

Availability and performance aspects
for mainframe consolidated servers

Klaus Johansen
s053075

Kongens Lyngby 2007

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 4525 3351, Fax +45 4588 2673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-Thesis-2007-94

 I

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

ABSTRACT

 Most people believe that the mainframe platform currently suffers a slow

but a certain death. This is however a common misconception: The main-

frame is very much alive and going strong.

 This thesis recognizes the mainframe platform’s superior qualities, and

deals with one of the platform’s new driving forces: Server consolidation

based on the z/VM operating system and Linux.

 Some effort is first made to provide a basic understanding of the IBM

mainframe architecture in order to establish common ground. A concise, yet

theoretically and practically balanced, description of z/VM based virtualiza-

tion follows. This provides amongst other things insight into how resources

(processors resources in particular) can be shared.

 The report also introduces some of the most important issues, which set

apart mainframe Linux from Linux on other platforms. Performance tests

have been carried out, and through these an insight into the systems behav-

iour can be gained.

 The thesis also includes initial considerations on monitoring software for

the virtual server environment on the mainframe.

II

CONTENT

ABSTRACT... I

CONTENT ... II

PREFACE.. V

1. INTRODUCTION...1

1.1 BACKGROUND AND MOTIVATION ..1

1.1.1 MAINFRAMES ARE FLOURISHING ...1

1.1.2 THE KMD SERVER CONSOLIDATION CASE... 2

1.2 PURPOSE AND GOALS.. 3

1.3 METHODS .. 4

1.4 READER’S GUIDE.. 4

2. THE IBM MAINFRAME.. 6

2.1 MAINFRAME HISTORY.. 6

2.2 HARDWARE AND ARCHITECTURE... 7

2.2.1 THE MAINFRAME BOX - CEC.. 7

2.2.2 PROCESSORS AND COMPUTATION .. 8

2.2.3 BOOKS, N-WAY SYSTEMS.. 9

2.2.4 STORAGE (MEMORY) ... 9

2.2.5 SUPPORT ELEMENT AND HMC .. 10

2.2.6 INPUT/OUTPUT: CHANNELS, CHANNEL SUBSYSTEM 10

2.2.7 PR/SM, LPARS AND ITS CONFIGURATION..12

2.2.8 HARD DRIVES: DIRECT ACCESS STORAGE DEVICES.............................15

2.2.9 NETWORK CONNECTIVITY & HYPERSOCKETS16

2.2.10 TERMINALS, TN3270...17

2.2.11 OTHER TECHNOLOGIES ...17

2.3 OPERATING SYSTEMS ... 18

3. IBM Z/VM ..19

3.1 PRESENTATION ...19

3.2 HISTORY...19

3.3 VIRTUALIZATION CONCEPTS AND PRINCIPLES..21

3.3.1 SYSTEM VIRTUALIZATION: CREATING VIRTUAL MACHINES21

3.3.2 VARIANT TYPES OF HYPERVISOR BASED VIRTUALIZATION................... 22

3.4 MAIN Z/VM COMPONENTS AND FUNCTIONALITY 25

 III

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

3.4.1 CP - THE CONTROL PROGRAM .. 25

3.4.2 CMS - CONVERSATIONAL MONITOR SYSTEM..................................... 26

3.4.3 USERS AND THEIR PRIVILEGES .. 29

3.4.4 ARCHITECTURAL SUPPORT ..30

3.4.5 STORAGE TYPES, PAGING SUB SYSTEM...30

3.4.6 SERVICE VIRTUAL MACHINES ..31

3.4.7 GENERAL DEVICES TERMINOLOGY ... 32

3.5 BASIC MAINTENANCE AND CONFIGURATION ... 33

3.5.1 SERVICE (MAINTENANCE) .. 33

3.5.2 CONFIGURATION ... 33

3.6 VIRTUAL DEVICES: ALLOCATIONS, SHARING ... 35

3.6.1 PROCESSORS.. 35

3.6.2 STORAGE (MEMORY) ..41

3.6.3 I/O DEVICES: DASD / DISKS.. 42

3.6.4 I/O DEVICES: NETWORK CONNECTIVITY ... 44

3.6.5 I/O DEVICES: UNIT RECORD DEVICES (SPOOLING) 47

3.7 VIRTUALIZATION DETAILS FOR Z/VM... 47

3.7.1 HYPERVISOR CALLS, DIAGNOSE INSTRUCTIONS 47

3.7.2 PROCESSOR SCHEDULING..48

3.7.3 RUNNING Z/VM IN Z/VM ... 50

3.7.4 HARDWARE SUPPORTED VIRTUALIZATION ..51

4. LINUX ON ZSERIES, AS Z/VM GUEST .. 53

4.1 PRESENTATION .. 53

4.1.1 HISTORY .. 53

4.1.2 ARCHITECTURE REFERENCE NAMES ... 54

4.1.3 DISTRIBUTIONS ... 54

4.2 DEVICES AND SYSFS ... 54

4.3 DRIVERS, S/390 TOOLS AND UTILITIES.. 56

4.4 SPECIAL CONSIDERATIONS WHEN RUNNING IN VM.................................... 57

5. PERFORMANCE TESTS & OPTIMIZATION ..61

5.1 TEST 1: NUMBER OF PROCESSORS PER LINUX GUEST....................................61

5.1.1 MOTIVATION ...61

5.1.2 MEASUREMENT METHODS AND TOOLS ... 62

5.1.3 WORKLOADS.. 66

5.1.4 TEST DESCRIPTION... 67

5.1.5 TEST RESULTS AND ANALYSIS ...68

5.1.6 CONCLUSION AND RECOMMENDATIONS ... 70

IV

5.2 TEST 2: MEMORY USAGE...71

5.2.1 MOTIVATION ..71

5.2.2 MEASUREMENT METHODS AND TOOLS..71

5.2.3 TEST DESCRIPTION .. 74

5.2.4 TEST RESULTS AND ANALYSIS... 76

5.3 TEST 3: DISK I/O; LVM STRIPES AND CACHES ...80

5.3.1 MOTIVATION ...80

5.3.2 MEASURING METHODS AND TOOLS ..80

5.3.3 TEST DESCRIPTION .. 81

5.3.4 TEST RESULTS AND ANALYSIS...82

5.4 TEST 4: Z/VM IN Z/VM PENALTY...84

5.4.1 MOTIVATION ...84

5.4.2 MEASURING METHODS AND TOOLS .. 85

5.4.3 TEST DESCRIPTION .. 85

5.4.4 TEST RESULTS AND ANALYSIS ..86

5.4.5 CONCLUSION AND RECOMMENDATIONS ... 87

6. AVAILABILITY - MONITORING..88

6.1 MONITORING METHODS ...88

6.2 COMPONENTS TO MONITOR..89

6.2.1 STANDARD WARNING / ERROR CONDITIONS89

6.2.2 MAINFRAME/VIRTUALIZATION CONSIDERATIONS..............................90

6.3 OTHER REQUIREMENTS ..91

6.3.1 EXISTING ALERT CHAIN ...91

6.3.2 SUPPORT, MANAGEABILITY, SECURITY, COSTS 92

6.4 MONITOR SOFTWARE CANDIDATES.. 92

6.4.1 COMMERCIAL SOFTWARE ... 93

6.4.2 OPEN SOURCE LINUX MONITORING SOFTWARE 94

7. CONCLUSION ... 95

BIBLIOGRAPHY..98

INDEX .. 102

 V

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

PREFACE

 The thesis at hand is written by the undersigned in order to fulfil the last

requirements for the M.Sc. degree in Computer Science Engineering at the

Technical University of Denmark (DTU). The work constitutes 30 ETCS

points.

 The project was carried out in the period from March to the end of Sep-

tember 2007. The thesis project has been supervised by Associate Professor

Hans Henrik Løvengreen from the institute of “Informatics and Mathematic

Modelling” (IMM) at DTU.

 The thesis is written in industrial collaboration with “KMD A/S”, Lautrup-

parken 40-42, DK-2750 Ballerup, Denmark. More specifically the project has

been coupled with the department of “Technical Basic operation Mainframe”

(TBM) lead by Peter Aksel Mortensen (PTM). KMD has kindly provided office

space, workstation, and a z/VM - Linux test environment for the project.

Acknowledgements
 I would like to thank my supervisor Hans Henrik Løvengreen: First of all

for him accepting this project in the first place considering the topic generally

lies outside IMM’s main research areas. Next for his good advice regarding

form and structure of this paper; and finally for his calm approach, patience,

general encouragements, and his sense of details.

 I would also like to thank the people at KMD: Peter for “letting me in”;

Bo, Frank and Torben for answering my questions and valuing my opinion;

and Thomas and Mikkel for making the working days a little more fun e.g. by

endlessly comparing the mainframe with a coal-fired steam-engine. And last

but not least I would like to thank Kristian for proof reading most of the re-

port.

Klaus Johansen

2007-09-28

1.1 Background and motivation 1

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

1. INTRODUCTION

1.1 Background and motivation

1.1.1 Mainframes are flourishing
 The mainframe has been declared dead many times over the years; and

the word itself reminds most people of an old-fashioned colossus with large

spinning magnetic tapes and a typewriter like interface. It is common belief

that mainframes only exist to support old applications, which nobody can ef-

fort, or knows how to rewrite. Nothing could be more wrong.

 The mainframe has evolved into the most secure, reliable, and capable

computer platform available. It is correct that it still run many of the same

workloads/applications as it did decades ago, but today it also impresses in

running new workloads, e.g. in the world of J2EE (Java Enterprise Edition)

and SOA (Service-Oriented Architecture).

 The mainframe sales confirm that the technology is “alive and kicking”.

Michael Loughridge, IBM’s senior vice president and chief financial officer, is

quoted for saying, that IBM with second-quarter 2007 had “eight consecutive

quarters of growth in the mainframe business” [73]. More over [54] claims

that IBM has confirmed that the System z [mainframe] capacity shipped in

fourth-quarter 2006 was greater than the total capacity of the then current

installed IBM mainframe worldwide inventory.

 Server consolidation is one of the new driving forces for the platform. The

Linux ports for IBM S/390 and IBM zSeries combined with z/VM virtualiza-

tion makes it possible to run hundreds of individual Linux servers on the

same mainframe box. High hardware and licensing costs are compensated by

90% Linux workload price reductions (IFL engines), savings in power con-

sumption, data center floor space, administration costs, etc.

 IBM has recently announced (Aug. 1, 2007) that they themselves plan to

consolidate about 3,900 computer servers onto about 30 System z main-

frames running Linux. IBM estimates that the new server environment will

consume approximately 80 percent less energy and they expects significant

savings over five years in energy, software and system support costs. [38].

 The virtualization and consolidation idea is completely in line with the in-

creased focus on server virtualization on other platforms within the latest

years: Intel and AMD have implemented virtualization support in their x86

processors; and virtual server solution (e.g. based on Xen and VMware) are

getting more and more prevalent. The mainframe however seem to be far

ahead: It has supported virtualization in 35 years and the environment is cor-

respondingly mature; the whole hardware architecture is optimized for virtu-

alization.

2 Chapter 1 - Introduction

1.1.2 The KMD server consolidation case

1.1.2.1 The Company

 KMD A/S is the largest IT company on Danish hands, with a turnover of

more than DKK 3 billion. The total share capital of KMD A/S is held by the

parent company “Kommune Holding A/S”, which in turn is owned by the Na-

tional Association of Local Authorities (KL). [39]

 KMD provides IT and consultancy services to the public and private mar-

kets. The core business is, and has historically always been, products for the

Danish local authorities (the municipalities). The corporate market, however,

is an important part of KMD’s growth strategy. Today KMD delivers mainte-

nance and development projects to e.g. Q8, HK, and ATP. KMD is also en-

gaged in operations outsourcing for companies such as Coop Danmark, Jysk

Nordic and uni-chains. [39]

 In order to provide the IT services, KMD operates around 3,000 servers

(running Microsoft Windows, Linux, and a few UNIX variants). The company

also has two IBM System z9 EC, model S54, mainframes; each having about

half of the 54 available processors activated (the remaining are available for

“capacity on demand” upgrades). The two mainframes are placed in separate

data centres, with mirrored storage. They mainframes run many “traditional”

and core business (especially transactions based) workloads.

1.1.2.2 Perspektiv ASP - Server Consolidation

 As a small piece in the big puzzle, KMD develops and sells a payroll appli-

cation suite, “Perspektiv” (in English: “Perspective”), to corporate businesses.

The Perspektiv customers include: the Danish Broadcasting Corporation

(DR), F.L. Smidth & Co A/S, TDC Services A/S, and F-Group. The application

runs on most UNIX platforms, including Linux, HP-UX, AIX, Tru64, even

VMS. Several backend database management systems (DBMSs) are sup-

ported: Informix, Ingress, and Oracle.

 Perspektiv is also offered as an ASP (Application Service Provider) solu-

tion, where KMD supplies, houses, and maintains the server infrastructure

needed to run the application. Capacity exhausting of the existing ASP servers

has triggered migration of the application from the existing HP/HP-UX plat-

form to Linux under z/VM on the mainframe. IBM Total Cost of Ownership

(TCO) calculations have predicted significant savings compared to an ade-

quate HP based solution.

 The mainframe benefits from the hardware already being in house; and its

extreme scalability and “capacity on demand” offers, which basically makes

an upgrade as easy as turning a knob; this without occupying further data

centre space, consuming extra electricity or producing more heat. Perspektiv

furthermore inherits the honoured reliability of the mainframe hardware,

which is redundant in thinkable way and autonomously calls IBM for re-

placement parts on failover.

1.2 Purpose and goals 3

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

1.2 Purpose and goals
 In the academic world the mainframe, and especially mainframe virtual-

ization technology, has been generally overlooked for years. The topic is

sparsely researched and the platform is largely ignored from an educational

point of view. This is a natural effect of the general perception that the main-

frame is dead and a bare memory of the past. As mentioned above, the reality

is quite different, and there is absolutely no indications that the situation is

about to change.

 KMD has already started the server consolidation process: A handful of

Perspektiv ASP customers are now running Linux on the mainframe. KMD

successfully operates the new z/VM-Linux environment, and with very prom-

ising results. It is nevertheless still a young platform from KMD’s perspective.

 KMD wishes a deeper understanding of the new environment, e.g. of the

interaction between the hardware, the virtualization layer (z/VM), and Linux.

The ability to control and predict distribution of resources (especially CPU re-

sources) is also of interest. Unfortunately the existing literature tend to be

very “how-to oriented”, unnecessary detailed, or unfeasibly extensive (IBM’s

“z/VM library” alone include over 50 books and ten thousands of pages).

 This thesis is intended to help KMD (and possibly others) to achieve a bet-

ter understanding of the new environment. In the light of the lacking aca-

demic interest for mainframes and the missing knowledge about them, this

thesis is expected to provide an introduction to mainframe architecture as

well. To sum up, the report is expected to:

• Provide an introduction to the mainframe architecture.

• In details describe the virtual environment and thereby explain the inter-

action between, and the mutual support of:

o the hardware and hardware partitioning

o software virtualization layer (z/VM)

o Linux as operating system in a virtual machine

• Show the resource sharing / virtualization options, and in particular the

possibility to control and predict processor resource distribution.

 Finally, the gained platform insight should be used to address the matter

of availability: “monitoring” in particular. It is KMD’s goal to ensure optimum

and flawless 24x7 operation of the mainframe based Perspektiv ASP solution.

Similar to all other platforms within KMD, a monitoring solution is expected

to help accomplish this goal. This project in particular should:

• Determine which components and layers need monitoring; thereby state

monitoring software requirement.

• If possible find and integrate monitoring such software.

4 Chapter 1 - Introduction

1.3 Methods
 The mainframe is presented from a purely descriptive point of view, by in-

troducing its history, the main elements of the hardware architecture, and the

most used mainframe operating systems.

 The chapters describing z/VM and Linux use the same approach. The

z/VM chapter is however supported by more theoretical sections e.g. provid-

ing a basic on virtualization theory. The z/VM and Linux chapters also have a

practical angle, giving concretely examples on configuration and commands.

 Generally the understanding of the system has been obtained empirically.

In the report, this is especially is reflected by the performance test chapter,

and the in Appendix given test tools and scripts, which have been pro-

grammed to obtain the empiric data. The test results themselves and several

other spin-off findings are (or have been) directly applicable for KMD. A

method developed to calculate processor resources distribution (section

3.6.1.1) is also to a large extend empirically founded.

1.4 Reader’s Guide

Report organisation
 The thesis report is divided in seven chapters; the first of which (the in-

troduction currently at hand) presents the background and objectives for the-

sis project; plus practical issues regarding the report structure.

 Chapter 2 gives a brief introduction to the IBM mainframe. The chapter

presents important terms from the distinctive mainframe terminology and

provides a basic understanding of the mainframe hardware and architecture.

 Having established common ground, chapter 3 focuses on the z/VM op-

erating system and its component. It deals amongst other things with the vir-

tualization concept and the ability to share/distribute system resources.

Chapter 4 is somewhat related to the preceding chapter: It introduces Linux

as mainframe operating system; how it differs from Linux on other platforms;

and special virtualization related issues.

 Chapter 5 includes description and results of four performance tests. Be-

sides concrete optimization recommendations, the chapter should contribute

to a better understanding “mainframe Linux”. Be aware the main section

numbers match the test numbers, which are used in appendixes, etc.

 Finally chapter 6 deals with the concept of availability or “monitoring” in

particular. It presents initial considerations in relation to finding adequate

monitoring software for KMD’s mainframe Linux environment. .

 The conclusion, given in the end of the report (p. 95), gives a brief

roundup of project achievements.

1.4 Reader’s Guide 5

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

Appendixes
 Two appendixes are provided: Appendix A provides supplementary in-

formation regarding the performance tests from Chapter 5. Appendix B is

similar related to the performance test: it contains source code for most of the

developed test programs and scripts.

Index and glossary
 The index in the end of the report (page 102) provides a method to find

the page where a particular concept, keyword, technology, acronym or similar

is explained or mentioned. The words are typically written in boldface to

make them easier to distinguish in the text. A real glossary is not provided be-

ing an almost impossible task to write. IBM, however, provides a z/VM spe-

cific glossary [8], which can be downloaded here:

 http://publibz.boulder.ibm.com/epubs/pdf/hcsl9b00.pdf

Bibliographic references
 Bibliographic references are indicated with square backets [] and the

number refer to the bibliography section on page 92. References to particular

page, #, within a source are given in the brackets after a comma: [ref, p. #].

Main sources, which form the basis for whole or multiple sections are intro-

duced in advance or are listed in the end of the relevant section in a separate

paragraph/on a new line (see below).

 Single or specific statements/facts are referenced within the sentence be-

fore full stop [like his]. Sources related to a complete paragraph/section are

mentioned after full stop. [like this][and this]

[Section reference 1] [Section reference 2]

Vendors and definition of the term “mainframe”
 Throughout this paper the word “mainframe” solely refers to IBM main-

frame products and if nothing else mentioned “IBM System z9 Enterprise

Class (EC)” – the current top model. Other products like ClearPath from Uni-

sys, Nova from Fujitsu, NonStop from Hewlett-Packard exist but IBM domi-

nates the market (market share estimated above 90% [24]) and finally the

mainframes at KMD are System z9 EC.

Software versions
 The IBM documentation library used for this project is mainly related to

z/VM V5R2. All test and experiments are similar conducted on SUSE Linux

Enterprise Server version 9 (SLES) running under z/VM V5R2 (the software

versions available at KMD). Actually z/VM V5R3 was released halfway

though the project, and SUSE Enterprise Server version 10 (SLES10) has

been available for some time. However, none of the principles or examples

mentioned should be affected by the new versions (unless otherwise stated).

6 Chapter 2 - The IBM Mainframe

2. THE IBM MAINFRAME

 This chapter gives a brief and very basic introduction to IBM mainframe

architecture and hardware platform. Readers which are familiar with the IBM

mainframe platform are encouraged to skip to chapter 3 “IBM z/VM” on page

19. The introduction is not in any way exhaustive but included to establish a

minimum of “common ground”. Parts of the text is revised sections from

chapter 2 in “Execution and monitoring of Linux under z/VM” [62] – a pre-

ceding paper written to assess the prospects of the thesis at hand.

2.1 Mainframe History
 The IBM mainframe or the “Big Iron” (industry jargon) originates from

IBM System/360, which was introduced in 1964. The System/360 was the

first general purpose computer running both commercial and scientific appli-

cation (same standard hardware, different programs). A considerable number

of programs from the 1960s and 1970s are still used today proving one of the

mainframe core qualities: extreme backward compatibility.

Figure: 2-1 IBM Mainframe time line [57, App. A]

 Roughly every ten years (see Figure: 2-1) IBM has significantly extended

the platform. System/370 introduced multiprocessor capabilities in 1970,

allowing more than processor in the same system and sharing memory. Sys-

tem/370 was also the first lines of computers using virtual memory. The

System/370 Extended Architecture (S/370-XA) from 1982 extended the ad-

dress space from 24 bit to 31 bit.

 Around 1990 the success of PCs and small servers forced IBM to reinvent

the mainframe from the inside. With System/390 IBM infused a new tech-

nology core and reduced prices. New concepts like Parallel Sysplex were pre-

sented offering system clustering and automated fail over across multi-

ple system and thereby higher availability. CMOS-based processors had re-

placed the prior bipolar technology and reduced the physical size and power

consumption radically.

 The zSeries came in the year 2000 with z/Architecture supporting 64-bit

addressing. Specialized cryptographic capabilities were introduced and the

2.2 Hardware and Architecture 7

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

ability to “downgrade” processors by microcode for specific workloads

(Linux, Java) drastically reduced software costs. Among many other im-

provements the System z9-109 (July 2005) came with new instructions to

improve virtualization overhead, further processors and yet extended I/O ca-

pabilities.

 The current top model “System z9 EC” (Enterprise Class) is basically the

z9-109, which has been renamed. This has been done to make the system eas-

ier distinguishable from a new mainframe family member: The System z9

Business Class (BC). The z9 BC offers is a midrange mainframe for small to

medium sized enterprises. It offers a lower-capacity entry point and more

granular growth options than z9 EC. [37]

[57] [63]

2.2 Hardware and Architecture
 Mainframe terminology differs from general computer terminology in

many ways. This chapter introduces the most important differences giving a

brief introduction to the mainframe hardware and system architecture. The

text is based on “Introduction to the New Mainframe: z/OS Basics” [57],

unless otherwise mentioned.

2.2.1 The mainframe box - CEC
 A complete mainframe box (as depictured in Figure: 2-2) is by many sim-

ply called a “system”, but also very confusingly referred to as “processor”, a

“CPU”, or a “CEC” (Central Electronic Complex).

Figure: 2-2 Inside IBM z9-109 (S38 or S54) / System z9 EC. [20] The box measures

1,94 x 1,57 x 1,57m (H x W x D) including covers, and thereby occupy 2,49m
2
.

8 Chapter 2 - The IBM Mainframe

2.2.2 Processors and computation
 The IBM System z9 mainframes operate with several types of processors/

CPUs. Physically there are all alike, but IBM configures or “characterizes”

them for a specific purpose.

Processor units: PUs
 The un-characterized processors are called PUs (Processor Units). PUs are

basically physically available but not enabled processors, which function as

spares. These spares can replace failing processors transparently [36].

Central Processors: CPs
 Central processors (CPs) are the fully capable (and most expensive) proc-

essors. They run all operating systems (including z/OS) and application soft-

ware.

SAPs and ICF
 System Assistance Processors (SAPs) functions as a part of I/O subsystem.

These processors execute LIC (Licensed Internal Code), which technically

incorrect is known as microcode or firmware. Similar Integrated Coupling

Facility (ICF) processors also run LIC. ICFs provide memory and assist co-

ordinating work when multiple mainframe systems co-operate in a so-called

Parallel Sysplex. These “support processors” are undetectable for operating

systems and applications.

IFLs, zAAPs and zIIPs
 Integrated Facility for Linux (IFL), z Application Assist Proces-

sors (zAAPs), and Integrated Information Processor (zIIP) are CPs

which have a few functions or instructions disabled by microcode. Hence they

cannot run z/OS, but they are suitable for Linux, Java (also under z/OS), and

eligible z/OS workloads (e.g. DB2) respectively. These processors are basi-

cally used to control and differentiate software costs. Substantial amount of

money can be saved using these processors, and the IFLs partly explain the

success of Linux on the mainframe. [57][35]

2.2.2.1 Capacity on demand, computation capabilities

 The mainframe system allows for different forms of “Capacity on De-

mand”. Additional processor can for instance be enabled on the run for a

limited period of time to handle unexpected peak loads. On the other hand

CPs can be “kneecapped” to operate at lower speeds in order to reduce soft-

ware costs.

 Notice that mainframe processors are no more capable than processors in

more typical architectures. They stand out at some kinds of workloads but

they fall behind at others. The strength is that they typically run at 90% utili-

zation or more around the clock – mainframe systems can handle 100% utili-

zation without problems (using prioritized queuing). Furthermore the work

mainframe processors actually do is concentrated on core applications and

OS execution. This is amongst other things achieved by letting help proces-

2.2 Hardware and Architecture 9

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

sors prepare and feed I/O and let specialized processor handle cryptography

computation. [44]

 With very large caches, huge memory sizes, hardware support for fast con-

text switches and massive concurrent I/O capacity mainframes work well for

typical “wide” business workloads (including transaction processing and large

database management). Mainframes are in other words not for single task

computation like weather modelling, protein folding, or rendering of 3D mov-

ies. These tasks are left to supercomputers and grid computing. [44]

2.2.2.2 Cryptographic Facility

 The integrated cryptographic facility (CF) is an extension working as an

integral part of a CPU. The CF “provides a number of instructions to protect

data privacy, to support message authentication and personal identification,

and to facilitate key management. The high-performance cipher capability of

the facility is designed for financial-transaction and bulk-encryption envi-

ronments, and it complies with the Data Encryption Standard (DES).” cita-

tion from [11].

