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Summary

In 2005 a new methodology has been developed to evaluate the activity of the phytase enzyme

in liberating phytate bound phosphorus in animal feed. In this thesis validation study of this

new method is performed. Two times of inter-laboratory studies with similar design were

conducted. The larger inter-laboratory study involving more Labs and Materials is the main

analysis object. The analysis of smaller study is also performed as a contrast with the larger

one.

Different variance structures of Linear Mixed Models are presented, such as Homogeneous

Variance Model and Heterogeneous Variance Model, to detect variability characteristics of

measurement error. The main characteristics of performance precision are Repeatability and

Reproducibility. Besides that, whether the Type (Solid/Liquid) of the Materials effects the

evaluation is another topic of interest. A guess that the liquid materials may have more

stable measurements and smaller variances will be investigated by Linear Mixed Models. The

homogeneity of the Labs’s capability in the evaluation is also investigated.

Usually mathematical models have to satisfy the assumptions. But in most cases inter-

laboratory data could not satisfy the strict assumptions. The objectives of most validation

studies are to reveal useful information and parameters of the data rather than finding a fit-

ting model. Whereas this thesis also emphasizes particularly on modeling, which could supply

more general characteristics of data.

From Homogeneous Variance models to Heterogeneous Variance Models, most of these models

presented in this thesis were proven not to satisfy the assumptions. But the modeling and

assumption checking process could supply great details of data, which could be the indication

of modifying the covariance structures of models.

Key words : Inter-laboratory Validation Study, Linear Mixed Model, Homogeneous Vari-

ance Model, Heterogeneous Variance Model, Repeatability and Reproducibility, Assumptions

Checking.
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Reader Guide

The thesis consists of three big modules: Background introduction, Linear Mixed Model

theory, and statistical implementation of the theory.

The introduction module supplies the information about design of the Study A and Study B

and the experiment mechanism. The definition of the main characteristics: RSDr and RSDr

are also presented.

Linear Mixed Model theory module include the general introduction of the LLM models.

The model notation, covariance matrix specifications and assumptions accord with procedure

mixed, the SAS 9.1 software. Hierarchical linear model is one kind of LLM. The HLM section

focuses on describing the covariance matrices structures involved in this thesis. The readers

who know mixed model and proc mixed well could skim the LLM section. But the HLM

section is necessary to read for all because the covariance structure specifications are the cores

of the HLM design.

In statistical implementation module, homogeneous variance models and heterogeneous mod-

els are processed both for study A and Study B. Because Study B is more complicated, it is set

as the main object of analysis. While analysis of Study A is processed as the confirmation of

the conclusion obtained from study B. The RSDr and RSDR obtained from different models

are calculated. Besides, the approximation confidence intervals of RSDr and RSDR of are

also discussed.
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Chapter 1

Introduction

1.1 Background Information

The Background Information is generally from a validation study conducted by FEFANA

(European Association of Feed Additive Manufacturers).[3]

Phytase is an enzyme that can be added to feed for monogastric animals. This enzyme

can liberate phytate bound phosphorus in the digestive tract of animals thereby improving

the nutritive value of feed by increasing the amount of available phosphorus for animal. In

addition, it has a positive impact on the environment by reducing phosphorus excretion in

animal manure.

A new evaluation method:

In 2005 a new methodology has been developed to evaluate the activity of the phytase enzyme

in liberating phytate bound phosphorus in animal feed.Compared with other official analytical

methods applied to this purpose ,for instance, AOAC method[4], the main advantage of this

new method is its capability of measuring the phytase activity of all phytase products that

currently exist on the market.

Principle and Mechanism of the new method:

The principle of the method is that the inorganic phosphate released by the enzyme in the

presence of an acidic molybdate/vandate reagent forms a yellow complex. The yellow complex

could be measured with a spectrophoto-meter at a wavelength of 415 nm and the released

inorganic phosphate is expressed in optical density(OD415). Then the optical density is
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12 CHAPTER 1. INTRODUCTION

quantified through a phosphate standard curve. Finally the activity characteristic is expressed

by in phytate units (U)/kg feed sample. One phytase unit(U) is the amount of enzyme that

releases 1 µ mol of inorganic phosphate from phytate per minute under the above mentioned

reaction conditions.The activity is calculated as following formula:

Activity =
∆OD ∗D

m ∗W ∗ t
(1.1)

∆OD = OD415sample −OD415blank

m=slope of the standard curve[OD415/(µmol ∗ml−1)]

D =dilution factor (extraction volume* dilution of the extract)[ml]

W=weight of the sample [kg]

t= 30[min]

OD415 is the result of the measurement od the feed sample subjected to the whole analytical

procedure,whereas OD415blank is the result of the determination of inorganic phosphate that

is already present in the same sample before enzymatic reaction.

The Logarithm Transformation of Activity (U)/kg is the response values in all models in the

thesis. The details will be discussed in section of Descriptive Statistics.

1.1.1 Design of the Inter-Lab Validation Study

Two statistical validations are organized. Inter-laboratory validations were performed as fol-

lowing structure: Some samples of different Materials were collected and distributed to differ-

ent Laboratories.

Training period

Before formal validations some Labs were selected and participated the training exercises of

applying new method protocol on some known samples of materials. After they have finished

a period of test in their own labs 14 of them were selected to be involved in the final validation

study.

Then two time of inter-laboratory validations were performed and their organizations are quite

similar. Study B has one more layer of block design than Study A. For clarifying the design

structures, we start from the simpler one: Study A.

Xuan
Highlight
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Organization of the Validation Study A

Study A was carried out according to ISO guide 5725-2, thereby allowing for the determination

of the standard deviation for repeatability and reproducibility. In detail, the repeatability

standard deviation SDr describes the within-laboratory variation obtained when applying

the same method of analysis on the same sample under repeatability conditions (i.e. the

same laboratory, the same operator, the same apparatus and short interval of time), whereas

the reproducibility standard deviation SDR describes the between-laboratory variation and is

obtained when performing the same method of analysis under reproducibility conditions (i.e.

on identical material obtained by operators in different laboratories). Extreme values reported

by the participating laboratories were identified by sequential application of the Cochran and

Grubbs outlier tests (at 2.5% probability level, 1 tail for Cochran and 2 tails for Grubbs) and

were not included in the assessment of the method performance characteristics. The sequential

application of these outlier tests stops when more than 22.2% (= 2/9) of the participating

laboratories are identified as outliers and therefore excluded from the data set. However, the

maximum number of outliers resulting for a single material was 2/14 laboratories.

Organization of the study: Fourteen participants from 9 different countries representing a

cross-section of official feed control and laboratories with industry affiliations took part in this

collaborative trial. Prior to the validation experiments the participating laboratories attended

a training to get familiar with the method.

For second study each participant received:

(1) 10 coded samples comprised of 5 feed samples separately fortified with 5 different phytase

products and sent out in blind duplicates

(2) The description of the method

(3) A report template in Excel format in which the participants had to fill the results of their

analysis

Organization of the Validation Study B

Study B also included the assessment of intermediate precision as suggested in ISO guide

5725-3, since the laboratories were requested to carry out duplicate analyses on the same

day and to repeat these duplicate analyses on three different days. Therefore this study

allowed to estimate the precision of the method under different circumstances regarding the

execution of the method, namely (a) repeatability conditions (i.e. the same laboratory and
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the same day), (b) intermediate conditions (i.e. the same laboratory, but different days) and

(c) reproducibility conditions (different laboratories). The data set was also screened for the

presence of outliers applying the same procedure as described for study A. Since in none of the

cases more than 3 out 14 laboratories,corresponding to 21 %, were identified as outliers, the

criterion of the maximum number of 2 out of 9 laboratories (=22%) was respected throughout

the whole study.

(1)8 coded feed samples separately fortified with 8 different phytase products. The laboratories

had to take sub-samples from the sample glasses to carry out the analyses on three days in

duplicates

(2) The description of the method

(3) A report template in Excel format in which the participants had to fill the results of their

analysis

1.2 Descriptive Statistics

1.2.1 Logarithmic Transformation of Raw Data and New Estima-

tions of RSD

As introduced in Background Information Section, Chapter 1, the evaluations are the Activ-

ity(Unit/kg). The variance of this response value is not stable. Figure 2.1 shows the standard

deviation tend to be proportional to the mean (that is, the relative standard deviation (RSD)

is constant).

The log transform could stabilize the variance:√
V ar[Yi] = C ∗ E([Yi])

, where C is a constant value. The standard deviation of observations tend to be proportional

to the mean.

V ar[ln(Yi)] =
V ar[Yi]

E(Yi)2
≈ C2

Here C =

√
V ar[Yi]

E([Yi]
, is the RSD(relative standard deviation)% of the raw data. Then the

important inference is proven that the standard variance of the Log-transformation data
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Figure 1.1: Standard deviation of Observations of Activity(Unit/kg) vs Means for different
Materials, standard deviation tend to be proportional to the mean.

(
√

V ar[ln(Yi)]) is almost the RSDR% of the raw data.[?]

In the later analysis and modeling instead of the raw observations Activity(Unit/kg), the

log-transformation of Activity(ln(Unit/kg)) is set as response variable. Hence the standard

variances estimated by following models are corresponding to the RSD% of raw data.

1.2.2 Data Description of Study A

The first several lines of DATA A are shown below:

Table 1.1: Data Structure of Study B

Lab Material Weighing Type ln(Units/kg)
1 1 1 Solid 6.753437919
1 1 2 Solid 6.633318433
2 1 1 Solid 6.683360946
2 1 2 Solid 6.452048954
3 1 1 Solid 6.841615476
3 1 2 Solid 6.650279049

Besides the response variables ”Unit/kg” and ln(Unit/kg) all the rest columns are corre-
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sponding to 4 explanatory variables, Material ,Lab, Type and Weighing as explanatory

variables.

Fourteen participants(Lab) from 9 different countries representing a cross-section of official

feed control and laboratories with industry affiliations took part in this collaborative trial.

Those 14 Labs received 10 coded samples comprised of 5 feed samples separately fortified

with 5 different phytase products(Material) and sent out in blind duplicates (Weighing).

The Material is either solid or liquid(Type). Among those 5 kinds of materials two are solid

type and the rest three are liquid type.

DATA A is hierarchical structure which could be shown below:

Figure 1.2: Data A Hierarchical structure: 5 Materials are nested within Type(Solid/Liquid).
5 Materials are cross with 14 labs. Weighs are nested within Days

The design of the experiment is complete and balanced. Because the outliers have been deleted

already the structure of DATA A is incomplete. The principle and method of detecting outliers

are introduced in section 1.1.1, Design of Inter-laboratory Validation Study.

After deleting the outliers the distribution of Materials versus Labs in DATA A is as below:
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Figure 1.3: Distribution of Materials vs Different Labs in DATA A:For any position
X(i,j)(i=1,2,3,...14,j=1,2,3..5) in the graph blue dot means No i lab have observations of No j
Material in DATA A ,and the blank means No i Lab do not have observations in DATA A

1.2.3 Data Description of Study B

The first several lines of DATA B are shown below:

Table 1.2: Data Structure of DATA B

Lab Day Material Weighing Units/kg ln(Units/kg) Type
1 1 1 1 1600 7.377758908 Solid
1 1 1 2 1644 7.404887576 Solid
1 2 1 1 1524 7.329093736 Solid
1 2 1 2 1376 7.226936018 Solid
1 3 1 1 1688 7.431299675 Solid
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The structure of DATA B is quite similar to the one of DATA A except for another Factor

Day. Besides the response variables ”Unit/kg” and ln(Unit/kg) all the rest columns are

corresponding to 5 explanatory variables and classification factor. 14 Labs received 8 samples

composed of 8 different Materials and took 6 sub-samples from each bottles. Then in 2

duplicates(Weigh) within 3 days(Day). The Material is either solid or liquid(Type). Among

those 8 kinds of materials four are solid type and the rest four are liquid type.

DATA B is of hierarchical structure which could be shown below:

Figure 1.4: DATA B Hierarchical structure: 8 Materials are nested within Type(solid/Liquid).
8 Materials are cross with 14 labs. Days are nested within Labs. Weighs are nested within
Days

The design of the experiment is complete and balanced. Because the outliers have been deleted

already the structure of DATA B is incomplete. The principle and method of detecting outliers

are introduced in section 1.1.1, Design of Validation Study.

After deleting the outliers the distribution of Materials versus Labs in DATA B is as below:
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Figure 1.5: Distribution of Materials vs Different Labs in DATA B: For any position
X(i,j)(i=1,2,3,...14,j=1,2,3..8) in the graph blue dot means No i lab have observations of No j
Material in DATA A ,and the blank means No i Lab do not have observations in DATA A

1.2.4 Explanatory Variables Relationships

Figure 2.1 and 2.3 is the general structure graph of DATA A and DATA B. It is necessary

to clarify the relationships between explanatory variables two by two before Modeling, which

results will supply important inference of model specification later. Because DATA A and

DATA B structures are quite similar, here I only state the DATA B case, which is more

complicated because of another layer ”DAY”.

