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ABSTRACT

In this paper we introduce the concept of a Quasi-Birth-and-Death process

(QBD) with Rational Arrival Process components. We use the physical inter-

pretation of a Rational Arrival Process (RAP), developed by Asmussen and

Bladt, to consider such a Markov process. We exploit this interpretation to

develop an analytic method for such a process, that parallels the analysis of a

traditional QBD. We demonstrate the analysis by considering a queue where

the arrival process and the sequence of service times are derived from two differ-

ent RAPs that are not just Markovian Arrival processes. We also introduce an

element of correlation between the arrival process and the sequence of service

times.

Key words: Matrix Exponential Distribution, Phase-Type Distribution, Ra-

tional Arrival Process, Markovian Arrival Process, Quasi-Birth-and-Death Pro-

cess.
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1 Introduction

Since the work of Lipsky [7] there has been an expectation that the matrix-analytic results

of Neuts [12], and others, would carry over verbatim to the more general setting of Matrix-

exponential distributions. This became more likely with the characterization of Rational

Arrival Processes by Asmussen and Bladt [1], as a similar extension of Markovian Arrival

Processes, and was in fact explicitly stated therein. See also Mitchell [11] for related

work. However, queueing results in the matrix-analytic methods setting rely on path-wise

probabilistic arguments, exploiting the Markovian nature via the discrete states.

Asmussen and Bladt [1] developed an intriguing physical interpretation of a Rational

Arrival Process (RAP), which was explored further by Bladt and Neuts [4]. In this paper

we use this physical interpretation to consider a class of processes that we call Quasi-

Birth-and-Death processes with Rational Arrival Process components (QBDs with RAP

components). We demonstrate how the analysis of such a process can be performed by

interpreting the appropriate matrices as operators on measures, rather than as transition

matrices of Markov chains. Information on the process is now carried by a vector of

weighting factors of measures, which in the standard Markov chain setting have a direct

interpretation as posterior probabilities. This vector is essentially the same (up to contin-

uous re-normalization) as the vector of container levels referred to by Bladt and Neuts [4,

Section 5].

We do not prove new formulae, instead our results extend well-known matrix-analytic

results to the more general setting of queues with Matrix-exponential and Rational Arrival

Process components. Thus most, if not all, formulae in this paper are well-known from the

traditional matrix-analytic methods setting.

The approach followed in this paper is a direct approach in the sense that our proofs are

generalizations of elegant and relatively elementary probabilistic proofs first suggested by

Ramaswami [13].

In a forthcoming paper we demonstrate a more abstract technique which demonstrates

how the framework of this paper fits in to a more general framework. We address numerical

issues in this forthcoming paper too.

The structure of the paper is as follows. In Section 2 we briefly introduce Matrix-

exponential (ME) distributions and Rational Arrival Processes (RAPs). In Section 2.1

we describe the physical interpretation of the RAP developed by Asmussen and Bladt [1],
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which we call the orbit representation. In Section 2.2 we present a brief discussion of the

related interpretation of Bladt and Neuts [4] and attempt to motivate our choice to use

the interpretation of Asmussen and Bladt rather than that of Bladt and Neuts.

In Section 3 we describe a QBD with RAP components as a specific example of a

Markov process on a mixed continuous-discrete state space. We prove existence of such

processes by presenting a sequence of examples, ranging from well-known structures like

the MAP/PH/1 queue through to RAP/RAP/1 queues with dependencies between the

service and arrival processes. Section 4 contains all the theorems of the paper, presenting

the required justification for the use of the traditional analysis of a traditional QBD in

the extended world of the QBD with RAP components. All our formulae are well-known

from the traditional matrix-analytic methods literature, but the physical interpretations

are now re-formulated to support the extended world of the QBD with RAP components.

In Section 5 we present our example queue. The arrival process and the sequence of

service times come from two different RAPs (outside the space of MAPs) that share the

same phase space. Thus we also have cross-correlations between the arrival process and

the sequence of service times. To the authors’ knowledge there are no existing methods

for analysing such a queue. We deliberately chose the RAP representing the sequence of

service times to have a rank-one jump matrix. This means that we can identify the matrix

G a priori and therefore do not require numerical algorithms for its determination. Finally,

in Section 6 we present our conclusions, including a discussion of further research required

in this area as well as some speculation about how these techniques could find application

in practical situations.

2 Matrix–exponential distributions (ME) and Ratio-

nal Arrival Processes (RAP)

A matrix–exponential distribution is a distribution on the non–negative real numbers with

rational Laplace (Stieltjes) transform. Equivalently [9, 8] the distribution can be expressed

via a matrix–exponential density function: that is, for positive x, f(x) = αeTxt, where α

is a 1 × p row vector, T is a p× p matrix and t is a p× 1 column vector; and with point

mass α0 for x = 0. Throughout, we assume that α0 = 0 as we do not wish to consider

distributions with a point mass at zero. One can choose an ME-representation such that
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αe = 1, Te = −t (where e is the p × 1 column vector consisting entirely of ones) and

further such that (αi, T ), is the representation for a matrix–exponential distribution for

all i = 1, . . . , p where αi has a one in the i’th position and zeros elsewhere [1, Page 135].

As in Asmussen and Bladt [1] we will consider the three ME–distributions f1(x) =

e−x, f2(x) = 2
3
(1 + sin (x))e−x, and f3(x) = 2

3
(1 + cos (x))e−x. The representations are

given by (α1, T ), (α2, T ), and (α3, T ), with

T =









−1 0 0

−2
3

−1 1
2
3

−1 −1









. (1)

Asmussen and Bladt generalized the concept of a renewal process with matrix–exponentially

distributed inter–event times by defining the class of point processes which are contained

in a finite dimensional subspace under the time shift operator. As their main result they

proved that a RAP can always be described, for some finite positive integer p, by two p×p

matrices, C and D, and a row vector of length p, α, such that

1. the dominant eigenvalue of C is negative,

2. the dominant eigenvalue of C +D is zero, and

3. (C +D)e = 0.

The density of the RAP is then given by

fn(x1, x2, . . . , xn) = αeCx1DeCx2D . . . eCxnDe,

where αe = 1.

The two matrices can be chosen such that additionally the process is a RAP whenever

α = αi, [1, page 130].

Thus Asmussen and Bladt’s quite general definition proved to be analytically equivalent

to the Markovian Arrival Process [10] (MAP) in terms of its representation in the form of

two matrices C and D.

