
Geometric Operators on Boolean Functions

Jeppe Revall Frisvad∗ andPeter Falster∗∗

Informatics and Mathematical Modelling, Technical University of Denmark

Key words array-based logic, Boolean functions, geometric operators, inference, propositional reasoning.

Abstract
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to
some valuation of the formula). We describe operators based on Decartes’ concept of constructing coordinate
systems, for translation of a propositional formula to the image of a Boolean function. With this image of a
Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator
leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture
all kinds of inference in propositional logic by means of a few geometric operators working on the images of
Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previ-
ously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an
abstract form to make them independent of representation such that weno longer need to be much concerned
with the form of the Boolean functions. Knowing that the operators can easily be implemented (as they have
been in array-based logic), shows the advantage they give with respect to automated reasoning.

1 Introduction

If we accept a truth-functional conception of propositional logic, any propositional formula represents a Boolean
function. Taking this point of view, we describe using operators on Boolean functions: (a) An efficient mechan-
ical way for translation of propositional formulae to Boolean functions (Sections 2.2-2.5); (b) how any kind of
inference in propositional logic can be captured by geometrical concepts (Sections 2.6-2.8); (c) that regardless of
the representation employed for the Boolean functions, theoperators are applicable (Section 3).

An analogy of Boolean logic with coordinate-geometry was shown by Mautner in 1946 [17]. He introduced the
idea of a many-dimensionallogical coordinate system, i.e. a discrete cartesian coordinate system where each axis
represents a Boolean variable, and thereby he connected Boolean logic to the mathematical group of geometric
transformations. Mautner’s investigations go far beyond this into the realm of invariant theory and Boolean tensor
algebra. These algebraic investigations are not necessaryfor the theory we are about to develop. Realizing that we
can treat the image of a Boolean function as geometry is, however, all-important for appreciation of the following
sections. At some points in Section 2 the reader may find that our theory could advantageously be reformulated
using Boolean tensors instead of Boolean functions. We are aware of this, but have for the time being chosen not
to elongate this paper by the algebra necessary for a reformulation.

In the spirit of Mautner’s analogy, the foundation of the geometric operators which we give a more abstract
form in this paper, were laid by Franksen in 1979 [7]. He showed that disjunctive projection in a logical coordinate
system can “prove the theorems of divalent logic by computation” (projection is described in Sec. 2.6); that
an outer product can construct the relation between two variables on matrix form; and that “the operation of
putting indices equal, is the operational implementation of repeated propositions in a propositional function”
(i.e. colligation, see Sec. 2.5).

Through a generalization of these fundamental operations,enabling them to operate on many-dimensional
arrays, the niche area of array-based logic was developed toits present state in [8, 9, 10, 18, 23]. The functional
or operational notation described inarray theoryhas traditionally been used to account for the operators used in
array-based logic. Array theory was developed by TrenchardMore, see eg. [19, 20].

∗ e-mail: jrf@imm.dtu.dk
∗∗ e-mail: pfa@imm.dtu.dk



2 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

The purpose of this paper is to propose a synergy of the abstract, representation independent notation used
for Boolean functions (e.g. in [28]) and the array theoreticnotation used in array-based logic. Through such a
synergy, we will be able to show that geometric operations onthe images of Boolean functions make sense at a
high level of abstraction in propositional reasoning. In particular, we are able to show that the image of a Boolean
function represented by an arbitrary propositional rule set, can be found by use of outer products and the picking
of diagonal hyperplanes (i.e. the operation of setting indices equal or colligation) instead of finding the value of
the rule set for every possible valuation of the propositional variables which it contains. In addition, we are able
not only to prove the theorems of divalent logic by computation as did Franksen, but also to prove that disjunctive
projection leads to a formula which capture all rules of inference in propositional reasoning (see Sec. 2.7).

2 Boolean Functions

Take an arbitrary rule set (or set of propositional formulae) describing the relation betweenn propositional
variablesp1, . . . , pn. By a valuationv : {p1, . . . , pn} → {0, 1}, any such rule set represents a functionf taking
n Boolean values as argument and returning a single Boolean value. Each argument off corresponds to one of
the propositions in the rule set, and the returned valuef(a1, . . . , an) ∈ {0, 1} for ak = v(pk) with k = 1, . . . , n,
states whether a particular valuation (or interpretation)of the propositional variables is true (1) or false (0).

It will often be the case that only some of the propositional variables are asserted (or known, or bound) to be
true or false. Suppose we know the value ofpi andpj , then a new Boolean functionfd is desired such that it is
represented by a propositional formulaA in which only the variablesp1, . . . , pi−1, pi+1, . . . , pj−1, pj+1, . . . , pn

appear. The derived functionfd should be found according to the known values ofpi andpj . This is accomplished
simply by lettingfd equalf with fixed valuesai = v(pi) andaj = v(pj). In that way, the Boolean functionfd

corresponds to the result of deductive inference on these fixed values. This is the kind of inference described by
the Stoic modi (modus ponens, modus tollens, etc.) and we saythat it relies on external influences, that is, the
fixation of some propositional variables leading to a conclusion according to a rule set.

The rule set itself can also lead to a conclusion on the relation between a subset of the propositional variables.
We could say that such conclusions are internally present inthe rule set. This kind of inference is inherent in the
syllogistic reasoning founded in the Greek school of logic,especially in Aristotle’s Prior and Posterior Analytics.
While the logic of Aristotle is often thought of as notions forpredicate logic, it should be realized that any formula
of predicate calculus over a finite domain, can be translatedto a formula of propositional calculus. When we refer
to the Aristotelian syllogism in propositional calculus, we refer to the transitive law

p1 ⇒ p2 , p2 ⇒ p3

p1 ⇒ p3

which is not a direct translation of the syllogism in predicate calculus, since that would require us to know the
domain of the predicates involved. The transitive law is rather an analogy.

To find a conclusion “internally present in a rule set”, we seek a functionf ′d describing the relation between
only some of the propositional variables appearing in the rule set representingfd, but in this case none of the vari-
ables are asserted. In the traditional Aristotelian syllogism one intermediate variable is eliminated. Conceptually
the idea is to find the relation between a subset of variables appearing in the rule set. Suppose we wish to exclude
not one, but two propositional variables from a set of formulae, saypi andpj . This is done by the principle of
excluded middle (p∨¬p) such thatf ′d returns1 if any one of the combinations(ai, aj) ∈ {0, 1}2 returns1 when
ai andaj are inserted as arguments off . In other words,

f ′d(a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an)

=
∨

b1,b2∈{0,1}

f(a1, . . . , ai−1, b1, ai+1, . . . , aj−1, b2, aj+1, . . . , an) ,

wherei, j, n ∈ N andi < j < n.
These two concepts of inference are surprisingly general. In fact, most forms of inference can be based on the

elimination of variables as it is described above. In the following, we define a number of operators some of which
have a geometrical meaning in a logical coordinate system. These operators are inspired by the two concepts of
inference and can not only prove, but also replace the logical rules of inference (the Stoic modi, the Aristotelian
syllogism, etc.).



3

Table 1 The four possible Boolean functionsfi ∈ B1 , i = 1, 2, 3, 4. The image is ordered such that the first number in the table isfi(0)

and the second isfi(1).

Image State Term
0 1 True Affirmation
1 0 False Negation
1 1 Indefinite Tautology
0 0 Impossible Contradiction

2.1 Fundamentals

Definition 2.1.1 (Boolean functions)Let Bn,m, wheren,m ∈ N, denote the set ofBoolean functionsf :
{0, 1}n → {0, 1}m, and letBn stand forBn,1.

For functionsf ∈ Bn there are2n different inputs each of which can be mapped to0 or 1, hence, there exist
22n

functions inBn [26]. Consider the221

= 4 possible Boolean functions inB1, see Table 1. A function
f ∈ B1 can specify the state of a single logical proposition.

Definition 2.1.2 For every ordered pair of Boolean values(a, b) ∈ {0, 1}2 there exists exactly one Boolean
functionfa,b ∈ B1 such thatfa,b(0) = a andfa,b(1) = b.

Applying a fundamental principle of mathematics, namely the splitting of arguments, any Boolean function
f : {0, 1}k+n → {0, 1} can also be described as a function

f : {0, 1}k × {0, 1}n → {0, 1} = {0, 1}k → ({0, 1}n → {0, 1}) = {0, 1}k → Bn

from {0, 1}k intoBn. The splitting of arguments of a Boolean function is essential to our theory. Therefore we
introduce

Definition 2.1.3(Nested Boolean functions)LetBk
n denote a set ofnested Boolean functionsf : {0, 1}k → Bn,

such that(a1, . . . , ak) ∈ {0, 1}k maps to a Boolean functiong ∈ Bn.

Strictly speaking the notion of a nested Boolean function isnot necessary sinceBk
n = Bn+k, but it will ease

the introduction of the operators presented in the following.

Proposition 2.1.4 A nested Boolean functionf ∈ Bk
n contains2k nested elementsgi ∈ Bn, i = 1, . . . , 2k.