2.2.3 Books, n-way systems
 Newer mainframes are organized in “multi-book” setups supporting one

to four books. Each book contains a MCM (Multiple Chip Module) with up

to 12 or 16 of the above mentioned processors and up to 128GB memory. The

books are interconnected with a super-fast bi-directional redundant ring

structure, which allows the system to operate as a symmetrical, memory co-

herent, multiprocessor [36]. Then a z9 EC is equipped with multiple books, it

is possible to remove and reinstall a single book during an upgrade or repair

while the system is running. [57]

 Mainframes are often referred to as “n-way” systems. The n refer to the

number of processors (CP/IFL/ICF/zAAP) not counting the SAPs (the ones

supporting the I/O subsystem). Currently the maximum is a 54-way system,

since such a system comes with 8 SAPs:

 54 processors + 8 SAPs = 4 books ⋅ 16 processors = 64

2.2.4 Storage (memory)
 The terms “central storage”, “processor storage”, and formerly “real

storage” are used for memory, the kind best comparable to RAM (Random

Access Memory) on PCs. That is, the kind of memory a processor can access

synchronously within an instruction.

 “Auxiliary storage” or “paging storage” is physical storage external to

the mainframe (disks, tapes). This type of storage is accessed asynchronously

through an I/O request. This temporarily frees the processor to perform other

task (rescheduling).

 Data are moved between central and auxiliary storage by paging and

swapping. This allows for virtual storage, where all users and separately run-

10 Chapter 2 - The IBM Mainframe

ning programs are assigned a unique address space, which in principle can as

large as the architecture allows (64bits). Memory handling like this happens

in the OS (operating system) layer.

2.2.5 Support element and HMC
 Inside the mainframe box you find two IBM Thinkpad laptop computers.

One constitutes the “Support Element” (SE) – the other one is failover

component for the first. A Support Element provides communication, moni-

toring and diagnostic functions to the system.

 Normally the SE is connected to a “Hardware Management Console”,

a desktop PC residing in more convenient surroundings than the data center.

The HMC (or SE) can be used to configure hardware partitioning, and to

monitor and control hardware like the processors.

2.2.6 Input/Output: Channels, channel subsystem
 Figure 2-3 depictures a simplified system I/O configuration of a main-

frame system. I/O-devices like disk drives, tape drives, and communication

interfaces are connected through channels. Channels provide independent

data and control paths between the I/O devices and storage (memory). This

eliminates the need for the processors to communicate directly with I/O de-

vices, which allows for concurrent data and I/O processing [11, p. 13-1].

 In other words, the architecture implements DMA (Direct Memory Trans-

fer) directly in the instruction set and all I/O devices are DMA devices

equipped with advanced controllers to handle actual data transfer. This setup

allows for thousands of I/O devices to be running at full speed without any

noteworthy processor utilization. [75]

 The communication links, which manages the flow of information to or

from I/O devices, are also called “channel paths”. Earlier “parallel-I/O in-

terfaces” were used but these are now replaced by “serial-I/O interfaces”

of ESCON or FICON types. [11, p-. 13-2]

 The channel paths connect to control units, which contain the necessary

logic for the channel subsystem to operate I/O devices in a uniform way. As

illustrated switches between channels and control units can be used. These

switches (or directors) allow sharing of control units and I/O devices

across systems. Today control units, especially for disks, have multiple chan-

nel connections (possibly via a switch) and multiple connections to their de-

vices. This allows for simultaneously data transfers on multiple channels.

 The architectural addressing scheme limits the number of channels or

“Channel Path Identifiers” (CHPIDs) to 256, which has proven inade-

quate on modern systems. To address the I/O requirements newer main-

frames are equipped with Logical Channel SubSystem (LCSS), which

gives four logical channels sets or a total of 1024 channels. A new Physical

Channel ID (PCHID) layer has been invoked to represent the physical loca-

2.2 Hardware and Architecture 11

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

tion of the I/O ports within the box. CHPIDs are then mapped to PCHIDs

completely transparent to running programs (see “Channel I/O SubSystem”

in Figure 2-3). [36]

Figure 2-3: Simplicifed I/O configuration. I/O devices controlled by “Control units”,

which are connected using FICON or ESCON channels (possibly through a switch or

“director”). Physical Channel IDs are mapped transparently to the CHannel Path

IDentifiers, which provides the data path from OS perspective.

 Channels (and the connected control units and devices) can be shared

between logical partitions / LPARs, which are self-contained and completely

separated subsets of the machine running independent operating system (see

section 2.2.7 below). Sharing of channels within an LCSS is enabled by the

Multiple Image Facility (MIF). Channels can also be spanned across

multiple LCSSs and thereby transparently be shared among the logical parti-

tions within these LCSSs. This will however decrease the total number of

channels. [36]

 Within channels you, figuratively speaking, find subchannels. Subchan-

nels are in-storage (in-memory) control blocks controlled/used by hardware

representing I/O devices. A subchannel is provided for and dedicated to each

I/O device accessible to the channel subsystem. They contain information

about the I/O device connection, I/O operations and other associated func-

tions concerning the device. This information is accessible for the CPUs by

I/O instructions. [11]. Subchannels and used by the operating systems to pass

I/O requests to the channel subsystem [36].

 The architecture uses 16 bit sub channels addressing. Some sub channels

are reserved for system use leaving 65,280 sub channels (per LCSS) for I/O

devices on System z9 EC. [36]

12 Chapter 2 - The IBM Mainframe

2.2.7 PR/SM, LPARs and its configuration
 Mainframes have a native hardware mechanism called PR/SM (Proces-

sor Resource/System Manager), which is used to divide the hardware

into Logical Partitions (LPARs1). A LPAR is a separate subsets of the real

hardware, capable of running an independent operating system. PR/SM is

capable of sharing some hardware resources and distributing others between

LPARs. PR/SM allows for up to 60 concurrent Logical Partition (as in Figure

2-3). The System z9 EC cannot even run in basic mode but solely runs in

LPAR mode. PR/SM is designed to preserve (near) absolute reliability, which

is considered far more important than fancy new functionally [6].

 In some respects PR/SM can be compared with the hypervisor in virtual

(VM) environments but it is, more accurately, a hardware mechanism that

partitions the hardware rather than a software layer virtualizing it. Figure 2-4

illustrates how PR/SM share or divide the hardware (channels, storage, proc-

essors) into 4 Logical Partitions running z/OS or z/VM as operating systems.

 As mentioned above, channels (and connected devices) can be shared

between LPARs or they can be dedicated to LPARs. Some restrictions exist

depending of the channel and device type. Up to 15 LPARs can be associated

with each Logical Channel SubSystem (LCSS). There are in other words 256

channels (or CHPIDs) to be shared between or individually assigned to the

LPARs in each LCSS group.

Figure 2-4: PR/SM (Processor Resource/System Manager) is the hardware mecha-

nism, which natively split the hardware in self-contained sub-sets called LPARs (logi-

cal partitions). Storage (memory) is divided between LPARs, channels and proces-

sors can be shared or dedicated to LPARs.

 Storage (memory) cannot be shared amongst LPARs. It is in other words

impossible to create a common storage area accessible from multiple Logical

1 According to [64] the correct abbreviation for an individual “Logical Partition” is “LP”. “LPAR”

is “Logical Partitioning”, the “mode” or concept provided by PR/SM to create LPs. The more gen-

eral approach of using LPAR for “logical partition” is adopted throughout this paper.

2.2 Hardware and Architecture 13

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

Partitions. Storage is divided into sections and remapped to location zero by

PR/SM for every LPAR (as illustrated in Figure 2-4). Because the translation

happens in hardware it is impossible for one LPAR to access or compromise

the address space of another LPAR. [6].

 PR/SM has an internal processor dispatcher, which can share real proc-

essors between multiple LPARs. A 1-way system can in principle run operat-

ing systems in several LPARs. It is also possible to dedicate processors to spe-

cific LPARs. A processor assigned to LPARs is called a logical processor.

When using dedicated processors the physical processors are assigned to spe-

cific logical processor and thereby always available for the LPAR. Unused ca-

pacity in is on the other hand wasted. When using shared processors a logical

processor can be dispatched to any physical processor.

 Processing weights are used to divide shared CP capacity according to

overall goals. LPARs with shared CPs can be “capped” to limit CP usage ac-

cording to business goals or reduce impact on other LPARs.

 The processor sharing of PR/SM is bound to result in some amount of

overhead. When a physical processor is assigned from one LPAR to another it

will always involve a context switch: The processor state (including register

values, Program Status Word (PSW), accessible storage range, etc.) has be

stored and restored as part of the process. The mainframe architecture in-

cludes several facilities to minimize this overhead.

 The SIE (Start Interpretive Execution) instruction is probably the

most important of these facilities. It enables fast and secure “context

switches”, when a physical processor is dispatched to another logical proces-

sor. The SIE call provides a control block describing the “state” of the logical

processor (register, etc.) and Dynamic Address Translation (DAT) structures

needed for the switch. The use of SIE is briefly revisited in section 3.7.3

“Running z/VM in z/VM” on page 50.

 All in all a Logical Partition makes up a completely separated mainframe

environment capable of running any mainframe operating system, that is, if

the LPAR configuration meets system requirements. The operating systems

can hardly detect the difference of an LPAR and a “real system”. The z/OS

operating system can however (if allowed) improve performance by dynami-

cally shifting resources between LPARs. In this way z/OS extends PR/SM and

enables sophisticated workload balancing.

 PR/SM has an Evaluation Assurance Level 5 certification - the

highest grade yet given following a “Common Criteria” security evaluation (in

accordance to international standards). EAL5 is probably the best proof

given, that workloads are completely separated and unintended flow of in-

formation between logical partitions is impossible [19]. As of September

2006 the IBM System z, was the only systems with the prestigious assurance

level for partitioning [1], making is acceptable for running concurrent gov-

14 Chapter 2 - The IBM Mainframe

ernmental and/or military workloads, which normally requires physically

separated servers with no connections to other systems.

2.2.7.1 System configuration

 The I/O configuration is specified in IOCDS (the I/O Configuration

Data Set). IOCDS is created by IOCP (I/O Configuration Program),

which runs under z/OS, z/VM, or stand alone on a empty system). IOCDS is

placed on the Support Element hard disks and used on POR (Power On

Reset), where information about the configuration is placed in the Hard-

ware System Area (HSA) to initialize the hardware. HSA is the lower part

of main storage (memory), which contains tables reflecting the current sys-

tem. Figure 2-5 tries to picture this.

 Today most resources can be (re)allocated/(re)configured dynamically

without power-on-reset (POR) or booting / initial-program-load’ing

(IPL) the operating systems. The HCD (Hardware Configuration Defi-

nition) program greatly simplifies this process. With HCD it is possible to

have a single IODF (I/O definition file), which contain all relevant I/O

configuration including data about the Channel SubSystem, logical partitions,

processors, and even external switches, control units and devices. Actually

the same IODF can contain information about several mainframe boxes.

Figure 2-5: Hardware configuration is loaded into the “Hardware System Area” from

the Support Element on Power-On. HCD (possibly the HCM GUI) can be used to

make changes dynamically.

 Very conveniently HCD is capable of validating entered configuration data

for consistency and completeness to avoid many errors. But even more im-

portant, it is capable of dynamically changing the current configuration and

simultaneously updating the IODF. The latter makes is possible to invoke

2.2 Hardware and Architecture 15

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

IOCP, write IOCDS based on the IODF and with that initialize the system on

next Power On Reset. In other words this ensures that dynamic changes are

reactivated after a POR.

 The IODF is an important combined configuration source, since it also

supplies the configuration data, which the z/OS operating systems needs for

device configuration during Initial Program Load (IPL).

 Finally HCD functions as a server interface for the PC based client pro-

gram HCM (Hardware Configuration Manager). HCM has a graphical

user interface, where HCD simply supplies an interactive text based interface.

All configuration changes made in the GUI are still fully validated by HCD to

avoid system outages due to errors. But in addition to the logical aspects of

hardware configuration HCM also manages physical infrastructure aspects

like cabinet and cabling.

[15] [13] [25] [4]

2.2.8 Hard drives: Direct Access Storage Devices
 In mainframe terminology a hard drive is a DASD (Direct Assess Stor-

age Device). Besides DASD the terms “disk volume”, simply “volume”,

“disk pack“, and “Head Disk Assembly” (HAD) are some times used when re-

ferring to disk drives.

 The conventional DASD storage architecture is ECKD (Extended

Count-Key-Data). ECKD is a refinement of CKD (Count Key Data) opti-

mized for non-synchronous DASD control units. Such disk devices are di-

vided into cylinders, which contains tracks. (Historically a single magnetic

read/write head could access one track on a disk plate per revolution. As disk

plates where “stacked” it was possible to read/write several tracks/plates at

once. The tracks concurrently accessible without repositioning the access

mechanism make up a cylinder). The tracks contain variable length record

each containing a count field (cylinder number, head number, record num-

ber, length of data); typically a key field (search argument); which is following

by the actual data.

 The ECKD DASD category covers a variety of different physical medias.

The IBM 3390 disk and the 3990 control unit are the most used disk de-

vices today. The first models were released in the late 1980s. Newer models

with higher capacities with named “3390 model (3, 9, 27)” have been intro-

duced later.

 Today real physical 3390 disk and 3990 control units are outdated and re-

placed by large storage servers actually emulating the old technology to main-

tain backward compatibility. DASD devices (emulated or not) are connected

to the mainframe using the typical I/O setup: though a control unit attached

to one or more I/O channels using ESCON or FICON connections. The con-

trol unit can be an integrated part of the storage server. Such a setup is illus-

trated bottom right in Figure 2-3 on page 11. [23]

16 Chapter 2 - The IBM Mainframe

 Enterprise Storage servers typically use multiple high-end RISC proces-

sors to handle control unit and device emulation. They are equipped with

considerable cache memories (in the order of 8 to 32GB). Naturally new

hardware functions have been introduces over the years to boost perform-

ance. On the software side these functions are introduced as OS extensions,

which ensure that new technologies are exploited by old applications and

backwards compatibility is maintained.

 In the world of z/VM virtualization and Linux, industry standard SCSI

devices in a Storage Area Networks (SAN) have also been introduced.

The disks are connected via SCSI over FCP (Small Computer System Inter-

face over Fibre Channel Protocol).

 These DASD utilize another data storage architecture called FBA (Fixed

Block Architecture), which is quite different from ECKD. FBA stores data

in fix-length blocks (512 byte). Blocks are addressed/accessed using block

numbers, which simply are assigned consecutively from the beginning to the

end of the disk.

[59] [57] [66][8]

2.2.9 Network connectivity & Hypersockets
 Mainframes connect to industry standard LAN networks using OSA

(Open System Adapter) technology. System z9 EC features OSA-Express

and OSA-Express-2 supporting e.g. 10 Gigabit Ethernet, 10 Gigabit Ethernet

and 1000BASE-T Ethernet (10/100/1000 Mbps). [79]

 Open System Adapters (OSA) is basically an advanced Network Interface

Card, connected via channels like other I/O devices. A separate channel and

CHPID exist for every connection to the “open world” (for example for each

Gigabit Ethernet port). An Open System Adapter may be shared between sev-

eral LPARs (and VM guest). [59]

 (Most) OSAs can run in two modes: QDIO and non-QDIO. “Queued Direct

Input/Output” is very efficient mechanism to transfer data. Special memory

queues and a signalling protocol are used to directly exchange data between

the OSA-Express microprocessor and TCP/IP stacks in the operating systems.

It basically bypasses the normal Channel I/O subsystem and thereby reduces

system overhead and SAP (System Assist Processor) utilization in particular.

Non-QDIO basically uses the normal I/O path (control unit, channels, SAPs).

[59]

 The OSA technology generally provides many functions to offload the sys-

tem (TCP/IP stack in OS; processors and I/O SubSystem). In Layer 3 mode

the QDIO microcode can offload the TCP/IP stack for IP processing of: multi-

cast support, broadband filtering, building MAC and LLC headers; and ARP

processing. Similar can TCP/UDP and IP checksum calculation be handled by

OSA Express hardware on behalf of the TCP/IP stack in Linux and z/OS.

2.2 Hardware and Architecture 17

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 Hypersocket technology provides fast TCP/IP communications between

the logical partitions and virtualized environments on a mainframe box con-

necting them by internal “virtual LANs”. The communication runs though

the system memory minimizing latencies and maximizing bandwidth. Each

HyperSockets LAN occupies a Channel Path ID (CHPID). [79]

 HiperSockets are implemented in microcode (Licensed Internal Code,

LIC) and emulates the Logical Link Control (LLC) layer of an OSA-Express

QDIO interface. Because of this relationship, HiperSockets are sometimes re-

ferred to as internal QDIO (iQDIO). [78]

2.2.10 Terminals, TN3270
 “Dumb terminals” or “green screens” have characterized mainframe

usage from the beginning of the mainframe era. The original terminals had

just enough computing power to fetch and display a full screen of text, and

more important receive “whole screens” of user input, allowing the user to

input multiple values before communicating with the server, thus saving

processor cycles.

 These terminal principles are still used heavily today - “3270” is still the

primary user interface. For many years the dedicated hardware terminals

have been replaced by terminal emulators for instance running under Win-

dows. The protocol used today is TN3270, which is a blend of telnet and the

3270 terminal protocol. TN3270 took over as TCP/IPs became popular.

2.2.11 Other technologies
 Mainframe systems include many other technologies, which distance them

from other servers. This includes different “clustering technologies”, which

enables high availability.

 CTC rings are relatively simple clustering technique connecting multiple

systems or logical partitions using channel-to-channel (CTC) communication

(connection between two CHPIDs). The CTC-ring can be used to exchange

control information like usage and locking info on shared disk systems. Simi-

larly the CTC ring can be used to share job queues and security information.

 Parallel Sysplex is a more capable clustering technique. It depends on

the mentioned ICF processors (Integrated Coupling Facility) to create Cou-

pling Facilities. Independent mainframe boxes or logical partitions (LPARs)

can be used for CFs. They normally have a large memory and mainly provide

locking information to the attached systems, cache information and data lists.

Multiple boxes in a sysplex appear as a single large system.

 Geographically Dispersed Parallel Sysplex (GDPS): Is a kind of ex-

tension of the parallel sysplex for multi site enterprises. It primary provides

disaster recovery and continuous availability solution. Critical data is mir-

rored and workloads are efficiently balanced between sites. GDPS uses auto-

18 Chapter 2 - The IBM Mainframe

mation and Parallel Sysplex technology to help manage multi-site databases,

processors, network resources and storage subsystem mirroring.

2.3 Operating systems
 A handful of operating systems dominate in the mainframe world, each

system with different purposes and characteristics. The two operating sys-

tems of particular interest in this context, z/VM and Linux for zSeries, are de-

scribed in chapter 3 and 4 respectively. The following shortly introduces the

other main players.

z/OS
 z/OS is the most widely used mainframe operating system of all. It is de-

signed with special consideration to stability, security and continuous avail-

ability to an extent, which makes other operating systems pale by compari-

son. It has its origin in OS/360, which over time has evolved and been know

as OS/390 and MVS (Multiple Virtual Storage, in several versions).

 Today z/OS supports UNIX APIs and applications; it runs Java and com-

municates via TCP/IP and the web.

z/VSE
 “Virtual Storage Extended” is typically used on smaller mainframes. The

z/VSE OS provides a smaller and simpler base for batch and transaction

processing than z/OS. According to IBM “z/VSE is excellent for running rou-

tine production workloads consisting of multiple batch jobs (running in par-

allel) and extensive, traditional transaction processing”.

 z/VSE has its origin in DOS/360 (Disk Operating System), the first disk-

based operating system for System/360. Its simplicity and small size has kept

it alive, although it originally was a temporary measure until OS/360 was fin-

ished. It developed into DOS/VS (virtual storage), VSE/SP, VSE/ESA, and

then finally z/VSE.

z/TPF
 z/TPF or “z/Transaction Processing Facility” is a special-purpose system

for very high transaction volumes. It is used by credit card companies and

airline reservation systems. It was formerly known as Airline Control Pro-

gram (ACP). It loosely couples multiple mainframes to handle thousands of

transactions per second running uninterrupted for years.

[57]

3.1 Presentation 19

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

3. IBM Z/VM

3.1 Presentation
 z/VM is an mainframe operating system, which has the capability to cre-

ate hundreds or potentially thousands of virtual mainframes (virtual ma-

chines, VMs) inside a single mainframe (actually inside a logical partition).

Each virtual machine supports the full architectural instruction set and is in

principle capable of running any mainframe operating system. Actually z/VM

is even able to simulate instructions and thereby offer a system architecture,

which in reality is unsupported by the actual hardware.

 The basic concept behind z/VM is different from the LPAR concepts of

PR/SM although many similarities do exist. The flexibility of z/VM is much

higher: New virtual machines can e.g. be defined and IPL’ed (Initial Program

Loaded, “booted”) without problem on a running system. There is in principle

no limit on the number of virtual machines whereas the current maximum of

LPARs is 60. The abilities and performance of the individual virtual machines

naturally depend on the actual hardware and resources, which z/VM is as-

signed to share transparently between them.

 z/VM has many purposes: It can be used to test new operating system re-

leases in a controlled environment. It can be used to install and test program

fixes concurrent with production running. It can in principle contain a com-

plete disaster recovery environment for big complex mainframe setup includ-

ing simulation of coupling facilities in a parallel sysplex configuration. It pro-

vides a simple single user operating system (called CMS), which can handle

thousands of current users, e.g. allowing them to develop and run their own

programs.

 Lately z/VM has endured a renaissance providing the perfect platform

Linux on zSeries. This enables large server consolidating project and big sav-

ing in TSO (Total Cost of Ownership) according to the advocates of the envi-

ronment.

3.2 History
 The first product in the z/VM product line (Figure 3-1) was “Virtual Ma-

chine Facility/370” or “VM/370”, which was shipped in 1972. The committed

users and supporters of z/VM have recently (August 2007) celebrated the op-

erating systems 35th anniversary. “VM” has a long and fascinating history

specially caused by its somewhat troublesome childhood, where it lived on

the very edge of the computer technology development.

 VM/370 was based on CP-67 and CMS, which again was based on CP-40:

a system conceived in 1964. CP-40 was strongly influenced by CTSS, the

Compatible Time-Sharing System. CTSS pioneered general purpose time-

20 Chapter 3 - IBM z/VM

sharing systems in the early 1960s and also constituted basis for MULTICS.

[55]

 The birth and development of “VM” was highly influenced by IBM’s deci-

sion not to include hardware for dynamic address translation in System/360

to enable virtual memory capabilities. This led the MIT time-sharing project

“MAC” to turn to GE (General Electrics) for development of MULTICS. Simi-

lar Bell Labs found another vendor to begin the system, which was to become

UNIX.

V5R1

V5R2

V5R3

09'04 12'05 06'07

z/VM

Figure 3-1: The evolution of VM (graphic from [16] modified according to [46]).

 As a result the people at “Cambridge Scientific Center” (CSC), which were

supposed to be the centre of IBM’s time-sharing activities at MIT, had noth-

ing to do. The people at CSC decided to create their own time-sharing system

for System/360, which turned into CP-40 and CMS “the conceptual elements

of z/VM.

 IBM discovered the significance of loosing the “MAC” project in regards to

time-sharing-system. They decided to equip the following S/360-67 with ad-

dress translation and developed software called “TSS” (Time Sharing Sys-

tem). TSS was later abandoned before initial stability and performance prob-

lems were solved.

 The CP/CMS project miraculously survived in spite of IBM unwillingness.

This was a result of a complex interplay of factors including ingenious fund-

ing strategies and the system having functionally of no other system.

 The history of z/VM could constitute a study of its own. In this context it

should basically be noticed that z/VM is a highly mature product and its per-

formance and stability is a result of 35 years of continuous use and develop-

3.3 Virtualization concepts and principles 21

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

ment. The CP-40 work and principles were ground-breaking and defined the

concepts behind newer virtualization environments like VMWare and Micro-

soft Virtual Server.

[55][74]

3.3 Virtualization concepts and principles
 Virtualization is a broad term covering many different concepts and tech-

niques. Virtualization is, in general terms, the ability to abstract computer re-

sources into logical or virtual resources and/or computing environments.

 Virtualization covers any technique, which can be archieved using re-

source sharing, resource aggregation, emulation, and insulation. Resource

sharing is the ability to create multiple virtual resources based on a physical

resource e.g. by partitioning or time sharing. Resource aggregation is abil-

ity to combine multiple physical resources into fewer virtual resources. With

emulation available physical resources are used to imitate or simulate re-

source types and features, which are physically unavailable. The last corner-

stone of virtualization is insulation: the ability to segregate resources

and/or environments and render it impossible for them to influence each

other.

