ArrayList;
4 import java.util.List;
5 import state.State;
6

7 /**
8 * Task that consist of goals , conditionals and subtasks. Executes/decomposes

its subtasks.
9 * @author Rene B. Hansen

10 */
11 public class CompoundTask extends Task {
12

13 /**
14 * list of lists of subtasks
15 */
16 private ArrayList <ArrayList <SubTask >> subTasks;
17

18 /**
19 * Creates a new instance of CompoundTask
20 * @param name Task name
21 * @param conditionals AI.Conditionals to evaluate conditionals
22 * @param state state state.State
23 */
24 public CompoundTask(String name ,Conditionals conditionals , State state) {

60 Source Code

25 super(name ,conditionals ,state);
26 this.subTasks = new ArrayList <ArrayList <SubTask >>();
27 }
28

29 /**
30 * Method used by the parser to add subtasks
31 * @param t A subtask list
32 */
33 public void addSubTask(ArrayList <SubTask > t){
34 subTasks.add(t);
35 }
36

37 /**
38 * Decomposes/executes the subtasks
39 * @param arg Argument list this compound task is executed with
40 * @return returns true if one task in each of the subTasks list returns

true.
41 */
42 public boolean doTask(String[] arg) {
43 if (this.checkGoals(arg)) return true;
44

45 if (!this.checkConstraints(arg)) return false;
46

47 for (ArrayList <SubTask > a : subTasks){
48 boolean success = false;
49 for (SubTask t : a){
50 // Building up the arguments for the subtask
51 String[] temp = t.arguments.split(" ");
52 for (int i = 0; i < temp.length; i++){
53 if (temp[i]. startsWith("$")){
54 temp[i] = arg[Integer.parseInt(temp[i]. substring (1))

];
55 }
56 }
57

58 // Calling the subtasks
59 if (t.subTask.doTask(temp)) {
60 success = true;
61 break;
62 }
63 }
64 if (! success) return false;
65 }
66 return true;
67 }
68

69 /**
70 * toString method
71 * @return String representation of the context in this compound task
72 */
73 public String toString (){
74 String result = "name: " + this.name +"\n" +
75 "Goals: \n";
76 for (String s : this.goals){
77 result += " " + s + "\n";
78 }
79

80 result += "Preconditions: \n";
81 for (String s : this.preconditions){
82 result += " " + s + "\n";
83 }
84 result += "SubTasks: \n";
85

86 for (ArrayList <SubTask > a : subTasks){
87 result += " ";

C.1 ai 61

88 for (SubTask t : a){
89 result += t.toString () + ",";
90 }
91 result += "\n";
92 }
93 return result;
94 }
95 }

C.1.7 ai.SimpleTask.java

1 package ai;
2

3 import com.ComHandler;
4 import state.State;
5

6 /**
7 * SuperClass of all the simple tasks
8 * @author Rene B. Hansen
9 */

10 public abstract class SimpleTask extends Task {
11

12 protected ComHandler com;
13

14 /**
15 * Creates a new instance of SimpleTask
16 * @param name Task name
17 * @param con Conditionals
18 * @param com com.ComHandler
19 * @param state state.State
20 */
21 public SimpleTask(String name , Conditionals con , ComHandler com , State

state) {
22 super(name ,con ,state);
23 this.com = com;
24 }
25

26 /**
27 * toString method that returns a String representation of the SimpleTask

values
28 * @return String representation of the SimpleTask values
29 */
30 public String toString (){
31 String result = "";
32 result = "name: " + this.name +"\n" +
33 "Goals: \n";
34 for (String s : this.goals){
35 result += " " + s + "\n";
36 }
37

38 result += "Preconditions: \n";
39 for (String s : this.preconditions){
40 result += " " + s + "\n";
41 }
42 return result;
43 }
44 }

C.1.8 ai.AddBot.java

1 package ai;

62 Source Code

2

3 import com.ComHandler;
4 import exceptions.DuplicateTaskException;
5 import java.io.IOException;
6 import state.State;
7

8 /**
9 * Task to add a bot on the server.

10 * @author Rene B. Hansen
11 */
12 public class AddBot extends SimpleTask {
13

14 /**
15 * Creates a new instance of the AddBot Task
16 * @param con AI.Conditionals to evaluate conditionals
17 * @param com com.ComHandler to handle server communication
18 * @param state state.State
19 */
20 public AddBot(Conditionals con , ComHandler com , State state) {
21 super("AddBot",con ,com ,state);
22 }
23

24 /**
25 * Execute the AddBot task
26 * @param arg Arguments - botName and teamNumber
27 * @return Returns true if the task succeeds and false if it fails
28 */
29 public boolean doTask(String[] arg) {
30

31 // Checking that the goal of the task is not already fullfilled
32 if (super.checkGoals(arg)) return true;
33

34

35 // Checking that any possible constraints are not violated
36 if (!super.checkConstraints(arg)) return false;
37

38 try {
39 Coordinator.getInstance ().addBot(arg[0], Integer.parseInt(arg [1]))

;
40 } catch (NumberFormatException ex) {
41 ex.printStackTrace ();
42 } catch (DuplicateTaskException ex) {
43 ex.printStackTrace ();
44 } catch (IOException ex) {
45 ex.printStackTrace ();
46 }
47 return true;
48 }
49 }

C.1.9 ai.StartBot.java

1 package ai;
2

3 import com.ComHandler;
4 import state.State;
5

6 /**
7 * SimpleTask that starts the given ot on the server
8 * @author Rene B. Hansen
9 */

10 public class StartBot extends SimpleTask {
11

C.1 ai 63

12 /**
13 * Creates a new instance of the StartBot Task
14 * @param con AI.Conditionals to evaluate conditionals
15 * @param com com.ComHandler to handle server communication
16 * @param state state.State
17 */
18 public StartBot(Conditionals con , ComHandler com , State state) {
19 super("StartBot",con ,com ,state);
20 }
21

22 /**
23 * Execute the StartBot task
24 * @param arg Arguments - botName
25 * @return Returns true if the task succeeds and false if it fails
26 */
27 public boolean doTask(String[] arg) {
28 // Checking that the goal of the task is not already fullfilled
29 if (super.checkGoals(arg)) return true;
30

31

32 // Checking that any possible constraints are not violated
33 if (!super.checkConstraints(arg)) return false;
34

35 Coordinator.getInstance ().startBot(arg [0]);
36

37 return true;
38 }
39 }

C.1.10 ai.AssignTask.java

1 package ai;
2

3 import com.ComHandler;
4 import state.State;
5

6 /**
7 * Task to assign tasks to the bots/coordinator task list
8 * @author Rene B. Hansen
9 */

10 public class AssignTask extends SimpleTask {
11

12 /**
13 * Creates a new instance of the AssignTask Task
14 * @param con AI.Conditionals to evaluate conditionals
15 * @param com com.ComHandler to handle server communication
16 * @param state state.State
17 */
18 public AssignTask(Conditionals con , ComHandler com , State state) {
19 super("AssignTask",con ,com ,state);
20 }
21

22 /**
23 * Execute the AssignTask task
24 * @param arg Arguments - botName and taskName with its arguments
25 * @return Returns true if the task succeeds and false if it fails
26 */
27 public boolean doTask(String[] arg) {
28 // Checking that the goal of the task is not already fullfilled
29 if (super.checkGoals(arg)) return true;
30

31

32 // Checking that any possible constraints are not violated

64 Source Code

33 if (!super.checkConstraints(arg)) return false;
34

35 String temp = arg [1];
36 if (arg.length > 2){
37 for (int i = 2; i < arg.length; i++){
38 temp += " "+arg[i];
39 }
40 }
41 Coordinator.getInstance ().addTask(arg[0],temp);
42 return true;
43 }
44 }

C.1.11 ai.ClearTasks.java

1 package ai;
2

3 import com.ComHandler;
4 import state.State;
5

6 /**
7 * Task to clear the taskList of a bot/coordinator
8 * @author Rene B. Hansen
9 */

10 public class ClearTasks extends SimpleTask {
11

12 /**
13 * Creates a new instance of the ClearTasks Task
14 * @param con AI.Conditionals to evaluate conditionals
15 * @param com com.ComHandler to handle server communication
16 * @param state state.State
17 */
18 public ClearTasks(Conditionals con , ComHandler com , State state) {
19 super("ClearTasks",con ,com ,state);
20 }
21

22 /**
23 * Execute the ClearTasks task
24 * @param arg Arguments - botName
25 * @return Returns true if the task succeeds and false if it fails
26 */
27 public boolean doTask(String[] arg) {
28 // Checking that the goal of the task is not already fullfilled
29 if (super.checkGoals(arg)) return true;
30

31

32 // Checking that any possible constraints are not violated
33 if (!super.checkConstraints(arg)) return false;
34

35 Coordinator.getInstance ().clearAllTasks(arg [0]);
36 return true;
37 }
38 }

C.1.12 ai.Rotate.java

1 package ai;
2

3 import com.ComHandler;
4 import state.State;