A note on notation. Throughout the paper we employ left associativity with respect to operators and arguments
as well as occasional infix notation. We employ the notation that for anyg ∈ Bk, anyf1, . . . , fk ∈ Bn, and any
~a ∈ {0, 1}n, wheren, k ∈ N,

g(f1(~a), . . . , fk(~a)) = g(f1, . . . , fk)(~a)

and we allow for infix notation ifk = 2. In addition, we employ the common notation for indexing. Let
I = {1, . . . , n} be an index set and letn,m ∈ N be natural numbers. Given an~x = (x1, . . . , xn) and an index
vector~ı ∈ Im, we have~x~ı = (xi1 , . . . , xim

).
In the following section a propositional rule set is given a formal definition.

2.2 Rule Sets

In reasoning, an autonomous agent, or whatever system considered, is equipped with a set of propositional for-
mulae often referred to as a rule base or a rule set. The propositional formulae can be established by any choice
of connectives which correspond to Boolean functions, e.g.¬, ∧, ∨, ⇒, ⇐, ⇔. The connectives¬ (negation)
and∨ (disjunction) suffice to construct a formula representing any possible Boolean function [26], but for the
theory we are about to develop, the choice of connectives is of no consequence. Boolean functions corresponding
to commonly employed connectives will be referred to by the names listed in Table 2.

In the remainder of the text, we letp1, p2, . . . refer to propositional variables. A rule base or rule set for
reasoning is then defined by



4 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

Table 2 The names we use for Boolean functions corresponding to commonly employed connectives.

Connective Corresponding Boolean function Term
aff Affirmation

¬ non Negation
∧ et Conjunction
∨ vel Disjunction
⇒ imp Implication
⇔ bii Biimplication
⇐ cimp Converse implication

Definition 2.2.1 (Propositional rule set)A propositional rule setis a propositional formulaA = A(p1, . . . , pn)
in which a finite number of propositional variables appear. Apropositional rule set is constructed from a set of
propositional formulaeR by

A =
∧

C∈R

C .

We say that the rule set isfulfilled by a valuation (or interpretation)v : {p1, . . . , pn} → {0, 1} if v(A) = 1,
wherev(A) denotes the value ofA by the valuationv.

The purpose of the following three sections is to construct atool which can translate a propositional rule set
A = A(p1, . . . , pn) to the corresponding Boolean functionfA : {0, 1}n → {0, 1} defined by

fA(a1, . . . , an) = v(A(p1, . . . , pn)) , whereai = v(pi) for i = 1, . . . , n .

While this may seem like a superfluous thing to do, it is necessary since we intend to do reasoning by projections
in the image of the Boolean function corresponding to a rule set. By definition the image of a Boolean func-
tion is easily, but very inefficiently, determined through computation of every possible valuation of the formula
representing the Boolean function. However, there is a better alternative which is based on the construction of
coordinate-systems. That is what we wish to advocate in Sections 2.3, 2.4, and 2.5.

2.3 Reduction

Any pair of Boolean values(a, b) ∈ {0, 1}2 corresponds to an unary Boolean functionfa,b ∈ B1 (Def. 2.1.2)
and, of course, any binary Boolean functiong ∈ B2 can be invoked on a pair of Boolean values to produce a
single Boolean valuec = g(a, b). We find it convenient to introduce an operator namedREDUCE which allows
us to invoke a binary Boolean function on an unary Boolean function such that

c = g(a, b) = REDUCE(g)(fa,b) .

Sometimes it is also sensible to reduce an arbitrary Booleanfunction according to one of the binary Boolean
functions (in particular this makes sense for disjunction and conjunction, that is, forvel and et respectively,
cf. Tab. 2). Therefore we may as well giveREDUCE a more general definition. ByTn for n ∈ N we denote the
set of all functionalsχn : Bn → {0, 1}, then we have

Definition 2.3.1(REDUCE) Letχf
n ∈ Tn for f ∈ B2 be the functional defined forg ∈ Bn by

χf
n = f(f(. . . (f(g(~a1), g(~a2)), g(~a3)), . . . ), g(~a2n)) ,

where~a1,~a2, . . . ,~a2n denotes the canonical enumeration of then-dimensional Boolean vectors~ai ∈ {0, 1}n

given by~ai = (i1, . . . , in) with iv = ⌊(i− 1)/2v−1⌋ mod 2 for v = 1, . . . , n.
Then the operatorREDUCE : B2 → Tn is defined by

REDUCEn(f) = χf
n .



5

The idea of this operator is to allow for reduction of a nestedBoolean functionfn,k ∈ Bk
n to a Boolean

functiongk ∈ Bk using one of the binary Boolean functions. To accomplish this, we define an operator reducing
eachpossible nested element of a nested Boolean function to a single Boolean value. ByUn,k we denote the set
of all operatorsψn,k : Bk

n → Bk, then we have

Definition 2.3.2(EACH) The operatorEACHn,k : Tn → Un,k is defined forχn ∈ Tn andfn,k ∈ Bn,k by

EACHn,k(χn)(fn,k) = χn ◦ fn,k ,

where◦ is the composition operator, i.e.

EACHn,k(χn)(fn,k)(a1, . . . , ak) = χn(fn,k(a1, . . . , ak))

for all a1, . . . , ak ∈ {0, 1}.

Now, pick an arbitrary nested Boolean functionfn,k ∈ Bk
n. Using the binary Boolean functionvel ∈ B2

(i.e. disjunction),fn,k can be reduced to a Boolean functiongk ∈ Bk in the following way:

gk = EACHn,k(REDUCEn(vel))(fn,k) .

This is referred to as a disjunctive reduction of a nested Boolean function. If, for example,fn,k is defined by

fn,k(y1, . . . , yn)(x1, . . . , xk) = fn+k(y1, . . . , yn, x1, . . . , xk) ,

then

EACHn,k(REDUCEn(vel))(fn,k)(x1, . . . , xk) =
∨

(a1,...,an)∈{0,1}

fn+k(a1, . . . , an, x1, . . . , xk) .

For anyn ∈ N we refer to the functionalREDUCEn(f2) as thereduction transform off2 ∈ B2, and to
shorten the notation, we denoteREDUCEn(f2) by the same symbol as the connective corresponding tof2. This
means that a disjunctive reduction of the Boolean functionfn,k can be written as

gk = EACHn,k(∨)(fn,k)

and that, for example,

⇒(aff ) = imp(0, 1) = 1 .

2.4 Cartesian Product and Outer Product

To compute the image of a Boolean function from the formula representing it in propositional calculus without
testing each possible valuation, we must find a way to rewritethe formula into the world of Boolean functions.
As the first step in this endeavor, we replace each occurrenceof a propositional variable in the formula by a
Boolean function inB1. This is done in a manner such that any non-negated variable (e.g.p) is replaced by
aff and any negated variable (e.g.¬q) is replaced bynon. These Boolean functions replacing propositional
variables are then connected by application of an operator to the connectives in the formula (or, more precisely,
to the reduction transform of the binary Boolean function corresponding to the connectives in the formula). This
operator is founded in the concept of a cartesian product between the images of Boolean functions. We have

Definition 2.4.1(cart) Let cartn,m : Bn ×Bm → Bn+m
1 , wheren,m ∈ N, denote the cartesian product of two

Boolean functions, such that iffn ∈ Bn andgm ∈ Bm:

cartn,m(fn, gm)(x1, . . . , xn+m)(0) = fn(x1, . . . , xn)

cartn,m(fn, gm)(x1, . . . , xn+m)(1) = gm(xn+1, . . . , xn+m) ,

wherex1, . . . , xn+m are Boolean variables.



6 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

Note thatcart finds unary Boolean functions corresponding to a pair of function values. This is closely related
to the usual notion of a cartesian product, onlycart does not find the cartesian product of two sets, but rather the
cartesian product of two function images.

The nested Boolean function resulting from the cartesian product of two Boolean functions has exactly a form
which can be reduced to a normal Boolean function by the operator EACH and any of the reduction transforms
corresponding to a connective (cf. Sec. 2.3). Usingcart andEACH we can define the outer product between
two arbitrary Boolean functions according to the reductiontransform of a binary Boolean function. This outer
product is the operator we use to translate the connectives in a formula of propositional calculus into the world of
Boolean functions. As in the previous section letTn for n ∈ N denote the set of all functionalsχn : Bn → {0, 1}
and letVn,m for all n,m ∈ N denote the set of all operatorsζn,m : Bn ×Bm → Bn+m.

Definition 2.4.2 (OUTER) The outer product operatorOUTERn,m : T1 → Vn,m is defined forχ1 ∈ T1,
fn ∈ Bn, andgm ∈ Bm by

OUTERn,m(χ1)(fn, gm) = EACH1,n+m(χ1)(cartn,m(fn, gm)) .

Infix notation is allowed for use withOUTER such that

OUTERn,m(χ1)(fn, gm) = fn OUTERn,m(χ1) gm .