For a MAP we need to impose the following additional requirements: D is a nonnegative

matrix, α is a nonnegative vector and C has nonnegative off-diagonal entries and negative

diagonal entries. These restrictions guarantee that a MAP has a very simple physical

interpretation as a continuous-time Markov chain that moves around the state space of
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dimension p according to the generator matrix Q = C + D, where transitions due to

the matrix D also correspond to points in the point process. In contrast, the matrix

representation of a RAP does not make these extra requirements, but merely requires that

the conditions 1–3 are obeyed.

Although Matrix–exponential distributions contain and are analytically equivalent with

phase–type distributions and Rational Arrival Processes contain and are analytically equiv-

alent with Markovian Arrival Processes their probabilistic interpretation differ significantly:

the probabilistic interpretation of PH distributions and MAPs in terms of finite dimensional

Markov chains is not valid in the general ME and RAP cases.

However, Asmussen and Bladt [1, page 129] provide an intriguing physical interpretation,

where they state that

”... the RAPN can be seen as generated by a piecewise deterministic Markov

process {A(t)}t≥0 on a compact convex subset of R
p, such that the epochs of

N are identical to the jump times of A(·). Note that it is not surprising that a

finite-state space does not suffice – it is well known that the MAP is the most

general point process such that the counting process is an additive process on

a finite Markov chain.”

A consequence of the extra flexibility in RAPs is that, given a set of matrices according

to the conditions 1–3 above, it is not immediately possible to determine whether they

represent a RAP or not. Further conditions are required, as we shall see later.

We refer the reader to [1, 2, 5] for further results and discussion. Also note that there

is an alternative construction of RAPs in Mitchell [11] as a correlated sequence of matrix

exponentials. However, Mitchell does not delve into the details of the construction.

Asmussen and Bladt [1] provide an example of an ME renewal version of a RAP (Cs, Ds)

with Cs = T , as given in equation (1), and Ds =
(

1, 2
3
, 4

3

)T
(3,−1,−1) and of a non-ME-

renewal process (Ca, Da) with Ca = T and

Da =









14
5

− 9
10

− 9
10

26
15

− 8
15

− 8
15

58
15

−19
15

−19
15









. (2)

We will use these two RAPs later in our Section 5.
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2.1 The piecewise deterministic Markov process {A(t)}
t≥0

In this section we discuss the properties of the piecewise deterministic phase vector A(t) of

the RAP, which is the fundamental aspect of Asmussen and Bladt’s [1] physical interpre-

tation. The phase vector A(t) is also the continuously re-normalised version of the vector

of container levels considered by Bladt and Neuts [4].

In Proposition 2.1(a), Asmussen and Bladt [1] show that the piecewise deterministic

Markov process, A(·), evolves according to

E [A(t+ s)|Ft] = A(t)eQs, (3)

where Q = C +D and Ft represents the knowledge of the entire history of the process up

to and including time t.

They also show, in Proposition 2.4 and the ensuing discussion, that the piecewise de-

terministic Markov process, A(·), evolves between jumps (that is, points in the point

process) according to the deterministic differential equation

ȧ(t) = a(t)C − a(t)Ce · a(t), (4)

= a(t) (C +De · a(t)) ,

= a(t) (C + a(t)DeI)) ,

the latter expression being more transparent in showing how the uninterrupted piecewise

process evolves – including the explicit continuous re-normalisation mentioned above. It is

important to note that the state space on which the process A(·) exists, which we denote

by the set A, is a subset of the hyperplane {a ∈ R
p : ae = 1}.

Jumps (or points) occur at intensity aDe in state a, and the new state after the

jump/point is deterministically given by

aD

aDe
.

The expression is well–defined as jumps can occur only when aDe > 0.

It is worth noting that a set of matrices that satisfies the conditions in the previous

section represent a RAP if and only if

a. the state space, A, of the process A(·) is a compact and convex set, and

b. aDe ≥ 0 for all a ∈ A, that is the stochastic intensity of points in the point process

must be nonnegative at all times.
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In Corollary 2.2 of [1], Asmussen and Bladt give an explicit representation of A(·) con-

ditional on the times of jumps/points before time t. Since the evolution of A(·) is deter-

ministic in periods between the stochastic jumps, we feel that the simplified representation

of A(·) between jumps/points is as useful. Therefore,

A(t) =
A(0)eCt

A(0)eCte
,

given that the process started in state A(0) after a jump/point at time 0 and no other

jump/point has occurred before time t. Again, the continuous re-normalisation is made

explicit here.

Terminating RAPs

We need the concept of a Terminating RAP in later sections of the paper. To define such

a process we write the matrix D ≡ D1 + d0e
T, where T denotes matrix transposition. We

require that for all a ∈ A aD1e ≥ 0, ad0 ≥ 0, and aD1

aD1e
∈ A whenever aD1e > 0.

The terminating RAP behaves almost as the ordinary RAP, whereby the behaviour of the

phase process between events are given by the usual differential equation and events are

generated with intensity A(t)D1e. However, with intensity A(t)d0 the process terminates,

which can be interpreted as A(t) leaving A from that point in time. For convenience, we

set A(t) = 0.

2.2 Interpretation in terms of fluid flow

Bladt and Neuts [4] introduced the interpretation of the state vector of the ME distributions

as fluid flowing between various containers with the important restriction that the content

of the last container should be non–decreasing non–negative and tending towards 1 as time

tends to infinity. Their interpretation is quite intuitive and they illustrate through a number

of examples how one can generalize proofs in the PH–context that rely on differential

equations involving the generator matrix. They conjecture that one can generalize any

such proof and we believe that.

However, we are not aware of any proofs for the existence of the (infinite) matrix poly-

nomial that solves the M/G/1 or GI/M/1 queue that rely solely on differential equations of

the Chapman–Kolmogorov type. Rather such proofs rely on analyses based on the path–

wise behavior of the process. These proofs cannot be generalized immediately by the fluid
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interpretation as the concept of a state in a Markov chain no longer exists. Rather one

must keep the whole vector in mind simultaneously in all calculations – in the language of

Bladt and Neuts analyze all flows simultaneously. Our contribution illustrates one way of

doing this.

Although the notion of flows is intuitively appealing and thus a very good tool for the

understanding of many aspects of ME–distributions and RAPs we have chosen the slightly

more abstract notion of the phase vector of the RAP/ME process as the time-dependent

vector of weights for measures. We refer to this as the orbit representation and hope that

the reader will bear with us in this respect and might appreciate the distinction – which is

purely in the interpretation – in some places. Also, as in our arguments we use conditional

probabilities (thus requiring continuous renormalization) it is less natural to use the fluid

description.