Labs VS Material

In this all the Labs received all 8 kinds of materials. First assume the relationship is hierar-

chical,nest Material within Lab:
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Figure 1.6: Assumption: If Material is nested within Lab, how does the relationship look like.
Actually Material and Lab are cross with each other.

If the index of Material could be written as Material1, Material2,..Material8,Material9,Material10,

then relationship could be Hierarchical. However, here the Material1 of Lab1 and Material1

of Lab2 are totally same samples. Therefore the relationship between Material and Lab is

cross rather than Hierarchical.

Material VS Type

vs st.jpg

Figure 1.7: Material is nested within Type(Solid/Liquid).
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The Materials are either solid or liquid. It is natural to nest Material within Type. There

exists no contrast that one material have both liquid and solid types. The effects of Type and

Material are totally mixed.

Labs VS. Day

Day is assumed to be nested within Labs. Each lab evaluated each kind of material during

three days.

1.2.5 Preliminary Analysis

Here we use ln(Units/kg) (the log transformation) instead of the original observations(Units/kg)

as response value. For simplicity, later in this thesis the observations and response values just

mean the log-transformation of original observations.

Observations VS. Material

Because one of this thesis aims is to detect whether the Type(Solid/Liquid) of Materials have

different variances , observations and means of different materials of solid and liquid are plot

separately. we start to plot and analysis from DATA B which is is more complicated and has

more observation(618)..

In the 2 by 2 figure matrix of DATA B below the first line is of scatter plots and second line is of

box plots with usual 4 interquartile range. The variances of the response value, ln(Units/kg),

are different from material to material. ln(Units/kg) of Material No.5 and No.6 have obviously

smaller variances than the rest. If we compare the plot of 4 liquid materials on the left with

the plot of 4 solid materials on the right side, we could see that the measurements of Liquid

materials are more dispersive than the ones of solid. But not all the ranges of observations of

the Liquid material are wider than the ones of solid, for instance No5 is more compact than

No 8. It is hard to make explicit conclusion in DATA B case. The 2 by 2 figure matrix of

DATA A indicates a contrary situation: measurements of Liquid materials are more compact

than the ones of solid.

The dispersion of response values are also effected by the Labs and Days. The random effect

Lab and Day are confounded with Residuals totally. After the final model has been applied
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to Data B we will return to comparisons of errors of different Types and Materials.
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Figure 1.8: DATA B:The observations (Scatter/Box)plot vs. 8 kinds of Materials ,which are
divided into two groups by Type(Liquid/Solid) The two figures on the left are of 4 Liquid
Materials and two on the right are of Solid Materials. The Box Plots here indicate Interquartile
ranges of response values(ln(Units/kg))
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Figure 1.9: DATA A:The observations (Scatter/Box)plot vs. 5 kinds of Materials ,which are
divided into two groups by Type(Liquid/Solid) The two figures on the left are of 4 Liquid
Materials and two on the right are of Solid Materials. The Box Plots here indicate Interquartile
ranges of response values(ln(Units/kg))



1.2 Descriptive Statistics 25

Comparing Activity(ln(unit/kg)) of materials estimated by different Labs

In the 2 by 2 figures of DATA B in above section, for each Material there are more than 50

observations. Those 50 scatter points distribute on one line only 2 centimeters long-it is hard

to see the clear distribution trends of the points. In the Box-plot the central line is marked

and the acentric trends is clear.

How do different labs affects the observations distribution? Do some Labs always intend to

supply higher measurements ? Do the labs give different estimates of the same material? A

simple analysis and plot could give some hints.

Assuming we only have one lab, it processed the evaluations of one kind of material on three

days and two duplicates one day. With those 6 observations this lab could give an estimate

of this material.

Now labs could supply 14 estimates for each kind material. In the scatter plot there are only

14 points at most on one line. The Density of the scatting points is much smaller and we

could see how they distribute clearly now.

Figure 1.10: DATA B: Scatter and Line plots of Mean Values of Activity estimated by different
Labs.
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The left figure above is the scatter plot of estimates of 8 materials from 14 different Labs. The

distributions of those estimates are still rather dispersive. The estimates of material activity

vary from lab to lab. In addition the dispersive trends are kind of similar with the original

observations plots in figure 1.8: Obviously Material No4 and No7 are most dispersive in both

those 1.8 and 1.10 cases. It seems that the block effect ,Lab, is a big source of the variability

of the measurements.

The line plot on the right is the same as scatter plot on the left except the estimates points

from same lab are connected with colorful lines. Because the data structure is not complete

and some labs have no estimations of some Materials, the 14 colorful lines could not form

perfect cluster: Some lines ”jump” away from some Material positions because of being lack

of measurements of those kinds of materials. But there still exist some information valuable:

Some lines tend to have trends to have higher or lower measurements. The most clear case

is that: For all the materials Lab No 11(Grey line) always give higher estimations than Lab

No.13(Green Line).

Figure 1.11: DATA A: Scatter and Line plots of Mean Values of Activity estimated by different
Labs.



1.2 Descriptive Statistics 27

Because in Figure 1.10 the lines are too closed with each other, it is a little hard to distinguish

the lines of different labs. New plots are processed: In figure 1.12 estimates activity of different

materials is plot versus Labs. 8 different colorful lines indicate the 8 materials. In ideal case

the 14 labs should have same capability and give almost same measurements of same material.

Then those lines should almost parallel X-axis with some random oscillations.

Obviously this is not our case. In Figure 1.12 the lines have some obvious pattern for Labs.For

instance, Lab 8 have smaller estimates of Materials 4, 7, 6 and 8. From the Material aspect,

curves of Material 3,5 and 6 are more stable which means estimates of those materials from

different labs are more closed to each other. And this point is also proven in scatter plot of

Figure 1.8, in which dots of Material no 3,5 and 6 are obviously more compact.

In Figure 2.10 the curve of Material 1 oscillates more wildly than the rest, which inosculates

the information in Figure 2.6 and 2.8 where the dots of Material 1 is most disperse.

Similar plots of DATA A is also presented as below. It also show some patterns for Labs. For

instance Lab No 8 give lower estimates than the rest labs. And Material No 1 oscillated most

wildly ,which is accord with Figure 1.9, Material No 1 has largest variance.

Figure 1.12: DATA B: Scatter and Line plots of Mean Values of Activity estimated by different
Labs.

Further study of those supposes will be examined after modeling and discussed in the later

Chapters.
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Figure 1.13: DATA A: Scatter and Line plots of Mean Values of Activity estimated by different
Labs.



Chapter 2

Theoretical Methods and Modeling

2.1 Linear Mixed Model

2.1.1 Introduction

The classical variance analysis and regression analysis are based on rather strict assumptions

about the data : The structure must be described by a linear model, observations, or rather

the residual or error terms, must follow a normal distribution, they must be independent and

the variability should be homogeneous.

The linear mixed models extends the general linear model by allowing a more flexible speci-

fication of the covariance matrix of errors. In other words, it allows for both correlation and

heterogeneous variances. SAS Proc Mixed has recently explored the the great versatility

of the mixed linear models. And still today, many statistical packages will only offer a lim-

ited version of the possibilities with mixed linear models. In this thesis I use SAS Proc

Mixed as primary analysis tool. In the theory Chapter The definition , notation and as-

sumption adapted here are on the basis of Proc Mixed Help document. Thereby the theory

description could keep consistency with implementation and calculation.

The primary assumptions underlying the analyses performed by PROC MIXED are as follows:

The data are normally distributed.

The means (expected values) of the data are linear in terms of a certain set of parameters.

The variances and covariances of the data are in terms of a different set of parameters, and

they exhibit a structure matching one of those available in PROC MIXED.

29
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2.1.2 Notation, Assumptions and Algorithm of Linear Mixed Model

Formulation of Linear Mixed Model

The formulation of Mixed Model could be written as:

y = Xβ + Zγ + ε (2.1)

Formula 3.1 is the general notation of mixed linear model which contain both random and

fixed parameters.

Y is a (n× 1) vector of observed data, X is an (n× p) fixed-effects design or regressor matrix

of rank k, Z is a (n × g) random-effects design or regressor matrix, β is a (p × 1) vector of

fixed-effects, γis a (g × 1) vector of random effects, and ε is an (n× 1) vector of model errors

(also random effects). The distributional assumptions made by the MIXED procedure are

as follows:

E

(
γ

ε

)
=

(
0

0

)
(2.2)

Var

(
γ

ε

)
=

(
G 0

0 R

)
(2.3)

1. γ s normal with mean 0 and variance G;

2. ε is normal with mean 0 and variance R;

The random components γ and ε are independent.

Estimating Variance Components (G and R) in the Mixed Model

The covariance structure of LMM is much more complicated than the one of GLM. Therefore

the estimation of parameters is more complicated. The Least square method could not work

because the violation of the assumption of GLM. SAS proc mixed implements Maximum Like-

lihood estimation which admits the random missing data and complicated variance structure.
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restricted maximum likelihood (REML). REML estimates of the covariance components

are based on residuals which are computed after estimating the fixed effects by WLS or by

GLS and are estimates based on maximizing a marginal likelihood. REML estimates take

into account the degrees of freedom used in estimating the fixed effects when estimating the

covariance components. Besides, REML could constrains the variance component estimates

to be non-negative. REML estimates of G and R are found by maximizing the following

log-likelihood function

REML :− 1

2
log |V | − 1

2
log |X ′V −1X| − 1

2
r′V −1r − n− p

2
log(2π) (2.4)

where V = ZGZ ′ + R, the residuals vector: r = y- X( X’ V-1 X)- X’ V-1 y and p is the rank

of X.

PROC MIXED actually minimizes -2 times this function using a ridge-stabilized Newton-

Raphson algorithm. The output of goodness value is -2 Res log Likelihood instead of Likeli-

hood Value. Besides REML, there also exist other estimation methods such as ML, MIVQUE0,

or Type1 -Type3 (Moment Estimate). REML and ML is the favorable method which is proven

by the simulations evidence presented by Swallow and Monahan (1984). In all programming

of this thesis the estimation option is set as REML.

Estimating β and γin the Mixed Model

REML provides the estimates of G and R, Ĝ and R̂. According to the solution of mixed

model equation the estimates of β and γ could be denoted as :

β̂ = (X ′V̂ −1X)−1X ′V̂ −1y (2.5)

γ̂ = ĜZ ′V̂ −1(y −Xβ̂) (2.6)

2.1.3 Homogeneous and Heterogeneous Variance Model

The observations vector y has a multivariate normal distribution with an expected value of

E(y) = Xβ
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and variance

V (y) = ZGZ + R

Parameters of this model are the fixed-effects β and all unknown variance components in

the variance matrices G and R. The unknown variance components are referred to as the

covariance elements in covariance matrix V. R is the within-subjects variance component.

ZGZ ′ is the between-subjects variance component.

Proc MIXED could also allows the user to specify, separately and jointly, covariance structures

that assume within-subjects and/or between-subjects heteroscedasticity.[?] Within-subjects

heteroscedasticity occurs when the variances across repeated measures are unequal. Between-

subjects heteroscedasticity occurs when covariance matrices differ across groups. Naturally

the discrimination of the two kinds of Linear mixed model is:

Homogeneous variance model: All the observations have same covariance matrix.

Heterogeneous variance model: Within or between subjects heteroscedasticity occurs. In this

thesis the heterogeneous variance structure for Type Lab and Material will be crucial topic

discussed later.

Covariance Structure(R and G) and Relative Practical SAS Issue

The simple random model only contains random effect, X=0 and R = σ2In, where In is n by

n identity matrix. In contrast general linear model only contain fixed effects and Z=0. And

R = σ2In still hold.

A real LMM(Linear Mixed Model) would have more complicated structure of R matrix. The

Repeated Statement of Proc MIXED of SAS models the intra-individual variation and

includes the structure of Ri = V (ε1), where Ri is a block diagonal matrix for subject i. The

Group Option of Repeated Statement could define a effect specifying heterogeneity in

the covariance structure of R. All the observations having the same level of the group effect

have same ε. Without specification by Repeated Statement R is just σ2In and Ri are the same

for all the subjects.[7]

ZGZ ′ is the between-subjects variance component. Random statement defines the random

effects, Zγ, and the structure of G. The Group option defines an effect specifying heterogene-

ity in the covariance structure of G, ,the heteroscedasticity between-subjects. All observations

having the same level of the group effect have the same covariance parameters. Each new level

of the group effect produces a new set of covariance parameters with the same structure as
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the original group.

Instead of denoting G and R individually the combination of them, covariance

matrix V will be the primary tool used in the following Modeling Analysis section

to show the covariance between two observations.

2.2 Hierarchical Linear Model

Hierarchical linear model (HLM) is a type of mixed model with hierarchical data - that is,

where data exist at more than one layers. HLM models focus on differences between groups

in explaining a dependent variable, which is just the study case of this thesis. By introducing

HLM the variance structure of multi-layer models involved in this thesis could be illuminated.