In the preceding paragraphs we have described replacement of propositional variables with unary Boolean
functions and replacement of connectives withOUTER applied to the reduction transforms corresponding to
them. While this may be a way to translate a propositional formula A to the Boolean functionfA which it
represents, it remains to be shown that the resulting Boolean function actually has the image that we desire. In
the following, letop1, op2, . . . denote binary connectives.

Theorem 2.4.3 LetA = A(p1, . . . , pn) denote the propositional formula given by

A1 op1 A2 op2 . . . opn−1 An ,

whereAi, i = 1, . . . , n, are sub-formulae for which the image of the corresponding Boolean functionfAi
is

known. The sub-formulae may contain any of the variablesp1, . . . , pn. Then for the Boolean functionfA repre-
sented byA it holds for any valuationv : {p1, . . . , pn} → {0, 1} that

fA(a1, . . . , an) = v(A(p1, . . . , pn))

= (fA1
OUTER(op1) . . . OUTER(opn−1) fAn

)(a1, . . . , an) ,

whereai = v(pi) for i = 1, . . . , n.

P r o o f. The result follows immediately from the definitions given prior to the theorem. As we work with left
associativity it suffices to prove that

fA1 op A2
= fA1

OUTER(op) fA2
,

where fA1
∈ Bn and fA2

∈ Bm are two arbitrary Boolean functions corresponding to the sub-formulae
A1(p1, . . . , pn) andA2(pn+1, . . . , pn+m). Let b ∈ B2 be the binary Boolean function corresponding the con-
nectiveop. Then

fA1
OUTERn,m(op) fA2

= EACH1,n+m(REDUCE1(b))(cartn,m(fA1
, fA2

))

= REDUCE1(b) ◦ cartn,m(fA1
, fA2

) .

Continuing with an arbitrary valuationai = v(pi) for i = 1, . . . , n+m we get

(REDUCE1(b) ◦ cartn,m(fA1
, fA2

))(a1, . . . , an+m)

= REDUCE1(b)(cartn,m(fA1
, fA2

)(a1, . . . , an +m))

= b(fA1
(a1, . . . , an), fA2

(an+1, . . . , an+m))



7

which is the value offA1 op A2
for the given valuation. To complete the proof, we must be certain that any

formula can be decomposed into sub-formulae with a known image, and binary connectives in-between them.
This is certain since we can always reach sub-formulae whichare eitherpi or ¬pi, i = 1, . . . , n+m, for which
the corresponding Boolean functions areaff andnon respectively.

As it is the case for the traditional cartesian product between sets, the list of arguments is ordered for the
function returned bycart and, hence, it is also ordered for for the function returned by OUTER. This means
that after translation of a formula to a Boolean function, the resulting Boolean function will have an argument for
each occurrence of each propositional variable in the formula. And the arguments correspond to the valuation of
variables in the same order as the variables appear in the formula.

If we had imposed the necessary algebra on our theory and described it using Boolean tensors rather than
Boolean functions, thenOUTER would denote the traditional outer product between two Boolean tensors (only
according to an arbitrary binary Boolean function instead of multiplication). Hence, we have shown that an outer
product can be employed for translation of a propositional formula to the Boolean function which it represents.
This is most often far more efficient than computation of every possible valuation for the formula. The process
we have described in which simple sub-formulae are replacedby known Boolean functions and connected using
reduction transforms corresponding to the connectives in-between the sub-formulae, works for any choice of
connectives and any representation of the Boolean functions.

Example 2.4.4 Consider the following rule set composed of a set of two propositional formulae:

Rule 1 p1 ⇒ p2

Rule 2 p2 ⇒ p3 .

This is equivalent to the formulaA(p1, p2, p3) = (p1 ⇒ p2) ∧ (p2 ⇒ p3). A Boolean functionf4 ∈ B4

corresponding to the rule set can be constructed as follows:

r1 = r2 = aff OUTER1,1(⇒) aff

f4 = r1 OUTER2,2(∧) r2 ,

wherer1, r2 ∈ B2. The resulting functionf4 is effectively a Boolean function corresponding to the ruleset. If
ai = v(pi) for i = 1, 2, 3, f4(a1, a2, a2, a3) returns whether a particular valuation fulfills the rule setor not. This
follows from Theorem 2.4.3:

f4(a1, a2, a2, a3) = OUTER2,2(∧)(r1, r2)(a1, a2, a2, a3)

= et(r1(a1, a2), r2(a2, a3))

= et ((aff OUTER1,1(⇒) aff )(a1, a2), (aff OUTER1,1(⇒) aff )(a2, a3))

= et (imp(aff (a1),aff (a2)), imp(aff (a2),aff (a3)))

= et(imp(a1, a2), imp(a2, a3))

= v((p1 ⇒ p2) ∧ (p2 ⇒ p3)) .

Note thatr1 = r2 = imp and, hence, we could have constructedf4 merely as

f4 = imp OUTER2,2(∧) imp .

2.5 Colligation

It shows in Example 2.4.4 that the function obtained after a concatenation may have several arguments valuated
by the same propositional variable. This is clearly inexpedient. It may also be desirable to rearrange the list of
arguments. To handle these issues we have

Definition 2.5.1(fuse) LetI = {1, . . . , k} be an index set, and letn, k ∈ N be natural numbers such thatk < n,
thenfusen,k : In ×Bn → Bk is defined forfn ∈ Bn and~ı ∈ In by

fusen,k(~ı, fn)(x1, . . . , xk) = fn(xi1 , . . . , xin
)

wherex1, . . . , xk are Boolean variables.



8 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

The process of setting two arguments of a Boolean function equal to each other is referred to ascolligation.
A term used by Peirce [24] and Whewell before him. See also the discussion by Franksen and Falster [10].
Geometrically we pick a diagonal hyperplane in the image of afunctionf ∈ Bn to obtain the image of a function
g ∈ Bn−1. fuse does this repeatedly until a function inBk, k < n, is obtained. Hence,fuse is the first of
the operators we have described which has a direct geometricinterpretation in a logical coordinate-system. The
importance offuse shows through

Proposition 2.5.2 The image of a Boolean function represented by a propositional rule set, can be found through
operations onthe imagesof known Boolean functions corresponding to the formulae and sub-formulae composing
the rule set.

The result follows sinceOUTER andfuse can work exclusively on the images of Boolean functions. Through
outer products of image spaces according to reduction transforms corresponding to connectives,OUTER can
translate any propositional rule set into a Boolean function with one argument for each appearance of each
propositional variable in the rule set (cf. Theorem 2.4.3).Subsequentlyfuse can eliminate the redundant argu-
ments and rearrange the remaining arguments as appropriateby picking diagonals and interchanging axes in the
image of the translated Boolean function. In this way, thecolligated formof a Boolean function represented by a
propositional rule set, can be found. Here colligated form is defined by

Definition 2.5.3 (colligated form) LetA be the formula describing a propositional rule set and letfA be the
Boolean function represented by the rule set. Then thecolligated form offA is a function equivalent tofA in
which no arguments are valuated by the same propositional variable in A. A function in its colligated form is
referred to as acolligated Boolean function.

Example 2.5.4 In continuance of Example 2.4.4 we can now eliminate the redundanta2 argument and obtain a
functionf3 ∈ B3 describing the same relation betweenp1, p2, andp3. This could be written as

f3(a1, a2, a3) = f4(a1, a2, a2, a3) ,

or at a higher level of abstraction as

f3 = fuse4,3((1, 2, 2, 3), f4) .

2.6 Projection

Since the picking of a diagonal hyperplane in the image of a Boolean function is useful, it might be interesting to
define and interpretprojection.

Let f ∈ Bn be the colligated form of a Boolean function represented by apropositional rule set in which the
propositional variablesp1, . . . , pn appear. Suppose we want to project the image off on a subspace spanned
by k < n of the Boolean variables whichf takes as argument. Thereby we would obtain a functiong ∈
Bk describing, according to the projection, the relation between the remaining Boolean variables valuated by
pi1 , . . . , pik

, where the indicesi1, . . . , ik ∈ {1, . . . , n} are mutually distinct.
To perform such a projection we must first be able to split the image off . This is exactly the point of nested

Boolean functions. We have

Definition 2.6.1(split) LetI = {1, . . . , n} be an index set, and letn, k ∈ N be natural numbers such thatk < n,
thensplitn,k : In−k ×Bn → Bk

n−k is defined forfn ∈ Bn and~ı ∈ In−k by

splitn,k(~ı, fn)(xj1 , . . . , xjk
)(xi1 , . . . , xin−k

) = fn(x1, . . . , xn) ,

wherex1, . . . , xn are Boolean variables. Ifk > 0, then~ ∈ Ik exists. Otherwisesplit(~ı, fn)() = fn. All
indices in~ı and~ must be mutually distinct. Furthermore the indices in~ are ordered such thatjv < jv+1 for
v = 1, . . . , k − 1. Thus~ is given implicitly by the indices inI which are not in~ı.