C.1 ai 65

5

6 /**
7 * SimpleTask that makes the bot rotate a predefined amount
8 * @author Rene B. Hansen
9 */

10 public class Rotate extends SimpleTask {
11

12 /**
13 * Creates a new instance of the Rotate Task
14 * @param con AI.Conditionals to evaluate conditionals
15 * @param com com.ComHandler to handle server communication
16 * @param state state.State
17 */
18 public Rotate(Conditionals con , ComHandler com , State state) {
19 super("Rotate",con ,com ,state);
20 }
21

22 /**
23 * Execute the Rotate task
24 * @param arg Arguments - amount to rotate
25 * @return Returns true if the task succeeds and false if it fails
26 */
27 public boolean doTask(String[] arg) {
28 // Checking that the goal of the task is not already fullfilled
29 if (super.checkGoals(arg)) return true;
30

31

32 // Checking that any possible constraints are not violated
33 if (!super.checkConstraints(arg)) return false;
34

35

36 state.getSLF().startRotation(Integer.parseInt(arg [0]));
37 com.rotateAmount(Integer.parseInt(arg [0]));
38 try {
39 //Waits until the movement has been completesd
40 state.getSLF().waitForRotation ();
41 } catch (InterruptedException ex) {
42 ex.printStackTrace ();
43 //If the movement is for some reason interrupted , it is assumed

that
44 //the destination has no been reached.
45 return false;
46 }
47 return true;
48 }
49 }

C.1.13 ai.RunTo.java

1 package ai;
2

3 import com.ComHandler;
4 import state.State;
5

6 /**
7 * SimpleTask that makes the bot runto the given location
8 * @author Rene B. Hansen
9 */

10 public class RunTo extends SimpleTask{
11

12 /**
13 * Creates a new instance of the RunTo Task
14 * @param con AI.Conditionals to evaluate conditionals

66 Source Code

15 * @param com com.ComHandler to handle server communication
16 * @param state state.State
17 */
18 public RunTo(Conditionals con , ComHandler com , State state) {
19 super("RunTo",con ,com ,state);
20 }
21

22 /**
23 * Execute the RunTo task
24 * @param arg Arguments - visible destination to run to
25 * @return Returns true if the task succeeds and false if it fails
26 */
27 public boolean doTask(String[] arg) {
28 // Checking that the goal of the task is not already fullfilled
29 if (super.checkGoals(arg)) return true;
30

31

32 // Checking that any possible constraints are not violated
33 if (!super.checkConstraints(arg)) return false;
34

35

36 state.getSLF().startMovement ();
37 com.runToLocation(state.getNodeLocation(arg [0]));
38 state.getSLF().setTarget(arg [0]);
39 try {
40 //Waits until the movement has been completesd
41 state.getSLF().waitForMovement ();
42 } catch (InterruptedException ex) {
43 ex.printStackTrace ();
44 //If the movement is for some reason interrupted , it is assumed

that
45 //the destination has no been reached.
46 state.getSLF().setTarget("none");
47 return false;
48 }
49 return true;
50 }
51 }

C.1.14 ai.RunToRandom.java

1 package ai;
2

3 import com.ComHandler;
4 import state.State;
5

6 /**
7 * SimpleTask that makes the bot run to a random visible location
8 * @author Rene B. Hansen
9 */

10 public class RunToRandom extends SimpleTask {
11

12 /**
13 * Creates a new instance of the RunToRandom Task
14 * @param con AI.Conditionals to evaluate conditionals
15 * @param com com.ComHandler to handle server communication
16 * @param state state.State
17 */
18 public RunToRandom(Conditionals con , ComHandler com , State state) {
19 super("RunToRandom",con ,com ,state);
20 }
21

22 /**

C.1 ai 67

23 * Execute the RunToRandom task
24 * @param arg Arguments - none
25 * @return Returns true if the task succeeds and false if it fails
26 */
27 public boolean doTask(String[] arg) {
28 // Checking that the goal of the task is not already fullfilled
29 if (super.checkGoals(arg)) return true;
30

31

32 // Checking that any possible constraints are not violated
33 if (!super.checkConstraints(arg)) return false;
34

35

36 String id = state.getAReachableNodeId ();
37 if (id == null)return false;
38 state.getSLF().startMovement ();
39 com.runToLocation(state.getNodeLocation(id));
40 state.getSLF().setTarget(id);
41 try {
42 //Waits until the movement has been completesd
43 state.getSLF().waitForMovement ();
44 } catch (InterruptedException ex) {
45 ex.printStackTrace ();
46 //If the movement is for some reason interrupted , it is assumed

that
47 //the destination has no been reached.
48 state.getSLF().setTarget("none");
49 return false;
50 }
51 return true;
52 }
53 }

C.1.15 ai.RunToRandomINV.java

1 package ai;
2

3 import com.ComHandler;
4 import map.Node;
5 import state.State;
6

7 /**
8 * SimpleTask that makes the bot run to a random inventory node
9 * @author Rene B. Hansen

10 */
11 public class RunToRandomINV extends SimpleTask{
12

13 /**
14 * Creates a new instance of the RunToRandomINV Task
15 * @param con AI.Conditionals to evaluate conditionals
16 * @param com com.ComHandler to handle server communication
17 * @param state state.State
18 */
19 public RunToRandomINV(Conditionals con , ComHandler com , State state) {
20 super("RunToRandomINV",con ,com ,state);
21 }
22

23 /**
24 * Execute the RunToRandomINV task
25 * @param arg Arguments - none
26 * @return Returns true if the task succeeds and false if it fails
27 */
28 public boolean doTask(String[] arg) {

68 Source Code

29 // Checking that the goal of the task is not already fullfilled
30 if (super.checkGoals(arg)) return true;
31

32

33 // Checking that any possible constraints are not violated
34 if (!super.checkConstraints(arg)) return false;
35

36 Node n = state.getMap().getRandomInventoryLocation ();
37 if (n != null){
38 com.getPath(n.getLocation ());
39 try {
40 String[] path = state.getSLF().getPath ();
41 if (path == null) return false;
42 if (path.length > 0 && !path [0]. equals("NOPATH")){
43 for (int i = 0; i < path.length; i++){
44 state.getSLF().startMovement ();
45 com.runToLocation(path[i]);
46 if (state.getSLF().waitForMovement () == false) {
47 state.getSLF().setTarget("none");
48 return false;
49 }
50 }
51 state.getSLF().setTarget(n.getId());
52 } else {
53 state.getSLF().startMovement ();
54 com.runToLocation(n.getLocation ());
55 if (state.getSLF().waitForMovement () == false) {
56 state.getSLF().setTarget("none");
57 return false;
58 }
59 state.getSLF().setTarget(n.getId());
60 }
61

62

63 } catch (InterruptedException ex) {
64 ex.printStackTrace ();
65 state.getSLF().setTarget("none");
66 return false;
67 }
68 return true;
69 } else return false;
70 }
71 }

C.1.16 ai.ShootAtEnemy.java

1 package ai;
2

3 import com.ComHandler;
4 import state.PLR;
5 import state.State;
6

7 /**
8 * SimpleTask that makes the bot shoot at any visible enemies
9 * @author Rene B. Hansen

10 */
11 public class ShootAtEnemy extends SimpleTask {
12

13 /**
14 * Creates a new instance of the ShootAtEnemy Task
15 * @param con AI.Conditionals to evaluate conditionals
16 * @param com com.ComHandler to handle server communication
17 * @param state state.State

C.1 ai 69

18 */
19 public ShootAtEnemy(Conditionals con , ComHandler com , State state) {
20 super("ShootAtEnemy",con ,com ,state);
21 }
22

23 /**
24 * Execute the ShootAtEnemy task
25 * @param arg Arguments - none
26 * @return Returns true if the task succeeds and false if it fails
27 */
28 public boolean doTask(String[] arg) {
29 // Checking that the goal of the task is not already fullfilled
30 if (super.checkGoals(arg)) return true;
31

32

33 // Checking that any possible constraints are not violated
34 if (!super.checkConstraints(arg)) return false;
35

36 PLR plr = state.getAVisibleEnemyPLR ();
37 if (plr != null){
38 while (plr != null){
39 //com.turnToLocation(plr.getLocation ().toString ());
40 com.shootAt(plr.getLocation ().toString (),plr.getId());
41 try {
42 state.waitForEnemyPLRNonVisible(plr);
43 //com.turnToLocation(plr.getLocation ().toString ());
44 } catch (InterruptedException ex) {
45 ex.printStackTrace ();
46 return false;
47 }
48 if (state.getSLF().getCurrentAmmo () == 0) return false;
49 plr = state.getAVisibleEnemyPLR ();
50 }
51 com.stopShoot ();
52 } else return false;
53 return true;
54 }
55 }