3 A QBD with RAP Components

3.1 Definition

Suppose we have a Markov process X(t) = (N(t),A(t)) on a state space Z ×A with the

property that A is a compact and convex subset of R
m.

We will refer to the first componentN(t) ofX(t) as the level and to the second component

A(t) as the phase vector. The process X(t) is further defined by three p×p matrices A0, A1,

and A2 as follows. At any moment in time the process changes levels in such a way that

P (N(t + dt) = i + 1|X(t) = (i,a)) = aA0e + o(dt) and P (N(t + dt) = i − 1|X(t) =

(i,a)) = aA2e+ o(dt). Whenever an upwards jump occurs from a the new value of A(t) is

deterministically determined to be A(t+) = aA0

aA0e
, and correspondingly for a downwards

jump A(t+) = aA2

aA2e
, which are both well-defined as level changes can only occur when the

relevant denominator is positive. Between level changes the phase vector deterministically

follows the orbit given by the set of linear differential equations

Ȧ(t) = A(t) (A1 + A(t)(A0 + A2)eI)) .

Suppose we would like to restrict our attention to the case where the level is non–

negative. To accomplish this we introduce a p× p matrix B1 to describe the behaviour at

level zero. At this level we no longer allow downward jumps; upward jumps still occur, but
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now according to aB0e, where B0 is also a p × p matrix. The deterministic behaviour of

A(t) when N(t) = 0 is thus given by

Ȧ(t) = A(t) (B1 + A(t)B0eI) .

This Markov process now has the state space ({0} × A0) ∪ (N+ × A+), since the state

space of the phase vector on level 0 is generally distinct from the state space A+ on levels

above 0. Both A0 and A+ are now compact and convex subsets of R
p.

3.2 Existence

Such a process clearly exists as the MAP/PH/1-queue, or for that sake the QBD, is an

example. In these cases the probability distribution among the phases amounts to the

phase vector A(t). Similarly the counting process of a RAP can be formulated as such a

process, with A0 = B0 = D, A1 = B1 = C, and A2 = 0. Here the interpretation of the

vector A(t) is as the vector of weights of the measures at time t - which we have called the

orbit. The important difference now being that some of these weights might be negative.

The RAP/ME/1 queue can be formulated as a QBD with RAP components. More

generally we will consider the RAP(C,D)/RAP(E,F )/1 queue. Let the compact and

convex set of the phase vector of the first RAP be denoted by C, while the compact and

convex set of the second RAP be denoted by E . The state spaces of the phase vector are

simply defined as A0 = A+ = C×E . The governing matrices are then given by A1 = C⊕E,

A2 = I1 ⊗ F , and A0 = D ⊗ I2, where I1 and I2 are the identity matrices of the same

dimensions as the matrices C and E respectively. To model the behaviour in level 0, we

simply assume that the service-time RAP is suspended in level 0 and so choose B0 = A0

and B1 = C ⊗ I2.

As the two processes behave independently of each other it should be obvious that ev-

erything is well-defined. However, a formal proof goes as follows. We first show that

the upward intensities are all non–negative. First we consider the expression exp (A1t) =

exp ([C ⊕Et]). The matrix–exponential solves two completely decoupled systems of dif-

ferential equations thus the matrix–exponential decouples too. In terms of the Kronecker

sum we see that C ⊗ I2 commutes with I1 ⊗E thus exp (A1t) = exp (Ct)⊗ exp (Et). Now

a exp (A1t)A0e = (a1 ⊗ a2) exp (C ⊕ Et)(D ⊗ I)(e1 ⊗ e2),

= a1 exp (Ct)De1a2 exp (Et)e2,
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where e1 and e2 are column vectors consisting entirely of ones with the number of rows

given by that of C and E, respectively.

This is non–negative since

• a1 exp (Ct)De1 ≥ 0 as RAP(C,D) is well-defined, and

• a2 exp (Et)e2 is the probability of RAP(E,F ) having no points in time t, which is

clearly positive.

Further, we see that an upward jump from (a1 ⊗ a2) at time t will be to state

a exp (A1t)A0

a exp (A1t)A0e
=

(

a1 exp (Ct)D ⊗ a2 exp (Et)

a1 exp (Ct)De1a2 exp (Et)e2

)

,

=

(

a1 exp (Ct)D

a1 exp (Ct)De1

⊗
a2 exp (Et)

a2 exp (Et)e2

)

,

which obviously is within A+. The argument is similar for downward jumps.

With potential interdependence between arrivals and departures the situation becomes

more intricate. In the standard Markovian case we have no difficulties (as usual) while in

the general case we have to add additional conditions, reflecting conditions a. and b. in

Section 2.

• The state spaces of the phase vector in level zero, A0, and in all levels above zero,

A+, are compact and convex spaces.

• aB0e ≥ 0 for all a ∈ A0, aA0e ≥ 0 for all a ∈ A+ and aA2e ≥ 0 for all a ∈ A+.

• If a ∈ A0 is such that aB0e > 0 then aB0

aB0e
∈ A+, if a ∈ A+ is such that aA0e > 0

then aA0

aA0e
∈ A+, and if a ∈ A+ is such that aA2e > 0 then aA2

aA2e
∈ A+.

This is no different from the standard challenge when modeling with RAP’s and ME–

distributions. Given a matrix–exponential kernel it is in general a complicated task to

determine whether the parameters actually reflect a distribution or even a process. See

the original work by Asmussen and Bladt [1] or more recent work by Fackrell [5] for a

discussion of these issues.

What we show in the next section is, that whenever the matrices involved satisfy the

above conditions then the well-known non–linear matrix equations can be used to solve

the system with adjustments needed only in their interpretation.
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We now provide a non–trivial example with cross-correlation between the arrival process

and the sequence of service times. A queue which to our knowledge is not immediately

amenable to analysis by any other technique. The example is constructed by choosing

A1 = Ca = Cs, A0 = γDa, and A2 = (1 − γ)Ds, where γ ∈ [0, 1]. The orbit of both of

the two RAPs (Ca, Da), and (Cs, Ds) is always contained in the same set C as discussed in

detail in [1]. Accordingly, we know that A0 = A+ = C if we choose B0 = A0 and B1 = γA1.

Thus this QBD queue with RAP-components satisfies the above conditions and is at

the same time a non–trivial example extending beyond the standard QBD case and with

cross–correlation between the arrival process and the sequence of service times.