Thinking of a circle (both circumference and interior of thecircle) describing the projection of a sphere on a
plane, we may similarly project a relation (such asf mentioned before) on a subspace of its image. This is done
through a disjunctive reduction of the nested Boolean function found usingsplit. As previously we letTn for
n ∈ N denote the set of all functionalsχn : Bn → {0, 1}, and byWn,k for n, k ∈ N with k < n we denote the
set of all operatorsφn,k : In−k ×Bn → Bk, whereI = {1, . . . , n} is an index set.



9

Definition 2.6.2(PROJECT)The operatorPROJECTn,k : Tn → Wn,k is defined forχn ∈ Tn, fn ∈ Bn, and
~ı ∈ In−k by

PROJECTn,k(χn)(~ı, fn) = EACHn−k,k(χn)(splitn,k(~ı, fn)) ,

where the indices in~ı are mutually distinct and have the functionality of pointing out the arguments offn to be
eliminated by projection.

To eliminaten − k < n arguments of a Boolean functionf ∈ Bn by projection, we point out the indices
of the arguments that we wish to eliminate using~ı ∈ In−k whereI = {1, . . . , n} is an index set. We cannot
eliminate the same argument more than once therefore the indices in~ı must be mutually distinct. The remaining
arguments, that is, the axes in the image off on whichf is projected, are given by the indices inI which were
not pointed out in~ı. Let~ ∈ Ik denote these indices. The Boolean functiong ∈ Bk resulting from the projection,
is independent off , but the arguments ofg will be valuated by the same propositional variables as the arguments
of f pointed out by~. To find out whether one Boolean function implies another forany possible valuation, we
have

Definition 2.6.3(entail) Let I = {1, . . . , n+m} be an index set withn,m ∈ N. The functional

entailn,m : In × Im ×Bn ×Bm → {0, 1}

is defined for~ı ∈ In, ~ ∈ Im, fn ∈ Bn, andgm ∈ Bm by

entailn,m(~ı,~, fn, gm) = ∧ (fuse((i1, . . . , in, j1, . . . , jm), fn OUTER(⇒) gm)) ,

where∧ and⇒ denote the reduction transforms of the binary Boolean functions corresponding to the connectives
denoted by the same symbols. If

entailn,m(~ı,~, fn, gm) = 1 ,

we writefn |=n,m (~ı,~)gm and say thatfn entailsgm in the given context.

When a Boolean functionf ∈ Bn entails a Boolean functiong ∈ Bm, it is said to be avalid inferenceto
substitutef by g, but not conversely. Entailment can, hence, be referred to as thecorrectness criterionof a rule
of inference. In Section 2.7, a rule of inference will be given a formal definition based on the functionalentail.
First, however, we will show that disjunctive projection isvalid inference.

Theorem 2.6.4 Let I = {1, . . . , n} be an index set, letA = A(p1, . . . , pn) be the formula describing a proposi-
tional rule set, and letfA ∈ Bn be the colligated form of a Boolean function represented by the rule set. Then
for every index vector~ı ∈ In−k with k < n in which all indices are mutually distinct, it holds that

fA |=n,k ((1, . . . , n),~)PROJECTn,k(∨)(~ı, f) ,

where~ are the indices inI which are not in~ı.

P r o o f. LetA = A(p1, . . . , pn) be any formula describing a propositional rule set, and letfA ∈ Bn be
the colligated Boolean function represented by it. LetI = {1, . . . , n} be the appropriate index set and pick an
arbitrary~ı ∈ In−k with k < n in which all indices are mutually distinct. Let~ ∈ Ik be given by the indices inI
which are not in~ı, then we have the following for an arbitrary valuationai = v(pi) with i = 1, . . . , n:

entailn,k ((1, . . . , n),~, fA,PROJECTn,k(∨)(~ı, fA))

=
∧

a1,...,an∈{0,1}

imp
(

fA(a1, . . . , an),EACHn−k,k(∨)(splitn,k(~ı, fA))(~a~)
)

=
∧

a1,...,an∈{0,1}

imp
(

fA(a1, . . . , an),REDUCEn−k(vel)(splitn,k(~ı, fA)(~a~))
)

=
∧

a1,...,an∈{0,1}

imp



fA(a1, . . . , an),
∨

b1,...,bn−k∈{0,1}

split(~ı, fA)(~a~)(b1, . . . , bn−k)



 = 1 .



10 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

The last equality holds because for any valuefA(a1, . . . , an) = 1 there is a~b = ~a~ı such that the same function
value is a part of the disjunction given as the second argument of the implicationimp.

Disjunctive projection (PROJECT(∨)) corresponds, then, exactly to the syllogistic reasoning described in-
troductorily. It is indeed interesting to note that we can draw a parallel between inference and projection in the
image of a Boolean function. The depth of this observation will be explored in the next section after a simple
example.

Example 2.6.5 Further elaborating on Example 2.5.4, we can find the relation betweenp1 andp2 according to
the original rule set defined in Example 2.4.4. This is done bya disjunctive projection of the image off3 on the
plane (in a logical coordinate-system) spanned by arguments one and three off3:

f2 = PROJECT3,2(∨)((2), f3) .

We can then calculate that

f2(x1, x2) = PROJECT3,2(∨)((2), f3)(x1, x2)

= EACH1,2(∨)(split3,2((2), f3))(x1, x2)

= REDUCE1(∨)(split3,2((2), f3)(x1, x2)

= vel(f3(x1, 0, x2), f3(x1, 1, x2))

= vel(f4(x1, 0, 0, x2), f4(x1, 1, 1, x2))

= vel(et(imp(x1, 0), imp(0, x2)), et(imp(x1, 1), imp(1, x2)))

= vel(et(non(x1), 1), et(1,aff (x2))

= vel(non(x1), x2)

Why we can conclude thatf2 = imp, proving the Aristotelian syllogism.

2.7 Rules of Inference

There seems to be no universal agreement upon a formal definition of inference. Nevertheless a correctness crite-
rion for inference has been established by the concept of entailment. A rule of inference could then be described
as a pair(A,C) whereA is a propositional rule set andC is a propositional formula whichA entails. Or it could
be described, in terms of the Boolean functions whichA andC represent, as an operator transforming a Boolean
function such that the resulting Boolean function fulfils the correctness criterion by ways of the functionalentail.
It should, however, be noted that what we in the following refer to as trivial inference, some would not call
inference at all since the inferred conclusion would be too obvious. The paradox of defining inference is well
described by Jones [15]. The definition we adopt is very broadand the reader should feel free to confine our
definition of a rule of inference for example by rejection of the rules of inference that we refer to as trivial. Only
very few and simple corrections in the theory that follows would be necessary to accommodate a more restricted
definition of inference.

Definition 2.7.1 (rule of inference)A rule of inferenceis an operatorχ : Bn → Bm which, for at least one
combination ofn ∈ N andm ∈ N, transforms at least one Boolean functionf ∈ Bn into a Boolean function in
Bm such thatf |=n,m (~ı,~)χ(f) for some~ı ∈ {1, . . . , n+m}n and~ ∈ {1, . . . , n+m}m.

Let us take an example of how Definition 2.7.1 can be employed.In the following, we let1 denote the constant
function returning truth (1) for any argument, and we let0 denote the constant function returning falsehood (0)
for any argument.

Example 2.7.2 Suppose we have an operatorψ : Bn → Bn which transforms an arbitrary number of zeros (val-
ues of falsehood) in the image of its argument to ones (valuesof truth) in the image of the resulting transformed
function. This rule can be defined by

ψg(f) = vel(f, g) ,



11

wheref, g ∈ Bn. Observe that there are no inferences such thatf |=n,n (~ı,~ı)ψ(f), where~ı = (1, . . . , n), which
can not be described by this definition ofψ and

imp(f, vel(f, g)) = vel(non(f), vel(f, g)) = vel(vel(non(f), f), g) = vel(1, g) = 1

ensures that there are no invalid inferences resulting fromthis rule of inference.
To be specific, the quite general rule of inferenceψ can lead us to more well-known rules of inference. Suppose

g1 = imp andg2 = cimp. Now two well-known and very specific rules of inference appear whenψg1
andψg2

,
respectively, are applied to e.g.f = bii. We have

ψg1
(bii) = imp and ψg2

(bii) = cimp ,

or the corresponding representation in propositional calculus:

p⇔ q
p⇒ q

,
p⇔ q
p⇐ q

,

wherep andq are propositional variables and the expression above the line entails the expression below the line.

Note that the functionalentail and, hence, rules of inference describe a relation between the values (images) of
Boolean functions for some arguments, not a relation between Boolean functions in general. Therefore many dif-
ferent operators may describe the same rule of inference depending on the index vectors chosen for the entailment
relation. To accommodate this construction, we introduce the concept of equivalent forms.

Definition 2.7.3(equivalent forms)Let I = {1, . . . , k} be an index set withk = max(n,m) andn,m ∈ N. For
~ı ∈ Im letA1 = A1(p1, . . . , pn) andA2 = A2(pi1 , . . . , pim

) be propositional formulae, and letfA1
andfA2

be
the Boolean functions which they represent. IfA1 andA2 are logically equivalent,fA1

andfA2
are referred to

asequivalent forms.
For any two equivalent formsfA1

andfA2
there (trivially) exists a Boolean functione~ı ∈ Bm,n such that

fA1
= fA2

◦ e~ı .