 Together these four fundamental capabilities enable many kinds of virtu-

alization. The area of resource virtualization covers for example several

techniques, which are not immediately associated with virtualization:

• Combining disk into large logical disks (RAID and Volume managers)

• Combining multiple discrete computer into a whole (grids, clusters)

• Creating virtual networks within another network (VLAN, VPN).

[66] [45]

3.3.1 System virtualization: creating virtual machines
 In this context the focus is on “system virtualization” or “platform virtual-

ization” – the ability to create multiple “virtual machines”, which in every de-

tail architecturally resemble a hardware platform - in this case the main-

frame. It is the ability to transparently share resources without the consum-

ers’ knowledge to archive better resource utilization.

 Two main approaches for system virtualization exist: “Hardware parti-

tioning” and “hypervisor based” technology.

3.3.1.1 Hardware partitioning

 Some computer platforms support “hardware partitioning”. They allow for

the hardware to be partitioned using coarse grained units (whole system

boards, processors, etc.). Each partition runs a separate operating system.

This approach allows for hardware consolidation but lacks the ability to share

22 Chapter 3 - IBM z/VM

resources in order to increase utilization. “Sun Domains” and “HP nParti-

tions” are examples of this technique. [21][66][34]

3.3.1.2 Hypervisor based partitioning

 Virtualization by “hypervisors”, on the other hand, allow for fine-grained,

and dynamic sharing of resources. A hypervisor constitutes a shallow soft-

ware layer (possibly within firmware) used to create and control virtual ma-

chines. Hypervisors are also called “Virtual Machine Monitors” (VMM)

[69][77]. Generally two main types of hypervisors exist.

 Type 1 hypervisors run directly on system hardware or in system hard-

ware as firmware / millicode / microcode. When running on hardware they

act as a low level operating system creating “virtual machines” for other oper-

ating systems. The principle is illustrated in Figure 3-2, page 22. Type 1 ex-

amples include WMware ESX Server, Xen, z/VM, and the earlier mentioned

“PR/SM” (hardware implemented). [21]

Figure 3-2: Hypervisor based system virtualization: Type 1 hypervisor (left) and Type

2 hypervisor (right). Notice basic virtualization terminology.

 Type 2 hypervisors run inside an operating system as any other appli-

cation program. The virtual machines running guest operating systems

live inside the application (see Figure 3-2). Type 2 hypervisors are also known

as “hosted” hypervisors [66]. The operating system hosting the hypervisor

provides the basic services like I/O device support and memory management.

Type 2 examples include “Microsoft Virtual Server”, “VMware GSX Server”,

and “Win4Lin”. [21] [66]

3.3.2 Variant types of hypervisor based virtualization
 Distinguishing Type 1 and Type 2 hypervisors does however not suffice,

when characterising hypervisor technologies. Multiple techniques are used

within each of these main categories. The differences arise from varying levels

of virtualization support within hardware and from varying levels of interac-

tion between hypervisor and guest operating system. The following sections

present important hypervisor techniques, but first a few low level computa-

tion fundamentals are recapped.

3.3 Virtualization concepts and principles 23

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 Multitasking operating systems run multiple processes and shield them

from each other. To ensure the operative system remains in control CPUs

typically supports two modes of operation: unprivileged (or user) mode

and privileged (kernel or supervisor) mode. Only the operating system

running in privileged mode is allowed to run privileged instructions,

which are instructions that can change the overall state of the system.

 When an unprivileged (no OS) process executes a privileged instruction it

causes a trap (an exception), which forces the CPU back into the operating

system code. The operating system handles the situation (in privileged CPU

mode) and returns control to application process afterwards. There are other

situations, which drive a CPU from user mode to kernel mode: for instance

(timer) interrupts and page faults.

 Under normal conditions privileged instructions are avoided in applica-

tions programs. Instead they depend on syscalls (operating system func-

tions), which deliberately switches into kernel mode and handles the oper-

ating in a more efficient manner avoiding traps.

[71]

Trap and Emulate
 “Trap and emulate” is the basic virtualization method, which was used by

mainframes in the 1960s and 1970s for instance by z/VM predecessor

VM/370. The hypervisor runs in privileged mode while the guest operating

systems within the virtual machines run in user mode. When a guest operat-

ing system issues a privileged operation (e.g. an I/O operation) it is trapped

and handled by the hypervisor. The hypervisor emulates or simulates the op-

eration, which opens for resource sharing and for taking other virtual ma-

chines into consideration.

 This method does allow for running completely unmodified guest operat-

ing system. Unfortunately it also introduces a substantial overhead attributed

to both traps and emulation. Examples of use: CP-67 and VM/370.

 This method cannot be used on all architectures. It is vital that all privi-

leged operations trap into kernel mode in order for the hypervisor to emulate

a trustworthy virtual machine. Traditional x86 processors have several in-

structions, which simply behave differently according to the mode of opera-

tion. For example an instruction exist, which simply tell the actual mode of

operating. Since no trap occur it is impossible for the hypervisor to fake an

answer of privileged mode, which the guest operating system would expect.

[71] [66]

Translate, trap, and emulate
 The second method is almost identical to the “trap and emulate” method

above. This method incorporates an extra translation step, which replaces

privileged operations within the guest’s binary OS kernel code with special

24 Chapter 3 - IBM z/VM

“explicit trap operations”. This technique is also knows as binary trans-

lation.

 User mode applications program within the guest operating system still

run natively in unprivileged CPU mode. The kernel code of the guest operat-

ing system is however split into basic blocks (blocks of consecutive instruc-

tions separated by flow control instruction like branch, jump or return). Be-

fore execution these basic blocks are examined for privileged operations and

if such are found they are replaced with specific hypervisor calls.

 The hypervisors using this technique reduce the overhead combining

“safe” basic blocks into larger blocks and then reuse already “translated”

code. In some situations this approach is actually faster than “trapping”. As

an example the earlier mentioned instruction, which is used to determine the

current CPU operation mode, can simply be substituted by an instruction,

which loads a constant corresponding to “privileged mode”. Over time this is

certainly faster than “trapping” and emulating the instruction within the hy-

pervisor.

 This method resolves in other words the “missing trap problems” of the

x86 platform. “Translate, trap, and emulate” is therefore the technique be-

hind VMware and Microsoft Virtual Server, which runs on the x86 platform.

[71] [66]

3.3.2.1 Paravirtualization (Hypervisor call method)

 Sometimes a hypervisor creates virtual machines with an architecture,

which differs slightly from the physical machine architecture. As a conse-

quence parts of the operating system running in such a virtual machine have

to be rewritten to run in the special virtual environment. The changes typi-

cally include explicit hypervisor calls for I/O and memory management.

This kind of virtualization is known as paravirtualization.

 In other words, special code segments, which explicitly call the hypervisor

functions, are introduced to the source code of the guest operating system.

This allows for better optimization of the interaction between hypervisor and

guest. The operating system becomes aware of the virtual environment.

Therefore this virtualization strategy improves scalability; it reduces system

complexity, and allows for high efficiency. Unfortunately this method cannot

be applied to proprietary operating systems, if the vendor chooses not to sup-

port the virtualization platform.

 The method was already applied in VM/370 and it is still used in z/VM to-

day. A newer example is Xen, which among other operating system runs

Linux, OpenBSD, FreeBSD, and OpenSolaris.

[66][77]

3.4 Main z/VM components and functionality 25

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

3.3.2.2 Direct Hardware Support

 The last hypervisor variant to be mentioned here is relies on direct virtual-

ization support in hardware. In this case the architecture includes special in-

struction and hardware constructs to run virtual machines very efficiently.

 This can for example include a special “guest” CPU mode. In this mode the

guest operating system can run most instructions (including many privi-

leged). The hardware assists when processors are dispatches to virtual proc-

essors and when execution is handed back to the hypervisor. This can also

provide the hypervisor with better measures to accommodate the conditions,

which causes exceptions and hand back control to the hypervisor.

 Other examples of virtualization mechanism in hardware include the abil-

ity to route I/O interrupts directly to the guests; optimizations for multiple

levels of virtual memory (multiple levels of dynamic address translation); and

hardware measures to keep the hypervisor immune for critical errors (includ-

ing I/O related errors) within the guest.

 The mainframe is the classical example having provided hardware “assist”

since the “370 days”. z/VM (and PR/SM) utilizes all these capabilities. The

last few years of increased focus on virtualization have also made Intel and

AMD integrate (incompatible) virtualization technology in newer x86 chip-

sets and processors.

[65][66][48]

3.4 Main z/VM components and functionality
 To summarize: z/VM is an operating system, which enables system or

platform virtualization. It shares physical mainframe resources and abstracts

them into virtual machines, each capable of running an independent operat-

ing system. z/VM runs directly on the hardware and is therefore a type 1 hy-

pervisor. It exploits both paravirtualization and direct hardware virtualiza-

tion support to enable efficient virtualization; later topics will expand on this.

The following sections introduce the main components and features of z/VM.

3.4.1 CP - the control program
 The absolute cornerstone of the z/VM OS is called “CP” – the Control Pro-

gram. CP is the hypervisor or VMM (Virtual Machine Monitor) of z/VM. CP

is responsible for creating and managing virtual machines, for allocating re-

sources to virtual machines or sharing resources between them.

 CP contains different sub systems or components, which allow for it to

function as a hypervisor. It contains for example a scheduler and a dispatcher

component, which enable processor sharing. The paging sub system allows

for over commitment of main storage by migrating memory pages to and

from extended storage and disk. CP also contains measures, which can enable

communication between virtual machines. Another vital part of CP is the

login screen, which typically is the first screen you meet, before being able to

26 Chapter 3 - IBM z/VM

utilize the system directly (opposite utilizing the system “indirectly” e.g. by

accessing a virtual machine running Linux via SSH). Most of these topics will

be revisited later.

 Although CP constitutes the operating system part of z/VM, it should be

noticed that CP first of all is a “virtual machine handler”. It is not a full

fledged operating system like Linux, Windows Vista, or even MSDOS. It has

no file system functionality (for ordinary use) and no convenient methods for

loading and running programs. z/VM does supply such facilities though CMS,

but CP is simply a resource manager. [66]

 CP provides a 3270 console interface to manage virtual machines and re-

sources. This interface can for example be used to dynamically attach or de-

tach resources to running virtual machines. It can also be used to enquire CP

for information about the system and virtual machines. Queries are issued

within virtual machines. CP commands can be entered directly, when the vir-

tual machine runs in CP mode - without an operating system (Figure 3-3).

CP commands can also be issued directly from CMS (the single user operating

system within z/VM) and actually from within any guest operating system by

prefixing the command with #CP.

Figure 3-3: Virtual machine running in CP-mode (without operating system). CP re-

sponds to basic enquiries about the actual virtual machine and the running system.

3.4.2 CMS - Conversational Monitor System
 The second primary component of z/VM is the “Conversational Moni-

tor System” or simply CMS. It is a single user operating system, which func-

tions as a shell/console interface to z/VM. CMS is the default operating sys-

tem developed and optimized to live inside the virtual machines provided by

CP. It depends on paravirtualization techniques (special hypervisor calls) to

an extent where is has become incapable of running natively – without CP

(see section 3.7.1 “Hypervisor calls, Diagnose instructions” on page 47).

3.4 Main z/VM components and functionality 27

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

CMS OS

User/VM/

guest:

“maint”

CMS OS

User/VM/

guest:

“perfsvm”

Linux OS

User/VM/

guest:

“Lin001”

Linux OS

User/VM/

guest:

“Lin002”

z/OS OS

User/VM/

guest:

“zos1”

z/VSE OS

User/VM/

guest:

“zvse1”
VMs

Virtual HW Virtual HW Virtual HW Virtual HW Virtual HW Virtual HW

z/VM operating system – CP (Control Program) - Hypervisor

Hardware Layer (typically LPAR)

Figure 3-4: CMS is a small operating system intended to serve a single person per in-

stance. It is provided as an integral part of z/VM and runs in a virtual machine like

other guest operating systems like Linux, z/OS and z/VSE. The virtual hardware is

depictured a little different to illustrate that CMS are dependent of special instructions

(hypervisor calls) provided by CP.

 CMS is intended to facilitate the virtual machine administration and con-

figuration tasks within z/VM. But it is much more than an administration and

configuration tool. It is designed to provide a large number of users with an

interactive interface and the ability to do a variety of different task. CMS sup-

plies an Application Programming Interface (API) and with that basis

for program development and execution. Many programming language envi-

ronments are supported (not all by default): Ada, Assembler, C, C++, COBOL,

FORTRAN, Pascal, PL/I, and REXX. [7]

 The native user interface of CMS is naturally a 3270 console. The console

interface itself appears in several disguises. The most basic interface consti-

tutes a simple command line interface (Figure 3-5). Some CMS programs and

tools provide more interactive or “menu driven” interfaces. CMS shell itself

can also run in Full Screen Mode, which enables scroll back functionality, a

status area, and more intuitive use of functions keys.

 CMS includes many “programs” / “tools” / “commands” for solving rou-

tine tasks. These include the XEDIT file editor to create, modify, or manipu-

late CMS files; FILELIST to mange files; and HELP the z/VM Help Facility,

which provides command syntaxes, task oriented guides and a glossary

among many other functions.

28 Chapter 3 - IBM z/VM

Figure 3-5: Virtual machine running CMS – the single user operating system within

z/VM. CMS responds to enquiries about available disks, accessible disks, the content

of default disk A and content of a specific file.

 CMS is also capable of running job in batch mode. It can be used to share

data between CMS users and other systems. Not to mention the facilities to

communicate with other system users.

[66]

3.4.2.1 CMS file system

 Being an actual operating system in contrary to CP, CMS has file system

support. All CMS files are record-oriented: The file management routines al-

ways write files in fixed physical blocks. This is done regardless whether it is

fixed- or variable-length records. Fortunately is rarely necessary to specify ei-

ther logical record length+record format or block size when creating a CMS

file.

 CMS files are stored on minidisk (virtual device representing a section of a

real DASD) or within Shared File System (SFS). A minidisk is a flat struc-

ture, which holds a number of files. When using the Shared File System

files are stored in a file pool, which typically is a large amount of DASD space,

which contains files for many users. A user needs to be enrolled in a file pool

to be able to use it. In contrast to minidisks, SFS supports a hierarchical

structure, where files are stored in directories or sub directories like most

other file systems.

 Files are named using a file identifier (file ID), which consist of three

parts: 1) File Name “fn”, 2) File Type “ft”, and 3) File Mode “fm” or Directory

3.4 Main z/VM components and functionality 29

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

Name “dirname”. Both File Name and File Type can be one to eight charac-

ters long, and basically correspond to filename and extension in more other

operating systems. The third part, “File Mode”, actually represents the place

(the disk) where the file is stored, since mini disks are made available to CMS

by assigning them a “File Mode” character. In some degree File Mode resem-

bles a dynamic version of the drive letters in Microsoft Windows and MSDOS.

[7] [66]

3.4.2.2 Byte File System, BFS

 CMS has a POSIX support option called “z/VM OpenExtensions”, which

includes another file system “Byte File System” (BFS) using another type of

files: BFS files. Similar to the UNIX operating system, BFS files are also or-

ganized in a hierarchical structure made up by directories. BFS files are byte-

oriented, rather than record-oriented. It is possible to copy BFS to CMS re-

cord files and vice versa. [66]

3.4.2.3 CMS as Boot Loader

 Another frequent use of CMS is as an advanced boot loader. It helps load-

ing the actual operating system; as LILO or GRUB often is used to load Linux

on personal computers. E.g. when Linux runs under z/VM, CMS is often used

to prepare a virtual disk (“RAMDISK”) to be used as Linux swap disk, before

the Linux OS is started. When the actual operating system is loaded it re-

places CMS, since two operating systems cannot coexist side by side. [66]

3.4.3 Users and their privileges
 As mentioned earlier z/VM was originally developed to provide a high

number of users (as in persons and individuals) with a virtual environment,

which was architectural equivalent to a real computer system. A virtual ma-

chine is therefore a user in z/VM terminology. The terms “user”, “guest”

and “virtual machine” is therefore used interchangeably.

 The consequence is that there is no conceptual difference between a sys-

tem programmer’s or system administrator’s user (running CMS) and a vir-

tual machine running z/OS or Linux. They are all virtual machines, all z/VM

users, they all defined in the user directory (see section 3.5.2), and they all

“receive” a virtual environment on login.

 The available resources inside the virtual machine might vary a lot: The

system programmer only needs a smaller amount of storage (memory) to run

the CMS operating system, but requires access to CMS disks with system

tools and configuration files. A Linux guest, on the other hand, requires more

storage, a good chunk of disk space, and often access to network devices, but

it has no particular reason to access CMS disks.

3.4.3.1 Privilege classes

 z/VM uses privilege classes to control the individual users capabilities

within the system. A single letter or number is used denote a privilege class.

30 Chapter 3 - IBM z/VM

The letters A to G are defined by default. Class G is used for general users

without any special privileges beyond functionally to control their own VM.

Classes A to F defines certain administrator roles. The class B is for instance

the “System Resource Operator”, which controls all the real resources of the

z/VM system (except those controlled by the system operator and the spool-

ing operator). Users are assigned at least one privilege class but can also be

assigned several.

[27]

3.4.4 Architectural support
 The virtual machines created by CP mimic one of several different archi-

tectures. The operating modes are denoted ESA, XA, and XC.

 “ESA” virtual machines behave exactly like the 31 bit ESA/390 architec-

ture. These machines can furthermore be switched into the newer 64-bit

z/Architecture. This is done by the guest operating system, which issues a

specific instruction doing so. Older systems exploiting ESA/370 architecture

and even older 370-XA systems can in most cases run in ESA/390 mode be-

cause of backwards capability.

 “XA” virtual machines are actually functionally equivalent to the “ESA”

type above. It is supported for compatibility since some CMS applications re-

quire to be running in XA mode.

 “XC” virtual machines behave according to the “Enterprise Systems Archi-

tecture/Extended Configuration” (ESA/XC). This specific architecture is ex-

clusively available in z/VM virtual machines as provided by CP. ESA/XC dif-

fers from the other architectures by providing special services only relevant

for applications inside virtual machines. It allows for virtual machines to cre-

ate and share multiple data spaces. This can be a fast and convenient method

to share data between otherwise isolated VMs. CP itself has to simulate the

architectural differences from the underlying hardware (unsupported instruc-

tions).

[22]

3.4.5 Storage types, Paging Sub System
 The z/VM operating system as such operates with three different types of

storage (memory): main storage, expanded storage and paging space.

 Main storage is chunk of central storage (real memory) made available

for the z/VM operating system by the hardware (potentially virtual hard-

ware). Program execution, data processing and I/O operations are performed

here.

 z/VM uses expanded storage as a fast paging device: A place where

pages (4kb blocks of memory) can be moved, when main storage is full. Ex-

panded storage is only addressable in whole pages, which in return can be

moved efficiently between expanded and main storage. Earlier the expanded

3.4 Main z/VM components and functionality 31

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

storage was dedicated hardware different from main storage. Today it merely

a piece of ordinary central storage assigned to the logical partition as ex-

panded storage.

Paging Space
(DADS)

Expanded storage

Main storage

CPU(s)

 Actually z/VM is the only z/Architecture operating system, which uses ex-

panded storage. This is feasible since it can host guests running in 31-bit ad-

dressing mode, which actually use it. Furthermore the VM paging sub system

has over time been optimized to expanded storage and it therefore generally

performs better when available.

 Paging space is supplied by the DASD paging sub system, which can

move pages to disk. This enables over-commitment of real memory: That is,

too allocate more memory than actually available to the collection of virtual

machines. The trick is to move rarely used memory segments of the virtual

machines to disk and back when eventually called for – this without the guest

ever noticing (except of speed).

[80] [59]

3.4.6 Service Virtual Machines
 As indicated earlier, CP is “only” a hypervisor and not a fully fledged oper-

ating system. CP has no understanding of programs, processes or threads –

basically all CP knows is how to run virtual machines. The consequence is

that any extra functionality has to be implemented as virtual machines.

Figure 3-7: Services like a basic TCP/IP stack, FTP and error recording (EREP) are

provided as Service Virtual Machines, which in fact are no different from other VMs.

 General services relevant for some or all users/guests are therefore im-

plemented as so-called service virtual machines (SVMs). Examples of

Figure 3-6: z/VM operates with three storage

(memory) types. The processors can only

work on data in main storage. Pages can

only be moved between the different areas

via main storage.

32 Chapter 3 - IBM z/VM

SVMs included in z/VM are: “RSCS” for remote spool device support; and

“EREP” for error recording. A whole group of SVMs are related to network

capabilities: First of all “TCPIP”, which provided a basic TCP/IP stack. Also

many services like FTP, SMTP and virtual network switches are provided as

service virtual machines.

 Actually SVMs are completely identical to all other virtual machines on

the system, they just run different software. SVMs might have higher schedul-

ing priority than other virtual machines on the system. This is done to pro-

vide fast processing of low levels services for other guests. But priority boost

could be given any other VM. SVM users are normally declared with the

“SVMstat” option, but this is merely a descriptive flag, which can be used by

monitoring programs etc. to distinguish SVMs from “normal” virtual ma-

chines.

[66][28]

3.4.7 General devices terminology
 It should be clear by now, that the Control Program (CP) assigns resources

to virtual machines. The following lines up the methods and present the re-

lated terminology.

 A real device is typically what the name indicates: An actual physical

hardware device. But from a more general z/VM perspective, real devices

are the devices, which are available by the hardware for the z/VM operating

system and thereby for the virtual machines running within. (In the case

where z/VM runs inside z/VM in a virtual machine, real devices are actually

virtual devices in the outer z/VM.)

 Within z/VM (from CP’s point of view) a real device is identified by its

“real device number” often abbreviated “rdev”. Be aware that RDEV also

denotes a “real device control block”, which is a piece of storage CP asso-

ciates with a real device containing information about that device’s features

and status. Normally CP detects (senses) hardware devices and creates these

control blocks automatically.

 All devices inside virtual machines (made available by CP) are virtual

devices. This applies regardless of whether resources are shared between, or

assigned to distinct virtual machines (dedicated). CP identifies virtual devices

using virtual device numbers (vdev), which are 3-4 digit hexadecimal

numbers. CP handles virtual devices using VDEV control blocks (storage ar-

eas holding device relevant information).

 The term dedicated device is used from two perspectives. 1) Within vir-

tual machines: For virtual a device, to which CP has exclusively allocated a

real device. 2) From CP’s perspective: For a real I/O device that CP has allo-

cated exclusively to a virtual machine.

 The permanent I/O configuration of virtual machines is defined in the

“user directory” (see section 0). Devices can be added, detached, or changed

3.5 Basic maintenance and configuration 33

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

temporary using CP commands. A Temporary device is one that is auto-

matically detached and disappears when the user log off (the virtual machine

is “turned off”).

[31][27]

3.5 Basic maintenance and configuration
 It is out of the scope for this thesis to explain how z/VM is configured,

maintained, operated or administered. It is however appropriate to briefly in-

troduce a few fundamental concepts related to these issues.

3.5.1 Service (maintenance)
 If a z/VM software bug is met, it is reported to IBM creating a problem

management record (PMR). If a fix is needed, IBM creates an authorized

program analysis report (APAR) as formal method to track the problem.

IBM releases a program temporary fix (PTF) to solve the problem (somewhat

similar to Microsoft Windows hotfixes).

 Regularly IBM releases certain “Recommended Service Upgrade” (RSUs)

containing important PTFs to lift the “service level”. These are somewhat

comparable to a “servicepack”. Certain cumulative RSUs, which provide ser-

vice updates for all z/VM components, features and products, are referred to

as stacked RSU [12].

 Installing program updates (or new program) in z/VM is unfortunately

not quite as easy as clicking the “Windows Update” or “up2date” icon within

Microsoft Windows or Linux. z/VM does come with a installation/service

tool, VMSES/E (see “z/VM VMSES/E Introduction and Reference” [18]),

which can be used to installing, migrating, building, deleting, and servicing

software on the system. VMSES/E also provides tools for managing system

software.

 Earlier it was a long procedure with multiple tasks to “service” the system

(refer to “z/VM Service Guide” [17] for details). The procedure is now auto-

mated with the SERVICE and PUT2PROD commands, which makes service

quite easy (see “z/VM: Guide for Automated Installation and Service” [14]).

 Program or SVM specific maintenance information, for example for

“z/VM Performance Toolkit” and the TCPIP Service Virtual Machine, can be

found in the so-called “Program Directory” documents available here:

http://www.vm.ibm.com/progdir/.

3.5.2 Configuration

PARM disk
 Three special minidisks are allocated as “PARM disks”: CMS formatted

disk (exceptionally) readable by CP. z/VM uses one of these disk during “IPL”

(when “booted”) to obtain information on the system definition. The second

and third disk is mainly for backup purposes. These disks includes the sys-

34 Chapter 3 - IBM z/VM

tem config file (see below), the CP nucleus (similar to the Linux kernel)

with by default is called “CPLOAD MODULE”, and the logon screen logo con-

figuration file. The disks are accessible within the virtual machine “MAINT”

as virtual device CF1, CF2, and CF3.

System Config
 The system config file on PARM disk is one of the most important con-

figuration files. It can to some degree be compared with “config.sys” within

MSDOS. It defines among other things the devices, which CP should bring

online on start-up; it includes time zone settings; and it identifies the disks

(DASDs) CP uses for spool, temporary disk, etc.