4 Analysis and Interpretations

For all n = {0, 1, 2, . . .}, let τn be the first passage time to any state in the level n. We

impose the condition that, if N(0) = n, then τn > min(τn−1, τn+1).

At the risk of being slightly repetitive of the previous section, we take this opportunity

to succinctly restate the essential structure of the QBD with RAP components including

statements of the physical interpretations of the key quantities in terms of first-hitting

times:

The Markov process X(t) evolves on level 1 and above as follows (with obvious minor

notational modifications for level 0). During intervals where the level does not change, the

phase evolves according to the differential equation (4) with matrix C = A1. The level

decreases by one with intensity A(t)A2e at time t and if such a level change occurs at time

t then the phase process jumps immediately to the state
A(t)A2

A(t)A2e
. Similarly, the level

increases by one with intensity A(t)A0e at time t and if such a level change occurs at time

t then the phase process jumps immediately to the state
A(t)A0

A(t)A0e
. Thus,

aA0e =
d

dh
P [τn+1 ≤ h|X(0) = (n,a)]

∣

∣

∣

∣

h = 0
,

aA0

aA0e
= E [A(τn+1)|X(0) = (n,a) & τn+1 = 0] ,

aA2e =
d

dh
P [τn−1 ≤ h|X(0) = (n,a)]

∣

∣

∣

∣

h = 0
, and

aA2

aA2e
= E [A(τn−1)|X(0) = (n,a) & τn−1 = 0] .
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One powerful tool we shall be using is that of a censored (or restricted) Markov process,

see [6, Section 5.3]. We shall specifically consider the process censored to be on level n.

That is, the Markov process that is observed, from the entire Markov process, when and

only when it is in the level n. This construction naturally creates two different measures

of time, which we shall call global time and local time. Global time is the time measured

by the entire Markov process. Local time is the time measured by the censored process,

consisting of level n only. Local time therefore increases when and only when the process

is in level n. When the process is in level n both measures of time advance at exactly the

same rate. For all n = {0, 1, 2, . . .} we let ℓn(t) denote the local time spent in level n after

t units of global time and gn(t) denote the global time when the local time in level n first

reaches t units.

Let {B(t)}t≥0 be the censored process consisting of level n only, measured in the local

time of level n, and with level n− 1 taboo.

The process {B(t)}t≥0 exists as it is merely a censored process derived from a taboo

Markov process. However, the censored process B(t) is not necessarily a RAP, with the

epochs of entering upper levels interpreted as the jumps, since jumps in the phase process

corresponding to successive visits to level n+ 1 will not in general return to a state deter-

ministically derived from B(t). In order to describe the distribution of the return state we

introduce

ψ(B; a) = P(A(τn) ∈ B|X(0) = (n+ 1,a)), B ⊂ A+.

Since the behaviour of the process on sample paths constrained to lie above level n is

the same for all levels n > 0, we note that we could equivalently define ψ(B; a) as

ψ(B; a) = P(A(τn−1) ∈ B|X(0) = (n,a)), B ⊂ A+.

To later enable us to follow more closely the conventions in the matrix-analytic methods

literature where it is traditional that the matrix G refers to those sample paths starting

at level n with level n− 1 taboo, we use this second form of ψ(B; a). If we had chosen to

continue with the first form of ψ(B; a) then the matrix G that we derive would refer to

those sample paths starting at level n + 1 with level n taboo. This is a purely notational

change for convenience sake.

It is useful also to consider the process B̄(t) which evolves continuously like B(t) ac-

cording to the usual differential equation (4) with successive interruptions occurring with
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intensity B̄(t)A0e. The value of this process immediately after an interruption is the

expected value of B(t) after an interruption from state B(t) = B̄(t).

We now show that this process is a terminating RAP with events corresponding to

successive returns to level n from excursions to higher levels. To do this we define, for

k ≥ 1, the vector valued functions Ψk(a) : A+ → A+ such that Ψk(a) is the expected

value of the phase process A(·) on the first visit to level n− 1, without visiting level n+ k

or above, conditioned on the starting state X(0) = (n,a). In short

Ψk(a) = E [A(τn−1)I(τn−1 < τn+k)|X(0) = (n,a)] .

Correspondingly we define

Ψ(a) = E [A(τn−1)I(τn−1 <∞)|X(0) = (n,a)] =

∫

A+

bψ(db; a).

The process B̄(t) is a RAP if Ψ(a) = aG for some matrix G, and aG ∈ A0 ∩ A+, for all

a ∈ A+. The following arguments show that this is indeed true.

Lemma 1 For k ≥ 1, the vector valued functions Ψk(a) are linear, that is, Ψk(a) = aGk

for some matrix Gk.

Proof: The lemma is proved by induction.

First let’s calculate Ψ1(a). The probability that the process spends time t in level n

before first leaving, given it starts in (n,a), is aeA1te, in which case the state will then be
(

n, aeA1t

aeA1te

)

. The conditional probability P (τn−1 ∈ (t, t + dt)|τn−1, τn+1 > t) is therefore

aeA1t

aeA1te
A2edt. Then,

E [A(τn−1)|t = τn−1 < τn+1, X(0) = (n,a)] =

aeA1t

aeA1t
e
A2

aeA1t

aeA1t
e
A2e

=
aeA1tA2

aeA1tA2e
.

Finally,

Ψ1(a) = E [A(τn−1)I(τn−1 < τn+1)|X(0) = (n,a)] ,

=

∫ ∞

0

aeA1t
e
aeA1tA2e

aeA1te

aeA1tA2

aeA1tA2e
dt,

=

∫ ∞

0

aeA1tA2dt,

= a(−A1)
−1A2 = aG1,
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and thus is linear.

We now introduce, for k ≥ 1, the measures associated with Ψk(a),

ψk(B; a) = P(A(τn−1) ∈ B & τn−1 < τn+k|X(0) = (n,a)), B ⊂ A+,

so that

Ψk(a) =

∫

A+

bψk(db; a).

For all k ≥ 1, we also introduce for all ℓ ≥ 0,

Ψk,ℓ(a) = E [A(τn−1)I(τn−1 < τn+k, exactly ℓ visits above level n)|X(0) = (n,a)]

and note that

Ψk(a) =

∞
∑

ℓ=0

Ψk,ℓ(a).