We lete ∈ Bn,m, for anym, denote any Boolean function for whichf ◦ e is an equivalent form off ∈ Bn.

Example 2.7.4 The idea of equivalent forms is merely to state that Boolean functions such as

f(a1, a2, a3) = v((p1 ⇒ p2) ∧ (p2 ⇒ p3))

and

g(a2, a3, a2, a1, a4) = v((p1 ⇒ p2) ∧ (p2 ⇒ p3))

are equivalent forms, and we can use the symbole to denote any equivalent form off :

g(x2, x3, x2, x1, x4) = (f ◦ e)(x2, x3, x2, x1, x4) = f(x1, x2, x3) .

The notion of equivalent forms reveals a trivial rule of inferenceχ : Bn → Bm, which is valid for anyf ∈ Bn.
The rule is, of course,χ(f) = f ◦ e and we can observe that colligation and reduction off to its reduced form
red(f) (i.e. removal of all fictive arguments) is a trivial rule of inference which is contained in this formulation
of χ. Another trivial rule of inferenceχ : Bn → Bm which is valid for alln,m ∈ N and anyf ∈ Bn, is
χ(f) = 1. We say that1 is the least restrictive form off and following the same line of thoughtred(f) is the
most restrictive form inBn of f ∈ Bn. The result of an inference is, however, often a Boolean function taking a
different number of arguments. Therefore we introduce

Definition 2.7.5(most restrictive form inBm of f ∈ Bn) LetI = {1, . . . , n+m} be an index set withn,m ∈ N.
For~ı ∈ In and~ ∈ Im let A1 = A1(pi1 , . . . , pin

) andA2 = A2(pj1 , . . . , pjm
) be propositional formulae, and

let fA1
andfA2

be the Boolean functions which they represent. Themost restrictive form inBm of fA1
∈ Bn is

defined by the Boolean functionfA2
∈ Bm for which fewest arguments~a ∈ {0, 1}m exist such thatfA2

(~a) = 1,
while it is true thatfA1

|=n,m (~ı,~)fA2
.



12 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

As a continuation of this definition letf ∈ Bn andg ∈ Bn denote two arbitrary Boolean functions. If there
exists at least one more value of truth in the image ofg than what exists in the image off , that is, if there is at
least one more argument~a ∈ {0, 1}n such thatg(~a) = 1 than there are arguments such thatf(~a) = 1, then we
say thatg is less restrictivethanf and conversely thatf is more restrictivethang.

Pick two arbitrary Boolean functionsf, g ∈ Bn. If f is more restrictive thang, thenf |=n,n (~ı,~ı)g, where
~ı = (1, . . . , n), but conversely it isnot the case thatg |=n,n (~ı,~ı)f . Hence, we can always derive a less restrictive
form from a more restrictive one, why if we have the most restrictive form of a relation, no new knowledge can be
obtained from a less restrictive form. Hence, we are first of all interested in rules of inference which find the most
restrictive form inBm of fA ∈ Bn, whereA is the propositional formula representingfA. Moreover it suffices
to investigate rules of inference transforming the colligated form of a Boolean function since any propositional
rule set in whichn propositional variables appear, can be described by a colligated Boolean functionf ∈ Bn.

Theorem 2.7.6 Let I = {1, . . . , n} be an index set, and letn,m ∈ N be any two natural numbers. For all
non-trivial rules of inferenceχ : Bn → Bm taking a colligated Boolean functionf ∈ Bn as argument, there
exists an~ı ∈ Ik with 0 < k ≤ n, such that

χ(f) = PROJECTn,n−k(∨)(~ı, f) ◦ e

is the most restrictive form inBm of f ∈ Bn. If k = 0, there are only trivial rules of inference finding the most
restrictive form inBm of f ∈ Bn.

P r o o f. Letχ : Bn → Bm be an arbitrary rule of inference defined for at least one argument in its colligated
form. Supposef ∈ Bn is any one of the colligated Boolean functions whichχ transforms intoχ(f) ∈ Bm such
thatf |=n,m (~ı,~)χ(f) for some~ı ∈ {1, . . . , n + m}n and~ ∈ {1, . . . , n + m}m. The number of indices in~ı
which are not in~ is denotedk ∈ N. Note thatk ≤ n.

Let A1 andA2 be formulae representingf andχ(f) respectively in propositional calculus. Then the index
vectors~ı and~ point out the propositional variables appearing inA1 andA2 which valuate the arguments of
f andχ(f). Pick an arbitrary valuationv of the propositional variables appearing inA1 andA2, and let~a ∈

{0, 1}n denote the corresponding argument off and~b ∈ {0, 1}m the corresponding argument ofχ(f). From the
definition of entailment (Def. 2.6.3), the options we have for χ are operators which ensure that iff(~a) = 1, then
χ(f)(~b) = 1, but if f(~a) = 0, thenχ(f)(~b) can return either true (1) or false (0).

Fork = 0. All indices in~ı are also in~ whym ≥ n. Sincem ≥ n, there exists an equivalent form in any set
of Boolean functionsBm. An equivalent formg ∈ Bm of f is also the most restrictive form inBm of f ∈ Bn.
This means thatχ is given trivially asχ(f) = f ◦ e for all n,m ∈ N with k = 0. Hence, ifk = 0, only trivial
rules of inference exist finding the most restrictive form inBm of f .

For k = n. No indices in~ı are also in~. If f = 0, thenχ(f) = 0 is the most restrictive form inBm of f . If
there is a single~a ∈ {0, 1}n such thatf(~a) = 1, it is necessary thatχ(f) = 1, since~a could be the argument
of f for any argument ofχ(f). A functional which reducesf to 0 if f = 0 and1 otherwise isREDUCEn(vel)
(cf. Def. 2.3.1). Since a Boolean value (0 or 1) could be regarded as a Boolean function taking no arguments, we
have0 = 0 ◦ e and1 = 1 ◦ e. But then

χ(f) = REDUCEn(vel)(f) ◦ e

whenk = n.
For 0 < k < n. Let~ı ′ ∈ Ik be the indices in~ı which arenot in ~, and let~ ′ ∈ Im−n+k be the indices in~

which arenot in ~ı. Furthermore let~v ∈ In−k be the indices which areboth in ~ı and in~. Using Def. 2.6.1 we
have the following two equations

f(~a) = splitn,n−k(~ı ′, f)(~a~v)(~a~ı ′)

χ(f)(~b) = splitm,n−k(~ ′, χ(f))(~b~v)(~b~ ′) = splitm,n−k(~ ′, χ(f))(~a~v)(~b~ ′) .

Sinceχ is a rule of inference, it must hold thatf |=n,m (~ı,~)χ(f). Hence, according to the definition of
entailment (Def. 2.6.3), it follows that

imp(splitn,n−k(~ı ′, f)(~a~v)(~a~ı ′), splitm,n−k(~ ′, χ(f))(~a~v)(~b~ ′)) = 1 .



13

Recall that an arbitrary valuation was chosen, why this is true for all~a ∈ {0, 1}n and~b ∈ {0, 1}m. But then it is
also true that

splitn,n−k(~ı ′, f)(~a~v) |=k,m−n+k (~ı ′,~ ′)splitm,n−k(~ ′, χ(f))(~a~v)

and sinceh = splitm,n−k(~ ′, χ(f))(~a~v) ∈ Bm−n+k denotes a part of the image ofχ(f), then forχ(f) to
be the most restrictive form off ∈ Bn, it is also necessary thath is the most restrictive form inBm−n+k of
g = splitn,n−k(~ı ′, f)(~a~v) ∈ Bk.

Since no indices in~ı ′ are also indices in~ ′, the relation betweeng andh corresponds exactly to the case where
k = n described above. This means that ifg = 0, thenh = 0. Otherwiseh = 1. This relation can be described
perfectly by an operatorψ : Bk → Bm−n+k defined byψ(g) = h.

At this point it should be observed that either

χ(f)(~b) = splitm,n−k(~ ′, χ(f))(~a~v)(~b~ ′) = ψ(g)(~b~ ′) = 0(~b~ ′)

or

χ(f)(~b) = splitm,n−k(~ ′, χ(f))(~a~v)(~b~ ′) = ψ(g)(~b~ ′) = 1(~b~ ′) .

This means that the arguments pointed out by~ ′ have no influence whatsoever on the value returned byχ(f)
(because we are finding the most restrictive form inBm of f ∈ Bn). If we replace the operatorψ by a functional
ξ : Bk → {0, 1} defined byξ(g) = 0 if g = 0, andξ(g) = 1 otherwise, the fictive arguments can be represented
by an equivalent form ofξ ◦ splitn,n−k(~ı ′, f) (cf. Def. 2.7.3). In other words,

χ(f)(~b) = ψ(g)(~b~ ′) = ξ(g) = ξ(splitn,n−k(~ı ′, f)(~a~v)) = (ξ ◦ splitn,n−k(~ı ′, f))(~a~v)

= (ξ ◦ splitn,n−k(~ı ′, f))(b~v) = ((ξ ◦ splitn,n−k(~ı ′, f)) ◦ e)(~b)

which, using Definitions 2.3.2 and 2.6.2, can be rewritten asfollows

χ(f) = (ξ ◦ splitn,n−k(~ı ′, f)) ◦ e = EACHk,n−k(ξ)(splitn,n−k(~ı ′, f)) ◦ e

= PROJECTn,n−k(ξ)(~ı ′, f) ◦ e .