User Directory
 The user directory is a flat “text file” owned by the MAINT user (vdev

2CC). It contains all user (virtual machine) definitions: Their names, pass-

word, accessible devices, number of virtual CPUs, CPU share, the privilege

class, and many other options. An example of how a user is defined is given

in Figure 3-8. The following section (3.6) touches upon several of USER DI-

RECT statements, which are use to allocate virtual devices.

USER LINX01 PASSWD 512M 1G BG

 INCLUDE LNXDFLT

 OPTION LNKNOPAS APPLMON

 MDISK 0100 3390 0001 7000 VSXL01 MR

 MDISK 0102 3390 7001 2000 VSXL01 MR

 MINIOPT NOMDC

 MDISK 0103 3390 9001 0508 VSXL01 MR

 MDISK 0104 3390 9509 508 VSXL01 MR

 DEDICATE 0408 733C

 DEDICATE 0409 733D

 DEDICATE 040A 733E

PROFILE LNXDFLT

 IPL CMS PARM AUTOCR

 MACHINE ESA

 CPU 00

 CPU 01

 SHARE RELATIVE 100 ABSOLUTE 30% LIMITS

NICDEF 600 TYPE QDIO LAN SYSTEM VSWIT1

 SPOOL 000C 2540 READER *

 SPOOL 000D 2540 PUNCH A

 SPOOL 000E 1403 A

 CONSOLE 009 3215 T LNXCONS

 ...

3390-9 disk

split into minidisks

share of CPU power

Virtual Unit

Record Devices

Network Interface card definition,

provides access to virtual switch

ESA/390 or z/architecture

2 virtual CPUs

No minidisk cache disk above

Privilege Classes

Default and maximal storage (memory)

OSA (network) connection

Always as “triples”

Include general Linux user

options from profile below

Figure 3-8: A section of the USER DIRECtory file. The user (virtual machine), LINX01,

is an example of a Linux guest.

 The DIRECTXA program is used to “compile” the USER DIRECT file into a

file readable by CP. The user configuration is thereby activated. Any changes

made to already running guest are not immediately effectuated but first ap-

plied on next user login.

3.6 Virtual devices: allocations, sharing 35

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

3.6 Virtual devices: allocations, sharing
 Any (virtual) machine can be abstracted (or reduced) into three basic re-

source types: processor/CPU power, storage (memory), and I/O devices

(typically disks and network connectivity). The following sections describe

common z/VM virtual resources; principles of sharing, and the statements in

the USER DIRECT file (see section 3.5.2 above) used for their allocation.

3.6.1 Processors
 The initial number of virtual processors within a virtual machine is given

by the number of CPU statements within the user definition. Virtual proces-

sors can be defined as dedicated and thereby be assigned to a real CPU. It is

thereby taken out of the pool of processor, which CP shares between all the

virtual machines. Processors should only be dedicated to guests, which oper-

ate with CPU utilization greater than 90% for sustained periods of time [30].

The following example shows how to allocate two virtual CPUs with addresses

00 and 01, one of which dedicated to a real CPU:

 CPU 00

 CPU 01 DEDicate

 The number of virtual processors can (to some degree) be changed dy-

namically when a virtual machine is running. The maximum number of vir-

tual processors, which can be activated from within the virtual machine, can

be given as parameter to the machine statement, which otherwise only de-

fines the virtual machine architecture. To set a maximum of 3 virtual CPUs

for a virtual machine in ESA architecture mode:

 MACHINE ESA 3

 To illustrate how this feature can be applied, the following example shows

the command used to activate a processor dynamically (if the maximum limit

allows it) from a running Linux guest (replace “2” with an appropriate value):

 echo "1" > /sys/devices/system/cpu/cpu2/online

 The number of virtual processors within a VM should never exceed the

number of real processors made available for dispatching by CP.

3.6.1.1 Processor shares

 Being able to prioritise users (virtual machines) and to control their con-

sumption of processor resources is an important quality of a hypervisor like

CP. This can be an important factor in order to allow a mixed environment,

where production virtual machines run without being influenced by less im-

portant test VMs.

 CP adjusts the processor dispatching according to overall goals, which are

specified with SHARE statements in the USER DIRECT file (and equivalent

36 Chapter 3 - IBM z/VM

CP commands). Depending on the workload distribution and steadiness, CP

can be expected to satisfy overall goals within a minute.

 The syntax diagram for the SHARE statement is given in Figure 3-9: The

first value (y% or z) denotes the “normal share” or “target minimum share”.

This is the amount of resources, which CP attempts to provide to a virtual

machine as a minimum (if the VM can use of it, “not idle” that is).

 The second value (a% or b) is the so-called “Maximum share”. CP makes

an effort to limit a virtual machine from using more than this amount of proc-

essor resources. If the maximum share is not specified the minimum share is

also the maximum. The max limit can be specified in three ways:

• LIMITHARD: The limit is enforced, the VM does not receive more than

specified; the VM is “capped”.

• LIMITSOFT: The limit only enforced, when other users can use the re-

sources.

• NOLimit: The user is not limited (this is the default; maximum share is

not explicitly stated).

Figure 3-9: Syntax diagram for USER DIRECTory “SHARE” statement, which is used

to control the percentage of processor recourses a user (VM) receives. [28]

 The share values can be specified either as absolute or relative. An abso-

lute value denotes an absolute percentage (0.1% to 100%) of the available

processor resources (dedicated processors excluded). If the sum of absolute

shares exceeds 99%, CP normalizes the values internally: 99% of the proces-

sor resources are proportionally distributed to the guests according to their

absolute share value.

 The relative share value is used to allocate the CPU resources not occu-

pied using by absolute shares. That is minimum 1% of the available CPU re-

sources but typically most of the resources. A relative share is given as an in-

teger from 1 to 10000. CP assigns processor resources proportionally with re-

spect to other virtual machines with relative share: The sum of all relative

shares is calculated and the individual virtual machines are assigned their re-

spective fraction of available resources.

 An example is given in Figure 3-10. The “processing power” of the indi-

vidual virtual processors, which is shown in the example, is given under the

following assumption: All virtual machines are fully loaded and able to oc-

cupy all virtual processor with active processes or threads.

3.6 Virtual devices: allocations, sharing 37

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 The concept of processing power is a fictive concept, which express the

number of machine cycles a real processor is capable of performing in a unit

time normalized too 100. This is in accordance with general mainframe per-

ception, where a real processor is assigned the processing power of 100 (often

100 percent). The four sharable processors in the example yield a total of

Ptot=400. The processing power assigned to individual virtual processors can

thereby been seen as the percentage of what a real processor could do. The

processing power of a virtual processor newer exceeds 100, since a virtual

processor never operate faster than its real counterparts.

 ()

() 5040050.01

15040050.01

20050.0400

300100
100

3

300100
300

2

1

=⋅−⋅=

=⋅−⋅=

=⋅=

+

+

P

P

P

Figure 3-10: Example of processor resources sharing. The four processors available

for sharing by CP have a total computing power of 400 units. VM1 is assigned two vir-

tual processors and an absolute share (a1) of 50%. VM2 is assigned two virtual proc-

essors and a relative share (r2) of 300. Finally VM3 is assigned a relative share (r3) of

100 and given 2 virtual processors; one of which is dedicated and therefore kept out

of the calculation. The computing power of the individual virtual machines, Pi, (dedi-

cated processor excluded) is given in the figure. The computing power of the individ-

ual virtual processors is given inside the representing boxes.

 As indicated, CP distributes the guest’s share of computing power, Pi, be-

tween the virtual processors within the guest. If the second guest in the ex-

ample only uses one of its CPUs, it will only be weighted 150 (half of 300) to

250 (sum of relative shares for active virtual processors) when the remaining

the resources for processors with relative share is distributed. It appears that

it can be quite tricky to foresee the distribution of processor resources in a

more complex (realistic) situation. The following section provides a relatively

simple method, which yields a processing power distribution comparable to

measurable values.

[30][28]

Calculation of Processing Power distribution
 This section presents the use of absolute and relative shares from a more

formal point of view. The processing power of individual virtual machines

38 Chapter 3 - IBM z/VM

and individual virtual processor are determined. Share limits (LIMITSOFT

and LIMITHARD) are not considered. Similarly, the model does not differen-

tiate between normal shares and maximum shares. The results can be ex-

pected to apply, when considering coarse-grained units of time like 1 minute.

And finally, dedicated processors are not incorporated.

 The general system and user configuration is given by the following sym-

bols, which are shown in their respective ranges. Also refer to Figure 3-11.

max max

1 Number of real processors available for sharing.

100 The total amount of processing power available.

0.01 1 The largest fraction of allowed abs. shares (a =99%)

0.01 1 Abs

real

tot real

tot

i

n

P n

a P

a

≤

= ⋅

≤ ≤

≤ ≤ olute share value for guest .

1 10000 Relative share value for guest .

1 1 Number of virtual processors in guest .

i

i

i

r i

n i

≤ ≤

≤ ≤

Figure 3-11: The conceptual z/VM system and user configuration used in the model.

The illustrated example includes four virtual machines, i={1,2,3,4}, and four real proc-

essors for sharing, nreal=4.

 Any virtual processor has a static share or “weight” according to the ac-

tual user configuration and the defined virtual CPUs. This weight can be cal-

culated by dividing the share of the individual virtual machine evenly be-

tween the virtual processors inside it. Absolute and relative weights, Wa and

Wr, are kept separately; for virtual processor j in virtual machine i:

,

,

a i

i j

i

r i

i j

i

a
W

n

r
W

n

=

=

3.6 Virtual devices: allocations, sharing 39

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 Now, CP prioritises the active virtual processors according to their mutual

weight: The priorities are given based on the individual processor’s share

with respect to the shares of all currently active processors. This influences

how often they are dispatched and in the end how much processing power

they receive. CP considers all virtual processors in the dispatch list (see sec-

tion 3.7.2 p. 48) as “active".

 CP does, in other words, not directly calculate the processing power,

which a guest should receive. This is merely results of the dispatching priori-

ties. In other to calculate these values it is therefore necessary to mimic CP’s

behaviour (to some extend).

 First a list, A, of the active virtual processors is maintained. In this simpli-

fied model, all processors, which have something to do in the considered unit

of time, are considered active. The sums of the processor weights for the cor-

responding virtual processors are calculated continuously (as processors are

added or removed from the list):

()

()

()

,

,

,

,

,

a

a i j

VP i j A

r

r i j

VP i j A

A the set of active virtual processors VP i j

S W

S W

∈

∈

=

=

=

∑

∑

 The weights of the currently active virtual processors are normalized to 1,

according to the practise of allocation of absolute and relative shares. If the

sum of absolute weights exceeds amax (99% of total processor capacity) the ab-

solute weights are normalised to the sum of amax. The normalized weight, N,
for processor j in guest i is calculated like this:

()

()

max

,

,

, , ,

, max

,

, max

max

,

max max

1

1

a

r
i j

r

r
i j

r

a r

i j i j i j

a

i j aa

i j ar

i j aS

W

a aSr

i j
W

aS

N N N

W for S a
N

W for S a

S for S a
N

a for S a

= +

 <
=

⋅ ≥

 ⋅ − <
=
 ⋅ − ≥

 If the normalized weights alone were used to proportionally distribute the

total amount of processing power, Ptot, between the virtual processors, some

processor might receive more power than a real processor actually has. This is

not acceptable. Another issue arises since an “active” virtual processor, might

not be able to utilize a real processor for a complete unit of time. But since it

still is in the dispatch list, possibly with a very high priority, it can still influ-

ence the priority of the other virtual processors considerable.

40 Chapter 3 - IBM z/VM

 These issues are handled using an iterative approach and by introducing

the concept of load. The load, Li,j, denotes the actual amount of processing

power a virtual processor j of guest i actually uses. In other words: the num-

ber of “normalized machine cycles” it has tasks to make use of in the consid-

ered unit of time. Since a virtual processor cannot process more than a real

processor the load, L, it limited to the processing power of a real processor:

 , 100
i j

L ≤

 The pseudo code in Listing 3-1 calculates the processing power assigned

to the individual virtual processors in a particular unit of time. The virtual

processors are processed one at a time in a loop. A couple of variables are in-

troduced to support the calculations:

 The variable remainN contains the sum of the remaining Normalized

weights for the processors yet to be processed in the loop. In the beginning

where no processors are processed, the value of remainN is 1.

 The variable unexpl is used to hold the amount of “unexploited process-

ing power”, which should be divided between the remaining virtual proces-

sors. The amount is increased when a virtual processor cannot utilize the

processing power is should be allocated according to the normalized weight.

This can happen when the load, L, is too small or when the weight would give

raise to more processing power than a single processor can supply (instated

by L≤100).

 Having computed the processing power of the individual virtual proces-

sors it is possible to find the processing power of the individual virtual ma-

chines, by summarizing the virtual processors individual contributions.

,

1 i

i i j

j n

P P
≤ ≤

= ∑

 The calculations given above assume that the value of Ptot is constant. Ac-

tually the value might vary itself. This can happen when z/VM is running in-

side z/VM in a virtual machine (or then z/VM runs in a Logical Partition

without dedicated processors).

 In principle it should be possible to apply the calculation above twice:

First in the inner z/VM assuming full resource availability to calculate how

much processing power it can actually consume: the sum of Pi values. Next

the processing power distribution in the outer z/VM can be determined using

the data from the first calculation as load, L. Finally the distribution results

from the first calculation have to be proportionally scaled down to fit the re-

sources actually made available by the outer z/VM.

3.6 Virtual devices: allocations, sharing 41

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

Pseudo procedure for Pi,j calculation

Initialize remainN to 1

Initialize unexpl to 0

Sort list of active processors, A, according to the processors normalized

weight, Ni,j, with the largest values first.

For each actual virtual processor, VP(i,j), in the sorted list:

 Find the proportional share of total processing power according to

 normalized weight:

 Prop

,i tot i jP P N= ⋅

 Find share of unexploited processing power; proportionally divided

 between the remaining virtual processors according to their weights:

 ,

remainN
unexpl i jNExcess

iP = ⋅

 Find the actual processing power of the virtual processor, limiting

 the value to the actual load or the capacity of a real processor.

 ()Prop

, i ,min ;Excess

i j i i j
P P P L= +

 Update the value of “unexploited processing power” by applying the

 difference between the actually assigned value (Pi,j) and the value which

 should have be applied according to normalized weights (PiProp).

 ()Prop

,unexpl:= unexpl
i j i

P P− −

 Update the sum of remaining normalized weights by subtracting the

 normalized weight of the actual virtual processor:

,remainN:= remainN i jN−

Listing 3-1: Pseudo code to calculate the processing power, Pi,j, of the individual vir-

tual processors VP(i,j).

3.6.2 Storage (memory)
 The amount of storage made available to a virtual machine is defined in

the very first line of a user definition within the USER DIRECT file:

 USER username password 256M 512M G

 Two values can be given: The default size of the VM’s primary address

space and a maximum value. As in the case with the processors, it is possibly

to change the storage size (within defined limits) from “inside the VM”. This

can be done with the following CP command (here changing the size to

512MB):

 #CP DEFINE STORAGE 512M

42 Chapter 3 - IBM z/VM

 This command is definitely not practical for running Linux guests, since it

also clears the storage area and resets the virtual machine (like a “hard re-

set”). It can on the other hand be quite useful when running CMS, which bet-

ter tolerates a reset and is easily restarted. The MAINT user is fine example:

Under normal everyday conditions the MAINT user allocates 128MB, which

is more than enough for running XEDIT and making changes to the USER

DIRECT file. But in a service situation the storage area can easily be in-

creased (up to 1000MB) and thereby provide plenty of space for building

software.

 The “storage sharing” and “storage over commitment” (paging) capabili-

ties of the Paging SubSystem have been introduced earlier (3.4.5). This sec-

tion will not dig deeper into the underlying mechanism of how and when to

move pages to/from disk: Because in most situations, the Paging SubSystem

handles this autonomously without any special configuration considerations

to be done.

 There are only a few special advanced commands, which can be used to

tune the Paging PubSystem (e.g. SET SRM STORBUF and SET SRM LDU-

BUF). Their effect and use are however out of scope for this thesis. For further

details please refer to the “z/VM Performance” book [30].

3.6.3 I/O Devices: DASD / Disks
 CP can assign several types of Direct Access Storage Devices (DASDs, in-

troduced in section 2.2.8 on page 15) to virtual machines.

 Dedicated DASD is real disk, which CP has dedicated to a virtual ma-

chine. The guest operating system has full control over the device. A disk

given by its “real device number” (rdev) or by its volume id (volid) can be as-

signed to virtual device number (vdev) using one of the following statement

in the USER DIRECT file:

 DEDICATE vdev rdev

 DEDICATE vdev volid

3.6.3.1 Minidisks

 It is often useful to divide a DASD device into smaller virtual disks. In

z/VM such virtual disks are called minidisks and there exists three basic

types of them: Permanent, temporary, and virtual disk in storage.

 Permanent minidisks (often simply referred to as minidisks) are some-

what comparable to hard disk partitions (often created by “fdisk”) on PCs.

Both ECKD and FBA DASD can be divided into minidisks. They are part of a

DASD device controlled by CP (they are attached to the system). The guest

operating system manages a minidisk as any other DASDs, but the actual I/O

operations are performed by CP, which transform the virtual addresses (cyl-

inders, tracks or FBA block numbers) to their real counterparts. A (ECKD)

minidisk definition statement in USER DIRECT could look like this:

3.6 Virtual devices: allocations, sharing 43

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 MDISK 0103 3390 6677 3338 VSXD02 MR

 The statement defines a virtual disk of type 3390 with virtual device num-

ber 0103. The disk is created on the real DASD device with volume serial

number (volid) VSXD02 beginning on cylinder number 6677. The minidisk

occupies 3338 cylinders and “multiple-write” access mode (“MR”).

 It can be tricky to define minidisk without making errors. z/VM provides a

useful tool called diskmap, which can be used to check the user configura-

tion for minidisk overlaps and gaps.

 Minidisks are often shared between virtual machines for example to pro-

vide access to common tools and programs. The following statement shows

how to provide access to a minidisk defined in another user called

“TCPMAINT”. In this case the same virtual device number (592) is used both

virtual machines, but is not necessarily the case:

 LINK TCPMAINT 592 592 RR

 A Full-pack minidisk is a special kind of disk, which overlays all mini-

disks on a DASD and thereby provides a single point of access to the data on

all the minidisks.

 Temporary disks (T-disks) are the second type of minidisk. T-disks

are “destroyed” when the user logs off. The space is taken from a pool of tem-

porary disk space when the user logs on and returned to the pool when the

user logs off. A T-disk is also defined using the MDISK user directory state-

ment.

 VDISK or “virtual disks in storage” is the third and final type of

“minidisks”. These disks are also temporary disks but they reside in main

storage (memory) instead of on disk: A concept similar to “ramdisks” used in

MSDOS and Linux. This makes them faster than other disk types since the

I/O operations are eliminated. VDISK uses FBA (Fixed Block Architecture) as

access scheme, because continuously numbered blocks match the memory

access scheme much better than addressing by cylinders and tracks (ECKD).

VDISKs are often used in relation to Linux guests as fast swap disks.

[31][28][59]

44 Chapter 3 - IBM z/VM

3.6.3.2 Emulation of “SCSI via fibre” as FBA DASD

 z/VM provides native support for SCSI disks attached via FCP (Fibre

Channel Protocol), as briefly mentioned in the mainframe presentation in

chapter 2. As a result both z/VM itself and guest operating systems can be in-

stalled on and operate on SAN disks (Storage Area Network).

Figure 3-12: SCSI support; CP emulates SCSI disk into FBA DASD devices for use in

Linux or CMS. Linux and z/VM guest can also access SCSI device directly. [59, p. 44]

 Guest operating systems like Linux which have “driver support” for these

SCSI devices can access them directly as dedicated devices. The second access

methods is a good example of CP’s device emulation capabilities: CP emulates

SCSI disks as “standard” FBA disks (actually 9336 model 20), which can be

used by CMS or Linux like any FBA disk e.g. VDISKs (see Figure 3-12).

[59][60]

3.6.4 I/O Devices: Network connectivity
 The networking capabilities of z/VM is wide-ranging and far beyond the

scope of this thesis. The group of real/physical networking inter-

faces/adapters, which can be used in virtual machines, includes:

• Several types of OSAs (Open System Adapters),

e.g. providing access to many Ethernet, token-ring and ATM networks.

• Channel-to-channel-adapters

proving a mainframe point-to-point connection using channels.

• Common Link Access to Workstations (CLAW)

• HiperSockets (hardware provided virtual LANs)

3.6 Virtual devices: allocations, sharing 45

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 To supplement the real devices made available by hardware, z/VM in-

cludes several virtual network technologies:

• Point-to-point connectivity (virtual channel-to channel adapters, CTCA,

or the Inter-User Communication Vehicle, IUCV, facility).

• Guest LAN

• z/VM Virtual Switch (VSWITCH)

• Layer 2 LAN Switching.

 The following introduces the use of OSA/HiperSockets and VSWITCH,

which probably are the most commonly used network types used in Linux

guests under z/VM. For further details refer to the “z/VM Connectivity” book

[26] and chapter 4 “Networking Overview” in the IBM Redbook “Linux for

IBM System z9 and IBM zSeries” [59].

3.6.4.1 Open System Adapter and hiperSocket connectivity

 OSA connections (e.g. to a Gigabit Ethernet based LAN) and HiperSockets

connections (to interval hardware provided virtual LANs) are almost alike,

both being based on QDIO (remember section 2.2.9 p. 16).

 From operating system perspective both interface types appear as a whole

range of I/O devices: a range real devices in z/VM that is. It requires a total of

three consecutive devices per connection: The first device (an even num-

bered) is used for read control, the next for write control, and the last for data

(see Figure 3-13).

Figure 3-13: QDIO based networking: OSA (and HyperSockets) interfaces appear as

three I/O devices (z/VM RDEVs) per connection.

 To give a virtual machine access to OSA or HiperSockets simply dedicate a

set of three devices in the USER DIRECT file. For example to dedicate real

devices 733C-733E to vdev 0408-040A:

 DEDICATE 0408 733C

 DEDICATE 0409 733D

 DEDICATE 040A 733E

[59]

46 Chapter 3 - IBM z/VM

3.6.4.2 Virtual Switch (VSWITCH)

 A virtual switch (VSWITCH) is virtual device provided by z/VM.

VSWITCH’es can operate either at Layer 3 (network layer in OSI model) us-

ing IP addressing; or at Layer 2 (data link layer in the OSI model) working at

MAC address level. The technology also supports IEEE 802.1Q VLANs. It can

be used to connect several virtual machines to an external LAN provided via

an OSA interface. A switch can actually also run in disconnected mode (with-

out an associated OSA port) in order to interconnect virtual machines though

a virtual switch almost equivalent to a physical one (Layer 2).

Figure 3-14: VSWITCH setup (simplified). Service Virtual Machines (SVMs) are used

to provide a virtual switched network, possibly connected to an external LAN, for z/VM

guests. The switch is typically connected to an external LAN via an OSA interface (or

to a internal hardware based LAN via HiperSockets).

 A virtual switch in z/VM requires a SVM (Service Virtual Machines) to

function as “controller” and to enable the connection to the OSA interface

(Figure 3-14). Typically two SVMs are used for backup and isolation reasons.

 The configuration of SVMs and virtual switches in generally are not cov-

ered here, with the exception of the following two notes.

 A VSWITCH is statically defined; and dedicated to one (or more failover)

OSA interface(s) in the SYSTEM CONFIG file. This is also where virtual ma-

chines (users) are granted access to a virtual switch:

 DEFINE VSWITCH vswdemo0 RDEV 733C 733D 733E VLAN 1

 MODIFY VSWITCH vswdemo0 GRANT LIN001

 MODIFY VSWITCH vswdemo0 GRANT LIN002

 The individual users are connected to the switch by including a “network

interface card definition” statement in their USER DIRECTory definition. For

virtual device number 600 connected to virtual switch VSWDEMO0:

 NICDEF 600 TYPE QDIO LAN SYSTEM VSWDEMO0

[59]

3.7 Virtualization details for z/VM 47

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

3.6.5 I/O Devices: Unit Record Devices (spooling)
 When introducing virtual devices in z/VM, the concept of Unit Record De-

vices should not be overlooked. Generally Unit Record Devices embrace

printer, punch, and reader devices – and their virtual equivalents within

z/VM. It is, in other words, “remains” from the days where data/programs

entered the system though punch cards and output was written directly to the

printer.

 In order to enable sharing of these real unit record devices their virtual

equivalents use spooling. Print spooling is a known technique used on most

platforms to enqueue print jobs and to avoid the application blocks until the

print job has finished. In z/VM virtual readers and puncher also use spooling.

 Virtual unit record devices use a spool file system handled by CP. One

or more DASD volumes are assigned to CP for this specific purpose. Within

the spool file system is spool files, which contain a collection of data to-

gether with device control instructions for processing on a unit record device.

It is the processing of these files created by, or intended for, virtual readers,

punches, and printers, which is called “spooling”.

 It is possible to send spool files from one virtual device to another, from

your virtual machine to another, and to real devices, using CP and CMS com-

mands. But the importance and practical use of Unit Record Devices are

highly diminished in comparison to earlier. The devices are nevertheless an

integral part of z/VM and they still serve a few practical purposes. These in-

clude console logging and facilities for storing dumps of erroneous virtual

machines.