The original definition of HLM was stated By Raudenbush and Bryk 1986: Hierarchical linear

model a particular regression technique that is designed to take into account the hierarchical

structure. Historically HLM has been used in educational research such as students nested

with classes, classes nested within schools . Recently the new statistical computing ability

made HLM used widely in many disciplines, including Biostatistics.

With traditional regression approaches, such as multiple regression and logistic regression, an

underlying assumption is that the observations are independent. This means that the observa-

tions of any one individual are not in any way systematically related to the observations of any

other individual. The assumption is violated, however, when some of observations sampled

are from the same Laboratory, or the same equipment. When the assumption of independence

is violated, the regression coefficients can be biased, and the estimates of standard errors are

smaller than they should be.

Multi-level variance decomposition techniques such as HLM offer a number of advantages

over traditional analysis techniques such as ANOVA and regression. First,because HLM sep-

arates out the criterion variance into within-and between-crew components, error terms are

not systematically biased. This leads to more accurate effect size estimates and standard er-

rors. Second, because HLM uses all available information, meaningful variance is not wasted.

Finally, HLM allows for testing cross-level effects.[5]
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2.2.1 Notation and Covariance Structure for different layer models

of Hierarchical Linear Model

As introduced before HLM is a special case of mixed model. Hence the algorithm described in

Mixed Model is totally accommodated to HLM. In this section the variance structure is the

primary part of study.I have adapted the notation to comfort it to the next modeling step on

our two data files.

The experiment design from DATA B is simply described as following:

1. The objective of Samples are of 8 Materials. Those samples are either solid ,or liquid.

2. 14 Laboratories have been chosen as participants. Each Labs received 8 samples comprised

by 8 materials 3. Those labs implemented the validation measures on sub-samples in different

days and 2 duplicates each day.

4. The outliers have been tested and deleted from the validation DATA. In the end the data

file on which modeling is implemented is unbalanced and incomplete.

One-Layer Model

The simplest hierarchical model is one-layer model. The common natation is :

yi = Xβ + εi, εi ∼ N(0, σ2) (2.7)

Here are the observations are independent and follow normal distribution. Xβ4 denotes the

fixed effects part of the model because the fixed part is the predictors of mean value. This

simple model is denoted here to clarify the structure of a more complicated hierarchical linear

model step by step.

In this simple model mean value could be estimated by Maximum likelihood and denoted as:

β̂ = (X ′X)−1X ′y (2.8)

Where β is the coefficient of fixed effects, X is the design matrix of fixed effects and y is

observation values.
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The un-bias estimate of the single variance in the model could be noted as:

σ̂2 =
1

N − p

N∑
i=1

(yi − µ̂i)
2 (2.9)

N is number of observations, and p is number of means. µ̂i is the un-bias estimated mean

value, which is calculated by µ̂i = Xβ̂i

We start to analyze the Phytase validation DATA B with one layer model , thereby the random

effects, Labs and Day, are ignored. The remaining fixed effect is Material, which has 8

levels. The one layer model for Study B becomes:

yi = intercept + Materiali + εi, εi ∼ N(0, σ2) (2.10)

Two-Layer Model

A two-layer Hierarchical model could be denoted as:

yi = µ + a(Subjecti) + εi, a(Subjecti) ∼ N(0, σ2), εi ∼ N(0, σ2) (2.11)

Where both a(Subjecti) and εi are independent. The notation like a(Subjecti), which

brackets a effect, means this effect is set as random. In this model the observations

from the same subject are positively correlated with each other. For convenience and simplicity

here V is used to denote covariance matrix instead of G and R.

The covariance between two observations is:

cov(yi, yj) =


0 subjecti 6= subjectj and i 6= j;

σ2
a subjecti = subjectj and i 6= j;

σ2
a + σ2 i = j.

(2.12)

σ2
a is the variance between subjects, and σ2 is variance between observations within the

same object. The variance and fixed parameters are estimated by restrict maximum like-

lihood(REML), which result in a un-bias estimate. This estimate of fixed effects β̂ is denoted
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as :

β̂ = (X ′V −1X)−1X ′V −1y (2.13)

where X is design matrix of fixed effects, y is observations and V is covariance matrix of y

which structure is as below,

V =



σ2
a + σ2 σ2 σ2 0 0 0

σ2 σ2
a + σ2 σ2 0 0 0

σ2 σ2 σ2
a + σ2 0 0 0

0 0 0 σ2
a + σ2 σ2 σ2

0 0 0 σ2 σ2
a + σ2 σ2

0 0 0 σ2 σ2 σ2
a + σ2


(2.14)

The variance matrix above is a block diagonal pattern which indicates the case that there are

6 observations within two subjects.

On the base of illumination of two-layer model structure above, we continue to modeling with

DATA B. In this step the random effect DAY is set as subject.

yi = intercept + Materiali + a(DAYi) + εi,where a(DAYi) ∼ N(0, σ2
a),εi ∼ N(0, σ2)

(2.15)

Here i= 1,2,3,,,618. 618 is number of the observations.

Three-Layer Model

A three-layer Hierarchical model could be denoted as:

yi = µ + a(Subjecti)(blocki) + b(blocki) + εi, b(blocki) ∼ N(0, σ2
b ), a(Subjecti) ∼ N(0, σ2

a), εi ∼ N(0, σ2)

(2.16)

Where b(blocki), a(Subjecti) and εi are independent variances. Besides observations within

same subject are correlated with each other, the subjects within the same block are also

correlated. The notation a(Subjecti)(blocki) means subject is nested within block. To
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illuminate the covariance structure of three-layer model, the matrix is denoted as below:

V =



σ2
b + σ2

a + σ2 σ2
b + σ2

a σ2
b σ2

b 0 0 0 0

σ2
b + σ2

a σ2
b + σ2

a + σ2 σ2
b σ2

b 0 0 0 0

σ2
b σ2

b σ2
b + σ2

a + σ2 σ2
b + σ2

a 0 0 0 0

σ2
b σ2

b σ2
b + σ2

a σ2
b + σ2

a + σ2 0 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗


(2.17)

σ2
b is the variance between blocks, σ2

a is the variance between subjects, and σ2 is variance

between observations within the same subject. To simplify the structure we adopted 8 obser-

vations and two random effects variance matrix, which is also a block diagonal pattern. In

the matrix the ”*” symbol parts is the symmetrical block of the top-left 4 by 4 sub-matrix.

On the basis of the three-layer model structure above I implemented the model with the DATA

B. The random effect Lab is set as the third layer.

yi = intercept + Materiali + a(DAYi)(Labi) + b(Labi) + εi (2.18)

where b(Labi) ∼ N(0, σ2
b ), a(DAYi) ∼ N(0, σ2

a), εi ∼ N(0, σ2). Here i= 1,2,3,,,618. 618 is

number of the observations in DATA B.

Three-Layer Model with Interaction Term

If there exists the interaction term between Lab and Material, the model is:

yi = intercept + Materiali + a(DAYi)(Labi) + b(Labi) + c(Materiali : Labi) + εi (2.19)

where b(Labi) ∼ N(0, σ2
b ), a(DAYi) ∼ N(0, σ2

a), c(Materiali : Lab) ∼ N(0, σ2
c ), εi ∼ N(0, σ2).

The variance of any observation is

V ar(yi) = σ2
y = σ2

a + σ2
b + σ2

c + σ2

and the covariance between two observations i 6= j are:
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cov(yi, yj) =



0 Labi 6= Labj ;

σ2
b Materiali 6= Materialj and Labi = Labj and Dayi 6= Dayj ;

σa + σ2
b Materiali 6= Materialj and Labi = Labj and Dayi = Dayj ;

σ2
b + σ2

c Materiali = Materialj and Labi = Labj and Dayi 6= Dayj ;

σ2
a + σ2

b + σ2
c Materiali = Materialj and Labi = Labj and Dayi = Dayj ;

(2.20)

It is convenient to think of the observations as an 16 × 1 vector. There are 2 labs conduct

measuring on 2 kinds of material. Each lab takes measurements on 2 days, and 2 duplicates

for each day. (2 × 2 × 2 × 2 = 16) The first 8 observations are of first material. And within

the material, first four of observations are of first lab. Within the lab first 2 observations are

od the first day. The 16× 16 covariance matrix structure is denoted as below:

V =

(
Σ11 Σ12

Σ21 Σ22

)
(2.21)

where Σ11,Σ12,Σ21,Σ22 are 8× 8 matrices as follows:

Σ11 = Σ22 =



σ2
y σ2

a + σ2
b + σ2

c σ2
b + σ2

c σ2
b + σ2

c 0 0 0 0

σ2
a + σ2

b + σ2
c σ2

y σ2
b + σ2

c σ2
b + σ2

c 0 0 0 0

σ2
b + σ2

c σ2
b + σ2

c σ2
y σ2

a + σ2
b + σ2

c 0 0 0 0

σ2
b + σ2

c σ2
b + σ2

c σ2
a + σ2

b + σ2
c σ2

y 0 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗


(2.22)

Σ11 and Σ22 are the two covariance matrices of two kinds of materials.
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Σ12 = Σ′
21 =



σ2
a + σ2

b σ2
a + σ2

b σ2
b σ2

b 0 0 0 0

σ2
a + σ2

b σ2
a + σ2

b σ2
b σ2

b 0 0 0 0

σ2
b σ2

b σ2
a + σ2

b σ2
a + σ2

b 0 0 0 0

σ2
b σ2

b σ2
a + σ2

b σ2
a + σ2

b 0 0 0 0

0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗


(2.23)

The matrix notation is inspired by Douglas C. Montgomery 2001.[6]
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Chapter 3

Statistical Implementation of

Theoretic Methods

3.1 Homogeneous Variance Model of Study B

DATA B is of hierarchical structure which could be shown below:

Figure 3.1: Data B Hierarchical structure: 8 Materials are nested within Type (solid/Liquid).
8 Materials are cross with 14 labs and the cross relationship is complete. Days are nested
within Labs. Weighs are nested within Days

41
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In this section Homogeneous Variance models are implemented, which means all the observa-

tions have same variance components.

3.1.1 Test of overall model reduction

I start with a overall model in which possible effects set as fixed effects. In the ANOVA table

the p-values of those terms could be inferences of the following model selection and reduction.

The formula could be denoted as:

yi = µ + Typei + Materiali(Typei) + DAYi(Labi) + Labi + Materiali : Labi + εi (3.1)

where εi ∼ N(0, σ2), i = 1 : 618

All the concerning effects are described in Chapter One: Data description. Type is the state

of material (Solid/liquid). There are 8 kinds of materials in total. 14 labs participated the

Inter-Laboratory Study. Each Lab took sub-samples and evaluates those sub-samples in three

Days, two duplicates for each Day. After the deletion of outliers, there are 618 observations

left for modeling.

Part of the SAS analysis output is :
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Figure 3.2: SAS output of model 3.1

The ANOVA table shows that SAS could not return the F-value and P-value because of being

lack of degree of freedom. Considering the situation that the model analysis machine could

not hold so many terms as fixed effects, I remove Type from the the fixed model, and a

sub-model of 3.1 is as follow:

yi = µ + Materiali + DAYi(Labi) + Labi + Materiali : Labi + εi (3.2)

where εi ∼ N(0, σ2), i = 1 : 618

Part of Result returned by SAS:
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Figure 3.3: SAS output of model 3.2

ANOVA table above shows that all the terms are significant at 0.01% level. Therefore there

is no evidence to delete any term from the model.

From Model 3.1 to Model 3.2 ,Type was deleted to simplify the model by which the F-value

and P-value could be calculated. But I still have interest to see in a real mixed model, which

contains both random and fixed effects, how does Type affect the modeling. In model 3.3 all

the terms in 3.1 are included, but Day,Lab and Material:Lab are set as random effects:

yi = µ + Typei + Materiali(Typei) + a(DAYi)(b(Labi)) + b(Labi) + c(Materiali : Labi) + εi

(3.3)

where b(Labi) ∼ N(0, σ2
b ), a(DAYi) ∼ N(0, σ2

a), c(Materiali : Labi) ∼ N(0, σ2
c ), εi ∼

N(0, σ2).

Part of the SAS analysis output is :
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Figure 3.4: SAS output of model 3.3
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Figure 3.4 shows in model 3.3 SAS could estimate all the fixed effects and P-values. This

model could be a candidate of final model. In the Fit Statistics Table, four kinds of goodness-

of-fit values are supplied. In this thesis -2Restricted log Likelihood values was chosen as the

main criterion to select the optimum model.

Model 3.3’s -2Res log Likelihood is 1011.4.

On the basis of this full model, several sub-models were constructed by deleting the fixed

effects and random effects, Type, Day, Lab , and random cross term Material:Lab one

by one. All the goodness of fit values of those models were compared in the end.

In model 3.3 all the levels of Material and Type are significant at 0.01% level. In practical

Type and Material effects are mixed because one kind of material is either solid or liquid.

