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Summary

In models of risk and portfolio management in the fixed income security market
as well as in models of pricing of interest rate sensitive derivatives one should
model the most likely future movements of the whole term structure of interest
rates. A lot of work has been done on modeling interest rates for derivative
pricing purposes. But when it comes to generating interest rate scenarios for
managing the risk and return of fixed income securities the amount of work done
is less developed. In particular when using multi stage stochastic programming
the bottle neck in many cases seems to be capturing the interest rate uncer-
tainty properly in accordance with the state of the art economic and financial
assumptions.

The objective is therefore to construct a model capable of capturing the interest
rates in order to generate interest rate scenarios.
The term structure of interest rates is modeled by using historical term struc-
tures This historical data has several dimensions which will be reduced to a few
key factors of the term structure using factor analysis.

When we have recognized these factors they are used to construct a stochastic
factor model capable of describing the future movement of the term structure
of interest rates. The model used for that purpose is a vector autoregression
model.

Finally the Factor model is used as an input into an scenario generating system
to generate scenarios and make some general observations and experiments on
them.
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Chapter 1

Introduction

1.1 Stochastic Programming and Scenario Gen-

eration

Managing portfolios of financial instruments is in essence managing the tradeoff
between risk and return. Optimization is a well suited and frequently used tool
to manage this tradeoff. Financial risks arise due to the stochastic nature of
some underlying market parameters such as interest rates. So it is neccesery to
include stochastic parameters in optimization for portfolio managing, turning
portfolio optimization in to stochastic optimization or stochastic programming
(SP). A vital part of SP in portfolio management is scenario generation which
is the main subject of this thesis. In the next two sections a short overview is
given of stochastic programming and scenario generation for the term structure
of interest rates and the relations between them.

1.1.1 Stochastic programming

Whereas a deterministic optimization problem contains only known parameters,
stochastic programming is a optimization problem containing uncertain param-
eters. When a formulating a SP problem the uncertain parameters can either
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be described by stochastic distributions, when working with a single period, or
stochastic processes when working with multiple periods. As an example of a
formulation of a SP problem we give a single-period SP formulation , taken from
Kall & Wallace (1994):

Min f0(x, ξ̃)

s.t. fi(x, ξ̃) ≤ 0, i = 1, . . . ,m

x ∈ X ⊂ R
n.

(1.1)

In 1.1 above f0(x, ξ̃) denotes the objective function, fi(x, ξ̃) denotes the con-
strains and ˜ξ = ξ1, ξ2, . . . , ξT is a vector of random parameters, over the time
t = (1, 2, . . . , T ), whose distribution is independent of the vectors of the decision
parameters X. Note however that this formulation is incomplete for it neither
specifies the constraints needed nor is the meaning of Min specified.
With the exception of some trivial cases formulation 1.1 can not be solved us-
ing a continuous distribution to describe the random parameters. That is due
to the fact that in continuous setting the decisions parameters become func-
tions, making the problem a functional optimization problem, which cannot be
solved numerically as it is. The usual way of reducing the problem so it can be
solved, is to restrict it to a discrete-state problem, so that the random vector
ξ = ξ1, . . . , ξT take only finitely many values, i.e. the decision functions are re-
duced to decision vectors with finitely many values. This discrete distribution,
containing limited number of possible outcomes, is called scenarios.

Scenario Optimal
solutiongenerator

Data /
Information

OptimizationScenarios

Figure 1.1: A digram showing the steps involved in the solving of a discrete stochastic
programming optimization problem.

Solving a SP problem using scenarios is a multi step process. Figure 1.1 shows
an abstract overview of that process. The input is some information relevant to
the problem, usually in the form of some sort of data, but it can just as well be
some other kind of information, such as an expert opinion, for example. Given
the input the scenario generator is some sort of system which processes the input
and returns the scenarios as an output. The scenarios then serve as a stochastic
input into the optimization model, possibly along with some deterministic data,
which finally returns an optimal solution of the problem.

Now if we treat the optimization part of the process shown in figure 1.1 as a
black box device, and make the assumption that it finds the global optimal solu-
tion for given scenarios, then it is quite obvious that the optimal solution found
is only as good as the scenarios generated allow it to be. Put differently, the



1.1 Stochastic Programming and Scenario Generation 3

quality of the output of the optimization is directly dependent on the quality of
the input or the scenarios generated.
Therefore the benefits of using a good scenario generator is quite obvious. Con-
struction of a scenario generator, intended for generating scenarios of interest
rates which could be beneficial for use in portfolio management in the the fixed
income marked is the main subject of this work.

1.1.2 Scenario trees

Interest rate scenarios are usually displayed with so called scenario trees, an
example of such a scenario tree can be seen in figure 1.2 which shows a multi
period, scenario tree. In the figure the nodes represent the possible stages at
each period and the arcs represent the relations of the stochastic variables. Each
path through a scenario tree is a Scenario and a definition of a scenarios taken
from Practical Financial Optimization (2005) is:

Figure 1.2: An example of a scenario tree.

Definition 1.1 Scenarios.

A scenario is a value of a discrete random variable representing data together
with the associated probability pl ≥ 0. Each scenario is indexed by l from a
sample set Ω, and the probabilities satisfy

∑

l∈Ω p
l = 1. 3

1.1.3 Overview of scenario generation methods

A general approach to generate scenarios is to take some information, believed
to be representative of the problem which the aim is to model, and use them
to generate scenarios. A typical form of information used are historical data
observations. For our purposes historical data of interest rates are an obvious
choice as a source of information.
It should be noted that there exists no general scenario generation approaches
which can be applied for all stochastic programming models. Scenario gener-
ation is usually rather problem specific and therefore it is difficult to compare
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DATA

Bootstrapping

Sampling

Discrete
approximation

Continuous
time model

Statistical
anlysis

Scenarios

Figure 1.3: A digram showing several possibilities of generating scenarios, adapted from
Practical Financial Optimization (2005).
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the quality of scenario generation between different types of applications.
But how to generate scenarios? Figure 5.1, shows three conventional ways of
generating scenarios. The simplest of the methods shown is bootstrapping, which
is the procedure of sampling observed data and use it as an direct input in to
SP optimization. However a scenario generated with the bootstrapping method
has the serious shortcoming that it can only reflect observations which have oc-
curred before and is unable to come up with situations witch have not occurred,
it lacks creativity, similar to learning something by rote.

To make up for the shortcomings of the bootstrapping method one can try to
recognize the characteristics of the system instead of just mimicking past behav-
ior. To do that some statistical analysis can be used to recognize the properties
of the the underlying process. Those properties can then be used to generate
scenarios having the same properties. The most common form of such statistical
analysis is moment matching, where statistical moments of the underlying pro-
cess, are found and then used to construct scenarios with matching moments,
usually along with matching the correlation matrix. However generating sce-
narios using moment matching has some potential hazards as pointed out by
Hocreiter & Pflug (2007). The hazards lie in the fact that different distribu-
tions can have the same moments, meaning that a scenario could be made out
of completely different distributions than truly describe the underlying system
which is being modeled. And as stated in their paper:

“although moment matching performs better than crude random

sampling and adjusted random sampling . . . it is obviously awkward

to use this methodology in terms of reliability and credibility of the

approximations”.

An improvement to the moment matching is to develop a model of the underlying
stochastic process, and then make a discrete approximation of that to sample
scenarios from. Doing that the user can be sure that he is sampling from a
process known to describe the system being modeled. That should address the
reliability and credibility issues of moment matching.

1.2 Available Data

The historical data for the term structures of Danish interest rates for zero-
coupon bonds was available. The data set covers the period from the 4. of
January 1995 to the 8. of October 2007, issued with weekly intervals counting
659 issuing dates at all. Each issuing date contains the spot rates for maturities
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up to thirty years in quarterly steps.

1.3 Outline of the Thesis

1.3.1 Layout of thesis

The rest of the thesis is organized out as follows.

Chapter 2: Factor Analysis

This chapter begins by covering the term structure of interest rate. Next
a method for performing a factor analysis on the term structure is formu-
lated and implemented, from which we find the factors which can be used
to represent the term structure.

Chapter 3: Normality of Interest Rates

In this chapter the normality of the interest rates is tested, and the hypoth-
esis that a log-normal distribution describes the data better is checked.
The main result is the the log-normality assumption does not result in
any benefits for the purpose of scenario generating. Therefore we use the
data as it is.

Chapter 4: Vector Autoregression

In this chapter a VAR model is formulated for the purpose of modeling
the term structure. It is investigated which order is suitable for the VAR
model of the interest rates, which turns out to be order one. The stability
of the model is also tested with positive results. A way to proxy for the
factors with the rate data is derived and finally proxies for interest rate
variability are derived.

Chapter 5: Scenario Tree Construction

In this chapter the construction of scenarios and scenario trees are cov-
ered in more depth than done in the introduction. The previous results are
used as an input to a scenario generation system by Rasmussen & Poulsen
(2007) to generate scenarios and look into how different approaches for
the generation affect key issues such as existence of arbitrage and affects
the number of scenarios has.
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Chapter 6: Conclusion

Final overview of the results of this work along with elaborations of pos-
sible future work are given in this chapter.
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Chapter 2

Factor Analysis

The first step in generating interest rate scenarios is to find some factors which
describe the term structure of the rates and can serve as an input into an interest
rate model. In this section a factor analysis is used to find the factors of use in
the factor model of interest rates we wish to construct. The factor analysis is
performed with data of Danish zero-coupon bonds, described in section 1.2.

The rest of the chapter is laid out as follows:

• In section 2.1 an overview over the term structure of interest rates is given.

• In section 2.2 an overview of the factor analysis, along with a formulation
of it for the term structure of interest rates is given.

• In section 2.3 a factor analysis is performed on Danish yield curve data
and the results analyzed.

• Finally section 2.4 concludes the chapter.
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2.1 The Term Structure of Interest Rates

A security is a fungible financial instrument which represents a value. Securities
are issued by some entity, such as a government or corporation, and they can
be sub categorized as debts, such as bonds, or equity, such as common stock.
Of particular interest to us is the term fixed income securities which refers to
a specific kind of a financial instrument that yields a fixed income at a given
time in the future, termed maturity. An example of fixed income instruments
are bonds, where the issuer of the bond owes the holder a debt and is obliged to
repay the face value of the bond, the principal, at the maturity possibly along
with interests payments or coupons at specific dates prior to the maturity.

A fixed income securities which delivers no coupons is termed a zero-coupon bond
(ZCB). Put differently a ZCB only delivers a single payment (the premium) when
the bond reaches maturity. In an analytical sense, ZCB’s are good to work with
as they are the simplest type of bonds, but can however be used as building
blocks for other types of fixed income securities. That is because it is possible
to match other types of fixed income securities with a portfolio of ZCB’s having
different maturities which premiums are matched to the cash flow of the original
ZCB’s.

Changes on the term structure have direct opposite effects on the price of bonds.
If the rates rise the prices of bonds fall and vice versa. The price of a fixed income
security is the securities present value which is controlled by the interest rate
termed as the spot rate. The concept “spot”, used in financial sense, generally
means buying or selling something upon immediate delivery and the concept
applies in the same way for securities, meaning that the spot rate is simply the
price of a security bought “on the spot”. It is therefore easy to see why the price
bond that pays fixed 5% interest is higher when the spot rate is 4% than when
it is 6%. Formal definitions of spot rate and the term structure taken from
Practical Financial Optimization (2005) are:

Definition 2.1 Spot Rate

The spot rate is the basic rate of interest charged for the risk free asset (cash)
held during a period from time t = 0 until some time t = τ . We can think of
the spot rate as the return on one unit of the risk free asset during the holding
period τ and denote it by rfτ . 3

Next we define the term structure of interest rates which simply put is the
relationship between interest rates and their time to maturity.

Definition 2.2 Term Structure of Interest Rates
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Is the vector of spot rates for all holding periods t = 1, 2, . . . , T , denoted by
(rt)

T
t=1. 3

If the term structure of interest rates is plotted the result is the the so called
yield curve. An example of how yield curves look like can be seen in figure
2.1 which contains two instances of yield curves for Danish ZCB’s from at two
different historic time periods.
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Figure 2.1: Yield curves for Danish zero-coupon bonds. The red curve is a normal shaped
yield curve and the blue curve shows a yield curve where the short rate yield is inverted.

Yield curves can have various characteristics depending on economic circum-
stances at a given point in time. An upward sloping curve with increasing but
marginally diminishing increases in the level of rates, for increasing maturities,
is commonly referred to as a normal shaped yield curve. An example of such a
curve is the red curve in figure 2.1. The reason for this naming is due to the fact
that this is the shape of a yield curve considered to be normal for economically
balanced conditions. Furthermore this shape has been the far most common for
the past decades1.

1The normal shape has in fact been dominant in capitalized markets since the great de-
pression.
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Other types of yield curves include a flat yield curve where the yields are con-
stant for all maturities. A humped shaped yield curve has short and long term
yields of equal magnitude, different from the medium term yields which are
consequently either higher or lower. An inverted yield curve is converted invert
normal shaped curve, i.e. a downward sloping yield curve with decreasing but
marginally diminishing decreases in yields.

Figure 2.2: Historical data of Danish (zero-coupon) yield curves for the period 1995–2006.

Figure 2.2 shows a surface plot of Danish yield curves issued for the years 1995–
2006. The plot simultaneously shows the yields plotted against time to maturity,
and the yield of a given maturity plotted against issuing dates. From the figure,
it can be observed that the yield curves are mostly normal shaped, with the
exception of two short periods around the years 1999 and 2001.
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2.2 Factor Analysis of the Term Structure

Now that we have described the term structure we turn our focus on how to
model it. A simple procedure for modeling the term structure is the so called
parallel shift approach, see e.g. Options, Futures, and Other Derivatives (2006).
The parallel shifts approach is based on calculating the magnitude of a parallel
shift of the yield curve caused by the change of the rate. This procedure however
has the drawback that it does not account for non-parallel shifts of the yield
curve, and

2
4

6
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10

Date

Y
ie

ld
 (

%
)

1996 1998 2000 2002 2004 2006

1 year
15 years
30 years

Figure 2.3: Short, medium and long term yields plotted for the same period as before.

as can be observed from figure 2.2 the parallel shift assumption simply does not
hold. This can be further observed in figure 2.3, which gives cross-sections of
the data shown in the preceding figure, for short medium and long term rates,
from the figure it is evident that the yields are not perfectly correlated especially
not the short and long term yields. Therefore we conclude that the yield curves
evolve in a more complicated manner and a non parallel approach is needed.

A number of procedures are available to improve the parallel shift approach,
such as dividing the curve into a number of sub periods, or so called buckets,
and calculate the impact of shifting the rates in each bucket by one basis point
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while keeping the rest of the initial term structure unchanged. Although the
bucked approach leads to an improvement to the parallel shift approach it is still
merely a patch on the parallel approach and still relies on the same assumption.

One commonly used method of modeling the term structure of interest rates,
which does not rely on the parallel assumption, is to use Monte Carlo simu-
lation to model the curve, based on some key rates used to describe the yield
curve. According to the literature using a Monte Carlo simulation one can
achieve better results than with the parallel assumption approach. However it
has the disadvantages of high computational cost involving a huge number of
trials, especially when working with multi currency portfolios, pointed out by
Jamshidian & Zhu (1997), being . Furthermore the coverage of all “extreme”
cases of the yield curve evolution is not guaranteed and the selection of the key
interest rate is trivial often relying on arbitrary selected choices, making the
quality of the simulation heavily dependent on those choices.

If historical data of the term structure is available another alternative is to
investigate the internal relationship of the term structure. Such a method is
called factor analysis which in general aims at describing the variability of a set
of observed variables with a smaller set of unobserved variables, called factors
or principal components. The factor analysis takes changes in the shape of the
term structure in to account, allowing the parallel assumption approach to be
relaxed.
Factor analysis has previously been applied in analysis of the term structure
with great success, Litterman & Scheinkman (1991) find that the term struc-
ture of interest rates can be largely explained by a small number of factors.
Performing factor analysis on data for US treasury bonds they find that about
95% of the the variation of the yield curve movements can be explained by just
three factors which they name: level, slope and curvature. Level accounts for
parallel shifts in the yield curve, affecting all the maturities with the same mag-
nitude, slope describes changes in the slope of the yield curve and the curvature
factor, accounts for change in the yield curve curvature.
Further applications of factor analysis on the term structure includes an analy-
sis made on Italian treasury bonds by Bertocchi, Giacometti & Zenios (2000),
considering yields with maturities up to 7 years, in that analysis the three most
significant factors explained approximately 99% of the yield curve movement.
Dahl (1996) found out that three factors were able to explained about 99.6%
of the term structure variation of Danish ZCB’s. Dahl’s work on factor analy-
sis is especially interesting in context to the work being done here because he
performed his analysis on Danish ZCB’s, analogous to the data used here, but
from the 1980s. Therefore it is of interest to compare his results to the results
which will be recited in this work.
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2.2.1 Formulation of factor analysis for the term structure

Considering the success achieved in the past of applying factor analysis to model
the term structure of interest rates and the analytical benefits the use of it
brings, it was decided to apply factor analysis on the data. The analytical
benefits weighting the most here are the relaxation of the parallel assumption of
the yield curve and the low number of factors needed to describe it historically
reported. But the small number of parameters is essential for using the results
as a base for a factor model of the term structure.

The aim of factor analysis is, as said before, to account for the variance of ob-
served data in terms of much smaller number of variables or factors. To perform
the factor analysis i.e. to recognize the factors we apply a related method called
principal component analysis (PCA). The PCA is simply a way to re-express a
set of variables, possibly resulting in more convenient representation.

Ind. Sampl. [I] Variables [V ]
V1 V2 . . . Vp

I1 x11 x12 . . . x1p

I2 x21 x22 . . . x2p

...
...

...
...

...
In xn1 xn2 . . . xnp

Table 2.1: p variables observed on a sample of n individual samples.

PCA is essentially a orthogonal linear transformation of n individuals sets of p
observed variables; xij , i = 1, 2, . . . , n and j = 1, 2, . . . , p, such as shown in table
2.1, into an equal number of new sets of variables; yij = y1, y2, . . . , yp along with
coefficients aij , where i and j are indexes for n and p respectively. Along with
obliging the properties listed in table 2.2.1. In our chase the historical yield
curves are the n individual sets, containing p variables of different maturities
each.

The last property in table 2.2.1 states that the new combinations yi express the
variances in a decreasing order so consequently the PCA can be used to recognize
the most significant factors i.e. the factors describing the highest ratios of the
variance. The method is perfectly general and the only assumption necessary
to make is that the variables which the PCA is applied on are relevant to the
analysis being conducted. Furthermore it should be noticed that the PCA uses
no underlying model and henceforth it is not possible to test any hypothesis
about the outcome.

According to Jamshidian & Zhu (1997), the PCA can either be applied to the
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• Each y is a linear combination of the x’s i.e. yi = ai1x1+ai2x2+· · ·+aipxp.

• The sum of the squares of the coefficients aij is unity.

• Of all possible linear combinations uncorrelated with y1, y2 has the great-
est variance. Similarly y3 has the greatest variance of all linear combina-
tions of xi uncorrelated with y1 and y2, etc.

Table 2.2: Properties of the PCA y is a new set of reduced x’s.

covariance matrix or the correlation matrix of a data set of rates. For clarity we
give definitions of the covariance and correlation matrices, taken from Applied
Statistics and Probability for Engineers, third edition (2003):

Definition 2.3 Covariance Matrix

The Covariance Matrix is a square matrix that contains the variances and
covariances among a set of random variables. The main diagonal elements of the
matrix are the variances of the random variables and the off diagonal elements
are the covariances between elements i and j. If the random variables are stan-
dardized to have unit variances, the covariance matrix becomes the correlation
matrix. 3

Definition 2.4 Covariance Matrix

The Correlation Matrix Is a square matrix containing the correlations among
a set of random variables. The main diagonal elements of the matrix are unity
and the off diagonal elements are the correlations between elements i and j. 3

As stated in definition 2.3, the correlation matrix is the covariance matrix of the
standardized random vector and it should therefore be adequate to use either of
them to perform the PCA. Furthermore according to Jamshidian & Zhu (1997)
the variance of all key interest rates are of the same order of magnitude so results
from applying PCA on either should become very similar.

A general description and bibliography references of factor analysis and principal
component analysis can for example be found in Encyclopedia of Statistical
Sciences (1988). But our interest here lies in performing factor analysis on
the term structure of interest rates and therefore we give formulation of the
PCA based on such formulation from Practical Financial Optimization (2005),
the formulation uses the covariance matrix.
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Let R be a random variable return of a portfolio.

R(x, r̃) =
T

∑

t=1

xtr̃t

where xt represents the portfolio holdings in the tth spot rate, as given in
definition 2.1, such that

∑T
t=1 xt = 1 and r̃t is a random value return of that

asset for the tth rate, with the expected value r̄t and the variance σ2
t . The

covariance between the returns of two assets t and t′ in the portfolio is given by

Σ
2
tt′ = E [(r̃t − r̄t)(r̃t′ − r̄t′ )] .

