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Björk Gı́sladóttir for their thorough review of this thesis and constructive com-
ments. Our fellow student and friend, Søren Knudsen, we thank for countless
discussions and invaluable input.

Finally, we would like to express our gratitude to the people, who took the
time and effort to test our search engine and fill out the questionnaire.

Thanks guys, your help is greatly appreciated.



iv Acknowledgments



Resume

Internettets hastige vækst og de massive datamængder har forøget betydnin-
gen og kompleksiteten af informations søgning. Mængden og forskelligheden af
data introducerer brist i de metoder søgemaskiner bruger til rangering af resul-
tater. Et resultat af dette er at søgemaskine optimerings-virksomheder blom-
strer ved at udnytte søgemaskinernes svagheder og derved manipulerer med
søgeresultater. Derudover præsenterer mange søgemaskiner brugeren for mil-
lioner af resultater ved søgninger hvor disse resultater ofte er skævvredet mod
blogs og net butikker. Denne skævvridning stammer fra den link analyse, der
ligger til grund for søgeresultaterne. Internettets link struktur er b̊ade styrken
men ogs̊a akilleshælen ved brugen af link analyse til rangering af søgeresultater.

I dette speciale foresl̊as at ændre søgemaskinernes adfærd, væk fra link anal-
yse og hen mod en analyse af websiders faktiske indhold. Ved hjælp af data-
grupperings algoritmer og den enorme mængde af information i Wikipedia er
ideen at bygge kategorier, der er specifikke nok til at filtrere i søgeresultater.
Udsigten til at lade brugeren filtrere søgeresultater ved et tryk p̊a en knap vil
forbedre relevansen af søgeresultaterne. Kategorierne vil give brugeren færre
men mere relevante resultater.

De veldefinerede kategorier og artikler i Wikipedia har vist sig at være værdi-
fulde som trænings sæt ved gruppering af Internet data. Den implementerede
Zeeker Search Engine har præcise kategorier, hvilke kan forbedres væsentligt
ved at drage nytte af yderligere information fra Wikipedia.

En brugerundersøgelse har vist at Zeeker Search Engine har høj relevans ved
informations søgning, er nem at bruge og har stort potentiale som søgemaskine.
Dette projekt har givet innovative ideer og m̊ader at bruge information fra
Wikipedia til at producere gode kategorier og finde relevante søgeresultater.

Nøgleord: Søgemaskine design, Informations søgning, Sprogteknologi, Data
gruppering, Wikipedia, Zeeker Search Engine.
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Abstract

The rapid growth and massive quantities of data on the Internet have increased
the importance and complexity of Information Retrieval. The amount and diver-
sity of data introduce shortcomings in the way search engines rank their results.
As a result, Search Engine Optimization companies flourish by exploiting the
search engine weaknesses in order to manipulate the search results. Further-
more, many search engines present several million results to queries and more
often or not these results are biased toward blogs and on-line stores. This bias is
due to the link analysis used to rank the search results. Internet link structure is
the strength but at the same time the Achilles’ heel of these ranking algorithms.

In this work it is proposed to push search engine behavior in a new direc-
tion, away from link analysis and toward actual content and topic analysis of
web pages. With the use of clustering algorithms and the vast amount of infor-
mation in Wikipedia the idea is to create categories that are good enough to be
used to filter search results. The prospect of letting the user filter the search
results by the push of a button would improve the relevance of the search results
for a particular query. Categories will give the user fewer yet more relevant re-
sults.

The well-defined categories and articles of Wikipedia are shown to be valu-
able as a training set when clustering Internet data. The implemented Zeeker
Search Engine has precise categories which can become even better by taking
advantage of additional information available in Wikipedia.

A user-survey conducted has revealed that Zeeker Search Engine has good
relevance when retrieving information, is easy to use and has great potential as
a search engine. This work has suggested innovative ideas and ways of using the
information in Wikipedia to produce good categories and retrieve more relevant
search results.

Keywords: Search engine design, Information Retrieval, Natural Language
Processing, Clustering, Wikipedia, Zeeker Search Engine.
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Chapter 1

Introduction

1.1 Motivation: A new way of searching

When using the best available search engines, we often find that they lack quite
a bit in terms of actually providing the information needed for a given search
query.

Today a whole industry of ”search engine optimization” (SEO) companies
have emerged with no other mission than to manipulate the search engine re-
sults using link farms, cleverly chosen meta information1 etc. These tricks give
their customers’ web pages a better ranking in the search results2. On top of
the enormous amounts of redundant information these companies provide, one
usually gets as many as ten million results when searching. Many of the result-
ing web pages only contain one word from the search query but that does not
mean the page has any useful information regarding this word or topic. Very
few have the time, or desire, to go through all the search results to find relevant
information. Often users merely skim the top 10−20 results and choose the web
pages that look promising before refining their queries. If the most relevant web
page for a given search query is ranked 30 or lower, most users would probably
not find it, at least not the first time around. Cheating search engines and most
of all; getting too much useless information, is, as we see it, the biggest problem
with search engines today.

1.1.1 Known search engine problems

When discussing search engine problems the place to start is Google. Not be-
cause Google is the worst search engine but because Google is the best search
engine out there. The problems Google and its PageRank [10, 23] algorithm
face, and have not yet conquered, other search engines face as well. Therefore,
we will focus our attention on Google when describing some of the problems we

1Such as including popular keywords as hidden text
2Placing the web page higher in the list of results
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find important to solve.

Whenever searching for something that can be sold on-line, Google’s results
skew toward on-line stores. Searching for flowers, eight of the top ten results
are on-line stores trying to sell flowers. Wikipedia’s article describing flowers
is number three and a gallery is number eight3. These results are good if the
user wanted a mothers day gift but if he/she wanted gardening information, a
search within the search results would be necessary. Google creates a skewness
in search results when people mention a product on their web page and link to
a store selling the product. These service links generate enormous weights to
stores because the Google PageRank algorithm deems pages with many links
pointing to it important.

Another skewness occurs on synonyms. For example, searching for informa-
tion regarding apples, a search using merely the term apple does not work. After
skimming more than one hundred of the top results from Google, we had not
found anything but links to Apple Inc. The PageRank algorithm finds Apple
Inc. to be very important because of the many links to Apple.com whenever a
web page mentions iPhone, iPod etc.

Again, skewness occurs when a certain topic is discussed by many people
on blogs and forums. These threads tend to make it to the top of the search
result list instead of the pages actually containing information describing the
topic. This means that one gets pages with discussions of a topic but not pages
defining the topic. Terms can even get different meanings after they have been
through Google’s algorithms - called Google wash. Using the example with the
search query on apples the results deal with Apple Inc. not the fruit. This is
an example of Google Wash. Effectively this means that results on Google refer
to a set of opinions and certain uses of words, not necessarily the true meaning
of the words. This can be seen in many queries where blogs and forum threads
enter the top ten results instead of the definition of the search words.

It has been reported (unofficially) that Google only indexes the first 100 KB

of web pages, probably due to the fact that the Internet is too big to store, even
on Google’s hardware. The problem with this restriction comes into effect if the
relevant information is stored somewhere beyond those 100 KB, thus making
it impossible to search for.

Many of these problems such as biased results toward on-line stores, topic
skewness etc. arise from the fact that Google puts a lot of faith into the link
structure of the Internet. It is assumed that a link points to some related infor-
mation and that the link’s anchor text describes that information. This is not
always the case - and when big money is involved and there is a weakness in
the search engine’s structure, someone is going to take advantage of it. These
weaknesses are used by link farms, Google Bombs etc. to get a particular web
page higher in the result list.

In the discussion above we have identified some potential problems with

3Search query submitted May 2nd, 2007
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search engines today which we would like to make better. However, before we
start implementing a new search engine, we need to analyze how a search engine
works and what issues need to be addressed. In the rest of this introduction
we will discuss and analyze some of the problems and choices we need to make
when implementing our search engine.

1.2 Search engine anatomy

The inner workings of a search engine is very complex and versatile. This
section will describe the general data-flow in a search engine and analyze some
of the problems arising when doing data processing, data indexing and query
processing.

Based on the data-flow in a standard search engine, some common elements
are needed to construct a search engine. The data-flow is as follows:

1. First a Webcrawler is used to download pages from the web and store
them in the search engine’s database. These pages are defined as docu-
ments.

2. When data is present in the database, a Document Processor parses
the documents and formats them before indexing can take place.

3. An Indexing Service takes the parsed and formatted data and creates an
index. The Indexing Service only indexes items that have been identified
as relevant4 thus making the data ready to be searched. These items are
defined as terms.

4. Finally, a Query Processor processes the queries from users and searches
the database for matches and presents the relevant results to the user.

Based on the above, the construction of a search engine can be split into
three different categories:

• Document Processing

• Data Indexing

• Query Processing

The Document Processing deals with data preprocessing, Data Indexing han-
dles the appropriate indexing of the downloaded data and Query Processing sub-
mits queries and retrieves the results from the search engine. These elements will
be discussed in more detail in the following sections. The Webcrawler used in
this work, called Zeeker.Spider, was implemented in a separate project5 and will
not be discussed in further detail here. Suffice to say it meets the requirements
of a standard webcrawler.

4E.g. words, phrases, numbers, names, etc.
5By Søren Halling and Magnus Sigurdsson at the Danish Technical University in February

and March 2007
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1.2.1 Document processing

Since text cannot be directly interpreted by a search algorithm, an indexing
procedure needs to map the text to a proper representation of its content. The
document processor does exactly that. It prepares, processes, and inputs the
documents (web pages or sites) that the search engine will add to its index.
Many problems arise when processing large amounts of data. Even the sim-
plest tasks can become complicated when data is of enormous size. Further, the
parsing of data is difficult as there is very little (if any) structure in the various
documents on the Internet. Just about anything goes ”out there”.

When a document processor is implemented, various problems arise regard-
ing parsing and identifying indexable elements (terms). This section discusses
how these problems could be addressed.

How a document processor represents text is a choice of which elements of
the text it finds meaningful (lexical semantics) and what combinational rules
it finds meaningful for these elements (compositional semantics). Usually, the
compositional semantics of text is disregarded[36] and text is represented as a
histogram of terms that occur in the text, hence only keeping the lexical seman-
tics.

To create the term histogram, the document processor performs some or all
of the following steps (see also figure 1.2.1 on page 10):

1. Normalizes the document stream to a predefined format.

2. Breaks the document stream into desired retrievable units.

3. Identifies potential indexable elements in documents.

4. Deletes stop words.

5. Reduces terms to their stems.

6. Extracts index entries.

7. Computes term weights.

These steps are very important in the process of creating a search engine
as the terms the document processor identifies are the terms that later can be
searched for.

Text is extremely dynamic and can contain hundreds of thousands of char-
acters, symbols, punctuations, digits etc. As a result there are many problems
that need to be addressed when dealing with such data and trying to identify
indexable elements. Besides the different parsing rules and handling of data, the
document processor needs to ease the load of later calculations by only selecting
the terms that are important and relevant without loosing too much valuable
information. This trade off is one of the real challenges in implementing a good
document processor.
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Punctuation example Result
x:id, x;ix, x.id x<a>id
x’id, x”id, x̂ıd x<b>id
x(id, x[id, x{id x<c>id
x((id, x[(id, x{(id x<c>id

Table 1.1: Punctuation groups

Normalizing and identifying indexable terms

First of all the text has to broken into terms and the obvious way would be to
break on white spaces - i.e. define a single word as a term. This approach is
called bag-of-words as text is seen as a bag of words, thus disregarding compo-
sitional semantics.

Punctuations can divide sentences but are also used in many other contexts,
e.g. variable names in program code such as ’x.id’ or in ’510B.C.’. Punctuation
cannot be removed uncritically from a sentence thus giving ’xid’ and ’510BC’.
One solution could be to create punctuation groups such that punctuations
would be replaced by special character sequences, e.g. ’<x>’ in the index giving
’x<x>id’ and ’510B<x>C’ making searches on ’x:id’, ’x;ix’, ’x.id’ etc. mean
the same thing. The groups could be refined even further by generating several
groups as shown in table 1.1, thus minimizing the number of indexed terms.

To avoid loosing too much of the individual words and adding to processing
complexity it is advised to use white space as delimiters and remove punctua-
tions only if a word begins or ends with a punctuation.

When finding indexable terms it is difficult to say when a word or group
of words are important enough to be indexed. The case of the word says a
lot about its importance and a decision whether ’PET’ and ’pet’ should mean
the same thing has to be made. An easy approach is to add more importance
to upper case words as they tend to be abbreviations of organizations, terms
and/or concepts.

Nouns usually carry most semantic weight and other word groups could be
removed. In [4] it is suggested that nouns situated side by side could be placed
in noun groups (or compound term) and not just single terms. For example
a sentence like ’In computer science we usually...’, ’computer science’ could be
indexed as a single compound term. Syntactic distance between nouns, mean-
ing the distance between two nouns where they are still considered a compound
term, is suggested to be at a threshold of three. Only relying on nouns seems
to disregard to much information and a term histogram of a mix of terms and
compound terms is therefore preferred.

Digits and dates present yet another problem. In some cases it might be
very useful to be able to search for a given year or date. Some dates and years
are very important - e.g.: ’9/11’. Dates and years could be normalized and in-
dexed, although it would require some parsing as dates can be in many formats.
If digits are removed, searching for a specific year is not possible, but most of
the time that does not make a lot of sense anyway as a year normally can not
be connected with a single searchable item e.g. search query ’2000’ makes no
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sense. One idea is to treat years as nouns and thus include them in the com-
pound terms. If a noun and a year are syntactically close, the year may be
important - e.g. searching for ’exploration 1492’. The danger of including digits
is that it could lead to an extremely long term list in the index if documents
contain a lot of distinct numbers.

Spell checking all terms and compound terms found is very difficult. Even
if it is assumed that names start with a capital letter so they can be identified,
there are plenty of other character constellations that do not fit spelling rules.
Again, the program variable ’x.id’ is a good example. No dictionary would
allow such a term. Misspellings might be removed by their frequency, i.e. that
terms which appear less than a given minimum threshold are removed (hopefully
misspellings are rare). Likewise, very common terms could be removed if they
appear more than a given maximum threshold.

Stop words - to be or not to be

Within the fields of Information Retrieval and Natural Language Processing,
stop words are words that add nothing to the precision of a search query or to
the semantics in the index. If a term occurs in more than 80% of documents
it should be considered a stop word [4]. This includes a pre-calculation of the
distribution of words in the documents retrieved. Such a calculation can be
avoided by the use of a stop word list, also called a negative dictionary.

[42] lists 425 stop words and [17] lists 421 stop words found through analysis
of general English texts. Stop words present a problem when searching for a
phrase like ’to be or not to be’. Most likely, all words in such a search query
would be removed as stop words.

Removing stop words does reduce calculation efforts - if 425 words are re-
moved and one million documents are indexed, 425 ∗ 106 positions in the index
are removed. If a single position is represented by only one bit,6 it reduces
memory usage by

425 ∗ 106

(1024 ∗ 1024 ∗ 8)
≈ 50 MB

If represented by an integer it could get up to 32 times as big. Stop words
reduce the document word counts considerably, but do not reduce the length of
the term list in a significant way.

Lexical Analysis and Phrases

When trying to generalize text categorization, lexical analysis is an important
tool. WordNet7 is a lexical database containing lexical concepts that have been
and are being used to improve classifications significantly.

The use of Part-Of-Speech (POS) taggers has shown a great improvement on
text categorization and generalization[30]. POS taggers analyze the sentences
and tag terms with their syntactical groups such as verbs, nouns, numbers,

6Usually represented as an unsigned integer - 8, 16 or 32 bits
7http://wordnet.princeton.edu/
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punctuations etc. Hence, words with a weak contextual meaning can be distin-
guished from similar words with a stronger contextual meaning.

Another important aspect of lexical analysis is phrases. To be able to find
phrases and include them in a term histogram, a predefined list of phrases needs
to be available such that terms can be matched in the list. If such a list can be
obtained or built, phrases should be included to obtain better results.

The synonymy part of WordNet has been used to expand the term list for
each text category with good results[13] but attempts have been made to classify
text based on word meanings with no significant improvement in accuracy[21].
When using POS taggers it has been shown that the vocabulary (term his-
togram) can be reduced by up to a staggering 98% [30] (in some cases: depend-
ing on the type of vocabulary).

As described in [30] the vocabulary was reduced significantly by the use of
the POS tagger QTag. This tagger is a probabilistic part-of-speech tagger that
has proved very useful in text categorization and is therefore a good choice if
POS tagging is to be used8.

Stemming

Stemming is used to remove word suffixes (and possibly prefixes). This reduces
the number of unique terms and gives a user’s search query a better recall. If
taking the classical example from textbooks on stemming, words such as anal-
ysis, analyzing, analyzer and analyzed all stem to ’analy’. This example shows
that stemming introduces an artificial increased polysemy9. Without stemming
the term histogram could grow to an unmanageable size.

[42] compares benefits from eight stemming projects and finds conflicting
results. Therefore, some search engines do not use stemming at all. [18] re-
ports that stemming on average increases performance by 1-3% compared to no
stemming and for some queries even better. Further, it is shown overall that
prefix removal reduces the result yet specific queries perform better with prefix
removal. When using stemming, it is not advised to find a word’s ’true’ root.
Linguistic stemmers are simply not good enough to make such a stemming effi-
ciently at this time.

Several stemming algorithms exist - two of the well known are Lovins [28]
and Porter [31]. Both [4] and [18] report that the Porter stemmer is the best
algorithm for stemming as is. The algorithm is simple and elegant with compa-
rable results to more sophisticated algorithms.

Term weighting

The idea of term weighting is to give terms different weights when situated in
different contexts. For example, if a term is located in a title tag, the term is
assigned more weight than a term in a paragraph. Another way is simply to use

8Not to mention that QTag is freeware
9Polysemy means that a word has more than one meaning e.g. train
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the term frequency (how many times does the term appear in a document) or
a combination of the two.

There exist many term weighting algorithms, but the one generally used[36]
and with consistently good results[34] is the term frequency-inverse document
frequency (Tf × Idf). Tf × Idf makes three basic assumptions[14]10

1. Rare terms are no less important than frequent ones

2. Multiple appearances of a term in a document is no less important than
single appearances

3. Long documents are no more important than short ones

Together these assumptions constitute normalized Tf × Idf . Term frequency is
simply the number of times a given term appears in a document divided by the
number of terms occurring, and the inverse document frequency is a measure
of the general importance of a term (how many documents does it appear in).
Term weighting by Tf × Idf is described in more details in chapter 4.1.2.

Linearization

Linearization is the web designer’s and SEO company’s problem that really has
nothing to do with how the search engine behaves but how the search engine
might perform poorly with some web pages. When the search engine reads a
page, it reads it line by line, but that is not always as it is shown on the page
when viewed. See the example in figure 1.1 where it is obvious that poor web
design (building a web page with tables) might affect the search engine’s ability
to index the page correctly. The terms Stores Clients Visit our Partners make
no sense and as table complexity increases the incoherence does to. Linearization
has an effect on many things such as term positioning, compositional semantics,
phrases, thresholds for noun groups etc.

This is not a problem we will address any further. We only mention it to
point out that even when taking all possible precautions there are still problems
that search engines have no control over.

Summary

In this section we have listed many problems with regards to document process-
ing but also presented a general analysis of the document processor. The most
important steps of document processing can be seen in figure 1.2.1 on page 10.
Many of the problems listed above are due to hardware and CPU limitations,
considering storing and performing calculations on all documents and terms on
the Internet. As these hardware limitations are not anywhere near getting to
a feasible point, we need to sieve the data and still preserve the essence such
that all the information in the index is searchable. Herein lies the true challenge.

This analysis has shown that such a sieve can be built from the use of stop
word removal, stemming, punctuation groups, lexical analysis using POS taggers
and other tools to give a satisfactory result. Since hardware and CPUs answer
to Moore’s law, the holes in the sieve can be made bigger and bigger as time
passes.

10Practically all weighting methods make these assumptions in one way or another
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Before linearization

1
Colorado Pet Shop

2 3 4
Products Books about dogs, cats and birds. Stores

5
Services Clients

6
Company Visit our partners

After linearization

Colorado Pet Shop Products Services Company
Books about dogs, cats and birds. Stores Clients Visit our Partners

Figure adapted from E. Garcia’s ’The Keyword density of Non-sense’

Figure 1.1: Linearization of table-based Web content

1.2.2 Data Indexing

As search engines’ indexes have grown very fast in the past few years, the Data
Indexing part is becoming the most important part of the data processing within
a search engine. If data is not indexed properly, the search engine can not be
expected to yield good results to search queries. In the previous section we dis-
cussed what steps need to be considered in the data preprocessing, prior to the
actual indexing and as a result the document processing plays a very important
role in the data indexing. The results from the document processing should
have identified which terms are to be indexed, but the data indexer must take
the final decision of what should be included and what data can be excluded.
The naive approach of simply indexing every term that occurs within the down-
loaded documents would require enormous amounts of data storage, and could
also result in a slow response time to queries due to computational inefficiency.
In this section we discuss how terms can be indexed in order to get positive
results to search queries.

Traditional Indexing

A popular way of creating an index for search engines is to add the terms from
the document processor to the index, sometimes calculate term-proximity within
the documents and add that information to the index. This way, it is possible
to search for combinations in the documents, e.g. for a query like ’computer
science’, the search engine would rank the documents highest that have the two
terms side-by-side. However, this additional information, i.e. the term proxim-
ity, makes the index larger and might make the search engine inefficient. This
is where the concept of an inverted file is introduced. Most traditional search
engines use this structure to represent their index with great results.
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Document representation

Y2K Around the World
As computers around the World
switched to 2000, few Y2K bugs
were reported in several labs. A
university computer lab reported
problems in a few units. The
dreaded Y2K bug is no more!

Tokenization

y2k around the world
as computers around the
world switched to 2000
few y2k bugs were re-
ported in several labs a
university computer lab
reported problems in a few
units the dreaded y2k bug
is no more

Filtration

y2k world computers
world switched 2000
y2k bugs reported labs
university computer lab
reported problems units
dreaded y2k bug

Stemming

y2k world comput world
switch 2000 y2k bug re-
port labs universit comput
lab report problem unit
dread y2k bug

Term list

Term frequency
y2k 3
world 2
comput 2
switch 1
2000 1
bug 2
report 2
lab 2
universit 1
problem 1
unit 1
dread 1
Total 19

Figure 1.2: Important steps in the document processora

aFigure adapted from E. Garcia’s ’The Keyword density of Non-sense’
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When representing such large amounts of data it is not feasible to list the
words per document in an index. Instead an inverted index data structure is
used which lists the documents per word. An inverted index is an index struc-
ture storing a mapping from words to their locations in a document or a set of
documents, allowing full text search. This structure also optimizes the speed of
the query as the query can look-up the word and find the documents containing
it.

An inverted index has many variants but usually contains a reference to
documents for each word and, possibly, also the position of the word in the
document. If we have the set of texts:

T = {τ0 = i love you, τ1 = you love i, τ2 = love is blind, τ3 = blind justice},

we get an inverted index as can be seen in Table 1.2.

Word/Term index information
i { 0, 1 }
love { 0, 1, 2 }
you { 0, 1 }
is { 2 }
blind { 2, 3 }
justice { 3 }

Table 1.2: Inverted index

When searching for the words love and blind we get the result set {0, 1, 2}∩
{2, 3} = {2}.