From this aspect a sub-model 3.4 of 3.3 is implemented which drops the Type effect:

yi = µ + Materiali + a(DAYi)(b(Labi)) + b(Labi) + c(Materiali : Labi) + εi (3.4)

where b(Labi) ∼ N(0, σ2
b ), a(DAYi) ∼ N(0, σ2

a), c(Materiali : Lab) ∼ N(0, σ2
c ), εi ∼ N(0, σ2),

i = 1 : 618
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Part of the SAS output:

Figure 3.5: SAS output of model 3.4
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Figure 3.5 shows -2Res log Likelihood value of model is 1011.4, as same as the value of 3.3,

which means the fixed effect Type in model 3.3 could not improve the model fitting.

Model 3.5 is a sub-model of model 3.4 rejecting the random cross effect Material:Lab .

yi = µ + Materiali + a(DAYi)(b(Labi)) + b(Labi) + εi, (3.5)

where b(Labi) ∼ N(0, σ2
b ), a(DAYi) ∼ N(0, σ2

a), εi ∼ N(0, σ2), i = 1 : 618

The SAS returned the -2 (Restricted log-likelihood) value of model 3.5: -968.4

Model 3.6 is a sub-model of model 3.5 rejecting the random block effect Lab.

yi = µ + Materiali + a(DAYi) + εi, (3.6)

where a(DAYi) ∼ N(0, σ2
a), εi ∼ N(0, σ2), i = 1 : 618

The SAS returned the -2 (Restricted log-likelihood) value of model 3.6: -855.2

Model 3.7 is a sub-model of model 3.5 rejecting the random block effect Day.

yi = µ + Materiali + b(Labi) + εi, (3.7)

where b(Labi) ∼ N(0, σ2
b ), εi ∼ N(0, σ2), i = 1 : 618

The SAS returned the -2 (Restricted log-likelihood) value of model 3.7: -947.9

Model 3.8 is a sub-model of model 3.7 and only contains the fixed effect Material and the

interception µ.

yi = µ + Materiali + εi, εi ∼ N(0, σ2) (3.8)
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The SAS returned the -2 (Restricted log-likelihood) value of model 3.8: -854.6

Model 3.9 is another possible reduction way. If the cross effect Material:Lab is proved to be

significant and could not be left out the model we could not drop the basic effect Material

and Lab neither. Hence the new investigation is whether Day is a necessary effect.

yi = µ + Materiali + b(Labi) + c(Materiali : Labi) + εi (3.9)

here b(Labi) ∼ N(0, σ2
b ), c(Materiali : Lab) ∼ N(0, σ2

c ), εi ∼ N(0, σ2)

The SAS returned the -2 (Restricted log-likelihood) value of model 3.9: -978.9

Model Comparison

Restricted Likelihood Ratio Test is used here to compare different Models. For instance Model

B is a sub-model of model A. Model A has r more parameters than Model B. Twice the change

in log likelihood is referred to a chi2r distribution. The additional parameters could be either

fixed parameters or random(variance components).[1] The test statistic could be written as:

GA→B = 2leA − 2leB = −[(−2leA)− (−2leB)] (3.10)

Where 2le indicates the 2 log-likelihood values of models. The restricted likelihood ratio test

G statistic should follow chi2df -distribution, where df denotes the difference of number of

variance components between Model A and B.

For the model 3.3 to 3.9 seven different models with different variance structures were com-

pared:
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Table 3.1: Model Comparison Table

Model -2le G-value df P-value
3.3: Material,Type,Day,Lab,Lab:Material included -1011.4 G3.3→3.4 = 0 1 1

3.4: Material,Day,Lab,Lab:Material included -1011.4 G3.4→3.5 = 32.5 1 1.1919E-8
3.5: Material,Day,Lab included -968.4 G3.5→3.6 = 113.2 1 0
3.5: Material,Day,Lab included -968.4 G3.5→3.7 = 20.5 1 .000005963

3.6: Material,Day included -855.2 G3.6→3.8 = 0.6 1 0.43858
3.7: Material,Lab included -947.9 G3.7→3.8 = 93.3 1 0
3.8: Only Material included -854.6

Another Reduction Way: start with dropping Day effect:
3.4: Material,Day,Lab,Lab:Material included -1011.4 G3.4→3.9 = 43 1 5.474E-11

3.9: Material,Lab,Lab:Material included -978.9

Table 3.1 gives all the possible models which may appear in the reducing process.

We start from the full model 3.3. The statistic of test From 3.3 to 3.4 is 0 with P-value

zero,which means Type as fixed effect can not improving Model fitting . The statistic of test

from 3.4 to 3.5 shows the interaction effect Material:Lab is significant 0.0001% level with

tiny p-value 1.1919E-8. Therefore the reduction steps of basic effects Material and Lab are

unnecessary to be considered.

Then following the reducing of Day from model 3.4. The statistic of test from 3.4 to 3.9 shows

the random effect Day is also significant at 0.0001% level with small p-value 5.474E-11.

Finally Model 3.4 is testified to be necessary and fit better than the reduced models:

yi = µ + Materiali + a(DAYi)(b(Labi)) + b(Labi) + c(Materiali : Labi) + εi

,where b(Labi) ∼ N(0, σ2
b ),a(DAYi) ∼ N(0, σ2

a), c(Materiali : Lab) ∼ N(0, σ2
c ),εi ∼ N(0, σ2)

The analysis of variance of 3.4 is summarized in Figure 3.5. Materials are fixed effect. Lab

,Day and Material:Lab are random.
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3.1.2 Diagnostic Checking for Homogeneous Variance Model 3.4

The major tool used in diagnostic checking is residual analysis. There are two different

residuals.

Two Types of Raw Residuals and Random effects

The marginal residuals are the difference between observations and estimated (marginal mean)

mean values:

emi = yi − ŷi = yi − xβ̂

, where i=1:618

The conditional residuals are the difference between observations and predicted values of

observations.

eci = yi − ŷi = yi − xβ̂ − zγ̂

, where i=1:618

The conditional residuals are more close to the real residuals because the random effects have

been considered in the prediction. Compared with the conditional residuals, the marginal

residuals reflect the information of the total variability from variance components: zγ̂ and the

real errors ε.

The residual vectors of these two raw residuals are denoted as εc and εm The variance of εm

is V, the covariance matrix of the observations.From this aspect marginal residualscould be

used to investigate the whole variability of observations.[8]

According to the assumption of LLM, the normality of the random effects γ is also a topic.

This will be processed in the end of the thesis for the optimal model. In this section only

Residuals Diagnostic Checking is presented.
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Normality and Homogeneity Checking of Residuals

Besides normality and homogeneity testing of residuals some plots are also made to reveal the

structure and suggest appropriate further modeling.

1. Residuals (conditional residuals εc) against predicted values:

Figure 3.6: Residuals εc vs predicted values



3.1 Homogeneous Variance Model of Study B 53

The εc seems quite constant and and not increasing with the predicted values.

2. Histogram of conditional residuals εc

Figure 3.7: Hist-gram of εc vs fitted values
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The distribution of residuals looks only a little asymmetrical.

3. The normal Q-Q plot for conditional residuals εc

Figure 3.8: A normal Q-Q plot of conditional residuals εc

There are light departure trends at two tails. It does not fit normal distribution perfectly.

Histogram and Q-Q plot are the comparisons by eye to the normal distribution. To get quan-

titative statistic for normality checking, Kolmogorov-Smirnov, Cramer-von Mises,Anderson-

Darling tests are performed. Those tests have same null hypothesis:

H0: The data given for the test follow normal distribution.

Figure 3.9: Goodness-of-Fit Tests for Normal Distribution ( conditional residuals εc)

The P-values returned by last three tests are significant at 5% level. Those kinds of tests are

not very reliable, we can not get conclusion that normality assumption is violated just because
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these tests.

4. Residuals against Type

As introduced before Type (Solid/Liquid) is an important effect of interest. In this part both

Marginal and Conditional Residuals are test to reveal more information.

marginal residuals εm against Type:

Figure 3.10: marginal residuals εm against Type,+-1.5 times interquartile range

Figure 3.11: DATA B: marginal residuals εm against Materials, divided by Type group,+-1.5
times interquartile range
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It seems the εm of the Liquid type are more dispersive than the ones of Solid. For further

quantitative information the one way homogeneity tests for Type of εm are performed.

Figure 3.12: Levene’s and Bartlett’s one way tests for Homogeneity of marginal residuals εm

against Type
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For both Levene’s and Bartlett’s one way tests for εm the statistics are significant at 0.1%

level. The standard deviations for the Liquid and Solid are 0.13 and 0.1. Those could be

strong evidences of heterogenous variance structure for different Type.

conditional residuals εc against Type: For Levene’s and Bartlett’s one way tests for εc

the statistics are not significant with p value 0.25 and 0.15.

There still exists the possibility that the between-Type heteroscedasticity is actually caused

by between-Material heteroscedasticity. Because we only have four materials for one Type,

the sample size of Materials within Type is only 4, which is quite small and could not present

the situation of the population of all kinds of materials. Therefore the similar analysis will be

implemented on DATA A to compare with the analysis here.

5.conditional residuals εc against Material

Figure 3.13: conditional residuals εc against Material,+-1.5 times interquartile range
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Figure 3.14: Levene’s and Bartlett’s one way tests for Homogeneity of conditional residuals
εc against Lab

For both Levene’s and Bartlett’s one way tests for εc the statistics are significant at 0.01%

level. Those give us strong evidences of heterogenous variance structure for different Materials.

Besides, the residual box plots vs Material seem quite nonuniform.

At present Material is already in model 3.4 as a fixed effect and the main predictor to affect

the mean value. The variability within different Martials looks different now. What is the

source of the difference? Is it because of different Type(Liquid/Solid)?

An interest phenomena is the dispersive extents for different Material in Figure 3.13 are

not totally same with the extents in Figure 1.8 of Chapter 1, Preliminary Analysis section.

Although Material No.7 and No.8 still tend to have large εc, but Material No.4 tends to

have smaller variance than in Figure 1.8. The difference of the between εc of materials seem

smaller than the difference between variance of materials in Figure 1.8. Although model 3.4

violated the homogeneity assumption of errors obviously, it still explain rather large part of

the variability of the DATA B.

6. conditional residuals εc against Lab
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Figure 3.15: conditional residuals εc against Lab,+-1.5 times interquartile range. The disper-
sions of εc for different Labs looks obvious nonuniform.

The one way homogeneity tests for Lab were performed:

Figure 3.16: Levene’s and Bartlett’s one way tests for Homogeneity of conditional residuals
εc against Lab
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For both Levene’s and Bartlett’s one way tests of εc the statistics are significant at 1% level.

Those give us evidences of between-lab heteroscedasticity. Do some lab supply more precise

evaluation? We already know there exsits significant Day-to-Day variability, which is the

variance within Lab. But is the variability between Days the same for all the Labs? It will be

studied later.

New models of heterogeneous variance structure will be implemented on the basis of hints

above.

3.1.3 Practical Implication of Model 3.4

The practical implication of this study is quite important. We are interested in the source of

the variability of measurements. In Model 3.4 Lab, Day and Material:Lab are all significant.

It means the variability results from Lab ,Day and Material:Lab. After the residuals analysis,

some indications are listed:

1.For the the homogeneity tests the residuals are heterogeneous cross Type, Lab and Materials.

Type have been tested in homogeneous model and tend to be not significant as fixed effect.

But at present it seems that it affects the measurement in another way: Different Types of

Materials may have different variance structures. This will be an individual topic later.

Although Lab and Material effects are already in the model 3.4 as random effects, it seems the

specification of them are not proper. Heterogeneous variance structure for Lab and Material

would be implemented later. It is natural to guess maybe some labs have smaller within

variances and could supply more precise results.

2.The Day to Day variation within Labs is significant source of variability. Therefore may it

is necessary to modify the work process of method and labs internal quality assurance system.

3. It is hard to give a practical conclusive interpretation of the Material:Lab interaction

exactly before a well fit model is conducted. So far there are several possibilities.

In model 3.4 one assumption is that variance components are homogeneous for all observations.

But in practical maybe some materials have larger variances than the rest, for instance,

Material No 7. (See figure 3.14) The variance within Material No7 may tend to be larger

than the ones of Material 6. Model 3.4 uses the single Lab, Day and Residual random effect

to estimate the variances of different Materials. Hence the random interaction term could a

”cushion” for the between-material heteroscedasticity.
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Some Labs may could supply more precise evaluations. That means even for same material,

the observations from ”better” have smaller variance than the ones from the ”worse” labs.

Even if a ”worse” Lab sometimes may be good at measure certain kind of material and give

more precise evaluations with smaller variance than other labs. So far we do not know whether

the all the Labs work stable from material to material.

In those cases the interaction term could be a ”cushion” for this extra ”variability”.