From the definition ofξ we observe (in a similar manner as the case wherek = n) that the functional
REDUCEk(vel) : Bk → {0, 1} is the exact equivalent ofξ for all k ∈ N, why ξ = REDUCEk(vel) = ∨
(cf. Sec. 2.3). Finally if we return to the case wherek = n, that is, where~a~ı ′ = ~a, we have

REDUCEn(vel)(f) ◦ e = ∨(splitn,n(~ı, f)()) ◦ e = (∨ ◦ splitn,n(~ı, f))() ◦ e

= PROJECTn,0(∨)(~ı, f)() ◦ e = PROJECTn,0(∨)(~ı, f) ◦ e .

Therefore, since the rule of inferenceχ : Bn → Bm was chosen arbitrarily, and since the valuationv was
chosen arbitrarily, we can conclude that for all non-trivial rules of inferenceχ : Bn → Bm taking a colligated
Boolean functionf ∈ Bn as argument, there exists an~ı ′ ∈ Ik with 0 < k ≤ n, such that

χ(f) = PROJECTn,n−k(∨)(~ı ′, f) ◦ e

finds the most restrictive form inBm of f ∈ Bn. Proving exactly what was required.

A corollary follows immediately from Theorem 2.7.6, Example 2.7.2, and the notion of a colligated Boolean
function (Def. 2.5.3).

Corollary 2.7.7 Let I = {1, . . . , n} be an index set, and letn, n′,m, k ∈ N be natural numbers such that
k ≤ n ≤ n′. For every rule of inferenceχ′ : Bn′ → Bm there is an equivalent rule of inferenceχ : Bn → Bm

transforming the colligated equivalent off ′, namelyf ∈ Bn, into the same Boolean functionχ(f) = χ′(f ′) ∈
Bm. For the equivalent rule of inferenceχ, there exist, ifk > 0, a g ∈ Bn−k and an~ı ∈ Ik such that

χg(f) = (g ∨ PROJECT(∨)(~ı, f)) ◦ e .

For k = 0 there exist ag ∈ Bn such that

χg(f) = (g ∨ f) ◦ e .



14 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

This means that orthogonal projection and union of Boolean functions in a many-dimensional logical coor-
dinate system, is all we need for any kind of inference in propositional logic. While it follows from Theorem
2.7.6 that all the most restrictive forms resulting from inference can be found through projection, we emphasize
that Corollary 2.7.7 provides a formula from which any rule of inference for propositional logic can be obtained.
Still the most restrictive forms are the most interesting forms that we can infer. The reason being, as mentioned
before, that we can derive a less restrictive form from a morerestrictive one, but not conversely. Therefore the
rules finding the most restrictive forms are sometimes the only rules which are accepted as true rules of inference.
This point of view is reflected in the early analogies betweenlogic and algebra.

De Morgan writes [21, p. 27]: “Speaking instrumentally, what is calledeliminationin algebra is what is called
inferencein logic.”1 And since elimination in algebra can be accomplished through orthogonal projection of a
surface on the space spanned by a few axes, this indicates that De Morgan had thoughts about inference similar
to what we arrive at in Theorem 2.7.6. He even states that “we can compare the forms of logic in reasoning with
the laws of linear perspective in painting” [21, pp. 26–27],thereby coming even closer to the analogy between
projection and inference (except for the fact that we employorthogonal projection rather than the perspective
projection used by a painter trying realistically to reproduce a three-dimensional scene).

Since Boole was also working on an analogy between logic and algebra, he was investigating the relation
between inference and elimination. In fact one of the key points in his celebrated Laws of Thought is to address
the question “Whether deductive reasoning can with propriety be regarded as consisting only of elimination” [2,
pp. 239–240], and he writes subsequently: “I reply, that reasoning cannot, except by an arbitrary restriction of
its meaning, be confined to the process of elimination”. In support of Boole’s conclusion, Peirce remarked in a
footnote that “De Morgan (“On the Syllogism,” No. II., 1850,p. 84) goes too far [...] if he means, as he seems to
do, that all inference is elimination” [25,§184n]. And this is exactly what we have also discovered. The arbitrary
function g in Corollary 2.7.7 has exactly the purpose of including all the rules of inference which can not be
described by projection/elmination, namely those resulting in a less restrictive form. Boole and Peirce may have
rejected the idea of all inference as elimination because ofa similar observation.

Boole’s analogy between logic and algebra was founded in theidea of two-valued polynomial functions to
represent propositional rule sets, De Morgan’s approach, on the other hand, was oriented towards systems of
linear equations or inequalities to represent the same thing. In the tradition of De Morgan it was discovered in
1991 by Hooker [12] that everything which can be inferred from a rule set about a restricted set of propositions,
can be found through logical projection. A result which is very similar to our Theorem 2.7.6. The context and
definitions prior to Hooker’s proof is, however, completelydifferent from and not as general as ours. The reason
being that any propositional formula must be rewritten as a clause in Hooker’s treatment whereas we impose no
restrictions on the representation of Boolean functions represented by a propositional formula. As De Morgan,
Hooker also does not mention rules leading to less restrictive forms.

Having now described how inference can be drawn on a rule set by projection, it may be that we have a rule
set specifying the relation betweenn propositional variables. Suppose we want to assert truth orfalsehood to a
numberk < n of these propositions and draw a conclusion on the relation between the remaining propositions
in the rule set. To do inference by projection, it would be necessary to include the assertions in the rule set. In
the following section we describe a simpler option for drawing inference in this special case where a number of
propositions are simply asserted.

2.8 Deduction

The nesting of a Boolean function employed in projection, isuseful not only for syllogistic reasoning, but also for
the form of deductive reasoning described in the Stoic modi.This is a form of inference resulting from external
influences such as the consequence of some propositional variable being asserted (or valuated as) true or false.

Knowing the current value of one or several propositional variables appearing in a formulaA, makes us able
to pick a subspace in the image of a Boolean functionfA represented byA. The picking of a subspace involves
no calculations and is therefore much more efficient than inference by projection. We have

Definition 2.8.1(deduce)Let I = {1, . . . , n} be an index set, and letn, k ∈ N be natural numbers withk < n.
Then the operatordeduce : {0, 1}k × In−k × Bn → Bn−k is defined for~a ∈ {0, 1}k,~ı ∈ In−k, andfn ∈ Bn

1 Italicizations are original.



15

by

deducen,n−k(~a,~ı, fn) = splitn,k(~ı, fn)(~a) ,

where the indices in~ı must be mutually distinct. Note that~ı points out the arguments offn that have not been
asserted (unknowns).

Theorem 2.8.2 LetI = {1, . . . , n} be an index set withn ∈ N. LetA = A(p1, . . . , pn) be a formula describing
a propositional rule set, and letfA ∈ Bn be the Boolean function represented byA. For any~ı ∈ Im let
v : {pi1 , . . . , pim

} → {0, 1} be a partial valuation forA such thatak = v(pik
) for k = 1, . . . ,m according to

an assertion of the propositional variablespi1 , . . . , pik
. It then holds that

f |=n,n−m ((1, . . . , n),~)deducen,n−m(~a,~, f) ,

where~ ∈ In−m is given by the indices inI which are not in~ı ordered such thatjk < jk+1 for k = 1, . . . , n −
m− 1.

P r o o f. Pick an arbitrary propositional rule set and letfA ∈ Bn be the Boolean function represented by the
formulaA = A(p1, . . . , pn) describing the rule set. Suppose an external influence asserts any partial valuationv
for A such thatak = v(pik

), wherek = 1, . . . ,m and~ı ∈ Im for I = {1, . . . , n}. Let furthermore~ ∈ In−m be
the indices inI which are not in~ı ordered such thatjk < jk+1 for k = 1, . . . , n−m− 1. Then

entailn,n−m((1, . . . , n),~, fA,deducen,n−m(~a,~, fA))

=
∧

b1,...,bn∈{0,1}

imp(fA(b1, . . . , bn), split(~, fA)(~a)(bj1 , . . . , bjn−m
)) .

This holds true only as long asbik
= ak = v(pik

) for k = 1, . . . ,m which is the case as long as the propositional
variablespi1 , . . . , pik

are asserted.

Example 2.8.3 Consider the simple propositional rule set, or formula,

p⇒ q .

This rule set, of course, represents the Boolean functionf2 = imp.
Suppose we have an external influence asserting thatp is true. Then we have deductively that

f1 = deduce2,1((1), (2), f2) = split2,1((2), f2)(1)

and

f1(0) = split2,1((2), f2)(1)(0) = f2(1, 0) = imp(1, 0) = 0

f1(1) = split2,1((2), f2)(1)(1) = f2(1, 1) = imp(1, 1) = 1 ,

why we can conclude that for the rule set to be fulfilled, the consequence ofp beingtrue is thatq is true (cf. Ta-
ble 1). This proves modus ponens.