[47][31]

3.7 Virtualization details for z/VM

3.7.1 Hypervisor calls, Diagnose instructions
 As briefly mentioned earlier, z/VM supports paravirtualization and

thereby provides special hypervisor calls to be used by the guest operating

system. An operation system, which is aware of it running in a virtual envi-

ronment, can use these hypervisor calls to “communicate” with CP.

 The interface provided by CP is the so-called “DIAGNOSE” instruction.

The instruction contains a code portion (DDD), which specifies the actual ser-

vice to be performed, please refer to Figure 3-15. Then a diag instruction is is-

sued, the control is handed to CP. CP examines the code, performs the match-

ing operation and returns control to the virtual machine.

48 Chapter 3 - IBM z/VM

Figure 3-15: The machine language format of the DIAGNOSE instruction. The first

part, “83”, is the machine language instruction code (an assembler mnemonic does

not exist). RxRy gives the general registers, which hold operand values or storage

addresses to such. B is a displacement base register for DDD, which is the actual DI-

AGNOSE code value specifying the service to be performed. (Graphic from [29, p. 3])

 IBM have implemented a variety of DIAGNOSE code into z/VM. Only a

few examples are given here:

• Code X’44’ – “Voluntary Time Slice End”:

Informs the scheduler that the virtual CPU cannot make use of the re-

maining time slice, because a spin lock loop exists.

• Code X'A4' – “Synchronous I/O”:

Used to perform synchronous I/O operations on CMS formatted DASD

letting CP construct the appropriate channel program.

• Code X'288' –“Control Virtual Machine Time Bomb”:

basically a watchdog timer for virtual machines.

 Some DIAGNOSE codes can only be issued by authorized users within

special privilege classes. Other codes require a special architectural mode or

storage access mode. It should be noticed, that DIAGNOSE instruction also

exist outside z/VM. When issued outside a VM, the instruction makes the

running processor perform build-in diagnostic or other model-dependent

functions. These operations can be potentially cause fatal mal-functions. [11]

Operating systems (other than CMS) should therefore prevent execution of

DIAGNOSE instructions in “real machines”. The “Store CPU ID” instruction

can be used to determine the actual environment.

[29]

3.7.2 Processor Scheduling
 The scheduling and dispatching routines in z/VM are quite complex. The

following introduces the main elements from a simplified point of view.

Chapter 2 in the “z/VM Performance” book [30] is recommended for a more

detailed description.

 The main task of the z/VM scheduler is to make the virtual machines ap-

pear to be running concurrently by assigning them “time slices” of the real

processors. The scheduling is based on the virtual machines’ actual need for,

and the availability of, processor cycles, real storage, and paging space.

 CP cycles the active virtual machines (the ones logged on) through three

lists in order to determine processor dispatching order and priorities. The vir-

3.7 Virtualization details for z/VM 49

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

tual machines move between these lists according to their current work en-

gagement; see Figure 3-16.

Figure 3-16: The z/VM scheduler/dispatching lists; and flow of virtual machines be-

tween them.

 The dormant list contains VMs, which have no immediate task to per-

form. They can be idle (e.g. awaiting user interaction), in an enabled wait

state (e.g. waiting for a timer interrupt), or they can be waiting for the com-

pletion of a long operation (e.g. waiting for a long page-in operation to fin-

ish).

 The eligible list comprises virtual machines, which are waiting for sys-

tem resources. These VMs are priorities into four transaction classes:

E0: Virtual machines, which do not wait in the eligible list for resources to

become available, but have a special status, e.g. the quick dispatch option.

E1: Virtual machines expected to have short transactions (in z/VM a

transaction is a basic “unit” of work). They have just started a transaction.

E2: Virtual machines with expected medium length transactions. They

have returned from an “E1 stay” in dispatch list on elapsed-time-slice-end,

without finishing their work.

E3): VMs execution long-running transaction, having returned from at

least an E1 and an E2 stay in the dispatch list.

 The final list, the dispatch list, contains the virtual machines, which are

ready to run and compete for processor time. The dispatch list also includes

virtual machines whose waits are expected to be short. When contention for

processor time exists, the share settings (ABS or REL SHARE) are used to

control the virtual machines’ priority within the dispatch list. When virtual

machines are moved from the eligible list to the dispatch list, they basically

retain their transaction class E0-E3 although “renamed” Q0-Q3 respectively.

50 Chapter 3 - IBM z/VM

 These lists enable CP to favour “interactive” virtual machines over non-

interactive (batch oriented) virtual machines, in order to provide good re-

sponse times.

[30] [59]

3.7.3 Running z/VM in z/VM
 Since the virtual machines created by z/VM control program (CP) fully re-

sembles real machines, they also are capable of running the z/VM operating

system itself. The first z/VM running directly on hardware (often in LPAR) is

called as a “first level” system and it runs first level guests. A z/VM running in

one of these guests is a “second level” system running second level guests (see

Figure 3-17).

Mainframe system

PR/SM - Hardware Hypervisor

LPARLPARLPARLPAR LPARLPAR LPAR

LPAR

Operating System: z/VM (first level system)

Logical Partition (LPAR) - Hardware Layer

z/OS Linux z/OS z/OS z/VSES z/FPTz/VM

CP “Control Program” – z/VM SW Hypervisor

VMVMVMVM VMVM VM

CMS CMS Linux Linux Linux z/OSz/VM

Virtual Machine, z/VM guest / user

Operating System: z/VM (second level system)

CP “Control Program” – z/VM SW Hypervisor

VMVMVMVM VMVM VM

CMS CMS Linux Linux Linux z/OSz/VM

Virtual Machine - Hardware Layer - first level guest

1
st

level

SIE

2
nd

level

SIE

3rd

level

SIE

1st level

system

2
nd

level

system

1
st

level

guests

2
nd

level

guests

Figure 3-17: z/VM is capable of running inside a z/VM virtual machines.

 It is possible to run z/VM as even higher level systems (third, fourth, … in

“Russian doll” style) but it is rarely very valuable. Two levels can however be

useful in several cases including the following (especially the latter case has

proven very useful in relation to this particular project).

• To test a new version of the z/VM OS itself

• To test (shared CMS) application programs

• To test new service levels (“patches”)

• To test new service and maintenance procedures

3.7 Virtualization details for z/VM 51

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

• To train personal and provide an environment for experiments.

 All of the above can be achieved without influencing the 1st level produc-

tion z/VM in which the 2nd level test z/VM runs. The 2nd level system will

naturally take up some resources but the SHARE setting can be used to assign

the system a relevant priority in relation other virtual machines in the 1st level

system. The total isolation provided by the virtual machine otherwise ensures

that any disastrous experiment only affects the test system.

3.7.4 Hardware supported virtualization

 Interpretive Execution
 As briefly mentioned earlier, the mainframe hardware has direct support

for virtualization. CP uses the same mechanisms, as the HW hypervisor

PR/SM uses to dispatch shared processors between Logical Partitions:

namely SIE (Start Interpretive Execution).

 CP calls the SIE instruction to place the processor in interpretive-

execution mode: to work on behalf of the virtual machine. In order to es-

tablish the correct virtual environment, SIE takes an operand, the so-called

“state description”, which contains the state of the virtual processor (its

“context”). This includes the Program Status Word (PSW); general registers;

and means for accessing the guest’s Dynamic Address Translation (DAT)

structures (region, segment and page tables). The state description also de-

fines the reasons for exiting interpretive-execution mode; the reasons to

“trap” back” to CP (the host program) that is.

 In interpretive-execution mode the virtual processor can utilize all func-

tions offered by the architecture with speed comparable to “native” execution

(without virtualization or partitioning). The virtual processor run in “SIE

mode” until an interception condition is raised (e.g. time slice expires or in-

terrupt is received). When such a “SIE break” occurs, the state description

(including PSW) is updated and the control returned to CP (or PR/SM)

 Now since a first level z/VM system typically runs in a LPAR (especially

since newer mainframes cannot run without Logical Partitioning) it give rise

to SIE calls from at least two levels (see Figure 3-17). The mainframe hard-

ware actually allows this using “Interpreted SIE”.

 Interpreted SIE is hardware function, which was introduced to let

VM/ESA (the 1990 version of z/VM) run smoothly as a guest of itself. Inter-

preted SIE allows a machine already in interpretive-execution mode to call

SIE and institute yet another instance of interpretive-execution mode – still

under HW control [65]. The mainframe platform is actually the only technol-

ogy on the market, which provides two levels of hardware support for virtual-

ization [49]. On older mainframes capable of running in basic mode (without

LPAR) z/VM could run in two levels, in both of which most features perform

without performance loss.

52 Chapter 3 - IBM z/VM

 The hardware is, however, only capable of handling two levels of SIE.

Since PR/SM and the logical partitioning uses the first SIE level, the re-

quirement for running z/VM in z/VM in LPAR like depictured in Figure 3-17

is three levels of SIE. The 3rd level SIE is therefore emulated by the first level

z/VM. Actually third SIE-level and above is said to “pancake” down to SIE

level 2 [49]. This emulation is expensive and results in performance degrada-

tion.

[58] [65] [50]

QDIO assist
 IBM continuously implements new technology to improve virtualization

performance. The z/VM version 4.4 on zSeries hardware allowed adapter in-

terrupts from HiperSockets, FCP based devices and OSAs (Open System

Adapters) to be passed directly to guest operating systems, which exploited

the QDIO communication mode (Queued Direct I/O, mentioned in 2.2.9

page 16).

 Later “hardware assists” include “QDIO Enhanced Buffer-State Manage-

ment” and “Host Page-Management Assist”. These technologies allow a vir-

tual machine to initiate QDIO operations directly to an appropriate channel,

without interception by CP.

 From Linux guest perspective, the effect of the above is that QDIO based

devices (including network interfaces, OSA, HiperSockets, and FCP con-

nected iSCSI disks) can be used without interception by the CP. This naturally

gives a performance improvement. Unfortunately these new virtualization

technologies are available only to first-level z/VM guests. Second level guest

cannot make any use of them.

[22]

4.1 Presentation 53

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

4. LINUX ON ZSERIES, AS Z/VM GUEST

 Running Linux on the mainframe is almost in every aspect as running

Linux any other platform. An average (non GUI) end user would practically

never know the difference. Server administration, on the other hand, is a little

different due to the architectural differences. The general methods (editing

configuration files in /etc, utilizing the sysfs file system, or using a configura-

tion tool like SUSE YaST) are still the same.

 This chapter introduces some of the most important issues, which set

apart mainframe Linux from other platforms. The reader is expected to be

familiar with Linux beforehand.

 The chapter is restricted to general issues of kernel 2.6 based systems run-

ning in 64bit mode exploiting the z/Architecture. The 2.6 kernel includes

many improvements compared to 2.4. The 64bit mode is generally recom-

mended offering greater memory addressability and providing greater flexi-

bility [59, p. 10]. Systems running in 31bit mode or based on kernel 2.4 do

still exist but these are mainly running on older hardware or in long-running

but well-functioning setups.

4.1 Presentation

4.1.1 History
 The first Linux Mainframe project was called “Bigfoot” and was founded

by a visionary (almost clairvoyant) Linus Vepstas in 1998. He basically be-

lieved that Linux could be the way for mainframe vendors to regain lost

mainframe costumers to and acquire new ones – now almost ten years later

he has been proven right. His own Bigfoot project was however abandoned in

2000 after IBM had announced a competing project. [75] [76]

 IBM started the development of the code required to run Linux on S/390

architecture in 1999. IBM’s focused on adapting the 2.4 kernel to the zSeries

platform, but their work was not particular well integrated with the rest of the

community. As an example their patch sets were often very large and there-

fore not included in the mainline kernel, since the kernel maintainers usually

prefer smaller changes to allow manageable reviews. They had little influence

on the Linux development process in general and one of the most obvious ad-

vantages with open source, the peer review process, was not exploited. [52].

IBM furthermore keep some issues secret e.g. by only providing binary device

driver to OSA devices. [76]

 With Linux 2.6 kernel development IBM became committed to Linux and

open source. Drivers are released as open source and IBM has participated

actively in the community kernel development process. This has allowed

them to oppose to changes, which influences “zLinux” negatively. IBM has

54 Chapter 4 - Linux On zSeries, as z/VM Guest

developed solutions, vital for the z/Architecture, which also have benefited

other platforms and the kernel in general (e.g. in regard to memory manage-

ment and a CPU hot plug feature).

[52]

4.1.2 Architecture reference names
 The Linux ports for the mainframe are called “s390” and “s390x”. These

are the names used to reference the 31bit and the 64bit mainframe architec-

ture respectively. In other words: The ESA/390 architecture is denoted

“s390” and the z/Architecture is denoted “s390x”.

4.1.3 Distributions
 There are several Linux distributions for the mainframe. Two of these are

commercial and enterprise class supported distributions:

• Novell / SUSE Linux Enterprise Server (SLES), latest version: 10 (SP1)

http://www.novell.com/products/server/

• Red Hat Enterprise Linux (RHEL) , latest version: 5

http://www.redhat.com/rhel/server/mainframe/

 Several other free alternatives exist but some of them have not been up-

dated for year. The following should be the remaining active projects:

• CentOS

http://www.centos.org/

• Debian (31bit only)

http://www.debian.org/ports/s390/

• Slack/390

http://www.slack390.org/

 CentOS is actually also an enterprise quality distribution, since it basically

is a “de-branded” version of RHEL. This is completely legal and in full agree-

ment with the open source licenses. It is intended to provide an enterprise

class OS without the related costs and support.

 Generally there seem to be a common agreement that SUSE Linux Enter-

prise Server is mostly widely used distribution on the mainframe. [53] All ac-

tivities in this particular project are performed in a SLES9 SP3 environment.

4.2 Devices and sysfs
 With kernel 2.6 the “system file system” (sysfs) provides a unified hierar-

chical view of the hardware. Devices are represented as a subdirectory con-

taining files or “attributes”. These attributes can be used to access informa-

tion about the device or used to control them (for example to enable/disable

them or set them in a specific mode). The directory structure itself shows how

devices are interrelated or connected e.g. via a bus.

4.2 Devices and sysfs 55

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 In Linux for zSeries directory structure provides information on the device

type, device node name, and subchannel numbers. Hardware devices are first

and foremost listed in /sys/devices/ccs0/ (see Figure 4-1). In this directory

all available channels (chp0.XX) and subchannel (0.0.xxxx) are given as sub

directories. In the “subchannel subdirectories” yet another directory exists

representing the associated device (0.0.xxxx). The other “views” of the hard-

ware, e.g. sorted according to bus relationship or drivers, “reuses” this sub-

channel and device representation using symbolic links.

Figure 4-1: Excerpt from the “system file system” (sysfs) representation of mainframe

hardware. The channels (chp0.XX), subchannels (0.0.nnnn), and devices (0.0.nnnn)

shown, are itself directories containing “attributes” (files) to query/control the respec-

tive item.

 The following shows the attributes related to an OSA (network connec-

tion) from the ccwgroup view. This “group” view includes “mechanism” like

OSA network interfaces, which requires more than one device (subchannel)

56 Chapter 4 - Linux On zSeries, as z/VM Guest

to function (see section 3.6.4 on OSA devices in z/VM). The three files cdev0-

cdev2 are symbolic links to devices 0408-040A in “/sys/devices/css0/”.

ls /sys/bus/ccwgroup/drivers/qeth/0.0.0408/

. cdev0 if_name recover

.. cdev1 ipa_takeover route4

add_hhlen cdev2 large_send route6

blkt checksumming layer2 rxip

broadcast_mode chpid online state

buffer_count detach_state portname ungroup

canonical_macaddr fake_broadcast portno vipa

card_type fake_ll priority_queueing

 As an example of use, consider the following, which shows how the

“checksumming” attribute can be used to determine whether TCP/IP check-

sum calculation is performed in the Linux TCP/IP stack (sw_checksumming)

or by the OSA hardware. The final line shows how to enable hardware check-

sum calculation (assuming the necessary conditions are fulfilled):

cd /sys/bus/ccwgroup/drivers/qeth/0.0.0408/

cat checksumming

sw_checksumming

echo hw_checksumming > checksumming

4.3 Drivers, S/390 tools and utilities
 The mainframe specific drivers are distributed with the kernel source.

They are typically located in the /usr/src/linux/drivers/s390 directory.

IBM, which is the maintainer of architecture specific source code, provides

some rather detailed documentation for the “s390” specific drivers, which can

be good to know: [23][40].

 IBM also maintains a special package of user space tools and utilities,

which provide easier access to the zSeries specific kernel features, sysfs en-

tries and device drivers. The “s390-tools” package is normally included in the

Linux distribution (in Red Hat as “s390utils”) [59]. The following are some of

the more “common used” tools provided with the package2:

dasdfmt: low-level formats eckd-dasds.

fdasd: creates or modifies partitions on (z/OS compatible) eckd-dasds.

dasdview: display DASDs and VTOCs information, or DASD content.

zipl: makes DASDs or tapes bootable.

tunedasd, adjusts tunable parameters on DASD devices.

vmcp, sends commands to CP (the Control Program) of z/VM.

2 With SUSE Enterprise Linux Server 9 SP3, according to the documentation:

/usr/share/doc/packages/s390-tools/README

4.4 Special considerations when running in VM 57

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

4.4 Special considerations when running in VM

4.4.1.1 z/VM paging and Linux swap

 When running Linux under z/VM, it can be useful to have a good under-

standing and an overall picture of the memory hierarchy for the combined

environments. This can be useful in order to interpret performance meas-

urements or peculiar system behaviour.

Figure 4-2: The many places Linux memory pages are scattered.

 Linux itself uses swap disks to “enlarge memory”. In many cases Linux

prefers to move rarely used pages (e.g. portions of loaded application pro-

grams or data) to the swap disks to facilitate space for file buffers and caches.

That is why a smaller VDISK (virtual disk in storage) is often used as fast,

high priority, swap devices under z/VM. (Actually to many VDISK might in-

troduce a priority inversion problem, because CP prefers to steal pages from

running guests rather than VDISKs, which are regarded as very important

data areas for e.g. lock files. Special DCSS, Discontinuous Storage Seg-

ments, can be used as alternative swap device to avoid this problem. [59])

 Now, CP also moves pages from main storage (real memory) to expanded

storage or disk (paging DASD). The pages which Linux believes to be in

memory might actually be located in expanded storage or on disk. Although

the paging handled by CP happens transparently from Linux point of view, it

might influence memory access or initialization time considerably.

 Normally z/VM operates with minidisk caches in order to improve the

performance of minidisk. Minidisks used for Linux swap normally has the

minidisk cache disabled, because the lower priority swap disk otherwise also

take up memory, or risk flushing more important pages from minidisk cache.

58 Chapter 4 - Linux On zSeries, as z/VM Guest

4.4.1.2 CPU usage readings

 It is important to know, that 2.4 Linux kernels and older 2.6 kernels (e.g.

the one in SLES9) uses “timer ticks” for internal time tracking and time

measurement. These kernels are furthermore “unaware” that the processors

might be virtual processors, and that the real processors below sometimes are

dispatched to other virtual machines. This basically makes make CPU utiliza-

tion readings from the /proc file system and programs like TOP untrust-

worthy.

 To explain the problem, consider the situation in Figure 4-3. A single

processor is alternating between kernel space and user space. The processor

is active all the time, since this is NOT a virtual environment. The figure

shows the exact number of time units spent in the two contexts; and the re-

spective percentages of the total time.

Figure 4-3: The exact number of time units spent in kernel and user space; the corre-

sponding percentages of the total CPU time.

 Now, the old kernels measure time in “time ticks”. Depending on the exact

timing conditions this can result in some degree of inaccuracy – see Figure

4-4. Although the time spent in kernel and user space is completely the same

as before, the “sample rate” and the precise timing conditions influences the

results considerately.

Figure 4-4: “Time tick” based accounting in two slightly difference timing conditions

(same sample rate but difference “offset”). The distribution is exactly the same as in

Figure 4-3, but tick based time measures differ considerately.

 The problem becomes more complicated, when this type of time meas-

urement is used in a virtual environment, where the hypervisor dispatches

the processor to other virtual machines. Consider the situation depictured in

Figure 4-5. The actual time spent in each context is now considerable less,

since real processor is occupied elsewhere several times (white areas).

4.4 Special considerations when running in VM 59

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

Figure 4-5: The exact time spent in kernel and user space is shown with colour. The

white areas illustrate the time, where the real processor has serviced the hypervisor

and/or other virtual machines.

 Again consider the effect of tick based time measurements: The time ticks

(interrupts), which occur while the real processor is dispatched elsewhere, are

delayed and counted, when virtual processor regains control. The time “taken

away” from the virtual processor is thereby not taken into account. Again de-

pending on the exact timing conditions, the time measurement might be far

from the truth: See Figure 4-6.

Figure 4-6: “Time tick” based accounting in a virtual machine. Two slightly difference

timing conditions (same sample rate but difference “offset”) yields different results and

generally inaccurate results compared to the actual distribution in Figure 4-5.

 In never Linux kernels (e.g. the one in SLES10) the problem has been re-

solved by introducing the concept of steal time and by eliminating time tick

based accounting. The mainframe architecture offers a 64 bit timer register

per virtual processor. It basically uses the same format as the “TOD (Time of

Day) clock”: the mainframe’s Real Time Clock. But this virtual timer is only

running as long as the virtual processor is running. The kernel can uses this

register to keep exact track of the time, including the time spent in kernel

space, in user space. But even more import it can keep track of the time,

where the real processor has been dispatched elsewhere: Figure 4-7.

Figure 4-7: Timekeeping in never 2.6 Linux Kernels. A “real time clock” is used to

keep extract track of time. The time taken away from a virtual processor is referred to

as “steal time”.

60 Chapter 4 - Linux On zSeries, as z/VM Guest

 The new method has increased the precision of internal time keeping to at

least 1 microsecond. In order to comply with old programs and interfaces, the

interval time representation is converted to “ticks” (1/100 second), when the

values are delivered to user space. The new concept of steal time can be read

directly from the kernel via stat file in the /proc file system. Tools like TOP

has been updated to include steal time as well.

 It is very important to be aware of the current version of kernel and tools.

This is not so much because of steal time itself, but the introduction of it also

changes the meaning or semantic of the existing CPU readings: For example

the user, system, nice, idle, and wait percentages shown by TOP.

 In order to use the CPU reading from older system (like SLES9) it is nec-

essary to provide supplement and trustworthy CPU reading from CP level.

The Performance Toolkit (presented in section 5.1.2.3 on page 65) can pro-

vide such data. The toolkit can, amongst many other things, show the amount

of processors resources allocated to each virtual machine, e.g. in terms of per-

centages of real processor time.

[51] [67]

5.1 Test 1: Number of processors per Linux guest 61

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

5. PERFORMANCE TESTS & OPTIMIZATION

 This chapter contains four performance tests or “system investigations”,

which first of all contributes to a better understanding of Linux, z/VM, and

Linux under z/VM in particular. The chapter concurrently provides tangible

test results, to generally accepted optimization suggestions and beliefs. The

given recommendations sections are mainly company specific optimization

suggestions.

 The chapter is divided in four main sections each representing a perform-

ance test or system investigation. Test 1 to 3 mainly covers processors, stor-

age (memory) usage, and disk I/O respectively. The fourth test basically com-

bines the first three broadly examining the impact of adding a third virtual-

ization level (running z/VM in z/VM in LPAR).

 A number of monitoring tools, test programs and scripts have been devel-

oped in order to observe values of special interest and to be able to influence

and stress the system in particular ways. The latter tests depend to some de-

gree on tools, workloads, and programs (or derivations hereof) from previous

test. The “method and tools” sections introduce these tools and programs

consecutively; dependencies are explained and differences from the preced-

ing tests are emphasized.

5.1 Test 1: Number of processors per Linux guest

5.1.1 Motivation
 Several sources [5] [47, p. 30] indicate that the number of virtual proces-

sor per guest should be limited as much as possible, since unnecessary proc-

essors introduce an overhead. Some of the multiprocessor overhead is related

to the “Diagnose x’44” instruction (or hypervisor call, see section 3.7.1 on

page 47) [56].

 The Diagnose x’44’ or the “Voluntary Time Slice End” instruction is

used from virtual machines with multiple virtual processors, when a spin lock

exists. The scheduler is thereby informed that the reminder of the CPU time

slice, which is allocated to the virtual processor issuing the instruction, is no

longer useful. The priority of the virtual processor is thereby lowered com-

pared to the other virtual processors within the same virtual machine. This

will enable the virtual processor holding the lock to run and release the lock.

[29]

 Spin lock make no sense in setups with a single processor, since it does

make sense to make the CPU actively wait in a loop in order to receive a lock,

which only can be released by re-scheduling the processor to another proc-

ess/thread. A Linux guest running in virtual machine with one CPU will

therefore not call Diagnose x’44’, but simple reschedule internally.

62 Chapter 5 - Performance tests & optimization

 The hypothesis is that Linux guests, with mainly single threaded work-

loads, run slower in a multi processor virtual machine. It happen because

Linux tends to use spin locks and thereby introduce Diagnose x’44’ instruc-

tions, which takes longer time than internal scheduling in a single processor

virtual machine.

 This test is designed to find the optimum processor configuration for the

Linux guests in a company specific z/VM environment. The test shows how

the number of virtual processors influences the duration of real, typical and

demanding jobs/workloads. The diag x’44 instruction counts is determined to

verify that 2-CPU guests actually call the instruction.