3.1.4 RSD% of Homogeneous Variance Model 3.4

According to the SAS output of Model 3.4 the estimated values of Variance Components are:

LAB 0.002102

Day(LAB) 0.001426

LAB*Material 0.002348

Residual 0.008135

As introduced before in section Log-transformation of Raw Data, Chapter 2,

V ar[ln(Yi)] = V ar[Yi]
E(Yi)2

≈ C2 = RSD2
R

Here the variance of log-transformed observations :

RSD2
R = V ar[ln(Yi)] = σLab+σDay+σLab∗Material+σResidual = 0.002102+0.001426+0.002348+

0.008135 = 0.014011

Hence the RSDr and RSDR of model 3.4 :

Table 3.2: RSD for model 3.4

RSDr% = RSDResdual% 9%

RSDR% =
√

0.014011 11.84%
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3.2 Heterogeneous Variance Model for Type of Study

B

3.2.1 Motivation

When Type is set as fixed effect in the model the fixed effect Material is totally mixed with

it. Because all kinds of Materials are either liquid or solid and there is no direct contrast to

compare the Type effects on the same material. Unsurprisingly Type(Solid/liquid)as a fixed

effect in the Homogeneous modeling is not significant and proven not to improve the model

fitting by the Log ratio likelihood test from model 3.3 to 3.4.

An important part of this thesis aim is to detect wether the different Type (solid/liquid) of

the Materials have different variance components. According to this idea the SAS statement

Repeated is conducted, by which the variance components are estimated separately for dif-

ferent Type. The homogeneity assumption of error is also reset: The variance should be

homogeneous of within different Types.

The goodness-of-fit values of the new models will be compared with the one of the general

model 3.4 presented in last section by Likelihood Ratio Test to detect whether Materials of

different Types have different covariance structure.

If the difference of variance does exist, which variance component leads to it? Is it lead by the

effects DAY, LAB or residuals within Types? A series sub-models will be conducted. Same

as the model selection mechanism in homogeneous model section, an optimal heterogeneous

variance model for Types will be chosen by Likelihood Ratio Test.

3.2.2 Practical Issue of SAS statements

The relative SAS statements have already been introduced in Section 2.1.3. Here I just list

the main points briefly.

In SAS Proc Mixed Repeated statement is to define the structure of residuals matrix R. In

default output R = σ2In. Here R only contain one variance component.

When Repeated is set as: repeated/ group= subject1, then Proc mixed will calculated indi-

vidual residuals for each level of the subject. If this subject contain p levels then R contains
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p different variance components on the diagonal line.

Another similar function is the group option following the Random statement,which could

set the covariance structure of G. For instance ,in SAS it is written as:

Random Day/group = Lab; Then for each Lab SAS will return an individual estimated vari-

ance component of DAY.

In other words, Group option following Repeated statement defines an effect specifying het-

erogeneity in the covariance structure of R. While group options following Random statement

specifies the heterogeneity in the covariance structure of G.

3.2.3 Statistical Implementation

For comparing with the homogeneous variance model 3.4 in last section I choose the same

Model Formula. But in new model different types corresponds to two different system of

covariance components.

yi = µ + Materiali + a(DAYi)(b(Labi)) + b(Labi) + c(Materiali : Labi) + εi (3.11)

if i ∈ Group(Solid): b(Labi) ∼ N(0, σ2
bs), a(DAYi) ∼ N(0, σ2

as), c(Materiali : Lab) ∼
N(0, σ2

cs), εi ∼ N(0, σ2
s);

if i ∈ Group(Liquid): b(Labi) ∼ N(0, σ2
bl), a(DAYi) ∼ N(0, σ2

al), c(Materiali : Lab) ∼
N(0, σ2

cl), εi ∼ N(0, σ2
l );

i=1:618.

In model 3.11 there are different estimates of LAB ,DAY Lab*Material and Residuals for

different Type(Liquid/solid).

Part of the SAS output is as below:

The model 3.11 has goodness value -2lld: -1022.2.

Comparing Heterogeneous Model 3.11 with Homogeneous Model 3.4:

Model 3.11 have 4 more parameters than model 3.4, twice the change in log likelihood is

referred to a χ2
4 distribution. The Null hypothesis of the test is :

H0 : σ2
bs = σ2

bl ∩ σ2
as = σ2

al ∩ σ2
cs = σ2

cl ∩ σ2
s = σ2

l
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Figure 3.17: SAS output of model 3.11

The Likelihood Ratio Test between those two models with degree of freedom 4:

G3.11→3.4 = 2le3.11 − 2le3.4l = 1022.2− 1011.4 = 10.8 → Pχ4 = 0.028906

The test is significant at 5% level. Model 3.11 to fit better than model 3.4.

Heterogeneous Variance Model Reduction

The conclusion obtained in last section is that Model 3.11 fits better than the general model

3.4. And different Types of Materials are proven to have different covariance structure. But

which block effect leads this difference? Do all of the variance components of Solid/Liquid are

different or only some terms different? For simplicity, only the goodness of fit values of Models

with different covariance structure by Type are compared and tested in following table. The
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SAS output of model 3.4 shows that the residual of different types are similar. Therefore we

start with hypothesis test is : H0 : σ2
s = σ2

l ;(3.11− >3.12)

Table 3.3: Heterogeneous Variance Model Comparison Table

Model -2le G-value df P-value
3.11: Day,Lab,Lab:Material,Residual are different for Type -1022.2 G3.11→3.12 = 0 1 1

3.12: Day,Lab,Lab:Material are different for Type -1022.2 G3.12→3.13 = 4.9 1 0.0268
3.13: Lab,Lab:Material are different for Type -1017.3

3.12: Day,Lab,Lab:Material are different for Type -1022.2 G3.12→3.14 = 11.1 1 0.0039
3.14: Day,Lab are different for Type -1011.1

3.12: Day,Lab,Lab:Material are different for Type -1022.2 G3.12→3.15 = 28.9 1 7.6213E-8
3.15: Day,Lab:Material are different for Type 993.3

The table above shows the procedure of model reduction. From model 3.11 to 3.12, the

statistic is not significant with p value 1. The goodness value of fit od 3.11 and 3.12 are even

the same. Hence the null hypothesis is accepted.

But from model 3.12 to 3.13, 3.14 and 3.15, all three tests are significant at 5%level. Model

3.12 could not be reduced further.

According to the log likelihood ratio test, the only term could be combined is residual. Part

of SAS output of 3.12:

Covariance Parameter Estimates

Cov Parm Group Estimate

LAB Type Liquid 0.001835

LAB Type Solid 0.001617

Day(LAB) Type Liquid 0.003780

Day(LAB) Type Solid 0.000769

LAB*Material Type Liquid 0.004477

LAB*Material Type Solid 0.000463

Residual 0.007638

The assumption of residual of model 3.12 is residual should be homogeneous.
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3.2.4 RSD of Homogeneous Variance Model 3.12

The RSD value estimated in model 3.12: Table 3.4 shows that the RSDR of Liquid is much

Table 3.4: Data Structure

item Liquid Solid
RSDr% = RSDResdual% 8.74% 8.74%

RSDR% 13.3% 10.2%

lager than tRSDR of Solid.

RSDr is 8.74 which is a little smaller than RSDr (9.0)homogeneous variance model. While

RSDR of homogeneous variance model 3.4 is 11.84 , which is between the RSDR of Liquid

and Solid (13.3, 10.2).

3.2.5 Diagnostic Checking for Heterogeneous Variance Model 3.12

The major tool used in diagnostic checking of this section is still residual analysis.

Model 3.12 have assumption that: Variance components for Lab, Day and Lab:Material are

heterogeneous for Type, but residual is homogeneous.

The homogeneity of residual was checked as in the homogeneous model last section.

I still use conditional residuals as the analysis object.

1. conditional residuals εc) against fitted values:
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Figure 3.18: εc) vs fitted values

The εc seem quite constant and and having no pattern for the predicted values.

2. Histogram of conditional residuals εc

Figure 3.19: Hist-gram of εc vs fitted values
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The distribution of residuals looks a little asymmetrical. But the bias extent is not large.

3. The normal Q-Q plot for conditional residuals εc

Figure 3.20: A normal Q-Q plot of conditional residuals εc
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There are several wild points and light departure trend at two tails. Generally it fits normal

distribution.

Those Normality tests have same null hypothesis:

H0: The data given for test follow normal distribution.

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value

Kolmogorov-Smirnov D 0.0365655 Pr > D 0.044

Cramer-von Mises W-Sq 0.11036836 Pr > W-Sq 0.085

Anderson-Darling A-Sq 0.69274680 Pr > A-Sq 0.074

The last two tests are not significant at 5% level. Only Kolmogorov-Smirnov test is significant

at 5% level. Those kinds of tests are not very reliable, we can not draw the conclusion that

normality assumption is violated.

4. conditional residuals εc against Type, plots and homogeneity test.

Figure 3.21: Conditional residuals εc against Type,+-1.5 times interquartile range
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Figure 3.22: DATA B: residuals εc against Materials, divided by Type group,+-1.5 times
interquartile range

It seems εc for the Liquid type are more dispersive than the ones of Solid. For further quan-

titative information the one way homogeneity tests for Type are performed.

Bartlett’s Test for Homogeneity of Residual Variance:

Source DF Chi-Square Pr >ChiSq

Type 1 2.0662 0.1506

For Bartlett’s one way test for εc the statistic is not significant at 5% level. The εc is not

heterogeneous for Type.

5.conditional residuals εc against Material
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Figure 3.23: conditional residuals εc against Material,+-1.5 times interquartile range

Bartlett’s Test for Homogeneity of Residual Variance

Source DF Chi-Square Pr > ChiSq

Material 7 107.5 <0.0001

For Bartlett’s one way test for εc the statistic is significant at 0.01% level. The residual is

heterogeneous for Material . The homogeneity assumption of residual of model 3.12 is violated.

In model 3.12 the Residual distribution has obvious pattern for Materials.

3.2.6 Brief Summary

In Model 3.12 the assumptions of its’ covariance structure specification are violated: the

residual is not homogeneous. The variance estimates in 3.12 could not describe the het-

eroscedasticity between Material. Although the RSDR of Liquid is larger than RSDR of Solid

in 3.12, but it could not lead to conclusion that the Liquid Material have larger variance than

the Solid Material. Furthermore, the materials involved in Study B are only 8 samples of the

whole population of materials. Similar models and tests on Study A were processed to check

wether variance of another 5 kinds of materials have similar characteristics or not.
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3.3 Homogeneous Variance Model and Heterogeneous

Variance Model for Type of Study A

3.3.1 Homogeneous Variance Model of Study A

For simplicity, the model reduction steps are presented in below below. All the models spec-

ifications and tests are similar to Study B, except there is no block effect”Day”. Material(5

levels) is fixed effect nest within another fixed effect,Type(Solid/liquid). Lab(14) and Inter-

action term, Lab:Material, are random effects. 4 different variance structures were compared

from model A1 to model A4:

Table 3.5: Model Comparison Table of Homogeneous Variance Model for Type of Study A

Model -2le G-value df P-value
A1: Material(Type),Type,Lab,Lab:Material included -226.9 GA1→A2 = 0 1 1

A2: Material,Lab,Lab:Material included -226.9 GA2→A3 = 0.2 1 0.65
A3: Material,Lab included -226.7 GA3→A4 = 15.3 1 .00009

A4: Material included -211.4

The series of Log ratio Likelihood tests of model reduction show only the statistic of step

”GA3→A4”is significant. The optimal homogeneous variance model is A3:

yi = µ + Materiali + b(Labi) + εi,

where b(Labi) ∼ N(0, σ2
b ), εi ∼ N(0, σ2), i = 1 : 132

3.3.2 Diagnostic Checking for Homogeneous Variance Model A3

1. Residuals(conditional residuals εc) against predicted values:
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Figure 3.24: Residuals εc vs fitted values

The εc is not uniform. The variance of the residual for prediction value around 6.6 looks larger

than the rest. But it seems having no increasing pattern with the predicted values.

2. Histogram of conditional residuals εc

Figure 3.25: Hist-gram of εc vs fitted values

The distribution of residuals seems asymmetrical.
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3. The normal Q-Q plot for conditional residuals εc

Figure 3.26: A normal Q-Q plot of conditional residuals εc

There are clear departure trends in Q-Q plot. To obtain quantitative statistics for normal-

ity checking, Kolmogorov-Smirnov, Cramer-von Mises,Anderson-Darling tests are performed.

Those tests have same null hypothesis:

H0: The data given for test follow normal distribution.

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value

Kolmogorov-Smirnov D 0.10193254 Pr > D <0.010

Cramer-von Mises W-Sq 0.27921116 Pr > W-Sq <0.005

Anderson-Darling A-Sq 1.60299622 Pr > A-Sq <0.005

The P-values returned by last three tests are significant at 1% level. Combining the departure

situation in Q-Q plot, we could come to the conclusion that normality assumption of residuals

is violated.

4. Residuals(conditional residuals εc) against Type
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Figure 3.27: conditional residuals εc against Type,+-1.5 times interquartile range

Figure 3.28: DATA B:conditional residuals εc against Materials, divided by Type group,+-1.5
times interquartile range

There is indeed interesting thing in those plots. In model A3 Solid Materials seem more

dispersive variance than the Liquid Material. It is the opposite phenomena with Study B.

But not all the solid materials variances are larger than the variances of liquid, for instance,

Material No 3(silod) have smaller variance than Material No 4(liquid). And Study B also

have similar analysis results. For further quantitative information the one way homogeneity

tests for Type are performed.