To conclude on the theory that has been presented, we emphasize that all kinds of deductive inference on
arbitrary rule sets can be performed by a disjunctive projection in a logical coordinate system (and disjunction of
any Boolean function as described in Corollary 2.7.7, if we need a less restrictive form of a conclusion). Moreover
we can perform the simpler picking of a subspace described inthis section, to draw inference on simple assertions
of propositions. We find it advantageous to think of assertions as influences external to the rule set rather than
additional rules which should be added to the set. The reasonis that many systems can be described by a static
rule set and for that we can compute the image of the Boolean function represented by the rule set, in advance.
Then the efficient picking of a subspace can quickly narrow down the part of the image which we need to consider
to find the logical consequences of dynamically changing input to the system.

It should be observed that both ways to draw inference can be done mechanically by an implementation of
EACH andsplit (andfuse if functions are not colligated in advance). We can even find the image of Boolean
function representing arbitrary propositional rule sets usingOUTER andfuse which is more efficient than testing
every possible valuation for the rule set. In the following section we investigate how the operators can be applied
to different representations of Boolean functions.



16 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

3 Representations of Boolean Functions

We will, shortly, give examples of how the operators presented in the previous section can be applied to both
polynomial, table, and graph representations of Boolean functions.

3.1 Polynomial Representations

Boolean functions were originally presented by Boole through a polynomial development formula where a logical
variablex can attain only the truth-values0 and1, (1 − x) denotes the negation ofx, logical multiplication cor-
responds to conjunction, and logical addition correspondsto disjunction. A description of Boole’s development
process has been given by Franksen [9]. Boole’s polynomial representation has lead to the notion of Boolean
algebra (see eg. [29]) and the polynomial representation ofBoolean functions is still used extensively.

In a Boolean algebra differentnormal formscan provide a basis for the space of Boolean functions expressed
as polynomials. The disjunctive normal form is the one most commonly chosen and it expresses the polynomials
in the form of an∨-sum of∧-product terms. Another interesting approach is to use exclusive-or (⊕) instead of
disjunction for logical addition. The exclusive-or normalform allows for a true vector space of Boolean functions,
since the operations∧ and⊕ are, in fact, the modulo-two product and sum which comprise afield, see [6]. This
is not the case if the disjunctive normal form is employed.

Regardless of the choice of basis, the presented operators can easily be applied to any polynomial representa-
tion of Boolean functions.

Example 3.1.1 Again consider the rule set in Example 2.4.4. Giving the Boolean functions corresponding to the
rules a polynomial representation results in

r1(a1, a2) = v(p1 ⇒ p2) = a1a2 + (1 − a1)a2 + (1 − a1)(1 − a2)

r2(a2, a3) = v(p2 ⇒ p3) = a2a3 + (1 − a2)a3 + (1 − a2)(1 − a3) ,

wherev(A) is the value of the formulaA by the valuationv : {p1, p2, p3} → {0, 1} such thatai = v(pi),
i = 1, 2, 3. Multiplication corresponds to conjunction and addition corresponds to disjunction. The polynomial
representation written after the second equality is the disjunctive normal form of the rule. Now everything works
as in the previous examples. First we can construct a Booleanfunctionf3 ∈ B3 corresponding to the rule set

f4 = r1 OUTER2,2(·) r2

f3 = fuse4,3((1, 2, 2, 3), f4) .

Again reasoning is easily captured. The relation betweenp1 andp3 is given as the Boolean functionf2 obtained
by

f2 = PROJECT3,2(+)((2), f3) .

Observe that nothing done after statement of the rules on disjunctive normal form, has demanded calculation.
All we have done is simple substitution using the operators and movement of parentheses. In this representation
of Boolean functions, the advantage of the operators lies inthedelay of calculations. Using the operators we can
keep track of the functions that are currently requested (such asf2), but only when some specific result is needed
a calculation is done. For example if we decide that the representation off2 on disjunctive normal form is the
requested output, we could arrive at the result in the following way for a valuationv : {p1, p3} → {0, 1} such



17

thata1 = v(p1) anda2 = v(p3):

f2(a1, a2) = PROJECT3,2(+)((2), f3)(a1, a2)

= EACH1,2(+)(split3,2((2), f3))(a1, a2)

= REDUCE1(+)(split3,2((2), f3)(a1, a2))

=
∑

b∈{0,1}

f3(a1, b, a2)

=
∑

b∈{0,1}

fuse4,3((1, 2, 2, 3), f4)(a1, b, a2)

=
∑

b∈{0,1}

OUTER2,2(·)(r1, r2)(a1, b, b, a2)

=
∑

b∈{0,1}

r1(a1, b)r2(b, a2)

= (1 − a1)(a2 + (1 − a2)) + (a1 + (1 − a1))a2

= a1a2 + (1 − a1)a2 + (1 − a1)(1 − a2) .

Delay of operations is important if we want to do propositional reasoning in a dynamic environment such as a
multi-agent system where the desired conclusion of each agent may change continuously according to real-time
sensory input.

3.2 Table Representations

Truth tables are the most well-known table representation of Boolean functions. There are, however, many
alternatives. Karnaugh maps [16] comprise an attempt to have a compact table representation. In the following
we will, again, go over the Aristotelian syllogism and show the process of applying the operators in their original
settings, namely in Franksen’s array-based logic.

The arrays are ordered, orthogonal, and many-dimensional.They must also allow for one level of nesting to
enable the concept of nested Boolean functions. When drawingthe image of a real-valued function, the axes
are distinguished as an arrow marked with the variable that it represents. In array-based logic no axes are drawn
explicitly. Rather the structure of an array indicates which variable each axis corresponds to. The last axis of an
array, corresponding to the valuation given as the last argument to the Boolean function, is always innermost and
horizontal. Moving backwards through the list of arguments, the corresponding axes alternate between vertical
and horizontal directions. This way of constructing arraysis due to Trenchard More [19, 20].

Example 3.2.1 For one last time consider the rule set in Example 2.4.4. Describing aff by an array we have:

aff = 01 .

An array representing the Boolean functionf3 ∈ B4 corresponding to the rule set is then found in the following
way:

r1 = r2 = aff OUTER1,1(⇒) aff = 01 OUTER1,1(⇒) 0 1 =
1 1
0 1

f4 = r1 OUTER2,2(∧) r2 =
11
0 1

OUTER2,2(∧)
1 1
0 1

=

1 1 1 1
0 1 0 1

0 0 1 1
0 0 0 1

f3 = fuse((1, 2, 2, 3), f4) =
1 1 0 0
0 1 0 1

.



18 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

If the relationf2 between the variablesp1 andp3 is desired, the projection is accomplished as follows:

f2 = PROJECT3,2(∨)((2), f3) = EACH1,2(∨)

(

split3,2

(

(2),
1 1 0 0
0 1 0 1

))

= EACH1,2(∨)

(

1 0 1 1
0 0 0 1

)

=
11
0 1

.

The arrays presented here could, of course, be given a more compact form, and it is worth noticing that
reasoning on arbitrary rule sets is easily automated through implementation of the operators. At least this is the
case using table representations, and it has traditionallybeen done in array-based logic, see eg. [18].

An interpreted development language called Q’Nial (Queen’s UniversityNestedinteractive language) was
originally proposed in [14] for the purpose of testing arraytheoretic concepts. If the reader feels a need to
test the operators in an array theoretic setting, we recommend Q’Nial2 where an implementation ofEACH,
OUTER, split, andfuse is available for operation on multi-dimensional nested arrays. The index argument of
fuse is different in Q’Nial as compared to our definition, but the same functionality can be obtained with either
definition. Another option for testing the presented operators is APL3 which also has a nested array data structure
readily available.

3.3 Graph Representations

There are many ways to represent Boolean functions as a graph. Most of them are based on a normal form just
as the polynomial representations are. The most commonly known graph representation of a Boolean function is
a Binary Decision Diagram (BDDs) which is based on the if-then-else normal form (see eg. [1]).

Constructing the graph representing a Boolean function is not necessarily straight forward. Suppose we need
to merge two Boolean functions and draw inference on them in atime constrained environment where we cannot
afford to construct a new merged graph. In that caseOUTER and fuse can be used to merge the two graphs
artificially, see Figure 1. There is also the possibility that the operators can be given an efficient implementation
for BDDs and teach us new things about efficient constructionof graph structures representing Boolean functions.

0

0

0

0

0

0

1

1

1

1

1

1

a1 a2

a2 a3
OUTER(∧)

Fig. 1 The operatorsOUTER andfuse can be used to merge two graphs artificially. Connection of the two Binary Decision
Diagrams representing Rule 1 and Rule 2 (from Example 2.4.4), is illustrated here.

Assertion of propositions is easily captured in a BDD through restriction of the graph. Syllogistic reasoning
is, however, not obvious. ThePROJECT operator may be able to help in this context, see Figure 2.

