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ﬂVhy do we need statistical models and machina
learning?

B Mine action is influenced by many uncertain factors

B The goals of mine action depends on difficult socio-
economic and political considerations

Scientist are born sceptical: they
don’t believe facts unless they see

\ them often enough /
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Why do we need statistical models and machinh
learning?

B statistical modeling is the principled framework to
handle uncertainty and complexity

B Statistic modeling usuallay focuses on identifying
important parameters

B machine learning learns complex models from

collections of data to make optimal predictions in
new situations
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Why do we need statistical models and machinh
learning?

B statistical modeling is the principled framework to
handle uncertainty and complexity

B Statistic
Importan

B machine
collectio
new sSituc
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There is no such thing as facts to spoil a good\
explanation!

B Pitfalls and misuse of statistical methods sometimes
wrongly leads to the conclusion that they are of little

practical use

01U

After the dogs went

INn we never saw an
accident

-
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B Pitfalls and misuse of ¢« 1itistical methods sometimes
wrongly leads to the ¢  -lusion that they are of little

pre ¢ C Some data are
in the tail of the

distribution: Smoking is not
generalization dangerous: my
from few granny just turned
examples is not 95 and has been a

possible heavy smoker all
his live
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ﬁhe elements of statistical decision theom

Data
eSensor

: . 1)
eCalibration — O
o

ePost clearance @)
-

eExternal factors _
O
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Outline
B The design and evaluation of mine clearance equipment - the
problem of reliability

— Detection probability — tossing a coin

— Requirements in mine action

— Detection probability and confidence in MA
— Using statistics in area reduction

B Improving performance by information fusion and combination
of methods

— Advantages
— Methodology
— DeFuse project
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Detecting a mine — tossing a coin \
no of heads
Freqguency =
NOo of toSses

probability = freqguency when infinitely many tosses
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On 99,6% detection probability

996

Frequency = 7000 =99,6%

Frequency =

00,0

9960

=99,60%
110101010
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Detection probability - tossing a coin

B N independent tosses number of
B y number of heads observed
B ¢ probability of heads

/B

GV
N

P(y | 8) = Binom(@ | N) = (SjngNy

\ Data likelihood
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Prior beliefs and opinions

B Prior 1: the fair coin: @ should be close to 0.5
B Prior 2: all values of @ are equally plausible

p(6) = Beta(é | , /)
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nrior beliefs and opinions \

2 - . .
—o=1,=1
o=3 ,=3
1.5t T
S 1
o
0.5+ i
O 1 1 1 1
0] 0.2 04 0.6 0.8 1
0
DTU
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/Bayes rule: combining data likelihood and prior\

Likelihood Prior

no () - PO 1 Op(E)

P(y)

P(H | y) — Beta(ﬁ | y -+ a’lB + N — y) . 9y+0(0n—y+ﬂ
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Posterior probability is also Beta \

P(@|y)=Beta(@ |y +o,f+n-y) ~ 9"/
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ﬂ?osteriors after observing one head \

Flat prior Fair coin
2 ' ' 2.5 r .
mean=4/7
mean=2/3 ol /
1.5t 7
A . 1.5t
s 1 s
o o 1-
0.5t
0.5t
OO 0'.2 0:4 Ot6 Oi8 1 OO 0i2 0i4 0i6 0i8 1
0 0
\ Beta(é | 2,1) Beta(éd | 4, 3) /
DTU
-
Jan Larsen 16 >



Informatics and Mathematical Modelling / Intelligent Signal Processing _ .n

4 \

Outline
B The design and evaluation of mine clearance equipment - the
problem of reliability

— Detection probability — tossing a coin

— Requirements in mine action

— Detection probability and confidence in MA
— Using statistics in area reduction

B Improving performance by information fusion and combination
of methods

— Advantages
— Methodology
— DeFuse project
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What are the requirements for mine action risk

B Tolerable risk for individuals comparable to other
natural risks

B As high cost efficiency as possible requires detailed
risk analysis — e.g. some areas might better be
fenced than cleared

B Need for professional risk analysis, communication
management and control involving all partners (MAC,
NGOs, commercial etc.)
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=

What are the requirements for mine action risk \

B Tolerable risk for individuals comparable to other
natural risks

O Fact

99.6% is not an unrealistic requirement

m Dbut... today’s methods achieve at most 90% and

=18 C
e e — = =y

NGOs, commerci
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A/simple inference model - assigning probabilitiQ
to data

B The detection system provides the probability of
detection a mine in a specific area: Prob(detect)

B The land area usage behavior pattern provides the
probability of encounter: Prob(mine encounter)

For discussion of assumptions and involved factors see

“Risk Assessment of Minefields in HMA - a Bayesian
Approach”

hD Thesis, IMM/DTU 2005 by Jan Vistisen /
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/

A simple loss/risk model

B Minimize the number of casualties

B Under mild assumptions this equivalent to
minimizing the probability of casualty
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Requirements on detection probability \

Prob(causality)=(1-Prob(detection))*Prob(encounter)

Prob(detection)=1-Prob(causality)/Prob(encounter)

B Prob(encounter)= p*a

- p : homogeneous mine density (mines/m?), a: yearly
footprint area (m?)