C.1.17 ai.SubTask.java

1 package ai;
2

3 import java.util.ArrayList;
4

5 /**
6 * Container for a subTask
7 * @author Rene B. Hansen
8 */
9 public class SubTask {

10

11 public final Task subTask;
12 public final String arguments;
13

14 /**
15 * Creates a new instance of SubTask
16 * @param subTask Task contained by this subTask
17 * @param arguments Arguments for the task
18 */
19 public SubTask(Task subTask ,String arguments) {
20 this.subTask = subTask;
21 this.arguments = arguments;
22 }

70 Source Code

23

24 /**
25 * Returns a String representation of this subtask
26 * @return String of name and arguements
27 */
28 public String toString (){
29 String result = "";
30 result += this.subTask.name + " " + this.arguments;
31 return result;
32 }
33 }

C.1.18 ai.TravelTo.java

1 package ai;
2

3 import com.ComHandler;
4 import state.State;
5

6 /**
7 * Task to make the bot travel to the given location
8 * @author Rene B. Hansen
9 */

10 public class TravelTo extends SimpleTask{
11

12 /**
13 * Creates a new instance of the TravelTo Task
14 * @param con AI.Conditionals to evaluate conditionals
15 * @param com com.ComHandler to handle server communication
16 * @param state state.State
17 */
18 public TravelTo(Conditionals con , ComHandler com , State state) {
19 super("TravelTo",con ,com ,state);
20 }
21

22 /**
23 * Execute the TravelTo task
24 * @param arg Arguments - destination
25 * @return Returns true if the task succeeds and false if it fails
26 */
27 public boolean doTask(String[] arg) {
28 // Checking that the goal of the task is not already fullfilled
29 if (super.checkGoals(arg)) return true;
30

31

32 // Checking that any possible constraints are not violated
33 if (!super.checkConstraints(arg)) return false;
34

35 com.getPath(state.getNodeLocation(arg [0]));
36 try {
37 String[] path = state.getSLF().getPath ();
38 if (path == null)return false;
39 if (path.length > 0 && !path [0]. equals("NOPATH")){
40 for (int i = 0; i < path.length; i++){
41 state.getSLF().startMovement ();
42 com.runToLocation(path[i]);
43 if (state.getSLF().waitForMovement () == false) return

false;
44 }
45 state.getSLF().setTarget(arg [0]);
46 } else {
47 state.getSLF().startMovement ();
48 com.runToLocation(state.getMap().getLocation(arg [0]));

C.2 bot 71

49 if (state.getSLF().waitForMovement () == false) return false;
50 state.getSLF().setTarget(arg [0]);
51 }
52

53 } catch (InterruptedException ex) {
54 ex.printStackTrace ();
55 state.getSLF().setTarget("none");
56 return false;
57 }
58 return true;
59 }
60 }

C.2 bot

C.2.1 bot.Bot.java

1 package bot;
2

3 import com.ComHandler;
4 import java.io.BufferedReader;
5 import java.io.IOException;
6 import java.io.InputStreamReader;
7 import state.State;
8

9 /**
10 * SuperClass of the bots
11 * @author Rene B. Hansen
12 */
13 public abstract class Bot extends Thread{
14

15 public state.State state;
16 public ComHandler com;
17

18 /**
19 * Creates a new instance of Bot
20 * @throws java.io.IOException
21 */
22 public Bot() throws IOException {
23 state = new state.State();
24 com = new ComHandler(state);
25 }
26 }

C.2.2 bot.CCBot.java

1 package bot;
2

3 import ai.Planner;
4 import com.ComHandler;
5 import exceptions.DuplicateTaskException;
6 import java.io.IOException;
7 import java.util.ArrayList;
8 import java.util.HashMap;
9 import map.Map;

10

11 /**

72 Source Code

12 * Coordinator Controlled Bot , the bot version which is to be used with the
13 * coordinator
14 * @author Rene B. Hansen
15 */
16 public class CCBot extends Bot {
17

18 private Planner planner;
19 private ArrayList <String > tasks;
20 private int count;
21

22 public final String name;
23 public final int team;
24

25

26 /**
27 * Creates a new instance of CCBot
28 * @param name bot name
29 * @param team bot team
30 * @throws java.io.IOException
31 * @throws exceptions.DuplicateTaskException
32 */
33 public CCBot(String name , int team) throws IOException ,

DuplicateTaskException {
34 this.planner = new Planner(state ,com);
35 this.tasks = new ArrayList <String >();
36 this.name = name;
37 this.team = team;
38 count = 0;
39 }
40

41 /**
42 * Starts the bot
43 */
44 public void run() {
45 com.init(name ,team);
46 try {
47 Thread.sleep (2000);
48 } catch (InterruptedException ex) {
49 ex.printStackTrace ();
50 }
51 try {
52 while(true){
53 doTasks(getNextTask ());
54 }
55

56 } catch (InterruptedException ex) {
57 ex.printStackTrace ();
58 }
59 }
60

61 /**
62 * Executes the selected task via the planner
63 * @param s String representation of the taskName and arguments in
64 * @throws java.lang.InterruptedException
65 */
66 protected void doTasks(String s) throws InterruptedException{
67 String[] temp = s.split(" ");
68 if (temp.length > 1){
69 planner.doTask(temp[0],s.substring(temp [0]. length()).trim().split

(" "));
70 }else {
71 planner.doTask(temp[0], null);
72 }
73 this.sleep (100);
74 }

C.3 state 73

75

76

77 /**
78 * Adds a task to the bots taskList
79 * @param task String representation of the task to add
80 */
81 public synchronized void addTask(String task){
82 this.tasks.add(task);
83 }
84

85 /**
86 * Removes the specified task from the bots task list
87 * @param task String representation of the task to be removed
88 */
89 public synchronized void removeTask(String task){
90 this.tasks.remove(task);
91 }
92

93 /**
94 * Removes all tasks from the bots tasklist
95 */
96 public synchronized void clearAllTasks (){
97 this.tasks.clear();
98 }
99

100 /**
101 * Returns the next task to be executed
102 * @throws java.lang.InterruptedException
103 * @return String representation of the next task
104 */
105 protected synchronized String getNextTask () throws InterruptedException{
106 while(tasks.size() == 0) wait();
107 if (count > tasks.size() -1){
108 count = 1;
109 return tasks.get(0);
110 } else {
111 return tasks.get(count ++);
112 }
113 }
114 }

C.3 state

C.3.1 state.State.java

1 /*
2 * State.java
3 *
4 * Created on 3. september 2007, 12:25
5 *
6 * To change this template , choose Tools | Template Manager
7 * and open the template in the editor.
8 */
9

10 package state;
11

12 import java.util.ArrayList;
13 import java.util.HashMap;
14 import map.Map;
15 import map.Stalwart;

74 Source Code

16

17 /**
18 * The state contains the SLF along with all relevant information visible to

the bot
19 * @author Rene B. Hansen
20 */
21 public class State {
22

23 private String NFO;
24 private SLF slf;
25 private Map map;
26

27 private HashMap <String , PathNode > nodes;
28 private HashMap <String , PathNode > visibleNodes;
29

30 private HashMap <String , PLR > players;
31 private HashMap <String , PLR > visiblePlayers;
32

33

34 private boolean inSyncMSG = false;
35

36

37

38 /** Creates a new instance of State */
39 public State() {
40 this.nodes = new HashMap <String , PathNode >();
41 this.visibleNodes = new HashMap <String , PathNode >();
42 this.players = new HashMap <String , PLR >();
43 this.visiblePlayers = new HashMap <String , PLR >();
44

45 slf = new SLF();
46 map = new Stalwart ();
47 }
48

49 public void setNFO(String NFO){
50 this.NFO = NFO;
51 }
52

53 public SLF getSLF(){
54 return this.slf;
55 }
56

57 /**
58 * called as a synchronous block is started
59 */
60 public synchronized void startSync (){
61 this.inSyncMSG = true;
62 this.clearNodes ();
63 }
64

65 /**
66 * called as a synchronous block is ended
67 */
68 public synchronized void endSync (){
69 this.inSyncMSG = false;
70 this.notifyAll ();
71 }
72

73 /**
74 * Updates the NAVnodes
75 */
76 public synchronized void addNAVNode(String id, String location , boolean

reachable){
77 PathNode n;
78 if (nodes.containsKey(id)){

C.3 state 75

79 n = nodes.get(id);
80 n.setReachable(reachable);
81 visibleNodes.put(n.getId(),n);
82 } else {
83 n = new NAVNode(id,location ,reachable);
84 nodes.put(id,n);
85 visibleNodes.put(id,n);
86 }
87 }
88

89 /**
90 * Updates the INV nodes
91 */
92 public synchronized void addINVNode(String id, String location , boolean

reachable , String type){
93 PathNode n;
94 if (nodes.containsKey(id)){
95 n = nodes.get(id);
96 n.setReachable(reachable);
97 visibleNodes.put(n.getId(),n);
98 } else {
99 n = new INVNode(id,location ,reachable ,type);