A full inverted index can be created from the same text set T by adding the
local word number giving a full inverted index as seen in Table 1.3

Word/Term index information
i { (0, 0), (1, 2) }
love { (0, 1), (1, 1), (2, 0) }
you { (0, 2), (1, 0) }
is { (2, 1) }
blind { (2, 2), (3, 0) }
justice { (3, 1) }

Table 1.3: Full inverted index

When searching for the phrase i love you we get hits for both τ0 and τ1, but
if we use the positioning we will only get τ0 as seen in bold in Table 1.3.

The index might also include details such as:

• Position of a word

• Position of the starting character

• Term weights
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• Term frequencies

Clustering

Another possible way of indexing or improving an index, is to arrange documents
into clusters, or categories. In this way, the documents dealing with similar or
the same subject would be placed in the same category. Using categorization, it
would be possible to only index the terms that are descriptive for each category.
This would decrease the size of the term histograms and in turn also decrease
the size of the index.

Using a clustered index can hopefully give us a more detailed index, which
in turn would give more precise and relevant search results. For example, if a
query for ’computer science’ was submitted, the search engine would try and
predict in which of the predefined categories the search terms are a part of.
Then the search engine could search within these categories and return the re-
sults categorized and by relevance. However, this categorization comes with
added computational effort since the clustering requires additional information
stored in the inverted file structure and not to mention the calculation of the
clusters themselves.

Essentially, the clustering could be yet another detail in our inverted file as
mentioned above. Using clustering as additional information in our index, the
index would be more specific and contain the following details for each indexed
term:

• List of documents where the term occurs

• The term weight

• Position within each document

• List of categories the word belongs to

As mentioned above, the indexer has to calculate the context for each doc-
ument and decide which category, or even categories, it belongs to. Also, the
categories that documents should adhere to must either be pre-calculated, in
order to make this procedure faster, or they could be calculated in real-time.

Calculating the categories real-time is computationally expensive. This is
because if a document is added to the index and does not match any of the
already calculated categories, a new category is created. When a new category
is added, all the already indexed documents need to be checked to see if they
match the new category. If documents have been moved to new categories,
all categories need to be recalculated. There are ways of doing such add ins
more effectively, but it is very complex and still time consuming. Therefore, the
predefined categories seems like the best way to go. However, this also comes
at a price.
In order to predefine the categories, the indexer must be given a training-set to
use for its categorization (training sets will be discussed in chapter 4.3). This
training-set must be descriptive enough to be able to define all the categories
of the downloaded documents. Such datasets are hard to come by, and even
harder to create so this is not an easy task.
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Clustering algorithms

Several algorithms have been developed and used to categorize text documents,
some of which are listed below:

• Latent Semantic Indexing (LSI)

• Independent Component Analysis (ICA)

• Probabilistic Latent Semantic Indexing (PLSI)

• Bisecting k-means

• Spherical k -means

• k-Nearest Neighbor (kNN)

• Bayes-Classifier

• Principal Component Analysis (PCA)

• Artificial Neural Network

• Non-negative Matric Factorization (NMF)

Also, we found another algorithm, Frequent Term-based Clustering (FTC)
[5], promising but not many articles discuss its effectiveness or performance.
The most common algorithms are probably LSI, PLSI, ICA and Bisecting k-
means. For a good description of LSI, PLSI and ICA, the reader is referred
to Sune Birch’s work [9] and a brief description of Bisecting k-means and its
performance can be found in [35].

Summary

In this section we discussed two approaches to indexing. The traditional in-
verted index has given good results in the past, but here we propose adding
additional details to the index in order to get better results. Our general as-
sumption is that more precise index ⇒ more precise results.

In this work we will not try all of the above mentioned clustering algorithms,
but merely wanted to introduce them as possible algorithms. We intend to use
some of them and compare their results and performance. The details of the
selected algorithms along with the reasoning behind the choices will be discussed
in chapter 8.

1.2.3 Query Processing

When using search engines, users tend to submit few but specific terms as the
query. Often the queries are merely one term which, obviously, can make it very
difficult for the search engine to return relevant results. Especially if the word
has many different meanings, e.g. jaguar. If a user only submits jaguar to the
query, the search engine has no way of knowing if the user is looking for the car,
the animal or even a former Formula One racing team. In a study from 2004,
Beitzel et. al. [6] found that the average query length was 1.7 terms for popular
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queries and 2.2 for all queries. However, an article from Yahoo! shows that the
average query length has increased over the last few years and was about 3.3
terms in 200611.

Query Expansion

With most search engines, longer queries usually give more relevant search re-
sults. Query Expansion (QE) is commonly used to improve search engine results
by either extending the original query with additional terms and/or re-weighing
the original query terms.

The process of adding terms to queries can be automatic, manual or user-
assisted[8]. Automatic QE is, for example when an algorithm calculates the
weights of all the terms in the top results of the initial query and then adds the
terms with the highest weight to the initial query, submits it again and returns
the results of the second query to the user. In the case of manual QE, the user
adds terms to the initial query. Finally, when referring to user-assisted QE, the
system calculates and presents a list of possible expansion terms to the user,
where the user is then asked to select which terms to use in the expanded query.

The most common technique within QE is using term-term similarities and/or
term re-weighting, as mentioned above. In [32], Qiu and Frei present a prob-
abilistic query expansion model using an automatically created similarity the-
saurus to find term-term similarities. Furthermore, their research uses domain
knowledge based on the query concept to find the appropriate terms to add
to the original query. Their tests on three different datasets yield a result of
18 − 29% improvement of the results. They found that the search results im-
prove for each term added to the query. However, when the added terms are
more than ≈ 100, the results for some datasets start deteriorating again.

Joshi and Aslandogan [19] also present a model using parallel concept-based
query expansion. Their idea is to predict the different domains (concepts) of a
users query, expand them separately, submit them to the search engine and re-
turn the categorized results to the user. Taking the term jaguar as an example,
the parallel model would create three different query expansions, submit them
to the search engine and return the top results for each query. In their tests
they use WordNet and WordNet domains along with their own category corpus
to predict the concepts of the queries. Their results show great improvement
in relevancy of the results but they also find that the average time spent per
query evaluation12 decreases a great deal. Surprisingly, the query evaluation is
shortest when parallel query expansion is only used with their category corpus.
However, it is important to note that this research only deals with short queries
(1 or 2 terms), and the model performs best with 1-term queries whereas the
precision decreases as soon as the second term is added.

11http://blogs.zdnet.com/micro-markets/index.php?p=27
12Here query evaluation refers to the time it takes a user to identify the first 10 relevant

results among the top 30 results shown
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Finally, Vechtomova and Wang [40] examine the effect of term proximity
on query expansion. They investigate the technique which expands the queries
using terms occurring at a certain distance from the query terms. No clear con-
clusion is given in their study, but it indicates that expanding queries using term
proximity could improve results. However, the distance is of great importance
and the maximal term-distance should be chosen with care.

Query Analysis

Besides adding more terms to the original query, some other techniques might
be useful in order to get better search results. For example:

• Use Part-Of-Speech taggers to analyze the query

• Use stemming to find term stems

• Try and predict the domain (context) of the query

• Remove Stop-words

• Handle punctuations and special characters

All of the above mentioned items have been discussed in previous sections
regarding the document processing and will not be described further here. Basi-
cally, the query processor could utilize the same rules and steps as the document
processor to make the query even more specific. In fact, it is necessary to apply
the same rules as for the document processor since the query terms have to have
the same form as the ones in the index. For example, if the query processor did
not stem words, but the document processor did, then query term ’computer’
would be indexed as ’compute’ in the index, and thus not matched to the query
term.

Summary

The above mentioned studies all indicate that query expansion is a great way to
improve the results of short queries. However, the number of expansion terms
and their weighting is something that has to be chosen with care in order to
improve the results. Adding the wrong terms or giving them the wrong weight
could end up yielding worse results than the original query. Furthermore, using
concept-based query expansion has given good results but requires the use of
corpora for domain prediction and to find terms with similar meaning.

Query analysis is also a necessary part of the query processor. The rules
and methods used in the document processor should also be applied in the
query processor in order to get more precise queries and ambiguous query- and
index-terms.

1.2.4 Ranking relevant results

Whenever a user submits a query to a search engine, the engine returns a sorted
list of results. This list is what the ranking algorithm in the search engine sees
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as the most relevant results, the first result being the most relevant one etc. In
today’s search engines these ranking algorithms can differ very much in design
and performance. Any user familiar with the use of search engines knows that
the results to a given query are rarely the same for the most popular search
engines. In fact, these lists can be very different. This is in part due to which
pages the search engines have indexed, but also due to the different underlying
ranking algorithms.

Generally, ranking a web page is not as easy as it seems. For example, if a
ranking algorithm is based solely on word matching and a user submits a query
using very common keywords such as sports or movies, the algorithm ranks all
pages containing these keywords equally and thus, possibly, gives the user a
lot of useless results in random order. A more sophisticated algorithm would
try and determine the relevance of the pages containing the keywords and rank
them accordingly.

As the number of web pages and other data on the Internet increases, re-
turning relevant results to search queries becomes more difficult. Much effort
has been put into the development of ranking algorithms in order to return more
relevant results to the user.

. . . the number of documents in the indices has been increasing by
many orders of magnitude, but the user’s ability to look at docu-
ments has not. People are still only willing to look at the first few
tens of results.

- Brin & Page, 1998 [10]

A user is less likely to continue using a search engine which returns few relevant
results within the first tens of the results.

There are mainly three strategies in practice today when it comes to rank-
ing search results. Namely, Link Analysis, Vector Space Model and Relevance
Feedback. In the following subsection these strategies will be briefly introduced.

Link Analysis

Link analysis in general is used to try and find a link between two subjects.
For example, link analysis is used in law enforcement when a criminal’s bank
records, telephone calls etc. are investigated to try and find evidence of his or
her crime. Banks and insurance companies also use this kind of link analysis
to try and detect fraud. Within the field of search engines, the link analysis
strategy to ranking is based on how the pages on the Internet link to each other.
The assumption is that pages regarding a specific subject will, with good prob-
ability, link to other pages on similar or the same subject. This seems like a
very reasonable assumption and has worked quite well in practice, e.g. Google
uses this approach.

An example of an ranking algorithm based on link analysis is Google’s own
PageRank algorithm [10]. The following quote taken from Google’s Technology
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web page13 explains the essence of the PageRank algorithm:

PageRank relies on the uniquely democratic nature of the web by
using its vast link structure as an indicator of an individual page’s
value. In essence, Google interprets a link from page A to page
B as a vote, by page A, for page B. But, Google looks at more
than the sheer volume of votes, or links a page receives; it also
analyzes the page that casts the vote. Votes cast by pages that are
themselves ”important” weigh more heavily and help to make other
pages ”important”.

So basically, a page’s rank in Google’s search results is higher if many, prefer-
ably important, pages link to that page. The higher the PageRank, the more
relevant the page is (according to Google). The mathematics behind the PageR-
ank algorithm is quite impressive but will not be explained here. For a good
explanation of the mathematics and other design issues of the algorithm see [23].

Another example of a ranking algorithm using link analysis is the HITS
algorithm. The HITS algorithm utilizes the link structure of the Internet like
the PageRank algorithm. The HITS algorithm is based on hubs and authori-
ties, i.e. the algorithm calculates two values for each query, a hub value and an
authority value. The authority value estimates the content of the page while
the hub value estimates the value of its links to other pages. This algorithm
will not be discussed further here, but more information on the algorithm can
be found in [22], a paper written by the author of the algorithm, Jon Kleinberg.

Vector Space Model

Ranking using Vector Space Model (VSM) is very simple. Basically, each docu-
ment in VSM is represented as a column in a term-document matrix. Each row
in the term-document matrix represents a term. The value at index tdi,j says
how many times term i occurs in document j. For example:

TD =




1 0 0
0 1 0
0 0 1




is a VSM representation of three documents each containing one occurrence
of one term. The total number of terms for these documents is three. When
ranking documents using VSM, the Cosine Similarity Measure is the easiest
one to use see also chapter 4.1.1. Cosine Similarity Measure calculates the
angle between two vectors in the above matrix. The closer the angle is to zero,
the more similar the two documents are. Therefore, when a query is submitted
to a search engine, a term vector is constructed for that query in a similar way
as it is done for documents. The best matches for that query are the documents
with the highest similarity to the query vector.

Unlike the link analysis ranking algorithms, ranking results using the Cosine
Similarity is very easy and requires little computational effort since the back-
bone of the calculation is based on the dot-product of two vectors. This makes

13http://www.google.com/technology/
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the Cosine Similarity measure an attractive possibility when it comes to ranking.

We will not explain the vector space model in more details in this section,
but section 4.1 contains more details about the mathematics of the model and
section 4.1.1 contains information on the Cosine Similarity Measure.

Relevance Feedback

Relevance feedback is used to try and improve the relevance of the results re-
turned by a search engine, where the search engine’s original ranking usually
follows one of the above mentioned schemes. The idea is that the search engine
can learn which results are relevant for a given query. However, the machine has
to get some feedback data in order to improve its results. Feedback information
is used to either adjust the weights in a given query and/or add terms to the
query to make it more specific. There are mainly two types of relevance feed-
back used, namely, Explicit feedback and Implicit feedback . Explicit feedback
is where a user tells the search engine explicitly what results are relevant and
which are not. Implicit feedback is where the search engine ”monitors” which
links a user follows for the given query. The search engine then makes the as-
sumption that the links followed are more relevant than the others and in that
way adjusts that page’s rank in subsequent, similar queries.

It is intuitively clear that explicit feedback can be very useful to improve
ranking results, given that the users are honest and consistent in their evalu-
ations. In [44], Patil et. al. introduce a tool that can be used to get explicit
feedback from users. Implicit feedback is not so intuitive since one can visit
10 search results before finding any useful result and therefore the other nine
results should not get a higher ranking for the query. However, in [20], Jung et.
al. found that considering all ”click-data” in a search session has the potential
to increase recall and precision of the queries. Also, in [3] Rohini and Ambati
found that using implicit relevance feedback based on search engine logs and
user profiles gave improved precision results.

Summary

In this section we have discussed three terminologies when it comes to rank-
ing search results. The basic Vector Space Model is a relatively simple and
cost efficient way of measuring similarity between query and document. How-
ever, this model has its limitations. One limitation is that long documents are
represented poorly, i.e. when comparing two documents of different lengths,
their dot-product might not be very high due to high dimensionality. Also,
documents concerning the same topic, but with different vocabularies would
not give a high dot-product. This could though be rectified with the use of a
synonymy-dictionary.

Link analysis has also proved to be a very good way of searching, e.g.
Google’s enormous success. However, the indexing takes a long time and the
link structure can be manipulated in such a way that a web page gets ranked
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higher in the search results (using SEO companies as mentioned before).

The intuitively best way of ranking results is using explicit relevance feed-
back. Provided that the users are unbiased toward the web pages and/or search
engines and willing to participate and give their honest opinion, the results
would be very good. However, this procedure will take a very long time, since
many queries would have to be ranked and there is no way of ranking all possi-
ble queries. Automating relevance feedback would also be useful and would not
take as much effort from the users. Although the result would not be as precise
as using explicit relevance feedback.

1.2.5 Summary

In this section we have introduced and discussed the various elements of a search
engine’s anatomy. We showed that each of the elements play an important role
in the final result. For instance, if the data preprocessing is done inadequately,
the search engine can not be expected to yield good results. The same goes for
the indexing, query processing and ranking. All the elements must be designed
carefully.

Our discussion of the search engine anatomy has been very general and
broad. We have discussed many issues that need to be addressed in order to
construct a usable search engine and in the following section we will give a more
detailed description of what the goal of this work is, and what we hope the final
results will give us.

1.3 Problem description

ICA, LSI, NMF etc. are all algorithms that have been used to cluster text and
make terms indexable. We propose to use Wikipedia as a learning source (ex-
pert pages) to generate our clusters and act as supervisor. Wikipedia has strong
context, data is in a labeled hierarchy and has a strict format making it easy to
parse. All qualities that makes clustering easier and hopefully more precise.

Our vision is to build a search engine that can read the content of a web page
and understand its topic, hereby classifying pages accordingly. When classify-
ing pages based solely on their content we expect the use of link farms, added
meta information and other methods used to manipulate search results become
obsolete or minimized severely. Only the actual topic of a web page will matter
when matching a web page to a search query and placing it in the result set.
The ranking will be based on how close a search query is to the actual topic
of a page and not on the pages link structure. A topic-driven approach will
hopefully minimize the number of results to a search query and at the same
time make them more relevant. The idea is to deliver few, but relevant results.

The thesis can therefore be divided into two equally important goals, namely
topic calculation and search engine implementation. Neither of which can stand
alone as topic calculation is useless without the ability to retrieve documents
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from it and vice versa.

We want to be able to calculate the topic in any given English text and
categorize it with the help of Wikipedia articles. The main challenge of topic
calculation is to find suitable algorithms for our data set, implement them and
perhaps fine tune them in order to get the desired results.

Our goal with the search engine is to create a general search engine that is
capable of searching within any given topic. However, to begin with we will
have to focus on one topic, here being music. We limit our data to musical
pages in order to reduce the data amount. Despite the fact that we use music
articles, the search engine should not be implemented in a special way with this
topic in mind. We want to implement an engine that can be trained using any
kind of data and still sort through the topics in the data.

Basically, the end result should be a general search engine capable of search-
ing within any topic by using clusters. The search engine should be able to
retrieve results with such a precision that users find it useful.
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1.3.1 Reading guide/Overview

This section gives a brief overview of the structure of the thesis part by part.

Part I - Data Store and Preprocessing

Data store and preprocessing describes the design of the data store used in
Zeeker Search Engine, i.e. what data is available and how have we chosen to
limit the data to a manageable size while still getting good results. Furthermore,
data processing and the various data processing tests are also discussed.

Part II - Clustering

Clustering introduces the basics behind clustering and the general principles.
This part also introduces a few clustering algorithms such as Spherical k-means,
Non-Negative Matrix Factorization (NMF) and Frequent Term-based Clustering
(FTC). The algorithms differences are discussed as well as the tests on the
implemented clustering as well.

Part III - Retrieval

The Retrieval part explains how the Zeeker Search Engine processes queries and
how documents are retrieved, ranked and presented to the user. Various test
scenarios along with the tests performed on the Zeeker Search Engine retrieval
and the results of these are also discussed.

Part IV - Implementation

Implementation of the search engine is described along with the data flow i.e.
from the time data is downloaded from the Internet to how it is presented on
the web page.

Part V - Conclusion

The Conclusion part contains a discussion of the future of the Zeeker Search
Engine, i.e. what Zeeker Search Engine is capable of and how we want to
improve it. Furthermore, all the efforts put into this thesis are discussed and
summed up in the conclusion.

Appendix

The Appendix includes a list of used stop words, a list of POS tags, description
of test sets and a User Guide.
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Chapter 2

Data store

Data store refers to what data is available for preprocessing, indexing, testing
etc. In this chapter it will be discussed and explained what data from the
internet has been made available in the data store. Data is downloaded and
only stored if it belongs to the chosen data intersection, which will be described
later in this chapter. Wikipedia has been mentioned before and since data from
Wikipedia is used as the core data, it is necessary to take a closer look at how
it is structured and what data is publicly available.

The downloading of data and web resources is handled by Zeeker.Spider.
The webspider was created as a pre-project and is therefore not discussed in this
thesis. Zeeker.Spider can best be described as a standard webspider, distributed
and highly configurable, with an underlying database holding all downloaded
data. Suffice to say that the Zeeker.Spider meets all the web-crawling needs of
this thesis.

2.1 Wikipedia

Wikipedia is a well known on-line free encyclopedia that anyone can edit. It has
had tremendous support from day one and is still growing. People all over the
world co-author articles on whatever topic they find interesting and Wikipedia
categorizes these articles and makes them publicly available on the Internet.

Wikipedia (wiki) has been chosen as a source of expert pages in the search
engine because of it’s enormous amount of information. Wikipedia includes
both explicit information, such as articles, and implicit information, such as edit
history, discussion pages etc. In fact, Wikipedia contains so much information
that there is no way of utilizing it all1. Therefore a choice has to be made on
which information is most suitable for the purpose of this thesis and scale it to
a size that is possible to utilize within the given time frame.

1using the current hardware setup
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Wikipedia structure

One of the powerful features of Wikipedia is the strong contexts of its articles
(one article - one topic). All articles are labeled and categorized by many edi-
tors giving a very good categorization - which even improves over time as more
people contribute.

Figure 2.1, page 27 illustrates a part of the Wikipedia structure. The cate-
gory Musical groups is chosen and the figure shows the outline of the category
tree as well as the relationship between categories and articles. Categories can
have sub categories and articles associated with them. Articles belong to one
or more categories and have several interesting article attributes as shown in
the figure. Wikipedia does not enforce a strict parent-child relationship in its
category structure and cycles and disconnected categories are therefore possible
(yet rare)[46]. The categorization of Wikipedia is human made and as a result is
very precise - or at least as precise as can be hoped for. The category precision is
what can hopefully be exploited to get better results when the core is clustered.
Using Wikipedia as a training set to create clusters is called supervised machine
learning - which is exactly the intention of this thesis.
A more detailed discussion of the concepts clustering, supervised- and unsuper-
vised machine learning and training sets is given in Part II. For now, suffice to
say that the strong categorization of the Wikipedia articles is a unique oppor-
tunity to use Wikipedia as a data source to generate good clusters.

Other features

Besides the great categorization and the strong article contexts, Wikipedia has
a lot of other useful attributes as shown in figure 2.1. All articles have a quality
measure, such as stub, normal and featured that indicate how Wikipedia rates
the context of the article.

Every article also has associating discussion pages and logs of what has
changed, who has changed it and when. These article attributes give a lot of in-
formation about the article quality as well. Long discussion pages, many major
and minor edits, the profile of the user doing the editing, the amount of links
to other Wikipedia articles, the amount of external links, how many images
are included and which images etc. can all be used as quality indicators for a
specific article. These measures can even be used as a filter to remove the bad
articles when trying to generate accurate clusters.

Yet another advantage of using the Wikipedia articles is that when cluster-
ing the articles, the article information might be incorrect but the vocabulary
will probably still be correct. Meaning the words used to describe the topic
inaccurately are presumably the same as the words normally used to describe
that topic in an accurate way. Hence, the clusters will still give a very good
description of the topic since the statistical properties of the individual words
are used and not their exact meaning.

Furthermore, Wikipedia includes a download service which provides data
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Figure 2.1: Wikipedia category and article hierarchy overview
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dumps in text format. These data dumps include many important tables that
the Wikipedia database consists of, such as page information, external links,
image links, page to page links, page abstracts, articles, article titles, redirect-
ing articles and much more.

Another interesting source for generating training sets and clusters was con-
sidered, namely the Open Directory Project (ODP). The problem with ODP is
that one page does not necessarily mean one topic, and it is much easier to build
a category from a page when it is known that it only has one topic. Therefore,
given all its features and article attributes, Wikipedia seems like the best choice.

2.2 Data store structure

As mentioned above, Wikipedia has many good qualities and is therefore used
as the core data in the data store. The entire Wikipedia article base has been
downloaded2 such that any Wikipedia article (in English) is available in the
data store. However, Wikipedia has around 1.8 million articles3 and such data
volume is simply too big to work with in this project. Therefore, the size of
the core must be reduced such that only the articles categorized under the cat-
egory Musical groups are used. This is done by running through the hierarchy,
see figure 2.1, and collecting all categories and articles from all hierarchy levels
below the category Musical groups.

Ideally, all terms in all documents on the Internet would be indexed for future
searches, but again the vast amounts of data makes that nearly impossible.
Instead an intersection of data is created, as shown in figure 2.2, by only allowing
web resources with certain Mime-types (Html) in English dealing with Musical
groups.