B Prob(causality)=10- per year
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Maximum yearly footprint area in m?

p : mine density (mines/km?)

0.1 1 10 100

25000 2500 25

1000 100

Qeference: Bjarne Haugstad, FFI
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Outline
B The design and evaluation of mine clearance equipment - the
problem of reliability

— Detection probability — tossing a coin

— Requirements in mine action

— Detection probability and confidence in MA
— Using statistics in area reduction

B Improving performance by information fusion and combination
of methods

— Advantages
— Methodology
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Evaluation and testing in MA \

B How do we assess the performance/detection

probability? _ _

B What is the confidence? Ch?ngmg environment
emine types, placement
¢soil and physical properties
eunmodeled confounds

system design phase

operation phase
Overfitting

> &

einsufficient coverage of
data b

eunmodeled confounding EVENTEEYTela phase
factors

eunsufficient model /
fusion and selection
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-

Sensing error

The system does not
sense the presence
of the mine object

decrease in
1 detection
probability

-

Two types of error in detection of mines

Decision error

The detector
misinterprets the
sensed signal

increase in false
alarm rate

~

/

Jan Larsen 26

 w— |
—
{

I



Informatics and Mathematical Modelling / Intelligent Signal Processing ...

>

-

PIYbdulliLy

Two types of error in detection of mines \

cision error
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ﬁonfusion matrix in system design and test phase
which should lead to certification

B Detection probability
(sensitivity):
a/(a+c)

B False alarm:

a

B False positive (specificity):

- /

01U

o
Al

Jan Larsen 28



Informatics and Mathematical Modelling / Intelligent Signal Processing

<

Receiver operation characteristic (ROC)
detection probability %
A
100
0 —false alarm %
0 100
DTU
Jan Larsen 29 g



Informatics and Mathematical Modelling / Intelligent Signal Processing

/

Inferring the detection probability

B N independent mine areas
for evaluation

B y detections observed
B true detection probability @

P(y | 8) ~ Binom(8 | N) = (S]gygNy

-
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/Bayes rule: combining data likelihood and prior\

Likelihood Prior

no () - PO 1 Op(E)

P(y)

P(H | y) — Beta(ﬁ | y -+ a’lB + N — y) . 9y+0(0n—y+ﬂ
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ﬂDrior distribution

\mean=0.6

Jan Larsen
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HPD credible sets — the Bayesian confidence \
interval ¢, ={g: P(6|y)=k(e)}, CDF(0|y)>1-¢

—=32.9 p=18.6

N=50 y=32,0__=0.64
C,5=0.92665, C,,=0.47862
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e required number of samples N

B We need to be confident about the estimated detection
probability

Prob(# > 99.6%) = C, _

Uniform prior Informative prior
K «=0.9, =0.6 /
DTU
Jan Larsen 34 -—

Al



Informatics and Mathematical Modelling / Intelligent Signal Processing ...

>

Credible sets when detecting 100% \
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Outline
B The design and evaluation of mine clearance equipment - the
problem of reliability

— Detection probability — tossing a coin

— Requirements in mine action

— Detection probability and confidence in MA

— Using statistics in area reduction

B Improving performance by information fusion and combination

of methods

— Advantages

— Methodology

— DeFuse project
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ﬁffﬁcient MA by hierarchical approaches\

vef: Havard Bach, Paul Mackintosh
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/Danger maps

B The outcome of a
hierarchical surveys

B Information about mine
types, deployment
patterns etc. should also
be used

B Could be

formulated/interpreted as
a prior probability of
IhES

QMART system described in GICHD: Guidebook on Detectio

n
Technologies and Systems for Humanitarian Demining, ZOOJ
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Sequential information gathering

technical survey mine clearance

data data

prior posterior prior posterior
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Statistical information aggregation

B e=1 indicates encounter of a mine in a box at a specific
location

B probability of encounter P(e =1) from current danger map
B d=1 indicates detection by the detection system
B probability of detection P(d =1) from current accreditation

Pe=1Ad=0)=P(e=1)1-P(d =1))
P(no mine)=1-P(e=1Ad =0)

- /
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Statistical information aggregation

Example: flail in a low danger area

Pe=1)=0.2, P(d=1)=0.8
P(ho mine)=1-P(e=1Ad=0)=1-0.2*0.2=0.96

Example: manual raking in a high danger area

Ple=1)=1, P(d=1)=0.96
P(ho mine)=1-P(e=1Ad=0)=1-1%*0.04=0.96

-

/B
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(outine B

B The design and evaluation of mine clearance equipment - the
problem of reliability

— Detection probability — tossing a coin

— Requirements in mine action

— Detection probability and confidence in MA
— Using statistics in area reduction

B Improving performance by information fusion and combination
of methods

— Advantages
— Methodology
— DeFuse project
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Improving performance by fusion of methods

B Methods (sensors, mechanical etc.) supplement each other
by exploiting different aspect of physical environment