100 nodes.put(id,n);
101 visibleNodes.put(id,n);
102 }
103 }
104

105 /**
106 * updates the DOM nodes
107 */
108 public synchronized void addDOMNode(String id, String location , boolean

reachable , int controller){
109 PathNode n;
110 if (nodes.containsKey(id)){
111 n = nodes.get(id);
112 n.setReachable(reachable);
113 visibleNodes.put(n.getId(),n);
114 } else {
115 n = new DOMNode(id,location ,reachable ,controller);
116 nodes.put(id,n);
117 visibleNodes.put(id,n);
118 }
119 }
120

121 /**
122 * updates the MOV nodes
123 */
124 public synchronized void addMOVNode(String id, String location , boolean

reachable , boolean damageTrig , String type){
125 PathNode n;
126 if (nodes.containsKey(id)){
127 n = nodes.get(id);
128 n.setReachable(reachable);
129 visibleNodes.put(n.getId(),n);
130 } else {
131 n = new MOVNode(id,location ,reachable ,damageTrig , type);
132 nodes.put(id,n);
133 visibleNodes.put(id,n);
134 }
135 }
136

137 /**
138 * updates the visible players
139 */

76 Source Code

140 public synchronized void updatePlayers(String id, String rotation , String
location , String velocity , String name , int team , boolean reachable

, String weapon){
141 if (players.containsKey(id)){
142 PLR plr = players.get(id);
143 plr.updatePLR(rotation , location , velocity , reachable , weapon

);
144 visiblePlayers.put(plr.getId(),plr);
145 }else {
146 PLR plr = new PLR(id, rotation , location , velocity , name ,

team , reachable , weapon);
147 players.put(plr.getId(),plr);
148 visiblePlayers.put(plr.getId(),plr);
149 }
150 }
151

152 /**
153 * returns a visible player. Returns null if there is no visible player

in sight
154 * @return player id or null
155 */
156 public synchronized PLR getAVisibleEnemyPLR (){
157 if (! visiblePlayers.isEmpty ()){
158 for (PLR p : visiblePlayers.values()){
159 if (p.getTeam () != this.getSLF().getTeam ()){
160 return p;
161 }
162 }
163 }
164 return null;
165 }
166

167 /**
168 * monitor to wait until no enemy players are in sight
169 */
170 public synchronized void waitForEnemyPLRNonVisible(PLR plr) throws

InterruptedException{
171 while (visiblePlayers.containsKey(plr.getId()) && this.getSLF().

getCurrentAmmo () > 0) {
172 wait();
173 }
174 }
175

176 /**
177 * Clears all visible nodes and players right before an update
178 */
179 public synchronized void clearNodes (){
180 visibleNodes.clear();
181 visiblePlayers.clear();
182 }
183

184

185 /**
186 * returns a reachable node id
187 * @return node id
188 */
189 public synchronized String getAReachableNodeId (){
190 for (PathNode n : visibleNodes.values()){
191 if (n.getReachable () && !n.getId().equals(slf.getTarget ())){
192 return n.getId();
193 }
194 }
195 return null;
196 }
197

C.3 state 77

198 /**
199 * returns the map
200 */
201 public Map getMap(){
202 return this.map;
203 }
204

205 /**
206 * returns a node location given its id
207 * @param id String id of a node
208 * @return The given node corresponding coordinates
209 */
210 public synchronized String getNodeLocation(String id){
211 return map.getLocation(id);
212 }
213 }

C.3.2 state.SLF.java

1 /*
2 * SLF.java
3 *
4 * Created on 5. november 2007, 13:05
5 *
6 * To change this template , choose Tools | Template Manager
7 * and open the template in the editor.
8 */
9

10 package state;
11

12 import util.Log;
13

14 /**
15 * Datastructure used to mainain all relevant information about the bot
16 * @author Rene B. Hansen
17 */
18 public class SLF {
19

20 public static final String ZERO_VELOCITY = "0.000000 ,0.000000 ,0.000000";
21

22 /* Auto -updating self variables */
23 private String id;
24 private Rotation rotation;
25 private Location location;
26 private String velocity;
27 private String name;
28 private int team;
29 private int health;
30 private String weapon;
31 private int currentAmmo;
32 private int armor;
33 private int altFiring;
34

35 /* Return value for GETPATH method*/
36 private String[] path = null;
37

38

39 /*Manual -updating self variables */
40 private String target = "none";
41 private boolean killed = false;
42

43 //For moving
44 // private String storedLocation = "none";

78 Source Code

45 // private String storedRotation = "none";
46

47

48 private Rotation targetRotation;
49 private Location formerLocation;
50

51 /** Creates a new instance of SLF */
52 public SLF() {
53 rotation = new Rotation ();
54 targetRotation = new Rotation ();
55 location = new Location ();
56 formerLocation = new Location ();
57 }
58

59 /**
60 * Method used by the parser to update all values.
61 */
62 public synchronized void updateSLF(String id, String rotation , String

location ,
63 String velocity , String name , int team , int health , String weapon

,
64 int currentAmmo , int armor , int altFiring){
65 this.id = id;
66 this.rotation.parseFromString(rotation);
67 this.location.parseFromString(location);
68 this.velocity = velocity;
69 this.name = name;
70 this.team = team;
71 this.health = health;
72 this.weapon = weapon;
73 this.currentAmmo = currentAmmo;
74 this.armor = armor;
75 this.altFiring = altFiring;
76 this.notifyAll ();
77 }
78

79 /**
80 * Updates the bots current location id
81 * @param target node id
82 */
83 public synchronized void setTarget(String target){
84 this.target = target;
85 }
86

87 /**
88 * returns the bots id location
89 */
90 public synchronized String getTarget (){
91 return new String(this.target);
92 }
93

94 public synchronized String getVelocity (){
95 return new String(this.velocity);
96 }
97

98 public synchronized Location getLocation (){
99 return new Location(this.location);

100 }
101

102 /* public synchronized void waitForVelocity(String velocity) throws
InterruptedException{

103 while (!this.velocity.equals(velocity)){
104 wait();
105 }
106 }*/

C.3 state 79

107

108

109 /**
110 * Used to record movement relevant information before a movement command

is sent
111 * to the server
112 */
113 public synchronized void startMovement (){
114 this.formerLocation.parseFromFloats(location.getX(),location.getY(),

location.getZ());
115 }
116

117

118

119 /**
120 * Used to record rotational relevant information before a rotation

command is sent
121 * to the server
122 */
123 public synchronized void startRotation(int yaw){
124 this.targetRotation.parseFromInts(rotation.getPitch (),rotation.getYaw

(),rotation.getRoll ());
125 this.targetRotation.addToYaw(yaw);
126 }
127

128

129 /**
130 * monitor to let the thread sleep while a rotation is taking place
131 */
132 public synchronized void waitForRotation () throws InterruptedException{
133 int timeout = 10;
134 while (!this.rotation.equalTo(this.targetRotation) && timeout != 0)

{
135 wait();
136 timeout --;
137 }
138 }
139

140

141 /**
142 * monitor to let the thread sleep while a movement is taking place
143 */
144 public synchronized boolean waitForMovement () throws InterruptedException

{
145 int timeout = 10;
146 while ((formerLocation.equalTo(this.location) || !(this.velocity.

equals(SLF.ZERO_VELOCITY))) && timeout != 0){
147 wait();
148 if (this.velocity.equals(SLF.ZERO_VELOCITY)) timeout --;
149 }
150 if (timeout == 0) return false;
151 else return true;
152

153 }
154

155

156 /**
157 * used by the parser to update with a requested path
158 */
159 public synchronized void updatePath(String[] path){
160 this.path = path;
161 }
162

163

164

80 Source Code

165 /**
166 * Block until server has responded with a path to last requested postion
167 * @return String[] containing the locations of the path that needs to be
168 * traversed in order to reach the requested destination
169 */
170 public synchronized String[] getPath () throws InterruptedException{
171 int timeout = 5;
172 while(this.path == null && timeout > 0) {
173 wait();
174 timeout --;
175 }
176 if (this.path == null) return null;
177 String[] result = new String[this.path.length];
178 System.arraycopy(this.path ,0,result ,0,this.path.length);
179 this.path = null;
180 return result;
181 }
182

183 public synchronized int getTeam (){
184 return this.team;
185 }
186

187 public synchronized String getWeapon (){
188 return this.weapon;
189 }
190

191 public synchronized int getCurrentAmmo (){
192 return this.currentAmmo;
193 }
194

195 public synchronized int getHealth (){
196 return this.health;
197 }
198

199 /**
200 * variable to tell relevant monitors that the bot has been killed
201 */
202 public synchronized void setKilled(boolean killed){
203 this.killed = killed;
204 }
205