Mime types

Language

TopicMime types

Figure 2.2: Data intersection

2Wikipedia can be downloaded from http://download.wikipedia.org/
3June 2007
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Expanding the data store

The data store is constructed in a bottom-up fashion starting with the data core
and then expanding it with additional data as can be seen in figure 2.3. Each
layer of data adds more information to the data store and requires additional
space. The trade-off between data amount and size is a fine line which needs
to be determined. In the data store, each layer is given a depth which indicates
the layer’s distance from the core layer. The greater the distance from the core,
the more noise (rubbish data) the layer will have. Therefore, the distance must
be chosen wisely in order to get as much relevant data with minimal noise.

The chosen intersection gives us a core of 49.748 Wikipedia articles in 3.605
categories in the data store. The core will be used as a training set when clus-
tering. The core is defined to have depth zero.

Most of the articles in the core, contain references to external links i.e. ex-
ternal to Wikipedia. These web resources have been downloaded and added to
the data store. The external links are closely related to the information in the
Wikipedia articles, thereby minimizing the noise in the data compared to the
noise in the data had it been downloaded from other sites on the Internet. The
external links provide 172.497 web resources of different kinds (html, pdf, word
etc.). The external links are defined to have depth one.

Even though the core and the external links provide approximately 200.000
web resources, it would be best to download at depth two. The reason being
that depth two will not only provide more data but also data with a lot of noise
which can be very useful when testing the retrieval performance of the search
engine. Depth two (Distant links), has well over 10 million web resources but
the downloading has been limited to approx. 1 mill. web resources at depth two.

Figure 2.3 shows the bottom-up structure of the data store and how the data
store is expanded as the depth of the downloading increases. The final result is
a data store of approx. 1.2 mill. web resources.

2.3 Test sets

The Wikipedia article database is used to generate some general test sets. These
test sets are created from general topics where the vocabulary is not restricted
to any topic. General topics are chosen since the intent is to perform tests on
general data to make sure the algorithms and word filtering is not fitted toward
a less diverse vocabulary.

The test sets are constructed in an incremental fashion as can be seen in
figure 2.4. This means that test set 2 is created from test set 1 plus an additional
10.000 randomly chosen articles, test set 3 is created from test set 2 plus an
additional 10.000 randomly chosen articles etc. The test sets have sizes ranging
from 10.000 to 100.000 articles. The test sets are created in an incremental
fashion primarily because the intention is to test the scalability of the system
as more articles are added to the index. The data sets could also be created by
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Wikipedia

External links

Distant links

Depth 0

Depth 1

Depth 2

Figure 2.3: Expansion of the data store

selecting random articles for each set. This approach could introduce more noise
in the data which might give an unrealistic image of the system’s scalability.
This effect is minimized when the test sets are built on top of each other.

Test set 1

Test set 2

Test set 3

Test set n

Figure 2.4: Test sets structure

Choosing the sizes for the test sets is a trade-off between indexing time
and index size. Enough articles had to be chosen to properly test the system’s
scalability, but also the time factor had to be taken into account as it should be
possible to create the test indexes within a period of a few hours. Furthermore,
appropriate sets had to be chosen to see how they pressure the hardware as
the set sizes grow up to and above 1 GB. Indexing such sets could pressure the
memory and CPU of the indexing computer and it is interesting to see how this
changes with growing sets.
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2.4 Summary

Wikipedia has many great qualities which are useful when trying to cluster data
and assessing the quality of the data. Wikipedia contains vast amounts of use-
ful information and strong article contexts. Other resources on the net, such as
ODP, do not have these qualities making Wikipedia the best choice for this work.

The data store core has been built up around the Wikipedia category Musical
groups and extended further by adding the external links from the articles in the
selected category and the distant links they refer to. This gives a layered data
store with web resources of depth up to 2, viewing articles in Musical groups as
depth 0. The core also delivers a training set created from the hierarchy of the
labeled Wikipedia articles.

The many Wikipedia articles are used to generate several test sets of various
sizes which contain a general vocabulary and are large enough to reveal any
problems the filtering might encounter when working on large scale data. These
sets are also used to estimate how the system will scale as more articles are
added.

All this results in a data store built from the Wikipedia category Musical
groups and test sets created from the Wikipedia article base. Table 2.1 shows
the basic statistics for the data store.

Depth Data Web resources
0 The core 49.748
1 External links 172.497
2 Distant links approx. 1 mill.

Data store approx. 1.2 mill.

Table 2.1: Data store statistics
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Chapter 3

Data processing

In this chapter we will discuss how the data store and test sets are processed,
i.e. what choices have been made and how data is prepared for indexing and
clustering. Some tests of the quality of our various choices will also be presented.

3.1 Processing data

Data collected from the Internet is in various formats requiring normalization.
As described in section 1.2.1, a predefined list of stop-words will be used along
with the Porter stemmer to reduce the index size. The list of stop-words can be
found in tables D.1 and D.2 in appendix D.

3.1.1 Index reduction

In order to reduce the index sizes further, a POS1 tagger is used. After the
POS tagger has categorized the terms it is easy to decide which word categories
(POS tags) can be ignored thus reducing the index size. In [30] it is shown that
pruning the vocabulary in this way does not necessarily affect the retrieval pre-
cision. However, the distribution of the POS tags still need to be tested to get
an indication of how the choices made will affect retrieval accuracy and index
size. All the POS tags can be found tables C.2 and C.3 in appendix C. Table
C.1 in appendix C shows the distribution of the POS tags. Since the original
texts consist of approx. 30% nouns and this being the most important group,
the index size can never fall below 30% of its original size without the use of
word association techniques.

The POS tag distribution also reveals that punctuation groups, as intro-
duced in section 1.2.1 are not important. Punctuation groups, along with other

1Part-of-speech
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similar groups, account for less than 2%2 of the index.

Based on tests and basic natural language knowledge, the tags chosen to be
included in the index are presented in table 3.1. All others are ignored.

Pos included Description
CD number, cardinal (four)
FW foreign word (ante, de)
JJ adjective, general (near)
JJR adjective, comparative (nearer)
JJS adjective, superlative (nearest)
NN noun, common singular (action)
NNS noun, common plural (actions)
NP noun, proper singular (Thailand)
NPS noun, proper plural (Americas, Atwells)
OD number, ordinal (fourth)
RB adverb, general (chronically, deep)
RBR adverb, comparative (easier, sooner)
RBS adverb, superlative (easiest, soonest)
RP adverbial particle (back, up)
SYM symbol or formula (US$500, R300)
??? unclassified

Table 3.1: Included tags in index

3.1.2 Index size

Due to hardware limitations, the index size is one of the most important consid-
erations in the data preprocessing. [48] states that the size of an index consisting
of texts3 will be around 40% of the original size and the index size for Html-
pages will be around 20% of the original size. This difference is due to the large
amount of unindexed markup data (Html code). However, these sizes can not
be taken as absolute values of how index sizes grow, but merely as an indication.
Several index compression techniques are also shown and these might come in
handy at a later stage, but in this project the data is restricted to a size that
can be handled without compression.

3.1.3 Tests

The size of the index has been tested using four different approaches (test mod-
els):

• A full index (all terms indexed).

• A stopped and stemmed index.

• A POS tagged index.

• A POS tagged, stopped and stemmed index.

2punctuation groups alone only account for 0.7%
3Measuring the NewsWire data set
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The ten test sets generated from the Wikipedia article database (see chapter
2.3 for more information) are used for creating indexes for each approach. This
means that ten indexes are created for each test model giving 40 indexes in
all, ranging from 10.000 to 100.000 articles. These 40 indexes have been used
to test the functionality of the code, the building of the index and numerous
tests to see how this vast amount of data behaves. All test results can be seen
in appendix B.1. The tables (appendix B.1) show how many terms are in the
indexes and the index sizes in question. The total number of unique terms is
the most important statistic as it represents the actual number of searchable
terms4. Unique terms also determine the dimensionality of the term-vectors
and obviously the larger the dimensionality, the more complex the clustering
calculations and other calculations become.
Figure 3.1 on page 36 shows, how the number of unique terms decreases when
stop-words, stemming and POS tagging is applied to the 40 tests conducted.
The slow rate of decrease is due to the conservative strategy used when remov-
ing terms. An aggressive stemmer is not used and POS tags are not removed
too aggressively. This conservative strategy is enforced because it will be eas-
ier to decrease the index size later, by POS tagging or other means, when the
complete search is implemented, as it is easier to see the effects at that time.
If too many terms are removed from the beginning, it would be impossible to
determine whether a bad search result is due to a bad retrieval technique or
simply because too many terms were missing in the index. Conversely, it is
easy to enforce a more aggressive strategy if the search results return too many
useless results.

With the current strategy of moderate POS filtering, stopping and stemming
it is possible to reduce the index from 1.352.497 unique terms when full index is
used, to 1.167.676 unique terms. That is a decrease of 14% in unique terms and
a deacrease of 17% in size on disk. Compared to the staggering results of 92% in
[30] it is not impressive. However, as already mentioned, only a limited amount
of terms are removed in order to have more control over data and retrieval.
It should also be noted that the vocabulary used in this work is a completely
different vocabulary than in [30] where the data was email correspondance -
whereas in this case the vocabulary is more diverse.

The choices made in the preprocessing stage have given a flow diagram as
shown in Figure 3.2 on page 38. First a parser tokenizes the documents and
removes Html and/or Wikipedia Xml tags. Then the POS tagging is applied
and filtered according to the rules of included tags in table 3.1. After POS
filtering, the remaining stop-words are removed (POS tags should remove most
of those). Stemming is then applied before the tokens are finally indexed along
with the original document. The original document is stored in full in the index
for future reference and the ability to retrieve text snippets to show along with
the link results as known from other search engines on the Internet.

4If no other parsing or removal of terms is done
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Figure 3.1: Number of unique terms in documents

3.2 Summary

To sum up the choices made, the data representation will be mentioned first. As
stated in [48], and discussed in a previous chapter, an inverted file index seems to
be the ideal choice for the data used. However, the full-inverted index (as shown
in Table 1.3 on page 11) was chosen. The full inverted index seems better as
it includes the term proximity information needed to facilitate a full text search.

As mentioned above, the list of stopwords can be found in appendix and the
Porter stemmer is used as it seems to be well respected and comparable with
more complex and sophisticated stemmers. Here we opted for the simple, but
effective stemmer.
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POS-tag filtering is also included, as it reduces the index size quite im-
pressively, and has the possibility of reducing it even further without much
additional work if it later is found necessary. The conservative strategy is found
most appropriate to begin with. Implementing POS-tagging also gives the abil-
ity to later POS-tag texts in the index, thus giving users the ability to search
for a particular word in a certain POS category. E.g. the ability to search for
the noun train, thus excluding any documents containing the verb train. This
feature is not something we expect to be a part of this project, but merely a
possibility in a later version.

Finally we mention that the tests conducted on the index size, unique terms
etc. are all performed on general articles from Wikipedia and the number of
terms, number of unique terms and index sizes may be very different for a more
specific category, like the one chosen, namely the Musical groups. The vocabu-
lary is presumably smaller for these articles giving a smaller index. However, it
was important to conduct the tests on general articles so that the choices made
were based on the general vocabulary and not on the specific vocabulary used
when describing music.
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Chapter 4

Clustering

Document clustering is a very important part of automatic topic detection in
machine learning and pattern recognition. The idea of clustering is to partition
a set of objects into clusters such that any object within a cluster has more
in common with the other objects in the same cluster, than any other object
outside the cluster. In order to cluster objects, a proper representation of the
objects is needed as well as a way to measure similarity between them.

In this chapter we will describe the representation of objects using the Vector
Space Model and the object similarity measure used, namely Cosine Similarity
Measure. We also discuss the basics of clustering and mention different types
of clustering algorithms.

4.1 Vector Space Model

As mentioned in chapter 1.2.4, the Vector Space Model (VSM) refers to how
documents are represented and ordered. In VSM, a term-document matrix,
TD, is constructed in such a way that each row represents a term1 and each
column represents a document. For example:

TD =




t1,1 . . . t1,m

...
. . .

...
tn,1 . . . tn,m




where the column vector di is called the term-vector for document i. The
term-vectors are often in very high dimensions as each term represents a single
dimension, i.e. the richer the vocabulary, the higher the term-vector dimensions.

1A term can consist of one or more words, numbers, dates etc.
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The values in the matrix can be binary (0 or 1), discrete (0, 1, . . . , n) or
continuous (0.45, 1.56, . . . etc.). When using the binary values, a zero denotes a
word not occurring in the document and the number one denotes an occurring
word. Discrete values are typically used to represent word frequencies, meaning
that if the value d5,i = 5 then the term t5 occurs five times in document i and so
on. Continuous values are used when the terms in the term vector are weighted
differently, for instance if a term is found to be more important within a certain
context e.g. a title of a web page etc.

4.1.1 Cosine Similarity Measure

Measuring similarity between two term-vectors is frequently done using the Co-
sine Similarity Measure. The cosine similarity measure between vector a and b

is defined as the angle between the two vectors:

cos θ =
a • b
‖a‖‖b‖ (4.1)

where a • b is the dot product between the two vectors and ‖a‖ refers to the
length of the vector. The similarity is found by looking at the angle between
the two vectors. The smaller the angle, the greater the similarity between the
vectors. Looking at figure 4.1, it is easy to see that the smaller the angle θ, the
more similar the vectors ‖a‖ and ‖b‖ are. When θ = 0 the vectors are identical.

bc

bc

θ

a

b

Figure 4.1: Cosine simularity

In [33], Salton and McGill discuss, in more detail, the Vector Space Model
and the calculation and usage of the Cosine Similarity Measure along with other
similarity measures.

Document similarity example

With documents represented by the VSM, measuring similarity between the
documents using cosine similarity measure, is fairly simple, as shown in equation
4.1. However, since the models are simple, they also have their weaknesses. As
an example, consider the following term-document matrix:

T =




1 2 0
0 2 4
1 3 4
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where ti ∈ {jaguar, car, british}. Here, document d1 only consists of one in-
stance of term t1 and one instance of term t3. Now lets say a query is submitted
to a search engine using only jaguar as a query term. In order to find the best
match for that query, the cosine similarity needs to be calculated between the
query vector, qv = [1 0 0], and each document in T. Using equation 4.1 gives:

cos(θ)d1
=

qv • d1

‖qv‖‖d1‖
=

1 ∗ 1√
12 ∗
√

22
≈ 0.707

cos(θ)d2
=

qv • d2

‖qv‖‖d2‖
=

1 ∗ 2√
12 ∗
√

22 + 22 + 32
=

2√
17
≈ 0.485

cos(θ)d3
=

qv • d3

‖qv‖‖d3‖
= 0

The results above show that the cosine similarity measure clearly favors shorter
documents with fewer unique terms or fewer occurrences of the query terms.
This is not a good property since one can not in general assume that short doc-
uments with fewer terms are more descriptive and precise compared to longer
documents. It is also noted that if the searched term does not occur in a docu-
ment it has similarity 0. To counteract the effect/weakness of longer documents
in the cosine similarity measure, term weighting is a good start. Using a term-
weighting scheme such as Tf x Idf would certainly help to minimize this effect.

4.1.2 Term weighting (TF x IDF)

As mentioned above, weighting terms when using VSM is very important in or-
der to represent documents properly. Longer documents are poorly represented
with regards to cosine similarity in VSM and therefore a term weighting scheme
is useful to rectify this.

In chapter 1.2.1, the rationale behind the Tf x Idf scheme was briefly dis-
cussed. In short the rationale is as follows; Rare terms are not less important
than frequent ones and vice versa. Likewise, longer documents are not more
important than shorter ones and vice versa. Thus, this term weighting scheme
takes both word frequencies as well as document frequencies into account when
assigning weight to the terms.

The mathematical specifications of Tf x Idf are briefly explained in the
following (primarily adopted from [14]). The equation for the weight of a term
is shown as:

tfidf(tk, dj) = tf(tk, dj) log
|D|

|{tk ∈ d}| (4.2)

where |D| is the total number of documents and |{tk ∈ d}| is the number of
documents where the term tk appears and

tf(tk, dj) =

{
1 + log freq(tk, dj) if freq(tk, dj) > 0
0 otherwise

where freq(tk, dj) denotes the number of times tk occurs in dj .

log |D|
|{tk∈d}| is the inverse document frequency which is a measure of the

general importance of a term in the document collection.



44 Clustering

In order to satisfy the assumption that longer documents are not more im-
portant than short ones, equation 4.2 needs to be normalized. This is often
achieved using cosine normalization[14]:

wkj =
tfidf(tk, dj)√∑|T |
s=1 tfidf(ts, dj)2

(4.3)

where |T | is the number of terms.

Given the above, a term will be assigned a high weight if it occurs many
times in a single document but rarely in the entire document collection.

Term weighting example

In order to demonstrate the effect of the Tf x Idf term weighting scheme, the
matrix T from before is used. Applying equation 4.3 to each term in the matrix
gives:

Tw =




1 0.707 0
0 0.707 1
0 0 0




Using the same query as above, qv = [1 0 0], the cosine similarity measure
is found using 4.1 for each document:

cos(θ)d1
=

qv • d1

‖qv‖‖d1‖
=

1 ∗ 1√
12 ∗
√

12
= 1

cos(θ)d2
=

qv • d2

‖qv‖‖d2‖
=

1 ∗ 0.707√
12 ∗
√

0.7072 + 0.7072
≈ 0.707

cos(θ)d3
=

qv • d3

‖qv‖‖d3‖
= 0

With the new weighting applied, the similarity values have changed. Longer
documents have become more important. Although this is a simple constructed
example, it demonstrates how the weighting improves the representation of
longer documents. The example also illustrates that terms occurring in all doc-
uments (term t3), regardless of frequency, are given weight zero thus phasing
out frequent terms.

4.1.3 Summary

Representing documents using VSM and measuring similarity between docu-
ments using the cosine similarity measure is quite simple and computation-
ally efficient. Unfortunately, the VSM model and the similarity measure favor
shorter documents with fewer occurrences of the terms when compared to short
queries.

Since short documents can not be assumed to be more relevant than the
longer ones, the longer documents must be represented better using VSM. This
is where a term weighting scheme such as Tf x Idf can be useful. The rationale
behind the scheme is that longer documents are not necessarily more important
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than the shorter documents and vice versa.

Therefore, dealing with documents of varying lengths using VSM and cosine
similarity, applying the Tf x Idf term weighting scheme looks like a natural
choice.

4.2 Clustering

As mentioned at the beginning of this chapter, clustering is the task of find-
ing natural groups in data. In general, there is not only one solution to the
problem of clustering. Therefore, the clustering algorithms seek to maximize
some mathematical measures for the quality of the found solutions. It has been
shown that the general problem of partitioning d-dimensional data into k sets
is NP-complete2 [1] which is why clustering algorithms can not find precise so-
lutions, but only approximations to the problem.

Several clustering algorithms were briefly introduced in chapter 1.2.2. The
introduced algorithms all find approximate solutions to certain minimization or
maximization problems. For example, the k-means algorithm tries to minimize
the Euclidean distance between the documents in a cluster to a given cluster
center, Spherical k-means (as will be described in chapter 5) tries to maximize
an angle between documents and cluster centers etc.

While documents are usually represented as vectors in a multi dimensional
space using VSM, figure 4.2 illustrates a set of documents represented as dots
in two dimensions for simplicity.
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Figure 4.2: Clustering example

The clustering algorithms try to calculate which documents belong to which
clusters. This can seem a trivial task when looking at the documents in figure
4.2(a), but as complexity grows with thousands of dimensions and millions of
documents this is not an easy task. Even in two dimensions it can be difficult
as can be seen in figure 4.2(b). What cluster does the document marked with

2See glossary for definition
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the circle belong to? Even for humans it can be difficult to determine the right
cluster or category a document belongs to and as there may be millions of
documents it is not feasible for humans to categorize them all. This is where
supervised- and unsupervised machine learning methods meet. These terms will
be described in the following section.

Some of the problems with clustering are related to how documents are rep-
resented in the vector space, meaning that the clustering algorithm can be very
good, but if the documents are not well represented in the vector space, the
algorithm can only do so much. The creation of the vector space3 is analyzed in
the introduction of the thesis in chapter 1.2.1. There, the problems regarding
which words are included in the index and which words are not included are
described. And even the more basic question: What is a word?

Our considerations are based on the English language as pointed out in
chapter 3. Other languages can have different problems, yet many, or all, of
the considerations associated with English may also apply to other languages
as well. We will not delve deeper into these considerations, but merely mention
that different languages can pose different problems and these problems are also
a very important part of creating usable clusters.

4.2.1 Overlapping vs. non-overlapping

Another aspect of clustering is the question of overlapping or non-overlapping
clusters. Overlapping refers to when documents may overlap between clusters,
that is, belong to more than one cluster. This is intuitively the best clustering
method as many (or all) real-life documents are part of several categories. This
of course depends on how the clusters are created. If there are only two clusters,
selling or not selling, a document should only be classified into one cluster - it
is either selling something or it is not. Such a simplistic view of clusters is
not feasible when using the algorithms on Internet resources. For the example
shown in figure 4.2 (b) it would be intuitively best if the circle belonged to both
clusters with some probability.

4.2.2 Types of algorithms

When talking about clustering algorithms, there are three primary strategies
used to find the clusters. Namely,

• Hierarchical clustering

• Partitional clustering

• Spectral clustering

The Hierarchical clustering approach builds a hierarchy (a tree) where the nodes
in the tree represent the clusters. This approach can be used in either a bottom-
up or top-down fashion creating a new level of clusters at each iteration. The
Bisecting k-means algorithm can be modified to create a hierarchical clustering

3Meaning what is indexed and what is left out (stopwords, POS-filtering etc.)
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by storing how the algorithm divides the dataset4.

Using Partitional clustering means to partition the dataset into a number of
parts (clusters). The number of parts is defined beforehand and the algorithms
refine these parts at each iteration to improve these parts. The algorithms stop
when they have converged or a number of iterations are done. An example of a
partitional clustering algorithm is the original k-means algorithms. The unmod-
ified version of Bisecting k-means can also be seen as a partitional clustering
algorithm.

The last approach is Spectral clustering. The spectral clustering algorithms
usually use dimensionality reduction techniques such as Singular value decom-
position or Non-negative matrix factorization to reduce the dimensionality of
the datasets so that they are easier to work with. Clustering of the dataset is
then performed on the dimension reduced set. Example of spectral algorithms
are Latent semantic indexing and Probabilistic latent semantic indexing.

4.3 Machine learning

Supervised machine learning is the task of classifying a collection of documents
into a set of categories with the use of a training set. Such a training set is a
large number of labeled training documents that can give the algorithm a sense
of what kind of documents belong to a certain category. This means that the
clusters are learned from the training set and the real documents are then added
to the cluster(s) they are most similar to. Such training can give near human-
like classified clusters if the training set is large enough. One problem is that it
is very hard and time consuming to create such labeled training documents by
manually categorizing them and, as mentioned, one piece of text can easily be
categorized into different categories by different people.

Unsupervised machine learning is categorizing the clusters using statisti-
cal methods and/or clustering algorithms without any prior knowledge. This
means that documents are added to different clusters based on a calculation on
which cluster they most likely belong to. It is very problematic to create an
unsupervised algorithm that works well on all varieties of data.

Figure 4.3 illustrates the difference between supervised and unsupervised
learning - calculation of clusters is done by k-means (roughly).