Considering the first entry to level n+ 1 occurring at time t and the first entry to level

n− 1 occurring at local time t+ u, in level n, we get

Ψk,1(a) =

∫ ∞

t=0

∫

A+

∫ ∞

u=0

aeA1tA0ebeA1uA2e
beA1uA2

beA1uA2e
duψk−1

(

db,
aeA1tA0

aeA1tA0e

)

dt,

=

∫ ∞

t=0

aeA1tA0e

∫

A+

bψk−1

(

db,
aeA1tA0

aeA1tA0e

)

(−A1)
−1A2dt,

=

∫ ∞

t=0

aeA1tA0eΨk−1

(

aeA1tA0

aeA1tA0e

)

(−A1)
−1A2dt.

Assuming the linearity of Ψk−1(b) = bGk−1 for all b ∈ A+, we have

Ψk,1(a) =

∫ ∞

t=0

aeA1tA0e

(

aeA1tA0

aeA1tA0e

)

Gk−1(−A1)
−1A2dt,

= a(−A1)
−1A0Gk−1(−A1)

−1A2.

Since the process is Markovian, linearity of the first visit implies linearity for any fixed

number ℓ of visits above n. Alternatively we could carry out the above calculations for any

fixed ℓ > 1, to achieve

Ψk,ℓ(a) = a
[

(−A1)
−1A0Gk−1

]ℓ
(−A1)

−1A2, ℓ ≥ 0.

14



Thus all the functions Ψk,ℓ(a) are linear and so, since Ψk(a) is the expected value of a

random variable with finite expectation,

Ψk(a) =

∞
∑

ℓ=0

Ψk,ℓ(a),

=

∞
∑

ℓ=0

a
[

(−A1)
−1A0Gk−1

]ℓ
(−A1)

−1A2,

= aGk,

and is thus linear. Further, since A0 ∩ A+ is a compact and convex set, aG ∈ A0 ∩ A+,

for all a ∈ A+.

Theorem 2 For all a ∈ A+, we have

Ψ(a) = E [A(τn−1)I(τn−1 <∞)|X(0) = (n,a)] = aG.

for some matrix G.

Proof: Clearly,

Ψ(a) = Ψk(a) + P (τn−1 ≥ τn+k|X(0) = (n,a))Ψ⋆
k(a),

where Ψ⋆
k(·) is some bounded function on the domain A+. Since P(τn−1 ≥ τn+k|X(0) =

(n,a)) → 0 as k → ∞, Lemma 1 implies that Ψ(a) = aG for some matrix G.

It is immediately obvious that Theorem 2 implies that

aGe = E [A(τn−1)eI(τn−1 <∞)|X(0) = (n,a)] ,

= E [I(τn−1 <∞)|X(0) = (n,a)] ,

= P [τn−1 <∞|X(0) = (n,a)] , and

aG

aGe
= E [A(τn−1)|X(0) = (n,a) & τn−1 <∞] .

In words, we have that, given X(0) = (n,a),

1. aGe represents the probability that the process will ever reach level n− 1, and

2.
aG

aGe
represents the expected state of the process A(·) on the first visit to level n−1,

given that the process ever visits level n− 1.
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Remark 1 It is clear that the process is recurrent, if and only if aGe = 1 for all a ∈ A+.

The linearity result of Theorem 2 paves the way for the following important corollary.

Corollary 3 The expected value of the processes B(t) and B̄(t) are identical, that is,

E(B(t)|X(0) = (n,a)) = E(B̄(t)|X(0) = (n,a)), t ≥ 0.

Proof: We prove the result by considering the number L of intermediate visits to higher

levels. We show, for all ℓ ≥ 0, that

E(B(t)I(L = ℓ)|X(0) = (n, b0)) ≡
∫ t

u1=0

∫ t−u1

u2=0

· · ·

∫ t−
P

ℓ−1

i=1
ui

uℓ=0

∫

A+

· · ·

∫

A+

[

ℓ
∏

i=1

bi−1e
A1uiA0e

]

bℓe
A1(t−

P

ℓ

i=1
ui)

ψ

(

dbℓ,
bℓ−1e

A1uℓA0

bℓ−1e
A1uℓA0e

)

· · ·ψ

(

db1,
b0e

A1u1A0

b0e
A1u1A0e

)

duℓ · · ·du2du1,

=

∫ t

u1=0

∫ t−u1

u2=0

· · ·

∫ t−
P

ℓ−1

i=1
ui

uℓ=0

b0

[

ℓ
∏

i=1

eA1uiA0G

]

eA1(t−
P

ℓ

i=1
ui)duℓ · · ·du2du1,

≡ E(B̄(t)I(L = ℓ)|X(0) = (n, b0)).

This is then sufficient to prove the desired result. The details of this argument are more

tedious than insightful and so we have placed them in Appendix A.

Theorem 4 The matrix

U = A1 + A0G (5)

is a p× p matrix that, for all t ∈ R+ and for all a ∈ A+, satisfies the following expression

E [A(gn(t))I (gn(t) < τn−1) |X(0) = (n,a)] = aeUt. (6)

Proof: It follows directly from Theorem 2 that the process B̄(t) is a terminating RAP.

Between epochs of visits to levels n+1 and above, the phase evolves at level n according to

the differential equation (4) with matrix C = A1. Excursions to level n+1 and above occur

from a with intensity aA0e. Depending on the recurrence or transience of the process, all

or some of these excursions will return to level n. The intensity with which excursions to

level n + 1 and above that return to level n occur from a is aA0Ge. If such an excursion

occurs, then the phase process returns to level n with expected state aA0G
aA0Ge . Thus the
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right-hand side of (6) governs the phase process of B̄(t) when initiated in a. But, by

Corollary 3, this is precisely the expected value of B(t), which is the left-hand side of

(6).

Incidentally, it is immediately obvious that Theorem 4 implies that

aeUt
e = P [gn(t) < τn−1|X(0) = (n,a)] , and

aeUt

aeUte
= E [A(gn(t))|X(0) = (n,a) & gn(t) < τn−1] .

In words, we have, given X(0) = (n,a), that

1. aeUte represents the probability that the process has spent at least t units of local

time in level n before it is absorbed into the taboo level n− 1, and

2.
aeUt

aeUte
represents the expected state of the process A(·) when the local time first

reaches t units, given that the process spends at least t units of local time in level n.

This matrix U has a very similar interpretation to that of Q in Proposition 2.1 of

Asmussen and Bladt [1]. The only differences between Q and U are

1. the concept of local time which is a direct consequence of the fact that we have

embedded the RAP in a more complicated setting, and

2. the existence of the taboo level n−1, which means that there is a non-zero probability

that the process may jump down to the taboo level n − 1 and thus is terminating.