206

207

208

209 public synchronized String toString (){
210 return "{Id " + id + "} {Rotation " + rotation + "} {Location " +

location +
211 "} {Velocity " + velocity + "} {Name " + name + "} {Team " +
212 team + "} {Health " + health + "} {Weapon " + this.weapon +
213 "} {CurrentAmmo " + currentAmmo + "} {Armor " + armor + "} {

AltFiring " + altFiring;
214 }
215

216 public synchronized void gotKilled () {
217 this.setTarget("none");
218 }
219

220 public synchronized String getId(){
221 return this.id;
222 }
223

224 public synchronized String getName (){
225 return this.name;
226 }
227

C.3 state 81

228

229

230 }

C.3.3 state.PLR.java

1 /*
2 * PLR.java
3 *
4 * Created on 27. januar 2008, 14:48
5 *
6 * To change this template , choose Tools | Template Manager
7 * and open the template in the editor.
8 */
9

10 package state;
11

12 /**
13 * The representation of another player
14 * @author Rene B. Hansen
15 */
16 public class PLR {
17

18 private final String id;
19 private Rotation rotation;
20 private Location location;
21 private String velocity;
22 private final String name;
23 private final int team;
24 private boolean reachable;
25 private String weapon;
26

27

28

29 /**
30 * Creates a new instance of PLR
31 */
32 public PLR(String id, String rotation , String location , String velocity ,

String name , int team , boolean reachable , String weapon) {
33 this.id = id;
34 this.rotation = new Rotation(rotation);
35 this.location = new Location(location);
36 this.velocity = velocity;
37 this.name = name;
38 this.team = team;
39 this.reachable = reachable;
40 this.weapon = weapon;
41 }
42

43 public synchronized void updatePLR(String rotation , String location ,
String velocity , boolean reachable , String weapon){

44 this.rotation = new Rotation(rotation);
45 this.location = new Location(location);
46 this.velocity = velocity;
47 this.reachable = reachable;
48 this.weapon = weapon;
49 }
50

51 public String getId(){
52 return this.id;
53 }
54

55 public Rotation getRotation (){

82 Source Code

56 return this.rotation;
57 }
58

59 public synchronized Location getLocation (){
60 return this.location;
61 }
62

63 public String getVelocity (){
64 return this.velocity;
65 }
66 public String getName (){
67 return this.name;
68 }
69

70 public int getTeam (){
71 return this.team;
72 }
73

74 public boolean getReachable (){
75 return this.reachable;
76 }
77

78 public String getWeapon (){
79 return this.weapon;
80 }
81

82 public String toString (){
83 String result = "";
84 result += "id:"+this.id+" ";
85 result += "rotation:"+this.rotation+" ";
86 result += "location:"+this.location+" ";
87 result += "velocity:"+this.velocity+" ";
88 result += "name:"+this.name+" ";
89 result += "team:"+this.team+" ";
90 result += "reachable:"+this.reachable+" ";
91 result += "weapon:"+this.weapon;
92 return result;
93 }
94

95 }

C.3.4 state.PathNode.java

1 /*
2 * PathNode.java
3 *
4 * Created on 22. oktober 2007, 14:14
5 *
6 * To change this template , choose Tools | Template Manager
7 * and open the template in the editor.
8 */
9

10 package state;
11

12 /**
13 * Used to represent a path from one node to another
14 * @author Rene B. Hansen
15 */
16 public class PathNode {
17

18 private String id;
19

C.3 state 83

20 /*Until it is needed to do geometric calculations , the location might
aswell

21 be represented as a string*/
22 private String location;
23

24 private boolean reachable;
25

26 /** Creates a new instance of PathNode */
27 public PathNode () {
28 }
29

30 /**
31 * Creates a new instance of PathNode
32 */
33 public PathNode(String id, String location , boolean reachable){
34 this.id = id;
35 this.location = location;
36 this.reachable = reachable;
37 }
38

39 public void setId(String id){
40 this.id = id;
41 }
42

43 public String getId(){
44 return this.id;
45 }
46

47 public void setLocation(String location){
48 this.location = location;
49 }
50

51 public String getLocation (){
52 return this.location;
53 }
54

55 public void setReachable(boolean reachable){
56 this.reachable = reachable;
57 }
58

59 public boolean getReachable (){
60 return this.reachable;
61 }
62

63 public String toString (){
64 return "ID: " + id + " : " + location + " : " + reachable;
65 }
66 }

C.3.5 state.NAVNode.java

1 /*
2 * NAVNode.java
3 *
4 * Created on 22. oktober 2007, 16:13
5 *
6 * To change this template , choose Tools | Template Manager
7 * and open the template in the editor.
8 */
9

10 package state;
11

12 /**

84 Source Code

13 * Navigational node , denotes the location of a navigation point
14 * @author Rene B. Hansen
15 */
16 public class NAVNode extends PathNode {
17

18 /** Creates a new instance of NAVNode */
19 public NAVNode () {
20 }
21

22 /**
23 * Creates a new instance of NAVNode
24 */
25 public NAVNode(String id, String location , boolean reachable){
26 super(id,location ,reachable);
27 }
28

29 }

C.3.6 state.DOMNode.java

1 package state;
2

3 /**
4 * Domination node , denotes a domination location
5 * @author Rene B. Hansen
6 */
7 public class DOMNode extends PathNode {
8

9 private int controller;
10

11 /** Creates a new instance of DOMNode */
12 public DOMNode () {
13 }
14

15 /**
16 * Creates a new instance of DOMNode
17 */
18 public DOMNode(String id, String location , boolean reachable , int

controller){
19 super(id,location ,reachable);
20 this.controller = controller;
21 }
22

23 public void setController(int controller){
24 this.controller = controller;
25 }
26

27 public int getController (){
28 return this.controller;
29 }
30

31 public String toString (){
32 return super.toString () + " : " + controller;
33 }
34 }

C.3.7 state.INVNode.java

1 package state;
2

C.3 state 85

3 /**
4 * Inventory node , denotes the location of an inventory item
5 * @author Rene B. Hansen
6 */
7 public class INVNode extends PathNode {
8

9 private String type;
10

11 /** Creates a new instance of INVNode */
12 public INVNode () {
13 }
14

15 /**
16 * Creates a new instance of INVNode
17 */
18 public INVNode(String id, String location , boolean reachable , String type

){
19 super(id,location ,reachable);
20 this.type = type;
21 }
22

23 public void setType(String type){
24 this.type = type;
25 }
26

27 public String getType (){
28 return this.type;
29 }
30

31 public String toString (){
32 return super.toString () + " : " + type;
33 }
34

35 }

C.3.8 state.MOVNode.java

1 /*
2 * MOVNode.java
3 *
4 * Created on 23. oktober 2007, 02:44
5 *
6 * To change this template , choose Tools | Template Manager
7 * and open the template in the editor.
8 */
9

10 package state;
11

12 /**
13 * Mover node , denotes the location of a mover , such as a lift
14 * @author Rene B. Hansen
15 */
16 public class MOVNode extends PathNode {
17

18 private boolean damageTrig;
19 private String type;
20

21 /** Creates a new instance of MOVNode */
22 public MOVNode () {
23 }
24

25 public MOVNode(String id, String location , boolean reachable , boolean
damageTrig , String type){

86 Source Code

26 super(id,location ,reachable);
27 this.damageTrig = damageTrig;
28 this.type = type;
29 }
30

31 public void setDamageTrig(boolean damageTrig){
32 this.damageTrig = damageTrig;
33 }
34

35 public boolean getDamageTrig (){
36 return damageTrig;
37 }
38

39 public void setType(String type){
40 this.type = type;
41 }
42

43 public String getType (){
44 return this.type;
45 }
46

47 public String toString (){
48 return super.toString () + " : " + damageTrig + " : " + type;
49 }
50

51 }

C.3.9 state.Location.java

1 package state;
2

3 /**
4 * Internal representation of a location
5 * @author Rene B. Hansen
6 */
7 public class Location {
8

9 private float x;
10 private float y;
11 private float z;
12

13 /** Creates a new instance of Location */
14 public Location (){
15

16 }
17

18 /**
19 * Creates a new instance of Location
20 */
21 public Location(float x, float y, float z) {
22 parseFromFloats(x,y,z);
23 }
24

25 /**
26 * Creates a new instance of Location
27 */
28 public Location(String location){
29 parseFromString(location);
30 }
31

32 /**
33 * Creates a new instance of Location
34 */

C.3 state 87

35 public Location(Location location){
36 this.x = location.getX();
37 this.y = location.getY();
38 this.z = location.getZ();
39 }
40

41 public void parseFromString(String location){
42 String[] elements = location.split(",");
43 this.x = Float.parseFloat(elements [0]);
44 this.y = Float.parseFloat(elements [1]);
45 this.z = Float.parseFloat(elements [2]);
46 }
47

48 public void parseFromFloats(float x, float y, float z){
49 this.x = x;
50 this.y = y;
51 this.z = z;
52 }
53