The top left and top right plots demonstrate how supervised learning rec-
ognizes which documents belong to a cluster based on the training set and the
cluster is then calculated from these documents. In the top left plot the dashed
circles indicate the labeling of the clusters, i.e. what documents belong to each
of the clusters. When such knowledge is present, it is fairly easy to compute the
clusters and their centers as seen in the top right plot.

The bottom left and right plots demonstrate how the clusters are calculated
from randomly chosen initial cluster centers5 giving a completely different result

4Bisecting k-means divides the largest cluster into two parts at each iteration until a wanted
number of clusters is reached

5k-means algorithm needs starting points for its cluster centers which are usually supplied
as random points
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Figure 4.3: Supervised vs. unsupervised learning

than the supervised learning. A more detailed description of how clusters are
calculated is given in the following chapters.

Figure 4.3 is of course a very simplistic look at clustering and meant only
as an example. With different initial cluster centers, the unsupervised learning
example could generate the same clusters as the supervised learning example.
Figure 4.3 is meant to illustrate one of the possible short comings in unsuper-
vised learning. However, it is not feasible to create training sets that are large
enough to enable clustering of all Internet resources using supervised learning
which is why unsupervised learning is interesting.

Most of the methods and techniques in supervised learning can easily be
ported to unsupervised text categorizations while supervised learning allows
more accurate performance measurements6 and easy comparison with other
methods. As mentioned in chapter 2, the intention is to use the strong con-
texts of the Wikipedia articles to create clusters, in order to (hopefully) get
very good clusters that few or no other publicly available training sets can give.

6As data sets that have been tested thoroughly are available
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4.4 Summary

So what is clustering good for? In this work we propose to use clustering in
order to obtain better search result. The idea is to use Wikipedia as a train-
ing set (learning source), relying on its strong contexts and categories and run
clustering on this set. Then, documents downloaded from the Internet will be
indexed and categorized using the Wikipedia clusters such that similarities in
the downloaded documents are easier to find. We feel that this could give more
precise and relevant search results.

Based on the discussion in this chapter, the documents to be clustered from
the index will be represented using the VSM. Similarity between documents is
found using the cosine similarity measure and the term-vectors will be weighted
using Tf x Idf in order to represent both long and short documents properly.

The algorithms we have chosen to look at are discussed in more detail in the
following chapters. These are Spherical k-means, Non-negative matrix factoriza-
tion and Frequent term-based clustering. The algorithms are chosen because of
their different structure and features. Spherical k-means is a non-overlapping,
partitional clustering algorithm while Non-negative matrix factorization pro-
vides overlapping clusters using the spectral clustering approach (dimensional-
ity reduction). Finally, the Frequent term-based clustering algorithm has the
ability to be an overlapping and a non-overlapping algorithm. The algorithm
is also a greedy, partitional clustering algorithm, but looks simpler than the
Spherical k-means algorithm and therefore an interesting algorithm to explore.
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Chapter 5

Spherical k-means

Spherical k-means [15], introduced by Dhillon and Modha in 2001, is a parti-
tional clustering algorithm based on the k-means algorithm[29] from 1966. The
k-means algorithm has spawned many variants such as Bisecting k-means[38],
Parallel bisecting k-means with prediction[27] and Spherical k-means [15] and
others.

In this chapter we will discuss the details of Spherical k-means as it has
been shown to be very efficient compared to other k-means variants[43]. Other
k-means algorithms will not be discussed further in this work. Note that the
theory in this chapter is adopted primarily from [15] and therefore we choose to
maintain the author’s mathematical notation for simplicity.

5.1 Document representation

When clustering, the documents can be represented using the VSM as described
in chapter 4.1. When using Spherical k-means the document term-vectors are
normalized using the l2 norm (also known as Euclidean norm). The l2 norm is
defined as

|x|2 =

√√√√
n∑

(k=1)

x2
k (5.1)

This norm is a vector norm that normalizes all document term-vectors to
unit length. Visually, this means that the documents can be seen as lying on
the surface of a hyper-sphere1 with radius one. Such normalization is done to
capture the direction of a document and to ensure that documents of different
lengths, but with same direction, are located at the same place in space (ap-
prox.). The normalization also helps to ensure that documents pointing in the

1A high dimensional sphere with dimensions ≥ 4
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same direction but having different lengths, do not get assigned to different clus-
ters. Looking at the left part of figure 5.1, the documents can be divided into
vectors having four directions, but different lengths, meaning that the vocabu-
lary is similar but the term frequencies are different. The right part of figure 5.1
shows the effect of normalizing the documents to unit length. The documents
align into four clusters on the edge of the unit circle. Although not perfectly,
but clearly enough for the clusters to be identifiable. Had the documents not
been normalized, as in the left part of the figure, the documents might have
been divided into 5 clusters (two at the bottom and three at the top). These
clusters would have more similar term frequencies but less similar vocabularies
compared to the clusters with the normalized documents.
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Figure 5.1: Normalizing vector space

With document vectors normalized, the Cosine Similarity Measure described
in chapter 4.1.1 is used to measure similarity between them. The Spherical k-
means algorithm performs clustering on the high dimensional sphere created by
the document normalization and is therefore called Spherical k-means.

The algorithm is described graphically in figure 5.2 on page 54 and this fig-
ure will be referenced as the algorithm is explained further. Since the algorithm
works on a hypersphere which is difficult to visualize, the workings of the al-
gorithm has been projected down to two dimensions (along with other figures)
for the sake of simplicity and visualization. This means that the surface of the
hypersphere is projected down to the two-dimensional plane in figure 5.2.

5.2 Algorithm

Given n document vectors x1, x2, . . . , xnin Rd
≥0, d being the document vector

dimensions and ≥ 0 denotes the positive part of Rd, then π1, π2, . . . , πk are
called the k disjoint clusters derived from the document vectors such that

k⋃

j=1

πj = {x1, x2, . . . , xn} and πj ∩ πl = φ if j 6= l (5.2)
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Equation 5.2 means that the clusters generated are disjoint (non-overlapping)
and the mean vector for a cluster πj is easily computed as

mj =
1

nj

∑

x∈πj

x (5.3)

where nj is the number of documents in cluster πj . Thus, the direction of the
mean vector is given by

cj =
mj

|mj |2
(5.4)

where cj denotes a centroid normalized to unit length. A centroid is defined
as a vector that is closest in cosine similarity (in average) to all documents in
cluster πj .

5.2.1 Cluster quality

The coherence, or quality of a cluster can be measured by the dot product for
each cluster πj , 1 ≤ j ≤ k,

Qj =
∑

x∈πj

xT cj (5.5)

If two documents are identical, the dot product equals 1 according to the defini-
tion of a the dot product with the lengths normalized to 1. Equation 5.5 returns
a value between 0 ≤ v ≤ n where n is the number of documents in πj . If v = n

then all documents are identical, meaning the angle θ between the documents
is 0 degrees which implies that the closer v is to n the better the quality of the
cluster.

The Cauchy-Schwarz inequality is defined as:

∑

xi∈πj

xT
i z ≤

∑

xi∈πj

xT
i cj (5.6)

where z can be any vector in a high dimensional space.
Equation 5.6 states that combining all vectors in a cluster you are closer

to the clusters centroid than any other vector. As equation 5.6 states, is is
not possible to get closer to a minimum average distance (or angle) to all other
vectors in the cluster than the centroid. Hence, the quality measure of any given
cluster can by defined as

Q
(
{πj}kj=1

)
=

k∑

j=1

∑

x∈πj

xT cj (5.7)

Equation 5.7 is the function that Spherical k-means tries to maximize. Such
a maximization is, as mentioned, NP complete and Spherical k-means is an
approximation to this maximization problem[15].

The quality function, (equation 5.7) is used to measure the quality of the
clustering between each iteration and as a stop criteria. The stop criteria for
this algorithm is when the quality function improves less than a given value, ǫ,
between iterations or after a predefined number of iterations.
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Figure 5.2: Spherical k-means

5.2.2 Clustering step by step

When the Spherical k-means algorithm starts, the documents (represented as
triangles in figure 5.2) are either randomly assigned to centroids (represented
as dots in figure 5.2) or with some prior knowledge and the index of iterations
is set to t = 0. The algorithm proceeds as follows:

1. For each document find the closest centroid and assign the document to
that centroid.

πt+1
j =

{
x ∈ {xi}ni=1 : xT c

(t)
j > xT c

(t)
l , 1 ≤ l ≤ n, l 6= j

}
, 1 ≤ j ≤ k.

2. Compute the new centroids for each partition of documents found in step
one using equations 5.3 and 5.4. This moves the centroids closer to the
maximum of the quality function in equation 5.5 (see figure 5.2).

3. If the stopping criteria is met, then stop, otherwise go to step one.

The number of centroids (clusters) to be created when running the Spherical
k-means algorithm has to be known from the start. The starting positions of
the centroids is also very important. Had the starting centroids been placed
differently in figure 5.2 or the documents assigned to other clusters, the cal-
culated centroids would probably converge differently. Hence, the algorithm
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initialization is very important since a poor initialization converges slower and
could yield worse clusters compared to a good initialization.

5.3 Summary

Spherical k-means creates a disjoint set of clusters (centroids) where all docu-
ments are included. This means that every document is assigned to a cluster
and no document is assigned to more (or less) than one cluster. The clusters
centroids returned by the algorithm can be seen as the direction of the most
general document within the cluster. Hence, the centroids can be seen as the
topic vectors describing the clusters.

A negative aspect of the algorithm is its non-deterministic nature. If initial-
ized with different starting centroids, different resulting clusters are found. The
starting centroids play a very important part in the creation of good clusters.
Much research has been done with regards to the initialization of the algorithm
and the resulting centroids from the Bisecting k-means algorithm have even
been used as starting centroids for Spherical k-means [41]. However, the ran-
dom initialization seems, in general, to be adequate and will therefore be used
in our implementation.
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Chapter 6

Nonnegative matrix
factorization (NMF)

When clustering large datasets which are represented by the VSM, the dimen-
sions of the term-document matrix can be enormous. In order to perform clus-
tering on these matrices efficiently, matrix decomposition is used for rank reduc-
tion purposes. The general idea is to factor the large term-document matrix,
T, into smaller matrices, W and H, in order to make calculation easier, that is:

T ≈WH (6.1)

where T is a n×m matrix, W is a n× r matrix and H is a r ×m matrix..

Many methods are used to accomplish this, such as Independent Compo-
nent Analysis (ICA), Probabilistic Latent Semantic Indexing (PLSI) and many
more. The methods use Singular Value Decomposition (SVD) to decompose
the matrix and hereby try to reduce the term-document matrix to a certain
rank, r, which corresponds to the number of clusters in the dataset. In order
to find the best approximation, the SVD methods (such as ICA, PLSI etc.)
minimize the Frobenius norm of the difference between the original matrix, and
the approximation. However, the SVD methods allow negative values in their
decompositions, which does not always make sense since documents in the se-
mantic space are non-negative, i.e. an entry in the term-document matrix is
either positive (if the word is in the document) or zero (if the word is not in
the document). This makes non-negative matrix factorization (NMF) a good
method for these types of approximations.

This chapter discusses the general NMF method introduced by Lee and Se-
ung [25] which we chose to look at in this thesis. The notation in this chapter
is the same as Lee and Seung use in [25] for the sake of simplicity.
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Figure 6.1: Difference between NMF and LSI (figure adopted from [45] with
minor changes)

6.1 Standard NMF-Algorithm

According to [47], the sparseness of documents in the semantic space, the doc-
uments non-negative nature and the fact that the documents are topic-based,
makes NMF a better choice than SVD methods. In general, NMF is an un-
supervised learning algorithm which has been shown to outperform traditional
vector space approaches such as LSI[45]. Experiments shown in [45] also in-
dicate that NMF surpasses SVD and eigen-vector based methods in accuracy
and reliable cluster derivation. Therefore, this method seems like a very logi-
cal choice for the clustering needed in this thesis. A general problem with LSI
and eigenvector-space models is that the resulting eigenvectors do not directly
describe the individual clusters.

Another drawback of LSI is that the resulting topic-vectors of the semantic
space are required to be orthogonal. This is not the case with NMF. Looking
at figure 6.1, it can be seen that while NMF would divide the documents into
two specific clusters, LSI would put all the documents in the same cluster, since
the angle between the two document clusters is less than 90 degrees.

This makes NMF more suited for overlapping clusters, since a document can
easily contain more than one topic. Looking at figure 6.1, the solid dot between
the clusters represents a document which contains both topics, i.e. belongs to
both clusters. The document vector for that document is the dotted line in the
figure. More precisely the document vector is equal to 1

2N1 + 1
2N2. This shows

how NMF can handle documents with overlapping clusters (topics) and how the
document vectors are an additive of the basis vectors (topic-vectors).

6.1.1 Initial problem

As mentioned above, the NMF method tries to find an approximation to the
term-document matrix as shown in equation 6.1. NMF differs from other rank
reduction methods by producing non-negative basis vectors for the semantic
space. These basis vectors are also called topic-vectors and they describe the
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vocabulary for each cluster1. NMF produces an overlapping clustering (part-
based) where each document in the data set is represented as an additive com-
bination of the topic-vectors.

So the basic idea is to factorize the term-document matrix into two matrices
which yield a good approximation to the original matrix. The matrices W
and H are not unique. They change after every iteration of the algorithm and
the quality of the approximation depends greatly on the initialization of these
matrices. That is, the better the initialization, the faster the algorithm will
converge to an acceptable solution.

The quality measure of the approximation can be measured by calculat-
ing the Frobenius norm2 of the difference between the original matrix and the
approximated matrices. For a matrix A, the Frobenius norm is defined as:

‖A‖2F =

m∑

i=1

n∑

µ=1

|aiµ|2

This means that the NMF method seeks to minimize the objective function
(cost function):

‖T−WH‖2F =
∑

i

∑

µ

(Tiµ −WHiµ)2, where W,H ≥ 0 (6.2)

Hence, the quality of the approximation is measured by the value of the Frobe-
nius norm. The closer the norm is to zero, the better the approximation.

6.1.2 Updating rules

In order to solve the problem in equation 6.2, Lee and Seung [24, 25] present
a multiplicative update rule that they describe as a good compromise between
speed and ease of implementation. These rules are defined as:

Haµ ← Haµ

(WT T )aµ

(WT WH)aµ

(6.3)

Wia ← Wia

(THT )ia

(HHT W )ia

(6.4)

where a denotes the topic-vectors, i.e. 1 ≤ a ≤ r. The update rule is used
to update the approximated matrices between iteration without having to re-
calculate the whole approximation. This makes the algorithm faster and more
efficient. The algorithm outline is as follows:

1. Initialize W and H with non-negative values

2. Iterate for each a, µ and i until convergence or after maximum l iterations

(a) Update H using update rules

(b) Update W using update rules

1Much like the centroids in Spherical k-means
2Also known as the Euclidian norm
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The most common way of initializing the approximation matrices is simply
to use random numbers. Other initialization methods will not be discussed here.

Using the above update rules, Shahnaz et. al. [37] state that complexity of
the algorithm is O(rmn) for r-clusters and a m× n term-document matrix.

6.2 Summary

The NMF algorithm discussed in this chapter is the multiplicative algorithm
introduced by Lee and Seung in [24]. The algorithm is fairly simple to under-
stand and implement. It has been used widely and seems to be very efficient.

Several other NMF algorithms have been proposed such as Gradient Descent
Algorithm[24] or Alternating Least Squares [7]. These algorithms differ mainly
in their update rules, but also in their objective functions. Yang et. al. [47]
also introduce an algorithm, Sparse Non-negative Matrix Factorization where
they utilize, and control the sparseness of the term-document matrix in order
to improve cluster quality. These methods were all possible candidates in this
thesis, but Lee and Seung’s algorithm was chosen because of its simplicity and
the good results it produces.



Chapter 7

Frequent term-based text
clustering (FTC)

While searching for promising and appropriate clustering algorithms, we found
an article describing an algorithm called Frequent term-based text clustering
(FTC).

The algorithm looked very simple, easily implemented and had comparable
results to other algorithms such as Bisecting k-means. The resulting clusters
were of similar quality but the algorithm was said to be faster than the tradi-
tional algorithms. Last but not least, the algorithm not only clusters documents
by their frequent term sets, it also returns a description of each clusters i.e. the
terms that best describe the clusters - a good quality in order to understand
the content of the clusters.

In this chapter we will briefly describe how the algorithm works and discuss
the pros and cons of it. This entire chapter is based on [5] where the algorithm is
described and evaluated. The author’s notation is used for the sake of simplicity.

7.1 Definitions

Before describing the algorithm itself, some definitions are needed. First, let D

be the set of all documents, i.e. D = {D1, . . . ,Dn} and T be the set of all terms
occurring in these documents. Then each document can be represented by its
terms, e.g. Dj ⊆ T . Further:

cov(S) = {Dj ∈ D|S ⊆ Dj}

where S is a set of frequent terms, and cov(S) is the set of all documents con-
taining all the terms of S.
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The set of all frequent term sets in D is defined as F = {F1, . . . , Fn}. The
cover of these frequent terms sets can be regarded as cluster candidates. A de-
scription of these cluster candidates would be the terms in the frequent term sets.

A clustering description for the document-set D, would be the set of clusters
that satisfy the condition: ⋃

i∈I

cov(Fi) = D

That is, together, all clusters must cover all documents in the database.
The algorithm tries to find a clustering with minimum overlap of the clusters.

Ideally, each document can only belong to one cluster. This is not very likely
so a measure for cluster overlap has to be defined. First, let fj be the number
of frequent term sets that contain document Dj :

fj = |{Fi ∈ R|Fi ⊆ Dj}|

where R is the set of frequent terms sets not yet selected and || is the cardinality
of a set. Now the overlap of a cluster Ci is small, if the values of fj are small.
If each document only supports one cluster, i.e. fj = 1 for all j, then Ci = 0
for all other cluster candidates. The standard overlap is defined as:

SO(Ci) =

∑
Dj∈Ci

(fj − 1)

|Ci|

Given a frequent term set of n-terms, any subset of that set is also a fre-
quent term set, meaning that any document supporting the n-term set, will
also support any subset of that set. The effect of this property is that a cluster
candidate with many terms will have a much larger standard overlap than a
candidate with few terms, thus favoring the smaller frequent term sets. Due to
this shortcoming, another overlap is defined, based on entropy. Here, pj = 1

fj

denotes the probability of document Dj belonging to one cluster candidate.
Again, ideally, pj = 1 if document Dj only belongs to one cluster candidate.
Conversely, pj becomes very small for large fj values. Thus, the entropy overlap
is defined as:

EO(Ci) =
∑

Dj∈Ci

− 1

fj

ln
1

fj

The entropy overlap is 0 if all documents in the cluster do not support any other
candidates, i.e. if fj = 1 for all documents.

7.2 Algorithm

The algorithm is very dependent on the calculation of the frequent term sets.
The basic outline of the algorithm is as follows:

1. Determine the frequent term sets

2. For each remaining frequent term set:

(a) Calculate overlap for the set (standard or entropy)

(b) Find best candidate term set based on minimum overlap
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(c) Add the best candidate term set to already selected term sets

(d) Remove the best candidate term set from the remaining sets

(e) Remove all documents in cov(Best) from D and from cov(Remaining)

3. Return the clustering and the cluster descriptions (the terms)

This greedy algorithm produces a non-overlapping clustering and a cluster-
ing description for the terms in each cluster.

The article also introduces a hierarchical version of the algorithm, but as the
results for that algorithm are similar to the results of the flat version, it will not
explained in any detail here.

7.3 Summary

At first glance this algorithm seemed like a very good choice for our clustering
purposes. It is simple, easy to understand and gives a natural description of its
clusters. However, we also found some problems with it.

First of all, the algorithm relies on an efficient way to determine the frequent
term sets, but does not produce this algorithm. Implementing such an algo-
rithm efficiently could make the whole implementation a lot more complex than
intended, thus making the seemingly simple FTC implementation very complex.

Second, we could not find any articles on the Internet describing the results
or experiences with the algorithm, making it hard to determine if it was suited
for our purpose. Scalability is especially an issue in our case, since we are dealing
with very large data sets (approx. 200.000 documents or more) and the article’s
results are based on much smaller data sets (no more than 9.000 documents).
Furthermore, the number of clusters in the data sets used in the article are
relatively small, ranging from 3 to 52 clusters. In our dataset, we presume that
the number of clusters needed could be as many as several thousand clusters.
This scalability and experience issue was of great concern to us.

Finally, trying out the example in the article, we could not produce the
presented results. This severely undermined our faith in the algorithm and was
the last and decisive factor in our choice not to implement it. The algorithm
seems like an effective and fast way of clustering smaller data sets with fewer,
and non-overlapping clusters. Whether it scales well to larger sets remains to
be seen.
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Chapter 8

Clustering discussion

In this chapter we will sum up the clustering discussion from previous chap-
ters. First we will discuss our choices regarding the algorithms, e.g. which ones
we have chosen and why. Then we will discuss the chosen algorithms weighed
against each other, i.e. pros and cons of each algorithm along with the similar-
ities between them. Finally, we will mention what our framework is capable of
at this point and how we intend to use the elements we have discussed so far in
this work.

8.1 Algorithm choices

In the previous chapters three different algorithms used for text-clustering were
discussed. The FTC algorithm looked very promising, but due to the dimension-
ality of the used dataset, enough arguments supporting the use of this algorithm
could not be found. Therefore, only the NMF and the Spherical k-means algo-
rithms are considered.

The most obvious choice seems to be the Spherical k-means algorithm. This
is, in part, due to the algorithms simplicity, but also because the algorithm has
a fast convergence, i.e. takes few iterations to return a solution. Each iteration,
in the dimensions used, is very time costly and therefore if the algorithm con-
verges fast, it makes a great deal of difference in the calculation of the clusters.
However, the seeding of the algorithm can cause some problems. Random ini-
tializations do not necessarily return the same results every time, in fact it is
very unlikely they will. Therefore, a good starting point is vital for a good final
solution.

Despite the initialization issue of the Spherical k-means, its use can still be
justified, since NMF also relies on a good (random) initialization. However,
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NMF has been shown to find better solutions but with more iterations. Still,
NMF is not that complex with regards to implementation, so it is still a candi-
date algorithm if Spherical k-means fails to give the results needed.

8.2 Algorithm pros, cons and similarities

The NMF and Spherical k-means algorithms were selected in this work based
on their qualities. However, both algorithms also have drawbacks. Even though
the algorithms are structurally very different, there are some similarities be-
tween them.

8.2.1 NMF discussion

One of the best qualities of NMF are the resulting overlapping clusters. This
type of clustering is more intuitively correct, i.e. closer to how humans would
perform clustering by allowing documents to belong to more than one cluster.
Furthermore, the NMF algorithm is fairly simple to implement and rather ele-
gant in its updating between iterations. It has given good results when it comes
to cluster quality and it returns a set of vectors that describe each cluster. These
are all features that make NMF an attractive choice.

However, one of the main drawbacks of the algorithm is its slow convergence.
The algorithm can require many iterations before finding a good solution. This
depends on its initialization, which is usually done by random assignment and
also the mathematics behind the matrix factorizations can be very computation-
ally difficult, especially in very high dimensions. Computer limitations could
become a problem when dealing with many clusters, but this of course depends
on the available computer hardware.

8.2.2 Spherical k-means discussion

Like NMF, the Spherical k-means algorithm returns a set of centroid vectors
which describe the individual clusters. The algorithm usually converges fast,
i.e. only requires a few iterations to find a proper solution. The calculations
for each iteration are simple mathematically, but grow linearly in accordance to
the dimensions of the documents, the number of documents and the number of
clusters to divide the data set into. As the number of documents and clusters
grow, more similarity calculations are needed at each iteration. That is, each
document has to be measured against more cluster centroids making the exe-
cution time longer. To try and reduce this effect, Elkan [16] uses the triangle
inequality to reduce these similarity calculations in the standard k-means algo-
rithm. His experiments show that on some datasets, the algorithm is up to 350
times faster than the standard algorithm1. The details of his experiments will
not be presented here, but curious readers are referred to [16] for more details.