Late integration
Hierarchical integration
Early integration

-

~
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Early integration — sensor fusion

Detection

\ database /
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Late integration — decision fusion

Mechanicalsystem
-
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(dva ntages \

B Combination leads to a possible exponential increase
in detection performance

B Combination leads to better robustness against
changes in environmental conditions

-
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Challenges

- B
B Need for of equipment under
well-specified conditions (ala ISO)

B Need for new procedures which estimate statistical
dependences between existing methods

B Need for new procedures for statistically optimal
combination

. /
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(outine h

B The design and evaluation of mine clearance equipment - the
problem of reliability

— Detection probability — tossing a coin

— Requirements in mine action

— Detection probability and confidence in MA
— Using statistics in area reduction

B Improving performance by information fusion and combination
of methods

— Advantages
— Methodology
— DeFuse project
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Dependencies between methods

Contingency
tables

-
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{ptimal combination \

Method 1 —%%

0/1

0/1
~ Method K -

Optimal combiner depends on contingency tables

- /

Jan Larsen 0]

 w— |
—
{

I



Informatics and Mathematical Modelling / Intelligent Signal Processing

Optimal combiner

22K_1 — 1 possible combiners

Jan Larsen
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OR rule is optimal for independent methods

P4(OR) =P(y, vy, =1]y =1)
=1-P(y, =0y, =0]y =1)
=1-P(y, =0|y=1)-P(y,=0]y =1)
=1-(1-P,)-(1-P,,)

-
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False alarm follows a similar rule \
P.(OR) =
P(91V§/2 =1|y =0)
—1-P(y,=0AY,=0]y =0)
=1-P(y, =0|y =0)-P(y, =0|y =0)
— 1_(1_Pfa1)'(1_Pfa2)

- /
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Example

Py1 = 081 Pry = 0.1 o 20-7, 2. =0.1

p, =1-(1-0.8)-(1-0.7) =0.94
pfa — 1_(1_01)(1—01) — 019

Exponential increase in detection rate
Linear increase in false alarm rate

voint discussions with: Bjarne Haugstad

~

/
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Testing independence — Fisher’s exact test\

B Hypothesis: Method i and j
are independent

L] : Dependent or
positively (negatively)
correlated

H: P(S}i :OIS}J’ =0) = P(S)i :O)'P(S}j = 0)
A: P()?i :OIS}J‘ :0) > P(S)i :O)'P(S}j :O)

- /
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Artificial example

B N=23 mines

B Method 1: P(detection)=0.8,
P(false alarm)=0.1

B Method 2: P(detection)=0.7,
P(false alarm)=0.1

B Resolution: 64 cells

i
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Confusion matrix for method 1

-
(N ]
-
=

\
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-
Confidence of estimated detection rate \

B With N=23 mines 95%-credible intervals for detection rates are
extremely large!!!!

Method1 (flail): [64.5% 82.6% 93.8%]

Method2 (MD): [50.4% 69.6% 84.8%]

-
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Confidence for false alarm rates

B Determined by deployed resolution

B Large resolution - many cells gives many possibilities to
evaluate false alarm.

B In present case: 64-23=41 non-mine cells

Method1 (flail): [4.9% 12.2% 24.0%]

-
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Detection rates

Flalil : 82.6
Metal detector: 69.6
Combined:; 91.3

6 1 3
combination number

Jan Larsen
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False alarm rates

Flail :12.2
Metal detector: 7.3
Combined: 17.1

combination number

Jan Larsen
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/

Comparing methods \
B [s the combined method better than any of the two
orginal?

B Since methods are evaluated on same data a paired
statistical McNemar with improved power is useful

Method1 (flail): 82.6% < 91.3% Combined

Method2 (MD): 69.6% < 91.3% Combined g

DTU
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(outine h

B The design and evaluation of mine clearance equipment - the
problem of reliability

— Detection probability — tossing a coin

— Requirements in mine action

— Detection probability and confidence in MA
— Using statistics in area reduction

B Improving performance by information fusion and combination
of methods

— Advantages
— Methodology
— DeFuse project
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They keys to a successful mine clearance system\

B Use statistical learning which combines all available
information in an optimal way
- informal knowledge

— data from design test phase
— confounding parameters (environment, target, operational)

B Combine many different methods using statistical
fusion

S TR
- /
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/'. DeFuse scientific objectives \

Obtain about the advantages of
deploying a combined approach

Eliminate confounding factors through careful experimental
design and specific scientific hypotheses

Test the general
between missed detections in successive runs of
the same or different methods

To accept the hypothesis under varying detection/clearance
probability levels

To lay the foundation for new practices for mine action, but it is
not within scope of the pilot project

sttems: ALIS dual sensor, MD, MDD, Hydrema flay

oy
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danger
/ 9 clearance

Conclusions map

Statistical decision theory and modeling is essential for optimal
use of prior information and empirical evidence

M It is very hard to assess the necessary high performance which
is required to have a tolerable risk of casualty

B The use of sequential information aggregation is promising for
developing new hierarchical survey schemes (SOPs)

Combination of methods is a promising avenue to overcome
current problems

combine
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