Bartlett’s Test for Homogeneity of Residual Variance

Source DF Chi-Square Pr > ChiSq
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Type 1 10.1829 0.0014

The Bartlett’s one way tests for εc is significant at 0.1% level. The standard deviations for the

Liquid and Solid are 0.067 and 0.1. Those give us some evidences of heterogenous variance

structure for different Type.

5.Homogeneity Test of conditional residuals εc against Material

Bartlett’s Test for Homogeneity of Residual Variance

Source DF Chi-Square Pr > ChiSq

Material 4 36.8695 <.0001 Bartlett’s one way test for εc is significant at 1% level. Those give

us strong evidences of heterogenous variance structure for different Materials. This point is

consistent to analysis in DATA A.

3.3.3 RSD of Homogeneous Variance Model A3

Covariance Parameter Estimates by A3:

Parameter Estimate

Lab 0.002616

Residual 0.007450

Table 3.6: RSD for Homogeneous Model A3

RSDr% = RSDResdual% 8.6%
RSDR% = RSDLab% + RSDResdual% 10.03%

The RSDr of A3 is almost the same with RSDr of Homogeneous Model 3.4(9) and Heteroge-

neous Model 3.12(8.7). Because of no ”Day” effect the variance RSDR of A3(10.03) in Study

A is smaller than RSDR of models in Study B(11.83).

3.3.4 Heterogeneous Variance Model for Type of Study A

Heterogeneous Variance Components Specification and Test

The reduction table above is rather special. The full model for heterogeneous variance for type

is model AT1 which has 6 variance components. The test GAT1→AT2 = 0.1 is not significant.
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Table 3.7: Heterogeneous Variance Model for Type Comparison Table of Study A

Model -2le G-value df P-value
AT1: Lab(2),Res(2),Lab:Mat(2) are diff for Type -231.6 GAT1→AT2 = 0.1 1 0.75183

AT2: Lab(2),Res(2) are diff for Type,Lab:Mat(1) is single -231.5 0 0
AT3: Res(2),Lab:Mat(2) is diff for Type,Lab(1) is single -237.7 GAT3→AT6 = 1.2 2 0.54881
AT4: Lab:Mat(2) Lab(2) is diff for Type,Res(1) is single 223.7
AT5: Res(2)l is diff for Type,Lab:Mat(1) Lab(1) is single 237.3 GAT5→AT6 = 0.4 1 0.52709

AT6: Res(2) is diff for Type,Lab(1) is single 236.5
AT7: Res(2) ,Lab(2) is diff for Type 230.2

The special point starts from AT3,which has 5 variance components, but highest goodness-

of-fit value 237.7. The covariance matrix of AT3 was printed out. However, everything seems

right. There exist same problems for AT5 and AT6, which have fewer variance components

but higher goodness-of-fit values than AT1.

Several method were adopted to solve the problems:1. change the estimate method from

REML to ML. After all those 7 models were calculated again, the goodness-of-fit values

changed a little, but AT3,AT5 and AT6 were still have higher values. 2 . The covariance

matrix is printed out for each model to check the structures and calculate the variance number.

So far there was no error of the covariance matrix V.

So far as I know this is the first time this kind of problems appear when proc mixed is running.

At present we just keep this problem and go on analysis with AT6, which is the most simplified

model with high goodness-of-fit values. The reduction step is in the table. In model AT6,

different types corresponds to two different error variances. Model AT6:

yi = µ + Materiali + b(Labi) + εi (3.12)

b(Labi) ∼ N(0, σ2
b ), if i ∈ Group(Solid): εi ∼ N(0, σ2

s);

if i ∈ Group(Liquid): εi ∼ N(0, σ2
l );

i=1:132.

Comparing Heterogeneous Model AT6 with Homogeneous Model A3:

Model AT6 have 1 more parameters than model A3, twice the change in log likelihood is
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referred to a χ2
1 distribution. The Null hypothesis of the test is :

H0 : σ2
s = σ2

l

The Likelihood Ratio Test between those two models with degree of freedom 1:

GAT6→A3 = 2leAT1 − 2leAT1 = 236.5− 226.7 = 9.8 → Pχ1 = 0.001745119

The test is significant at 0.5% level. Model AT6 does fit better than model A3.

3.3.5 RSD of Heterogeneous Variance Model AT6

Covariance Parameter Estimates by AT6:

Parameter Group Estimate

Lab 0.002323

Residual Type Liquid 0.004921

Residual Type Solid 0.01149

Table 3.8: RSD of Heterogeneous Variance Model AT6

RSD Solid Liquid
RSDr% = RSDResdual% 10.7 7%

RSDR% 11.75% 8.5%

In this RSD table, the RSD values of Liquid materials are much smaller than the Solid

materials.

3.4 Approximate Confidence Intervals on RSD

As denoted before, all the RSDr and RSDR of different kinds of models have been calculated

by combination of the standard squares of variance components. RSDr and RSDR are im-

portant precision characteristics in inter-laboratory valid study. The confidence Intervals on

the RSDr and RSDR could also be calculated by variance components inference.
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The existing method for estimating the confidence intervals on variance components, ”Sat-

terthwaites”, is on the base of the mean squares in the analysis of variance, which could be

supplied by EM(Expected Mean Squares Estimation) method. However ,in the beginning of

the thesis REML method is adopted as estimation method, which could not return the mean

squares. For calculate the confidence intervals I just adopted Expected Mean Squares Estima-

tion to process the models again, which estimation values are same with the results returned

by REML.

It is easy to find the exact confidence interval on the function of variance components which

are the expected values of one mean squares, for instance, the error mean square.[9] In our

case RSD2
r = σ2 = E(MSE). The quantity

fEMSE/σ2 = fEσ̂2/σ2

has a chi-square distribution. The 100(1− α) percent confidence interval of σ2:

fEMSE

χ2
α/2,fE

≤ σ2 ≤ fEMSE

χ2
1−α/2,fE

(3.13)

, in which σ2 = RSD2
r

For variance components which could be not expressed as excepted value of a single mean

square ,it is impossible to find exact confidence intervals. But we can use Satterthwaites

approximation to construct an approximate confidence interval for variance components that

are estimated by a linear combination of mean squares: Satterthwaites approximation, says

that if

σ̂0 =
k∑

i=1

ciMSi

then f × σ̂0

σ0
is approximately a chi-squared variable with df = f where

f =
(
∑k

i=1 ciMSi)
2∑k

i=1 ciMS2
i /fi
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and

P{χ2
1−α/2,f ≤ f × σ̂0

σ0

≤ χ2
α/2,f} = 1− α

P{f × σ̂0

χ2
α/2,f

≤ σ0 ≤
f × σ̂0

χ2
1−α/2,f

} = 1− α

Therefore an approximate 100(1-α) percent confidence interval on σ0 is

f × σ̂0

χ2
α/2,f

≤ σ0 ≤
f × σ̂0

χ2
1−α/2,f

(3.14)

3.4.1 Homogeneous Variance Model 3.4: Approximate Confidence

Intervals on RSD

The ANOVA table with mean squares returned by SAS :



3.4 Approximate Confidence Intervals on RSD 81

Figure 3.29: The ANOVA table of model 3.4 with mean squares estimations
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As mentioned in Chapter One, after the outliers deleted, the design is unbalanced. Unsurpris-

ingly in mean squares the coefficients of variance components are not integers. The variance

components could be expressed as the linear combination of Means quare:

σ̂2 = MS(Residual) = RSD2
r

σ̂2
Day = (MS(Day)−MS(Residual))/10.35

σ̂2
Lab∗Material = (MS(Lab ∗Material)−MS(Residual))/5.8263

σ̂2
Lab = (MS(Lab)−(1.216MS(Day)+1.0151MS(LAB∗Material)−1.2311MS(Residual))))/42.592

Then RSD2
R could be denoted as the linear combination of mean squares:

RSD2
R% = σ̂2

Lab+σ̂2
Day+σ̂2

Lab∗Material+σ̂2 = 0.02348MS(Lab)+0.068MS(Day)+0.1478MS(LAB∗
Material) + 0.76065MS(Residual)

According to formula 3.14, the degree of freedom f:

f =
(
∑k

i=1 ciMSi)
2∑k

i=1 c2
i MS2

i /fi

= 199.22

The 100(1− 0.05) percent confidence interval of RSD2
R%:

f ∗RSD2
R%

χ2
0.975,f

≤ (RSD2
R%)2 ≤ f ∗RSD2

R%

χ2
0.025,f

199 ∗ (11.83%)2

χ2
0.975,199

≤ (RSD2
R%)2 ≤ 199 ∗ (11.83%)2

χ2
0.025,199

199 ∗ 0.014011

240
≤ (RSD2

R%)2 ≤ 199 ∗ 0.014011

161.8

0.011617 ≤ (RSD2
R%)2 ≤ 0.017232

10.78 ≤ RSDR ≤ 13.13
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The 100(1− 0.05) percent confidence interval of RSD2
r%:

fEMSE

χ2
1−α/2,fE

≤ (RSD2
r%)2 ≤ fEMSE

χ2
α/2,fE

476 ∗ 0.00811

χ2
0.975,476

≤ (RSD2
r%)2 ≤ 476 ∗ 0.00811

χ2
0.025,476

476 ∗ 0.00811

538.4
≤ (RSD2

r%)2 ≤ 476 ∗ 0.00811

417.45

0.0071700 ≤ (RSD2
r%)2 ≤ 0.00924748

8.4676 ≤ RSDr ≤ 9.616

3.4.2 Homogeneous Variance Model A3 of Study A: Approximate

Confidence Intervals on RSD

The ANOVA table with mean squares returned by SAS :
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Figure 3.30: The ANOVA table of model A3 with mean squares estimations
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The variance components could be expressed as the linear combination of Means quare:

σ̂2 = MS(Residual) = RSD2
r

σ̂2
Lab = (MS(Lab) − MS(Residual))/9.3846 The RSD value estimated by expected mean

square type3 method are almost same with the RSD estimated by REML:

Table 3.9: RSD for Homogeneous Model A3

RSDr% = RSDResdual% 8.6%
RSDR% 9.92%

Then RSD2
R could be denoted as the linear combination of mean squares:

RSD2
R% = σ̂2

Lab + σ̂2 = 0.10655755MS(Lab) + 0.89344245MS(Residual)

According to formula 3.14, the degree of freedom f:

f =
(
∑k

i=1 ciMSi)
2∑k

i=1 c2
i MS2

i /fi

= 9.68419709277134e− 005/1.1863274083841e− 006 = 81.632

confidence interval of RSD2
R%:

f ∗RSD2
R%

χ2
0.975,f

≤ (RSD2
R%)2 ≤ f ∗RSD2

R%

χ2
0.025,f

81.632 ∗ 0.009841

χ2
0.975,82

≤ (RSD2
R%)2 ≤ 81.632 ∗ 0.009841

χ2
0.025,82

0.803340512

108.94
≤ (RSD2

R%)2 ≤ 0.803340512

58.85

0.0073741556 ≤ (RSD2
R%)2 ≤ 0.0136506459

8.59 ≤ RSDR ≤ 11.68

The 100(1− 0.05) percent confidence interval of RSD2
r%:
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fEMSE

χ2
1−α/2,fE

≤ (RSD2
r%)2 ≤ fEMSE

χ2
α/2,fE

114 ∗ 0.007398

χ2
0.975,114

≤ (RSD2
r%)2 ≤ 114 ∗ 0.007398

χ2
0.025,114

114 ∗ 0.007398

145.45
≤ (RSD2

r%)2 ≤ 114 ∗ 0.007398

86.35

0.005798 ≤ (RSD2
r%)2 ≤ 0.0097669

7.61 ≤ RSDr ≤ 9.88

3.4.3 Comparison between Approximate Confidence Interval on

RSD for Homogeneous Variance Model of Study A and Study

B

Table 3.10: Approximate Confidence Interval on RSD for Homogeneous Models

Study A Study B
RSDr 8.6 9

95% Confidence Interval for RSDr 7.61 ≤ RSDr ≤ 9.88 8.4676 ≤ RSDr ≤ 9.616
RSDR 9.92 11.84

95% Approximate Confidence Interval for RSDR 8.59 ≤ RSDR ≤ 11.68 10.78 ≤ RSDR ≤ 13.13

From the plots above it seems the confidence intervals of Study A are wider than the intervals

of Study B for both RSDR and RSDr. It is because Study B have much more observa-

tions(618) than Study A observations(132). Therefore Study B have smaller variances of

the estimated parameters, including the variance components, which lead to more narrow

confidence intervals.

According to the original definition of the confidence interval, the RSD intervals here mean if

many other studies with same design are conducted , 95% of RSD values from those studies
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Figure 3.31: The 95% confidence interval of RSDR and RSDr vs study A and Study B. For
each column in the plots, there are three points on the line: the upper bound point, lower
bound point and the RSD value.

should be within the intervals.

Because f × σ̂0

σ0
has an approximately chi-squared distribution, all those confidence intervals

are not symmetrical around the RSD values, and all those RSD values are closer to the lower

bounds of the confidence intervals than the upper bounds.