This is analogous to U being a non-conservative generator in the traditional QBD

case.

We are now ready to prove the following traditional QBD result in the more general

setting of a QBD with RAP components.

Theorem 5 The matrix G is given by

G = (−U)−1A2. (7)

Proof: The density of having a transition to level n− 1 at local time t, when X0 = (n,a)

is

aeUtA2e.
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The expected value of the phase process immediately after the first such transition occur-

ring at local time t is

E [A(gn(t))|X0 = (n,a) & τn−1 = gn(t)] = aeUtA2/ae
UtA2e.

Thus

aG = E [A(gn(τn−1))I(τn−1 <∞)|X0 = (n,a)] ,

=

∫ ∞

t=0

aeUtA2

aeUtA2e
aeUtA2e dt =

∫ ∞

t=0

aeUtA2 dt = a(−U)−1A2.

Now, both G and (−U)−1A2 have the same physical interpretation for all a ∈ A+ and

hence we may take G = (−U)−1A2.

Corollary 6 The matrix G is a solution to the equation

A2 + A1G+ A0G
2 = 0. (8)

Proof: Theorem 4 gives that U = A1 + A0G and Theorem 5 shows G = (−U)−1A2.

Exactly as in the traditional QBD environment, these two equations can be combined to

give equation (8).

At this point we have developed all the necessary machinery. We are now ready to state

and prove our main result.

Consider the censored process at level 0, with no levels taboo, which is denoted by

{C(t)}t≥0 and define the corresponding RAP
{

C̄(t)
}

t≥0
with a similar interpretation to

that of
{

B̄(t)
}

t≥0
.

Theorem 7 Assume that X(·) is a positive recurrent Markov process.

1. Let the vectors πn denote limt→∞ E [A(t)I(N(t) = n)|X(0) = (m, b)]

= E [A(t)I(N(t) = n)|E (A(0)I(N(0) = m)) = πm, m = 0, 1, 2, . . . ] then

πn = πn−1R for all n ≥ 1,

with

R = A0(−U)−1. (9)

2. The matrix V = B1 +RA2 is the matrix that drives the evolution of C̄(·).
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3. Let the vector π̂0 be chosen so that it satisfies

x [B1 +RA2] = 0, (10)

but is normalised according to π̂0e = 1. Then π̂0 is such that, for all t ≥ 0,

π̂0 = E [C(t)|E (C(0)) = π̂0] .

That is, π̂0 is the expected state of the stationary distribution of C(·).

4. Finally, π0 = K · π̂0 where

K = P [N(t) = 0|E (A(0)I(N(0) = m)) = πm, m = 0, 1, 2, . . . ] ,

and
∞

∑

k=0

π0R
k
e = π0 (I −R)−1

e = 1. (11)

Proof:

1. The existence, for all (m, b) ∈ {({0} × A0) ∪ (N+ ×A2)}, of

πn = lim
t→∞

E [A(t)I(N(t) = n)|X(0) = (m, b)] ,

= E [A(t)I(N(t) = n)|E (A(0)I(N(0) = m)) = πm, m = 0, 1, 2, . . . ]

follows from the positive recurrence of the Markov process X(·).

To show the form of πn we closely follow the approach introduced by Ramaswami [13]

in the traditional QBD environment with a few crucial changes. Actually, this ap-

proach shows that the extension of the classical framework goes beyond QBDs to the

general case of processes of GI/M/1 type with RAP components. Consider the state

of the RAP at time t. By conditioning on the last entry to level n from below, we

obtain

E [A(t)I (N(t) = n) |X(0) = (0,a)]

=

∫ t

0

∫

A+

P (X(t− x) ∈ (n− 1, db)|X(0) = (0,a)) bA0e

×E

(

A(x)I(N(x) = n, x < τn−1)|X(0) =

(

n,
bA0

bA0e

))

dx.
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From Theorem 4 we have

E

[

A(t)I(N(t) = n, t < τn−1)|X(0) =

(

n,
bA0

bA0e

)

, ℓn(t) = u

]

=
bA0

bA0e
eUuP

(

N(t) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(t) = u

)

.

Using this result we get

E [A(t)I (N(t) = n) |X(0) = (0,a)]

=

∫ t

0

∫

A+

P (X(t− x) ∈ (n− 1, db)|X(0) = (0,a)) bA0e

×Eℓn(x)

[

E

(

A(x)I(N(x) = n, x < τn−1)|X(0) =

(

n,
bA0

bA0e

))

|ℓn(x)

]

dx,

=

∫ t

0

∫

A+

P (X(t− x) ∈ (n− 1, db|X(0) = (0,a)))

×bA0eEℓn(x)

[

bA0

bA0e
eUℓn(x)P

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x)

)]

dx,

=

∫ t

0

∫

A+

P (X(t− x) ∈ (n− 1, db)|X(0) = (0,a)) b

×A0Eℓn(x)

[

eUℓn(x)P

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x)

)]

dx.

Taking limits as t→ ∞ on both sides, gives

πn =

∫

A+

lim
t→∞

∫ ∞

0

P (X(t− x) ∈ (n− 1, db)|X(0) = (0,a)) b

×A0Eℓn(x)

[

eUℓn(x)P

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x)

)]

dx .

Now using similar arguments to those in [13, Page 263], we obtain

πn =

∫

A+

([

lim
t→∞

P (X(t) ∈ (n− 1, db)|X(0) = (0,a)) b

]

(12)

×A0

∫ ∞

0

Eℓn(x)

[

eUℓn(x)P

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x)

)]

dx

)

.

The idea of the following argument is simple. Local time increases with rate 1,

whenever the process is in level n and with rate 0 otherwise. Thus it seems natural

and obvious that the following claim holds true,
∫ ∞

0

Eℓn(x)

[

eUℓn(x)P

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x)

)]

dx =

∫ ∞

0

eUudu.

20



To formally prove this claim, first note that the events {ℓn(x) ≤ u} and {gn(u) ≥ x}

are identical, since any sample path that belongs to the former belongs to the latter

and vice versa. Introducing Lx(u) = P
(

ℓn(x) ≤ u|X(0) =
(

n, bA0

bA0e

))

and Gu(x) =

P
(

gn(u) ≥ x|X(0) =
(

n, bA0

bA0e

))

one sees that Lx(u) = Gu(x).