1Using similarity calculations as the time measure
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The Spherical k-means algorithm has a very simple structure and is easily
implemented because of its simple mathematics. However, due to its simplicity,
the cluster quality suffers. NMF has given much better results with regards to
cluster quality compared to Spherical k-means. This can of course be due to
the non-overlapping structure of the algorithm. Like NMF, the algorithm also
relies on proper initialization to find a good solution. Bad initialization can lead
to more iterations and/or worse cluster quality.

8.2.3 Algorithm similarities

As described, the algorithms’ structures are very different. However, there are
some similar features between them. For instance, both algorithms rely heavily
on the initial clustering in order to find a good solution. Both algorithms repre-
sent data in the same way, i.e. using high-dimensional term-document matrices
although NMF works on a dimensionality reduced approximation to the original
representation. The most important similarity between the algorithms lies in
their cost functions.

For NMF the objective function (cost function) is defined as:

ENMF = ‖T−WH‖2

=

D∑

d=1

I∑

i=1

(xdi −
K∑

k=1

WdkHki)
2

= x2
di + x̃2

di − 2xdi

K∑

k=1

WdkHki (8.1)

where D is the number of documents in the collection, K is the number of
clusters and I is the number of elements in the vectors (the term list). Further,

x̃2
di =

(
K∑

k=1

WdkHki

)2

If document vectors are normalized to have unit length, and assuming

x2
di ≈ x̃2

di

then x2
di + x̃2

di in equation 8.1 is merely a constant, leading to:

ENMF ≃ 2− 2

D∑

d=1

I∑

i=1

K∑

k=1

xdiWdkHki (8.2)

where clearly equation 8.2 should be minimized in order to get the least value
of the cost function.

The quality function for Spherical k-means is defined in equation 5.7 on page
53. This function measures the quality of individual clusters and therefore only
deals with documents that belong to the individual clusters. By maximizing the
quality of each cluster, the function basically tries to minimize the difference
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between the document vectors and the centroid vectors. Thus, the function can
be rewritten as a cost function in the following way:

ESKM =
K∑

k=1

∑

d∈πk

(xd − ck)2 (8.3)

The above equation only deals with documents within a single cluster. To
rectify that, the equation is multiplied with a d-by-k matrix M consisting of
only zeros or ones where Mdk = 1 means that document d belongs to cluster k

and Mdk = 0 means the document d does not belong to cluster k. Thus, the
cost function for Spherical k-means can be expressed by::

ESKM =

K∑

k=1

D∑

d

(xd − ck)2Mdk

=
K∑

k=1

D∑

d

I∑

i=1

(xdi − cki)
2Mdk

= x2
di + c2

ki − 2
K∑

k=1

D∑

d

I∑

i=1

xdickiMdk

where K is the number of clusters, D is the set of all documents and I is the
number of elements in the term vector. Also, since all vectors are normalized
to unit length, x2

di + c2
ki = 2 the above equation becomes:

ESKM = 2− 2

K∑

k=1

D∑

d

I∑

i=1

xdickiMdk (8.4)

Again, the goal is to minimize equation 8.4 to get the smallest cost value and
thereby the best quality.

Comparing equations 8.2 and 8.4 shows that they are very similar. Given
that the vectors in NMF are normalized to unit length, and the matrix W would
only contain zeros and ones, the objective functions would virtually be the same
since the vectors in H can be seen as centroids for the clusters much like the
vectors ck.
In the NMF cost function, the assumption that the two vectors x and x̃ are
equal will seldom be true. The cost functions are though very similar in many
ways as the equations clearly show.

8.3 Current state of affairs

Using the clustering algorithms, the plan is to cluster the Wikipedia article
training set, described in Part I, to get good clusters with strong contexts. We
then want to index the downloaded data (also discussed in Part I) on top of
the clusters, meaning that for each downloaded document we calculate which
cluster the document is most similar to (using the cosine similarity measure).
The document will then be added to the appropriate cluster in the cluster index,
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and then indexed in the usual way. The idea is that when submitting a query
to the search engine, it will find which clusters the documents belong to such
that the user can select the most relevant cluster.

For example, lets say a query is submitted using the word jaguar and the
user is looking for information about the animal. Then the search engine will
find results in, lets say 3 clusters and present them unsorted with the clusters
being, animal, british car and Formula 1 team. The user can then select the
animal cluster, thus removing all the non-relevant results from the other clus-
ters.

This is how we intend to utilize the clustering. However, in order to achieve
this, we must implement the retrieval process of the search engine along with the
ranking part of it. In the next chapter we test the selected clustering algorithms
and discuss their results.
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Chapter 9

Clustering tests

In the previous chapters we discussed various algorithms that can be used to
cluster unstructured data. We have chosen to start with the Spherical k-means
algorithm and see how it performs.

In this chapter we will discuss our implementation and test strategy for
Spherical k-means clustering. We will also present the results of our tests and
try to draw conclusions as to how clustering in our system is best achieved.

9.1 Data set

The original idea was to test the clustering on the full Wikipedia index as de-
scribed in Part I. However, the full index of approximately 185.000 articles is
very large (about 700MB) with more than 20.000 categories. It would require
several GB of RAM to run clustering on this set, but also it would be difficult
to manually inspect each cluster to assess the quality. Therefore, a smaller test
set was created. The set was reduced to 49.748 articles by using the category
Musical groups as the top level category with a total of 3.605 categories.

Before clustering the entire data set, Spherical k-means clustering was first
run on a set with 10.000 Wikipedia articles on a Linux-grid engine. This grid
has 32GB of RAM available thus making it the best place to run such mem-
ory demanding tests. The clustering of 10.000 Wikipedia articles took the grid
engine 40 hours to cluster and used a staggering 2.83GB of RAM on the grid
engine.

Based on these results the test data set was reduced even further. The data
set was based on articles below the category Blues in Wikipedia. This data
set contains 1283 articles divided into 93 categories with an index size of 9MB.
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Using this set it was possible to run clustering in a reasonable amount of time on
a 2.80GHz Dell computer with 512MB of RAM. Calculating clusters on the grid
engine makes a huge difference in running time, but requires a lot of copying
back and forth which is why it was desirable to be able to run the tests locally
on ordinary PCs.

9.2 Test strategy

Using the blues data set, test scenarios have to be defined.

First of all, the implementation of the Spherical k-means algorithm needs
to be tested. As discussed in chapter 5, the results of the algorithm depends
mainly on two factors. Namely the number of clusters to divide the data set
into and the initialization. Therefore, several initializations of the clusters are
created and then the algorithm is run using the same number of clusters to see
the effect of the initializations. The algorithm should also be to run on the
blues set with various number of clusters to see how the number of clusters
affect the final result. Furthermore, the algorithm performance compared to its
baseline has to be investigated, i.e. measure the cluster quality if documents
were assigned to clusters in a random fashion and the algorithm not run on the
clusters. Therefore baseline clusterings are also created to measure against the
algorithm results.

While implementing Spherical k-means, we got the idea of simply using
Wikipedia’s categories as clusters without any further calculations. For each
category in Wikipedia, the list of articles belonging to that cluster was available
and therefore it was decided to check the quality of these clusters and measure
against the Spherical k-means algorithm. Note that there is a fundamental dif-
ference in the clusters provided by Wikipedia and the ones found in Spherical
k-means. Wikipedia’s structure allows overlapping categories, i.e. an article can
belong to one or more clusters, while the Spherical k-means clusters have a flat
non-overlapping structure. Therefore the clusters in Wikipedia are in general
larger than the ones in Spherical k-means. Despite this difference, it is still
interesting to see how these clusters looked compared to each other.

9.3 Quality measure

As described in chapter 5, finding the quality of a single Spherical k-means
cluster is fairly simple. The quality of a cluster is simply the sum of the dot
products between each document in the cluster and the cluster’s centroids. This
can also be seen mathematically in equation 5.7 on page 53. To properly rep-
resent different document lengths, each document is normalized to unit length
(according to Spherical k-means) and weighted using the Tf x Idf weighting
scheme described in chapter 4. This measure is implemented as described and
will be applied to both the clusters from Spherical k-means and the clusters in
Wikipedia with the centroid calculated first.
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9.4 Test results

The tests are based on the described test strategy. The random initializations
and baseline clusterings for Spherical k-means are done using MATLAB. A
script was created that could write files with different numbers of clusters, over-
lapping and non-overlapping such that the algorithm could be initialized with
these files. All the clusters are initialized to have approximately the same size
but with random articles. This emulates the way Spherical k-means divides its
initial document set into desired parts.

MATLAB was also used to generate overlapping baseline clusterings for
Wikipedia. In order to keep the structure of Wikipedia the baselines were
created with the same number of clusters and sizes as the actual Wikipedia
clusters. This was done in order to get a more accurate baseline for the cluster
structure of the blues category in Wikipedia. Using random sized clusters would
not properly represent the structure of the blues set and would give results that
did not compare to the actual Wikipedia categories.

9.4.1 Cluster quality and baseline measures

Using the test strategy, first the effect of different cluster sizes using the Spherical
k-means algorithm was tested. Here ten different cluster sizes were. Wikipedia
has 93 clusters for the blues set and therefore the algorithm was tested with
both fewer and more clusters than Wikipedia. The 1283 articles were tested
using the following number of clusters

cs ∈ {50, 60, 70, 80, 93, 100, 120, 140, 160, 180}

For each test, the algorithm was randomly initialized as described above,
but also a baseline quality was calculated for these random initializations with-
out the algorithm being run. The results of these tests can be found in figure 9.1.

Figure 9.1 clearly shows how the cluster quality for both the algorithm and
the baseline increases along with the number of clusters selected. Intuitively this
makes sense since the quality measure is based on similarities whereas it is easier
to find similarities in fewer documents than in many. It is also interesting to
see that the difference between the baseline and the algorithm results is almost
constant but the baseline quality is rather low. Using 93 clusters like Wikipedia,
the algorithm has a cluster quality of 0.367072 but increases to 0.470877 when
using 180 clusters. That is an increase in quality of about 28% which is quite
impressive. The baseline quality for 180 clusters is 0.34083 which is close to the
cluster quality found by the algorithm using 93 clusters.

After testing how different cluster sizes affect the results for Spherical k-
means, the effect of random initialization of the algorithm using a constant
number of clusters was tested. The same test was performed on Wikipedia’s
clustering to see how they compared. The test was performed as follows: 10
random initializations were created for both Wikipedia and Spherical k-means,
the algorithm was run on the initializations and the baseline scores were cal-
culated for both Wikipedia and the Spherical k-means. The initialization for
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Figure 9.1: Spherical k-means baseline- and cluster-quality

Spherical k-means was non-overlapping whereas the Wikipedia initializations
were overlapping.

Figure 9.2 shows the results of these tests. It is easy to see that Wikipedia
has much higher quality for the clusters in the blues set than Spherical k-means
can find. The algorithm does not even come close to the baseline quality of
Wikipedia.
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Figure 9.2: Wikipedia and Spherical k-means cluster quality

Table 9.1 lists the numerical results of the tests. Using Wikipedia’s own clus-
tering in unchanged form yields a quality of 0.5830990 with an average baseline
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quality of 0.4577303 while Spherical k-means gives an average cluster quality
of 0.3579345 with a baseline quality of 0.2525347. The big difference in quality
probably lies in the fact that Wikipedia has some clusters with few articles and
sometimes just one article, giving a quality of 1 for these clusters, whereas Spher-
ical k-means has clusters with less variation in size, giving a more constant, but
poorer quality in the clusters. Table 9.1 also shows that the minimum quality
for Wikipedia is actually much worse than the minimum quality for Spherical
k-means, again supporting the assumption of more constant quality of the al-
gorithm.

Wikipedia Spherical K-means
Cluster min. 0.0510957 0.2080710
Cluster max. 1.0000000 0.7965290
Cluster avg. 0.5830990 0.3579345
Baseline min. 0.0452843 0.0853201
Baseline max. 1.0000000 0.3151620
Baseline avg. 0.4577303 0.2525347

Improvement 27.39% 41.74%

Table 9.1: Clustering statistics

9.5 Discussion

As shown in the previous section, dividing data into more clusters gives better
cluster quality when using Spherical k-means. However, adding more clusters
also has the drawback of requiring a lot of memory for large data sets and also
has a negative effect on execution time. Calculating the clustering with many
clusters takes a lot more time than using fewer clusters since each document
needs to be measured against more centroids. On the other hand the cluster
quality improves, so finding the best trade-off between number of clusters and
cluster quality is essential when using Spherical k-means.

Our tests of the Spherical k-means indicate that initializing the algorithm
using random cluster assignment results in relatively stable cluster qualities.
The baseline qualities using random assignment also yield approximately the
same cluster qualities for all tests. The same goes for the baseline tests for
Wikipedia. Although higher than the baseline for Spherical k-means, the ran-
dom initialization of Wikipedia clusters give almost the same cluster quality
every time. The overall clustering quality of Wikipedia is also higher than the
quality found using Spherical k-means which indicates that the human labeling
of the Wikipedia articles is very good.

Despite the higher quality of Wikipedia’s clustering, table 9.1 shows that the
Spherical k-means algorithm improves its average cluster quality by an aston-
ishing 41.74%, compared to its baseline, while Wikipedia ‘only’ has a 27.39%
improvement compared to its baseline. This can be explained by looking at some
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of the Wikipedia clusters, especially the clusters with very few articles. Ran-
domly assigning these clusters will on average give a very good quality measure
for these clusters, resulting in a much higher baseline value whereas the Spherical
k-means clusters are all of equal size (approximately) with much lower average
cluster quality. Therefore, Spherical k-means can improve the clusterings more
compared to its baseline than Wikipedia. A randomly assigned Wikipedia clus-
ter with one article will always have a quality of 1, regardless of what article
gets assigned to it, thus making Wikipedia’s baseline much higher than Spheri-
cal k-means baseline.

Table 9.1 also reveals more variation in the Wikipedia cluster quality com-
pared to Spherical k-means. The minimum Wikipedia quality is 0.0510957 while
it is 0.2080710 for Spherical k-means. The maximum for Wikipedia is 1, as
mentioned before, compared to 0.7965290 for Spherical k-means. This large
variation in Wikipedia cluster quality is due to the overlapping structure of
the Wikipedia clusters, meaning that a document can easily be in more than
one cluster, making the cluster larger on average. This hierarchical overlap-
ping structure has clusters with many articles (> 200 for the blues set) but
also clusters with only one article. Referring to figure 9.1, the cluster quality
deteriorates as the clusters get bigger since it is difficult to get a high similarity
value for many articles, thus resulting in a lower quality score for those clusters.
This also applies to the Wikipedia clusters, i.e. that the larger clusters have
very low quality values. Spherical k-means is not as affected by this since the
algorithm has (on average) fewer articles per cluster, giving the worst clusters
higher quality but at the same time giving the best clusters lower quality. This
leads us to the following question:

Does it make any sense to compare the cluster quality of Wikipedia
and Spherical k-means?

The answer is not entirely clear, due to the different structures of the clus-
ters. Wikipedia has a great advantage of having clusters with very few articles,
but also suffers from the large clusters while Spherical k-means has more con-
stant cluster sizes. The overlapping in the Wikipedia clusters probably does
more damage than good, since the smaller categories in Wikipedia are more
specific with higher quality. Figure 9.3 illustrates the overlapping structure.
Here, the Blues singers cluster is very large and would have low quality, while
the sub-clusters have more similar articles and thereby higher quality. If Spher-
ical k-means was used on the data in figure 9.3, the clusters would be divided
into equal parts (approximately). If one could be sure that all the articles in the
large Wikipedia clusters are contained in one or more of the smaller categories
(as shown in the figure), the largest categories could be dismissed, here Blues
singers, and only use the smaller, more precise categories, thus giving a higher
cluster quality for Wikipedia.

Essentially, the cluster quality measure is a mathematical way of measuring
quality between the Wikipedia and Spherical k-means clusters. Examining the
clusters manually would be far too time consuming and also relies on the eval-
uator’s knowledge of the articles, therefore making manual quality measuring
impossible. Although easy to use, it should be noted that the quality measure
is merely a mathematical representation of similarity between documents based
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Figure 9.3: Wikipedia overlapping clusters

on the assumption that documents dealing with the same topic will make use
of the same vocabulary. This is not always the case, since words can have many
ambiguous forms (i.e. word polysemy) thereby making it possible to discuss
the same topic using different words. In a recent article [12], Cucerzan from
Microsoft Research introduces a framework that can be utilized to recognize
disambiguations in the Wikipedia articles. Using this framework could help
clustering texts which use different vocabularies for the same topics.

One could argue that the Wikipedia clusters are more precise, at least by
human standards, since the users of Wikipedia have in fact manually labeled the
articles, putting them in appropriate categories etc. Since the quality measure is
a mathematical model of document similarity, the model falls short compared to
human categorization. Humans simply would not categorize documents based
on their specific vocabulary, but the general context. There is no way a mathe-
matical model can imitate human behavior, but the quality measure does make
sense both mathematically and intuitively. The question is whether the qual-
ity measure for non-overlapping clusters like the Spherical k-means clusters is
suited for the overlapping structure of Wikipedia. Such research is beyond the
scope of this work, but is worth mentioning as it is not entirely clear.

9.6 Summary

To sum up the tests and results, the only remaining question is whether to use
Wikipedia’s clusters or to rely on the Spherical k-means algorithm to provide
the needed clusters. Besides the fact that Wikipedia has better cluster qual-
ity, by both human and mathematical standards, the overlapping structure in
Wikipedia’s clusters also makes it intuitively a better choice since humans could
easily find that a document belonged to more than one category.

Nevertheless, Spherical k-means has great potential and perhaps, given enough
clusters, time and memory, the algorithm could cluster the data-set with equal
or better mathematical quality than the Wikipedia clusters, whereas no conclu-
sion can be drawn as to how a human would feel about the resulting clusters.
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Therefore we find it not only the easiest, but also the best way to simply use the
clusters provided by Wikipedia. If at a later time we find that the Wikipedia
clustering is not good enough, we have found the Spherical k-means algorithm
reliable and very easy to use and would definitely try that as our clustering
algorithm.



Part III

Retrieval





Chapter 10

Retrieval

With downloaded data preprocessed, indexed and clustered, the final element
missing is document retrieval. The process of retrieving relevant documents
from the Zeeker Search Engine index is divided into three different steps:

• Query Processing

• Document retrieval

• Ranking and presentation

In this chapter the implemented retrieval part will be discussed as well as
some of the technical considerations found important and interesting during the
implementation process. The following sections contain discussions of various
retrieval related problems and what solutions were considered. Finally, the
summary section at the end of the chapter sums up the implementation and the
choices made.

10.1 Query Processing

Before a query can be submitted to the search engine, the query terms must
be represented in the same way as the documents are represented in the index,
i.e. using the Vector Space Model as described in section 4.1 on page 41. The
resulting query vector will, in general, be a very sparse vector since queries are
usually much shorter (often merely a term or two) than the documents they
retrieve.

10.1.1 Vocabulary pruning

The vocabulary of these query vectors is not complicated due to their sparse na-
ture. However, the query terms can still be submitted in any form, e.g. plural,
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singular, upper-case etc. Previously it has been described how the vocabulary
in the index is reduced using stop-word removal, stemming and Part-of-speech
filtering. Obviously these techniques need to be applied to the query vectors
since stop-words or unstemmed words in the query vectors will not match any
terms in the index.

Although Part-of-speech filtering is used while indexing, it would not help
in the query processing. This is due to the fact that POS-taggers can not find
any semantic meaning within a few terms which most likely do not make up
a correct sentence but only is a collection of search terms. Hence, the POS-
filtering is omitted in the query processing while stop-words are removed and
query terms are reduced to their stems.

10.1.2 Misspelled queries

One aspect of query processing is how the search engine deals with misspelled
terms in the queries. Implementing this kind of features is not a simple task. If
a term is misspelled in the query, the search engine would have to go through
its vocabulary and find which terms are most similar to the misspelled term and
present the most probable terms to the user. The user would then select the
correct form of the terms before the query is submitted. With that in mind, and
taking the number of unique terms in the index into account, this sort of feature
requires quite a lot of research and consideration before it can be implemented
properly.

However, some errors can be corrected without much effort. During query
processing, the queries are parsed for unexpected symbols such that given a
query like: ”Er/ic Clapton”, the search engine would identify the slash as a
misplaced token and present the user with the alternative query - ”Eric Clap-
ton” . By parsing the query, some of the common misspellings can be reduced
without having to calculate which term the misspelled terms are most similar to.

10.2 Query operators

Many well known search engines, such as Google and Yahoo!, make advanced
search options available to their users. These options are used to submit more
specialized queries. Most search engines make a broad search (by default) using
the given query terms. It is then left to the users to make use of the advanced
search options in order to force the engine to be more selective and strict in its
evaluation of relevant documents thus giving the user a possibility of a more
narrow search.

10.2.1 Search operators

The most common kind of search options is the use of special search oper-
ators. Common search operators include operators for exact matches of the
query terms, Boolean AND and Boolean OR operators among others. Exact
operators force the search engine to match the query terms in their exact form



10.2 Query operators 83

and in the same order as they are submitted. A Boolean AND search tells the
engine that all the query terms should be matched, but not necessarily in the
submitted order. Using a Boolean OR means that any document containing
any of the submitted terms is a match for the query.

Many other operators can also be found in modern search engines. Some
make it possible to include or exclude words from resulting documents, limit a
search to specific sites and many more. Suffice to say that users can make their
queries quite precise if the right operators are used.

Search operators are not a necessity in a modern search engine, but given the
enormous amount of data on the Internet, submitting a general query to a search
engine is often not enough. Hence, some operators are made available in Zeeker
Search Engine such that the users could have some control over their queries.
Only the most common operators are implemented, i.e. Boolean AND, Boolean
OR and exact match operator. The default query in the search engine is quite
strict as it demands that all terms appear in the document where the terms
should appear in the submitted order with at most one term between them.
Query operators would therefore help users find more relevant documents if the
strict default search returns no, few or too many results. The syntax for the
operators will not be described here but can be found in the User Guide chapter
in appendix A.

10.2.2 Category filtering

Thus far, much has been said about how documents are clustered in the index.
Having achieved that, a description of how these clusters are presented to the
search engine’s users is in order.

The primary goal of the clustering is to provide a filtering mechanism on the
retrieved documents. When the engine retrieves documents from the index it
will calculate to what clusters these documents belong. With this information
available, users are able to see which categories the results belong to. Further-
more, it is possible for users to select which clusters they want to use as filter.
See appendix A for a screen-shot of a query example.

This kind of filtering could be implemented as search operators as described
above, or as a list from which the users can select appropriate categories. How-
ever, presenting the users with the full list of categories could be a problem
since there might be several thousand categories1 thus making it a tiresome
affair to find the appropriate filters to use. Therefore, the category filtering is
implemented as a search operator. Users are also presented with links to the
categories such that they can resubmit their queries with the category filtering
enabled without knowing the exact syntax for the operators. The syntax for
the category operator can be found in the User Guide in appendix A.

1There are over 3.000 categories for the musical group set
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10.2.3 Query expansion

In chapter 1 the concept of query expansion was introduced. In short, query
expansion is used to expand the submitted queries with additional query terms
and/or reweighing the original query terms before submitting the query. The
idea is that adding more terms to the queries will make the search engine more
likely to find relevant results. Query expansion is especially effective when it
comes to ambiguous query terms such as jaguar.