3.5 Heterogeneous Variance Model for Material

3.5.1 Heterogeneous Variance Model for Material of Study B

In model 3.4 model residual checking, (see Residual vs.Material) we could see the evidence

of heteroscedasticity between Materials. The one way homogeneity test for Material is also

significant. In this section the distinct variance components for Material will be estimated.

Firstly Heterogeneous Variance Models for Material reduction steps are as follows:
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Table 3.11: Model Comparison Table of Heterogeneous Variance Model for Material of Study
B

Model -2le G-value df P-value
MB1: Lab,Day,Residual are different for Material -1083.3 GMB1→MB2 = 0 7 1

MB2: Lab,Residual are diff for Material, Day is same -1083.3 GMB2→MB3 = 6 7 0.53975
MB3: Residual is diff for Material,Lab and Day are same -1077 GMB3→MB4 = 2 1 0.15730
MB4: Residual is diff for Material,Lab is same. No Day ! -1075 GMB4→MB5 = 125 1 0

MB5: Residual is diff for Material,No Lab , No Day! -950

Table above shows the series of models reduction steps from M1 to M5.

Formula of MB1:

yi = µ + Materiali + a(DAYi)(b(Labi)) + b(Labi) + εi (3.15)

if yi ∈ Group(Materialj): b(Labj) ∼ N(0, σ2
bj), a(DAYj) ∼ N(0, σ2

aj), εj ∼ N(0, σ2
j ),j=1:8;i=1:618.

There are 8 kinds of Materials. While in MB1 each kind of materials have its own 3 variance

components: σ2
lab,σ

2
day,σ

2
residual. Model MB1 involves 24 independent variance components.

As denoted in the Model Comparison Table, in MB2 all kinds material have same σ2
day, but

different σ2
lab and σ2

residual. Hence MB2 only have 17 independent variance components.

The log-likelihood ratio test : GMB1→MB2 is with degree of freedom:7.

The reduction test from MB2 to MB3 is similar. Model MB3 have 10 independent variance

components.

MB4 is sub-model of model MB3, without σ2
day. Hence the degree of freedom of GMB3→MB4

is 1.

MB5 is sub-model of model MB4, without σ2
Lab. Similarly, the degree of freedom of GMB4→MB5

is also 1.

The reduction tests are all not significant except for GMB4→MB5. Therefore MB4 is the optimal

model temporarily.

The interaction term (Lab:Material) is significant in Model 3.4. I have also tried to put the



3.5 Heterogeneous Variance Model for Material 89

interaction term (Lab:Material) in the model MB1. But the computation complexity is too

high and computer could not return the result. Hence I just insert the interaction term in

Model MB4. The new model with interaction term is denoted as MB6. MB4 is a sub-model

of MB6. The log-likelihood ratio test : GMB6→MB4 = 1092.7− 1075 = 17.7 is with degree of

freedom:1, p value :0.000025863. The new MB6 is significantly better than MB4 at 0.001%

level. Covariance Parameter Estimates of MB6:

Cov Parm Group Estimate

LAB 0.002281

LAB*Material 0.001485

Residual Material 1 0.01149

Residual Material 2 0.01009

Residual Material 3 0.01014

Residual Material 4 0.01292

Residual Material 5 0.004728

Residual Material 6 0.000943

Residual Material 7 0.01600

Residual Material 8 0.008775

Table 3.12: RSD for Heterogeneous Variance Model MB6: for Material of Study B

Material: M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8
RSDr = RSDResdual 10.72 10.04 10.07 11.37 6.88 3.07 12.65 9.37

RSDR 12.35 11.77 11.79 12.92 9.22 6.86 14.06 11.20

3.5.2 Heterogeneous Variance Model for Material of Study A

Table 3.13: Model Comparison Table of Heterogeneous Variance Model for Material of Study
A

Model -2le G-value df P-value
MA1: Lab,Residual are different for Material -260 GMA1→MA2 = 0 4 1

MA2: Residual is diff for Material, Lab is same -267 GMA2→MA3 = 22 1 .000002727
MA3: Residual is diff for Material,No Lab -245

MA2: Residual is diff for Material, Lab is same -267 GMA2→A3 = 40.7 4 3.101E-8
A3: homogenous model :Residual and Lab are same -226.7
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MA2 is temporarily the optimal model in the reduction table. On the basis of MA2, a new

model MA4 with interaction term (Lab:Material)is also processed. The log-likelihood ratio

test : GMA4→MA2 = 270.27 − 267.23 = 3.07 is with degree of freedom:1, p value :0.08. The

new MA4 is significantly better than MA2 at 10% level. By those two reduction processes,

Study A and Study B resulted in similar final optimal model: Residual is heterogeneous for

Material, Lab and interaction term (Lab:Material) are homogeneous between Material.

parameter estimated by Model MA4:

Covariance Parameter Estimates

Cov Parm Group Estimate

Lab 0.001605

Lab*Material 0.000878

Residual Material 1 0.01857

Residual Material 2 0.003447

Residual Material 3 0.002322

Residual Material 4 0.008119

Residual Material 5 0.001033

Table 3.14: RSD for Heterogeneous Variance Model MA4: for Material of Study A

Material: M 1 M 2 M 3 M 4 M 5
RSDr = RSDResdual 13.63 5.87 4.82 9.01 3.21

RSDR 14.51 7.7 6.93 10.3 5.93

3.5.3 Brief Summary

In this section the heterogeneous variance models for material for Study A and Study B are

processed. The RSDr vary from 3 to 13 in both studies. RSDR, which are a little larger

than the corresponding RSDr, vary from 5.93 to 14.5. Apparently, most of the variability is

attribute to difference between duplicates within Materials.

The goodness of fit values of model MB6 and MA4 are much larger than the values of model

3.4 and model A3, which are the homogeneous variance models of study A and study B.
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Table 3.15: Model comparison of Study A and Study B

Model : goodness of fit variance components number
homo model of study A: model A3 -226.7 1(Lab)+1(Res)=2

hetero model of study A: model MA4 -270.27 1(Lab)+5(Res)+1(Lab:Material)=7
homo model of study B: model 3.4 -1011.4 1(Lab)+1(Day)+1(Lab:Material)+1(Res)=4

hetero model of study B: model MB6 -1092 1(Lab)+8(Res)+1(Lab:Material)=10
hetero model of study B: model MB7 -1094.0 1(Lab)+8(Res)+1(Day)+1(Lab:Material)=11

The table shows that A3 could be regarded as the sub-model of MA4. The log-likelihood

ratio test : GMA4→A3 = 44 is significant at 0.0001% level with degree of freedom:5, P-value:

2.3162E-8. Model 3.4 is not the exact sub-model of MB6 which does not have the random

effect Day. We could use model MB7 instead of MB6, which contains the random effect:

Day. Model 3.4 is the sub-model of MB7. GMA7→3.4 = 83 significant at 0.00001% level

with p-value:3.3307E-15. So far the between-Material heteroscedasticity is conclusive. The

heterogeneous variance model for Material fit much better than the models before.

The interaction term (Lab:Material) in both MB6 and MA4 are still significant, especially in

MB4. It means for some Material, the Lab variances may be different. The test GMB2→MB3

is not significant, it seems that setting distinct lab variances for each kind material could not

improve model fitting a lot. But the difference between lab variances of different materials

may still exist. Moreover, the assumptions of model MB7 are not checked. If the assumptions

are violated, the model reduction steps are not that reliable. The heteroscedasticity between

labs labs still need to be considered.

3.6 Heterogeneous Variance Model for Lab of Study B

Table 3.16: Model Comparison Table of Heterogeneous Variance Model for Lab of Study B

Model -2le G-value
LB1: Day,Residual are different for Lab -1000 GMB1→MB2 = 0

LB2:Residual are diff for Material, Day is same , with interaction Lab:Material -987 GMB2→MB3 = 6
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Now we may ponder the thought of between-lab heteroscedasticity. Several heterogeneous

variance models for lab are processed. The goodness-of-fit values are much smaller than

heterogeneous variance models for Material. Although heteroscedasticity among labs may

exist, it is not the main variability of the measurements.

For combining the between-lab and between-material heteroscedasticity together, new model

LB3 is processed on the basis of model MB2: 8 distinct residuals and 8 distinct lab variance

components are set for 8 kinds of materials, 14 distinct day variance components are set for

14 labs. Several reduced models of LB3: LB4,LB5, are also presented:

Table 3.17: Model Comparison Table of Heterogeneous Variance Model for Material and Lab
of Study B

model variance components specification -2le G-value df P-value
LB3: Lab(8),Residual(8) are diff for Material,Day(14) are

diff for Lab -1155 GLB3→LB4 = 31 7 0.00006
LB4: Residual(8) are diff for Material,Day(14) are

diff for Lab, Lab(1) is single -1124
LB5: Residual(8) are diff for Material,Day(14) are
diff for Lab,Lab:Material(1) and Lab(1) are single -1151 GLB5→LB4 = 27 1 0.0000002

LB3: Lab(8),Residual(8) are diff for Material,Day(14) are
diff for Lab -1155 GLB3→MB2 = 71 13 5.2508E-10

MB2: Lab(8),Residual(8) are diff for Material
,Day(1) is single -1083.3
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The table above shows that LB5 and LB3 are both significantly better that LB4. LB3 and

LB5 are different at the the random effect lab: LB3 has 8 distinct lab variance components

for 8 different materials, while LB5 has one single lab variance components and interaction

term (Lab:Material). The goodness of fit values of LB3 and LB5 are similar. LB5 has 6 fewer

parameters than LB3 and approaches almost same extent goodness of fit value. According to

the usual model selection rules, LB5 is a better model. But LB3 contains the more information

about the lab variance value within material. The test GLB3→MB2 = 71 is very significant

with p-vale 5.2508E-10, therefore the null hypothesis of this test:

σ2
Day1 = σ2

Day2 = σ2
Day3 = ....σ2

Day14

, where 14 σ2
Day are corresponding to 14 labs,is rejected, which proves the between-lab het-

eroscedasticity.

Covariance Parameter Estimates of LB3:

Cov Parm Group Estimate

Day LAB 1 1.45E-36

Day LAB 2 0

Day LAB 3 0.003098

Day LAB 4 0.003217

Day LAB 5 0.004211

Day LAB 6 0.002352

Day LAB 7 0.000068

Day LAB 8 0.004671

Day LAB 9 0.003890

Day LAB 10 0.002399

Day LAB 11 0.001724

Day LAB 12 0.000272

Day LAB 13 0.000277

Day LAB 14 0.000517

LAB Material 1 0.000637

LAB Material 2 0.004462

LAB Material 3 0

LAB Material 4 0.006125

LAB Material 5 0.001290

LAB Material 6 0.000650

LAB Material 7 0.006979

LAB Material 8 0.001300
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Residual Material 1 0.01120

Residual Material 2 0.008409

Residual Material 3 0.009952

Residual Material 4 0.01022

Residual Material 5 0.003851

Residual Material 6 0.000472

Residual Material 7 0.01258

Residual Material 8 0.008056

Table 3.18: RSD for Heterogeneous Variance Model LB3 and MB6 of Study B

Material: M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8
MB6:RSDr = RSDResdual 10.72 10.04 10.07 11.37 6.88 3.07 12.65 9.37
LB3:RSDr = RSDResdual 10.58 9.17 9.97 10.11 6.02 2.17 11.21 8.96

LB3:RSDLAB 2.52 6.68 0 7.83 3.59 2.55 8.35 3.6

The RSDr of LB3 and MB6 are listed in the table. All the RSDr of LB3 are smaller than

the RSDr of MB6. In LB3 more viability of the data are explained by random effects, Day

and Lab.

3.6.1 Residual Analysis

One basic assumption of model LB3 is the homoscedasticity and normality of error within

Material. The normality test and homogeneity one way test for residuals are processed in all

material blocks.

normality test

The Q Q plots of residuals for 8 materials are as blow, which seem fit normal distributions

well. The normal tests, Kolmogorov-Smirnov,Cramer-von Mises and Anderson-Darling for

those eight sets of residuals are all not significant.
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Figure 3.32: DATA B:Q Q plots of residual for 8 kinds of Materials
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homogeneity test

One way homogeneity tests for those 8 sets of residuals of materials are implemented, 3 tests

of the are significant at 0.05% level. The test results returned by SAS are in the Appendix.

Check for random effects normality

The assumption of random effects of LB3 is : ifyi ∈ Group(Materialj): b(Labj) ∼ N(0, σ2
bj)

j=1:8;i=1:618 The random effects Labs follow normal distribution within Material. There are

8 Q-Q plots for 8 materials. While the random effect Day in this model is hard to print.[11] It

is impossible to plot random effects as residuals. I use probability plots of averages of the data

corresponding to the random factors to check whether it is severe lack of normality. However,

this method has some limitations:

1.Firstly, ”it is only a rough approximate approach as the averages consist of contributions

from several random effects”. [11]The normal effects confounded with each other . It is hard

to distinguish which effect leads the non-normal.