Now
∫ ∞

0

Eℓn(x)

[

eUℓn(x)P

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x)

)]

dx

=

∫ ∞

x=0

∫ x

u=0

eUuP

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x) = u

)

dLx(u)dx.

We can now change the order of integration while using the relationship between

Lx(u) and Gu(x) to get

∫ ∞

u=0

eUu

∫ ∞

x=u

P

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x) = u

)

dGu(x)du.

The integral

∫ ∞

x=u

P

(

N(x) = n|X(0) =

(

n,
bA0

bA0e

)

, ℓn(x) = u

)

dGu(x)

is the probability that the process ever visits level n again, given that the local time

spent at level n is u. This probability is one according to the positive recurrence of

the Markov chain, and so the claim is true. Therefore, equation (12) becomes

πn =

∫

A+

[

lim
t→∞

bP (X(t− x) ∈ (n− 1, db)|X(0) = (0,a))
]

∫ ∞

0

A0e
Uudx,

= πn−1

∫ ∞

0

A0e
Uudx,

= πn−1A0(−U)−1,

= πn−1R,

by equation (9).

2. It is clear that the proof of Theorem 4 can be simply reworked to show that the

matrix V = B1 +A0G is the matrix that drives the evolution of C̄(·) with evolution

within level 0 driven by B1 and jumps (that is, transitions that first go to level 1)

driven by A0G. From equation (7) and (9) we have that V can also be written as

V = B1 +RA2.
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Since this process is merely a censored part of the positive recurrent process, with no

taboo states, it must be positive recurrent and so equation (10) must have a solution.

3. Let π̂0 be chosen so that it satisfies equation (10) and is normalised according to

π̂0e = 1. Then Corollary 3 and equation (3) imply, for all t ≥ 0, that

E [C(t)|E(C(0)) = π̂0] = E
[

C̄(t)|E(C(0)) = π̂0

]

,

= π̂0e
V t,

= π̂0.

4. Since C(·) is the version of X(·), censored to be on level 0, we have that

E [A(t)I(N(t) = 0)|E (A(0)I(N(0) = m)) = πm, m = 0, 1, . . . ]

E [I(N(t) = 0)|E (A(0)I(N(0) = m)) = πm, m = 0, 1, . . . ]
= π̂0, ∀t ≥ 0.

The denominator E [I(N(t) = 0)|E (A(0)I(N(0) = m)) = πm, m = 0, 1, . . . ] is equal

to P [N(t) = 0|E (A(0)I(N(0) = m)) = πm, m = 0, 1, . . . ], and the numerator is

π0.

Since the process is recurrent we have

∞
∑

i=0

πne = 1 = π0(I −R)−1
e.

Corollary 8 The process is positive recurrent if and only if

(i) the dominant eigenvalue of R, Sp(R), is such that Sp(R) < 1, and

(ii) equation (10) has a solution.

Proof: If the process is positive recurrent, then as argued in the proof of Theorem 7(ii),

equation (10) must have a solution. From Theorem 7(iv) we also know that Sp(R) < 1.

For the converse, we know that the invariant measure of the form described in Theorem 7

exists and is summable and so the process must be positive recurrent.

Remark 2 It is also of interest to evaluate the marginal distribution that the queue has k

customers in the queue, and this is given by

mk = πke = π0R
k
e, k ≥ 0. (13)
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5 The example process

In the remainder of the paper we shall not pursue the full generality of a QBD with RAP

components, but instead move to a simple concrete example, that of Section 3. That small

example has all the ingredients needed. The arrival process and sequence of service times

are driven from the same phase space thus providing dependence between the two. Further

the sojourn time at each level are matrix–exponentially distributed, with a distribution that

is not in PH. We repeat the matrices defining this queue:

A0 = γDa = γ









14
5

− 9
10

− 9
10

26
15

− 8
15

− 8
15

58
15

−19
15

−19
15









,

A1 =









−1 0 0

−2
3

−1 1
2
3

−1 −1









,

A2 = (1 − γ)

(

1,
2

3
,
4

3

)T

(3,−1,−1) ,

B0 = A0, and B1 = γA1.

The key to a solution of this problem is that A2 is rank one. We can thus apply

Theorem 8.5.1 of [6] directly as the proof of that theorem is purely analytical relying

only on equation (7) and Remark 1 to show that G = e(3,−1,−1). We can then use

equation (5) to show that

U = A1 + A0G =









−1 + 3γ −γ −γ
−2
3

+ 2γ −1 − 2
3
γ 1 − 2

3
γ

2
3

+ 4γ −1 − 4
3
γ −1 − 4

3
γ









,

and equation (9) to find

R = γ









14
5

− 9
10

− 9
10

26
15

− 8
15

− 8
15

58
15

−19
15

−19
15

























−1 + 3γ −γ −γ
−2
3

+ 2γ −1 − 2
3
γ 1 − 2

3
γ

2
3

+ 4γ −1 − 4
3
γ −1 − 4

3
γ

















−1

,

=











−1/15 γ (33+2 γ)
γ−1

0 1/10 γ (γ+9)
γ−1

− 2
45

γ (31+4 γ)
γ−1

0 2/15 γ (γ+4)
γ−1

− 4
45

γ (34+γ)
γ−1

0 1/15 γ (γ+19)
γ−1











.
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Now, the eigenvalues of R are (0,−γ/15, γ/(1− γ). This is important as it allows us to

determine the stability of the queue by Corollary 8. We can easily see that the queue is

stable whenever γ < 1
2
. Note, this is a mere coincedence of the parameter values rather

than an intrinsic property of the construction.

To conclude this example, we present two results. First, we present a table giving the

equilibrium distribution of the marginal queue length for γ = 0.25. In this table we present

the analytic results from Theorem 7 and the sample mean and 95% confidence intervals for

simulation results, where we ran 10 independent simulations each consisting of 10,000 level

changes. Second, we present a graph presenting the mean queue length for the process as

a function of γ.

Level Analysis Sample mean 95% Confidence Interval

0 0.6736 0.6580 (0.6419,0.6741)

1 0.2175 0.2275 (0.2192,0.2358)

2 0.0726 0.0758 (0.0709,0.0807)

3 0.0242 0.0259 (0.0220,0.0298)

4 0.0081 0.0085 (0.0060,0.0111)

5 0.0027 0.0028 (0.0014,0.0041)

6 0.0009 0.0010 (-0.0001,0.0021)

7 0.0003 0.0003 (-0.0002,0.0008)

8 0.0001 0.0001 (-0.0002,0.0004)

Table 1: Equilibrium distribution of the marginal queue length for γ = 0.25.