Let Q denote the portfolios matrix of variance also known as the variance-
covariance matrix or simply covariance matrix. The covariance matrix has the
property of being real, symmetric and positive semidefinite and it can be shown
that the portfolio variance can be written in a matrix format as

Σ
2(x) = x⊤Qx. (2.1)

Now the objective is to approximate the variance of the portfolio, without sig-
nificance loss of variability. We will do that by surrogating the variance matrix
Q with a matrix Q̂ of reduced dimensions. To do that we replace the original
variable R with the principal component

f̃j =

T
∑

t=1

βjtr̃t

which is equivalent to create a new composite asset j as a portfolio βjt in the
tth rate. j.

The variance-covariance matrix of the principal component f̃j , written in vector
form is

Σ
2
j
.
= Σ

2(βj) = β⊤
j Qβj .

Now if no priory structure is imposed on the data used, the PCA seeks to
transforms the variables in to a set of new variables so that the properties
in table 2.2.1 are fulfilled. To maximize the sample variance, σ2

j = β⊤
j Qβj ,

according to construction of orthogonally, we maximize the expression

σ2′

j = β⊤
j Qβj − λ(β⊤

j βj − 1).

It can be shown that the T equations in T unknowns β1, β2, . . . , βT have consis-
tent solution if and only if |Q−λI| = 0. These condition leads to an equation of
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degree T in λ with T solutions λ1, λ1, . . . , λT , named the eigenvalues of the co-
variance matrix Q. Furthermore a substitution of each of all of the T eigenvalues
λ1, λ1, . . . , λT in the equation

(Q − λjI)βj = 0

gives the corresponding solutions of βj , which are uniquely defined if all the λ’s
are distinct, called the eigenvectors of Q.

Lets consider a portfolio consisting of a holding β1, the portfolio has a vari-
ance λ1, which accounts for the ratio λ1/σ

2(x) of the total variance of the
original portfolio. If we then collect the k largest eigenvalues in a vector
Λ = diag(λ1, λ2, . . . , λk) and let the matrix B = (β1, β2, . . . , βk) denote the
matrix of the corresponding k eigenvectors2. Then the covariance matrix of the
portfolio can be approximated with Q̂ = BΛB and henceforth an approxima-
tion of the variance-covariance matrix in equation 2.1 becomes:

Σ̂
2(x) = x⊤Q̂x, (2.2)

since the factors are orthogonal.

The effects of factors on the term structure

Lets now look at what effects change of the jth principal component has on
the value of return r̃. If f̃ = (f̃1, f̃2 . . . , f̃k) denotes a vector of k independent
principal components and B denotes matrix the k corresponding eigenvectors,
then we have f̃ = B⊤r̃, and since BB⊤ = I, by construction, we have r̃ = Bf̃
and the T random rates are expressed as linear combinations of the k factors.
Therefore a unit change in the jth factor will cause a change equal to the level
of the βjt to rate rt and the changes of all factors have a cumulative effect on
the rates.

Now assume that rt changes by an amount βjt from its current value, r0t and
becomes r0t + βjt. Hence the jth principal component becomes

fj →

T
∑

t=1

βjt(r
0
t + βjt)

=

T
∑

t=1

βjtr
0
t +

T
∑

t=1

βjtβjt

= f0
j + 1.

2Note that since the matrix B is an product of an orthogonal linear transformation it is a
orthogonal matrix, i.e. square matrix whose transpose is its inverse.
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Where the last equality follows from the normalization of the eigenvectors
achieved with the orthogonal transformation. What this means is that a unit
change of the jth factor causes a change βjt for each spot rate t. Since the
factors are independent of each other we may therefore express the total change
of the random variable spot rates, rt, by

∆rt =
k

∑

j=1

βjt∆fj , (2.3)

where k is the number of factors, identified by the eigenvector analysis, used to
approximate the variance of the portfolio.

To summarize the results derived in this section we now give a definition of the
principal components of the term structure of interest rates and a definition
of factor loading which the coefficient βjt will be called from now, taken from
Practical Financial Optimization (2005).

Definition 2.5 Principal components of the term structure.

Let r̃ = (r̃t)
⊤
t=1 be the random variable spot rates and Q be the T ×T covariance

matrix. An eigenvector of Q is a vector βj = (βjt)
⊤
t=1 such that Qβj = λjβj for

some constant λj called eigenvalue of Q. The random variable f̃j =
∑⊤

t=1 βjtr̃t
is a principle component of the term structure. The first principal component
is the one that corresponds to the largest eigenvalue, the second to the second
largest, and so on. 3

Definition 2.6 Factor loadings.

The coefficients βjt are called factor loadings, and they measure the sensitivity
of the t-maturity rate t to changes of the jth factor. 3

2.3 Application of Factor Analysis

A principal component analysis, as formulated in sections 2.2.1 and 2.2.1, was
implemented on the data set described in section 1.2 in order to recognize the
key factors of the Danish term structure. More precisely it was performed for
yearly maturity steps dated from the 4. of January 1995 to the 4. of October
2006, all in all thirty maturities in 614 issue dates i.e. n = 614 sets of p = 30
observed variables.

In appendix A.2 the results of the factor analysis performed on data from 1995–
2006, beginning from 1995 and adding one year at time are displayed. From
those figures it can be seen that the shape of the factors becomes stable when
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data from 4-5 years are included. Therefore it is concluded that the factors
found from data groups containing more than five years of data give a stable es-
timation. The results displayed below are found from factor analysis performed
on the years 1995-2006.

Table 2.3 shows the standard deviation, the proportion of the variance and the
cumulative proportion of the seven most significant principal components found
for the period. The first three components, or factors, explain 99.9% of the
total variation and where as the first factor accounts by far for the most of the
variation or 94.9%.

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Std. 5.335 1.1902 0.30696 0.15000 0.05260 0.02704 0.01863
Pr. of Var. 0.949 0.0472 0.00314 0.00075 0.00009 0.00002 0.00001
Cum. Prop. 0.949 0.9960 0.99912 0.99987 0.99996 0.99998 0.99999

Table 2.3: The seven most significance components found applying PCA on Danish ZCB
from 1995–2006. Std. is the standard deviation, Pr.of Var. is the proportion of the total
variance and Cum. Pr. is the cumulative proportion of the variance.

Figure 2.4 shows the three factor loadings corresponding to the three largest
principal components in table 2.3 (the loadings are listed in appendix A.1). The
loadings we recognize as the shift, steepness and convexity factors identified by
Litterman & Scheinkman (1991).

From looking at figure 2.4 it can be observed that the the first factor, forms
almost a horizontal line over the whole time period, excluding approximately
the first five to six years. This corresponds to a change of slope for the first
five years and a parallel shift for the rest of the maturity horizon. Although the
slope in the first five to six years of the first factor is a deviation from what was
observed in the other experiments mentioned in the introduction of section 2.2,
the horizontal line is dominant for the rest of the term structure and hence the
factor is recognized as the level factor.
The second factor, the slope, which corresponds to a change of the slope for the
whole term structure accounts for 4.72% of the total variation. It can be seen
from the plot that the slope is decreasing as a function of maturity which fits
the description of a normal yield curve. This is in accordance to the fact that
the yield curve the period investigated was for most parts a normal yield cure
with marginally diminishing yields. It is also worth mentioning that the slope
for the first ten years is much steeper.
The third factor, can be interpreted as the curvature factor since positive changes
in it cause a decrease in yield for bonds with short and long maturities but cause
an increase in yield for medium length maturities.
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Figure 2.4: The first three factor loadings of the Danish yield curves, the values of the factor
loadings can be seen in appendix A.1.
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In reference to equation 2.2 the three factors level, slope and curvature should
be sufficient to form an estimation variance-covariance matrix Q̂ since they can
explain the variance of the term structure up to 99.9%.
Although the first two factors are sufficient, from a statistical point of view,
to describe the term structure accurately the third factor, which describes the
curvature, is beneficial to include in a model since changes in the curvature of the
term structure do occur. Therefore a model which does not take this change of
term into account has a potential weakness of not capturing possible movements
of the yield curve. Because of this we will use three factors throughout the
report.

Example of the effects of factors on rates

Equation 2.3 describes the relationship a change of the factors has on the level
of rates, redisplay here for convenience

∆rt =

k
∑

j=1

βjt∆fj.

As an example lets see what effect a unit change (∆f1 = 1) of the level factor
(j = 1) has on the ten year rate (t = 10).

j 1 2 3
βj,10 0.1870124 -0.0003624621 0.213623944

Table 2.4: The values of βj,10 for the first three factors, taken from appendix A.1.

From table 2.4 we have βjt = β1,10 = 0.1869201 so a unit change in factor 1
causes 0.1869201 change in the ten year rate, which means that if the ten year
rate is 5% a unit change in the level factor causes it to become 5.1869%.

In the same manner a unit change of three most significance factors (∆fj = 1)
for j = (1, 2, 3), again for ten years means:

∆r10 =

3
∑

j=1

βj.10∆fj = (0.1870 − 0.0004 + 0.2136) · 1 = 0.4002

meaning that a 5% ten year rates would become 5.4002% if a unit change oc-
curred for all the factors.
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2.3.1 Comparison with results from H. Dahl

As mentioned earlier it is of interest to make a comparison with the results
on Dahl’s research of the factor analysis conducted on Danish bonds from the
1980’s. The main facts from his analysis are that the most significant factor
explains about 86% of the historical variation, the second most significant factor
explains about 11% and the third most significant factor, which affects the term
structure of maturities up to ten years, explains about 3%. All in all these three
factors explain 99,6% of the term structure variance. Furthermore a forth factor
was able to explain what Dahl refers to as a twist of the term structure up to
maturities of four years, explaining about 0.3% of the total variation of that
time interval.

Figure 2.5a, shows the first three factors found by Dahl and figure 2.5b are
factors from figure 2.4 redrawn for ease of comparison. It is visible that there
have been some changes in the composition of these three factors. The factor
1 which is sloped in the older analysis has become level, apart from the first
5 years as previously mentioned. The proration of variance explained by the
first factor has also increased from 86% up to approximately 95%, which means
that parallel shifts weigh more in the shape of the term structure. The main
observation is that the shape of the first factor now looks more similar to results
of factor analysis conducted on larger markets such as USA and Italy (Bertoc-
chi et al. (2000) and D’Ecclesia & Zenios (1994)), which typically have a flat
level curve over the whole maturities. The slope and curvature factors are also
shaped differently in our analysis compared to Dahl’s. Both in degree and level
of explanation.
The difference in the shape of the factors must be explained by different eco-
nomic circumstances present in Denmark for the past couple of decades. Dahl’s
work (including the data used) is from the eighties which was a turbulent time
in Danish monetary policies but for the past years the situation has been fairly
stable and has further begun closely to follow the trend of big markets such as
the European and American respectively.

2.4 Conclusion

It could be concluded from figure 2.2 of the interest rates, that the assumption
of a parallel shift of the term structure does not hold. There is in particular little
correlation between short and long term yields so this assumption is especially
dodgy to make when modeling long maturities.
The factor analysis gave the expected results, we were able to account for up
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(b) Factors found for the 1995-2006 data.

Figure 2.5: The three most significance factors found compared to the factors found in the
1980’s
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to an astonishing 99% of the variation with three factors, for the case studied
here. Furthermore we found that the second factor counted for some 5% in the
1995–2006 period which indicates the magnitude of error associating with the
parallel assumption.
It was furthermore found that the factor loadings of the Danish ZCB’s, for the
period considered, differ in one significance aspect from what has been observed
from other markets, namely the slope evident in the first few years of the first
factor, the level factor, is not observable in the level factor in other market areas
that we know of. The Danish factors for the contemporary rates nevertheless
behave in manner more similar to other market than it did in the eighties.
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Chapter 3

Normality of Interest Rates

In the interest rate literature there are two main schools of research, one group
assuming that interest rates follow a normal distribution and another which is
more inclined to believe that interest rates are log-normally distributed. There-
fore it is of interest to investigate firstly whether interest rates follow a normal
distribution and secondly if the rates follow the log-normal distribution better.
In this section those hypothesis are tested on the interest rate data we use.
The main result is that there are no clear indicators that the rates are more
log-normal distributed.

The rest of the chapter is laid out as follows:

• In section 3.1 an introduction to the procedures used for the analysis is
given.

• In section 3.2 an analysis of the normality of interest rates is constructed.

• In section 3.3 the analysis in the previous section is repeated, but taking
the log-normal of the interest rates.

• Finally, section 3.4 concludes the chapter.
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3.1 Introduction

To conduct the investigation we choose different time horizons for the rates,
namely the rates for one, five, fifteen and thirty years. Those maturities are
chosen to cover the short, medium and long term yields. From looking at figure
2.2, in chapter 2, it is evident that the shape of the yield curve varies within the
period shown. The rates are for example noticeably higher for the first years of
the period, ranging from the beginning of 1995 to around 1998–1999, than for
the last years of the period, from around 1998–1999 up to October 2006. That
is especially evident for the medium to long term rates. Apart from that the
period around the millennium behaves differently. That period shows behavior
of a flat and inverted yield curve. Therefore it is also of interest to investigate the
normality within some sub-periods of the time interval. We use two approaches
to estimate the normality, namely visual inspection and goodness-of-fit tests.
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Figure 3.1: Histogram (left) and Q-Q plot (right) made for data from a random sample.

The visual inspection is conducted by plotting histograms of the rates along
with smoothed curves, which are computed via kernel density estimation1 of
the data using a Gaussian (normal) kernel. Those normal plots can indicate

1A kernel is a weighting function used in non-parameter estimation techniques, used here
to estimate the density function of the random variable.
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if the data looks like it arrives from a normal population. However making a
normal plot is not enough since other distributions exists which have similar
shaped curves. Therefore Quantile to Quantile plots (Q-Q plots) of the data
are also drawn. In a Q-Q plot the sample quantiles are plotted against the the-
oretical quantiles for the expected distribution, therefor a sample arriving from
the expected distribution results in the data points being distributed along a
straight line. Figure 3.1 shows an example of histogram along with its smoothed
line and a Q-Q plot made from a random generated sample of 614 numbers with
mean zero and standard deviation of one, i.e. sampled from standard normal
distribution. Notice that the shape of the smoothed curve of the histogram in
the figure is often said to be bell shaped.

The normality or goodness-of-fit tests which were applied on the data were the
Jarque-Bera and Shapiro-Wilk tests. These tests are explained in the following
two subsections.

3.1.1 The Jarque-Bera test for normality

The Jarque-Bera test is a goodness-of-fit test of departure from normality.
It can therefore be used to test the hypothesis that a random sample Xi =
(X1, . . . , Xn) comes from a normally distributed population. The test is based
on the sample kurtosis and skewness which are the third and fourth standard-
ized central moments (mean and variance being the first and second ones). The
skewness is a measure of the asymmetry of a probability distribution while the
kurtosis is a measure of how much of the variance is due to infrequent extreme
events. A sample drawn from a normal distribution has an expected skewness
of zero and kurtosis of three, but in order to make the kurtosis equal to zero
it is a common practice to subtract three from it. If that is done one can test
the null hypothesis that a data comes from a normal distribution based on the
joint hypothesis that the skewness and kurtosis are zero. One such test is the
Jarque-Bera test (Jarque & Bera (1987)), which has the test statistic

JB =
n

6

(

S2 +
(K − 3)2

4

)

, (3.1)

where n is the number of observations. S is the sample skewness defined as

S =
µ3

σ3
=

µ3

(σ2)
3/2

=
1
n

∑n
i=1

(

Xi −X
)3

(

1
n

∑n
i=1

(

Xi −X
)2

)3/2

where µ2 is the second central moment or the variance, µ3 is third central
moment or the skewness, σ is the standard deviation and X is the sample
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mean. K is the sample kurtosis defined as

K =
µ4

σ4
=

µ4

(σ2)2
=

1
n

∑n
i=1

(

Xi −X
)4

(

1
n

∑n
i=1

(

Xi −X
)2

)2 .

where µ4 is the fourth central moment or the kurtosis. In the test test statistic
JB three is subtracted from the kurtosis to make the it equal to zero. The test
statistic has an asymptotic χ2 distribution with two degrees of freedom and the
test has been reported to perform well for samples of small and large sizes.

3.1.2 The Shapiro-Wilk test for normality

The Shapiro-Wilk test is a another goodness-of-fit test which can be used for
testing departure from normality. It is a so called omnibus test in which the
explained variance in a set of data is significantly greater than the unexplained
variance, overall and is regarded as one of the most powerful omnibus test
procedures for testing univariate normality. The test statistic of the Shapiro-
Wilk test, W is based on the method of generalized least-squares regression of
standardized2 ordered sample values. We will cover the method of least-squares
in section 4.6.1, but the Shapiro-Wilk test can be computed in the following
way, adapted from Encyclopedia of Statistical Sciences (1988).

Let M ′ = (M1, . . . ,Mn) denote the ordered expected values of a standard nor-
mal order statistics for a sample of size n and let V be the corresponding n×n
covariance matrix. Now suppose that Xi = (X1, . . . , Xn) is the random sample
to be tested ordered X ′

1 < · · · < X ′
n. Then the test statistic is defined as

W =
(
∑n

i=1 wiX
′
i)

2

∑n
i=1(Xi −X)2

where

w′ = (w1, . . . , wn)

=
M ′V −1

[(M ′V −1)(V −1M)]1/2

and X is the sample mean. The test statistic W is a measure of the straightness
of the normal probability plot and small values of W indicate departure from
normality.

2The procedure of representing the distance of a normal random variable from its mean in
terms of standard deviations.



3.1 Introduction 31

In the literature the Shapiro-Wilk test is regarded as a very sensitive omnibus
test and has shown to be a very good test against either skewed or short or
very long-tailed populations. The Shapiro-Wilk test has also been shown to be
usable for samples of size 3 ≤ n ≤ 2000 which is well within the scope considered
here3.

3.1.3 Interpretation of the normality tests

The most convenient way of analyzing the tests results is by looking at the P -
value of the test statistic. That is mainly due to two reasons, the former being
that the P -value statistic is comparable between tests and the latter being that
stating the P value gives more information than only stating whether or not
certain hypothesis is or is not rejected at a specified level of significance.
The level of significance α is the probability that a true hypothesis gets rejected
and the P -value is the smallest level of significance that would reject the hy-
pothesis. Or in other words, one would reject a hypothesis if the P -value is
smaller than or equal to the chosen significance level. For example a P -value
of 0.05 would lead to rejection at any level of significance α ≥ P -value = 0.05.
Therefore the null hypothesis would be rejected if level of significance is chosen
to be 0.1, but would be accepted if the chosen level were 0.001. Common choices
of levels of significance are α = 0.05 for 5% and α = 0.01 for 1%. A P -value of
0.05 is a typical threshold used in industry to evaluate the null hypothesis.
A more abstract explanation of P -value is that a P -value laying close to zero
signals that a null hypothesis is false, and typically that a difference from the
expected distribution is likely to exist. Large P -value, closer to 1 imply that
there is little or no detectable difference for the sample size used. Tables 3.1

JB P -value
4.1247 0.1272

Table 3.1: Example of test JB test results
for a data sampled from standard normal dis-
tribution.

W P -value
0.9956 0.08038

Table 3.2: Example of test W test results
for a data sampled from standard normal dis-
tribution.

and 3.2 show test results for the Jarque-Bera and Shapiro-Wilk test on the same
sample data as was used in figure 3.1. The P -value of 0.1272 for the JB test
states that there is 1 − 0.1272 = 0.87387.3% change. Both the tests pass the
sample as normally distributed for a significance level of 0.05.

3The R function used here to calculate the test gives the allowed sample size 3 ≤ n ≤ 5000.
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3.2 Normality Inspection

Now we look at the results of the histograms, the Q-Q plots and the goodness-
of-fit tests applied to the data. The tests are both made for the whole data set
ranging from 1995 to 2006 and for subsets of the period, because as mentioned
in the beginning of the chapter the shape of the yield curves varies between sub
periods of the whole set and therefore it is of interest to look at subsets spanning
smaller time frames.

3.2.1 Normality Test on the Whole Data Set, 1995–2006

First we look at the whole data period from 1995 to 2006. Figure 3.2 shows the
histograms for the selected maturity dates. From these histograms it is evident
that the rates, in general, can hardly be regarded as a sample coming from a
normally distributed population. The one and five year rates show a high level
of skewness and have thick tails. The fifteen and thirty year rates have two
humps which normally distributed data does not have. As for the two humps
there is a period between 1995 and 1998 where the rates, especially for medium
and long maturities, are noticeable higher. This period might be the cause for
the hump in the curves for the fifteen and thirty year rates in the histograms of
the data. Therefore it will be interesting to look at subsets of the data which
excludes the 1995-1998 period. Of the different sets of maturities the one and
five year rates look a little more likely to be regarded normally distributed.

Figure 3.3 displays the Q-Q plots for the selected interest rates of the data set.
The Q-Q plots confirm what can be seen from the histograms, showing a one
and five year maturity which is close to the line on some range, but far from it
for the other ones, especially for the fifteen and thirty year rate in the higher
values of the quantiles, which explains the double hump.