54 public float getX(){
55 return this.x;
56 }
57

58 public float getY(){
59 return this.y;
60 }
61

62 public float getZ(){
63 return this.z;
64 }
65

66 public boolean equalTo(Location l){
67 return (this.x == l.getX()) && (this.y == l.getY()) && (this.z == l.

getZ());
68 }
69

70 public String toString (){
71 return "" +this.x+","+this.y+","+this.z;
72 }
73

74 }

C.3.10 state.Rotation.java

1 /*
2 * Rotation.java
3 *
4 * Created on 7. november 2007, 14:14
5 *
6 * To change this template , choose Tools | Template Manager
7 * and open the template in the editor.
8 */
9

10 package state;
11

12 /**
13 * Internal representation of a bots current rotation
14 * @author Rene B. Hansen
15 */
16 public class Rotation {
17

18 private int pitch;
19 private int yaw;

88 Source Code

20 private int roll;
21

22 /** Creates a new instance of Rotation */
23 public Rotation (){
24

25 }
26

27 /**
28 * Creates a new instance of Rotation
29 */
30 public Rotation(int pitch , int yaw , int roll) {
31 parseFromInts(pitch ,yaw ,roll);
32 }
33

34 /**
35 * Creates a new instance of Rotation
36 */
37 public Rotation(String rotation){
38 parseFromString(rotation);
39 }
40

41 /**
42 * Creates a new instance of Rotation
43 */
44 public Rotation(Rotation rotation){
45 this.pitch = rotation.getPitch ();
46 this.yaw = rotation.getYaw();
47 this.roll = rotation.getRoll ();
48 }
49

50 public void parseFromString(String rotation){
51 String[] elements = rotation.split(",");
52 this.pitch = Integer.parseInt(elements [0]);
53 this.yaw = Integer.parseInt(elements [1]);
54 this.roll = Integer.parseInt(elements [2]);
55 }
56

57 public void parseFromInts(int pitch , int yaw , int roll){
58 this.pitch = pitch ;
59 this.yaw = yaw;
60 this.roll = roll;
61 }
62

63 public void addToYaw(int rotation){
64 this.yaw = (yaw + rotation) % 65535;
65 }
66

67 public int getPitch (){
68 return this.pitch;
69 }
70

71 public int getYaw(){
72 return this.yaw;
73 }
74

75 public int getRoll (){
76 return this.roll;
77 }
78

79 public boolean equalTo(Rotation r){
80 return (Math.abs(this.pitch - r.getPitch ()) < 500) && (Math.abs(this.

yaw - r.getYaw()) < 500) && (/*Math.abs(this.roll - r.getRoll ())
< 100*/ true);

81

82 }

C.4 com 89

83

84 public String toString (){
85 return "" +this.pitch+","+this.yaw+","+this.roll;
86 }
87

88 }

C.4 com

C.4.1 com.ComHandler.java

1 package com;
2

3 import state.State;
4

5 /**
6 * Class that handles all communication to and from the UT server
7 * @author Rene B. Hansen
8 */
9 public class ComHandler {

10

11 private Parser parser;
12 public Connection connection;
13

14

15 /**
16 * Creates a new instance of ComHandler
17 * @param state state to update uppon incoming msg
18 */
19 public ComHandler(State state) {
20 parser = new Parser(state);
21 connection = new Connection(parser);
22 }
23

24

25 /**
26 * Initializes the bot on the server , with a random name and team
27 */
28 public void init(){
29 connection.write("INIT");
30 }
31

32

33 /**
34 * Initializes the bot on the server , with the given name and on a random

team
35 * @param name The name of the bot
36 */
37 public void init(String name){
38 connection.write("INIT {Name "+name);
39 }
40

41

42 /**
43 * Initialzes the bot on the server , with the given name and team
44 * @param name The name of the bot
45 * @param team The team of the bot
46 */
47 public void init(String name , int team){
48 connection.write("INIT {Name "+name+"} {Team "+team+"}");

90 Source Code

49 }
50

51

52 /**
53 * Runs to the given target. The target most be in visual range
54 * @param id The Id of the target , most be visual to the bot
55 */
56 public void runToTarget(String id){
57 connection.write("RUNTO {Target "+id+"}");
58 }
59

60

61 /**
62 * Turns and runs in a straight line to the raget.
63 *
64 * @param location The x,y,z coordinates of the location , most be on the
65 * form ’x,y,z’ or ’x y z’
66 */
67 public void runToLocation(String location){
68 connection.write("RUNTO {Location "+location+"}");
69 }
70

71 /**
72 * rotation should be ("0 50000 0" or "0 ,50000 ,0") and 2Pi = 65535 units
73 * @param pitch pitch value
74 * @param yaw yaw value
75 * @param roll roll value
76 */
77 public void turnToRotation(int pitch , int yaw , int roll){
78 connection.write("TURNTO {Rotation "+pitch+","+yaw+","+roll+"}");
79 }
80

81 /**
82 * Turns the bot towards the given location
83 * @param location location to turn to
84 */
85 public void turnToLocation(String location){
86 connection.write("TURNTO {Location "+location+"}");
87 }
88

89 /**
90 * Makes the bot rotate the given amount
91 * @param amount value to rotate
92 */
93 public void rotateAmount(int amount){
94 connection.write("ROTATE {Amount "+amount+"}");
95 }
96

97 /**
98 * Requests the server for a path from the bots current location , to the

location
99 * specified by the x,y,z values

100 * @param x value
101 * @param y value
102 * @param z value
103 */
104 public void getPath(int x, int y, int z){
105 connection.write("GETPATH {Location "+x+" "+y+" "+z+"}");
106 }
107

108 /**
109 * Requests the server for a path from the bots current location , to the

location
110 * specified by the string
111 * @param location x,y,z string location

C.4 com 91

112 */
113 public void getPath(String location){
114 connection.write("GETPATH {Location "+location+"}");
115 }
116

117 /**
118 * Makes the bot shoot at the given target and/or location
119 * @param location location on the form x,y,z
120 * @param target target id
121 */
122 public void shootAt(String location ,String target){
123 connection.write("SHOOT {Location "+location+"} {Target "+target+"}")

;
124 }
125

126 /**
127 * Makes the bot stop shooting
128 */
129 public void stopShoot (){
130 connection.write("STOPSHOOT");
131 }
132

133 }

C.4.2 com.Connection.java

1 package com;
2

3 import java.io.BufferedReader;
4 import java.io.DataInputStream;
5 import java.io.DataOutputStream;
6 import java.io.IOException;
7 import java.io.InputStreamReader;
8 import java.io.PrintWriter;
9 import java.net.Socket;

10 import java.net.UnknownHostException;
11

12 /**
13 * Connection to the UT server
14 * @author Rene B. Hansen
15 */
16 public class Connection extends Thread{
17

18 private Socket socket;
19 private BufferedReader in;
20 private DataOutputStream out;
21

22 private Parser parser;
23

24

25 /**
26 * The connection to the UT server
27 * @param parser The parser for incomming messages
28 */
29 public Connection(Parser parser) {
30 this.parser = parser;
31 try {
32 socket = new Socket("localhost" ,3000);
33 in = new BufferedReader(new InputStreamReader(socket.

getInputStream ()));
34 out = new DataOutputStream(socket.getOutputStream ());
35 this.start();
36 } catch (UnknownHostException ex) {

92 Source Code

37 ex.printStackTrace ();
38 } catch (IOException ex) {
39 ex.printStackTrace ();
40 }
41 }
42

43 /**
44 * run method for the connection
45 */
46 public void run(){
47 try{
48 String responseLine;
49 while ((responseLine = in.readLine ()) != null) {
50 parser.parseMsg(responseLine);
51 }
52 System.err.println("COM ERROR - response line was null");
53

54 }catch (IOException ioe){ioe.printStackTrace ();}
55

56 }
57

58 /**
59 * Sends the given String to the output of the connection
60 * @param msg output to the server
61 */
62 public void write(String msg){
63 try {
64 out.writeBytes(msg+"\r");
65 out.flush();
66 } catch (IOException ex) {
67 ex.printStackTrace ();
68 }
69 }
70 }

C.4.3 com.Parser.java

1 package com;
2

3 import state.DOMNode;
4 import state.INVNode;
5 import state.MOVNode;
6 import state.NAVNode;
7 import state.State;
8 import java.util.StringTokenizer;
9 import util.Log;

10

11 /**
12 * Parser for msg’s from the server
13 * @author Rene B. Hansen
14 */
15 public class Parser {
16

17 private State state;
18 private StringTokenizer tokenizer;
19 private String command;
20

21 private boolean inSyncMSG;
22

23 /**
24 * Creates a new instance of Parser
25 * @param state The state of the world
26 */

C.4 com 93

27 public Parser(State state) {
28 this.state = state;
29 this.inSyncMSG = false;
30 }
31