Despite the simple idea behind query expansion, it is in no way a trivial task.
There are mainly three strategies that can be used to expand queries. These
are automatic, manual or user-assisted.

Automatic expansion relies on the search engine itself to find what terms
should be added to the query. Here clustering could be helpful since for each
query term, the engine could calculate which clusters the terms belong to and
get the most relevant terms for these clusters and then expand the query using
these terms. However, this strategy will not always be feasible. Considering
the term jaguar as an example, the engine might find that it belonged to two
different clusters, one regarding the car and one regarding the animal. Popu-
lar terms would then be grabbed from these clusters and used to expand the
query. The query would then contain terms used for both the animal and the
car, thus making the query more difficult to match with a document in the index.

When using manual query expansion, users are presented with a list of terms
to choose from in order to expand their queries. The term lists for the indexes
can be very long, therefore making it impractical to display them all. Instead,
user-defined expansion could be used alongside automatic expansions, such that
the engine would grab terms from popular clusters and present to the user
thereby making the user choose the appropriate terms and categories.

The final approach is to use user assisted query expansion. Relevance feed-
back, a form of user assisted query expansion, is when a user is presented with
results to the original query in unchanged form and is then asked to tell the
search engine what document is most relevant. The search engine then analyzes
the document, grabs relevant terms from it, expands the original query with the
grabbed terms and resubmits it. This way the user helps the search engine find
the relevant document and categories.

Query expansion is without a doubt a useful tool when it comes to short
queries, whereas expanding longer queries might be very difficult and could give
worse results than the original queries. Relevance feedback is probably the best
way to implement query expansion since the user indicates what is relevant and
what is not. However, this kind of expansion means that the user has to submit
two queries to find the wanted results. Clearly, retrieving relevant results first
time around is preferable.

Although query expansion has great potential, it is not implemented in the
first versions of the Zeeker Search Engine. As discussed above, great care must
be taken when implementing query expansion, and with the limited time frame
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for this project, query expansion was not implemented. It was also desirable to
see how the search engine performed without any additional help from either
users or additional terms.

10.3 Document retrieval

Given a processed list of query terms, the matching documents have to be
retrieved from the index, ranked appropriately and presented to the user.

10.3.1 Retrieval method

With documents and queries represented as high-dimensional vectors using the
vector space model, the matching documents are found using the Cosine Sim-
ilarity Measure with documents normalized and term-weighting applied as de-
scribed in section 4.1.1 on page 42.

The Cosine Similarity Measure is of course not the only way to retrieve doc-
uments from the index. Many sophisticated and more complicated algorithms
have been developed to serve this purpose. However, starting with a simple
method and see how it handled retrieval seemed logical. Furthermore, the sim-
ple retrieval method does not over-complicate the search engine structure.

10.3.2 Ranking

Since the vector space model and cosine similarity are used for retrieval, the
ranking of the results becomes fairly simple. The ranking of documents is done
by looking at the similarity measure between the query vector and document
vectors. The higher the value, the higher the document will appear in the list
of results.

In chapter 1, different ranking algorithms were introduced, such as PageRank
and the HITS algorithm. These algorithms have produced very good results,
but seem to be a bit too complicated to be incorporated in this work. The
algorithms are primarily based on link analysis which is not used in the vector
space model and the use of these was already dismissed in the introduction.
Hence, simple document ranking based on the cosine similarity was the ranking
method of choice.

The list of categories found also has to be ranked in a proper manner. Cat-
egories are ranked based on their category-score where the individual category-
score is the sum of the cosine similarity scores for each document in the result
list that is also a part of the category divided by the number of documents in
the category. That is:

CSi =

∑
d∈D SIMd

|CSi|
(10.1)

where CSi is the category-score for cluster i, |CSi| is the number of documents
in cluster i, SIMd is the cosine similarity score for document d and D is the
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union of documents in the result list and the documents in cluster i.
First it was considered to rank the categories according to popularity, i.e. the
category with most document in the result list would be ranked first. How-
ever, this approach will always place the large categories at the top without
any regard as to how good matches the documents were. Therefore, the cosine
similarity score was added to the category score but had to normalized with the
category size such that it did not again favor the large categories. This category
ranking seems to rank the categories quite well.

10.3.3 Lack of results

As mentioned in the discussion on search operators, the default query in the
Zeeker Search Engine is quite strict. Knowing that not all users are familiar
with the use of extra operators in the queries, a secondary default query was
implemented - i.e. relaxing the original query to retrieve more results. This
query is submitted automatically when the results to a users default query
returns no results.

10.4 Summary

When implementing the retrieval process of a search engine, months could be
used to analyze the various problems and pitfalls. As described in this chapter,
many things need to be taken into account and wrong decisions might lead to
poor retrieval performance. The retrieval process is implemented such that user
involvement is minimal, but at the same time satisfies the users with special
demands. Hence, the implemented retrieval should be efficient, simple but still
return acceptable results.

Query processing is done similar to document processing. Stop-words are re-
moved and the search terms are reduced to their stems whereas POS-filtering is
omitted due to the POS-taggers inability to deal with short sentences (queries).
If search results are not satisfactory with the default search, search operators
have been implemented to give the users more control over their queries. Three
operators were implemented, namely AND, OR, and EXACT. Furthermore, a
category filter is included in the query syntax, thus enabling users to search
within a given category. The query syntax can be found in the User Guide in
appendix A.

Even when restricting queries with search operators (or not restricting at
all), results found in the index could be several thousand. Zeeker Search Engine
only returns a maximum of 100 results to any query. The threshold is primarily
based on prior search experiences, i.e. merely skimming the first tens of results
thus strengthening our beliefs in the few but relevant mantra. In the introduc-
tion, the few but relevant mantra was introduced as one of the problems with
search engines today - they return too many results.

Query expansion is not used in any way in Zeeker Search Engine, but it is
one of the things that could be added at a later time. Great potential lies in
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query expansion whereas great care must be taken when selecting which strat-
egy to use. Query expansion can easily worsen the results if implemented or
used in a wrong way.

Ranking of retrieved documents is done using the cosine similarity method.
Categories are also ranked based on accumulated and normalized similarity
scores as shown in equation 10.1.

Finally, the front-end of the search engine, and thus the actual retrieval and
presentation, is implemented as a basic Web interface similar to many known
search engines. The interface is clean, simple and easy to use. The User Guide
in appendix A contains screen-shots and explanation of the various implemented
features of the search engine. The implemented Zeeker Search Engine can be
found online at:

http://studweb1.imm.dtu.dk
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Chapter 11

Evaluating retrieval

The astonishing growth of the Web propelled the rapid development
of Web search engines. However, the evaluation of these search en-
gines has not been keeping up with the pace of their development.

- Liwen Vaughan, 2003 [39]

Measuring a search engine’s retrieval in terms of performance and accuracy may
seem like a trivial task for a user of the Internet, but trying to automate this pro-
cess is in no way trivial. When discussing search engine measurements, usually
Precision, Recall and F-measure come to mind. However, utilizing the user’s
feedback is of great importance and might be a more realistic way of measuring
a search engine’s quality.

In this chapter the F-measure will be introduced as well as how user feedback
can be used to measure search engine accuracy.

11.1 Recall, Precision and F-measure

The most common way of measuring search engine performance is using the
F-measure which is a mean, based on the trade-off between precision and recall.
Precision is measurement for how many relevant documents are retrieved for
a given query out of how many documents retrieved. In mathematical terms,
precision is defined as:

P =
Drelevant retrieved

Dretrieved total

(11.1)

Similarly, recall is the measurement for how many relevant documents are re-
trieved out of how many relevant documents there actually are. In mathematical
terms, recall is defined as:

R =
Drelevant retrieved

Drelevant total

(11.2)
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The F-measure is then a measurement for the weighting of precision and
recall. F-measure is defined as:

Fα = (1 + α)
P ·R

αP + R
(11.3)

where the parameter α is the trade-off factor between precision and recall.
For instance, if α = 2 then recall is weighted twice as much as precision.

Using the F-measure is a fairly simple way to estimate search engine per-
formance. Using the same datasets when measuring new search engines’ per-
formance gives a good picture of how they perform compared to each other.
However, the drawback of using the same datasets is that search engines can
be tuned to perform well on these specific queries and datasets, whereas they
would not necessarily do so well on the Internet. This would give a very in-
correct picture of the engines performance and accuracy. Furthermore, using
these well known datasets, the queries and their results are known whereas the
precise results are not known for the entire Internet. Hence, in order to use the
F-measure properly, it requires datasets and queries that are well defined with
known results.

11.2 User Feedback

The main problem, when it comes to measuring search engine performance, is
that it requires a lot of human relevance judgment, which is quite a costly af-
fair. Users’ feedback can be very useful when trying to measure a search engine’s
performance. Given a list of queries, users can be asked to evaluate the results
by, for example, going through the first 20 documents returned and evaluate
the relevance of each one. This is of course a very slow and inefficient way
of measuring performance, but might be the most precise way to evaluate the
results. Since the users needed to represent all the different types of users on
the Internet, and at the same time try every query possible, this might seem
like an impossible approach. Therefore, this strategy is merely an estimate like
the F-measure and no conclusion can be drawn from such an experiment. The
users could also be biased toward a certain search engine or even toward certain
web pages, thus skewing the results.

Researchers have tried to develop efficient methods that can automate the
evaluation process. In [11], Can et. al. present an automatic method which
they use to evaluate the performance of eight popular search engines. They also
use human evaluation of the same engines for the same queries to see how well
their method works. This method finds the same search engines to be in the
top and bottom two places in the list, thus making it comparable to the human
user feedback. However, the automatic method does not find as many relevant
documents as the users did, but as mentioned before, correctly identifies the
best and the worst among the eight engines tested.

In another study [39], Liwen Vaughan also used human user evaluation to
rank a list of web pages. This ranking was then compared to the lists retrieved
from three commercial search engines. New measures are presented in order
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to measure the search engines’ performance. These new measurements are de-
scribed as follows:

• [Quality of result ranking] Described by the correlation between human
and search engine ranking

• [Ability to retrieve top ranked pages] Top results for a query are
taken from the search engines and merged into a single set. Human users
then rank these results after relevance. The ability of a search engine to
retrieve a relevant page is then measured as a percentage of how many
pages were relevant in its top results.

• [Stability over time (10-weeks)] Stability of the number of pages re-
trieved and how many pages remain in the top results over a short period.

Liwen’s research showed that these new measurements can distinguish search
engine performance very well.

In a new study [2], Ali et. al. present an automated framework to mea-
sure engine performance. This framework takes advantage of user feedback,
Cosine Similarity Measure, PageRank (as used by Google), Boolean Similar-
ity Measure1 as well as Rank Aggregation techniques to evaluate search engine
performance. The framework presented submits a query to a search engine and
presents it to a user but also stores the ranking. User feedback is then achieved
through the user’s click data, i.e. which links are followed, printed, bookmarked,
saved etc. This click data is then analyzed and four new rankings are calculated
based on the user’s actions. These new rankings are calculated using Cosine
Similarity Measure, Boolean Similarity Measure, PageRank and user feedback.
The rankings are then aggregated into a new ranked list of results. Correlation
is then calculated between the original list returned by the search engine and
the new ranked list. The higher the correlation coefficient, the more effective the
engine is. The four different measurements are used in order to avoid bias be-
tween the different structures of the search engines tested. Seven search engines
were tested in the study with good results.

11.3 Summary

Since searching is without a doubt one of the most popular activities on the
Internet and as the search engines get more complex, the measurements for
how effective they are also have to keep up. Using the simple F-measure can
be useful, but is very cost-inefficient if standard datasets are not used, since
humans have to organize datasets and evaluate the relevance of each document
with regards to the test queries. User feedback has been shown to give good
results, but is also cost inefficient. A more automated approach is therefore
desirable and the research within the field of search engine evaluation seems to
be heading toward more automated evaluation methods.

1A simplified version of Li Danzig’s [26] S⊗ measure is used to reduce computational effort.
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Chapter 12

Testing retrieval

In this chapter, the testing of the implemented search engine (using the re-
trieval discussed in chapter 10) is described. The considered test strategies are
discussed in the following section. Test scenarios and results will also be dis-
cussed. Finally, the testing is summed up and conclusions are drawn regarding
the overall performance of the search engine.

12.1 Test strategies

In the previous chapter, two approaches commonly used to evaluate a search en-
gine’s performance and retrieval precision were discussed. Indeed the F-measure
is simple and computationally easy, given datasets and queries that have been
analyzed and where the desired outcome of each query is known. However,
this is not the case with the datasets used in this work. The approximately
200.000 web documents are not labeled in any way, except for the clusters they
are assigned to. The Zeeker Search Engine uses clusters to provide additional
filtering of the result set and therefore measuring recall and precision on the
original result set does not make any sense as the filtering is what makes Zeeker
Search Engine different from other search engines. Therefore, the use of recall,
precision and F-measure on known datasets was quickly dismissed.

Since the F-measure was of no use in this case, the only measure left was
User Feedback. In the previous chapter, manual and automatic user feedback
scenarios were described. The automatic scenario described by Ali et. al. in
[2] seemed a bit excessive, and as the other strategies did not seem to fit the
purpose either, it was decided to rely entirely on manual user feedback, i.e. have
users test Zeeker Search Engine and give feedback about its performance and
retrieval precision.
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12.1.1 Selected test methods

Two methods were mainly used to test the engine. First of all, the retrieval part
was tested using a trial-and-error approach, where the primary goal was to find
errors in the retrieval logic and programming code. Trial-and-error was also
used to see how the engine handled various potentially problematic queries1.
These tests revealed some errors which were fixed before the search engine was
put on-line for others to try out.

The second method used was manual user feedback. A questionnaire was
constructed which was sent out to numerous people asking them to participate.
Before creating the questionnaire, the information and answers valuable to the
search engine’s performance had to be defined. Based on general search behav-
ior using search engines, e.g. Google, it was concluded that there were mainly
two ways users use search engines, either for question answering (who is, what
is etc.) or for research (what has been written about some topic). Therefore,
the questionnaire should include questions that would give indications as to how
well the search engine can be used for question answering and research respec-
tively. To test the question answering part, users were asked to find answers to
questions known to exist in the index, given minimal clues to go on. Researching
was tested by asking the users to submit queries on their own and evaluate the
relevance of the results returned by the search engine.

It was also considered asking users to evaluate results from predefined queries.
This idea presented a couple of problems. First of all, users might not know
anything about the chosen topic of the queries and would therefore be in no
position to evaluate the relevance of the retrieved information. Furthermore,
predefined queries known to give good results could also be selected, thus giving
biased results making the questionnaire unreliable. Finally, this approach does
not model the general search behavior mentioned above and therefore the use
of predefined queries was entirely dismissed.

The devised questionnaire can be found in chapter B.2 in the appendix. The
test results are presented and discussed in the next section.

12.2 Test discussion

The questionnaire was kept open for seven days where friends, family and ev-
eryone interested in participating was invited to participate. People were even
encouraged to pass the invitation along to other people as well. After the seven
day period, 24 people had anonymously answered the questions. Out of the 24
participants, there were 12 men and 12 women where 19 of these were between
21 and 30 years of age, 4 were between 31 and 40 years of age and 1 was above
50 years of age. The participants were based in Denmark, Iceland, France, USA
and Sweden2 - yet the exact nationalities are unknown. The vast majority (over
90%) of the participants rated their experience with search engines as interme-

1For example queries with many stop-words etc.
2Based on IP addresses
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diate3 or better. This yields a test group of users mainly in the age group of 21
to 30 years old, where most are well familiar with how search engines work and
equally distributed among the two sexes.

With that in mind, the results of the questionnaire and the conclusions
drawn from it will be presented.

12.2.1 Searching

Based on the described test strategy, the purpose was to test two different
scenarios namely question answering and research. Participants were asked to
find information known to exist in the index and to submit their own queries.
In the following tables the key words in the table headers refer to the questions
in the questionnaire where participants were asked to find information on these
key words. The information retrieval tasks were:

1. Find a single from an album called Ten.

2. Find the real name of the artist which uses the stage name The Edge.

3. Find the name of the band behind the song Lord of the Boards.

The goal of these information retrieval tasks was to find out whether or not
users were able to find useful information - this being the main functionality of
a search engine. Table 12.1 shows how the 24 survey participants answered that
question.

Answer Ten The Edge Lord of the Boards %
Yes 21 16 20 79.2
No 1 7 4 16.7
Don’t know 2 1 0 4.2

Table 12.1: Did you find what we asked for?

Clearly the table shows that Zeeker Search Engine is capable of retrieving
information when users are asked to find something known to exist in the index.
Finding the real name of the artist behind the stage name The Edge4 caused
problems for several of the participants as seen in the table. The problem caus-
ing this was quickly located and lies in the handling of upper- and lower-case
letters in the index. If searching for the edge the results are much more relevant
than with the query The Edge. The answers to this question in the question-
naire resulted in a small but very serious bug fix.

Even though the participants seemed to be able to find the information
required, knowing how difficult it was to find seemed important. People tend to
try harder when participating in a survey than when trying out a new product at
leisure. Table 12.2 shows how difficult the participants found the information
retrieval tasks. Again it seems that the participants did not have problems

3Where Intermediate was defined as people well familiar with Google
4Guitarist David Howell Evans from the band U2
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finding some of the information asked for, which is also confirmed by comment
1 in table 12.3. A number of users did however find it very difficult. Especially
finding the band behind the song Lord of the Boards5, where users had trouble
finding the right answer. Again, the handling of uppercase and lowercase letters
might be the source of this problem. If searching for lord of the boards or Lord of
the Boards (as written in the questionnaire), Guano Apes (the correct answer)
is number four in the list of results. However, if any of the stop-words in the
query, i.e. of or the are written with capital letters, Guano Apes is not in
the list of results. When users were faced with these problems, several of them
requested more query operators (see comment 3, 6, 7 and 8 in table 12.3) as they
believed the problem was a fundamental searching problem. Besides correcting
the uppercase/lowercase problem, a future version of Zeeker Search Engine will
also introduce more query operators to help users get the information they need.
Future versions and extensions are discussed in chapter 14.

Answer Ten The Edge Lord of the Boards %
Very easy 7 8 2 27.0
Easy 5 3 7 23.8
Normal 8 3 6 27.0
Hard 1 2 5 12.7
Very Hard 0 3 3 9.5

Table 12.2: How difficult was it to find?

Zeeker Search Engine differs from other search engines on account of its
categories. Obviously testing whether users found the categories practical and
effective was necessary. Many found the categories a good additional tool when
searching whereas a large percentage (37.5%) of the participants did not find
them useful as shown in table 12.4 and supported by comments 6 and 7 in table
12.3. The main reason may be that the category filtering is not strict enough,
meaning that too many web pages are clustered under categories they do not
(strictly) belong to. This was also expressed by a participant (see comment 9 in
table 12.3). This issue is not easy to rectify and is discussed further in chapter
14. The categories did however help some users as expressed in comments 4 and
5 in table 12.3.

In order to test the research capabilities of Zeeker Search Engine, partic-
ipants were asked to submit queries of their own and then asked to rate the
relevance of the results. Table 12.5 shows how the participants rated the rele-
vance of the results to their own queries. More than 80% found the retrieved
information relevant or better whereas only 4.2% found the retrieved informa-
tion not relevant at all.

The tests on Zeeker Search Engine’s search capabilities have revealed that
participants rate the ease of use, relevance of retrieved information and the ease
of finding information very highly. At the same time, the survey also revealed a
problem in the handling of upper- and lower-case letters which resulted in some
poor ratings. Zeeker Search Engine already has future features planned that
will hopefully make these numbers even better (see chapter 14).

5Song by Guano Apes
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Id Selected comments
1 Couldn’t understand it at first, but then it was very easy.
2 Please include a spelling wiz to help the user.
3 I had some difficulties when searching for The Edge,

did not get any results when writing with small caps
and no relevant results when writing as shown in the survey...

4 Good work. Shouldn’t be case sensitive though? Bugs aside, good for
finding stuff within categories, i.e. ’I like rock, show me some bands.’
For a specific search I’ll rather google

5 I like the categories, they are very useful to guide the search in the
right direction

6 The engine definitely needs the use of quoted expressions: I always use
queries like ”the beatles” ”last single” op:AND
if I want to find the last single issued by the Beatles.
Furthermore I just couldn’t find any use for the clusters
- apparently they kept suggesting a partitioning of the results that
I simply had no use for.

7 The operators arent as useable compared to google’s, nor as usefull.
I didn’t get to use the categories a single time...

8 Had problems finding Lord of the Boards. The categories were just not
useful there. An operator like SONG: could be very helpful in this case.

9 ... I feel like the ”filtering” possibilities are too broad. It would be great
if you could somehow come up with more specific filtering for the users ...

Table 12.3: Selected comments

Answer Ten The Edge Lord of the Boards %
Very Useful 2 8 6 22.2
Useful 5 3 6 19.4
Somewhat Useful 7 4 4 20.1
Not Useful 10 9 8 37.5

Table 12.4: Did you find the categories useful?

Answer Count Percent
Very Relevant 5 20.8%
Quite Relevant 10 41.7%
Relevant 5 20.8%
Somewhat Relevant 3 12.5%
Not Relevant at all 1 4.2%
Total 24 100%

Table 12.5: How relevant were the results to your queries?

12.2.2 Overall evaluation

The participants’ overall evaluation of Zeeker Search Engine is presented in
tables 12.6 and 12.7. The majority of users found the performance between
good and average whereas a future version will probably be able to increase
performance and decrease the search engine’s response time, i.e. the time it



98 Testing retrieval

takes the engine to respond to queries. The participants found the performance
acceptable and adequate.

Answer Count Percent
Very Good 1 4%
Good 12 50%
Average 10 42%
Bad 1 4%
Very Bad 0 0.00%
Total 24 100%

Table 12.6: How do you rate our search engine’s overall performance?

The overall performance statistics also reflect how likely a user is to use a
topic-based search engine (like Zeeker Search Engine) in the future. In general,
the participants are positive toward this kind of search engine (see Table 12.7)
yet some (25%) find it unlikely or very unlikely to use such a search engine in
the future. This is of course disheartening but the future plans and features
for Zeeker Search Engine are believed to greatly improve the search engine thus
hopefully lower the number of unsatisfied users.

Answer Count Percent
Very Likely 5 20.8%
Likely 10 41.7%
Unlikely 5 20.8%
Very Unlikely 1 4.2%
Don’t Know 3 12.5%
Total 24 100%

Table 12.7: How likely are you to use this kind of search engine again?

12.3 Summary

Zeeker Search Engine has been tested by 24 individuals, equally distributed
between men and women, primarily in the age group 21 to 30 years old. All
participants have answered questions as to how hard it was to retrieve informa-
tion, whether or not they found the requested information, how they would rate
the results to their own queries and more.

The tests have revealed a few weaknesses in the search engine. When search-
ing for information known to exist in the index, the participants found it easily.
Yet some queries did not retrieve relevant results and an error in the search
engine’s logic was located due to this of lack results. The error has to do
with how upper- and lower-case letters are handled in the index and it explains
many of the negative feedbacks participants gave on the ’problematic’ queries.
Many participants requested more query operators to help in the search when
no relevant information was retrieved as they seemingly believed that the lack
of relevant results was due to poor retrieval techniques. Query operators will
definitely help users in their search and more will certainly be implemented.
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However, appropriate handling of upper- and lower-case letters will reduce the
problems severely.