Tables 3.3 and 3.4 show the outcome from Jarque-Bera and Shapiro-Wilk tests
performed on the data set. The P -values of the test statistics, both for the
Jarque-Bera and the Shapiro-Wilk test, confirm the observations from the fig-
ures. The P -values are too low for the data to pass as a sample arriving from a
normality distributed population.
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Figure 3.2: Histograms of selected interest rates from 1995-2006.

maturity JB P -value
1 40.2376 1.830e-09
5 73.557 2.2e-16
15 66.5859 3.442e-15
30 54.8556 1.225e-12

Table 3.3: Results of Jarque-Bera test of
interest rates between 1995-2006.

maturity W P -value
1 0.9481 7.424e-14
5 0.9509 2.062e-13
15 0.9131 < 2.2e-16
30 0.9117 < 2.2e-16

Table 3.4: Results of Shapiro-Wilk test for
interest rates between 1995-2006.
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Figure 3.3: Q-Q plot of selected interest rates from 1995-2006.
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3.2.2 Normality Test on Data Ranging from 2001–2006

Now we look at the first subset of the data for the years from 2001 to 2006. The
period is chosen to start from 2001 because of the unusual behavior of the yield
curve around the millennium mentioned before.
The same procedure as before is performed for the selected sample resulting
in figures 3.4 and 3.5 showing the histograms and the Q-Q plots respectively.
There is some difference evident in these histograms compared to the histograms
for the 1995-2006 period. The smoothed curve in the histograms is flatter and
the data seems to be less skewed especially for the 5 year rates. Furthermore
the double hump in the longer maturities in the 1995-2006 data is no longer
visible, which can indicate that the oldest part of the data is the cause of it.
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Figure 3.4: Histograms of selected interest rates from 2001-2006.

The Q-Q plots tell a similar story as the histograms. the fit looks significantly
better for the fifteen and the thirty year rate, but there is no evident difference
for the one and five year rate compared to the 1995-2006 data.

Tables 3.5 and 3.6 show the JB and W test statistics and the corresponding
P -values. The P -values, although showing improvement for the 15 and 30 year
rate, are too low for all of the maturities in both of these tests. The exception
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Figure 3.5: Q-Q plot of selected interest rates from 2001-2006.
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is the 5 year rate JB statistic which has higher value than all the others, but
still relatively low and is furthermore not backed up by the W statistic.

years JB P -value
1 36.5114 1.179e-08
5 15.8083 0.0003692
15 19.2273 6.681e-05
30 26.4184 1.834e-06

Table 3.5: Results of Jarque-Bera test of
interest rates between 2001-2006.

years W P -value
1 0.8755 6.621e-15
5 0.9451 3.695e-09
15 0.9447 3.356e-09
30 0.9087 1.546e-12

Table 3.6: Results of Shapiro-Wilk test of
interest rates between 2001-2006.

From the results of the figures and the normality tests it is though evident that
this time frame can not be passed as being normally distributed in general.

3.2.3 Normality Test on Data Ranging from 1995–1998

Now we take a look at the earliest period of the data, we choose to take the
data ranging from 1995 up to 1999. The histograms shown in figure 3.6 show
some level of normality for the five year maturities but apart from that there is
not much sign of normality. The one and five year data are quite skewed and
the two humps for the medium and long term is showing in the histograms of
the whole data set (1995-2006) is visible again.

TheQ-Q plots that are displayed in figure 3.7 display more lack of fit than before,
especially for the longer maturities where unusually high rates, compared to the
rest of the data period, are visible.

The test statistics for the 1995 to 1998 in tables 3.7 and 3.8 echo what can be
seen in the histograms before. they are in general too low to indicate normality.

years JB P -value
1 54.0437 1.839e-12
5 20.6486 3.283e-05
15 16.3801 0.0002774
30 20.6316 3.311e-05

Table 3.7: Results of Jarque-Bera test of
interest rates between 1995-1998.

years W P -value
1 0.8159 4.55e-15
5 0.9344 3.898e-08
15 0.9282 1.205e-08
30 0.8974 7.665e-11

Table 3.8: Results of Shapiro-Wilk test of
interest rates between 1995-1998.

The tests were also run for 1999-2001 and showed similar results as before al-
though the Jarque-Bera test gave slightly better results than before (more nor-
mal).
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Figure 3.6: Histograms of selected interest rates from 1995-1998.
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Figure 3.7: Q-Q plot of selected interest rates from 1995-1998.
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3.2.4 Normality Test on Data Ranging from 2005–2006

We saw in the last subsection, that the time frames selected did not contain
normally distributed data. It is therefore decided to reduce the time frame
tested further. Looking only at the last few weeks. That resulted in more
normally distributed rates than before. Adding one year at a time gave similar
graphical results up to the fourth year added. But after that the histograms
resulted in a less normally distributed data. As an example the 2005-2006
data set is displayed here in histograms and Q-Q-plots in figures 3.8 and 3.9,
respectively.
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Figure 3.8: Histograms of selected interest rates from 2005-2006.

Figures 3.8 and 3.9 show the same characteristics as the 2001 to 2006 subset,
the smoothed curve is flat but not very skewed nor with high kurtosis. The
Q-Q plots seems to give better results though. The quantiles lie closer to the
theoretical line, which indicates normality. That applies especially for the fifteen
and thirty year rates.

The goodness-of-fit test results in tables 3.9 and 3.10 are the best ones up to
now with the highest P -values overall, especially for the medium and long term
rates and most of the P -values for the JB test statistic indicate normality (the
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Figure 3.9: Q-Q plot of selected interest rates from 2005-2006.

years JB P -value
1 9.4569 0.00884
5 6.5902 0.03706
15 6.2529 0.04387
30 6.1375 0.04648

Table 3.9: Results of Jarque-Bera test of
interest rates between 2005-2006.

years W P -value
1 0.8768 3.352e-07
5 0.9255 5.705e-05
15 0.947 0.0009486
30 0.9488 0.001217

Table 3.10: Results of Shapiro-Wilk test of
interest rates between 2005-2006.
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5, 15 and 30 year rate) and the fifteen and the thirty year rates for the W test
indicate the same. It is also noticeable that the five year rate, which did best
in the 2001 to 2006 data, does not seem to be doing noticeably better in the in
this subset of the data.

3.3 Normality Versus Log-normal

In this section we take the natural logarithm of our interest rate data and repeat
our experiment in order to investigate whether the interest rates are more log-
normal than normal?

3.3.1 Normality test for data ranging from 1995–2006, ln

taken

Considering the whole data set, figures 3.10 and 3.11 show the histograms and
the Q-Q plots respectively. The bell shape of the normality smoothing in the
histograms is less biased than before, but the medium and long maturities ap-
pear to have too thick tails although they do not have the double hump seen
for the data without the ln taken.

The Q-Q plot in figure 3.11 shows better tracing of the line than for the non ln
data, especially for the one and five year data, indicating better fits.

Tables 3.11 and 3.12 display the results form the JB and W tests. The JB
test results indicate that the data could be considered normal but surprisingly
the W test results are far off from being normal. But in general, taking the
logarithm of the interest rates results in more normally distributed data for the
whole data set.

years JB P -value
1 15.0697 0.0005341
5 4.1357 0.1265
15 18.8934 7.895e-05
30 13.2719 0.001312

Table 3.11: Results of Jarque-Bera test of
ln of interest rates 1995-2006.

years W -value P -value
1 0.9668 1.433e-10
5 0.9859 1.229e-05
15 0.9577 2.74e-12
30 0.9493 1.131e-13

Table 3.12: Results of Shapiro-Wilk test of
ln of interest rates 1995-2006.
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Figure 3.10: Histograms of the logarithm of the rates from 1995-2006.
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Figure 3.11: Q-Q plot of the logarithm of the rates from 1995-2006.
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3.3.2 Normality Test for Data Ranging from 2001–2006,
ln Taken

The same is done as before, taking the logarithm of the data for the years
from 2001 to 2006. Figure 3.12 shows the histograms for the logarithms of the
rates respectively. Furthermore the curves show some indication of bell shape,
although being flat. The high kurtosis in the one and thirty year maturities
does not seem to affect the shape of the curve.
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Figure 3.12: Histograms of the logarithm of the rates from 2001-2006.

The corresponding Q-Q-plots shown in figure 3.13 do not indicate anything spe-
cial, not showing especially better or worse behavior of normality than has been
seen before.

The result from the normality test in tables 3.13 and 3.14 do not give clear
evidence of “more normality” compared to tables 3.5 and 3.6 for the same set
without the logarithm taken. The P -values are little better for the 1 and 5 year
rates with logarithm and a little worse for the 15 and 30 years.
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Figure 3.13: Q-Q plot of the logarithm of the rates from 2001-2006.

years JB P -value
1 25.566 2.808e-06
5 9.3409 0.009368
15 25.2801 3.240e-06
30 32.1768 1.030e-07

Table 3.13: Results of Jarque-Bera test of
ln of interest rates 2001-2006.

years W P -value
1 0.9111 2.408e-12
5 0.9588 1.618e-07
15 0.9273 5.981e-11
30 0.8898 6.041e-14

Table 3.14: Results of Shapiro-Wilk test of
ln of interest rates 2001-2006.
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3.3.3 Normality Test on data Ranging from 1995–1998, ln

Taken

The histograms in figure 3.14 are highly skewed but the shape of the smoothed
curve, looks more normal than the data before taking the logarithm. the five
year data has the “best” distribution.
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Figure 3.14: Histograms of the logarithm of the rates from 1995-1998.

The Q-Q plot in figure 3.15 does not indicate a good fit, expect for the 5 year
data.

The test results, as before, indicate better results with the logarithm than with-
out taking the logarithm for this time interval, showing in higher P -values, but
not high enough for the set to pass as a sample coming from a normal distribu-
tion.
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Figure 3.15: Q-Q plot of the logarithm of the rates from 1995-1998.

years JB P -value
1 33.5257 5.248e-08
5 7.8675 0.01957
15 20.8803 2.923e-05
30 22.5967 1.239e-05

Table 3.15: Results of Jarque-Bera test of
ln of interest rates 1995-1998.

years W P -value
1 0.8689 1.607e-12
5 0.9694 0.0001539
15 0.9051 2.447e-10
30 0.8821 8.947e-12

Table 3.16: Results of Shapiro-Wilk test of
ln of interest rates 1995-1998.
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3.3.4 Normality Test of Data Ranging from 2005– 2006,
ln taken

The histograms in figure 3.16 generally show a flat curve especially for the 15
and 30 year rates that might be caused by fewer rate points used than before.
Compared to the same data without the logarithm taken, the curves are similarly
flat.
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Figure 3.16: Histograms of the logarithm of the rates from 2005-2006.

The Q-Q plots on the other hand show a fairly good fit to the line compared to
other sets and are in fact identical to the Q-Q plots from the figure 3.9 where
the ln is not taken.

The results from the goodness of fit tests shown in tables 3.17 and 3.18 indi-
cate the best fit up to now, slightly better than for the same period without
the logarithm taken. According to the tests the data would pass as normally
distributed.
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Figure 3.17: Q-Q plot of the logarithm of the rates from 2005-2006.

years JB P -value
1 9.0052 0.01108
5 5.9785 0.05032
15 6.0941 0.0475
30 5.9534 0.05096

Table 3.17: Results of Jarque-Bera test of
ln of interest rates 2005-2006.

years W P -value
1 0.8883 9.99e-07
5 0.9311 0.0001138
15 0.9493 0.001306
30 0.9507 0.001611

Table 3.18: Results of Shapiro-Wilk test of
ln of interest rates 2005-2006.
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3.4 Conclusion

Taking the logarithm of the rates resulted in slightly more normally distributed
results, but it did not bring any significance gain. It is therefore not quite
evident that the interest rates observed are log-normal.
Although the interest rates do not pass as normally distributed according to the
tests and visual observations, in the time frame analyzed, the histogram curves
of the data had certain characteristics of a normal curve and looked more normal
than not. Furthermore from looking at smaller sub periods it was discovered
that some of the periods were less normally distributed and some of them more,
were the newest data measured was more normal and that should be kept in
mind when constructing a model. This fact is possibly due to a stable interest
rate level for the last few years.
Taking that into account it is decided not abandon the assumption that the rate
data arises from normal distribution, although it is possible that some other type
of distribution might be able to describe the rates better, but that has to be up
to future work.
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Chapter 4

Vector Autoregression

In chapter 2 we concluded that three factors were sufficient to describe the term
structure of interest rates. In this chapter a model of the term structure which
uses those three factors as an input is formulated. The type of model we use is
a vector autoregression (VAR) model which is a simple but powerful time series
model which has proven to be useful for describing the behavior of econometric
and financial time series. It is shown that a VAR model of first order is suitable
for the data set and based on that we construct a VAR(1) process capable
of describing the terms structure. Finally a least square estimation for the
parameters in the model is formulated.

The rest of the chapter is laid out as follows:

• In section 4.1 an overview of the neccesery time series concepts to formu-
late a vector autoregression model is given.

• In section 4.2 a formulation of the VAR process is made.

• In section 4.3 we study how the rates are used to proxy the rates.

• In section 4.4 an analysis of the order and stability of the vector autore-
gression model is conducted.

• In section 4.5 a formulation of a VAR(1) process suitable for generation
of the term structure of interest rates is given.
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• In section 4.6.1 we formulate a way to estimate the parameters in the
VAR(1) process.

• Finally in section 4.7 concludes the chapter.

4.1 Stationary, Invertability and White Noise

It should be noted that the presentation of the subject covered in this chapter
is primarily based on books by J.D. Hamilton, Time Series Analysis (1994) and
by H. Madsen (also named) Time Series Analysis (2001), these books provide
a general overview of time series analysis.
As mentioned the VAR process is a time series process and in order to formulate
it it is suitable to introduce some basic time series analysis concepts. Since the
VAR process is a linear model of a stochastic process in discrete time space
t ≥ 0, we will restrict our coverage of time series analysis subjects to what
is needed to cover such a process. In general, for discrete time a time series
{xt; t = 1,±1, . . .} is a realization of a stochastic process {Xt; t = 1,±1, . . .}.

Lets begin by introducing the concept of a system. In the scope used here a
system maps an input x(t) in continuous time and xt discrete time respectively
to an output y(t) or yt. This mapping can be described with an operator F
often called filter. If the operator is linear the system correspondingly is a linear
system and can be defined as:

Definition 4.1 Linear system

Given two inputs x1 and x2 and two scalar values λ1 and λ2 then a system is
said to be linear if it fulfills

F [λ1x1(t) + λ2x2(t)] = λ1F [x1(t)] + λ2F [x2(t)].

3

If the system behavior is invariant to changes in time, it becomes time invariant
and is described as:

Definition 4.2 Time invariant system

A system is said to be time invariant if

y(t) = F [x(t)] → y(t− τ) = F [x(t− τ)]

3
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And the system is said to be stable if:

Definition 4.3 Stable system

A system is said to be stable if any constrained input implies a constrained
output. 3

For modeling purposes all the properties above are desirable to make a robust
model.

If a process is linear, this linear process {Yt}, can be interpreted as a output
from an linear system where the input is so called white noise, such as shown in
figure 4.1. Following is a definition of white noise and Gaussian (normal) white
noise in discrete time.

White Noise
Linear

Process
Linear Filter

Figure 4.1: A digram showing the connections between white noise and a linear process.

Definition 4.4 White noise

A sequence ǫt of mutual uncorrelated identically distributed stochastic variables1

with mean zero and a constant variance σ2 is called a white noise process. This
implies

E(ǫt) = 0

E(ǫ2t ) = σ2 (4.1)

E(ǫt, ǫt+k) = 0 for t 6= 0

where E is the expected value. 3

Definition 4.5 Gaussian white noise

If equations 4.1 hold along with the condition

ǫt ∼ N(0, σ2),

that is the process has a probability density function of the normal or Gaussian
distribution, the process is said to be a Gaussian white noise process2. 3

1 In the case of discrete time, a stochastic process amounts to a sequence of random
variables i.e. time series.

2Note that a Gaussian noise is not necessary a white noise.
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Since we will be working with vectors it is furthermore beneficial to give a vector
generalization of white noise

E(ǫt) = 0

E(ǫ2t ) = Ω (4.2)

E(ǫt, ǫt+k) = 0 for t 6= 0

where Ω is an (n× n) symmetric positive definite matrix of variances.

A stochastic process which is time invariant is said to be stationary. Following
is a definition of a stationary processes taken from Probability and Random
Processes (2001) and note that these definitions are not restrict to discrete time.

Definition 4.6 Strong stationarity

The stochastic process Y = {Y (t) : t ≥ 0}, taking values in R, is called strongly
stationary if the families

{Y (t1), Y (t2), . . . , Y (tn)} and {Y (t1 + h), Y (t2 + h), . . . , Y (tn + h)}

have the same joint distribution for all t1, t2, . . . , tn and h > 0. 3

If a process is strongly stationary it implies that its probability distribution is
the same for all time steps t. This condition can be reduced to include only the
first k moments:

Definition 4.7 Weak stationarity

A process Y = {Y (t) : t ≥ 0} is said to be weakly stationary of order k if all the
first k moments are invariant to changes in time. 3

By tradition a weakly stationary process of order 2 is called weakly stationary
and from now on the term weakly stationary process will refer to that i.e. the
mean value and the variance are constant over time.

Definition 4.7 implies that for a weakly stationary process both the mean value
and the variance of the process are constant over time. A Weakly stationary
process of order 2 is also sometimes refereed to as a covariance-stationary pro-
cess.
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4.2 The Vector Autoregression Process

Now that we have introduced the concepts needed to model a linear process in
discrete time we can go on and formulate the vector autoregression process.
The VAR process is a vector generalization of the well known univariate au-
toregression (AR) process. Whereas the AR process describes interactions
between time series variables yt = (y1, y2, . . . , yT ) measured over the sam-
ple period t = (0, , 1, . . . , T ), the VAR process captures the dynamic interac-
tions between sets of such time series variables collected into an (n× 1) vector
Yt = (y1t, y2t, . . . , ynt)

⊤ measured over the sample period t = (0, 1, . . . , T ).

The VAR process is a vastly used tool in financial and econometric analysis. A
example of its usage could be a model which captures the interactions between
a country’s gross domestic production yp and the level of unemployment yu,
collected in the vector Yt = (yp, yu)⊤.

4.2.1 The Autoregression process

Since the building block of the VAR process is the AR process we begin by
formulating it and then use the AR to formulate the VAR process.
An autoregression process of order p is an AR(p) process which satisfies the
difference equation

Yt = c+A1Yt−1 +A2Yt−2 + · · · +ApYt−p + ǫt, (4.3)

where Yt is a time series of random variables, c is a constant, Aj is an vector of
autoregressive coefficients or simply parameters for j = (1, 2, . . . , p) and ǫt is a
Gaussian white noise sequence. The order of the model, p is often referred to
as lag and simply tells how many past time steps are considered in the model.

As an example of an AR process we give a first order autoregression process
AR(1). A first order process uses one past observation, Yt−1 (lag one) along
with an autoregressive coefficient A to express the current state.

Yt = c+AYt−1 + ǫt

The constant c and the white noise ǫt are the same as in equation 4.3 before.

It can be shown see e.g. A.4 that if the roots of the AR process

1 −A1z −A2z
2 − · · · −Apz

p = 0 (4.4)

lie outside of the unit circle the process is weakly stationary.
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4.2.2 The Vector Autoregression process

Now that we have formulated the AR(p) process for a single time series Yt we
can generalize it for a vector of time series Yt. The AR(p) process generalized
to a pth order vector autoregression VAR(p) process becomes

Yt = c + A1Yt−1 + A2Yt−2 + · · · + ApYt−p + ǫt (4.5)

where Yt is an (n× 1) vector of time series of random variables, c is an (n× 1)
vector of constants, Aj is an (n × n) matrix of autoregressive coefficients for
j = (1, 2, . . . , p) and ǫt is a vector generalization of Gaussian white noise. Since
we intend to formulate a three factor VAR process, we give an example of such
a process.

y1,t = c1 + a11y1,t−1 + a12y2,t−1 + a13y3,t−1 + ǫ1,t

y2,t = c2 + a21y1,t−1 + a22y2,t−1 + a23y3,t−1 + ǫ2,t

y2,t = c3 + a31y1,t−1 + a32y2,t−1 + a33y3,t−1 + ǫ3,t.

Mean adjusted form

If a process fulfills the conditions of being stationary we can take the expectation
of both sides of equation 4.5 to calculate the unconditional mean µ of the process

µ = c + A1 + A2 + · · · + Ap

or equally
µ = (I − A1 − A2 − · · · − Ap)

−1c

which means that equation 4.5 can be written in terms of deviations from the
mean, sometimes called the mean adjusted form.