6 Conclusions

In this paper we have introduced the concept of a QBD with RAP components. We

have extended the performance evaluation literature by providing an efficient analytic

method for determining the equilibrium distribution for such a process. The efficiency

comes from the fact that the complexity is determined by the dimension of the matrix

exponential distribution and it is well known that some phase-type distributions have

matrix exponential representations of much smaller dimension. The issue of justifying

algorithms for the evaluation of the matrix G for such processes has not been undertaken,
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Figure 1: Figure of the Mean Queue Length against γ.

but has been delayed to a later paper [3]. The study of numerical stability is also important

as there will be terms of opposing sign, unlike in the case of the traditional QBD.

We investigated a positive recurrent queue where the arrival process and sequence of

service times were taken from different RAPs (outside the space of MAPs) that share the

same phase space. This introduces cross-correlation between the arrival process and the

sequence of service times. To our knowledge this is the first analysis of a queue with RAP

components that is outside the domain of traditional matrix-analytic methods.

To avoid the issue of requiring algorithms for evaluating the matrix G, we deliberately

chose the RAP representing the sequence of service times to have a rank-one jump matrix.

This meant that the matrix G could be identified a priori for such a process.

The authors believe that the results in this paper are particularly important in the field

of practical application where the arrival and service processes are fitted to observed data

using some statistical technique. In this situation the attractiveness of the very simple

physical interpretation of the MAP and the phase-type distribution is not missed as it was

always artificial. This is in stark contrast to the situation where a MAP or phase-type

distribution arises naturally from understanding the physical processes.

Further, the task of fitting phase-type distributions to data is awkward as the difficulty

of representing a distribution efficiently by a phase-type distribution is always present.

In contrast, now that it is possible to analyse QBDs with RAP components, this may
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provide great impetus to the field of fitting data to matrix exponential distributions. In

this direction, Fackrell [5] has made significant progress.
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A Details omitted from the proof of Corollary 3

The result is obvious for L = 0 since the processes B(t) and B̄(t) are identical in this case.

For L = 1 we get

E(B(t)I(L = 1)|X(0) = (n, b0))

≡

∫ t

u1=0

∫

A2

b0e
A1u1A0eb1e

A1(t−u1)ψ

(

db1,
b0e

A1u1A0

b0eA1u1A0e

)

du1,

=

∫ t

u1=0

b0e
A1u1A0e

∫

A2

b1ψ

(

db1,
b0e

A1u1A0

b0eA1u1A0e

)

eA1(t−u1)du1,

=

∫ t

u1=0

b0e
A1u1A0e

b0e
A1u1A0

b0eA1u1A0e
GeA1(t−u1)du1,

=

∫ t

u1=0

b0e
A1u1A0Ge

A1(t−u1)du1,

≡ E(B̄(t)I(L = 1)|X(0) = (n, b0)),

where the third equation follows from Theorem 2.

We now use induction to conclude the argument.

E(B(t)I(L = ℓ+ 1)|X(0) = (n, b0)) ≡
∫ t

u1=0

∫ t−u1

u2=0

· · ·

∫ t−
P

ℓ

i=1 ui

uℓ+1=0

∫

A2

· · ·

∫

A2

[

ℓ+1
∏

i=1

bi−1e
A1uiA0e

]

bℓe
A1(t−

P

ℓ+1

i=1
ui)

ψ

(

dbℓ+1,
bℓe

A1uℓ+1A0

bℓe
A1uℓ+1A0e

)

· · ·ψ

(

db1,
b0e

A1u1A0

b0e
A1u1A0e

)

duℓ+1 · · ·du2du1,

=

∫ t

u1=0

∫

A2

b0e
A1u1A0e

∫ t−u1

u2=0

· · ·

∫ t−u1−
P

ℓ

i=2
ui

uℓ+1=0

∫

A2

· · ·

∫

A2

[

ℓ+1
∏

i=2

bi−1e
A1uiA0e

]

bℓe
A1(t−u1−

P

ℓ+1

i=2
ui)

ψ

(

dbℓ+1,
bℓe

A1uℓ+1A0

bℓe
A1uℓ+1A0e

)

· · ·ψ

(

db2,
b1e

A1u2A0

b1e
A1u2A0e

)

duℓ+1 · · ·du2ψ

(

db1,
b0e

A1u1A0

b0e
A1u1A0e

)

du1,

=

∫ t

u1=0

∫

A2

b0e
A1u1A0eE(B(t− u1)I(L = ℓ)|X(0) = (n, b1))ψ

(

db1,
b0e

A1u1A0

b0e
A1u1A0e

)

du1,

=

∫ t

u1=0

∫

A2

b0e
A1u1A0e

∫ t−u1

u2=0

· · ·

∫ t−u1−
P

ℓ

i=2 ui

uℓ+1=0

b1

[

ℓ+1
∏

i=2

eA1uiA0G

]

eA1(t−u1−
P

ℓ+1

i=2
ui)

duℓ+1 · · ·du2ψ

(

db1,
b0e

A1u1A0

b0e
A1u1A0e

)

du1,
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=

∫ t

u1=0

∫ t−u1

u2=0

· · ·

∫ t−
P

ℓ

i=1
ui

uℓ+1=0

b0e
A1u1A0e

∫

A2

b1ψ

(

db1,
b0e

A1u1A0

b0e
A1u1A0e

)

[

ℓ+1
∏

i=2

eA1uiA0G

]

eA1(t−
P

ℓ+1

i=1
ui)duℓ+1 · · ·du2du1,

=

∫ t

u1=0

∫ t−u1

u2=0

· · ·

∫ t−
P

ℓ

i=1 ui

uℓ+1=0

b0e
A1u1A0e

b0e
A1u1A0

b0e
A1u1A0e

G

[

ℓ+1
∏

i=2

eA1uiA0G

]

eA1(t−
P

ℓ+1

i=1
ui)

duℓ+1 · · ·du2du1,

=

∫ t

u1=0

∫ t−u1

u2=0

· · ·

∫ t−
P

ℓ

i=1
ui

uℓ+1=0

b0

[

ℓ+1
∏

i=1

eA1uiA0G

]

eA1(t−
P

ℓ+1

i=1
ui)duℓ+1 · · ·du2du1,

≡ E(B̄(t)I(L = ℓ + 1)|X(0) = (n, b0)),

where the fourth equation follows from the induction hypothesis and the sixth equation

follows from Theorem 2.
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