32 /**
33 * Method called to parse an incoming message
34 * @param msg message to be parsed
35 */
36 public void parseMsg(String msg){
37 if (msg.length() >= 3) command = msg.substring (0,3);
38 else System.err.println("ERROR - invalid msg: "+msg);
39

40

41 if (command.equals("NFO")){
42 NFO(msg.substring (4));
43 } else if (command.equals("NAV")){
44 NAV(msg.substring (4));
45 } else if (command.equals("BEG")){
46 BEG();
47 } else if (command.equals("END")){
48 END();
49 } else if (command.equals("INV")){
50 INV(msg.substring (4));
51 } else if (command.equals("DOM")){
52 DOM(msg.substring (4));
53 } else if (command.equals("MOV")){
54 MOV(msg.substring (4));
55 } else if (command.equals("FIN")){
56 System.out.println("The Game has finished ...");
57 } else if (command.equals("SLF")){
58 SLF(msg.substring (4));
59 } else if (command.equals("PTH")){
60 PTH(msg.substring (4));
61 }else if (command.equals("PLR")){
62 PLR(msg.substring (4));
63 }else if (command.equals("BMP")){
64 BMP();
65 }else if (command.equals("DIE")){
66 DIE();
67 }else if (command.equals("KIL")){
68 }else{
69 // System.err.println ("THIS WAS NOT COUGHT IN THE PARSER: " + msg)

;
70 }
71 }
72

73 private void NFO(String NFO){
74 state.setNFO(NFO);
75 }
76

77 private void NAV(String NAV){
78 String[] elements = NAV.split(" ");
79 state.addNAVNode(elements [1]. substring(0,elements [1]. length() - 1),
80 elements [3]. substring(0,elements [3]. length() - 1),
81 Boolean.valueOf(elements [5]. substring(0,elements [5]. length()

- 1)));
82 }
83

84 private void INV(String INV){
85 String[] elements = INV.split(" ");
86 state.addINVNode(elements [1]. substring(0,elements [1]. length() - 1),
87 elements [3]. substring(0,elements [3]. length() - 1),
88 Boolean.valueOf(elements [5]. substring(0,elements [5]. length()

- 1)),

94 Source Code

89 elements [7]. substring(0,elements [7]. length() - 1));
90 }
91

92 private void DOM(String DOM){
93 String[] elements = DOM.split(" ");
94 state.addDOMNode(elements [1]. substring(0,elements [1]. length() - 1),
95 elements [3]. substring(0,elements [3]. length() - 1),
96 Boolean.valueOf(elements [5]. substring(0,elements [5]. length()

- 1)),
97 Integer.parseInt(elements [7]. substring(0,elements [7]. length()

- 1)));
98 }
99

100 private void MOV(String MOV){
101 String[] elements = MOV.split(" ");
102 state.addMOVNode(elements [1]. substring(0,elements [1]. length() - 1),
103 elements [3]. substring(0,elements [3]. length() - 1),
104 Boolean.valueOf(elements [5]. substring(0,elements [5]. length()

- 1)),
105 Boolean.valueOf(elements [7]. substring(0,elements [7]. length()

- 1)),
106 elements [9]. substring(0,elements [9]. length() - 1));
107 }
108

109 private void SLF(String SLF){
110 String[] elements = SLF.split(" ");
111 state.getSLF().updateSLF(
112 elements [1]. substring(0,elements [1]. length() - 1),//Id
113 elements [3]. substring(0,elements [3]. length() - 1),// Rotation
114 elements [5]. substring(0,elements [5]. length() - 1),// Location
115 elements [7]. substring(0,elements [7]. length() - 1),// Velocity
116 elements [9]. substring(0,elements [9]. length() - 1),//Name
117 Integer.parseInt(elements [11]. substring(0,elements [11]. length

() - 1)),//Team
118 Integer.parseInt(elements [13]. substring(0,elements [13]. length

() - 1)),// Health
119 elements [15]. substring(0,elements [15]. length() - 1),// Weapon
120 Integer.parseInt(elements [17]. substring(0,elements [17]. length

() - 1)),// CurrentAmmo
121 Integer.parseInt(elements [19]. substring(0,elements [19]. length

() - 1)),//Armor
122 Integer.parseInt(elements [21]. substring(0,elements [21]. length

() - 1)));// AltFiring
123 //state.printSLF ();
124 }
125

126 private void PTH(String PTH){
127 String[] elements = PTH.split(" ");
128 String[] result = {"NOPATH"};
129 if(elements.length > 2){
130 result = new String[(elements.length -2) / 3];
131 for (int i = 0; i < result.length; i++){
132 result[i] = elements [((i+1)*3) - 1 + 2]. substring(0, elements

[((i+1)*3) - 1 + 2]. length() - 1);
133 }
134 } else {
135 }
136 state.getSLF().updatePath(result);
137 }
138

139 private void PLR(String PLR){
140 String[] elements = PLR.split(" ");
141 state.updatePlayers(
142 elements [1]. substring(0,elements [1]. length() - 1),//Id
143 elements [3]. substring(0,elements [3]. length() - 1),// Rotation

C.5 map 95

144 elements [5]. substring(0,elements [5]. length() - 1),// Location
145 elements [7]. substring(0,elements [7]. length() - 1),// Velocity
146 elements [9]. substring(0,elements [9]. length() - 1),//Name
147 Integer.parseInt(elements [11]. substring(0,elements [11]. length

() - 1)),//Team
148 Boolean.parseBoolean(elements [13]. substring(0,elements [13].

length() - 1)),// Reachable
149 elements [15]. substring(0,elements [15]. length() - 1)// Weapon
150);
151 }
152

153

154 private void BMP(){
155 }
156

157 private void DIE(){
158 state.getSLF().gotKilled ();
159 }
160

161 private void BEG(){
162 state.startSync ();
163 }
164

165 private void END(){
166 state.endSync ();
167 //state.printNodes ();
168 }
169

170 }

C.5 map

C.5.1 map.Map.java

1 package map;
2

3 import java.io.BufferedReader;
4 import java.io.IOException;
5 import java.util.HashMap;
6 import util.FileHandler;
7

8 /**
9 * An internal representation of the map. Is used to get information about

map
10 * specific details , e.g. to convert an map id to a map location.
11 * @author Rene B. Hansen
12 */
13 public class Map {
14

15 private HashMap <String ,Node > map;
16 private boolean mapUpdated = false;
17 private String mapName = "Stalwart";
18 private int counter = 0;
19

20

21 /**
22 * Creates a new instance of Map
23 * @param mapName name of the map
24 */
25 public Map(String mapName){

96 Source Code

26 this.mapName = mapName;
27 map = new HashMap <String ,Node >();
28 loadMap(mapName);
29 }
30

31 /**
32 * Adds a node to the map
33 * @param id node id
34 * @param location node location on the form x,y,z
35 * @return the node just added
36 */
37 public synchronized Node addNode(String id, String location){
38 if (!map.containsKey(id)){
39 Node n = new Node(id,location);
40 map.put(id,n);
41 mapUpdated = true;
42 return n;
43 }else return map.get(id);
44 }
45

46 /**
47 * Load a map from a file specified by the name
48 * @param name file name to be loaded
49 */
50 public synchronized void loadMap(String name){
51 BufferedReader in = FileHandler.In(name);
52 if (in != null){
53 try {
54 String temp = in.readLine ();
55 String[] elem;
56 Node current = null;
57 while (temp != null){
58 elem = temp.split(" ");
59 if (elem.length == 2){
60 current = this.addNode(elem[0],elem [1]);
61 }else if (elem.length == 3 && current != null){
62 current.addNode(this.addNode(elem[1],elem [2]));
63 }else {
64 System.err.println("Error ... : invalid line parsed

from map" +
65 " ’" + temp+"’");
66 }
67 temp = in.readLine ();
68 }
69 } catch (IOException ex) {
70 ex.printStackTrace ();
71 }
72 }else System.err.println("Reader Failed");
73 }
74

75 /**
76 * Writes the map to a file
77 */
78 public synchronized void updateMap (){
79 if (true){
80 mapUpdated = false;
81 FileHandler.Out(mapName+counter ,this.toFile());
82 counter ++;
83 }
84 }
85

86 /**
87 * Returns true if the two ndoes are neighbours
88 * @param id1 node1
89 * @param id2 node2

C.5 map 97

90 * @return true if node1 is neighbour to node2
91 */
92 public synchronized boolean neighbours(String id1 ,String id2){
93 if (map.containsKey(id1) && map.containsKey(id2)){
94 Node n = map.get(id1);
95 return n.getReachableNodes().contains(map.get(id2));
96 }else return false;
97 }
98