(Yt − µ) = A1(Yt−1 − µ) + A2(Yt−2 − µ) + · · · + Ap(Yt−p − µ) + ǫt (4.6)

4.2.3 Stationary of a VAR model

The next step is to analyze the stationarity of the VAR(p) process. For that
purpose it is helpful to use the so called companion form of the VAR process,
which is to rewrite the mean adjusted form in equation 4.6 in terms of deviation
from a first order VAR process. The VAR(p) rewritten as a np-dimensional
VAR(1) process is

ηt = Fηt−1 + vt
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where

ηt =











yt − µ

yt−1 − µ
...

yt−p+1 − µ
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...
0 0 . . . I 0
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ǫt

0

...
0











where vt is a vector generalization of white noise such that

E(vt) = 0

E(v2
t ) = Q

E(vt,vt+k) = 0 for t 6= 0

and

Q =











Ω 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0











.

The matrix F is called the companion matrix of a VAR(p) process, it can be
shown (see e.g. Time Series Analysis (1994)) that in order for the process to be
weakly stationary all the eigenvalues of the companion matrix need to lie inside
the unit circle. The eigenvalues of F are all the λ’s that satisfy

|Inλ
p − A1λ

p−1 − A2λ
p−2 − · · · − Ap| = 0 (4.7)

So a VAR(p) process is weakly stationary if |λi| ≤ 1 for all the eigenvalues
λi, i = (1, 2, . . . , p) i.e. the eigenvalues which lie inside the unit circle. Or in
reference to equation 4.4 the VAR(p) is stationary if all values of z satisfying

|In − A1z − A2z
2 − · · · − Apz

p| = 0

lie outside the unit circle.
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4.3 Choosing the Factors in the VAR Model

The main results from the factor analysis in chapter 2 was that three factors
were to be used to construct the model of the term structure. But how are
the factors recognized in the VAR model? Two methods where considered in
this report. The former method is a naive approach which was used in the
earlier stages in the construction and analysis of the VAR model. The latter
was adopted later on.
The former method is based on taking three positions of the yield curve, a short,
medium and long term maturity. The short term rate is chosen as a proxy for the
level factor, the slope is chosen as the difference between two yields, a medium
maturity yield minus the sort maturity yield. And finally the curvature is chosen
as two times the medium rate minus the long and short rate. If we note short,
medium and long maturity as ys, ym and yl respectively the factors can be
denoted in the following way

level = ys

slope = yl − ys

curvature = 2 · ym − (ys − yl)

where we choose the short rate to be the one year rate, the medium to be the
five year and the long to be the 30 year rate.

Later on in the work another approach to choose the factors was adopted, sug-
gested by Christiansen & Lund (2007). The main difference is that this approach
chooses the curvature of the yield curve differently, namely by using the mech-
anism of the so called butterfly spread.

butterfly yield spread

Y
ie

ld

Maturity

y body

y wings

y right wing

y left wing

Figure 4.2: A butterfly yield spread.

A butterfly spread is a portfolio which
consists of a long position in an in-
termediate maturity bond (the body
of the butterfly) and two short posi-
tions of bonds whose maturities strad-
dle the first bond (the wings of the
butterfly). Figure 4.2 shows a digram
of how a butterfly spread looks for a
concave (normal) yield curve and the
spread c, is given as

c = ym − (w1ys + (1 − w2)yl)

where the weights w1 and w2 are cho-
sen such that w1ys = w2yl. An ex-
ample of how the weights are cho-
sen if the maturities are 1, 5 and 30
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years would be w1 = (5 − 1)/(30 − 1) = 4/29 and weight 2 would become
w2 = (30− 5)/(30− 1) = 25/29. The spread shown in the figure is positive and
the more concave the yield curve becomes the more positive the spread gets and
vice versa. This applies for both normal and inverted yield curves. Equivalently,
a negative butterfly spread indicates a convex yield curve.
By the latter method the level is chosen in the same way as before, by taking
the short rate as a proxy, but the slope is determined differently compared to
the former method. The slope in the latter method is chosen to be the difference
between the long and short rate in stead of the difference between the medium
and short rate before. That is done in order to keep the correlation between the
slope and the approximation of the curvature at a reasonable level, according to
Christiansen & Lund (2007). Using the same notation as for the former method

level = ys

slope = yl − ys

curvature = ym − (w1ys + (ws)yl).

4.4 Analyzing the Order and Stability of a VAR

Model

To construct a accurate VAR model it is necessary to estimate a suitable model
order and it is necessary for the model of the chosen order to be stationary.
For estimation of the order of a VAR model we apply a model order selection
criteria, and once we have established a suitable order we check the stability.

4.4.1 Suitable order of VAR model of interest rates

When choosing the appropriate model order one wants to balance between using
as much available information as possible and the simplicity of the model con-
structed. To compensate between those aspects we refer to the law of parsimony,
also known as Ockham’s razor, which is commonly stated as

Of two equivalent theories or explanations, all other things being

equal, the simpler one is to be preferred.

In a statistical sense the law of parsimony is interpreted as a simpler model that
describes the data accurately enough is preferred over a more complicated one,
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which leaves little of the variability unexplained. Put differently our objective is
to choose the lowest order of VAR model which describes the data sufficiently.
To achieve that we apply so called information criteria which is a statistical
technique for estimating the goodness-of-fit of a model, versus its complexity.
The general approach of a model selection criteria for a model such as VAR(p)
is to fit models of orders i = (0, . . . , pmax), where pmax is some chosen upper
limit of order, and select the value of p which scores highest in the information
criteria. The general procedure of of information criteria was derived by Akaike
(1947), and the Akaike information criterion (AIC) is defined as

AIC = −2 log(maximum likeliehood) + 2(N)

where N is the number of independently adjusted parameters within the model.
The first term in the AIC measures the goodness of fit of the model against the
data whereas the second term is a penalty function which punishes the candi-
date model in accordance to the numbers of parameters used.
Under the assumption that the VAR is filtered from a multivariate Gaussian
white noise, the likelihood of the noise can be estimated with maximum like-
lihood estimation of the covariance matrix, Σ̃(p) = N−1

∑T
t=1 ǫ̂tǫ̂t′ . The AIC

criterion for a VAR(p) model can therefore be formulated as

AIC(i) = ln( ˜|Σi|) +
2Ni

T
(4.8)

where T is the number of observations used, or 614. Then for a given time series
one chooses the order p such that the chosen order is AIC(p) = min0≤i≤pmax

AIC(i),
where i = (0, . . . , pmax) is predefined.
Alternative criteria, which are in essence just variations of the AIC, have been
developed. The two most common of them are the Bayesian information crite-
rion (BIC) and Hannan & Quinn (HQ) criterion which are based upon taking
the log normal of the sample size in various degrees. Their formulas are

BIC(i) = ln( ˜|Σ(i)|) +
Ni ln(T )

T
(4.9)

and

HQ(i) = ln( ˜|Σ(i)|) +
Ni ln(ln(T ))

T
. (4.10)

According to the literature the AIC criteria is considered to have the tendency to
overestimate the order, especially when estimating a large number of parameters.
The BIC and HQ on the other hand are considered to estimate the order more
fairly if the true order p is less than or equal to the chosen limit pmax.
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A application of information criteria

The AIC, BIC and HQ information criteria where implemented on the same
data set of interest rates as used in the factor analysis, ranging from 1995–2006.
The criteria are applied on the VAR for orders i = (1, 2, . . . , 5) in equations
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Figure 4.3: The number of lags suggested by the three information criteria considered,
plotted against the number of historical interest rate data.

4.8–4.10 for increasing number of observations or issuing dates T , such that the
most recent dates, from 2006, come first and older dates are added incrementally
up to 1995.

In figure 4.3 the results of the applications of the information criteria are dis-
played in a graphical manner. Notice that the outcome of the criteria is a single
value for each number of observations but are plotted as lines for easier analy-
sis. From the figure it can been seen that the AIC lives up to its reputation of
overestimating the model order compared to the other two. The HQ informa-
tion criterion suggest a VAR(1) model for all subsets containing more than 91
observations whereas the BIC suggests VAR(1) for all sub sets containing more
than 15 observations. Furthermore it can bee seen from figure 4.3 that all the
criteria suggest order one for a model containing more than 278 observations,
with one exception for 415 observations, from the AIC, which as stated before
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has the tendency to overestimate. Based on that, and in coordination to the
law of parsimony, it can be conclude that a first order VAR model is suitable
for modeling the term structure of the Danish interest rate data from the era
considered here if we use more than ca. 90 observations.

4.4.2 Stability of VAR model

Now that we have argued that a first order VAR process is suitable the next
thing we need to do is check the stationarity of the VAR(1) model. To perform
that stability test we use the condition of stationarity given in equation 4.7
stating that if the roots of all eigenvalues of the poles lie within the unit circle,
then the process is stationary.
To investigate the stability versus number of observations we construct models
containing 10 to 614 observations. The lower limit is chosen to be 10, because a
certain number of degrees of freedom are needed for estimating the parameters,
which should be at minimum higher than the lag of the model. The upper limit
of the observations is the number of observation available in the data set.

Figure 4.4 shows calculations of the module for number of points from 10 to 604
(1996–2006). The data points are added incrementally to the model in the same
fashion as used in the information criteria before. Each color in the figure shows
the values of the three most significance eigenvalues, which are the decisive ones.
It can bee seen, as expected, that the first module is dominant. Furthermore a
VAR(1) model constructed from less than ca. 60 data points (57 to be exact)
tends to be unstable and surprisingly a VAR(1) model constructed from more
data than 500 data points tends to be unstable, so the benefit of increasing the
number of observed points used for the modeling seems to reach a limit in this
case. Processes made from the most recent observations containing between 60
and 500 observation therefore seem to result in a good model in our case, with
a critical area around the 300 points mark, but that would be considered an
exception.

4.5 Construction of a VAR Model

To sum up the results of the previous subsection we have established, based on
the sample used, that to construct a stationary VAR model it has to consist
of ca. 60 to 500 past data observations. The most important constraint is the
requirement of the model to be stationary, and it appears that one has to choose
more than ca. 60 past observations and less than ca. 500 to achieve stationary
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Figure 4.4: The module for the 3 eigenvalues plotted for 10 to 604 observed variables.

in the case considered here.
Furthermore if one wants to use a first order VAR, which is desirable, then it
seems to be neccesery to chose more than 90 points according to the BIC and
HQ criteria, assuming that the AIC criterion overestimates the order. So if we
take the results of the information criteria into account we should use some-
where in between 90 and 500 observation to construct a VAR(1) model.
Now that we have established a suitable model order and the number of ob-
servations neccesery, we now give a relevant formulation of such a model with
three factors. A VAR(1) model where i represents the factors i = 1, 2, 3 in the
mean adjusted form is

yi,t+1 = µi + A(yi,t − µi) + ǫi,t+1. (4.11)

where yi,t is an (n× 1) matrix of random time series variables, µi is an (n× 1)
vector of the mean of the sets, ǫt+1 ∼ N(0,Ω) where Ω is an (n× n) matrix of
variances and A is an (n × n) matrix of factors where the constant c in equa-
tion 4.5 is set to zero. Notice also that the time steps have been shifted in the
equation compared to equation 4.5.
If we let the letters l,s and c abbreviate the level, slope and curvature, respec-
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tively. Such a model would look like

yl,t+1 = µl + all(yl,t − µl) + als(ys,t − µs) + alc(yc,t − µc) + ǫl,t+1

ys,t+1 = µs + asl(yl,t − µl) + ass(ys,t − µs) + asc(yc,t − µc) + ǫs,t+1

yc,t+1 = µc + acl(y1,t − µl) + acs(ys,t − µs) + acc(yc,t − µc) + ǫc,t+1.

The VAR(1) model formulated so far can only be used for one-period predictions
but we are interested in extending it so that it is capable to predict k periods
ahead, so the model becomes

yt+k = µ + Ak(yt − µ) + ǫt+k (4.12)

where ǫt+k = N(0,
∑k

i=1 = Ai−1
Ω(Ai−1)⊤). The mean µ now becomes the

longterm rate. It should also be noted that this the VAR(1) model is discrete
in time but continuous in states and that the var model has a built in mean
reversion, wich is a valiable propertie in rate modeling3

4.6 Estimation of the Parameters in a VAR Model

The unknown quantities in the VAR model i.e. the longterm rate µ, the matrix
of autoregression coefficients A and the matrix of variance Ω, from the vector
of white noise ǫ, are parameters. In a statistical sense a parameter refers to
quantities that define certain, relatively constant, characteristics of a model.
When configuring a model over a specific period of time, such as we aim at
doing with the VAR model here, independent variables vary over time, while
the parameters are held constant. It is therefore neccesery to estimated the
parameters to be able to use the model. The parameters are estimated from past
observations and to do that we apply the well known method of least squares.
Following is a general description of the method of least squares, heavily based
on the book Time Series Analysis (2001).

If we have n observations of dependent and independent variables

(y1, x1), (y2, x2), . . . , (yn, xn),

where x is the input in the system and y is the output. Now we intend to estimate
the parameters of the system θ with an estimator θ̂ such that f(xt; θ̂) describes
the observations as good as possible. To do that we apply some measure of
closeness, such an estimation of closeness used here is the least square estimation.

3The tendency of a market variable (such as a interest rate) to revert back to some long-run
average level (Options, Futures, and Other Derivatives 2006).
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The LS measures the closeness by minimizing the residual sum of squared errors
(SSE) [yt − f(xt; θ)]2 of the observations.

The LS estimate can be performed via unweighted least squares estimation,
which will be refereed to as ordinary least squares (OLS) from now on, and
weighted least squares (WLS). The term unweighted refers to that no consider-
ation is taken to residuals which have larger variance than the average or are
correlated i.e. the variance of the residuals is considered constant, Σii = 1, and
the residuals are mutually independent, where Σ is the correlation matrix. A
general form of the OLS method is

θ̂ = argmin
θ
S(θ) (4.13)

where

S(θ) =

n
∑

t=1

[yt − f(xt; θ)]2 =

n
∑

t=1

ǫ2t (θ)

The assumptions above are considered justifiable for the interest rates.

It is not possible in general to find an explicit expression for the LS estimator
and often numeric methods have to be used, however in the case of estimation
for a general linear model, such as VAR is, an explicit expression can be found.
The LS-estimator has several properties

• It is a linear function of the observations y

• It is central, i.e. E[θ̂] = θ

• The variance of the estimator is

V [θ̂] = E[(θ̂ − θ)(θ̂ − θ)⊤] = σ2(x⊤x)−1

• It has the smallest variance off all estimators which are linear functions of
the observations

4.6.1 Formulation of a OLS-estimation for VAR(1) model

In this section a OLS estimation to estimate the parameters µ, A and Ω in
a VAR(1) model in equations 4.11 and 4.12 is formulated. The model can be
written on the form of OLS.

Yt = α + βxt + ǫt



68 Vector Autoregression

for t = 1, . . . , n where α and β denote µ and A respectively, and ǫt is a white
noise in matrix form the model becomes
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1 x1
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1 xn
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ǫ1
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ǫn







The OLS-estimates are found by solving the normal equation.

x⊤x

[

α̂

β̂

]

= x⊤Y

where α̂ and β̂ are the estimators for α and β, now if x⊤x has full rank then
the estimator is

[

α̂

β̂

]

= (x⊤x)−1x⊤Y .

which minimizes the sum of least squares in the expression [Y −x
[

α̂ β̂
]⊤

]2,
according to equation 4.13. And the estimation for the estimator for the resid-
uals becomes

res =Y − x

[

α̂

β̂

]

Ω̂ =res⊤
res

(n− 1)

we now have a estimations for µ, A and Ω which ca be used for constructing a
VAR(1) model such as in 4.11 or for the longterm version in equation 4.12.

4.7 Conclusion

Analyzing the VAR process reveled that a process with lag 1 was suitable for
modeling the rates, based on the results of information criteria. Investigating
the stability of the VAR(1) process reviled that it was stable for the time frame
of interest, but using all the data was not necessarily better, which is similar
to what was concluded about the normal assumption in chapter 3. Finally a
tailored VAR(1) model was construct witch can be used for generation of the
term structure.



Chapter 5

Scenario Tree Generation

In last section we derived a three factor VAR(1) model which could be used for
scenario generation. In this chapter the VAR(1) model will be used to sample
values of the term structure in discrete states. Those samples are used by an
existing scenario generation system which will be used to generate scenarios,
analyze them and conduct some experiments on them. The chapter however
begins covering scenarios and scenario trees in more detail.

The rest of the chapter is laid out as follows:

• In section 5.1 an overview over the representation of scenarios used here
is given.

• In section 5.2 the issue of scenario tree quality is covered.

• In section 5.3 the model used for scenario generation is introduced.

• In section 5.4 scenarios are generated and analyzed.

• Finally in section 5.5 we conclude the chapter.
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5.1 Scenarios and Scenario Trees

As mentioned in the introduction, scenarios are usually represented with a sce-
nario tree. Scenario trees are a special case of event trees, witch again are a
sub-category of graph trees. In general drawing a graph tree is a graphical
way of representing a hierarchical structure and in this section graph theories
are used to formulate scenario trees. The next subsection covers the subject of
scenario trees and using that formulation we can then define scenarios in more
detail than done in chapter 1.

5.1.1 Scenario trees

Figure 5.1: An example of a tree with six
nodes and five edges.

To explain the construction of a sce-
nario trees we begin by giving short
overview of relevant graph theory
concepts.
A graph is a set of objects refereed
to as vertices or nodes, connected by
links, called arcs or edges. A directed
graph, or digraph, is a graph with di-
rected edges. If any two vertices in
a graph are connected by exactly one
edge then the graph fulfills the defini-
tion of being a (graph) tree. A useful
proposition about graph tree is that
the number of nodes v and edges e in
a tree are related by e = v − 1. If
the paths connecting the vertices are
directed the tree becomes a directed
tree. The definition of a directed tree

can be constrained further, such that all the edges are obligated to be directed
towards, or from, a particular node. In that case the particular node is refered
to as a root and a tree containing such a root becomes a rooted tree. If the
vertices are given a unique label the tree is called a labeled tree. Note also that
in subsequent parts of this thesis the word state is synonym for nodes or vertices
in the above.

An event tree is, in accordance to the graph theory concepts listed above, a
labeled rooted directed tree, with the root at the initial state. A formulation of
an event tree which can be used to describe the scenarios witch will be generated,
taken from the book Practical Financial Optimization (2005) is.
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Definition 5.1 Event tree.

The event tree G = (Σ, E) is made up of a set of nodes Σ, denoting time and
state, and arcs E , indicating links between states. At time t = (0, 1, . . . , T ) the
states are denoted by Σt = {sν

t |ν = 1, 2, . . . , St}, where St is the number of
possible states at time t. An event tree has the following properties:

(i) Σ0 = {s00} is a singleton1, and s00 is a unique state known as the root node,
it has no predecessor.

(ii) Every state s
ν(t)
t has unique predecessor from the previous state Σt−1 for

all periods t = 1, 2, . . . , T .
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Figure 5.2: Digram of a tree structure showing a tree with three periods, labeled states.

The uniqueness of the predecessors implies that the graph G has no cycles and
is therefore a tree. An digram of such an event tree can be seen in figure 5.2,
where each node, except for the nodes in the last period t = T , has child nodes,
the number of child notes does not have to be consistent within a level, each
node or a state can have different number of child states. However we will only
consider trees in which the nodes within a level all have the same number of
child states, as shown in figure 5.2 and refer to such a tree a scenario tree in the

1A singleton is a set which contains exactly one element.
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following.
To represent the structure of such a scenario tree in a convenient way a sequence
of numbers will be used. The sequence starts at time t = 1 (omitting the root
state), and the sequence length denotes the number of periods considered. Each
number of the sequence represents the number of states the period has. As an
example of this, the tree in figure 5.2 would be denoted a 2-3-1 tree.

5.1.2 Scenarios

Now we can use definition 5.1 of the event tree to give a more concrete definition
of scenarios than given in definition 1.1 from chapter 1.

Definition 5.2 Scenarios.

A scenario is a path of the graph G = (Σ, E) depicting an event tree, denoted

by the sequence {s
ν(t)
0 , s

ν(t)
1 , . . . , s

ν(t)
τ1 } such that (s

ν(t)
t , s

ν(t+1)
t ) ∈ E , for all t =

0, 1, . . . , τl, τl < T , where τl is the last period considered in scenario l, with the
associated probability pl ≤ 0. Each scenario is indexed by l from sample set Ω,
and the probabilities satisfy

∑

l∈Ω p
l = 1. 3

5.2 The Quality of the Scenario Tree

Now that we have described the scenario trees, some insight into how to estimate
the quality of them is given in this section.

A more complete theoretical formulation of the quality of a scenario tree can be
found for example in Pflug (2001), Hocreiter & Pflug (2007) and Kaut & Wallace
(2007). The outline of the theoretical error measurement of scenarios presented
in those papers is that the error of approximating a stochastic process, {ξ̃t}

by a discretization {ξ̆t} (the scenario tree) for a given stochastic problem is the
difference between the optimal solution of the objective function, solved by using
the stochastic process {ξ̃t}, and the discretization of that process. However the
issue of finding such an error is unsolved for practical problems, such as stated
is section 1.1. And as the state of the art is today other methods, or procedures,
to evaluate the quality of scenario trees generated have to be used.