5.1.2 Measurement methods and tools

5.1.2.1 QKUMON: Specialized monitoring in general

 Linux provides many features and tools, which can be used when monitor-

ing or testing the system. That is tools like top and free, not to mention the

“raw data” provided by the kernel in the /proc/ file system e.g. meminfo,

stat, and vmstat. Unfortunately the output can be hard to interpret and

comprehend in a “live” situation and the output format is seldom suited for

subsequent data analysis. Naturally, dedicated monitoring products and pro-

grams exist to counter these difficulties. But in many cases such monitors

products are completely overkill, their sample rate is to low or they miss cus-

tomization capabilities to allow for highly specialized measurements.

 Fortunately Linux systems (and UNIX variants) typically come with many

small tools and capabilities, which make it possible to create a customized

monitoring service with a relatively small amount of work. This particular

approach has been adopted here.

qkumon
A monitor solution, named qkumon (by chance), has been developed for

this project with the following in mind:

• Extreme customization abilities

• Near real time data delivery to allow real time graphing

• Data gathering option for later data analysis

• Simple data format allowing easy processing in standard tool (e.g. Excel)

• Connectivity to allow remote data gathering and graphing

• Simplicity is more important than avoiding communication overhead etc.

 qkumon utilizes a mix of xinetd (the eXtended InterNET Daemon), pipes,

scripts and values from /proc and programs like top as shown in Figure 5-1.

 On the host being monitored xinetd has been configured to listen to a

specific TCP port (here 5557) and to connect it with a script (mon.sh, see Ap-

pendix B.1.1). The xinetd service invokes the script when a tcp connection is

5.1 Test 1: Number of processors per Linux guest 63

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

successfully opened. Subsequently xinet redirect all data received from cli-

ent to stdin and send all data written to stdout back to the client. The cli-

ent can in other words control the script and receive the output from it. Since

xinetd (or its predecessor inetd) is available in most Linux distribution this

is an easy way to create a small highly customized server.

 The actual monitoring process is instantiated and controlled by the client.

It connects to the configured TCP port and xinetd invokes the mon.sh

script, if the connection is successfully open. Now the client sends a character

(or code) representing the wanted monitoring data, for instance a ‘t’ repre-

senting information from top. The mon.sh script parses input and invokes a

corresponding command. This command performs the necessary measure-

ments and reformats the output into a comma separated string (here using an

awk script), which is written to stdout and thereby returned to the client.

Figure 5-1: The monitoring setup constructed to deliver one of multiple sets of cus-

tomized measurements to an arbitrary workstation via a TCP/IP socket.

 Each time the client sends a new code, a corresponding data string is gen-

erated and returned. The client can easily parse the comma separated string

and potentially graph the values in near real-time. Writing the unaltered data

directly to a text file automatically generates a “CSV” file, which is easily read-

able for most spreadsheet programs for further analysis and later graphing.

In this case, a simple client with graphing and logging capabilities have been

developed in Java, but any type of program or script could be used. The GUI

of the Java client program is presented in Figure 5-2 . (The source is not pro-

vided, but closely resembles the program for test 2 given in Appendix B.3)

64 Chapter 5 - Performance tests & optimization

Figure 5-2: The GUI of the developed Java client program, which is used together

with the qkumon monitor. (Graphs are based on a class from the JChart2D library

from http://jchart2d.sourceforge.net.)

 When the client decides to stop the monitoring process it sends a stop

code “q”. This stops the mon.sh script by breaking an internal loop. Xinetd

automatically closes the connection to the client as the mon.sh script termi-

nates.

5.1.2.2 Data gathering from within Linux

 Test data for this particular test is mainly derived from the standard UNIX

tool “top”. The top program provides a real time view of the running system,

including both system summary information as well as information on indi-

vidual processes. Especially the latter makes top useful in this particular

case, since it provides easy access to the exact information needed.

 The mon.sh-script invokes “top” in batch mode with one repetition,

which disables the interactive user interface and sends a single output set to

stdout (standard out). The output is piped into an awk script

(ora_mr.awk, Appendix B.1.4.1), which parses it and generates a comma

separated string including the following values:

• Regarding processes owned by the application user (mrdata):

o number of processes running, sleeping, in uninterruptible sleep

o memory usage

o % CPU usage (inaccurate “time tick based” value, see 4.4.1.2, p. 58)

5.1 Test 1: Number of processors per Linux guest 65

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

• Regarding processes owned by the DBMS user (oracle):

o number of processes running, sleeping, in uninterruptible sleep

o memory usage

o % CPU usage (inaccurate “time tick based” value)

• Number of other processes (not oracle or mrdata) running

• CPU usage related to other (not oracle or mrdata) processes

5.1.2.3 Data gathering outside Linux

 The “IBM Performance Toolkit” is used to verify the CPU readings men-

tioned above, which basically cannot be trusted, since the present Linux ver-

sion (SLES9 SP3) is unaware of the time VM spends servicing other guests

(explained in section 4.4.1.2, p. 58).

 IBM Performance Toolkit is a licensed product, which has to be purchased

separately, although shipped as a component of z/VM. The Toolkit provides a

variety of system information, performance measurements, and logging op-

tions (see Figure 5-3). Like all other things it runs in a virtual machine, but it

depends on special data provided by CP, which enables it to present a picture

of the complete virtual environment from “hypervisor view” (see Figure 5-4).

Figure 5-3: The selection menu from the “IBM Performance Toolkit” web interface.

66 Chapter 5 - Performance tests & optimization

Figure 5-4:The “IBM Performance Toolkit for VM” runs in its own virtual machine (typi-

cally “perfsvm”) but the data is provided from CP.

 The toolkit CPU readings are used to confirm, that the workloads actually

are single threaded and that the virtual machines generally only occupy a sin-

gle processor regardless of the number of virtual processors. The toolkit is

also used here to generally verify that the tests are completed in a “stable” en-

vironment without big fluctuations caused by other guests.

 Finally the Performance Toolkit is used to verify that the number of CPUs

influences the number of diagnose x’44 instructions. Apparently is not possi-

ble to monitor this number per user. The “Privileged Operations” screen (#4)

can however be used to manually supervise and record the current x’44

count.

 Details about the test setup configuration can be found in Appendix A.1.

5.1.2.4 Monitors influence on the system

 The specialized “qkumon” monitor does include periodic execution invo-

cation of a number of processes (top, BASH, awk, xinetd) and it will influence

the system to some degree. The influence is however considered to be insig-

nificant since the polling frequency is very low (approximately 2 times per

second) and the work is rather “simple” and sparse regarding CPU resources.

 The influence of the Performance Toolkit is likewise considered to be in-

significant. Especially since the toolkit runs as a VM guest itself it simply adds

a little background noise in the big VM scheduling picture.

5.1.3 Workloads
 The test is performed using workload definition WL1 and WL2, which

have the following characteristics.

5.1.3.1 Workload 1 (WL1)

 Workload 1 is “complete payroll processing” (payslip creation excluded):

Several independent application executables are called during the payroll

processing, which results in birth and termination of several new processes.

Many of these programs individually access and “manipulate” the database.

 The workload is of “mixed nature”: A combination of CPU usage (applica-

tion calculation + database queries) and disk usage (database, output file

writing). The CPU usage typically fluctuates and rarely hits 100% (equivalent

to one virtual CPU) for very long. For further details refer to Appendix A.1.2

5.1 Test 1: Number of processors per Linux guest 67

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

5.1.3.2 Workload 2 (WL2)

 Workload type 2 consists of Payslip PDF and PS file creation. It is domi-

nated by a few sequentially running and very CPU intensive processes. The

processing includes creation of PDF files from XML, and PDF to PS conver-

sion. WL2 provides a more steady state / long run / high CPU load situation.

For further details please refer to the workload definition in Appendix A.1.3.

5.1.4 Test description
 The goal is to show, if the number of virtual processors influences the du-

ration of the workloads above. To eliminate the influence from other z/VM

guests (resource availability), the durations for the workloads are evaluated

relatively: By running the same workloads in a 1-CPU guest and a 2-CPU

guest concurrently. This also allows for the tests to be run in a production en-

vironment. The two guests running concurrently should be completely identi-

cal except for the number of CPUs. As a safety precaution the test is repeated

with opposite CPU configuration on the same two guests in order to eliminate

any unintended configuration differences.

 As a supplement to these “relative” tests with concurrently running guests,

the workloads are also run separately in one guest at the time: first in a 1-CPU

guest and afterward in a 2-CPU guest. This is necessary to get the Diagnose

X’44 instruction count, since is impossible to monitor this for individual

guest. These separate tests can furthermore ensure that concurrent process-

ing doesn’t distort the results notably.

 In order to be able to determine Diagnose x’44 overhead, the CPU share

value for the 2-CPU guest has to have twice the CPU share for the guest with

one virtual processor: Recall that z/VM divides a guest’s relative CPU share

between the guest’s virtual processors (section 3.6.1.1 p. 35). If shares were

not adjusted, it would be comparable to compare a PC with one 1000MHz

processor and a PC with two 500MHz processors. Since the workloads in this

test known in advance to be foremost single threaded, the 1000MHz PC

would naturally outperform the 500MHz dual processor.

 Figuratively speaking, this test should determine, whether the PC per-

forms best with one or two 1000MHz CPUs – knowing that one of the proces-

sors will be mostly inactive and mainly be available for OS bookkeeping and

background processing. In the virtual environment an extra processor results

in an overhead (as mentioned), but the Linux system might still benefit from

an extra processor for background processing. The test should show.

 Table 5-1 gives an overview of different test settings.

68 Chapter 5 - Performance tests & optimization

Test Linux Guest 1 Linux Guest 2

number CPUs Rel. share Workload CPUs Rel. share Workload Repetitions Monitor

T1.1 2 200 WL1 1 100 WL1 4 qkumon

T1.2 2 200 WL2 1 100 WL2 4 qkumon

T1.3 2 200 WL1 - - - 2 qkumo, ptk: x'44 + %cpu

T1.4 - - - 1 100 WL1 2 qkumo, ptk: x'44 + %cpu

T1.5 2 200 WL2 - - - 2 qkumo, ptk: x'44 + %cpu

T1.6 - - - 1 100 WL2 2 qkumo, ptk: x'44 + %cpu

T1.7 1 100 WL1 2 200 WL1 4 qkumon

T1.8 1 100 WL2 2 200 WL2 4 qkumon

T1.9 1 100 WL1 - - - 2 qkumo, ptk: x'44 + %cpu

T1.10 - - - 2 200 WL1 2 qkumo, ptk: x'44 + %cpu

T1.11 1 100 WL2 - - - 2 qkumo, ptk: x'44 + %cpu

T1.12 - - - 2 200 WL2 2 qkumo, ptk: x'44 + %cpu

Table 5-1: Test 1; combinations of CPU and “relative share” settings together with

workload name, the number of repetitions and monitor settings.

5.1.5 Test results and analysis
 The CPU readings received from the Linux guests clearly confirm the men-

tioned workload characteristics. Figure 5-5 and Figure 5-6 give typical CPU

readings for workload 1 and 2 respectively. Generally the readings for 2-CPU

guests fluctuate more than the case for 1-CPU guest (compare mentioned fig-

ures to Appendix A Figure A1-2 and A1-3 on page A7).

 It should be mentioned that the data illustrated have not been normalized

using values from Performance Toolkit. It has, however, been confirmed, that

CPU usage does not exceed 100% (~ 1 real CPU). An example of the Perform-

ance toolkit readings are given in Figure 5-6. Furthermore Performance Tool-

kit readings also confirm the general picture of a less intensive CPU usage for

workload 1.

0

25

50

75

100

125

oracle CPU% mrdata CPU% (accumulated)

Figure 5-5: CPU usage characteristics for WL1. Contributions from oracle owned and

application (mrdata) owned processes in accumulated (stacked) view. Performance

toolkit readings confirm maximum CPU readings ~ 1 whole CPU. (Not normalized

Linux readings, T1.1, 1-CPU-guest, workload during/execution time: 36s).

5.1 Test 1: Number of processors per Linux guest 69

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

0

25

50

75

100

oracle CPU% mrdata CPU% (accumulated)

Figure 5-6: CPU usage characteristics for WL2. Contributions from oracle owned and

application (mrdata) owned processes in accumulated (stacked) view. (Not normal-

ized Linux readings, T1.2, 1-CPU-guest, workload during/execution time: 200s).

Performance toolkit readings, shown in the graph to the right, confirm maximum CPU

readings ~ 1 whole CPU.

 All tests based on workload 1 show longer execution times on the guest

running with 2 CPUs. The tests show execution time savings on the 1-CPU

guest between 6% and 22% (see Table 5-2 and Figure 5-7).

T1.1 14% T1.2 -4% T1.7 6% T1.8 1%

WL1 14% WL2 2% WL1 6% WL2 0%

22% 0% 6% -1%

17% -1% 10% 1%

Table 5-2: Execution time savings in percent gained by using 1-CPU guests (in the

test setups with two concurrently running guests). Generally no effect on workload 2.

 Workload 2 is on the other hand not affected. Actually two of the tests

does show slightly longer execution times on the 1-CPU guests (2 - 4%), but

the general picture is that WL2 is unaffected by the number of CPUs (most

values vary ± 1%).

 Furthermore there is no reason to believe that the effect is related to the

two guests running concurrently – influenced by the test condition that is. Al-

though less trustworthy the measurement from the tests with one guest run-

ning give the exact same picture. One exception is test T1.5 and T1.6 (Appen-

dix A.1.4.1). These tests, however, were carried out an hour apart and seem to

be influenced by VM environmental matters.

 The Diagnose x’44 readings (Appendix A.1.4.2) show, as expected, that

guests with two CPUs issues many of these privileged instructions: The rate

explodes with more than 5000 instructions per second for WL1 and nearly

3000 instructions per second for WL2.

70 Chapter 5 - Performance tests & optimization

-

0.10

0.20

0.30

0.40

0.50

0.60

0.70

s
e

c
o

n
d

s
 p

e
r

e
m

p
lo

y
e

e

T1.3 T1.4

guest 1 : 2 CPUs & guest 2 : 1 CPU guest 1 : 1 CPU & guest 2 : 2CPUs

T1.7 T1.8

Figure 5-7: Workload duration measures. 1-CPU systems are generally faster on the

database intensive workload which involves several sequential processes (T1.3 +

T1.7). The difference disappears on the “pure” CPU intensive workload (T1.4 + T1.8).

5.1.6 Conclusion and recommendations
 Given the test results above it has been shown that small improvements

can be gained by reducing the number of virtual processors from two to one

for Linux guests. The tests support the sources saying that the overhead is

contributed by the Diagnose x’44 privileged instruction calls. This is evident

since the execution time of WL2, which foremost run two longterm sequential

processes and scarcely generates x’44’s, is barely affected by number of CPUs.

On the other hand WL1 is clearly affected and it generates numerous x’44’s

because of heavy process switching.

 Given the actual workloads in the KMD environment it is recommended to

remove the second virtual CPU from the Linux guests in production. Espe-

cially since workload 1 is considered much more typical than workload 2. If

the workloads later on changes characteristics (to actual multiprocessing) the

decision should be reconsidered.

 Naturally a CPU reduction restricts the amount of work a multiprocessing

guest can do. It does however also make the scheduling job easier for the hy-

pervisor. It will always leave one CPU to achieve acceptable response time for

others, while a guest generates pdf payslips, a Linux guest otherwise gets out

of control or similar.

 If both 1-CPU and 2-CPU guest are running in the same VM, the relative

share for the 2-CPU-guests should be twice the relative share size for 1-CPU

guest. That is, at least if 2-CPU guests are expected to finish single process

workloads as fast as 1-CPU guests in CPU sparse situations.

5.2 Test 2: Memory usage 71

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

5.2 Test 2: Memory usage

5.2.1 Motivation
 The most common storage (memory) z/VM configuration guideline for

Linux guests is to limit the main storage footprint for the guests as much as

possible [59]. Linux is written to get the most out of the available system re-

sources and therefore it eventually uses every bit of memory for buffers and

file system cache as illustrated in Figure 5-8.

Figure 5-8: “Munin-graph” showing a typical memory distribution for a (inactive) Linux

guest. Linux swaps although most memory is used for file cache and buffers.

 In a virtual environment, where memory usually is overcommitted, there

is not always a gain having large file system buffers in memory since the buff-

ers risk being paged back to disk. Actually the effect might be a performance

penalty since multiple guests suddenly are heavily dependent on the paging

sub system and the same physical disks.

 On the other hand a memory footprint, which is too small, can equally re-

duce performance significantly. When short of memory Linux “swaps” mem-

ory pages to disk to be able to complete its task. This naturally limit through-

put drastically. The optimum solution is to adjust guest memory according

the actual application needs.

 This test or rather “investigation” is made to document and illustrate how

Linux utilizes storage (memory) and how the z/VM environment is influ-

enced accordingly. It examines pagning and “swapping” from both perspec-

tives. The findings can be useful when sizing main storage for z/VM guests.

5.2.2 Measurement methods and tools

5.2.2.1 Data from within Linux

 This investigation utilizes the developed monitor solution (qkumon) in-

troduced in section 5.1.2.1. The actual data is derived from /proc/meminfo

and /proc/vmstat. Generally the /proc file system contains files repre-

senting the current state of the kernel and the system. The meminfo and

72 Chapter 5 - Performance tests & optimization

vmstat files give information on memory utilization and virtual memory re-

spectively.

 The data (plain text) from the two sources are parsed by two scripts

(memMeminfo.awk and memVmstat.awk), which reformat the output to a

comma separated string. The scripts are given in Appendix B.1.4.2 & B.1.4.3.

Memory model and /proc/meminfo data
 Table 5-3 introduces the values derived from meminfo and how they are

interpreted. Some confusion does seem to exist regarding some of these val-

ues especially swapCached. For instance an IBM Redbook [61] claims that

SwapCached “reports the size of cache memory swapped out to swap de-

vices”. This surely does not make sense. The adopted understanding is mainly

based on [3] and [9].

slab Memory used by the kernel for caching different
data structures.

PageTables Memory used to map between virtual and physical
memory addresses.

vmallocUsed Kernel memory virtually contiguous but not neces-
sarily “physically” contiguous.

Buffers Relatively temporary storage for raw disk blocks.
Cached Cache for files read from disk (the file cache).
MemFree Unused memory generally available.
SwapCached Memory that once was swapped out and has been

swapped back in, but still resides in the swapfile.
SwapFree Unused swap memory (on disk from Linux’s per-

spective).
Table 5-3: Values extracted from meminfo by memMeminfo.awk and their meaning.

 In order to ease graphic and subsequent data analysis, a few values are

calculated and added to the output string in addition to values given directly

in /proc/meminfo. The first value “apps” gives an estimate of the amount of

memory occupied by running programs from Linux perspective. This value is

calculated subtracting the other memory usage values from the total amount

of memory:

 apps = MemTotal – MemFree – Buffers – Cached – SwapCached – Slab –

 PageTables – VmallocUsed

 Finally the value “SwapEvictedFromRealMem” is calculated to present the

amount of pages, which are evicted from memory and only resides on swap

disk. The value is calculated as the unoccupied swap space not taken up by

swapCached, which in accordance with Table 5-3 still resides in memory. For

simplicity the value is only denoted “swap” in following analysis section:

 swap = SwapEvictedFromRealMem = SwapTotal – SwapFree – SwapCached

 It should be noticed, that swapCached should be plotted twice (in memory

and in swap), when plotting the memory distribution as a stacked “area

chart” using the values above.

5.2 Test 2: Memory usage 73

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

/proc/vmstat data
 Table 5-4 show the four values derived from /proc/vmstat and their

meaning. The focus is on page faults and page swapping in order to support

the observations from /proc/meminfo. The values from vmstat are count-

ers (in contrast to the values from meminfo). It is in other words necessary to

have two consecutive values in order to plot these data in a meaningful way.

In order to limit the complexity of the monitor script, which processes a sin-

gle data set per invocation; such calculations are left to post processing.

pgfault Number of minor page fault (since last boot).
pgmajfault Number of major page fault (since last boot).
pswpin Number of pages swapped in (since last boot).
pswpout Number of pages swapped out (since last boot).

Table 5-4: Values extracted from /proc/vmstat by memVmstat.awk and their meaning.

5.2.2.2 Data from outside Linux

 IBM Performance Toolkit is used to provide monitor data from z/VM.

This is necessary since Linux is unaware of paging activity within CP. Re-

member that z/VM or CP typically over commits storage and is thereby

forced to migrate some of the pages, which Linux believes is “real” physical

memory, to disk (see section 4.4.1.1 on page 57).

 The data of main interest is the paging behaviour of the VM guest under

investigation. Toolkit screen 22 “User paging load” gives this information.

The given details include paging activity (reads / writes), where pages resides

(main storage, expanded storage, or DASD), and the rate of pages migrated

from one storage type to another. The paging details for individual guest are

normally not logged to file, but this can easily be accomplished by enabling

user benchmarking (analogous to test 1, Appendix A.1.1.2). The monitor sam-

ple rate should in this case be set to 10 or 15 seconds to provide a more de-

tailed view.

5.2.2.3 Monitors influence on the system

 The monitors influence is considered to be neglectable. Deriving the data

from /proc/ file system is fast and efficient. The parsing by awk and the proc-

essing by xinetd is rather simple and barely use any system resources; espe-

cially when the typical sample rate (approximate two sample pr. second) into

account. The Performance Toolkit does not have significant influence on the

investigation or system in general (see section 5.1.2.4).

5.2.2.4 Test tools: useMem

 A small program has been developed to be able to influence and control

memory utilization in an easy, reliable, and deterministic manner. The pro-

gram is written in plain C using pthread as thread library. The main function-

ality simply is to allocate, initialize, and continuously use a variable amount

of memory, while measuring the access rate. The source code is given in Ap-

pendix B.2.

74 Chapter 5 - Performance tests & optimization

 Without start arguments the program starts by allocating and initializing

64MB memory and with 1 running worker thread looping through the allo-

cated memory. The initialization (e.g. using memset) is quite important, since

the kernel first allocates and occupies memory when used (not when allo-

cated with “malloc”).

 When inputting “t” and “g” the program’s main-function respectively in-

creases and decreases the number of working threads. These working threads

continuously access the allocated memory. The purpose with the working

threads is as mentioned to keep the memory active. Each work thread simply

loop though the allocated area one word at the time, reading data, performing

a simple arithmetic operation (addition) and writing back the result.

 If the memory is left unused Linux can safely swap the pages to disk. Us-

ing several threads can contribute to higher degree of “activeness”. Further-

more the use of multiple threads makes it possible to evaluate how the num-

ber of threads influences the data access rate.

main monitor

progress

counters

50
worker

Worker 1

allocated

memory

0x00

max 2GB

Figure 5-9: Central components of useMem test program. The main thread accepts

input and increases/decreases memory usage and worker thread count accordingly.

Worker threads continuously loop though allocated memory reading and writing new

values. Monitor thread periodically outputs progress of worker threads.

 The worker threads continuously increase their own individual counter

variable, for every 128kb of memory they process. A monitor thread wakes up

every second and calculates the progress of all the worker threads using these

counter variables. The monitor thread calculates the throughput and sends it

to stdout. It is presented as a comma separated string also including current

time of day (hh:mm:ss), the program’s elapsed time (millisecond accuracy),

the current number of worker threads, and the current amount of allocated

memory. All other messages are directed to stderr, which makes is easy to

gather data for analysis and plotting.

5.2.3 Test description
 This test requires a Linux guest, which has been running for some time

and therefore has memory full of file caches and buffers. CP should further-

more have moved a substantial amount the guest’s memory pages to DASD.

The monitor tools mentioned above (qkumon and the Performance Toolkit)

provide the necessary information to confirm these prerequisites.

5.2 Test 2: Memory usage 75

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 The idea procedure for the actual test is simple: When the monitors are

started, invoke useMem and allocate a good chunk of memory (around half of

the guest’s storage size). The guest becomes active: z/VM retrieves memory

pages from expanded storage (XSTOR) and paging DASDs.

 When useMem has allocated the memory, slowly increase the numbers of

worker threads in order to determine the influence on throughput.

 Stop useMem and restart it allocating a larger amount of memory, ap-

proximate 1.5 times the amount of memory allocated to the virtual machine.

When finished, read or otherwise handle a large file to influence file buffers.

 It should now be possible to find the effect on the memory initialization

rate of already having pages in main storage. It should also be possible to see

how Linux priorities data in different areas (cache, buffers, etc.).

To summarize (for a guest with 1G storage):

1) Check prerequisites:

- Substantial amount of guest pages (> 50%) in XSTOR or on DASD

- Linux should utilize most memory for cache and/or buffers.

2) Start monitoring:

- Set Perf. Toolkit sample rate to 10 sec. and enable user benchmarking

- Start memory usage monitoring (qkumon + client)

3) Invoke useMem program (uM) in guest and save output to file.

Allocate 1/2 the guest’s storage size: ./uM 512 >> testlog.csv

4) Slowly increase number of threads to 5 (pressing ‘t’ <Enter>)

If possibly synchronize with Performance Toolkit measuring intervals.

5) Quit and reinvoke useMem program (uM) in guest and save output to file.

Allocate 1,5 times the guest’s storage size:./uM 1536 >> testlog.csv

6) Slowly increase number of threads to 5 (pressing ‘t’ <Enter>)

If possibly synchronize with Performance Toolkit measuring intervals.