99 /**
100 * Aux method used to convert the map to a proper string form , so that it

can be
101 * written to a file
102 * @return String representation of the map
103 */
104 public synchronized String toFile(){
105 String result = "";
106 for (Node n : map.values()){
107 result += n.getId() + " "+n.getLocation ()+"\n";
108 for (Node neighbor : n.getReachableNodes()){
109 result += "@ "+neighbor.getId()+" "+neighbor.getLocation ()+"\

n";
110 }
111 }
112 return result;
113 }
114

115 /**
116 * Returns the location of the specified node
117 * @param id id of a node
118 * @return corresponding location on the form x,y,z
119 */
120 public synchronized String getLocation(String id){
121 if (map.containsKey(id)){
122 return map.get(id).getLocation ();
123 } else return null;
124 }
125

126 /**
127 * Returns a random inventory node
128 * @return inventory node id
129 */
130 public synchronized Node getRandomInventoryLocation (){
131 double temp = Math.random();
132 temp = temp * (double)map.size();
133 int i = (int) temp;
134 Node result = null;
135 for (Node n : map.values()){
136 if (n.getId().startsWith("dom -stalwart.InventorySpot ")){
137 result = n;
138 }
139 i--;
140 if (i <= 0 && result != null) return result;
141 }
142 return result;
143 }
144

145

146

147

148 }

98 Source Code

C.5.2 map.Node.java

1 package map;
2

3 import java.util.ArrayList;
4

5 /**
6 * Datastructure of a map node
7 * @author Rene B. Hansen
8 */
9 public class Node {

10

11 private String id;
12 private String location;
13 private ArrayList <Node > reachableNodes;
14

15 boolean discovered;
16 boolean finalized;
17

18 /** Creates a new instance of Node */
19 public Node(String id, String location) {
20 this.id = id;
21 this.location = location;
22 this.discovered = false;
23 this.finalized = false;
24 reachableNodes = new ArrayList <Node >();
25 }
26

27 public void addNode(Node n){
28 if (! reachableNodes.contains(n)){
29 reachableNodes.add(n);
30 }
31 }
32

33 public String getId(){
34 return this.id;
35 }
36

37 public void setDiscovered(boolean discovered){
38 this.discovered = discovered;
39 }
40

41 public boolean getDiscovered (){
42 return this.discovered;
43 }
44

45 public void setFinalized(boolean finalized){
46 this.finalized = finalized;
47 }
48

49 public boolean getFinalized (){
50 return this.finalized;
51 }
52

53 public String getLocation (){
54 return this.location;
55 }
56

57 public ArrayList <Node > getReachableNodes(){
58 return this.reachableNodes;
59 }
60

61 public String toString (){
62 return "id:"+id+" - location:"+location+" - discovered:"+discovered;
63 }

C.6 test 99

64

65 public String toFile(){
66 String result = "";
67

68 result += id + "," + location + "\n\n";
69 for (Node n : reachableNodes){
70 result += n.getId()+"\n";
71 }
72

73 return result;
74 }
75

76 }

C.5.3 map.Stalwart.java

1 package map;
2

3 /**
4 *
5 * @author Rene B. Hansen
6 */
7 public class Stalwart extends Map{
8

9

10 /** Creates a new instance of Stalwart */
11 public Stalwart () {
12 super("Stalwart");
13 }
14 }

C.6 test

C.6.1 test.Main.java

1 package test;
2

3 import ai.Coordinator;
4 import bot.Bot;
5 import exceptions.DuplicateTaskException;
6 import java.io.IOException;
7

8 /**
9 * Main method

10 * @author Rene B. Hansen
11 */
12 public class Main {
13

14 /**
15 * Path and name for simpleTasks HTN file
16 */
17 public static String simpleTasks = "simpletasks.htn";
18 /**
19 * Path and name for compoundTasks HTN file
20 */
21 public static String compoundTasks = "compoundtasks.htn";
22

100 Source Code

23

24 /** Creates a new instance of Main */
25 public Main() {
26 Coordinator c = Coordinator.getInstance ();
27 }
28

29 /**
30 *
31 * @param args the command line arguments denotes the names of the

simpletask and compound task
32 * file.
33 */
34 public static void main(String[] args) {
35 if (args.length > 1){
36 Main.simpleTasks = args [0];
37 Main.compoundTasks = args [1];
38 }else if (args.length == 1){
39 Main.simpleTasks = args [0];
40 }
41

42 Main m = new Main();
43

44 }
45

46 }

C.7 exceptions

C.7.1 exceptions.DuplicateTaskException.java

1 package exceptions;
2

3 /**
4 * Exception to be thrown by the parser if a method appear more than once in

the syntax
5 * @author Rene B. Hansen
6 */
7 public class DuplicateTaskException extends Exception {
8

9 /**
10 * Creates a new instance of DuplicateTaskException
11 */
12 public DuplicateTaskException() {
13 super();
14 }
15

16 /**
17 *
18 * @param message String message
19 */
20 public DuplicateTaskException(String message){
21 super(message);
22 }
23 }

C.8 util 101

C.8 util

C.8.1 util.FileHandler.java

1 package util;
2

3 import java.io.*;
4

5 /**
6 * Class used to handle the IO files
7 * @author Rene B. Hansen
8 */
9 public class FileHandler {

10

11 /**
12 * Creates a new instance of FileHandler
13 */
14 public FileHandler () {
15 }
16

17 public static void Out(String name , String contents){
18 try{
19 // Create file
20 FileWriter fstream = new FileWriter(name);
21 BufferedWriter out = new BufferedWriter(fstream);
22 out.write(contents);
23 //Close the output stream
24 out.close();
25 }catch (Exception e){//Catch exception if any
26 System.err.println("Error: " + e.getMessage ());
27 }
28 }
29

30 public static BufferedReader In(String name){
31 try{
32 FileReader fstream = new FileReader(name);
33 BufferedReader in = new BufferedReader(fstream);
34 return in;
35 }catch (Exception e){
36 System.err.println("Error: "+ e.getMessage ());
37 }
38 return null;
39 }
40

41 }

C.8.2 util.Log.java

1 package util;
2

3 /**
4 * Utility to print pretty print Object[]
5 * @author Rene B. Hansen
6 */
7 public class Log {
8

9 public static String print(Object[] in){
10 String result = "";
11 if (in == null) result = "null";
12 else {

102 Source Code

13 for (Object o : in){
14 result += o.toString () + " ";
15 }
16 }
17 return result.substring(0,result.length() -1);
18 }
19 }

Bibliography

[1] Ghallab, Malik; Nau, Dana and Traverso, Paolo (2004). Automated Plan-
ning Theory and Practice.

[2] Muñoz-Avila, Héctor and Fisher, Todd (2002). Strategic Planning for Un-
real Tournement c© Bots. Article, Department of Computer Science and
Engineering, Lehigh University.

[3] Hoang, Hai; Lee-Urban, Stephen; Muñoz-Avila, Héctor. Hierarchical Plan
Representations for Encoding Strategic Game AI. Department of Computer
Science & Engineering, Lehigh University, Bethlehem, PA 18015-3084 USA.

[4] Orkin, Jeff (2006). Three States and a Plan: The A.I. of F.E.A.R. Mono-
lith Productions / M.I.T Media Lab, Cognitive Machines Group. Game
Developers Conference 2006.

[5] RaptoR. Unreal Tournament ”You are inferior, human!”. Rewiev by Rap-
toR:
http://www.planetdreamcast.com/games/reviews/unrealtournament/

[6] AIISC, IGDA’s AI Special interest group. http://www.igda.org/ai/

[7] Wikipedia. A* search algorithm.
http://en.wikipedia.org/wiki/A* search algorithm

[8] Gamebots. http://gamebots.planetunreal.gamespy.com/index.html

[9] Gamebots Network API. http://gamebots.planetunreal.gamespy.com/docapi.html

[10] Clement, Bradley J. Durfee, Edmund H. (1999). Theory for Coordinat-
ing Concurrent Hierarchical Planning Agents Using Summary Information.
Article, University of Michigan

104 BIBLIOGRAPHY

[11] Priestley, Mark (2003). Practical Object-Oriented Design With UML - Sec-
ond Edition. McGraw-Hill Education.

[12] Rabin, Steve (2002). AI Game Programming Wisdom. Charles River Media.

[13] Raim, Jarret. Finite State Machine in Games. Slides by: Jarret Raim.

	Summary
	Acknowledgements
	1 Introduction
	1.1 Introduction
	1.2 Domain Analysis

	2 Finite State Machines and Planners
	2.1 Finite State Machines
	2.2 Automated Planning
	2.3 Hierarchical Task Networks (HTN)

	3 Planning in Unreal Tournament
	3.1 Applying HTNs to a First Person Shooter
	3.2 The Complete Planner

	4 Implementing the Planner
	4.1 Overview
	4.2 UT Server
	4.3 HTN
	4.4 Bot
	4.5 Coordinator
	4.6 Client/Server communication
	4.7 Further work

	5 Conclusion
	5.1 Findings
	5.2 Conclusion

	A CD Contents
	B Running the Program
	C Source Code
	C.1 ai
	C.2 bot
	C.3 state
	C.4 com
	C.5 map
	C.6 test
	C.7 exceptions
	C.8 util

	Bibliography