Along with the discussion of the theoretical approach Kaut & Wallace (2007)
mention some general guidelines for evaluating scenario trees. These guidelines
include requirements, such as that a given scenario generation method should
be able to generate trees which return stable results, meaning that if a large
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number of scenarios are generated the trees should all behave similarly in terms
of volatility and level of rates. Furthermore an event tree should not contain any
biases compared to what is to be expected, should be evenly distributed over
the periods, contain no negative rates and they should be plausible compared
to the market situation they are generated for. The scenarios generated should
also prevent the presence of arbitrage.

Zenios, in the book Practical Financial Optimization (2005) mentions three main
criteria for estimating the quality of scenarios. The first one being correctness,
meaning that the behavior of the scenarios should reflect academic theories such
as mean reversion and they should be in accordance to the resent history. The
second criterion is accuracy which involves that a scenario generation should
represent the underlying process accurately, for example the moments and the
correlation matrix should match. The third criteria Zenios talks about is consis-
tency which is relevant when scenarios are generated for a number of financial
instruments, meaning that the correlation between them should be accounted
for.

Rasmussen & Poulsen (2007) suggest the following consistency criteria for an
event tree of yield curves.

1. Some of the lower moments (for example the first two central moments
and the correlation) of the factors of the underlying stochastic process of
interest rates should be matched as closely as possible within any subtree
of the event tree.

2. Some higher moments (for example up to the first four central moments
and the correlation) should be matched for any given future period in the
event tree conditioned on the initial state at the root node.

3. The actual levels of the generated scenarios should be realistic, for example
the tree should not include any negative interest rates or many extreme
scenarios.

4. The volatilities of the interest rates of different maturity should be con-
sistent with the implied volatilities of the market benchmark.

5. There should be no arbitrage opportunities in any of the subtrees of the
event tree.

6. Types of changes in the shape of the yield curve in future nodes of the
event tree should reflect those observed historically from economic regimes
which are assumed similar to the one the event tree is built for.

7. The model should be mean reversive.
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8. No volatility clumping; Volatility clumping refers to the case where a
period of high volatility is followed by another period of high volatility.
Empirical studies have shown that volatility clumping is not present in
interest rates contrary to the equity market.

9. The normality assumption is acceptible for interest rates.

This listing more or less sums up the criteria mentioned before and it is therefore
useful to use it as a guideline for the quality of generated scenarios.

5.3 A Scenario Generation Model

This section introduces a model by Rasmussen & Poulsen (2007) to generate
scenario trees. This model is intended to fulfill criteria 1–9 listed in the last
section. Note that the model formulatet is single period, but can be extendet
to multi-period with minor changes. This model will be used for generating
scenarios in the next section.

5.3.1 Formulation of yield curve scenario generation model

A definition of sets, parameters and variables:

Sets:

f : Set of factors (level slope and curvature), f ′ is alias for f .
i: Set of zero coupon bonds (ZCB’s).
i′: A subset of the set i corresponding to the ZCB-rates which define

the three factors, i′ is chosen to be a set of 1, 5 and 30 year ZCB’s.
j: Set of parameters of the Nelson-Siegel function; 0 to 3.
t: Set of time points.
s: Set of scenarios.

Parameters:

Meanf : The mean value factor f , arriving from the VAR(1) model.
Covarf,f ′ : The covariance matrix of the error term, taken from the

VAR(1) model.
Skewnessf : Skewness of factor f , which is assumed to be zero based

on the normality assumption of the VAR(1) model.
τ t
i : Time to maturity for ZCB i at time t.
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PP parent
i : Prices of the zero coupon bonds at the root. The prices

are calculated using the initial rates PP parent
ii′′ = e−riτ

parent

i .
ψconst: The martingale probability; assumed equal for all scenarios.

It is found from the equation PP parent
ii′′ =

∑

s ψ
Const where bond

i′′ matures exactly at the children nodes of the tree with a price
of 1.

Variables:

xf,s: A future estimate of factor f in scenario s given by the VAR(1)
model.

E(x)f : The expected value of factor f over all scenarios.
σ(x)f,′f : The covariance matrix of factor f over all scenarios.
E3(x)f : The skewness of factors across all scenarios.

Y
(VAR(1))
i′,s : The 3 yields comprising the 3 factors at scenario s.
NSYi′,s: The 3 yields comprising the 3 factors at scenarios s given

by the Nelson-Siegel function.
ϕs,j : Parameter j of the Neslon-Siegel function at scenario s.
Ri,s: The entire yield curve given by the Neslon-Siegel function at

scenario s.
CPi,s: Price of bond i at scenario s.

The overall objective of the optimization model is to match the moments of the
underlying stochastic process (the VAR(1) procces) as closely as possible.

The objective function minimizes the sums of least squares corresponding to the
overall objective of the model:

Min
∑

f

(E(x)f −Meanf)2 +
∑

f

∑

f ′

(σ(x)f,f ′ − Covarf,f ′)2+

∑

f

(E3(x)f − Skewnessf)2 +
∑

s

∑

i′

(Y
(V AR(1))
i′,s −NSYi′s)

2 (5.1)

The three moments used; expected value, variance and skewness as found by
the optimization model are

E(x)f =
∑

s

psxf,s ∀f (5.2)

σ(x)f,f ′ =
∑

s

ps(xf,s − E(x)f )(xf ′,s′ − E(x)′f ) ∀f, f ′ (5.3)

E3(x)f =

∑

s(xf,s − E(x)f )3

(
∑

s(xf,s − E(x)f )2)3/2
∀f (5.4)

In equations 5.5 the three yields corresponding to the three factors (underlying
yields) used in the VAR(1) model are found by the Nelson-Siegel equation. Note
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the the final term of the objective function requires that NSYi′,s should be as
close as possible to to the 3 yields found by the VAR(1) model. So Equation
5.6 calibrates the parameters of the Nelson-Siegel function in accordance to the
objective function. These parameters are then used in equation 6 to decide the
entire yield curve at each scenario.

NSYi′,s = ϕs,0 + ϕs,1e
−ϕs,3τparent

i′ + ϕs,2τ
parent
i′ e−ϕs,eτi′ ∀i′, s (5.5)

Ri,s = ϕs,0 + ϕs,1e
−ϕs,3τi + ϕ2,sτ

parent
i e−ϕs,3τparent

i ∀i, s (5.6)

The VAR(1) model is defined in terms of factors not yields. Equations 5.7 to 5.9
reverse the factors, found by the VAR(1) model, to the yield for each scenario,
note that the scales in equation 5.9 are the weights from section 4.3.

Y
VAR(1)
1,s = x1,s ∀s (5.7)

Y
VAR(1)
30,s = x2,s + Y

VAR(1)
1,s ∀s (5.8)

Y
VAR(1)
5,s =

4

29
Y

VAR(1)
30,s +

25

29
Y

VAR(1)
1,s + x3,s ∀s (5.9)

Since the yield curve discretization is defined as an optimization model, it en-
ables us to add constraints. One such constraint may be a lower bound in
interest rates that is for example no negative rates

Ri,s ≥ 0 ∀i, s

Further constraints could be to eliminate arbitrage in interest rates. Equa-
tions 5.10 and 5.11 give more restraining condition than no-arbitrage condition,
namely that martingale properties should be equal across all scenarios

CP child
i,s = e−Ri,sτchild

i ∀i, s (5.10)

PP parent
i =

∑

s

ψConstCP child
i,s ∀i (5.11)

The model listed in equations 5.1 to 5.11 has the “shortcoming” of being non-
linear and non-convex. Such a model therefore has several local minima. Solving
such a model falls in the realm of global optimization. And since a general global
solver is not available i.e. non existing, solving such a problem would require
constructing a specialized solution for the problem at hand, Which is out of
current scope of this work.
However as a workaround for solving the global optimization problem, Ras-
mussen & Poulsen (2007) suggest a approximate approach. In it the solving of
the model is divided in to three parts which are solved one after another instead
of solving the whole problem in one go, the parts are:

1. First, solve a model comprising the objective function less the 4th term
with constraints 5.2–5.4. This model results in discretized factors match-
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ing the first 3 moments of the underlying VAR(1) model one period ahead.
We also add constraints 5.7 to 5.9 to guarantee no negative rates.

2. Then, solve a second model where the objective function is made of the
fourth term and the only constraint is equation 5.5. Finding the parame-
ters of the Nelson Siegel we now use simply equation 5.6 to find the entire
yield curves for each scenario.

3. Finally, apply equations 5.10 and 5.11.

The two sub models are again non-linear and non-convex, but it is possible to
find optimal solutions to these problems witch is done using a standard non-
linear solver.2

Furthermore, Rasmussen & Poulsen (2007) point out that apart from the no-
arbitrage condition solving of the first two part of the approximation would
correspond to solving the whole problem. And the solution found may be used
as the initial solution of solving the entire problem. That however remains
future work.

5.3.2 Smoothing the term structure

The model introduced in equations 5.1 to 5.11 uses a the Nelson-Siegel function
to smooth the term structure of interest rates. It is however known from interest
rate theories that the Nelson-Siegel function does not produce arbitrage free
curves in any continuous mode. And therefore it not likely that the discetize
models become arbitrage free, which is considered a shortcoming of the Nelson-
Siegel function and therefore a different smoothing function, the affine function
is also considered. The affine function is arbitrage free in the continuous setting,
therefore it is possible that adding scenarios will also result in arbitrage free
scenarios in discrete setting. Following are equations for both of the functions.

Nelson-Siegel smoothing

Nelson & Siegel (1987) proposed the following second order differential equation
with real, equal roots to fit the yield curve

R(m) = β0 + β1e
(−m/τ1) + β2[(m/τ2)e

(−m/τ)]

2The solver system used is GAMS.
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where r(m) is the instantaneous forward rate, τ1 and τ2 time constants as-
sociated with the equation and β0, β1 and β2 are determined by the initial
conditions. In the case of modeling the term structure of interest rates it would
be short medium and long maturity of rates used.

Affine smoothing

Affine term-structure models are interest rate models where the continuously
computed spot rate R(t, T ), at time t for maturity T is an affine function in the
short rate r(t)

R(t, T ) = α(t, T ) + β(t, T )r(t)

where α and β are deterministic function of time. Affine models are popular in
the finance literature since they offer convenient forms for bond prices, yields
and forward rates.

From generating multi-period scenarios Rasmussen & Poulsen observe ,among
other things, that the affine model results in scenarios which follow the normal
distribution more closely compared to Nelson Siegel. Furthermore they find that
a VAR(1) model branched in the 4-4-4-4 fashion produces to large volatilities
for all yields. They on the other hand conclude that a branch of the type 16-4-
2-2 gives good approximation for the real world data of Danish ZCB rates from
1995–2006.

5.4 Test Case of Scenario Generation

As a test case we now use the model from section 5.3.1, with input parameters
estimated with the OLS as described in 4.6.1. The model is used to generate
scenarios from two initial dates; the eighth of August 2007 and the third of
August 2007. The estimated parameters for the periods considered, can be seen
in appendix A.5, but the result of generations are presented in this section.

5.4.1 Tree Plots made for 1 period

We begin with generating estimations for a one period tree with the agenda of
investigating the effects of arbitrage. The trees are also generated using both
types of smoothing of the yield curves considered (Nelson-Siegel and affine), all
the combinations are plotted for 4, 8, 16, and 30 scenarios to check for the effects
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of the number of scenarios used. The figures are displayed in appendix A.7 and
A.6.

For all of the trees generated the same general behavior from arbitrage removal
can be observed, removing it affects the structure of the one year rate but the
effects, although visible, are much smaller for the five and thirty year rate.

As for the number of scenarios needed, for both of the generation dates and
for both of the smoothing functions used, a general observations is that four
scenarios are too few. The coverage of the spectrum of the rates is sparse.
If eight scenarios are used it seems, in general, to result in evenly distributed
scenarios, but the the coverage of the spectrum is sparse, as it is for the four
scenarios. If the number of scenarios is further increased up to 16 the generation
seems to better cover the spectrum in part of the range but the extreme chases
lie to far from the rest for good results. However when using 32 scenarios we
get acceptable coverage of the spectrum.
So using more scenarios results in better scenario structure, but one must keep
in mind that it is on the cost of more computation time, which can start to
count when generating scenarios for more periods and for optimizing a number
of scenarios.

5.4.2 Simple arbitrage test

To try to quantify the level of arbitrage presented in the generation from the
last section a simple arbitrage test was constructed. The test is set up as an
optimization problem. The formulation for the simple arbitrage test is.

Sets:

i: Set of zero coupon bonds (ZCB’s).
s: Set of scenarios.

Parameters

PPricei: Parent prices.
CPricei: Child prices.

Variables

ψi: Constant, assumed equal for all scenarios.
surplus: Positive variable.
slack: Positive variable.
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The objective function is to minimize the slack and surplus of the set of bonds
i

Min
∑

i

(slacki + surplusi).

Subject to the constraints that the slack and surplus variables are added to the
martingale constraint ψ from equation 5.11, and that the constant has to be
larger than zero.

s.t. PPricei =
∑

s

ψ(CPricei,s + slacki + surplusi) ∀i

ψs ≥ 0. ∀s

The results from this test are to be interpreted in the way that if we run the
optimization on two sets of scenario tree, the one with smaller number has less
arbitrage.

The bond prices in the simple arbitrage test are calculated in a following way,
for discrete compounding:

A bond Pi that pays risk free amounts Fti at t = 1, 2, . . . , T calculated as

Pi =
T

∑

t=1

Fti

(1 + rt)t

where rt is the rate at time t, now if we have ZCB’s with maturity τ the price
simplifies to.

PZCB
i =

Fτ

(1 + rτ )τ
. (5.12)

The hypothesis is that for affine smoothing the increased number of scenarios
will results in less arbitrage. The Nelson-Siegel function however is not expected
to behave in such manner. So of special interest is comparison between the
smoothing methods used.
This test results are that displayed in tables 5.1 to 5.2.

Scen. affine Nelson-Siegel

4 0.794016709519 0.786190621762
8 0.688454007753 0.714680560675
16 0.589911137431 0.601367003083
32 0.913069293782 1.16986729789

Table 5.1: The results of arbitrage test for August 2007.

For the affine smoothing the arbitrage seams to decrease for four eight and
sixteen scenarios in the 2007 data put surprisingly the number increases for
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Scen. affine Nelson-Siegel

4 0.437493359765 0.380037577277
8 0.314511799745 0.164158712646
16 0.410136025530 0.393916431499
32 0.538091112163 0.467338413907

Table 5.2: The results of arbitrage test for August 2005.

the 32 scenarios, the same applies for the Nelson-Siegel smoothing. The results
are much less indicating for the 2005 data. But in order to draw any solid
conclusions about the affect the type of smoothing has on the level of arbitrage
present in scenario tree more work needs to be conducted, especially if one wants
to make assumptions for multi periods.

5.4.3 Multi-Period Trees

In order to try to cast some light on how a different number of scenarios affect
the outcome of the scenarios trees for multi period chases we generate two chases
of multi period tree structure. One with a moderate number of 256 scenarios,
laid out in a 16-4-2-2 structure and another one containing a lot more or 2048
laid out in a 32-4-4-4 structure. The scenarios are generated from the same
dates as in the one period chase (August 2005 and August 2007), with arbitrage
removed, and it is chosen to limit the generation to affine smoothing because of
the theoretical benefits associated with it and the observation by Rasmussen &
Poulsen (2007) reflect that the affine smoothing follows the normal distribution
more closely. The results are displayed in figures 5.3 to 5.6.
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Figure 5.3: August 2005, four periods generated with the 16-4-2-2 structure.
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Figure 5.4: August 2005, four periods generated with the 32-4-4-4 structure.
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Figure 5.5: August 2007, four periods generated with the 16-4-2-2 structure.
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Figure 5.6: August 2007, four periods generated with the 32-4-4-4 structure.
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When making comparison between the 16-4-2-2 and the 32-4-4-4 structure it
can bee seen that the range of rates is slightly larger on average for the 32-4-
4-4 structure, but no general significance difference can be observed. However
the 16-4-2-2 structure has sparse coverage of the range of the rates witch is
most clearly visible in the first period followed by sort of outlying scenarios
for the higher end of rates generated. This is not wanted behavior and the
coverage of the range is significantly better for 32-4-4-4 scenarios. In particular
the 32-4-4-4 scenario tree looks better for the 2007 data than the 2005 data.
An explanation of that might be that the 2007 tree is generated from of flatter
initial yield curve. Although the conclusion witch can be drawn is that an
increased number of scenarios results in better trees, it should be noted that
the 32-4-4-4 structure contains a vast number of scenarios which would result in
long optimization solving time, so finding a good tradeoff between the coverage
of the rates spectrum and solving time is important. A general notice is also
that the thirty year rate seem to hit some sort of a roof witch is not preferable.

5.4.4 History Plush Trees

Finally to get some visualization for how the scenarios look compared to the
historic behavior of the rates a series of plots, showing simultaneously the his-
torical evolution of the rates and the scenarios generate is made. The scenarios
shown are 16-4-2-2 smoothed with the affine function such as made in the sec-
tion before. Figures 5.7–5.7 show those of plots for one five and thirty year rates
as before. Note also that the rates in August 2007 fall in the range of two year
prediction generated in August 2005.
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Figure 5.7: August 2007.
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Figure 5.8: August 2007.
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Figure 5.9: August 2007.
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5.5 Conclusion

In this chapter a detailed formulation of scenarios and scenario trees was given.
A model witch used the three factor VAR(1) model, derived in chapter 4, to
generate scenarios was introduced and used to make several types of scenarios. A
comparison between the level of arbitrage resulting from two types of smoothing
functions used in the model was made but it did not return decisive results. A
comparison was also made of using a moderate number of scenarios vs. a high
number of scenarios to construct a tree where it was clear that a high number
of scenarios returns better trees. And finally it can be seen that the scenarios
generated are on the same quantity as historical observations.



Chapter 6

Conclusion

6.1 Main findings

The main objective of the thesis was to construct scenario trees of interest rates.
We begun by performing a factor analysis of the yield curve and found that the
variability of the curve could be described adequately by only three factors.
It was also found that the first factor of the Danish curve behaved differently,
compared to results from other countries. It had a slope in the first few years
instead of being level for all the maturities.

An analysis made on the data shoved that log-normality did not describe the
rates better for our chase.

It was showed that a vector autoregression model could be used to model the
underlying process of the yield curve using the factors found. And a way to
estimate the parameters in the VAR model was formulated.
The vector autoregression model suitable had order one (VAR(1)) and it was
shown that a stable VAR(1) model could be constructed from the term structure
data.

A calibrated VAR(1) model was then successfully used to generate scenario
trees, both in one period and in multi period settings.
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From generating the scenarios, with and without arbitrage removal it was ev-
ident that there was arbitrage present in the generated trees and removing it
would therefore be a vital part of a scenario generation and optimization pro-
cess.
From generating large number of scenarios vs. generating a small number of
scenarios it was clear result that the tree with a moderate number of scenarios
did have some defects and making tree with high number reduced or eliminated
those defects. So to get adequate results for optimization one needs to use
enough scenarios.

6.2 Future work

Possible improvements

There are possible potentials for improving the VAR model. One of them could
be to take the difference of the interest rates and model them, meaning that
one would model the change of the rates in stead of the level of rates at any
given time, but whether that results in a better model is a question of further
observation. It could also be worth investigating further how the length of the
period of rates, used for the calibration of the model, would affect the outcome
and furthermore how the tree construction affects the outcome. But it has
to be kept in mind that interest rates do not fluctuate in nice periodic way
according to the seasons, contrary to many other types of data, so comparing
two seasons or adapting results from one period to another can become a dodgy
business. However the the quality of optimization using the generated scenarios
weights the most, so comparisons count the most. Finally it could be worth
making comparisons to how scenarios generated by some other process perform
compared to the VAR.

Into the void

Apart from the possible fine tuning raised here above more interesting potential
lies in conducting more work in estimation of the scenarios generated. To begin
with, it might be well worth to use them to run optimization on portfolios and
see how the results turn out.
Furthermore it is especially interesting to investigate in detail how the gen-
erated scenarios perform for multi period cases, such as shown in figure 6.1.
Questions witch are worth asking are how the type of smoothing function af-
fects the arbitrage? How tweaking of the underlying stochastic model affects
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P

S

Figure 6.1: A digram of the a multi period problem, S referees to scenarios and P referees
to the periods.
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the term structure? And how different trees perform in optimization, where a
related work could also be to find an non-general solution of the optimization
problem in equations 5.1 to 5.11 which is now solved with approximations.



Appendix A

Further Results

A.1 PCA, the Eigenvectors for 1995–2006

In the following the three largest eigenvalues and eigenvectors found with the
PCA for the period 1995–2006, the first three are shown in figure 2.4.