The questionnaire provided many inputs that gave a better understanding
of how users rate, use and view the search engine. Query operators were in
high demand and even a spelling wizard was requested thus indicating that the
implemented error handling feature is not quite adequate.

Not only was it encouraging that the search engine retrieved relevant infor-
mation, but also that many users found it likely that they would this kind of
search engine again. All in all, the questionnaire provided invaluable feedback
that will subsequently be used to improve Zeeker Search Engine.
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Chapter 13

Implementation

In this chapter we introduce the developed applications and how these interact.
The inner workings of the individual applications will not be explained in detail,
only an overview of their basic capabilities and functionality will be presented. If
the descriptions are not of interest to the reader, the Zeeker Application section
can be skipped, whereas the chapter’s summary gives a general overview of the
Zeeker Search Engine work-flow.

13.1 Lemur and Indri

Implementing a search engine demands many different design considerations. It
quickly became clear that implementing the entire system from scratch within
the given time frame would be futile (although indeed desirable). There are
far too many subtleties when working with data that can have ANY form.
Furthermore, data needs to be stored and retrieved effectively and the many
considerations regarding efficient storing etc. could be a thesis by itself. In
order to concentrate on the problems we wanted to address, a framework was
needed that could handle some of the more trivial tasks in the search engine.

Two frameworks were seriously considered: The Apache Lucene project1,
written in Java and ported to C#, and The Lemur Project2, written in C++.
Both frameworks looked promising and even though the Microsoft C# world is
more familiar, Lemur was the framework of choice. Lemur is a large toolkit with
some great qualities such as being written in C++ (which is faster than C#)
and being developed as a joint venture between Carnegie Mellon University and
University of Massachusetts.

1http://lucene.apache.org
2http://www.lemurproject.org



104 Implementation

Figure 13.1: Zeeker Search Engine data and application flow
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As mentioned, Lemur is written in C++ and is basically a framework for
creating search engines. Lemur also adds an already implemented search engine
called Indri to its portfolio. Since the goal was to develop the Zeeker Search
Engine, the Lemur framework had to be extended and the Indri search engine
was disregarded.

Lemur offers functionality for storing data efficiently in files on disk with a
well designed and implemented work flow. Many of the already implemented
building blocks in Lemur were extended with additional features and new build-
ing blocks were added to the framework. The changes turned out to be con-
siderable and therefore the extended framework was renamed LemurPlus. The
details of the extensions and improvements to the framework will not be dis-
cussed further but some of the improvements are mentioned in this chapter’s
summary.

13.2 Zeeker Applications

Here follows a brief description of various applications that together construct
the Zeeker Search Engine. The intent is not to describe the inner workings of
these applications, but merely give a concise overview of their capabilities and
responsibilities.

The data flow and how the applications fit into the flow can be seen in figure
13.1.

13.2.1 Zeeker.Spider and Zeeker.DataGateway

It has already been pointed out that the web-spider, Zeeker.Spider and the web-
service, Zeeker.DataGateway will not be discussed further as they were devel-
oped separately in a different project. Nevertheless, they have to be mentioned
as they play a big part in the data flow of the Zeeker Search Engine.

The web spider is a basic, yet highly configurable and distributed web spider
written in C#. Distributed refers to the fact that many web spiders can be
run concurrently on several computers3 at once thus increasing the download
rate accordingly. The web spiders send the downloaded web resources to the
Zeeker.DataGateway which in turn stores the data in Zeeker.Base.

13.2.2 Zeeker.Base (database)

Zeeker.Base is a MS SQL Server 2005 holding all the downloaded Html files and
all data from Wikipedia and Wiktionary data dumps. The MS SQL database
was chosen as it gives complete control of the downloaded data. When test-
ing, it is very important to have full data control yet when migrating from test
environment to a live environment, the importance of the database will be di-
minished as the downloaded data is moved to the file system to reduce overhead
in data handling. The database creates an unnecessary overhead by storing a
lot of meta information on the downloaded data and as a result, data sizes grow

3As many as the webservice can handle
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at a fast rate in the database.

Zeeker.Base consists of more than 6 databases, more or less intertwined.
The databases store data from:

• http://en.wikipedia.org – (enwiki)

• http://en.wiktionary.org – (enwiktionary)

• http://www.musicmoz.com – (musicmoz)

• Downloaded Html resources – (musicbase)

• Logging and exception handling – (datamanagement)

• Tests – (test)

These databases consist of over 50 tables, countless stored procedures and
take up more than 45GB on disk. All this data is very useful when finding
Wikipedia articles from specific categories, creating test sets, computing clus-
ters etc. Wikipedia articles, downloaded Html and more can be joined in just
about any way necessary, which gives many possibilities data wise.

13.2.3 DataManagementWizard

The DataManagementWizard is written in C# and helps manage data, con-
trol data flow, size and form in the overall process. DataManagementWizard
is responsible for importing data from data dumps from wikipedia.org, wik-
tionary.org and in parts from musicmoz.com. DataManagementWizard is also
responsible for exporting the data into appropriate formats.

The different import and export functionalities are described below.

Data import

The DataManagementWizard application can import any Wikipedia or Wik-
tionary data dump and store it in Zeeker.Base. This is done by more than 15
parsers that remove errors in the data dumps (which occur surprisingly often),
normalize data by removing control characters and the like, calculate Wikipedia
Ids between dumps (cross-reference) etc. The primary import capabilities are
listed below.

• Import any Wikipedia data dumps

• Import any Wiktionary data dumps

• Import an Acronym list

• Import MusicMoz4 band dump

• Import MusicMoz styles dump

4http://www.musicmoz.com/
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Data export

Even though correct import is desirable and needed, the applications export
capabilities is the primary purpose of the application. The exporting functions
create the data sets that the rest of the indexing process depends on. The
DataManagementWizard is capable of exporting Wikipedia articles from spe-
cific categories, external links and downloaded Html files, calculating Wikipedia
clusters, exporting test sets and more. The data can be exported in formats
such as text, Html and TREC. At the moment, the DataManagementWizard
has over 30 export methods. The primary export capabilities are listed below.

• Export Wikipedia data (such as titles, category links, external links etc.)

• Export Wiktionary data (such as titles, acronyms, external links etc.)

• Wikipedia articles (from chosen category and other criteria)

• External links (from chosen category)

• Dump all downloaded Html web resources.

• Clusters (from chosen category)

• Test sets

• A few selected MusicMoz data dumps

13.2.4 BuildIndex

The BuildIndex application is written in C++ and is the backbone of the system.
The application is responsible for creating every element of the indexing process,
such as:

• Creating the appropriate parser (based on the files parsed)

• Creating the POS tagger and POS filter

• Creating the stopper

• Creating the stemmer

• Indexing the data file

– Store tokens

– Store token positions in file

– Store tag extents (which tokens are in which tags)

– Store other meta information on token (e.g. POS tag)

Needless to say, this application is very complex and it has several parame-
ters that control how indexing is done. The indexing process is basically a set
of building blocks on top of each other and the parameters simply inform the
application of which building blocks are to be used when indexing. If all possible
building blocks are chosen, the indexing chain will look like the one shown in
figure 3.2 on page 38.
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The work flow of the application is very flexible and makes it easy to create
an index without stop-word removal or stemming of tokens, if needed.

Two parsers have been created, a Wikipedia parser and a Html parser. Most
of the information on music on the Internet is available as Html (or as flash)
which makes the creation of additional parsers a second priority. A new POS
tagger has also been implemented and added to the Lemur framework as well
as a POS tag filter. The POS tagger tags a term and the filter determines if the
term is worth storing or not - based on the tag.

The indexer itself has been extended with additional meta information such
as tags (both Wikipedia tags and Html tags), the position of tags, which terms
are included in a tag and more.

Various parameters are supported by the indexer that determine how the
indexing should be done. At present the following possibilities are available for:

• Include/exclude stop-words

• Include/exclude stemming

• Include/exclude POS tagging and filtering

• Index Wikipedia articles

• Index Html resources (from several files)

• Setting maximum memory usage (RAM)

• Creating a new or adding to an existing index

13.2.5 Clustering

The Clustering application is written in C++ and is responsible for clustering
the external Html files and place them into the predefined Wikipedia categories.
The application uses a file dump from the DataManagementWizard to get the
Wikipedia clusters. Each Html document is measured against every cluster cen-
troid and if the similarity is above a given threshold (here 0.25), the document
is added to the cluster. The output from the application is a binary file with
cluster representations for the Wikipedia clusters as well as the external Html
documents. This binary file is then loaded into memory on the website and used
to find which categories to display to the user.

The application can also be used to calculate the cluster qualities used for
testing purposes. In fact, the application was used to calculate baseline and
cluster quality scores for the Spherical k-means clusters and the Wikipedia cat-
egories shown in chapter 9.

13.2.6 Zeeker.Website

The Zeeker.Website can be found at:
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http://studweb1.imm.dtu.dk

The web-interface is the front-end of the search engine on the Internet. The
website is created using ASP.NET running on an Internet Information Service
(IIS 6.0). Webpages and code-behind logic is implemented using C#, Html, Css
and JavaScript. To search the index, the webpages use a C# wrapper giving
access to the Lemur C++ search functions.

The more detailed functionality of the Zeeker.Website is discussed in chapter
10 and a User Guide can be found in appendix A.

13.2.7 Test programs

Various test applications have been implemented for different purposes such
as monitoring data changes from other applications in the data flow, testing
the implemented code, basic monitoring and administration of data etc. These
applications have been written in C#, C++, MATLAB and Perl.

13.3 Summary

The complexity of creating a search engine is enormous and very time consum-
ing. Even though data was restricted to Html web resources and Wikipedia
articles only, the amount of data is still measured in tens of GB. Working on
such large data sets demands a lot of the programming as the running time sud-
denly has a major importance on the project. As mentioned at the beginning
of this chapter, The Lemur Project was chosen as an underlying framework and
even when using Lemur, indexing several GB of data easily took several hours.

As in all complex software development projects, some of the encountered
problems were not at all anticipated and some of the anticipated problems never
came up. There was really no way of knowing how the applications would scale
to the large amounts of data but as the index has grown, the scaling has not
been a problem. All applications written in C++ have been tested thoroughly
for memory leaks as these bugs tend to be very subtle and can strike at any time.

Good objective programming techniques have been used such as always test-
ing on objects before using them etc. This approach has saved a lot of time
when debugging as it is very hard to find the errors when several GB of data
run through an application.

The large amount of data has been the primary concern. When applications
work correctly on small data sets but suddenly crash on larger data sets, the
problems often lie in other areas of the computer e.g. external disk drives, net-
work connectivity, shortage of RAM etc. These problems are hard to deal with
and even harder to find. However, the BuildIndex application which indexes
more than 20 GB of Html and 2GB of Wikipedia articles is very stable.

The problems with finding and localizing errors have spawned several smaller
test programs that monitor data flow, read and validate binary data to name a
few. All of these test programs have been very helpful and will at a later time
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be integrated into the different applications. Linux and MS Dos have many
small applications that also have been used extensively to ease the programming
burden. Here the choice of Lemur and C++ has made everything easier as the
programming code is easily ported to other environments such as the Linux
cluster available at the Institute of Informatics and Mathematical Modeling
(IMM) at The Danish Technical University (DTU). Porting the code to the
Linux cluster is ideal as the cluster has resources that can speed up indexing,
clustering and various tests.

13.3.1 Data flow

The many applications created are shown in figure 13.1. The figure shows the
overall flow of data from downloading from the Internet using Zeeker.Spider to
the point where the data is available in the index and can be retrieved using
Zeeker.Website.

Two primary data sources are used: the Internet and http://en.wikipedia.org.
The data from the Internet is automatically downloaded by the Zeeker.Spider
and stored in compressed form in Zeeker.Base with the help of a webservice
called Zeeker.DataGateway. Wikipedia data dumps are downloaded manually
and imported into the Zeeker.Base using DataManagementWizard application.
This concludes the data collecting phase of the Zeeker Search Engine.

A MS SQL 2005 database is used as it has the possibility of extracting exactly
the data needed when indexing and testing. Zeeker.Base and DataManagemen-
tWizard can calculate Wikipedia clusters (Wikipedia categories) and dump data
in different formats.

All the different data dumps make it easier to build the parsers used in the
BuildIndex application. No data is removed when it gets dumped from the
database, instead, several thousand Html resources are accumulated and stored
in one or more (very big) file(s). In this new format, usually a variant of TREC5,
meta data not available in the original downloaded data can also be added, such
as an id pointing back to the database etc. DataManagementWizard supports
over 30 different data dumps in various formats.

BuildIndex is the application responsible for indexing the data dumped by
DataManagementWizard. BuildIndex is by far the most complex of all the ap-
plications making up the Zeeker Search Engine. The application creates parsers,
POS tagger, stopper, stemmer and indexer. The BuildIndex data flow can be
seen in figure 3.2. When all exported files have been processed by BuildIndex,
a complete searchable index (not clustered) is available.

Html files are added to clusters using the application Clustering. The ap-
plication calculates similarity, using cosine similarity measure, for each Html
document and measures against the clusters. Html documents are added to
the appropriate cluster if the similarity score is above a preset threshold. The
application stores the clustering of the Wikipedia articles and the Html files in

5Text Retrieval Conference (TREC) http://trec.nist.gov/
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a binary file which is loaded by the Zeeker.Website. When the index has been
clustered, a searchable index with category filtering options is ready.

Zeeker.Website is a basic web interface created solely for the purpose of
making the index public. The website searches the file based index and presents
results as any other search engine on the web. Few but important search oper-
ators are implemented as described in chapter 10. The website is designed in a
simple manner and should be intuitively easy to use.

The implemented applications and features have extended the Lemur frame-
work. Features such as parsers, POS tagger, POS filter, the ability to store
more data and meta data, a new clustering method, cluster quality calculation
and much more have been added to the framework. There are not many objects
or classes that have not been modified or even been completely rewritten.

Zeeker Search Engine is a very complex array of applications which together
consist of more than 2600 files taking up more than 900 MB on disk. This is of
course a very relative measure as some files are bigger than others, yet it gives
a feeling of the complexity of Zeeker Search Engine.



112 Implementation



Part V

Conclusion





Chapter 14

Future work

During the analysis and implementation of Zeeker Search Engine, many choices
have been made as to how data is represented, indexed, filtered and retrieved.
Building a search engine is more about making choices rather than an exact
science. Even though the many choices have at times been a dilemma, they can
also be seen as parameters, which later can be adjusted in order to improve the
results. Some of the more dominant parameters available are: adjusting how
vocabulary is reduced, changing the way documents are clustered and improv-
ing the retrieval method.

The choices made have revealed some minor issues and improvements that
can be worked on to improve the search engine. This chapter summarizes these
issues and improvements and proposed solutions are presented.

14.1 Known issues

First of all, the fairly conservative way of pruning the vocabulary has seemingly
been too strict. Even though the idea was not to remove too many terms from
the index, many vital terms seem to be missing regardless. Reading the litera-
ture on the subject (see introduction), researchers have removed large amounts
of terms in indexes without reducing the quality of retrieval. We believe this
is due to the indexes’ vocabulary. For example, a vocabulary based on email
correspondence will probably not be very diverse as people tend to use the same
terms over and over again in emails and daily conversations. Therefore, most
of the terms can be removed and only a few (distinct and important) terms left
for indexing. The Zeeker Search Engine index is based on resources regarding
musical groups, song titles, band names etc. Removing stop words from such
resources could easily remove an entire title from a song or an entire band name.
Pruning was found to be too aggressive as a search on The Who returned no
results since both terms are stop words. Localizing the stop-word problem re-
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vealed another minor, yet serious issue. Terms were found to be automatically
down-cased before they were POS-tagged. This resulted in wrong POS cate-
gories for some terms, e.g. a band name like The Who became the who thus
failing to identify the terms as nouns.

Cluster precision and cluster quality is another known issue. As described
earlier, documents are added to the most similar clusters by measuring simi-
larity between the document and cluster centroids using the Cosine Similarity
Method. This method works to some extent, yet some web pages seem to be
placed in too many clusters. The solution to this problem is not entirely clear.
One solution could be to change the similarity threshold which would result
in a more selective adding of documents to clusters although some documents
might not be added to any cluster. Another solution is re-evaluate the entire
clustering. Using cosine similarity works well with flat cluster structures but
does not seem to work properly when the cluster structure is hierarchical like
the Wikipedia clusters. The cosine similarity measure is more effective with
smaller, more strict vocabularies whereas the larger and more general clusters
in the Wikipedia hierarchy have many documents and thus a very general and
rich vocabulary. Measuring document similarity against the centroids for these
general vocabularies will never be very specific. The best solution for this prob-
lem is in no way clear and needs further analysis and testing in order to improve
the cluster precision and quality.

14.2 Future features

Extensive work has been done on the programming code for the Zeeker Search
Engine. Many of the choices made have been based on time issues. Some of
the nice to have features have been put aside for the more important must have
features. These nice to have features will hopefully give better and more precise
results in the future as well as a more streamlined search engine.

One future feature is to utilize more of the available Wikipedia information.
There is a lot of meta data that can be used when building the categories thus
making it possible to display more detailed search results in info-box or similar
grouping on the result page. For example, if the search engine knew that a
category was a band, information about the band could be shown in a separate
info-box on the web page along with the search results. This could also be ap-
plied for songs, artists, albums etc.

Storing and indexing various mark-ups such as titles, headings and anchor
text in both Html and Wikipedia data is already implemented. This means that
it is already known what tag a word on a web page is part of. Currently, all this
meta information is not used in the retrieval. Html tags can say a lot about the
information they are presenting e.g. if a word is part of a title tag, it is probably
more important than a word in a table tag. This tag information could be used
to weight the indexed terms differently thus retrieving more relevant documents.

Term positions are also stored in the index and will be used to generate small
snippets of text in the result list as already known from other search engines.
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These small extracts of a web page are very helpful when deciding on what
results are most relevant.

Query expansion could also improve results dramatically - but as mentioned
in previous chapters, it can also also worsen the results. Testing whether or not
query expansion is helpful is a necessity before adding it to the retrieval process.
Adding more query operators could give a more flexible retrieval by giving the
users the ability to search for the already indexed meta data, e.g. searching only
within title tags etc. A query operator giving the user a possibility to search for
songs, bands, albums etc. would be extremely useful. If the meta information
could reveal whether a web page contains information regarding a song, a band
or an album, the results could be filtered in a much more precise manner. This
is an issue that will be analyzed, tested and perhaps included in a future version
of Zeeker Search Engine.

Not all future features have to do with retrieval. A lot of data is processed
in order to build an index and the entire process of downloading data, calculat-
ing clusters, building the index etc. requires a lot of manual work. Therefore,
automating this process as much as possible and at the same time make the ap-
plications more flexible would greatly reduce the amount of manual work needed
to create the index and clusters. The added flexibility of the applications should
also make the testing more automatic thus making it easier to see where im-
provements are due.

How the applications and choices perform when scaling the index to Tera
byte sizes is still unknown and will be tested further. The Lemur framework has
the ability to distribute smaller indexes over several servers which could be very
useful in order to balance the search engine load. Using this support, smaller
indexes, regarding specific topics, could be distributed over several servers such
that each server only dealt with one topic but still was a part of a larger search
engine network. A general search engine could submit queries to all the smaller
search engines and present them to the user. The users could also access the
individual smaller engines directly if needed. This approach would create an
array of topic specific search engines making up a large scale general search
engine.

14.3 Summary

Small issues have been located which we would like to improve. Some are of a
more charismatic nature while others are more fundamental.

Of the charismatic nature we mention that the current web presentation
does not deal with every possible exception. It is possible to get a (not so
pretty) exception page if an unexpected error occurs. Furthermore, the result
list sometimes includes duplicate entries and there are some minor variations in
code execution depending on the web browser used. These are small problems
that have no bearing on how the search engine performs - yet our vanity de-
mands a fix.

The questionnaire and user tests revealed issues regarding the removal of
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stop-words and also that the categories seem to be too broad, i.e. some docu-
ments are included in very many categories. Fortunately, the stop word removal
issue is very easy to correct as stop words can simply be included when building
the index. The documents belonging to many categories is a more complicated
issue and will require further analysis and tests before it can be solved properly.

Zeeker Search Engine has many promising features and we have no doubt
that it can be made even better by correcting the errors found and adding some
of the future features described here such as using meta information in retrieval,
implementing query expansion and adding more query operators.
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Conclusion

Everything should be made as simple as possible, but no simpler.

- Albert Einstein

During the past six months, we have analyzed many potential problems, read
numerous articles and written countless lines of programming code. Boiling it
all down to a decisive conclusion is very hard, yet we feel there are several points
worth mentioning at this point.

Initial analysis and brainstorms made it clear that the work we were setting
out to do could easily become very complex and thus difficult to finish within
the given time frame. Therefore, everything had to be done as simply and ef-
fectively as possible and the above quote by Albert Einstein quickly became
our mantra during the whole process. When faced with the choice between a
simple or complex solution, we always chose the simplest solution possible yet
no simpler. Throughout the thesis this dogma has been our guide and preferred
way of solving problems.

In the problem description we stated that we wanted to try and build a topic-
based search engine, i.e. using pre-calculated clusters to produce better search
results. The pre-calculated clusters are a distinctive feature meant to differenti-
ate Zeeker Search Engine from other search engines on the Internet. We realized
that rethinking or improving current search engine techniques, with players like
Google and Yahoo! out there, was a tremendous task. Furthermore, we had no
illusions of creating a search engine better than these giants, nevertheless we
wanted to build an engine with future potential. With a search engine using
Wikipedia articles and a clustered index, the ambition was to create an engine
that people found efficient, convenient and useful. Clustering search results has
been done before in commercial search engines. However, these engines are usu-
ally meta search engines based on results from other search engines such as MSN
Live Search, Yahoo!, Google etc. and have had very limited, if any, impact on
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the Internet search market. Our vision was that using the information available
from Wikipedia, the categories could be made strict and accurate enough, such
that users would find them effective and reliable enough to provide a first-rate
search result.

The first step toward a first-rate search is to retain full control of every step
in the entire data flow. The data flow covers the downloading of data from the
Internet, building the index, clustering the index, retrieve relevant information
and present it to the user. With this kind of control over data, fine tuning every
aspect of Zeeker Search Engine is possible in order to produce better results.
Several individually implemented programs process the downloaded data into a
format which is used to build the search engine’s index. Downloaded web re-
sources are clustered on top of Wikipedia’s category structure using the Cosine
Similarity Measure. The individual programs make it easier to improve and add
additional information to the calculation of clusters and indexing.

With the topic-driven approach and ranking using the Cosine Similarity
some of the weaknesses discussed in the introduction have been improved. As
Zeeker Search Engine does not use link analysis or anchor text in any way, link
farms and Google Bombs are not an issue. Cleverly added meta data is still
a vulnerability since adding a list of keywords as hidden text on a web page
will be treated like any other text by the search engine. However, if keywords
for different categories are placed on a page, the page will be harder to cluster,
thus possibly excluding it from any cluster. Hence, adding meta data in form
of hidden keywords is still possible, but has to be done carefully in order for it
to work. In order to eliminate the use of hidden text, the page’s style sheet,
script files and mark-up would have to be analyzed in order to exclude hidden
keywords.