4 Discussion and Conclusion

Operators working on the images of Boolean functions, sometimes with a direct analogy to geometrical operators
in cartesian spaces (comparePROJECT(∨) and orthogonal projection), have been presented in an abstract form.
Their purpose is to clarify each step of propositional reasoning regardless of the underlying representation of the
Boolean functions.

In particular we have shown that the image of a Boolean function, sayf , represented by an arbitrary propo-
sitional rule set, can be found using outer products and the operation of setting indices equal (fuse), the latter

2 Q’Nial is available at http://www.nial.com/.
3 For example dyalog APL http://www.dyalog.com/.



19

0

0

0 0

000

0

1

1

1

1

1 1

1

11

1

a1

a1

a1

a3

a3

etet vel =

Fig. 2 Here PROJECT(∨) is invoked on thea2 argument of the graph shown in Figure 1 (the projection returns the
disjunction between the graph wherev(p2) = a2 = 0 and the graph wherev(p2) = a2 = 1). Of coursePROJECT can
also be used with a Binary Decision Diagram that has not been connected usingOUTER.

of which geometrically corresponds to the picking of diagonal hyperplanes in a logical coordinate system. If
employed in the right way, these two operators can significantly limit the number of calculations needed for de-
termining the image off . At least this is the case if we compare to finding the value of the Boolean function by
testing every possible valuation for the rule set. This technique is not new, but we have redefined the necessary
operators in a form which is independent of the representation of the Boolean function describing the rule set.

In addition and, perhaps, more importantly, we have provided a formula from which any rule of inference can
be derived. The formula shows that any rule of inference is captured by disjunctive projection in and union of
Boolean function images in a logical coordinate system. This also means that disjunctive projection (and union
to find less interesting consequences) is all we need to find any possible logical consequence which results if we
want to fulfill any given propositional rule set.

A few examples of application of the operators to different representations of a propositional rule set have
been described. This is an area in which much work can still bedone. The impact of the operators have hitherto
only been thoroughly investigated in the context of an array-based representation.

As mentioned previously, it may be an advantage to redefine the operators using theBoolean tensorsdescribed
by Mautner [17]. But then it is necessary to introduce a considerable amount of algebra.

Finally there are many generalizations of this theory whichcome easily. For example there is no difficulty
in rewriting the operators to be defined on the more generalBoolean-valuedfunctions represented by polyvalent
logic. This merely has the result that the axes in the logicalcoordinate systems grow longer. The described
operators (in their array theoretic form) have previously been employed in many different contexts, sometimes
for propositional logic, but also in slightly more general settings. Examples of application areas are logic control
of electronic apparatus [18], railway interlocking systems [27], automated approximate reasoning and fuzzy
logic control [13], power system control [22], automated real-time decision systems for e-commerce [3, 5, 4],
and agents in real-time environments [11]. This is, however, the first paper proving formally that the operators
perform correct inference on any propositional rule set andthat they can capture any possible kind of inference
in propositional logic. This makes us confident that the operators are useful in many contexts.

Acknowledgement

Thanks to Vagn Lundsgaard Hansen for a few insightful discussions concerning the presented theory and to
Jørgen Fischer Nilsson for a helpful comments. Last, but certainly not least, thanks to our anonymous reviewer
for correction of untraditional formulations and for directions improving Definitions 2.3.1 and 2.6.3.

References

[1] H. R. Andersen. An introduction to Binary Decision Diagrams. Lecture notes for 49285 Advanced Algorithms E97.
Department of Information Technology, Technical University of Denmark, October 1997.

[2] G. Boole. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and
Probabilities. Dover Publications, Inc., New York, 1958. The first American printing of the work originally published
by Macmillan in 1854.

[3] R. Davidrajuh.Automating Supplier Selection Procedures. PhD thesis, Narvik Institute of Technology, 2000.
[4] R. Davidrajuh. Modeling and implementation of supplier selection procedures for e-commerce initiatives.Industrial

Management and Data Systems, 103(1):28–39, 2003.



20 J. R. Frisvad and P. Falster: Geometric Operators on Boolean Functions

[5] R. Davidrajuh and B. Hussein. Modeling logic systems with structured array-based logic.Modeling, Identification and
Control, 24(1):27–36, 2003.

[6] H. Fleisher, M. Travel, and J. Yeager. Exclusive-OR representation of Boolean functions.IBM Journal of Research and
Development, 27(4):412–416, 1983.

[7] O. I. Franksen. Group representation of finite polyvalent logic: A case study using APL notation. In A. Niemi, editor,A
Link between Science and Applications of Automatic Control, IFAC VII, World Congress 1978, pages 875–887, Oxford,
1979. Pergamon Press.

[8] O. I. Franksen. Invariance under nesting - an aspect of array-based logic with relation to Grassmann and Peirce. In
G. Schubring, editor,Hermann G̈unther Graßmann (1809-1877): Visionary Mathematician, Scientist andNeohumanist
Scholar, pages 303–335, Dordrecht, 1996. Kluwer Academic Publishers.

[9] O. I. Franksen. Boole’s development process revisited: From an array-theoretic viewpoint.Acta historica Leopoldina,
27:175–188, 1997.

[10] O. I. Franksen and P. Falster. Colligation or, the logical inferenceof interconnection.Mathematics and Computers in
Simulation, 52(1):1–9, March 2000.

[11] J. R. Frisvad, P. Falster, G. L. Møller, and N. J. Christensen. Knowledge exchange between agents in real-time envi-
ronments. InProc. of the International Conference on Computer Animation and SocialAgents (CASA 2005), pages
127–132. The Hong Kong Polytechnic University, October 2005.

[12] J. N. Hooker. Logical inference and polyhedral projection.Lecture Notes in Computer Science, 626:184–200, 1991.
Proceedings of the 5th Workshop on Computer Science Logic.

[13] J. Jantzen. Array approach to fuzzy logic.Fuzzy Sets and Systems, 70(2–3), 1995.
[14] M. A. Jenkins. A development system for testing array theory concepts.ACM SIGAPL APL Quote Quad, 12(1):152–159,

September 1981.
[15] E. E. C. Jones. The paradox of logical inference.Mind, 7(26):205–218, April 1898.
[16] M. Karnaugh. The map method for synthesis of combinational logiccircuits.Transactions of the AIEE, 72(9):593–599,

1953.
[17] F. I. Mautner. An extension of klein’s erlanger program: Logic as invariant-theory.American Journal of Mathematics,

68(3):345–384, July 1946.
[18] G. L. Møller.On the Technology of Array-Based Logic. PhD thesis, Electrical Power Engineering Department, Technical

University of Denmark, 1995. Available athttp://www.arraytechnology.com/.
[19] T. More, Jr. Axioms and theorems for a theory of arrays.IBM Journal of Research and Development, 17(2):135–175,

1973.
[20] T. More, Jr. The nested rectangular array as a model of data. In Proceedings of the International Conference on APL:

Part 1, pages 55–73, 1979.
[21] A. D. Morgan. On the syllogism: II.Transactions of the Cambridge Philosophical Society, IX:79–127, 1850. Reprinted

in, Peter Heath editor,On the Syllogism and Other Logical Writingsby Augustus De Morgan, Routledge & Kegan Paul
Limited, 1966.

[22] C. Nesgaard. An array-based study of increased system lifetimeprobability. In Proceedings of IEEE Workshop on
Computers in Power Electronics (COMPEL 2002), pages 82–86, June 2002.

[23] A. Pedersen.Digraph Representation in Array-Based Logic: With Special Emphasis onthe Mathematical Foundation of
Production Models. PhD thesis, Electrical Power Engineering Department, Technical University of Denmark, September
1992.

[24] C. S. Peirce. Grand logic (1893). In C. Hartshorne and P. Weiss, editors,Collected Papers of Charles Sanders Peirce,
volume II, Book III. Harvard University Press, second printing, 1960.

[25] C. S. Peirce. On the algebra of logic,American Journal of Mathematics, vol. 3, pp. 15–57 (1880). In C. Hartshorne and
P. Weiss, editors,Collected Papers of Charles Sanders Peirce, volume III, Paper IV. Harvard University Press, second
printing, 1960.

[26] E. L. Post. Introduction to a general theory of elementary propositions. Americal Journal of Mathematics, 43:163–185,
1921. Reprinted in, Jean van Heijenoort editor,From Frege to G̈odel: A Source Book in Mathematical Logic 1879–1931,
pp. 264–283. Harvard University Press, Cambridge, 1967.

[27] C. Strunge. Applying array-based logic to substation control for switch interlocking. IEEE Transactions on Power
Delivery, 14(3):879–883, July 1999.

[28] I. Wegener.The Complexity of Boolean Functions. John Wiley & Sons Ltd, and B. G. Teubner, Stuttgart, 1987.
[29] J. E. Whitesitt.Boolean Algebra and Its Applications. Dover Publications, Inc., New York, 1995. First published by the

Addison-Wesley Publishing Company, Reading, Massachusetts, in 1961.