> pca.prcomp.95.06$sdev[1:4]

[1] 5.3350439 1.1901862 0.3069631 0.1500022

> sum(pca.prcomp.95.06$sdev)

[1] 7.110224

> pca.prcomp.95.06$rotation[,1:4]

t PC1 PC2 PC3 PC4

1 0.1426241 0.5293120636 -0.425361252 0.54467993

2 0.1586533 0.4452395851 -0.155949833 0.01666234

3 0.1683207 0.3682501490 -0.005428379 -0.21108618

4 0.1756762 0.2894477260 0.090169544 -0.28661033

5 0.1806667 0.2179523074 0.142316691 -0.26702293

6 0.1837765 0.1560215911 0.170477794 -0.23370559

7 0.1855677 0.1050615795 0.177594352 -0.19980076
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8 0.1864985 0.0643999109 0.184151875 -0.14219372

9 0.1869447 0.0281257645 0.199329610 -0.04303345

10 0.1870124 -0.0003624621 0.213623944 0.05460835

11 0.1869201 -0.0208270441 0.218450756 0.12970364

12 0.1867961 -0.0371618002 0.210803692 0.17682810

13 0.1866792 -0.0508382372 0.193077045 0.20048241

14 0.1865757 -0.0624658518 0.168191779 0.20702130

15 0.1864796 -0.0724398125 0.139119554 0.20091853

16 0.1863868 -0.0809853185 0.106818152 0.18602378

17 0.1862889 -0.0884172528 0.072896359 0.16480060

18 0.1861802 -0.0949531114 0.038276516 0.13913007

19 0.1860594 -0.1006768578 0.003599528 0.11067244

20 0.1859248 -0.1057407095 -0.030034492 0.08070087

21 0.1857764 -0.1102745604 -0.062575202 0.04994467

22 0.1856168 -0.1142894334 -0.094114986 0.01923643

23 0.1854467 -0.1179231132 -0.123986709 -0.01092322

24 0.1852683 -0.1212237252 -0.152188240 -0.04014136

25 0.1850838 -0.1242364359 -0.178808673 -0.06818427

26 0.1848962 -0.1270351041 -0.203282675 -0.09468147

27 0.1847086 -0.1295760540 -0.226182026 -0.11948811

28 0.1845216 -0.1319290256 -0.247477891 -0.14270396

29 0.1843362 -0.1341224371 -0.267309912 -0.16442652

30 0.1841524 -0.1361673793 -0.286016107 -0.18485368
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A.2 PCA, Adding One Year at a Time

Figures A.1, A.2 and A.3 show the results of factor analysis starting at 1995
and adding one year at a time.
Note that the sign of the factor loadings is arbitrary when calculated with the R
function used, see appendix B.2, that does however not matter when interpreting
the factors for the purpose of the recognizing the factors, but it would be possible
to find the correct signs.
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Figure A.1: Factor analysis, adding one year at time, 1995-1998.
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Figure A.2: Factor analysis, adding one year at time, 1995-2002.



A.2 PCA, Adding One Year at a Time 99

0 5 10 15 20 25 30

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

rate.95.03

Maturity (years)

F
ac

to
r 

lo
ad

in
gs

Factor 1
Factor 2
Factor 3

0 5 10 15 20 25 30

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

rate.95.04

Maturity (years)

F
ac

to
r 

lo
ad

in
gs

Factor 1
Factor 2
Factor 3

0 5 10 15 20 25 30

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

rate.95.05

Maturity (years)

F
ac

to
r 

lo
ad

in
gs

Factor 1
Factor 2
Factor 3

Figure A.3: Factor analysis, adding one year at time, 1995-2005.
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A.3 PCA, Performed Before and After the Changeover

to Euro
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Figure A.4: The factor loading for before and after the introduction of the euro, 1. of
January 1999. The Danish krona is pegged to the euro.
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A.4 Roots of pth Order Difference Equations

Defivations of stability the for AR and VAR model, taken from the book Time
Series Analysis (1994).
First lets define the lag operator; suppose that we start with sequence {xt}

∞
t=∞

and generate new sequence {yt}
∞
t=∞ such that yt = xt−1. This can be described

as applying lag operator to {xt}
∞
t=∞ which is represented with the symbol L:

Lxt = xt−1

Now if we apply the operator twice we get

L(Lxt) = L(xt−1) = xt−2

Such lag operator is represented L2, and in general for any integer k

Lkxt = xt−k.

Now consider the pth order difference equation where w is variable, an example
of such equation is the autoregression process given in equation 4.3

yt = φ1yt−1 + φ2yt−2 + · · · + φpyt−p + wt

or in terms of lag operators

(1 − φ1L+ φL2 − · · · − φpL
p)yt = wt. (A.1)

If we factor the operator on the left side of A.1 we get

(1 − φ1L+ φL2 − · · · ) − φpL
p) = (1 − λ1L)(1 − λ2L) · · · (1 − λpL).

This is the same as finding the values of (λ1, λ2, . . . , λp) such that the following
polynomials are the same for all z:

(1 − φ1z − φ2z
2 − · · · − φpz

p) = (1 − λ1z)(1 − λ2z) · · · (1 − λpz)

Now multiply both sides of the equation by z−pand define λ ≡ z−1

(λp − φ1λ
p−1 − φ2λ

p−2 · · · − φpλ− φp) = (λ− λ1)(λ− λ2) · · · (λ− λp) (A.2)

Clearly, setting λ = λi for i = 1, 2, . . . , p causes the the right side of equation
A.2 to equal zero. Thus the values (λ1, λ2, . . . , λp) must be the numbers that
set the left site of equation A.2 to zero as well:

λp − φ1λ
p−1 − φ2λ

p−2 · · · − φpλ− φp = 0 (A.3)

The difference equation A.2 is stable if the eigenvalues (the roots of A.3) lie
inside the unit circle, or equivalently if the roots of

1 − φ1z − φ2z
2 − · · · − φpz

p = 0

lie outside the unit circle.
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A.5 The Parameters Estimated For Scenario con-

struction

The parameters estimated via the ordinary least square estimation as formulated
in section 4.6.1, for µ, A and Ω and used for tree construction are displayed
here.

A.5.1 August 2005

These are the parameters used for trees generated from 2005-08-03.

µ =





2.2260555
2.1573571
0.4980051



 ,

A =





0.996886985 −0.01491038 0.04553341
−0.002193948 1.01263395 −0.06281597
−0.001929586 0.01634335 0.95151353



 ,

Ω =





0.009465929 −0.006101418 −0.001015083
−0.006101418 0.013906296 0.003610049
−0.001015083 0.003610049 0.004027632



 .

The parameters solved with the restriction that the coefficient matrix A should
be zero outside the diagonal used as input into the scenario.

µR =





2.1305334
1.7879579
0.3902231



 ,

AR =





0.9969801 0.0000000 0.0000000
0.0000000 0.9920899 0.0000000
0.0000000 0.0000000 0.9887856



 ,

Ω
R =





0.009586673 −0.006268014 −0.001110070
−0.006268014 0.014141642 0.003751184
−0.001110070 0.003751184 0.004140722



 .
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The initial values for the term structure and the initial one five and thirty year
rates are shown in tables A.1 and A.2 below.

Year Init. Yield

1 2.24563463588144
5 2.9220541624358
30 4.1558371897765

Table A.1: The initial yields used in generation from 2005-08-03.

Year Rate Year Rate

0 2.07552070845439 16 3.90933708615459
1 2.24563463588144 17 3.94966345971742
2 2.44694394887622 18 3.98466937618518
3 2.62082531962130 19 4.01525991031714
4 2.77685365664431 20 4.04231274106401
5 2.92205416243580 21 4.06652064416491
6 3.05939283570753 22 4.08788946640350
7 3.18739516721598 23 4.10625172326467
8 3.31092696624586 24 4.12144928320469
9 3.42075020847661 25 4.13333343560961
10 3.51913746141810 26 4.14190061805340
11 3.60507431053632 27 4.14773089857473
12 3.68055215085478 28 4.15154037523880
13 3.74839716219132 29 4.15402031366680
14 3.80915018081960 30 4.15583718977650
15 3.86275865264802

Table A.2: The initial term structure used in generation from 2005-08-03 (yearly steps).
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A.5.2 August 2007

These are the parameters used for trees generated from 2007-08-1.

µ =





3.5851278
1.8714276
0.4047298



 ,

A =





0.986428219 −0.02131882 0.04933514
0.006998918 1.02092581 −0.06908143
−0.001699929 0.01888504 0.94683984



 ,

Ω =





0.012265425 −0.007130835 −0.001535627
−0.007130835 0.014760175 0.004490134
−0.001535627 0.004490134 0.004653980



 .

The parameters solved with the restriction that the coefficient matrix A should
be zero outside the diagonal used as input into the scenario.

µR =





3.0454845
2.7755317
0.5797868



 ,

AR =





0.9908742 0.0000000 0.0000000
0.0000000 0.9952236 0.0000000
0.0000000 0.0000000 0.9875937



 ,

Ω
R =





0.012437989 −0.007352452 −0.001684323
−0.007352452 0.015072957 0.004656096
−0.001684323 0.004656096 0.004831483



 .
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The initial values for the term structure and the initial one five and thirty year
rates are shown in tables A.3 and A.4 below. The initial term structure (in

Year Init. Yield

1 4.67758712285553
5 4.82048201646060
30 4.95182577810421

Table A.3: The initial yields used in generation from 2007-08-1.

yearly steps) is displayed in table A.4 below.

Year Rate Year Rate

0 4.46265712494155 16 5.01467665942645
1 4.67758712285553 17 5.02148714812988
2 4.78427270635327 18 5.02517560051385
3 4.80580369089900 19 5.02630437300192
4 4.81161770772825 20 5.02541385480278
5 4.82048201646060 21 5.02295964720859
6 4.82740071431781 22 5.01911289998022
7 4.84363113854641 23 5.01396861194591
8 4.86507010601946 24 5.00761939525085
9 4.88337973756895 25 5.00015547105682
10 4.90652976823238 26 4.99168599803471
11 4.92985125096813 27 4.98240856527164
12 4.95155053353282 28 4.97253748101162
13 4.97173763255186 29 4.96227786999477
14 4.98960912990309 30 4.95182577810421
15 5.00416026118809

Table A.4: The initial term structure used in generation from 2007-08-01 (yearly steps).
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A.6 Tree Plots, i Period, August 2005

A.6.1 Nelson-Siegel smoothing
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Figure A.5: August 2005.
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Figure A.6: August 2005.
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Figure A.7: August 2005.
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Figure A.8: August 2005.
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A.6.2 Affine smoothing
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Figure A.10: August 2005.
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A.7 Tree Plots, 1 Period, August 2007

A.7.1 Nelson-Siegel smoothing
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Figure A.16: August 2007.



118 Further Results

A.7.2 Affine smoothing
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Figure A.18: August 2007.
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Appendix B

Code

The maturity of the calculations in this thesis was done with the R language, R
Development Core Team (2006).

B.1 Data read In

Listing B.1: Script used to read in the data from data files in number of other
scripts.

###########################################################
## Arngrimur Einarsson , November 2007.
## read . r
## Scr i p t to read in and manipulate ra te data .
###########################################################

## ’ ra te .∗ ’ i s the data con ta in ing only the ra t e s .
rat e . 06 . 01 <− read . table ( " rat e06_01 . csv " , header = F)
rat e . 01 . 97 <− read . table ( " rat e01_97 . csv " , header = F)
rat e . 97 . 94 <− read . table ( " rat e97_94 . csv " , header = F)

## Combine the ra t e s in one l a r g e data frame .
rat e <− cbind ( rat e . 0 6 . 0 1 , ra t e . 0 1 . 9 7 , ra t e . 9 7 . 9 4 )
remove( rat e . 0 6 . 0 1 , ra t e . 0 1 . 9 7 , ra t e . 9 7 . 9 4 )
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## ’ dates . csv ’ scans in the da tes .
dates = scan ( " dates . csv " ,what=character ( ) , qu i e t=T)

## D cas t s the da tes in the form yyyy−mm−dd .
D = as . Date ( dates , "%m/%d/%Y")

## ’ maturi ty ’ con ta ins the time to maturi ty .
maturity <− read . table ( " l o e b e t i d . csv " , header = F)

## P l o t t i n g the ra t e s .
x11 ( )
plot (D, as . vector ( rat e [ 1 , ] , mode="numeric" ) , type=" l " ,

main="" , ylab=" I n t e r s t ␣ r a t e s " )

## Print n o t i f i c a t i o n .
print ( ’ data␣ read␣ in ␣ : ) ’ )

Listing B.2: Script made in Matlab, used to plot the surface plot in figure 2.2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Arngrimur Einarsson , November 2007.
% ra te_view .m
% A s k r i p t to view the I n t e t s t s r a t e s wi th su r f a c e p l o t .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Import ing the data .
% cd ~/Pro j ec t/Code
i n t_06_01 = importdata ( ’ r en tekurver_06_01 . csv ’ ) ;
i n t_01_97 = importdata ( ’ r en tekurver_01_97 . csv ’ ) ;
i n t_97_94 = importdata ( ’ r en tekurver_97_94 . csv ’ ) ;

%% Extract ing the i n t e r e s t r a t e s .
Dataint_06_01 = in t_06_01 . data ( : , 2 : end ) ;
Dataint_01_97 = in t_01_97 . data ( : , 2 : end ) ;
Dataint_97_94 = in t_97_94 . data ( : , 2 : end ) ;
i n t = [ Dataint_06_01 , Dataint_01_97 , Dataint_97_9 4 ] ;

%% Extract ing the dates .
Date_06_01 = in t_06_01 . textdata ( : , 2 : end ) ;
Date_01_97 = in t_01_97 . textdata ( : , 2 : end ) ;
Date_97_94 = in t_97_94 . textdata ( : , 2 : end ) ;
dates = [ Date_06_01 , Date_01_97 , Date_97_94 ]

%% Some c a l c u l a t i o n for p l o t i n g .
[m, n ] = s ize ( i n t ) ;
dd = dates ( 1 : 7 7 : n ) ;
mi = min(min( i n t ) ) ; %mi=0.0114
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ma = max(max( i n t ) ) ; %ma=0.0987

%% Plot t ing .
%mesh ( i n t ) ;
%r i bbon ( i n t ) ;
surf ( i n t ) ;
xlim ( [ 0 n ] ) , ylim ( [ 0 m] ) , z l im ( [ mi ma ] ) ;
set (gca , ’XTick ’ , [ 40 ,92 ,144 ,197 ,249 ,301 ,354 ,405 ,457 ,510 ,562 ,

6 1 4 ] ) ;
set (gca , ’ XTickLabel ’ ,{ ’ 06 ’ , ’ 05 ’ , ’ 04 ’ , ’ 03 ’ , ’ 02 ’ , ’ 01 ’ , ’ 00 ’ ,

’ 99 ’ , ’ 98 ’ , ’ 97 ’ , ’ 96 ’ , ’ 95 ’ })
set (gca , ’YTick ’ , ( 1 : 2 0 :m) )
set (gca , ’ YTickLabel ’ ,{ ’ 0 ’ , ’ 5 ’ , ’ 10 ’ , ’ 15 ’ , ’ 20 ’ , ’ 25 ’ , ’ 30 ’ })
t i t l e ( ’ 1995−2006 ’ )
xlabel ( ’ Dates ’ ) , ylabel ( ’ Maturity ’ ) , zlabel ( ’ Rates ’ )
view ( [ 0 0 1 ] )

%% Other c a l c u l a t i o n .
%Reduced matrix to f i nd the e i g enve k t o r s and e i g enva l u e s .
i n t_t e s t = in t_06_01 . data ( 1 : 2 0 : end , 1 : end ) ;
i n t_t e s t=in t_t e s t ( 2 : end , 2 : 5 0 : end ) ;
[V,D] = eig ( i n t_t e s t ) ;
C = cov ( i n t_t e s t ) ;
RHO = cor r ( i n t_t e s t ) ;

Listing B.3: Script to plot the yield curves shown in chapter 2.

############################################################
## Arngrimur Einarrson .
## y i e l d_p l o t . r
## Scr i p t to p l o t i n t e r e s t ra te y i e l d s .
############################################################

## Read in the data .
source ( ’ read . r ’ )

## P l o t t i n g y i e l d curve f o r s e l e c t e t samples .
x <− seq (0 ,30 , length . out=length ( rat e [ , 1 ] ) )
opar <− par ( cex =1.2 ,mar=c (4 ,4 ,1 ,1 )+0 .1)
#po s t s c r i p t (" y i e l dCurve . ps ")
## rate [ , 3 5 4 ] : "1999−12−29".
plot (x , ( ra t e [ , 3 5 4 ] ) ∗100 , type=" l " , col=2,

xlab="Maturity ␣ ( years ) " , y lab="Rate␣(%)" )
## rate [ , 2 9 0 ] : "2001−03−21".
l ines (x , ( ra t e [ , 2 9 0 ] ) ∗100 , col=4)
legend ( " bottomright " , c ( "29␣Des . ␣1999 " , "21␣Mar . ␣2001 " ) ,

l t y =1, col=c ( 2 , 4 ) )
par ( opar )
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#dev . o f f ( )

## P l o t t i n g shor t vs . long term y i e l d .
prate <− 100∗ rat e
opar <− par ( cex =1.2 ,mar=c (4 ,4 ,1 ,1 )+0 .1)
#po s t s c r i p t (" long_shor t_y i e l d s . ps ")
plot (D, p rate [ 5 , ] , type=" l " , ylim=range ( prate ) , x lab="Date" ,

y lab="Yie ld ␣(%)" )
l ines (D, p rate [ 6 0 , ] , col="blue" )
l ines (D, p rate [ 1 2 1 , ] , col="red" )
grid ( nx=10, ny=10)
legend ( " t op r i gh t " , c ( "1␣yea
r " , "15␣ years " , "30␣ years " ) ,

l t y =1, col=c ( " b lack " , " b lue" , " red" ) , bg="white " )
par ( opar )
#dev . o f f ( )

B.2 Principal Component Analysis

The R script pca script.r in listing B.5 reads in the data, manipulates it and
implements two functions pca.basic and pca.prcomp sown in listing B.4. The
former function computes the eigenvalues and eigenvectors for a given data set
and returns those values. The latter function is a call to the built in R method
prcomp, for performing Principal component analysis. The two method return
numerically identical result apart from the fact that the eigenvectors can have
opposite signs. But as stated in the documentation forprcomp, the sign of the
factor loadings are arbitrary when calculating with it, that is it is possibility that
a factor causes a decrease in yield for bonds with short maturity and increase
for those with a long maturity. This does not matter when results are used
in factor analysis since we only the interaction between the factors. If it is of
interest it would be possible to find the correct signs by finding the eigenvectors
of the covariance matrix for the bond yield data.
Since the prcomp uses a singular value decomposition of the data matrix, witch
is the preferred method for numerical accuracy we it use that method for the
computations.

Listing B.4: The functions used for the principal component analysis.

############################################################
## Arngrimur Einarsson , November 2007.
## pca_func . r
## This s c r i p t con ta ins the f unc t i on s pca . bas and pca . prcomp
## for computations o f p r i n c i p a l components o f data s e t s .
############################################################
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pca . b a s i c <− function ( rate , ra t e . name , plot , p r i n t p l o t ){
## The pca . bas t a k e s in data matrix ( o f i n t e r e s t r a t e s
## and re turns i t ’ s covariance matrix , e i g enva l u e s and
## e i g envec t o r s .

t . r a t e <− t ( rat e )
## The cov () method c a l c u l a t e s the covariance between columns ,
## not the rows and t h e r e f o r e one needs to transform the data
## matrix .
pca . cov <− cov ( t . rate , y = NULL, use = " a l l . obs" , method =

c ( " pearson " ) )#, " kenda l l " , "spearman "))

## The e i g enva l u e s and e i g enve c t o r s c a l c u l a t e d
pca . bas <− eigen ( pca . cov , only . va lue s = F)

a = 1.2
b = 1.25
i f (plot==T){
tmp <− par ( cex=a ,mar=c (4 ,4 ,3 ,2 )+0 .1)
plot ( pca . bas$v e c t o r s [ , 1 ] , , ylim=c ( −0 .6 ,0 .6 ) , type=" l " ,

pch=1, col=1, main=rate . name , xlab="Maturity ␣ ( years ) " ,
y lab="Factor ␣ l oad in g s " )

#mtext (" maturi ty f o r whole years " , s i d e = 3 , cex=b )
l ines ( pca . bas$v e c t o r s [ , 2 ] , , type=" l " , pch=2,col=2)
l ines ( pca . bas$v e c t o r s [ , 3 ] , , type=" l " , pch=3,col=4)
legend ( " t op r i gh t " , c ( "Factor ␣1" , "Factor ␣2" , "Factor ␣3" ) ,

l t y =1, col=c ( 1 , 2 , 4 ) )
par (tmp)
}

i f ( p r i n t p l o t==T){
postscript (paste ( rat e . name , " . ps" , sep="" ) , width=8, he igh t=8)
tmp <− par ( cex=a ,mar=c (4 ,4 ,3 ,2 )+0 .1)
plot ( pca . bas$v e c t o r s [ , 1 ] , , ylim=c ( −0 .6 ,0 .6 ) ,

type=" l " , pch=1,col=1, main=rate . name ,
xlab="Maturity ␣ ( years ) " , y lab="Factor ␣ l oad in g s " )

#mtext (" maturi ty f o r whole years " , s i d e = 3)
l ines ( pca . bas$v e c t o r s [ , 2 ] , , type=" l " , pch=2,col=2)
l ines ( pca . bas$v e c t o r s [ , 3 ] , , type="3" , pch=3,col=4)
legend ( " t op r i gh t " , c ( "Factor ␣1" , "Factor ␣2" , "Factor ␣3" ) ,

l t y =1, co=c ( 1 , 2 , 4 ) )
dev . of f ( )
}
#return ( pca . bas )
}

# <rate> i s the data set , p l o t t a k e s the arguments <T> fo r
# p l o t t i n g and <TP> fo r pr in ing the p l o t to a f i l e .
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pca . prcomp <− function ( rate , ra t e . name , plot , p r i n t p l o t ){
## The p r i n c i p a l components c a l c u l a t e t us ing pcomp () method
# in R.