7) Decrease number of threads to 1 (‘g’ <Enter),

decrease memory to around the guest’s storage size (‘-‘ <Enter>)

8) Open large file ~512 MB (e.g. cat large file, >1GB, to /dev/null)

9) Stop useMem program (press ‘q’ <Enter>).

Stop monitoring (reset Perfkit sample rate to default, typically 60 sec).

 The data from the Performance Toolkit, the qkumon monitor, and the

output from the useMem program can now be correlated and analysed, for

example with respect to:

• Memory initialization rate, correlated z/VM (CP) page migration and

Linux page faults.

• How Linux priorities certain memory usages, e.g. file cache.

• How the number of threads influence the throughput.

76 Chapter 5 - Performance tests & optimization

5.2.4 Test results and analysis

Memory initialization
 The three Figures on page 77 give three different views on memory han-

dling, all covering the same period of time, namely step 1 to 5 in test descrip-

tion above or 5½ minutes. Figure 5-10 shows how Linux utilizes memory for

different purposes. The figure confirms, that a large portion of memory is

used for file cache before the test is started, - as required by the prerequisites.

 At the mark “3)” the useMem program is activated and it starts initializing

512 MB of memory. It takes approximately 40 seconds to do the initialization,

which corresponds to an initialization rate around 13MB per second.

 Figure 5-11 shows the situation from z/VM (CP) paging perspective. As it

could be expected, the paging system becomes very active in the same period.

The reason is that Linux has used memory for file cache. Since the system has

been inactive for some time, z/VM has moved the cache-memory-pages to

DASD and expanded storage. Now the pages have to be paged back in by CP

only for Linux to trash the content and make room for the useMem program.

 Now compare the first initialization rate, at mark “3)”, which the initializa-

tion rate for the second invocation of the useMem program at the mark “5)”.

Now the first 512MB is initialized almost instantaneously, or with an initiali-

zation rate in the order of 500 MB/sec. The clearly shows the speed differ-

ence and it explains why the storage size of guest generally should be mini-

mized in order to reduce z/VM paging.

 After “5)” Linux soon runs out of main memory and starts to “swap”. The

swapping activity is confirmed by “pswout/s” in Figure 5-12, which depictures

the number pages swapped out pr. second.

5.2 Test 2: Memory usage 77

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

0

0.5

1

1.5

2

3) 4) 5)

~GB

app slab PageTables vmallocUsed Buffers Cached MemFree SwapCached Swap

10:14:0510:08:35

Figure 5-10: Memory allocation during the first 4 steps of the test procedure.

Data derived from /proc/meminfo.

0

1

2

3

4

1000 pages / sec.

Pages read Migrated XSTOR to MS

Figure 5-11: z/VM paging activity within same time interval as Figure 5-10. Data de-

rived from CP (hypervisor) level using Performance Toolkit for VM.

-

10

20

30

40

50

1000 / sec.

page faults / sec pswpin/s pswpout/s

Figure 5-12: Linux swap activity within same time interval as Figure 5-10. Data de-

rived from /proc/vmstat

Throughput
 Figure 5-13 shows the benefit of having a real multiprocessor. The Linux

guest used for the test had two virtual processors, which were supported by

78 Chapter 5 - Performance tests & optimization

two real processors (IFLs). The “throughput” is doubled, when running with

multiple worker threads.

 It also shows that the throughput during test step 7 is much lower than

during test step 4. This is obviously due to swapping, because Linux is forced

to swap during step 7, where useMem uses more memory (1536MB) than the

Linux guest has (1024 MB). This is supported by Figure 5-12 which show no

swap activity during step 4; whereas Figure 5-15 shows a lot activity during

step 7.

0

100

200

300

400

500

600

700

800

 thoughput (MB/s) number of worker threads

1

2

3

4

5

1

2

3

4

5

1

4) 7)

Figure 5-13: The throughput designates the amount of memory, which useMem is

able to access and rewrite pr. second. Here depictured during test step 4 and 7 where

the number of worker threads are increased to 5.

File cache
 Notice on Figure 5-10 that Linux retain an amount of memory as file cache

during step 5, although short of memory and heavily swapping. From Figure

5-14 it appears that the cache size is increased even further, during test step 8

where a large file is read.

 Actually Linux’ urge to swap in order to make room for file cache can be

adjusting using the /proc/sys/vm/swappiness attribute. This issue will

be revisited in test 3, where the matter becomes more evident.

5.2 Test 2: Memory usage 79

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

0

0,5

1

1,5

2

2,5

6) 7) 8) 9)

app slab PageTables vmallocUsed Buffers Cached MemFree SwapCached Swap

Figure 5-14: Memory allocation during step 6 to 9 of the test procedure. Data derived

from /proc/meminfo.

0

10

20

30

6) 7) 8) 9)

pagefaults/sec pages swapped out/sec pages swaped in/sec

k

Figure 5-15: Linux swap activity within same time interval as Figure 5-14. Data de-

rived from /proc/vmstat.

80 Chapter 5 - Performance tests & optimization

5.3 Test 3: Disk I/O; LVM stripes and caches

5.3.1 Motivation
 The use of LVM (Logical Volume Manager) is very common method to

improve disk performance on Linux systems. In very short terms, LVM can

create virtual disk from several physical disks, and continuously spread data

on all the physical disks in so-called stripes. In expense of a little book keep-

ing overhead, this basically allows for the system to utilize several disks con-

currently and thereby increase performance.

 This test is amongst other things intended to show the effect of LVM on a

mainframe system. Monitoring and optimizing of disk performance on a

Linux z/VM guest can however be difficult task complicated by the many lev-

els of buffers and caches: Linux has file buffers in memory (as shown in test

2), z/VM uses minidisk caches, and the disk control unit also contains large

caches.

 This test is therefore designed to show the effect of buffers, caches, and

LVM stripes.

5.3.2 Measuring methods and tools

5.3.2.1 Test tools: Bonnie

 This test relies on an old, open source, disk benchmark tool called bonnie,

which very conveniently is included in the SLES9 distribution. Bonnie uses

simple methods to measure the performance of UNIX file system operation.

It basically creates a file of a specified size and uses different methods to ac-

cess the file while measuring performance. An example of Bonnie output:

z6qku@linx03:/database/test03> bonnie -s 512

Mon Sep 24 15:18:29 CEST 2007

Bonnie: Warning: You have 996MB RAM, but you test with only 512MB datasize!

Bonnie: This might yield unrealistically good results,

Bonnie: for reading and seeking and writing.

Bonnie 1.4: File './Bonnie.10395', size: 536870912, volumes: 1

Writing with putc()... done: 15224 kB/s 99.1 %CPU

Rewriting... done: 32375 kB/s 11.9 %CPU

Writing intelligently... done: 28996 kB/s 18.7 %CPU

Reading with getc()... done: 14815 kB/s 96.4 %CPU

Reading intelligently... done: 470583 kB/s 88.9 %CPU

Seeker 1...Seeker 2...Seeker 3...start 'em...done...done...done...

 ---Sequential Output (nosync)--- ---Sequential Input-- --Rnd Seek-

 -Per Char- --Block--- -Rewrite-- -Per Char- --Block--- --04k (03)-

Machine MB K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU /sec %CPU

For further information please refer to http://www.textuality.com/bonnie/

5.3.2.2 Test tools: useMem

 The useMem program from test 2 (see page 73) is reused here, in order to

put the Linux file cache out of the game. This is basically accomplished by let-

ting useMem occupy all available memory, and thereby leave no room for file

cache. In order for this to work, useMem has to be started with a little higher

priority than normal programs using nice:

5.3 Test 3: Disk I/O; LVM stripes and caches 81

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 nice -n -1 ./uM xxx 0 (as root)

 It is also necessary to instruct Linux to minimize its tendency to swap.

This is accomplished like this:

 echo 0 > /proc/sys/vm/swappiness

5.3.2.3 Data gathering

 This test relies on the performance measurement provided by Bonnie,

which should be adequate to show the effect of buffers, caches, and LVM

stripes. The qkumon memory monitor from test 2 (section 5.2.2.1 p. 71) is re-

applied to reveal potential in memory file caching.

5.3.3 Test description
 The idea is first to apply useMem, the swappiness attribute, and nice pri-

orities as measures to avoid in memory file caching. The effect of this will be

verified in the first three test steps (T3.1 – T3.3). Having file caching under

control, Bonnie is used under the eight possible combination of:

• Enabled / disabled minidisk cache

• Enabled / disabled Control Unit Cache

• Running on LVM striped based disk / on non-LVM striped disk.

 The combinations are given in Table 5-5. Bonnie should be run three

times for every step in the test matrix.

T
e
st

 n
u
m

b
e
r

us
eM

em
S

w
a
p
pi

n
e
ss

p
in

e
ss

M
in

id
is

k
ca

ch
e

LV
M

 s
tr
ip

e
s

C
U

 c
a
ch

e

T3.1 60 x x x

T3.2 x 60 x x x

T3.3 x 0 x x x

T3.4 x 0 x x

T3.5 x 0 x x

T3.6 x 0 x

T3.7 x 0 x x

T3.8 x 0 x

T3.9 x 0

T3.10 x 0 x

Table 5-5: Test matrix giving test combinations.

Swappiness is set by echoing the specified value to the attribute:

 echo 0 > /proc/sys/vm/swappiness

 echo 60 > /proc/sys/vm/swappiness

Minidisk cache can be turned off/on for a particular range of minidisk

(0100-0110) in a specific virtual machine (LINX03), by issuing the following

CP command from a privileged user/guest:

SET MDCACHE MDISK OFF USERID LINX03 0100-0110 DIR

SET MDCACHE MDISK ON USERID LINX03 0100-0110 DIR

82 Chapter 5 - Performance tests & optimization

Control Unit (CU) Cache can be controlled (-c) and inquired (-g) per linux

disk device using tunedasd:

tunedasd -c bypass /dev/dasdf

Setting cache mode for device </dev/dasdf>...

tunedasd -c normal -n 2 /dev/dasdf

Setting cache mode for device </dev/dasdf>...

tunedasd -g /dev/dasdf

normal (2 cyl)

5.3.4 Test results and analysis
 Figure 5-16, step 1) The system has plenty of free memory and can eas-

ily cache the complete file created by Bonnie.

 Figure 5-16, step 2: The useMem program is activated and starts by

consuming nearly all free memory. When Bonnie is started the system prefers

to swap the useMem program to disk, even though it has been started with a

slightly higher priority (nice -1). This is typical Linux behaviour and conse-

quence of /proc/sys/vm/swappiness defaults to 60.

 Figure 5-16, step 3: /proc/sys/vm/swappiness has now been set to

0. In combination with useMem having slightly higher priority and Bonnie

slightly lower priority than normal, the effect is that the idle useMem now

keeps its memory area. This leaves basically no room for Bonnie file cache.

This is the setting used the remaining test steps (T3.3-T3.10).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1) 1) 1) 2) 2) 2) 3) 3) 3)

app slab PageTables vmallocUsed Buffers Cached MemFree SwapCached Swap

Memory is not occupied

and is used as file cache

Memory is occupied, but

Linux prefers to swap to

make room for file cache

Memory is occupied by program

with little higher priority (nice -1)

/proc/sys/vm/swappiness

set to 0

Figure 5-16: Memory distribution within the first three test steps (T3.1-T3.3).

 The test results given Table 5-6 and Figure 5-17 generally confirm what

could be expected: From T3.1 in one end revealing the immense advantage of

5.3 Test 3: Disk I/O; LVM stripes and caches 83

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

files caches; to the T3.9 in the other end having no “support mechanism” and

also the lowest transfer rate.

T
es

t
nu

m
b
er

u
se

M
e
m

S
w

a
p
p
in

e
ss

p
in

es
s

M
in

id
is

k
ca

ch
e

L
V

M
 s

tr
ip

e
s

C
U

 c
a
ch

e

S
e
q
.
w

rit
e

(b
lo

ck
)

%
C

P
U

S
e
q
.
re

ad
,
re

w
rit

e
%

C
P

U

S
e
q
.
re

ad
 (
bl

o
ck

)

%
C

P
U

R
a
nd

om
 r
e
ad

%
C

P
U

T3.1 60 x x x 137 47.5 110 25.9 1,041 99.6 61.7 100.3

T3.2 x 60 x x x 39 15.9 58 16.3 1,032 100.1 75.5 108.9

T3.3 x 0 x x x 34 19.8 32 12.8 431 82.0 21.9 136.0

T3.4 x 0 x x 25 11.5 13 3.6 435 75.3 21.7 121.8

T3.5 x 0 x x 44 21.3 25 8.8 126 21.6 2.6 10.4

T3.6 x 0 x 43 20.2 27 8.1 127 19.3 2.6 12.1

T3.7 x 0 x x 44 21.0 27 9.2 115 18.9 2.6 10.5

T3.8 x 0 x 31 14.6 14 4.4 43 5.3 1.1 3.8

T3.9 x 0 31 14.5 14 4.4 43 5.1 1.1 3.2

T3.10 x 0 x 25 15.8 14 4.6 43 5.4 1.0 3.6

Table 5-6: Average values of the Bonnie test results (all test have been repeated

three times). All read/write values are given in MB/second.

-

50

100

150

200

T3.1 T3.2 T3.3 T3.4 T3.5 T3.6 T3.7 T3.8 T3.9 T3.10

Seq. write (block) Seq. read, rewrite Seq. read (block) Random read

1041 1032
~MB / s

431 435

Figure 5-17: Plot of the transfer rates (read/write values) given in table above.

84 Chapter 5 - Performance tests & optimization

5.4 Test 4: z/VM in z/VM penalty

5.4.1 Motivation
 The mainframe hardware supports two levels of virtualization (SIE) with-

out notable performance degradation (as mentioned in 3.7.4 on page 51).

Since the logical partitioning provided by PR/SM make up the first level, a

z/VM system like KMD’s production environment “KMDZVM”, automatically

uses the 2nd SIE level (refer to Figure 5-18). Any 2nd level z/VM system within

the production system (like the VMDEMO system provided for the thesis pro-

ject) will require a 3rd level of SIE, which has to be emulated.

Figure 5-18: KMD’s z/VM environment.

 VM performance expert Bill Bitner states in [50] that running three levels

of SIE is “fairly expensive”. On the other hand he claims to have seen as much

as 9 levels of virtualization, which imply that adding another layer shouldn’t

be fatal.

 The use of the VMDEMO system for this particular project has indicated

that emulated SIE indeed is very expensive. This test determines the effect of

running a z/VM guest under z/VM in a LPAR. This test is created to reveal

weather the overhead vary with the workload type and complexity.

5.4 Test 4: z/VM in z/VM penalty 85

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

5.4.2 Measuring methods and tools

5.4.2.1 Data gathering

 The IBM Performance Toolkit for VM has been applied to provide proces-

sor utilization data for the entire z/VM system – or actually from both z/VM

system (KMDZVM and VMDEMO). This approach has been possible, because

the test was completed during a weekend in completely idle production envi-

ronment, where any processor usage above 5% could be attributed to the test.

5.4.2.2 Test tools

 The tests are based on the same workloads and tools, which have been

used in the preceding tests:

• From test 1: The database intensive payroll processing workload 1.

• From test 2 and 3: The useMem program applied as a multi threaded

processor consuming, but yet simplistic workload (no complex instruc-

tions involved is involved) .

• From test 2: “CAT’ing” a large file to /dev/null in order to produce simple

file I/O.

• From test 3: The Bonnie benchmark program in order to produce a more

complicate file I/O.

5.4.3 Test description
 The four test steps given in Table 5-7 have to be completed in similar

Linux guests within the two z/VM systems (or preferably in the same guest

moved from one z/VM system to the other).

 The performance monitor should be active in both z/VM system, when

monitoring the second level system (VMDEMO).

T4.1 Test 1 WL1: Perspektiv Payroll Processing (LS410)
T4.2 useMem/uM 512 2 (running in 3 minutes)
T4.3 cat /database/pas.dbf > /dev/null (~ 2GB)

T4.4 bonnie –s 1024

Table 5-7: Test steps to be performed in both z/VM systems.

86 Chapter 5 - Performance tests & optimization

5.4.4 Test results and analysis
 The test results (Figure 5-19 to Figure 5-22) reveal an immense overhead

in the 2nd level z/VM system (VMDEMO). As shown in the first figure, it only

takes KMDZVM around 9 minutes to process all tasks. As illustrated in the

next figure, it takes approximately 36 minutes to do exact the same in

VMDEMO.

0

50

100

150

200

1) 2) 3) 4)

In SIE (%EM) CP system services (%SY) CP user related (USERCP) Wait state(%WT)

~9min

Figure 5-19: Test T4.1 to T4.4 run in first level z/VM system (KMDZVM); measure-

ments from the CP level (collected by Performance Monitor) in the same system.

0

50

100

150

200

1) 2) 3) 4)

In SIE (%EM) CP system services (%SY) CP user related (USERCP) Wait state(%WT)

~36min

Figure 5-20: Test T4.1 to T4.4 run in second level z/VM system (VMDEMO); meas-

urements from the CP level (collected by Performance Monitor) in KMDZVM.

5.4 Test 4: z/VM in z/VM penalty 87

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

0

50

100

150

200

1) 2) 3) 4)

In SIE (%EM) CP system services (%SY) CP user related (USERCP) Wait state(%WT)

Figure 5-21: Test T4.1 to T4.4 run in second level z/VM system (VMDEMO); meas-

urements from the CP level (collected by Performance Monitor) in VMDEMO.

0

250

500

750

1000

T4.1 T4.3 T4.4

Duration 1st level system Duration 2nd level system

Figure 5-22: Comparison of runtimes/the duration of the individual test steps in the

two z/VM systems.

 Figure 5-22 gives a clear impression of, that different workload types con-

tributes to different degrees of overhead. It is the database intensive (com-

plex) workload in test step T4.1, which is affected the most. This is supported

by Figure 5-20 which shows (in yellow), that T4.1 is the workload, which con-

tributes with most work for the hypervisor (CP) in the first level system.

5.4.5 Conclusion and recommendations
 Based on test results it can be concluded, that a 2nd level VM system never

should be used for production, - simply being to ineffective. Furthermore a

2nd level test system should always be limited on processor resources, since

otherwise innocent background processes suddenly can be turned into re-

source consuming problems.

88 Chapter 6 - Availability - Monitoring

6. AVAILABILITY - MONITORING

 This chapter deals with the issue of availability: In this context it is the

matter of keeping software services available for the customers. In accor-

dance with KMD’s wishes, this is considered from a monitoring angle: The

ability to automatically detect issues, which hinders or possibly will hinder

the customer from using the system with satisfactory performance.

 Monitoring of hardware and network devices plus software services, are

important tasks when managing an IT infrastructure. Companies and larges

enterprises, which are greatly dependent on IT or maybe even profit on pro-

viding them, often have a dedicated central monitoring centre. Here people

supervise the operation of the complete IT environment 24x7. In this way it

possible to react very quickly when an issue arises – and hopefully resolve

them before they become real problems.

 Regardless of the size and complexity of the system(s) being monitored, it

requires some kind of programs or systems to do the job. This chapter reflects

on different aspects of finding the right monitoring software for Linux guests

under z/VM on the mainframe (in some aspects particular for KMD).

6.1 Monitoring methods
 Monitoring systems fall into two groups depending on method used to

gather data. The first group relies on a centralised approach. Here a single

program or a few processes in a single location collects data. The central

monitoring system actively tries to determine the status of the monitored en-

tities. This is accomplished simply by establishing some kind of connection to

them or by performing operations involving them (Figure 6-1).

Centralised Distributed

interested

parties

Figure 6-1: Centralised versus distributed monitor approach.

 The second group is based on the distributed approach. Here special

monitoring programs are placed on or close to the monitored entities. These

programs are often called “agents” and they perform the necessary tests and

report the outcome to the relevant entities. These agents can range from sim-

ple programs to complex intelligent autonomous mobile software elements.”

[68]

6.2 Components to monitor 89

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

6.2 Components to monitor

6.2.1 Standard warning / error conditions
 This section presents typical conditions, which result in warning or errors

on normal (not virtualized) servers, e.g. Microsoft Windows servers, and

UNIX servers. It does not take duration, number of repetition, the severity of

event into account, although such thresholds/levels typically are specified.

Processor
 Processor usage is often monitored in order to detect system irregularities,

or general resource shortages. Concrete warning condition might include:

• High system (kernel) CPU usage, e.g. above 80%

• Generally low idle time (might indicate CPU overload/resource shortage)

Memory
 Memory is naturally also an important resource. It is a severe problem, if a

system runs out of memory. It can have a great negative impact on perform-

ance if a system constantly needs to swap, because the active working set is

bigger than the physical memory. Examples of error/alert conditions:

• The system is low on free swap space and thereby on memory.

• The page rate to/from swap is too high.

Disk, file system, and files
 Disks are monitored in order to ensure space for persistent as well as tem-

porary data. In some situation monitoring might include the physical well-

being of the disk devices, in order to ensure data integrity. Unexpected peri-

ods with high amounts of reads/writes might indicate an I/O bottleneck or a

failing application out of control. Individual files might also be monitored for

changes to reveal security breaches or because the files are crucial for system

operations. Concrete examples of warning/alarms in this category:

• Disk low on available space, e.g. below a threshold in MB or a percentage.

• Disk low on i-nodes, e.g. below a certain percentage of available i-nodes.

• High disk utilization, “too many” reads or write.

• Any modification of files, e.g. /etc/passwd and /etc/group.

Network interfaces and connectivity
 A generally well-functioning server is not worth much, if the services run-

ning on it cannot be reached, because the network is malfunctioning. Exam-

ples, which could raise warning or errors:

• High Packet loss.

• Many packet checksum errors or packet collisions

• Network interface down.

90 Chapter 6 - Availability - Monitoring

Programs, processes, services and logs
 The last category focuses on individual programs. If a key program, proc-

ess, or service is not found on the process list as expected, this is a clear indi-

cation of an error. In other situations it can be useful to follow (filter) log files

to reveal error conditions. Some times it can even be necessary to invoke the

actual service and ensure it gives the expected results with an adequate re-

sponse time.

• Unexpected high processor utilization of individual programs/daemons

• High number of zombie processes

• Special entries appear in log files

• A service does not respond as expected within acceptable time.

6.2.2 Mainframe/virtualization considerations
 Running servers in a virtual environment like z/VM require some special

consideration of what to monitor, how to do it, and from where to do it.

Processor
 Processor usage readings are a good example of monitoring data, which

cannot be delivered from within the Linux guest. Although never Linux ker-

nels include “steal time” (as mentioned in section 4.4.1.2 p. 58) this is defi-

nitely not the case with older kernels. In virtual environments still dependent

on older kernels, is therefore necessary to trustworthy CPU usage readings

from the CP layer.

Hypervisor data
 Monitoring from within individual guests (Linux or not), will generally not

be able to reveal much useful information about the virtual environment (the

z/VM system) as a whole. Only data from the hypervisor level (from CP) can

provide a trustworthy picture of all the virtual machines together. Important

values include CP paging activity, I/O rates, and the overall CPU utilization.

 Luckily z/VM provides a general method for accessing CP monitor data for

programs like the “IBM Performance Toolkit” and other monitoring products.

Instrumentation overhead
 When running virtual servers, focus on resource sharing and consumption

typically increases, and it becomes much more apparent, if the monitoring

software squanders processor cycles and memory away. If the instrumenta-

tion overhead for a single Linux instance come close to a feeble 1% of a proc-

essor, the monitoring system alone will quickly consume half or whole proc-

essors depending on the number of guests.

 Adding extra processors will increase the license costs of the remaining

software portfolio, and the monitoring software suddenly becomes incredible

expensive. Monitoring solutions should therefore be small, fast and efficient

and preferably have a small memory footprint.

6.3 Other requirements 91

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

6.3 Other requirements

6.3.1 Existing Alert Chain
 The monitoring product has to be able to integrate into KMD’s existing

monitoring system. KMD operates many different hardware platforms and

operating system and correspondingly several monitoring solutions. Addi-

tional monitoring products have been added as KMD has taken over opera-

tion of already existing IT systems using non KMD standard software.

Figure 6-2: The “alert chain” at KMD. Monitoring messages (alerts and warnings) are

transformed to a uniform format and gathered in HP OvenView/Unix.

 In order to provide the central monitoring centre with single view of all

platforms, KMD has chosen to gather all alerts in HP OpenView. The individ-

ual monitoring solutions have a central server gathering data for their specific

environment (see Figure 6-2). These central servers transform alerts into a

uniform message format developed by KMD. HP OvenView agents on the

92 Chapter 6 - Availability - Monitoring

central servers then transfer the messages to the main HP OpenView monitor

(the Proactive Console) using in build-in transfer mechanism.

 Besides providing a single view of all alters, HP OpenView furthermore

has the ability to “forward” alerts to POB (Wendia Point Of Business). POB is

software tool, which amongst other things is used manage the IT Service

Management processes within the company. (KMD is organized according to

ITIL, the IT Infrastructure Library, which is a best practices framework pro-

vides guidance on how to manage IT infrastructure and to streamline IT ser-

vice[2].). The monitoring system is in other words able to automatically in-

voke the business process, which can rectify the problems.

6.3.2 Support, manageability, security, costs
 There are naturally other issues, which should be taken into account when

choosing monitoring software: Product support for once. It is imperative for

a company like KMD that there is a trustworthy and reliable a support unit,

which can answer question, help solving problems reasonable fast, and pro-

vide fixes to potential software bugs. This can be a problem in regards to open

source software, unless the software is included in one of the enterprise class

Linux distributions and supported there.