2.The raw average will be effected by the fixed part of the model.

3.The approach only could apply to the factor which number of levels is not too small.

4.If non-normal happens,we have no method to deal with it!

In model LB3, Day only have three levels. Therefore it is impossible to investigate it by this

raw average method. I only present the plots of raw average for eight random effect day within

eight materials. There are no indication of severe lack of normality:



3.6 Heterogeneous Variance Model for Lab of Study B 97

Figure 3.33: DATA B:raw average plots of random effect Labs for 8 kinds of Materials
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3.6.2 Brief Summary

In the the homogeneous variance model section, the residual analysis shows that there exist

heteroscedasticity both among Labs and Materials. SAS Mixed Procedure have ”repeated”

statement with group option to specify the residual variance structure, which only allow

for one factor to define the distinct residual components. Material is the main source of

heteroscedasticity of residual. When the group option after ”repeated” statement is set as

Material, the goodness of fit value of the model is much higher than the values in the case of

”Group=Lab”. (MB6 1092 � LB2 987)

For the limitation of the SAS mixed model specification of covariance structure, only Material

is set as group option factor after ”repeated” statement. In Study B the random effect Day

could be set as 14 distinct variances for labs to explain the difference of evaluation precision

of different labs. LB3 is the case that in distinct residual and lab variances is set for different

Materials, and distinct Day variance components are set for different labs. LB3 is the best

model with goodness of fit value 1155 so far.

The residual checking of Model LB3 shows the residual assumption are satisfied by and large.

The characteristics got from LB3 are reliable, although model LB3 is not perfect.

The estimate of all the day variance components of different labs are listed in this section,

which vary from 0 to 0.004671, corresponding to RSDday: 0 to 6.8.

SAS output of LB5 is in the attachment.

Xuan
Highlight



Chapter 4

Conclusion

4.1 Result and Conclusion

In the beginning of the analysis, log-transformation of the data is processed. Log-transformation

reduces the variance increasing trend with mean values, but does not eliminate the het-

eroscedasticity.

4.1.1 Homogeneous Variance Model

The homogeneous variance model is on the basis of the assumption that all the observations

have same variances. In the residual checking of homogeneous variance model the homogeneity

assumption is obviously violated: Residual have obvious patterns with Material and Lab.

The confidence interval of RSDR and RSDr could be estimated by Satterthwaites approxima-

tion, which requires the Mean Squares of ANOVA table. To get the Mean Squares, method-of-

moment variance component estimates are used instead of REML. [2] In SAS procedure Mo-

ment Estimate specifications apply only to variance component models with no REPEATED

statement and subject option.

The confidence interval of RSDR and RSDr in the homogeneous variance model could not pre-

dict the future evaluation RSD because the assumptions of the models are violated obviously.

However, in case of inter-laboratory of one kind of material with ANOVA table without any

repeated statement, the RSD confidence interval Satterthwaites approximation could predict

the percentage interval of RSD. The aim of RSD confidence interval section is to implement

99



100 CHAPTER 4. CONCLUSION

the Satterthwaites approximation method.

4.1.2 Heterogeneous Variance Model

In the early part of this study we believe that solid materials may have larger variance than

the Liquid Material. One basic assumption of the heterogeneous variance model for Type

(Solid/Liquid) is the within Type homoscedasticity. The assumption checking for residual

shows this assumption is violated: Bartlett’s one way homogeneity test by Material of Residual

within Type is significant.

The variance estimated from Study B shows solid material have smaller variance than liquid

material. But in Study A has the contrary result with Study B. Therefore, according to Study

A and Study B, the guess that solid material have larger variance than the liquid material is

not true.

Heterogeneous variance model MB6 for Material are processed. And RSDR and RSDr for

each material are presented. The RSD values vary from 3 to 13. Moreover, considering the

between-lab heteroscedasticity, model LB3 is conducted on the basis of MB6 assisted with the

distinct Day random effects for each Lab. LB3 is the best fit model obtained so far, which

specify the heteroscedasticity between -Lab and heteroscedasticity between-Material at the

same time.

Although MB6 does not fit as well as LB3, it is still a useful tool to achieve the general

characteristics (RSD) of the study. Because LB3 sets 14 Day variance components for 14

labs, the RSDR for different materials could not be calculated directly. RSDR could only be

calculate for certain material evaluated by certain lab.

LB5 contains the interaction term (Lab:Material), which means for different material, the lab

variance vary from material to material. This point of view also accords with model LB3,

which sets 8 lab variance components for different materials.

Both LB5 and LB3 are are optimal models with similar goodness-of-fit values. LB5 uses in-

teraction term plus ones single lab variance instead of 8 distinct lab variances, and therefore is

more simplified. While LB3 could supply more details of the Between-Material heteroscedas-

ticity.
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4.2 Further Study

1. The test GLB3→MB2 = 71 is very significant which proves the between-lab heteroscedastic-

ity does exist and 14 distinct variance components of Day are significant. Since the precision

of labs evaluation capability are different, it is reasonable to guess that the between-lab het-

eroscedasticity at residual level exists at the same time.

The inter-laboratory Study A and Study B could be regarded as series of distinct inter-

laboratory studies for different Materials. In most conventional validation studies, character-

istics of each material estimated by different labs are presented. For instance , Study B could

be seemed as 8 times of inter-lab validation of 8 different materials. If 8 models are processed

for eight kinds of materials separately, the group option following statement ”Random” and

”repeated” could be set as ”group=Lab”,the between-lab heteroscedasticity of residual and

random effect Day could be revealed at the same time. After 8 times of distinct mixed mod-

elings, a 14 × 8 RSD table could be constructed. The average RSD values for each labs and

each material can be obtained by this table. It could be a comparison with the characters

resulted from the models in this thesis.

Besides,If ”repeated,group=Lab” is not used in sas mixed proc model for each material, the

ANOVA table could be returned. With ANOVA table Satterthwaites approximation could

be adapted to estimate the confidence intervals of RSDR for each material. just as the RSD

interval for homogeneous variance model section.

2. When SAS procedure mixed apply REML to estimate covariance matrix, it could return

the asymptotic covariance matrix for variance components, and also could requests confidence

limits for the covariance parameter estimates. A Satterthwaite approximation is used to

construct limits for all parameters.

These limits take the form Refer to Milliken and Johnson (1992) and Burdick and Graybill

(1992)[2]. In their thesis it does not talk about how to conduct the approximate confidence

interval of linear function of the variance components. So far all the papers I read are based

on the MS (mean square) to estimate the approximation confidence interval of linear function

of variance components. It will be an very interesting and piratical topic to study how to do

that with asymptotic covariance, and the reliability of this kind of approximation.

3. In Linear Mixed Model, the assumptions include linearity of effects, normality, homoscedas-

ticity and independence of variance components. Three types of of disturbances for LLM:

conditional error, random effects and marginal error are of interest. However, non-of these
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disturbances could be observed directly, and in the estimating process all kinds of residual

and variance are confounded.[10] The confounding of residuals reduces the analyst’s power

to detect violations of modeling assumptions. Some least confounded estimate methods are

presented.[10]

The more precisely assumption checking is adopted, the more reliable of characteristics re-

sulted by the model could be. In this thesis I mostly adopt normality and homogeneity

checking for the conditional residual. In further study, more diagnostic checking on random

effects and marginal residual could be implemented.

4. Group option of repeated and random statement could create large number of covariance

parameters and strange covariance pattern. The problem in AT6 is quite singular. All the

models converge successfully and supply estimates of all the parameters, but the sub-model

have higher goodness-of-fit values. It was discussed with supervisors , but it was still unsolved.

The covariance structure was also checked. This may be lead by the Ml algorithm and need

to be studied seriously later.
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Chapter 5

Appendix

5.1 SAS Codes for Modeling

5.1.1 SAS Codes for Model3.4, homogeneous variance model

PS: the V option following Random effect will return the 618× 618 covariance matrix for 618

observations.

proc mixed data=SASUSER.DATA1 ;

class Lab Material Day Type;

model ’ln(Unts/kg)’n= Material

/

DDFM=CONTAIN

INTERCEPT

Residual

OUTP = sasuser. byMatResday

;

Random Day(Lab) Lab Lab*Material/ V=1 ;

LSMEANS Material

;

run;

105



106 CHAPTER 5. APPENDIX

5.1.2 SAS Codes for Model3.11, between-type heteroscedasticity

Model

proc mixed data=SASUSER.DATA1 ;

class Lab Material Day Type;

model ’ln(Unts/kg)’n= Material

/

DDFM=CONTAIN

INTERCEPT

Residual

OUTP = sasuser. ResdaykabinterbyType

;

Random Day(Lab) Lab Lab*Material/ group=Type ;

repeated/group=Type;

LSMEANS Material

;

run;

5.1.3 SAS for RSD Approximation interval

Codes for Model3.4 with Moment estimate , which could supply ANOVA table.

proc mixed data=SASUSER.DATA1 ;

class Lab Material Day Type;

model ’ln(Unts/kg)’n= Material Method= Type3

/

DDFM=betwithin

INTERCEPT

Residual

OUTP = sasuser. byMatResday

;

Random Day(Lab) Lab Lab*Material ;

LSMEANS Material

;

run;
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5.1.4 SAS Codes for Model MB6, between-material heteroscedas-

ticity Model

proc mixed data=SASUSER.DATA1;

class Lab Material Day Type;

model ’ln(Unts/kg)’n= Material

/

HTYPE =3

DDFM=betwithin

INTERCEPT

Residual

OUTP = sasuser. resbyMatdaylabinter

;

random Lab Lab*Material;

repeated / group=Material;

LSMEANS Material

;

run;

5.1.5 SAS Codes for Model LB3, between-Lab and between-Material

heteroscedasticity Model

proc mixed data=SASUSER.DATA1;

class Lab Material Day Type;

model ’ln(Unts/kg)’n= Material

/

HTYPE =3

DDFM=betwithin

INTERCEPT

Residual

OUTP = sasuser. reslabbyMatdaybylab

;

random Day/group=Lab;

random Lab/group=Material;
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repeated / group=Material;

LSMEANS Material

;

run;

5.1.6 SAS Codes for Model LB5, between-Lab and between-Material

heteroscedasticity Model

proc mixed data=SASUSER.DATA1;

class Lab Material Day Type;

model ’ln(Unts/kg)’n= Material

/

HTYPE =3

DDFM=betwithin

INTERCEPT

Residual

OUTP = sasuser. resbyMatdaybylabinter

;

random Day/group=Lab;

random Lab Lab*Material;

repeated / group=Material;

LSMEANS Material ;

run;

5.1.7 Log Ratio Likelihood Test code: LB3-¿LB4

data test;

n2logL A=1124; n2logL B=1155; df=7;

G AtoB=n2logL B-n2logL A;

P AtoB=1-probchi(G AtoB,df);

run;

proc print data=test; run;
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5.1.8 Normal distribution analysis of conditional residual of LB5

PROC SORT DATA=SASUSER. RESLABBYMATDAYBYLAB(KEEP=Resid Material)

OUT=WORK. egtemp ;

BY Material;

RUN;

ods EXCLUDE MODES QUANTILES MOMENTS EXTREMEOBS ;

goptions htext=1 cells;

SYMBOL v=SQUARE c=BLUE h=1 cells;

PATTERN v=SOLID;

PROC UNIVARIATE DATA=WORK. egtemp

CIBASIC (

ALPHA=0.050 )

MU0=0

;

BY Material;

VAR Resid;

HISTOGRAM / Normal( W= 1 L= 1

COLOR=BLUE

mu=EST

sigma=EST

)

CFRAME=CXA8A8A8 CAXES=BLACK WAXIS=1

CBARLINE=BLACK

CFILL=BLUE

PFILL=SOLID

;

QQPLOT / Normal( W= 1 L= 1

COLOR=BLUE

mu=EST

sigma=EST

)

CFRAME=CXA8A8A8 CAXES=BLACK WAXIS=1

;

RUN;

symbol;
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5.2 One way homogeneity test by Lab of conditional

residual of LB5 for different materials

PROC SORT DATA=SASUSER. RESLABBYMATDAYBYLAB(KEEP=Resid Material LAB)

OUT=WORK. egtemp ;

BY Material;

RUN;

PROC ANOVA DATA=WORK. egtemp ;

BY Material;

CLASS LAB;

MODEL Resid = LAB;

MEANS LAB / HOVTEST=BARTLETT;

RUN; QUIT;

TITLE;

5.2.1 SAS output of LB5
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Figure 5.1: SAS output of LB51
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5.3 SAS output of LB3 conditional residual homogene-

ity one way test by lab for 8 materials
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Figure 5.2: SAS output of LB51
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5.4 Normality Checking for Random Effect Lab in LB3:

proc means data=sasuser. reslabbyMatdaybylab noprint;

by Material Lab;

var ’ln(Unts/kg)’n;

output out=a1 mean=ln;

run;

proc univariate data=a1 noprint;

by Material;

var ln;

probplot / normal( mu=est sigma=est noprint);

inset normal ;

run;

quit;
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