# Transposed becose the method c a l c u l a t e s the covariance
# between the columns
t . r a t e <− t ( rat e )
pca . prc <− prcomp( t . rate , r e tx=T, cen t r=T, scale .=T, t o l =0)

a = 1.2
b = 1.25
i f (plot==T){
tmp <− par ( cex=a ,mar=c (4 ,4 ,3 ,2 )+0 .1)
plot ( pca . prc$ r o t a t i on [ , 1 ] , , ylim=c ( −0 .6 ,0 .6 ) , type=" l " ,

pch=1, col=1, main=rate . name , xlab="Maturity ␣ ( years ) " ,
y lab="Factor ␣ l oad in g s " )

#mtext (" maturi ty f o r whole years " , s i d e = 3 , cex=b )
l ines ( pca . prc$ r o t a t i on [ , 2 ] , , type=" l " , pch=2,col=2)
l ines ( pca . prc$ r o t a t i on [ , 3 ] , , type=" l " , pch=3,col=4)
legend ( " t op r i gh t " , c ( "Factor ␣1" , "Factor ␣2" , "Factor ␣3" ) ,

l t y =1, co=c ( 1 , 2 , 4 ) )
par (tmp)
}

i f ( p r i n t p l o t==T){
postscript (paste ( rat e . name , " . ps" , sep="" ) , width=8, he igh t=8)
tmp <− par ( cex=a ,mar=c (4 ,4 ,3 ,2 )+0 .1)
plot ( pca . prc$ r o t a t i on [ , 1 ] , , ylim=c ( −0 .6 ,0 .6 ) , type=" l " ,

pch=1, col=1, main=rate . name , xlab="Maturity ␣ ( years ) " ,
y lab="Factor ␣ l oad in g s " )

#mtext (" maturi ty f o r whole years " , s i d e = 3 , cex=b )
l ines ( pca . prc$ r o t a t i on [ , 2 ] , , type=" l " , pch=2,col=2)
l ines ( pca . prc$ r o t a t i on [ , 3 ] , , type=" l " , pch=3,col=4)
legend ( " t op r i gh t " , c ( "Factor ␣1" , "Factor ␣2" , "Factor ␣3" ) ,

l t y =1, co=c ( 1 , 2 , 4 ) )
dev . of f ( )
}
#return ( pca . prc )
}

Listing B.5: The script used to run the principal component analysis.

############################################################
## Arngrimur Einarsson , November 2007.
## pca_s c r i p t . r
## Scr i p t to e va l ua t e PCA with the f unc t i on s in pca_func . r .
############################################################
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## The f unc t i on s used .
source ( ’ pca_func . r ’ )
## The data read in .
source ( ’ read . r ’ )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Construct ion o f t e s t s e t s .
##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
seq . 1 <− seq (5 ,121 ,4 ) ## Every whole number o f the maturi ty .
#seq . 5 <− seq (5 ,121 ,20) ## Every f i f t h number o f maturi ty .
## The ra te wi th the whole maturi ty da te s .
rat e <− rat e [ seq . 1 , ]

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Subse t s o f the maturi ty da te s made .
##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Sing l e years .
t e s t . set <− l i s t (
rat e .95_2006 = rate ,
ra t e .06 = rate [ , ( 1 : 4 0 ) ] ,
r a t e .05 = rate [ , ( 4 1 : 9 2 ) ] ,
r a t e .04 = rate [ , ( 9 3 : 1 4 4 ) ] ,
r a t e .03 = rate [ , ( 1 4 5 : 1 9 7 ) ] ,
r a t e .02 = rate [ , ( 1 9 8 : 2 4 9 ) ] ,
r a t e .01 = rate [ , ( 2 5 0 : 3 0 1 ) ] ,
r a t e .00 = rate [ , ( 3 0 2 : 3 5 3 ) ] ,
r a t e .99 = rate [ , ( 3 5 4 : 4 0 5 ) ] ,
r a t e .98 = rate [ , ( 4 0 6 : 4 5 7 ) ] ,
r a t e .97 = rate [ , ( 4 5 8 : 5 1 0 ) ] ,
r a t e .96 = rate [ , ( 5 1 1 : 5 6 7 ) ] ,
r a t e .95 = rate [ , ( 5 6 8 : 6 1 4 ) ]
)

## Before and a f t e r euro (1 . jan 1999 Denmark j o i n s ERM II ,
## but the DKK has pegged the D−mark s ince 1987. )
t e s t . euro <− l i s t (
pre . euro . ra t e = rate [ , ( 3 5 4 : 6 1 4 ) ] ,
post . euro . ra t e = rate [ , ( 1 : 3 5 3 ) ]
)

## Four year per i ods .
t e s t . 4 . years <− l i s t (
rat e . 95 . 98 = rate [ , ( 4 0 6 : 6 1 4 ) ] ,
r a t e . 99 . 02 = rate [ , ( 1 9 8 : 4 0 5 ) ] ,
r a t e . 03 . 06 = rate [ , ( 1 : 1 9 7 ) ]
)
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## Adding year at a time .
t e s t .add . year <− l i s t (
rat e .95 = rate [ , ( 5 6 3 : 6 1 4 ) ] ,
r a t e . 95 . 96 = rate [ , ( 5 1 1 : 6 1 4 ) ] ,
r a t e . 95 . 97 = rate [ , ( 4 5 8 : 6 1 4 ) ] ,
r a t e . 95 . 98 = rate [ , ( 4 0 6 : 6 1 4 ) ] ,
r a t e . 95 . 98 = rate [ , ( 3 5 4 : 6 1 4 ) ] ,
r a t e . 95 . 99 = rate [ , ( 3 0 2 : 6 1 4 ) ] ,
r a t e . 95 . 00 = rate [ , ( 2 5 0 : 6 1 4 ) ] ,
r a t e . 95 . 01 = rate [ , ( 1 9 8 : 6 1 4 ) ] ,
r a t e . 95 . 02 = rate [ , ( 1 4 5 : 6 1 4 ) ] ,
r a t e . 95 . 03 = rate [ , ( 9 3 : 6 1 4 ) ] ,
r a t e . 95 . 04 = rate [ , ( 4 1 : 6 1 4 ) ] ,
r a t e . 95 . 05 = rate [ , ( 1 : 6 1 4 ) ]
)

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## The p r i n c i p a l components c a l c u l a t e d and p l o t t e t .
##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Example o f f unc t i on c a l l s .
pca . b a s i c . 9 5 . 06 <− pca . b a s i c ( rate , "1995−2006 ,␣ ba s i c " ,T,F)
pca . prcomp <− pca . prcomp( rate , "1995−2006 " ,T,F)

# For loop to c a l c u l a t e and p l o t the data .
tmp <− length (names( t e s t .add . year ) )
tmp2 = numeric ( tmp)
for ( i in ( 1 : tmp ) ){
tmp2 [ i ] = paste ( "pca . prc . " ,names( t e s t .add . year [ i ] ) , "=" ,

"pca . prcomp( t e s t . add . year [ [ " , i , " ] ] , " ,
"names ( t e s t . add . year [ " , i , " ] ) , F ,T) " , sep="" )

eval (parse ( text=tmp2 [ i ] ) )
}

# summary( pca . prc ) ## Prin t s out numbers .

B.3 Normality Inspection

Listing B.6: The following script is used to read in data, plot histograms, Q-Q
plots and perform the Jarque-Bera and Shapiro-Wilk tests on data and subsets
of data. The kernel estimation is made made with the rather “conservative”
bandwidth of 0.8.

############################################################
## Arngrimur Einarsson , November 2007.
## rate_h i s t . r
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## Scr i p t to ana l y ze the normal i ty o f i n t e r e s t r a t e s .
############################################################

## l i b r a r y path and ex t ra l i b r a r y added to g e t the
## Jarque−Bera t e s t .
. l i bPaths (c ( "~/Pro jec t/Code/Ae_R_l i b " , . L ibrary ) )
l ibrary ( ’ t s e r i e s ’ )

## Function used to p l o t the ra t e s and smoothed l i n e .
hist . r a t e <− function ( rate , bw, name){

## Function used to p l o t h i s togram of the ra t e s and
## smoothed l i ne , t a k e s in v e c t o r o f r a t e s ( ra te ) ,
## parameter f o r bandwidth (bw) and name o f the
## histogram (name ) .
hist ( rate , f r e q=F, main=NULL, xlab=NULL, ylab=NULL)
t i t l e (main=name , xlab=" ln ␣ o f ␣Rate␣(%)" , ylab="Proport ion " ,

cex . main=1.5 , cex . lab =1.5)
l ines (density ( as .matrix( rat e ) , bw, k e rn e l=" gauss ian " ) ,

col="red" )
}

## The data read in and combined in a s i n g l e matrix .
data95to97<−matrix( scan ( ’NYK.95 to97 . dat ’ ) , ncol=106 ,byrow=T)
data97to01<−matrix( scan ( ’NYK.97 to01 . dat ’ ) , ncol=254 ,byrow=T)
data01to06<−matrix( scan ( ’NYK.01 to06 . dat ’ ) , ncol=255 ,byrow=T)
data<−cbind ( data01to06 , data97to01 , data95to97 )

## The f i r s t column ( maturi ty index ) and f i r s t row ( i s su ed
## dates ) taken out o f the matrix .
data <− data [ , −1 ] ; date <− data [ 1 , ] ; data <− data [−1 , ]

## A histogram and a QQ−p l o t made from a normal sample .
x <− rnorm (dim(data ) [ 2 ] )
#po s t s c r i p t (" samp_norm . ps ")
opar <− par (mfrow=c ( 1 , 2 ) ,mex=0.8 ,mar=c (4 ,4 ,2 ,1 )+0 .1)
hist (x , f r e q=F ) ; l ines (density (x , bw=0.8 ,

k e rn e l=" gauss ian " ) , col="red " )
qqnorm( x ) ; qqline (x , col="red" )
par ( opar )
#dev . o f f ( )

par ( cex . lab=2,mar=c (4 ,4 ,2 ,1 )+0 .1)
plot ( sin , −pi , 2∗pi )

x <− rnorm (dim(data ) [ 2 ] )
ja rque . bera . t e s t ( x )
shap i ro . t e s t ( x )



132 Code

## Sub−s e t s cons t ruc ted .

## Make s e t con ta in ing each year .
#ra te .06 <− data [ , ( 1 : 4 0 ) ]
#ra te .05 <− data [ , ( 4 1 : 9 2 ) ]
#ra te .04 <− data [ , ( 9 3 : 1 4 4 ) ]
#ra te .03 <− data [ , ( 145 : 197 ) ]
#ra te .04 <− data [ , ( 198 : 249 ) ]
#ra te .01 <− data [ , ( 250 : 301 ) ]
#ra te .00 <− data [ , ( 302 : 353 ) ]
#ra te .99 <− data [ , ( 354 : 405 ) ]
#ra te .98 <− data [ , ( 406 : 457 ) ]
#ra te .97 <− data [ , ( 458 : 510 ) ]
#ra te .96 <− data [ , ( 511 : 567 ) ]
#ra te .95 <− data [ , ( 568 : 614 ) ]

## Test s e t 1 2001−2006.
#data <− data [ , 1 : 3 0 1 ]
## Test s e t 2 1995−1998
#data <− data [ , 404 : 614 ]
## Test s e t 3 1999−2001
#data <− data [ , ( 301 : 405 ) ]
## Test s e t 4 2005−2006
#data <− data [ , 1 : 9 2 ]

## Test s e t 5 2004−2006.
#data <− data [ , 1 : 1 4 4 ]
## Test s e t 6 b e f o r e mi l lennium : j u s t as skewed .
#data <− data [ , 1 : 3 5 4 ]
## Test s e t 7 a f t e r mi l lennium : nothing b e t t e r than be f o r e .
#data <− data [ , 354 : 614 ]
## Test s e t 8 1995−1999: no b e t t e e r
#data <− data [ , 407 : 614 ]
## Test s e t 9 1999−2001
#data <− data [ , ( 301 : 405 ) ]

## The 1 , 5 , 20 and 30 year ra te taken out o f the data s e t .
rat e1 <− data [ 4 , ]
r a t e5 <− data [ 2 0 , ]
r a t e15 <− data [ 6 0 , ]
r a t e30 <− data [ 1 2 0 , ]

## ln taken o f the ra t e s .
#ra te1 <− l o g ( ra te1∗100)
#rate5 <− l o g ( ra te5∗100)
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#rate15 <− l o g ( rate15 ∗100)
#rate30 <− l o g ( rate30 ∗100)

## Example o f h i s togram p l o t t i n g .
#p o s t s c r i p t (" h i s t_95_06. ps ")
opar <− par (mfrow=c ( 2 , 2 ) ,mex=0.8 ,mar=c (4 ,4 ,2 ,1 )+0 .5)
hist . r a t e ( rate1 , 0 . 8 , "1␣year ␣maturity " )
hist . r a t e ( rate5 , 0 . 8 , "5␣year ␣maturity " )
hist . r a t e ( rate15 , 0 . 8 , "15␣year ␣maturity " )
hist . r a t e ( rate30 , 0 . 8 , "30␣year ␣maturity " )
par ( opar )
#dev . o f f ( )

## Example o f QQ−p l o t t i n g .
#p o s t s c r i p t (" q q p l o t_95_06. ps ")
opar <− par (mfrow=c ( 2 , 2 ) ,mex=0.8 ,mar=c (4 ,5 ,2 ,1 )+0 .1)
qqnorm( rate1 , main="1␣year ␣maturity " , cex . main=1.5 ,

cex . lab =1.5)
qqline ( rate1 , col="red " )
qqnorm( rate5 , main="5␣year ␣maturity " , cex . main=1.5 ,

cex . lab =1.5)
qqline ( rate5 , col="red " )
qqnorm( rate15 , main="15␣year ␣maturity " , cex . main=1.5 ,

cex . lab =1.5)
qqline ( rate15 , col="red " )
qqnorm( rate30 , main="30␣year ␣maturity " , cex . main=1.5 ,

cex . lab =1.5)
qqline ( rate30 , col="red " )
par ( opar )
#dev . o f f ( )

## Jarque−Bera t e s t f o r normal i ty performed on the data .
jb1 <− j a rque . bera . t e s t ( rat e1 )
jb5 <− j a rque . bera . t e s t ( rat e5 )
jb15 <− j a rque . bera . t e s t ( rat e15 )
jb30 <− j a rque . bera . t e s t ( rat e30 )

## Shapiro−Wilk normal i ty t e s t performed on the data .
sw1 <− shap i ro . t e s t ( rat e1 )
sw5 <− shap i ro . t e s t ( rat e5 )
sw15<− shap i ro . t e s t ( rat e15 )
sw30<− shap i ro . t e s t ( rat e30 )
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B.4 Vector Auto Regression

B.4.1 Calculation of the lag and stability of the VAR model

The roots and the information criteria are calculated with the function VARS
package in R (Pfaff 2007).

Listing B.7: Functions calibration of the VAR model (contains also estimation
of parameters).

############################################################
## Arngrimur Einarsson , November 2007.
## var1_func . r
## Functions ∗∗∗ and ∗∗∗ used f o r computations o f VAR( 1 ) . . .
############################################################

var1 . b a s i c <− function ( f a c t o r s ){
## The var1 . ba s i c f unc t i on ta k e s in an R data frame
## con ta i n i g the a cons tan t l e v e l , s lope , and curva ture
## f a c t o r s .
X <− as .matrix( f a c t o r s [ 1 : ( ncol ( rat e ) −1) , ] )
Y <− as .matrix( f a c t o r s [ 2 : ( ncol ( rat e ) ) , ] )

tmp <− solve ( t (X)%∗%X) %∗% t (X)
d_hat <− matrix (0 ,nrow=3, ncol=4)
for ( i in 1 : 3 ) {

d_hat [ i , ] <− t (tmp%∗%Y[ , ( i +1) ])
}

alpha <− d_hat [ 1 : 3 , 1 ] # aka . mu
beta <− d_hat [ 1 : 3 , 2 : 4 ] # aka . A
r e s <− Y[ ,2 :4 ] −X%∗%t (d_hat )
V <− t ( r e s )%∗%r e s/(ncol ( rat e )−1)
invV <− solve (V)

ans <− data . frame( ’ alpha ’=alpha , ’ beta ’=beta ,
’ v ar iance ’=V)
return ( ans )

}

var1 . lm <− function ( f a c t o r s ){
## The var1 . lm uses the R lm func t i on . . .
X <− as .matrix( f a c t o r s [ 1 : ( ncol ( rat e ) −1) , ] )
Y <− as .matrix( f a c t o r s [ 2 : ( ncol ( rat e ) ) , ] )
lm1 <− lm(Y~X)
return ( lm1)
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}

var . 3 . f a c t o r s <− function (data ){
# Takes in the i n t e r e s t ra te data and re turns the f a c t o r s
# f o r the varp . 3 model .
l e v e l <− t (data [ 5 , ] ) ∗100
s l op e <− t (data [21 , ]−data [ 5 , ] ) ∗100
curv . <− t (2∗data [21 , ]−data [5 , ]−data [ 1 2 1 , ] ) ∗100 # NB appr .
f a c t o r s <− data . frame( l e v e l , s lope , curv . )
names( f a c t o r s ) [ 1 : 3 ] <− c ( ’ l e v e l ’ , ’ s l op e ’ , ’ curv . ’ )
return ( f a c t o r s )

}

s t . var1 <− function (data ){
## Function used to es t imate s t a b i l i t y and information
## c r i t e r i a f o r VAR(p ) , t a k e s in the f a c t o r s
var1 . 3 . i c <− VARselect (data , l ag .max = 5 , type = c ( " const " ) )
var1 . 3 <− VAR(data , p=1, type=" const " )
r oo t s <− r oo t s ( var1 . 3 )
s k i l a <− l i s t ( var1 . 3 . i c $ s e l e c t i o n , r oo t s )
return ( s k i l a )

}

Listing B.8: Script used for estimating the order and stability (contains also
estimation of parameters).