Although some of the initial problems we set out to solve have been solved,
the process of creating Zeeker Search Engine has not always been smooth sail-
ing. Several problems have been analyzed and most of them have been solved
based on research literature on the subject. Despite our best efforts, some of the
solutions we relied on have simply not been good enough. An example of such
a problem is the handling of stop-words. The initial problem analysis showed
that most articles read, supported the removal of stop-words (some even un-
critically). We have however found that stop-word removal needs some analysis
before the stop-words can safely be removed. Not all vocabularies can afford to
remove stop-words without losing important semantic meaning. Working with
a vocabulary regarding music, i.e. songs, bands and musicians, stop-words play
a very important part as many song titles include several stop-words. In our
opinion, stop-words should be included in the index if creating a general search
engine (where hardware is not an issue). A full index is always preferable al-
though stop-word removal should be analyzed for each scenario as it can be very
useful. The vocabulary is the deciding factor in whether to include or remove
the stop-words.

Clustering was another major problem which took some time and effort
before a solution was found. The main problem with clustering is the dimen-
sionality of data, i.e. the term-vectors. Many clustering algorithms have been



121

developed and used for text clustering some of which we studied and considered
using. However, the problem with using these traditional clustering algorithms
on our data set with 200.000 documents and over 1 million unique terms, the
memory and CPU power needed to complete such a task would be enormous.
Using the Spherical k-means algorithm to cluster ”only” 10.000 documents took
40 hours and 2.83GB of RAM which we thought was excessive1. Therefore we
had to come up with a computationally less expensive solution to this problem.
Here we focused our attention toward the Wikipedia categories. All Wikipedia
articles are categorized in a hierarchical structure which looked like a good so-
lution to our clustering problem. Using smaller datasets, the quality of these
clusters were measured against the cluster quality produced by the Spherical k-
means algorithm. The Wikipedia cluster quality was found to be considerably
better than the Spherical k-means clusters. Therefore, the Wikipedia clusters
were used as basis clusters. This solution has worked quite well although some
of the clusters seem to be of poor quality. As discussed in the previous chapter,
using the Cosine Similarity Measure on a hierarchical overlapping clustering is
perhaps not a good idea and will have to be reevaluated in a future version of
Zeeker Search Engine.

Much of our efforts were focused on the index creation and especially on the
document clustering. The retrieval part of the Zeeker Search Engine was from
the beginning a low priority as we firmly believed that with a good index and
clustering, retrieving the documents would not cause severe problems. Fortu-
nately that assumption worked out well. User tests revealed that Zeeker Search
Engine was fully capable of retrieving relevant documents from the index de-
spite the stop-word and uppercase/lowercase errors discussed in chapter 14. In
addition to fixing these errors, the retrieval also needs some added flexibility
which is also discussed in chapter 14.

Adhering to Einstein’s comment, the ranking of search results and found
clusters is done in a very simplistic manner. Search results are ranked using
Cosine Similarity scores whereas clusters are ranked using a sum of normalized
Cosine Similarity scores (see equation 10.1). These simplistic ranking methods
have produced good results but should perhaps be refined to produce even bet-
ter results as the index scales to Tera-Byte sizes.

Concluding remarks

When we started this work, our main goal was to create a full-scale search engine
with a clustered index using Wikipedia articles as a learning source. The search
engine is now implemented in a general manner without being specially tuned
or biased toward any topic. We have tried to make everything as simple as pos-
sible without cutting any corners. All elements in the search engine have been
thoroughly analyzed and handled whereas nothing has been taken for granted.
With an index consisting of 200.000 music related documents, the engine re-
trieves good results as the conducted user survey demonstrated. Users ranked
the engine as being average to good in such categories as retrieval relevance,

1Although code optimizations might reduce these numbers
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ease of use and performance. The engine also provides a filtering mechanism
using the calculated clusters - a mechanism many users found useful.

The implementation process has taught us some valuable lessons. For in-
stance when working with text data measured in GBs, great care must be taken
in every line of the programming code as locating errors when processing such
amounts of data is a very difficult and tiresome affair. Handling memory and
reducing clock-cycles is crucial for the implementation’s efficiency. We also used
an incremental implementation strategy where we started with data processing
and finished with the retrieval part. Nothing was started before the underlying
elements were in place. We found this incremental process very useful when
implementing the search engine from scratch as it helped us retain our perspec-
tive. Last but not least we learned that when working with natural language
processing and information retrieval there are no absolutes - merely a matter of
finding the best set of choices.

With all things considered, we are very satisfied with our overall results. Our
efforts these past six months have resulted in a complete, topic-driven search
engine where we have full control over each element and have many parameters
that can be adjusted in order to fine-tune the results. Despite some minor errors,
we feel that Zeeker Search Engine has great potential in the future - there is
definitely more to come.

You don’t have to be first as long as you are the best

- Zeeker Search Engine
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Appendix A

User Guide

Here we give a brief user guide of the Zeeker Search Engine.

The front-end of the search engine is a simple Web interface with one text
box and a button. Queries are submitted by typing the query terms in the text
box and pressing the button labeled ”Zeek”. This will transfer the user to the
result page.

The result page contains the list of results, a list of categories found for
the query, a text box and a button to submit new queries to the engine. The
category links (shown to the left of the results) can be used to filter out any
unwanted results thus reducing the result set.

A link to a page describing the search engine’s query syntax can also be
found on both the above mentioned pages.

The search engine can be found using the URL:

http://studweb1.imm.dtu.dk

A.1 Query syntax

The query syntax accepts three different search operators as well as a category
filter in form of an operator. Here the syntax and usage of these operators is
explained.

Search Operators

There are three different query operators available within the query syntax.
These are: Op:AND, Op:OR and Op:Exact. Note that the operators are NOT
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case-sensitive.

Op:AND

This operator is used for a Boolean AND query over all the terms.

Example: the query: ”Rolling Stones Op:AND” will match both Rolling
and Stones in the documents, but not necessarily in that order. A text like
”...stones are rolling down the hill” would be a legal match for this type of query.

Op:OR

This operator is used for a Boolean OR query over all the terms.

Example: the query: ”Rolling Stones Op:OR” will match any documents
containing either of the terms or both.

Op:EXACT

This operator is used for an exact matching query. Only documents containing
all the query terms in the exact order will be matched.

Example: the query: ”The Stones Op:EXACT” would not match the text
”...The Rolling Stones on tour in Europe...”, but the text ”... the stones are
rolling down the hill...”.

No operators

With no operators used, the search engine will match the query terms in the
same order as they appear, though allowing a few terms between them.

Example: the query: ”The Stones” would match the text ”...The Rolling
Stones on tour in Europe...”.

If no results are found using the default configuration, the search engine will
relax its initial query conditions and resubmit the query.

Category filter

The query syntax allows filtering by using predefined categories. When a query
is submitted, some categories are shown to the left of the results which can be
used as filters by clicking on them. However, the category filter can also be ap-
plied when the query is submitted. This is done using the Category operator.
Example: the query: ”Green Day Op:EXACT Category:1213” will return doc-
uments which match the query terms exactly as described above, but only doc-
uments within the category with ID 1213.
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A.2 Screen-shots

Here are a couple of screen shots from the Web interface for the search engine.
The first picture shows the front-end of the Zeeker Search Engine. The second
screen shot shows the result page after the query ”green day Op:EXACT Cat-
egory:1213” is submitted. The categories found can be seen on the left side of
the image under the label Categories.

Figure A.1: Zeeker Search Engine front-end
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Figure A.2: Zeeker Search Engine result page
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Tests

B.1 Test indexes

Test index name Documents Terms Unique terms Size
Index full 1 10.000 21.986.858 439.251 218.618.442 bytes
Index full 2 20.000 42.900.993 669.801 408.716.538 bytes
Index full 3 30.000 57.966.761 820.996 545.597.989 bytes
Index full 4 40.000 72.791.232 970.141 679.959.869 bytes
Index full 5 50.000 83.147.031 1.059.147 773.057.305 bytes
Index full 6 60.000 91.769.505 1.130.588 849.595.692 bytes
Index full 7 70.000 97.761.261 1.160.028 900.232.367 bytes
Index full 8 80.000 104.818.520 1.199.333 960.230.599 bytes
Index full 9 90.000 112.268.383 1.251.858 1.025.530.981 bytes
Index full 10 100.000 124.340.972 1.352.497 1.134.314.931 bytes

Table B.1: Test indexes - full index
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Test index name Documents Terms Unique terms Size
Index pos 1 10.000 14.796.227 421.490 193.076.729 bytes
Index pos 2 20.000 29.100.109 643.194 360.334.830 bytes
Index pos 3 30.000 39.296.047 788.386 480.282.588 bytes
Index pos 4 40.000 49.452.772 931.755 598.313.479 bytes
Index pos 5 50.000 56.714.905 1.017.308 680.328.401 bytes
Index pos 6 60.000 62.643.548 1.086.336 747.268.986 bytes
Index pos 7 70.000 66.676.093 1.114.693 790.710.844 bytes
Index pos 8 80.000 71.485.672 1.152.734 842.494.411 bytes
Index pos 9 90.000 76.521.488 1.203.316 899.048.137 bytes
Index pos 10 100.000 84.813.960 1.299.860 994.312.740 bytes

Table B.2: Test indexes - POS tagged

Test index name Documents Terms Unique terms Size
Index ss 1 10.000 14.052.498 376.552 182.733.812 bytes
Index ss 2 20.000 27.667.350 583.997 343.460.460 bytes
Index ss 3 30.000 37.369.091 719.862 458.870.342 bytes
Index ss 4 40.000 47.043.609 855.473 572.817.775 bytes
Index ss 5 50.000 53.987.641 936.677 652.245.302 bytes
Index ss 6 60.000 59.660.953 1.003.627 717.272.088 bytes
Index ss 7 70.000 63.503.354 1.031.724 759.616.007 bytes
Index ss 8 80.000 68.108.351 1.069.210 810.144.185 bytes
Index ss 9 90.000 72.910.153 1.118.145 865.026.795 bytes
Index ss 10 100.000 80.810.875 1.210.012 957.128.556 bytes

Table B.3: Test indexes - Stopped and stemmed

Test index name Documents Terms Unique terms Size
Index 1 10.000 13.637.170 362.849 179.379.310 bytes
Index 2 20.000 26.864.069 563.218 337.438.156 bytes
Index 3 30.000 36.275.764 694.303 450.899.062 bytes
Index 4 40.000 45.672.800 825.173 562.954.761 bytes
Index 5 50.000 52.429.810 903.519 641.110.741 bytes
Index 6 60.000 57.959.206 968.427 705.176.561 bytes
Index 7 70.000 61.721.191 995.556 746.994.911 bytes
Index 8 80.000 66.219.153 1.031.906 796.877.034 bytes
Index 9 90.000 70.896.397 1.079.210 850.932.403 bytes
Index 10 100.000 78.561.396 1.167.676 941.469.195 bytes

Table B.4: Test indexes - POS tagged, stopped and stemmed
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B.2 Questionnaire

Hello,

We hereby invite you to participate in a survey to evaluate

our search engine (Zeeker). This survey should not take much

more than 15 minutes to complete.

In this survey we ask you to submit queries to the search

engine and evaluate the results. We ask you to evaluate the

usability of the engine, the performance and the results

returned. Of course your participation is completely anonymous

and voluntary.

Before continuing, we want to explain our main goals when

designing the search engine. At present, the engine only deals

with documents relating to music. It has the Wikipedia music

articles in its index, along with documents downloaded from

the Internet.

The main goal was to implement a search engine returning

precise and most of all relevant documents. This is done

using clustering, a technique to group relevant documents

together. In the Web interface the clusters are presented

as the Category list. For any given query, the search engine

will return search results along with the categories it deems

relevant for the query. These categories can be used as a

filtering mechanism. When a category link is clicked, the search

engine will filter its results and show only results from the

clicked category. The goal of these categories is to easily find

the relevant results without looking at many documents before

finding the best ones. We ask you to bear the goals in mind when

evaluating, i.e. have we reached our goals?

Your responses will be strictly confidential and only used for

statistical purposes in our Masters Thesis. If you have any

questions regarding this survey, you may contact us (Magnús and

Søren) by email at maggi.sig@gmail.com

Thank you very much for your time and support. We hope you like

it, because we do. Please start the survey now by clicking on

the Continue button below.
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Gender:

1. Male

2. Female

Age:

1. <20

2. 21-30

3. 31-40

4. 41-50

5. >50

What is your experience with search engines?

1. None (Never used a search engine)

2. Beginner (You know where and what Google is)

3. Intermediate (You are well familiar with Google)

4. Advanced (You know about search operators and such techniques)

5. Expert (You are familiar with PageRank, stop-words, stemming)
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In the following questions, we ask you to find something we

specify using our search engine. We will give you minimal

information, which you can use in any way to find the results

you find relevant. We encourage you to make use of both the

category filter and the normal search results to find what you

are looking for. Furthermore we have made three search operators

available. An explanation of these can be found at

http://studweb1.imm.dtu.dk/QuerySyntax.aspx

The questions require that you, in a seperate window, go to the

search engine website at: http://studweb1.imm.dtu.dkNote that

you will not be asked for the answer to any of the questions.

The questions are just to see if you can find information we

know exists in our index.

Should you by any chance know the answer to our questions, we

ask you to still try and find the answer using the search engine.
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Here we ask you to find a name of a single from an album called

Ten. The artist name and the name of the single will remain unknown.

Did you find what we asked for?

1. Yes

2. No

3. Dont know

How difficult was it to find?

(Skip this question if you did not find what we asked for)

1. Very easy

2. Easy

3. Normal

4. Difficult

5. Very difficult

Did you find the categories useful?

1. Very Useful

2. Useful

3. Somewhat Useful

4. Not Useful

We were looking for any song from the Ten album by Pearl Jam.

Did you find that?

1. Yes

2. No
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Now we would like you to find the real name of the artist which

uses the stage name The Edge. This artist has been a member of

a very popular rock band for many years.

Did you find what we asked for?

1. Yes

2. No

3. Dont know

How difficult was it to find?

(Skip this question if you did not find what we asked for)

1. Very easy

2. Easy

3. Normal

4. Difficult

5. Very difficult

Did you find the categories useful?

1. Very Useful

2. Useful

3. Somewhat Useful

4. Not Useful

We were looking for the name David Howell Evans, a member of

the band U2. Did you find that?

1. Yes

2. No
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Finally we ask you to find the name of the band behind the

song Lord of the Boards. The band was active between 1994-2005.

Did you find what we asked for?

1. Yes

2. No

3. Dont know

How difficult was it to find?

(Skip this question if you did not find what we asked for)

1. Very easy

2. Easy

3. Normal

4. Difficult

5. Very difficult

Did you find the categories useful?

1. Very Useful

2. Useful

3. Somewhat Useful

4. Not Useful

We were looking for the band Guano Apes

Did you find that?

1. Yes

2. No
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Now we ask you to find things on your own using the search

engine. First we would like you to search for an artist or

a band of your choice, and then we ask you to search for a

song title or an album title. Dont be shy, put the engine

to the test.

Subsequently we ask you to evaluate the general results from

these queries. The questions are based on how many relevant

results you got. We also ask that you evaluate the usability

of the engine, i.e. was it easy, hard or complex to use.

How relevant were the results to your queries?

1. Very Relevant

2. Quite Relevant

3. Relevant

4. Somewhat Relevant

5. Not Relevant at all
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You are almost done. Just a few more questions regarding your

overall satisfaction with the search engine.

How would you rate our search engines overall performance, i.e.

taking speed, ease-of-use and relevance of results into account?

1. Very Good

2. Good

3. Avarage

4. Bad

5. Very Bad

How likely are you to use this kind of search engine again?

1. Very Likely

2. Likely

3. Unlikely

4. Very Unlikely

5. Dont know

Finally we ask for your comments, good or bad regarding our

search engine. (Optional)

If you have any comments regarding this survey, feel free

(Optional)
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POS Tagging

POS tags 10.000 50.000 100.000 Average
articles articles articles

BE,BEDR,BEDZ,BEG, 6.59% 6.65% 7.61% 6.95%
BEM,BEN,BER,BEZ
CC, CS 5.91% 5.81% 6.03% 5.92%
CD, OD 7.94% 8.76% 11.63% 9.44%
DT,PDT 9.80% 9.76% 10.32% 9.96%
FW 2.29% 2.47% 2.53% 2.43%
HV,HVD,HVG,HVN, 0.58% 0.57% 0.67% 0.61%
HVZ
IN 5.49% 5.51% 5.89% 5.63%
JJ,JJR,JJS 12.97% 12.95% 13.25% 13.06%
NN,NNS,NP,NPS 33.58% 32.55% 27.36% 31.16%
PN,PP,PP$,PPX, 1.56% 1.57% 1.56% 1.56%
WP,WP$
RB,RBR,RBS,RP 1.67% 1.61% 1.51% 1.60%
VB,VBD,VBG,VBN, 3.58% 3.56% 3.43% 3.52%
VBZ
Remaining tags 2.80% 2.73% 2.75% 2.76%
??? 5.24% 5.50% 5.46% 5.40%

Table C.1: Test on distribution of the tags in the Brown/Penn-style tagset
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C.1 POS tagset

POS Description
BE be
BEDR were
BEDZ was
BEG being
BEM am
BEN been
BER are
BEZ is
CC conjunction, coordinating (and)
CD number, cardinal (four)
CS conjunction, subordinating (until)
DO do
DOD did
DOG doing
DON done
DOZ does
DT determiner, general (a, the, this, that)
EX existential there
FW foreign word (ante, de)
HV have
HVD had (past tense)
HVG having
HVN had (past participle)
HVZ has
IN preposition (on, of)
JJ adjective, general (near)
JJR adjective, comparative (nearer)
JJS adjective, superlative (nearest)
MD modal auxiliary (might, will)
NN noun, common singular (action)
NNS noun, common plural (actions)
NP noun, proper singular (Thailand)
NPS noun, proper plural (Americas, Atwells)
OD number, ordinal (fourth)
PDT determiner, pre- (all, both, half)
PN pronoun, indefinite (anyone, nothing)

Table C.2: Variant of the Brown/Penn-style tagset - Part I
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POS Description
POS possessive particle (’, ’s)
PP pronoun, personal (I, he)
PP$ pronoun, possessive (my, his)
PPX pronoun, reflexive (myself, himself)
RB adverb, general (chronically, deep)
RBR adverb, comparative (easier, sooner)
RBS adverb, superlative (easiest, soonest)
RP adverbial particle (back, up)
SYM symbol or formula (US$500, R300)
TO infinitive marker (to)
UH interjection (aah, oh, yes, no)
VB verb, base (believe)
VBD verb, past tense (believed)
VBG verb, -ing (believing)
VBN verb, past participle (believed)
VBZ verb, -s (believes)
WDT det, wh- (what, which, whatever, whichever)
WP pronoun, wh- (who, that)
WP$ pronoun, possessive wh- (whose)
WRB adv, wh- (how, when, where, why)
XNOT negative marker (not, n’t)
” quotation mark
( (
, ,
. .
: :
? ?
! !
’ apostrophe
) )
- -
... ...
; ;
??? unclassified

Table C.3: Variant of the Brown/Penn-style tagset - Part II
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Appendix D

Stopwords
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Stopwords (a-h)
a about above according across
after afterwards again against albeit
all almost alone along already
also although always am among
amongst an and another any
anybody anyhow anyone anything anyway
anywhere apart are around as
at av be became because
become becomes becoming been before
beforehand behind being below beside
besides between beyond both but
by can cannot canst certain
cf choose contrariwise cos could
cu day do does doesn’t
doing dost doth double down
dual during each either else
elsewhere enough et etc even
ever every everybody everyone everything
everywhere except excepted excepting exception
exclude excluding exclusive far farther
farthest few ff first for
formerly forth forward from front
further furthermore furthest get go
had halves hardly has hast
hath have he hence henceforth
her here hereabouts hereafter hereby
herein hereto hereupon hers herself
him himself hindmost his hither
hitherto how however howsoever

Table D.1: Stop word list (a-h)
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Stopwords (i-y)
ie if in inasmuch inc
include included including indeed indoors
inside insomuch instead into inward
inwards is it its itself
just kind kg km last
latter latterly less lest let
like little ltd many may
maybe me meantime meanwhile might
moreover most mostly more mr
mrs ms much must my
myself namely need neither never
nevertheless next no nobody none
nonetheless noone nope nor not
nothing notwithstanding now nowadays nowhere
of off often ok on
once one only onto or
other others otherwise ought our
ours ourselves out outside over
own per perhaps plenty provide
quite rather really round
said sake same sang save
saw see seeing seem seemed
seeming seems seen seldom selves
sent several shalt she should
shown sideways since slept slew
slung slunk smote so some
somebody somehow someone something sometime
sometimes somewhat somewhere spake spat
spoke spoken sprang sprung stave
staves still such supposing than
that the thee their them
themselves then thence thenceforth there
thereabout thereabouts thereafter thereby therefore
therein thereof thereon thereto thereupon
these they this those thou
though thrice through throughout thru
thus thy thyself till to
together too toward towards ugh
unable under underneath unless unlike
until up upon upward upwards
us use used using very
via vs want was we
week well were what whatever
whatsoever when whence whenever whensoever
where whereabouts whereafter whereas whereat
whereby wherefore wherefrom wherein whereinto
whereof whereon wheresoever whereto whereunto
whereupon wherever wherewith whether whew
which whichever whichsoever while whilst
whither who whoa whoever whole
whom whomever whomsoever whose whosoever
why will wilt with within
without worse worst would wow
ye yet year yippee you
your yours yourself yourselves

Table D.2: Stop word list (i-y)
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Index

L2 Norm, 51
Spherical k-means, 51

Cluster Quality, 53

Apache Lucene, 103
Applications

DataManagementWizard, 106
Zeeker.Base, 105
Zeeker.Spider, 105
Zeeker.DataGateway, 105
Zeeker.Website, 108
BuildIndex, 107
Clustering, 108

Centroid, 53
Clustering, 12, 41

Spherical k-means, 51
Algorithm similarities, 67
Algorithms, 13
FTC, 61
NMF, 57
Non-Overlapping, 46
Overlapping, 46
Tests, 71

Cosine Similarity Measure, 17, 42

Document Processor, 4

F-measure, 89
FTC, 61

Google, 1
Bomb, 2
PageRank, 1, 17
Wash, 2

Hierarchical clustering, 46

Index reduction, 33
Indexing, 9

Full Inverted file, 11
Inverted file, 9

Lemur, 103
Indri, 103

Linearization, 8
Link Analysis, 16

Machine Learning, 47
Supervised, 47
Unsupervised, 47

NMF, 57
Updating rules, 59

Open Directory Project, 28

Part-of-Speech, 6
Tags, 139

Partitional clustering, 46
Precision, 89

Query
Analysis, 15
Expansion, 14
Processing, 13

Query Expansion, 84
Automatic, 84
Manual, 84
User-Assisted, 84

Query Operators, 82
Category, 83
Search, 82

Query Processing, 81
Query syntax, 125
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Ranking, 15, 85
Link Analysis, 16

HITS, 17
PageRank, 17

Relevance Feedback, 18
Vector Space Model, 17

Recall, 89
Relevance Feedback, 18

Explicit, 18
Implicit, 18

Retrieval, 81
Evaluation

F-measure, 89
Precision, 89
Recall, 89
User Feedback, 90

Method, 85
Query Expansion, 84
Query Operators, 82
Query Processing, 81
Ranking, 85
Tests, 93
Vocabulary pruning, 81

Search Engine Optimization, 1
Semantics

Compositional, 4
Lexical, 4

Spectral clustering, 46
Stemming, 7

Lovins, 7
Porter, 7

Stop Words, 6, 143

Term weighting, 7, 43
Tf x Idf, 8, 43

Term-Document Matrix, 17, 41
Test sets, 29

User Feedback, 90
User Guide, 125

Vector Space Model, 17, 41
Vector space model, 41
Vocabulary Pruning, 81
Vocabulary pruning, 33

Wikipedia, 25
WordNet, 6
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