############################################################
## Arngrimur Einarsson , November 2007.
## var1 . r
## Scr i p t to i n v e s t i g a t e the p r o p e r t i e s o f the VAR(p) model .
############################################################

##. l i bPa th s ( ) , Adding VARS package to the l i bPa th s
. l i bPaths (c ( "~/Pro jec t/Code/Ae_R_l i b " , . L ibrary ) )
l ibrary ( " vars " ) #l i b r a r y (" x t a b l e ")
## Runnig the f unc t i on s used in the s c r i p t .
source ( "var1_func . r " )
## Data read in .
source ( " read . r " )

## The ra t e s p l o t t e t .
x11 ( )
plot (D, as . vector ( rat e [ 1 , ] , mode="numeric" ) , type=" l " ,

main="Base␣ rat e " , y lab=" I n t e r s t ␣ r a t e s " )
x11 ( )
plot (D[ 1 : 5 2 ] , as . vector ( rat e [ 1 , 1 : 5 2 ] , mode="numeric" ) ,

type=" l " , main="Base ␣ rat e " , y lab=" I n t e r s t ␣ r a t e s " )
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##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Factors put in data frame , f o r methods #1 & #2.
##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
l e v e l <− t ( rat e [ 5 , ] ∗100)
s l op e <− t ( rat e [21 , ]− rat e [ 5 , ] ) ∗100
## Naive method .
#curv . <− t (2∗ ra te [21 , ]− ra te [5 , ]− ra te [ 121 , ] )∗100
## Alt . r a t e s
curv . <− t ( rat e [21 , ] − (4/29)∗ rat e [121 , ]− (25/29)∗ rat e [ 5 , ] ) ∗100
cons . <− rep ( 1 , ( ncol ( rat e ) ) ) ; cons . <− as .data . frame( cons . )

## The f a c t o r s combined in a data frame .
Z <− data . frame( cons . , l e v e l , s lope , curv . )
names(Z ) [ 2 : 4 ] <− c ( ’ l e v e l ’ , ’ s l op e ’ , ’ curv . ’ )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Method #1 VAR1 hard coded .
##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Using the func t i on var1 . ba s i c
var1 . 1 <− var1 . b a s i c (Z)

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Method #2 the R lm () func t i on used , re turns the same : )
##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
var1 . 2 <− var1 . lm(Z)

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## Method #3 the VARS package used .
##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
## The func t i on f a c t o r s run to " e x t r a c t the f a c t o r s from the
## data s e t "
f a c t o r s <− var . 3 . f a c t o r s ( rat e )

## Loop to es t imate the s t a b i l i t y and compute the
## information c r i t e r i a
num <− 604
i c <− vector ( " l i s t " , num)
root <− matrix(nrow=num, ncol=3)
for ( r in 1 :num) {
s t . param <− f a c t o r s [ 1 : ( r +10) , ]
tmp <− s t . var1 ( s t . param)
i c [ r ] <− tmp [ 1 ]
root [ r , ] <− as .matrix( t (tmp [ [ 2 ] ] ) )
}

## P l o t t i n g o f the roo t s to see the moduli
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#po s t s c r i p t (" roo t s . ps ")
opar <− par ( cex =1.2 ,mar=c (4 ,4 ,3 ,2 )+0 .1)
plot ( root [ , 1 ] , type="p" , pch=20, col=1, main="Roots " ,

y lab="moduli␣ o f ␣ the␣ e i g enva lu e s " , x lab=" po in t s " )
mtext( "Roots " , s i d e = 3 , cex=b)
points ( root [ , 2 ] , pch=20, col=3)
points ( root [ , 3 ] , pch=20, col=4)
l <− ( rep (1 ,num) )
l ines ( l , type=" l " , col=2)
legend ( " bottomright " , c ( " e i g . ␣1" , " e i g . ␣2" , " e i g . ␣3" ) , pch=20,

col=c ( 1 , 3 , 4 ) )
par ( opar )
#dev . o f f ( )

## Manipu lat ing the IC information
rout <− f i l e ( " i c . txt " , "w" )
dump( ic , f i l e = rout )
close ( rout )
dump( " i c " , f i l e = " i c . dump . txt " )
## Edi t the f i l e wi th search/ r ep l a c e and s h e l l programs
## inc l ud i n g ’ cut −b 4−29 bakk . t x t > bakk . t x t ’ .
i c . table <− read . table ( " i c . c l ean . txt " , header = T)
## P l o t t i n g o f the IC to see the sug j . order , not us ing the
## FPE c r i t e r i a ’ cose I don ’ t know what i t i s ( co l =4).
#p o s t s c r i p t (" i c . ps ")
opar <− par ( cex =1.2 ,mar=c (4 ,4 ,3 ,2 )+0 .1)
plot ( i c . table [ , 1 ] , type=" s " , pch=20, col=1, main="" ,

ylab="Suggested ␣ order ␣ (p) " ,
x lab="Number␣ o f ␣ parameters ␣ ( i s s u i n g ␣ dates ) " )

l ines ( i c . table [ , 2 ] , type=" s " , col=2)
l ines ( i c . table [ , 3 ] , type=" s " , col=3)
#l i n e s ( i c . t a b l e [ , 4 ] , type=" l " , co l =4)
legend ( " t op r i gh t " ,c ( "AIC" , "HQ" , "BC" ) ,

l t y =1, col=c ( 1 , 2 , 3 ) )
par ( opar )
#dev . o f f ( )

## Construct ion o f a " s o l i d " model !
var . 3 . f a c t <− f a c t o r s [ 1 : 2 0 0 , ]
var . 3 .mod <− VAR(var . 3 . f ac t , p=1, type=" const " )
r oo t s (var . 3 .mod)
#po s t s c r i p t ( h o r i z o n t a l = FALSE, o n e f i l e = FALSE)
plot (var . 3 .mod)
#dev . o f f ( )

## Forecas t ing .
var . 3 . f <− predict (var . 3 . mod, nahead = 52 , c i = 0 . 95 )
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names(var . 3 . f )
plot (var . 3 . f )

Listing B.9: The script used for estimating the parameters in the VAR(1) model.

###########################################################
## Arngrimur Einarsson , November 2007.
## VARestimate3f . r
## Construct ion o f VAR(1) model & scenar i o genera t i on f o r 3
## f a c t o r s .
###########################################################
rm( l i s t=l s ( ) )
## Adding path to a d d i t i o n a l R packages { . l i bPa th s ( ) } .
. l i bPaths (c ( "~/Pro jec t/Code/Ae_R_l i b " , . L ibrary ) )
l ibrary ( "mvtnorm" )

## The i n t e r e s t ra te data read in .
data95to97<−matrix( scan ( ’NYK.95 to97 . dat ’ ) , ncol=106 ,byrow=T)
data97to01<−matrix( scan ( ’NYK.97 to01 . dat ’ ) , ncol=254 ,byrow=T)
data01to06<−matrix( scan ( ’NYK.01 to06 . dat ’ ) , ncol=255 ,byrow=T)
## This data i s reversed compared to the o th e r s .
data06to07<−matrix( scan ( ’NYK.06 to07 . dat ’ ) , ncol=45,byrow=T)
data06to07 <− data06to07 [ , 4 5 : 1 ]
data<−cbind ( data06to07 , data01to06 , data97to01 , data95to97 )

NoDates<−ncol (data)−1
NoMats<−nrow(data)−1
Dates<−data [ 1 , ( NoDates +1) :2 ]
Mats<−data [ 2 : ( NoMats+1) ,1]
Rates<−data [ 2 : ( NoMats+1) ,( NoDates +1) :2 ]
Rates <− Rates [ , 2 : 4 9 1 ] # nr . 1 i s August 8 .
NoDates <− dim( Rates ) [ 2 ]
D<−M<−Y<−DatesAsReal<−rep (0 , NoDates )
#Rates <− l o g ( Rates∗100)

## Estimation o f the VAR(1) model : ( l , s , c )_t+1 = a +
## B∗( l , s , c )_t+eps_{ t+1}
const<−rep (1 , NoDates )

## Extrac t the s e l e c t e d f a c t o r s from the i n t e r e s t ra te s ,
## the s impe l e r method .
#l e v e l<−Rates [ 5 , ]
#s l op e<−Rates [21 , ]−Rates [ 5 , ]
#curva ture<−2∗Rates [21 , ]−Rates [5 , ]−Rates [ 121 , ]

## Extrac t the s e l e c t e d f a c t o r s from the i n t e r e s t ra te s ,
## Chr i s t i ansen/Lund .
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l e v e l<−Rates [ 5 , ]
s l op e<−Rates [121 , ]−Rates [ 5 , ]
curvature<−Rates [21 , ] − (25/29)∗Rates [5 , ] − (4/29)∗Rates [ 1 2 1 , ]

## Histogram of the f a c t o r s made .
#h i s t ( l e v e l , prob=T)
#l i n e s ( d en s i t y ( l e v e l , bw=2) , co l="red ")
#x11 ( ) ; h i s t ( s lope , prob=T)
#l i n e s ( d en s i t y ( s lope , bw=0.5) , c o l="red ")
#x11 ( ) ; h i s t ( curvature , prob=T)
#l i n e s ( d en s i t y ( curvature , bw=0.5) , c o l="red ")

## The f a c t o r s mu l t i p l i e d wi th 100 to work wi th percen tage .
l e v e l<−l e v e l ∗100
s l op e<−s l op e∗100
curvature<−curvature∗100

## The f a c t o r s combined in a s i n g l e data frame .
Z<−cbind ( const , l e v e l , s lope , curvature )
X<−Z [ 1 : ( NoDates−1) , ]
Y<−Z [ 2 : NoDates , ]

## OLS es t imat i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Dummy <− solve ( t (X)%∗%X) %∗% t (X)
e s t <− matrix (0 ,nrow=3,ncol=4)
for ( i in 1 : 3 ) e s t [ i , ]<−t (Dummy%∗%Y[ , ( i +1) ]) # de l t a hat

a <− e s t [ 1 : 3 , 1 ]
B <− e s t [ 1 : 3 , 2 : 4 ]
longterm <− solve (diag ( rep (1 ,3))−B, a ) # mu

r e s <− Y[ ,2 :4 ] −X%∗%t ( e s t ) # re s i d a u l s
V <− t ( r e s )%∗%r e s/ (NoDates−1) # Omega ha t tu r
invV <− solve (V)
## OLS ends −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

## The b u i l t in func t i on lm () to f i t l i n e a r models i . e the
## model in equa t i on in chap ter X. I t conf i rms the
## ca l c u l a t i o n s o f the c o e f f i c i e n t s ( a and B) and the
## re s i d u a l s .

#lm1 <− lm(Y~X)

## Res t r i c t e d model OLS est imation , o f f−d iagona l e l ements
## equa l to 0 .
estR<−matrix (0 ,nrow=3,ncol=4)
resR<−Y[ , 2 : 4 ]
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for ( i in 1 : 3 ) {
Dummy1<−solve ( t (X[ , c ( 1 , ( i +1) ) ] ) %∗%X [ , c ( 1 , ( i +1) ) ] ) %∗%t
(X[ , c ( 1 , ( i +1) ) ] )

Dummy2<−t (Dummy1%∗%Y[ , ( i +1) ])
estR [ i , 1 ]<−Dummy2 [ 1 ]
estR [ i , ( i +1)]<−Dummy2 [ 2 ]
resR [ , i ]<−Y[ , ( i +1)]−X[ , c ( 1 , ( i +1)) ]%∗%t (Dummy2)

}

VR<−t ( resR )%∗%resR/(NoDates−1)

aR<−estR [ 1 : 3 , 1 ]
BR<−estR [ 1 : 3 , 2 : 4 ]

longtermR<−solve ( diag ( rep (1 ,3))−BR, aR)
#yie ld longtermR<−s o l v e (Trans , longtermR)

invVR<−solve (VR)
## r e s t r i c t e d model ends −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

## Some code f o r Scenario genera t i on −−−−−−−−−−−−−−−−−−−

## i n i t i a l i z i n g
Bprod <− diag ( rep ( 1 , 3 ) )
Bsum <− diag ( rep ( 0 , 3 ) )
Vsum <− V
in i tY <− Y[6 1 3 , 2 : 4 ]
#i n i t S t a r t <− longterm
mean <− matrix (0 , ncol=1, nrow=3)
NoScen <− k <− 100 # Number o f l i n e a r scenar i os .
NoYears <− 5 # Number o f years in time s t ep .
NoWeeks <− 52 # Number o f weeks in time s t ep .

for ( i in 1 :NoWeeks){
Bprod <− Bprod%∗%B
Bsum <− Bsum+Bprod

i f ( i<NoWeeks) {Vsum <− Vsum + Bprod %∗% V %∗% t (Bprod )}
}

## Fi r s t random numbers generated f o r the scenar i os .
i n i t_simpath <− rmvnorm(NoScen , mean, Vsum)
## Y_t = \mu + \bm{Bprod}∗ (Y_{ t−1} − \mu)
Minit <− longterm+Bprod%∗%( in itY−longterm )
# Matrix wi th column f o r each scenario , con ta in ing the
# f a c t o r s .
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xV <− matrix (0 , ncol=NoScen , nrow=3)
for ( i in 1 : k ){

xV [ , i ] <− Minit+i n i t_simpath [ i , ]
}

## genera t ing the scenar i os
s c ena r i o s <− vector ( " l i s t " , NoScen )
#scenar i os2 <− v e c t o r (" l i s t " , NoScen )
for ( s in 1 : NoScen){

xV . sim <− matrix (0 , ncol=NoYears+1, nrow=3)
xV. sim [ , 1 ] <− longterm
xV. sim [ , 2 ] <− xV[ , s ] # xV1 [ , ( s +1)]?
#xV2 <− matrix (0 , nco l=NoYears+1, nrow=3)
#xV2 [ , 1 ] <− longterm
#xV2 [ , 2 ] <− Minit
for ( j in 2 : NoYears ){ #j i s number o f years

sCounter <− 1
#Bprod <− diag ( rep (1 , 3)) #i n i t i a l i z e
#Bsum <− diag ( rep (0 , 3)) #i n i t i a l i z e
#Vsum <− V #i n i t i a l i z e
#f o r ( i in 1 :NoWeeks){

#Bprod <− Bprod%∗%B
#Bsum <− Bsum+Bprod
#i f ( i<NoWeeks) {Vsum <− Vsum + Bprod %∗% V %∗% t (Bprod )}

#}
i f ( j == 2){

## pi ck s scenar i o Counter as a s t a r t i n g po in t
start <− xV[ , sCounter ] ;

}
else

{ start <− tmp}
simpath <− t ( rmvnorm(1 , mean, Vsum) )
M <− longterm + Bprod %∗% ( start−longterm )
tmp <− M+simpath
xV. sim [ , ( j +1)] <− tmp
#xV2 [ , ( j +1)] <− M

}
sCounter <− sCounter + 1
s c ena r i o s [ [ s ] ] <− xV. sim
#scenar i os2 [ [ s ] ] <− xV2

}
print ( "done␣ : ) " )
## scenar i o genera t i on ends ## −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

## The 1 year ra te c a l c u l a t e t , eps1 i s average .
rat e1 <− matrix (0 , ncol=NoYears+1, nrow=k)
for ( i in 1 : k ){
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rat e1 [ i , ] <− s c ena r i o s [ [ i ] ] [ 1 , ]
}
#eps1 <− scenar i os2 [ [ k ] ] [ 1 , ]
## The 30 year ra te c a l c u l a t e t , eps30 i s average .
rat e30 <− matrix (0 ,ncol=NoYears+1, nrow=k)
for ( i in 1 : k ){

rat e30 [ i , ] <− s c ena r i o s [ [ i ] ] [ 1 , ] + s c ena r i o s [ [ i ] ] [ 2 , ]
}
#eps30 <− rep (0 , NoYears+1)
#eps30 <− scenar i os2 [ [ k ] ] [ 2 , ]+ scenar i os2 [ [ k ] ] [ 1 , ]
## The 5 year ra te c a l c u l a t e t , eps5 i s average .
rat e5 <− matrix (0 ,ncol=NoYears+1, nrow=k)
for ( i in 1 : k ){

rat e5 [ i , ] <− s c ena r i o s [ [ i ] ] [ 3 , ] + (4/29) ∗ rat e30 [ i , ] +
(25/29) ∗ s c ena r i o s [ [ i ] ] [ 1 , ]

}
#eps5 <− rep (0 , NoYears+1)
#eps5 <−
#scenar i os2 [ [ k ] ] [ 3 , ]+ ( 4/29)∗eps30+(25/29)∗ scenar i os2 [ [ k ] ] [ 1 , ]

plot . s c ena r i o s <− function ( rat e s , name){
plot ( r a t e s [ k , ] , type=" l " , l t y="dotted " , col="red " ,

ylim=c (0 ,10) , xlim=c (1 , NoYears+1) , axes=FALSE,
main=name , xlab="Years" , y lab=" ra t e s ␣(%)" , cex . main=1.5 ,
cex . lab =1.5)
axis (1 , 1 : 6 , c ( 0 , 1 , 2 , 3 , 4 , 5 ) ) ; axis ( 2 ) ; box ( )
for ( i in 2 : k ){

l ines ( r a t e s [ i , ] , l t y="dotted " , col="red" )
}

#l i n e s ( eps )
}

#po s t s c r i p t (" rScenar i os . ps ")
opar <− par (mfrow=c ( 3 , 1 ) ,mex=0.8 ,mar=c (4 ,4 ,2 ,1 )+0 .5)
plot . s c ena r i o s ( rate1 , "1␣year ␣maturity " )
plot . s c ena r i o s ( rate5 , "5␣year ␣maturity " )
plot . s c ena r i o s ( rate30 , "30␣year ␣maturity " )
par ( opar )
#dev . o f f ( )

## Histogram of l e v e l
#p o s t s c r i p t (" h i s t_l e v e l . ps ")
opar <− par (mfrow=c ( 3 , 2 ) ,mex=0.8 ,mar=c (4 ,4 ,2 ,1 )+0 .5)
for ( j in 2 : ( NoYears+1)){

h <− rep (0 , k )
for ( i in 1 : k ){
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h [ i ] <− s c ena r i o s [ [ i ] ] [ 1 , j ]
}
hist (h , br=22, prob=T, ylim=c ( 0 , 1 ) ,

main=paste ( j −1," years " ) , x lab = "" , cex . main=1.5 ,
cex . lab =1.5)

l ines (density (h , bw=0.8) , col="red " )
}
par ( opar )
#dev . o f f ( )
## Histogram of s l o p e
#p o s t s c r i p t (" h i s t_s l o p e . ps ")
opar <− par (mfrow=c ( 3 , 2 ) ,mex=0.8 ,mar=c (4 ,4 ,2 ,1 )+0 .5)
for ( j in 2 : ( NoYears+1)){

h <− rep (0 , k )
for ( i in 1 : k ){

h [ i ] <− s c ena r i o s [ [ i ] ] [ 2 , j ]
}
hist (h , br=22, prob=T, ylim=c ( 0 , 1 ) , main =

paste ( j −1," years " ) , x lab = "" , cex . main=1.5 ,
cex . lab =1.5)

l ines (density (h , bw=0.8) , col="red " )
}
par ( opar )
#dev . o f f ( )
## Histogram of curva ture
#p o s t s c r i p t (" h i s t_curv . ps ")
opar <− par (mfrow=c ( 3 , 2 ) ,mex=0.8 ,mar=c (4 ,4 ,2 ,1 )+0 .5)
for ( j in 2 : ( NoYears+1)){

h <− rep (0 , k )
for ( i in 1 : k ){

h [ i ] <− s c ena r i o s [ [ i ] ] [ 3 , j ]
}
hist (h , br = 22 , prob=T, ylim=c ( 0 , 1 ) ,

main = paste ( j −1," years " ) , x lab = "" , cex . main=1.5 ,
cex . lab =1.5)

l ines (density (h , bw=0.8) , col="red " )
}
par ( opar )
#dev . o f f ( )

## ## Write ra t e s to f i l e
## rout <− f i l e (" ra t e s . t x t " ,"w")
## fo r ( s in 2 : 2){
## fo r ( t in 1:10){
## capture . output ( ra te1 [ s , t ] , f i l e = rout , append = T)
## capture . output ( ra te5 [ s , t ] , f i l e = rout , append = T)



144 Code

## capture . output ( rate30 [ s , t ] , f i l e = rout , append = T)
## }
## }
## c l o s e ( rout )

B.5 Simple Arbitrage test

Listing B.10: Calculation of the prices for the bonds used in listing B.11 below.

############################################################
## Arngrimur Einarsson , November 2007.
## CalcPrice .R
## Scr i p t to c a l c u l a t e the p r i c e o f ZCBs .
############################################################

ZCBPrice <− function ( p r i n c i p a l , rate , time ){
## Function to c a l c u l a t e the p r i c e o f a ZCB.
p r i n c i p a l/ ( ( rat e+1)^time )

}

data <−read . table ( "~/Pro jec t/Code/Gams/ArbitrageTest/
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣05_a f f i n e_Arb_1Per_4 sce . dat" )

PRate <− as .matrix(data [2 ,− c ( 1 , 2 ) ] )
CRate <− as .matrix(data [ 3 :dim(data ) [1 ] , − c ( 1 , 2 ) ] )
time2mat <− c (30 ,29 ,28 ,27 ,26 ,25 ,24 ,23 ,22 ,21 ,20 ,15 ,10 ,5 ,1 )

PPrice <− matrix (0 , nrow=dim(PRate ) [ 1 ] , ncol=dim(PRate ) [ 2 ] )
CPrice <− matrix (0 , nrow=dim(CRate ) [ 1 ] , ncol=dim(CRate ) [ 2 ] )

for ( i in 1 : length (PRate ) ){
tmpRate <− as .numeric (PRate [ i ] )
PPrice [ i ] <− ZCBPrice (1 , tmpRate , time2mat [ i ] )

}

for ( i in 1 :dim(CRate ) [ 2 ] ) { #15
for ( j in 1 :dim(CRate ) [ 1 ] ) { #8

tmpRate <− as .numeric (CRate [ j , i ] )
CPrice [ j , i ] <− ZCBPrice (1 , tmpRate , time2mat [ i ] )

}
}

write ( PPrice , f i l e="05_a f f i n e_4_PPrice " , length ( PPrice ) )
write ( CPrice , f i l e="05_a f f i n e_4_CPrice " ,dim( CPrice ) [ 2 ] )
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Listing B.11: The script used for conducting the simple arbitrage test.

$eolcom #

se t i ’ Maturity ’ /zcby1 , zcby5 , zcby30/ ;
s e t s ’ s t a t e s ’ /n1∗n32/ ;

$ i n c lude ’05_NS_32_PPrice . dat ’ ;
$ i n c lude ’05_NS_32_CPrice . dat ’ ;

Var iab l e s
p s i ( s )
z ;

Po s i t i v e v a r i a b l e s s l a ck ( i )
su rp lu s ( i ) ;

Equations
obj_func
p r i c e ( i )
nominus ( s ) ;

obj_func . . z =e= sum( i , ( s l a ck ( i )+ surp lu s ( i ) ) ) ;

p r i c e ( i ) . . pp r i c e ( i ) =e= sum( s ,
p s i ( s )∗ ( cp r i c e ( s , i )+ s l a ck ( i )− su rp lu s ( i ) ) ) ;

nominus ( s ) . . p s i ( s ) =g= 0.00001 ;

Model arb_l e v e l / a l l / ;

s o l v e arb_l e v e l us ing nlp minimizing z ;

.
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