 As the number of monitored system raises is becomes apparent, that easy

management is another important factor. The task of logging in on poten-

tially hundreds of servers, in order to update the monitoring software or

make small configuration adjustments, quickly becomes time-consuming and

fatally monotonous. It can therefore be an important feature, if the monitor-

ing system includes some kind of central management, if not already included

in the system being monitored.

 Monitoring software can also pose a potential security risk. It can for ex-

ample be necessary to loosen firewall rules in order to allow transfer of moni-

toring data and/or managing the monitoring software itself. High security

should therefore an integral part of the monitoring solution.

 Finally the costs should be evaluated – and not from a purchase and soft-

ware licence perspective alone. Implementation, customization, and man-

agement costs should be assessed as well.

6.4 Monitor Software Candidates
 This section gives an initial list of monitoring software candidates, which

deserve further investigation. The candidates are ranging from relative simple

open source projects with Linux-only monitor scope, to complex software

monitoring products, which monitors both z/VM and Linux.

6.4 Monitor Software Candidates 93

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

6.4.1 Commercial software

IBM Tivoli OMEGAMON XE
 Tivoli OMEGAMON XE is IBM’s series of performance and availability

products for the mainframe platform. The products were originally produced

by the Cradle Coorporation, which was acquired by IBM. The series include

OMEGAMON XE products for “z/VM” and “Linux for zSeries”.

 The z/VM monitor software provides amongst other things a quick view of

z/VM system health; workloads for virtual machines, response times,

throughput, and operational errors.

 OMEGAMON XE for Linux on zSeries provides detailed performance met-

rics, such as CPU use, I/O statistics, network performance, and other from

important systems, which help administrators see crucial interdependencies.

 IBM Tivoli OMEGAMON XE for Linux on zSeries integrates with Tivoli

OMEGAMON for z/VM to provide the crucial combined dimension.

http://www.ibm.com/software/tivoli/products/omegamon-xe-linux-zseries/

http://www-306.ibm.com/software/tivoli/products/omegamon-zvm/

[10]

6.4.1.1 Velocity software ESALPS

 ESALPS is Velocity Software’s “Linux Performance Suite” for Linux,

TCP/IP, and z/VM. The products included in the suite can e.g. collect and dis-

play network, Linux and z/VM performance data; create reports and perform

detailed analysis.

 ESALPS provides exception monitoring and reporting, which should allow

for fixing problems before noticed by the users. The ESALPS whitepaper di-

rectly state, that ESALPS can provide operational alerts, which can be dis-

played on an HP Openview console.

http://www.velocity-software.com/esalps.html

[32][33]

6.4.1.2 BMC MAINVIEW for Linux – Servers

 “MAINVIEW for Linux – Servers" is part of BMC’s MAINVIEW family,

which includes products for zSeries system management and intelligent op-

timization of the mainframe infrastructure.

 The product should be capable of monitoring hundreds or even thousands

of Linux systems in a z/VM environment. The key Linux areas monitored in-

clude: system activity; process activity; user information; shared memory,

message queue, and semaphore statistics; file system information such as

space utilization, i-nodes, and block information. The product should also be

able to monitor z/VM hypervisor performance.

http://www.bmc.com/products/proddocview/0,2832,19052_19429_26309_8716,00.html

[70]

94 Chapter 6 - Availability - Monitoring

6.4.2 Open Source Linux Monitoring software

6.4.2.1 Nagios

 Nagios is a host and service monitor designed to detect problems before

they are noticed by the end-users. It is designed for Linux but works fine un-

der most UNIX variants. A monitoring daemon runs intermittent checks on

hosts and services specified by external "plugins”. The daemon can send noti-

fications (email, instant message, SMS, etc.) when problems are encountered.

Nagios allows for accessing status information, historical logs, and reports via

a web browser

 Nagios is included in the Novell SUSE Enterprise Linux Server 9 and 10

distributions in version 1.2 and 1.3 respectively. Novell offers Level 3 support

(code debugging and patch provision) on the software [43].

http://www.nagios.org/

[42]

6.4.2.2 MON, Service Monitoring Deamon

 “mon” is a service availability monitoring tool, which can send “alerts” on

prescribed events. The “mon” distribution comes with a predefined “moni-

tors” ranging from simple ICMP echo (ping) to IMAP and LPD Print Server

supervision. A monitor can also include a complex analyzing of results from a

application-level transaction. “Alerts” are actions such as sending emails,

making submissions to ticketing systems, or sending events to HP Openview

management stations.

 The “mon” tool is included in the Novell SUSE Enterprise Linux Server 9

and 10 distributions. Novell offers Level 2 support (reproduction of potential

issues) on the software [43].

http://www.kernel.org/software/mon/

[41]

6.4.2.3 Hobbit

 The Hobbit monitor is intended for monitoring of servers, applications

and networks. It provides real-time monitoring, an easy web-interface, his-

torical data, availability reports and performance graphs. To ease configura-

tion, Hobbit keeps all configuration data in one place: On the Hobbit server.

It is in other words not necessary to log in on all servers to make changes to

the configuration.

 Hobbit is especially interesting in this context because a z/VM Hobbit cli-

ent is available. Hobbit is unfortunately (being open source) not included in

the Novel SUSE Enterprise Server distributions.

http://www.sourceforge.net/projects/hobbitmon

[72]

6.4 Monitor Software Candidates 95

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

7. CONCLUSION

 Having started from scratch, with a typical limited academic understand-

ing of mainframe architecture, this thesis project has provided a basic insight

in, and appreciation of, IBM mainframe hardware and architecture; in par-

ticular when it comes to the topic of system virtualization using the z/VM op-

erating system.

 The simplified presentation of mainframe hardware and architecture will

scarcely suffice in regard to practical operation of mainframes hardware, and

to fully understand the complex z/OS operating system. It can, however, be a

splendid starting point for further exploration.

 But when recognising that z/VM and Linux hastily conquer and expand

mainframe ground, the somewhat simplified view is easily justified. Unfortu-

nately it leaves out some of the impressive reliability, availability and service-

ability features (like Geographically Dispersed Parallel Sysplex, GPSP), which

really singles out the mainframe platform.

 According to thesis purpose and goals the report describes how the z/VM

operating system is able establish virtual machines, which behave like real

machines in almost every detail. The description is based on general section

on virtualization theory, which also applies for non-mainframe platforms

(e.g. virtualization using WMware and Xen on the x86 platform).

 It is explained how z/VM exploits the mainframes hardware virtualization

support to achieve very high virtualization efficiency; and how it offers

“paravirtualization capabilities” or “hypervisor calls” to enhance performance

even further for operating systems, which are “virtualization aware” (CMS in

particular).

 The ability of z/VM to share and distribute hardware resources is pre-

sented, taking a starting point in resources typically allocated to virtual Linux

servers (“Linux guests”). Especially the measures to control and predict proc-

essor resource allocation is in focus. A relatively simple method (including a

pseudo function) has been developed in other to give a good estimate of the

distribution of processor power between individual virtual machines (and the

virtual processors within these).

 The theoretical assessment of the virtual environment is supported em-

pirically, with a number of performance tests. These tests have provided

hands-on experience, and a practical comprehension of the system. The per-

formance tests given in report illustrate the behaviour of mainframe hard-

ware, z/VM, Linux, and the combination of the three. These tests should gen-

erally contribute to a better understanding of running Linux under z/VM on

the mainframe. Additionally the tests contribute with a few concrete per-

formance optimization recommendations for the company specific setup.

96 Chapter 7 - Conclusion

 The thesis finally touches upon the topic of availability of mainframe linux

services – solely focusing on monitoring software according to company

wishes. The monitoring chapter should only be regarded as an offset for fur-

ther investigation, since it has not been possible to make thorough study of

this topic in due time.

 All in all the main goals for this thesis have been achieved, except when it

comes to finding most suitable monitoring software solution for KMD. The

thesis does however still provide the detailed platform knowledge, and initial

monitoring considerations, which can useful in order to fulfil the goal. The

thesis distinguishes itself from other work by:

• Providing a concise, yet theoretically and practically balanced, description

of system virtualization on the mainframe using z/VM.

• Formulating a relatively simple method to estimate the distribution of

processor resources between the individual virtual machines in z/VM.

• Supplying a number of developed test programs and tools, including:

o A little, robust, multithreaded, and on-demand memory consuming,

test program, which e.g. can estimate memory access rate and help

reveal Linux swap plus z/VM paging performance issues.

o A highly customizable solution to monitor practically any internal

Linux values – using standard Linux components only.

o A monitoring client program, which can log and plot monitored data

on the run.

• Providing tangible test results for generally accepted performance optimi-

zation methods, while providing some insight in running z/VM and

Linux.

Future work
 From an academic point of view, it could would generally be wise to ac-

knowledge the mainframe for the advantages it possesses; and to accept it as

a current and future platform, since nothing but general misperceptions indi-

cate the mainframe is about to vanish. Its single biggest threat is probably the

lack of experienced mainframe software developers and operators; a problem,

which IBM has responded to by arranging mainframe courses on universities

around the world. It is however a miserable situation, if an extremely reliable,

secure, cost competitive, and energy efficient platform actually dies, because

of general ignorance and misperceptions.

 As a concrete example it could be interesting to research whether any of

the mainframe techniques (e.g. the processor dispatching and scheduling

techniques in z/VM and PR/SM) could benefit system based on the emerging

multi core processors. The mainframe has after all a head start as Symmetric

MultiProcessing (SMP) system. Mainframe technology and software can on

6.4 Monitor Software Candidates 97

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

the other hand also be expected to benefit from findings in the world of dis-

tributed computing.

 From company (KMD) perspective it would be logical to implement the

recommendation from the performance tests (if not already done). The next

step would be to finish the monitor software investigation and implement the

best suited software.

 If it later becomes necessary to tweak disk performance, it could be useful

to test the influence of the different Linux I/O schedulers. It could also be

useful to look at SCSI via fibre (FBA DASD devices), in order to make it easier

to provide the large disks, which it lately has become more evident that the

Perspektiv application requires.

 Finally a Linux distribution upgrade from SLES9 SP3 to SLES10 SP1

should be considered. Mainly for the improvements in the Linux kernel, e.g.

in regard to “steal time” but more importantly to exploit improvements in

z/VM and hardware concerning better hardware virtualization support (e.g.

QDIO assist technology like “QDIO Enhanced Buffer-State Management” and

“Host Page-Management Assist, see p. 52).

98

BIBLIOGRAPHY

[1] Ibm system z partitioning achieves highest certification. http://www-

03.ibm.com/systems/z/security/certification.html.

[2] Itil newsletter: Introducing itsm. http://itsm.the-hamster.com/itsm1.htm on 2007-09-26.

[3] Linux kernel (2.6.5-7.244) documentation: Proc filesystem.

/usr/src/linux/Documentation/filesystems/proc.txt.

[4] Product information: How hcd and hcm help you. http://www-

03.ibm.com/servers/eserver/zseries/zos/hcm/hcmhtmls/hcmpinfs% .html.

[5] Vm scheduler basics - virtual multiprocessor support. IBM z/VM homepage: VM perform-

ance tips http://www.vm.ibm.com/perf/tips/schedule.html.

[6] Ibm mainframe partitioning: Lpar vs vm. Computer Economics Report, 2001 23 11 4-8,

November 2001.

[7] Ibm z/vm v5r1.0 cms user's guide. SC24-6079-00,

http://publibz.boulder.ibm.com/epubs/pdf/hcsd7b00.pdf, September 2004.

[8] z/vm: Glossary, September 2004. GC24-6097-00.

[9] The term "swapcached" in /proc/meminfo. "kmerley's blog" on Kerneltrap.org, 2004-

2005. http://kerneltrap.org/node/4097.

[10] Ibm tivoli software: Manage the broad range of systems that supports your high-priority

applications. ftp://ftp.software.ibm.com/software/tivoli/brochures/bc-mng-brd-ra.pdf, 2005.

GC28-8386-00.

[11] Ibm, z/architecture - principles of operation. SA22-7832-04,

http://publibz.boulder.ibm.com/epubs/pdf/a2278324.pdf, September 2005.

[12] Program directory for z/vm. http://www.vm.ibm.com/progdir/zvm52000.pdf, December

2005. GI11-2860-00.

[13] z/os: Hardware configuration definition user’s guide, September 2005. SC33-7988-05.

[14] z/vm: Guide for automated installation and service, December 2005. GC24-6099-02.

[15] z/vm: I/o configuration, v5r2. http://publibz.boulder.ibm.com/epubs/pdf/hcsg1b10.pdf,

December 2005. SC24-6100-01.

[16] z/vm reference guide (v5r1). IBM, http://www-

07.ibm.com/servers/eserver/includes/download/gm130137.pdf, January 2005. GM13-0137.

[17] z/vm: Service guide, December 2005. GC24-6117-01.

[18] z/vm: Vmses/e intoduction and reference, December 2005. GC24-6130-01.

[19] Certification report: Pr/sm lpar for the ibm system z9 enterprise class and the ibm system

z9 business class. Bundesamt für Sicherheit in der Informationstechnik

http://www.commoncriteriaportal.org/public/files/epfiles/0378a.pdf, September 2006.

[20] Dtu course 02337, lecture slides 2006-02-08. CampusNet, 2006.

[21] Ibm systems virtualization (r2v1).

http://publib.boulder.ibm.com/infocenter/eserver/v1r2/topic/eicay/eicay% .pdf, September

2006.

[22] Ibm z/vm: General information, v5r2. GC24-6095-04,

http://www.vm.ibm.com/pubs/hcsf8b11.pdf, April 2006.

[23] Linux on System z, Device Drivers, Features, and Commands December, 2006. Interna-

tional Business Machines Corporation 2000, 8 edition, December 2006. SC33-8281-03.

Bibliography 99

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

[24] Wikipedia: Mainframe computers.

http://en.wikipedia.org/w/index.php?title=Mainframe_computer&oldid=1032% 22453, Janu-

ary 2006.

[25] z/os: Hardware configuration definition planning.

http://publibz.boulder.ibm.com/epubs/pdf/iea2g870.pdf, September 2006. GA22-7525-10.

[26] z/vm: Connectivity, May 2006. SC24-6080-03.

[27] z/vm: Cp commands and utilities reference, May 2006. SC24-6081-03.

[28] z/vm: Cp planning and administration, May 2006. SC24-6083-03.

[29] z/vm: Cp programming services, May 2006. SC24-6084-02.

[30] z/vm: Performance, May 2006. SC24-6109-02.

[31] z/vm: Virtual machine operation, May 2006. SC24-6128-02.

[32] Esalps for managing z/linux and z/vm performance.

http://velocitysoftware.com/whylps.html, August 2007.

[33] Esalps for managing z/linux and z/vm performance. http://www.velocity-

software.com/esalps.htmll on 2007-09-26, September 2007.

[34] Hp-ux servers - npartitions. http://h20338.www2.hp.com/hpux11i/cache/323751-0-0-0-

121.html, August 2007.

[35] Ibm system z webpage: Specialty engines. http://www-

03.ibm.com/systems/z/specialtyengines/, February 2007.

[36] Ibm system z9 enterprise class (ec) reference guide, April 2007. http://www-

03.ibm.com/systems/z/pdf/ZSO03005-USEN-01_z9EC_RefGuide.pdf.

[37] Ibm system z9 enterprise class update - frequently asked questions.

http://www.ibm.com/common/ssi/fcgi-bin/ssialias?infotype=PM&subtype=RG&% app-

name=STG_ZS_USEN&htmlfid=ZSQ03014USEN&attachment=ZSQ03014USEN.PDF, April

2007.

[38] Ibm's project big green spurs global shift to linux on mainframe. IBM Press Release:

http://www-03.ibm.com/press/us/en/pressrelease/21945.wss, August 2007.

[39] Kmd a/s: Annual report 2006. http://www.kmd.dk/aarsrapport, 2007.

[40] Linux on System z, Device Drivers, Features, and Commands February, 2007. Interna-

tional Business Machines Corporation 2000, February 2007. SC33-8289-03.

[41] mon - service monitoring daemon. http://mon.wiki.kernel.org/index.php/Main_Page on

2007-09-26, September 2007.

[42] Nagios homepage: About nagios. http://www.nagios.org/about/ on 2007-09-26, Septem-

ber 2007.

[43] Novell suse linux package description and support level information for contracted cus-

tomers and partners.

http://support.novell.com/products/server/supported_packages/SLES_10_s3% 90x_SP1.pdf,

Juli 2007.

[44] Wikipedia: Linux on zseries.

http://en.wikipedia.org/w/index.php?title=Linux_on_zSeries&oldid=10510% 4118, February

2007.

[45] Wikipedia: Virtualization.

http://en.wikipedia.org/w/index.php?title=Virtualization&oldid=15252066% 7, August 2007.

[46] z/vm reference guide (v5r3). IBM, http://www.vm.ibm.com/library/zvmref3a.pdf, April

2007. ZSO03006-USEN-01.

[47] 2nd, editor. z/VM: Getting Started with Linux on System z9 and zSeries. IBM, December

2005. SC24-6096-01.

100

[48] Keith Adams and Ole Agesen. A comparison of software and hardware techniques for x86

virtualization. ACM SIGPLAN Notices, Proceedings of the 2006 ASPLOS Conference, 41(11):2–

13, 2006.

[49] Alan Altmark. z/vm security and integrity.

http://www.vm.ibm.com/devpages/ALTMARKA/V71.pdf, April 2007.

[50] Bill Bitner. z/vm virtualization basics. slides,

http://www.vm.ibm.com/devpages/bitner/presentations/virtualb.pdf, April 2005.

[51] Christian Borntraeger. Monitoring linux guests and processes with linux tools.

http://linuxvm.org/Present/SHARE108/S9266cb.pdf , February 2006. SHARE.org 2006 ses-

sion 9266.

[52] Christian Bornträger and Martin Schwidefsky. Providing linux 2.6 support for the zseries

platform. IBM Systems Journal, Vol 44, No 2, 2005, 2005.

[53] David Boyes. Which linux distro is the best? TechTarget Expert Answer Center

http://expertanswercenter.techtarget.com/eac/knowledgebaseAnswer/0,2951%

99,sid63_gci1141627,00.html on 2007-09-16, July 2005.

[54] Charlie Burns. The mainframe is dead: Long live the mainframe. Saugatuck Technology,

Research Alert: http://research.saugatech.com/fr/researchalerts/364RA.pdf, July 2007. RA-

364.

[55] R. J. Creasy. The origin of the vm/370 time-sharing system. IBM Journal of Research and

Development, 25, issue 5:483–490, 1981.

[56] Denny Dutcavich. Best practices for oracle on linux for system z: Getting started. zSeries

Oracle Special Interest Group Conference 2007, April 2007.

http://zseriesoraclesig.org/2007presentations/Best_Practices_for_Oracle% .pdf.

[57] Mike Ebbers, Wayne O'Brian, and Bill Ogden. Introduction to the New Mainframe: z/OS

Basics. International Business Machines Corporation 2005, January 2006. SG24-6366-0.

[58] John Fisher-Ogden. Hardware support for efficient virtualization.

www.cse.ucsd.edu/ jfisherogden/hardwareVirt.pdf, ultimo 2006 (approx.). Research Exam by

Ph.D. Student at Dept. of Computer Science & Engineering, University of California, San Diego.

[59] Gregory Geiselhart, Robert Brenneman, Eli Dow, Klaus Egeler, Torsten Gutenberger,

Bruce Hayden, and Livio Sousa. Linux for IBM System z9 and IBM zSeries. IBM Redbooks,

January 2006. SG24-6694-00, http://www.redbooks.ibm.com/abstracts/sg246694.html?Open.

[60] Gregory Geiselhart, Robert Brenneman, Torsten Gutenberger, Jean-Louis Lafitte, William

Ventura, and Simon Williams. Linux for zSeries: Fibre Channel Protocol Implementation Guide.

IBM Redbooks, August 2004. SG24-6344-00,

http://www.redbooks.ibm.com/abstracts/sg246344.htmll.

[61] Gregory Geiselhart, Laurent Dupin, Deon George, Rob van der Heij, John Langer, Graham

Norris, Don Robbins, Barton Robinson, Gregory Sansoni, and Steffen Thoss. Linux on IBM

eServer zSeries and S/390: Performance Measurement and Tuning. IBM Redbooks, May 2003.

SG24-6926-00, http://www.redbooks.ibm.com/abstracts/sg246926.html?Open.

[62] Klaus Johansen. Execution and monitoring of linux under z/vm, February 2007.

[63] Mike Kahn. The beginning of i.t. civilization – ibm’s system/360 mainframe. The Clipper

Group - Captain’s Log, March 2004.

[64] Frank Kyne, Michael Ferguson, Tom Russell, Alvaro Salla, and Ken Trowell. z/OS Intelli-

gent Resource Director. IBM Redbooks, August 2001. SG24-5952-00,

http://www.redbooks.ibm.com/abstracts/sg245952.html?Open.

[65] Damian L. Osisek, Kathryn M. Jackson, and Peter H. Gum. Esa/390 interpretive-execution

architecture, foundation for vm/esa. IBM Systems Journal, Vol 30, No 1, 1991.

Bibliography 101

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

[66] Lydia Parziale, Eli Dow, Klaus Egeler, Jason Herne, Clive Jordan, Edi Lopes Alves, Eravi-

mangalath P. Naveen, Manoj S Pattabhiraman, and Kyle Smith. Introduction to the New Main-

frame: z/VM Basics. IBM Redbooks, 1th, draft edition, August 2007. SG24-7316-00.

[67] Eberhard Pasch. Linux on system z performance hints & tips. SHARE Tampa Session

2591/9301 - http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux390/perf/pht%

_share_tampa_2007.pdf, March 2005.

[68] Keith Rochford, Brian Coghlan, and John Walsh. An agent-based approach to grid service

monitoring. ispdc, 0:345–351, 2006. 10.1109/ISPDC.2006.

[69] Amit Singh. An introduction to virtualization.

http://www.kernelthread.com/publications/virtualization/, February 2004.

[70] BMC Software. Bmc® mainview® for linux - servers, datasheet.

http://www.bmc.com/products/documents/34/17/13417/13417.pdf, September 2002.

[71] Michael Steil. Inside vmware: How vmware, virtualpc and parallels actually work. 23rd

Chaos Communication Congress, 2006.

http://events.ccc.de/congress/2006/Fahrplan/events/1592.en.html.

[72] Henrik Storner. About hobbit. http://hobbitmon.sourceforge.net/docs/about.html on

2007-09-26, September 2007.

[73] Darryl K. Taft. Maximizing the mainframe. eWeek, Enterprise News & Reviews:

http://www.eweek.com/article2/0,1895,2161658,00.asp, July 2007.

[74] Melinda Varian. Vm and the vm community: Past, present, and future. SHARE 89, Ses-

sions 9059-9061, August 1997.

[75] Linus Vepstas. Homepage: Why port linux to the mainframe? http://linas.org/linux/i370-

why.html, 2007-09-16, November 1999.

[76] Linus Vepstas. Homepage: Linux on the ibm esa/390 mainframe architecture.

http://www.linas.org/linux/i370-bigfoot.html, 2007-09-16, February 2000.

[77] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali: Lightweight virtual ma-

chines for distributed and networked applications. University of Washington Technical Report,

February 2002.

[78] Bill White, Roy Costa, Michael Gamble, Franck Injey, Giada Rauti, and Karan Singh. Hip-

erSockets Implementation Guide. IBM Redbooks, March 2007. SG24-6816-01,

http://www.redbooks.ibm.com/abstracts/sg246816.html?Open.

[79] Bill White, Marian Gasparovic, and Dick Jorna. IBM System z Connectivity Handbook.

IBM Redbooks, sg24-5444-07 edition, July 2007.

[80] Bill White, Franck Injey, Greg Chambers, Marian Gasparovic, Parwez Hamid, Brian Hat-

field, Ken Hewitt, Dick Jorna, and Patrick Kappeler. IBM System z9 Enterprise Class Technical

Guide. IBM Redbooks. IBM Redbooks, 3th edition, June 2007. SG24-7124-02,

http://www.redbooks.ibm.com/abstracts/sg247124.html?Open.

102

INDEX

3

3270;17

3390;15

3990 control unit;15

6

64-bit addressing;6

A

APAR;33

automated fail over;6

Auxiliary storage;9

B

backward compatibility;6

basic blocks;24

BFS;29

binary translation;24

book;9

Byte File System;29

C

Capacity on Demand;8

CEC;7

Central Electronic Complex;7

Central Processor;8

central storage;9

Channel Path Identifiers;10

channel paths;10

Channels;10

CHPIDs;10

clustering;6

CMS;26

CMS file system;28

control program;25

control units;10

Conversational Monitor System;26

CP;8;25

CP mode;26

CP nucleus;34

CPU;7

CTC rings;17

D

DASD;15

DASD paging sub system;31

dasdfmt;56

dedicated device;32

DIAGNOSE;47

Direct Assess Storage Device;15

directors;10

disk volume;15

dispatch list;49

dispatcher;13

dormant list;49

Drivers;56

E

ECKD;15

ESCON;10

Evaluation Assurance Level 5

certification;13

expanded storage;30

explicit trap operations;24

Extended Count-Key-Data;15

F

FBA;16

FCP;16

Fibre Channel Protocol;16

FICON;10

Fixed Block Architecture;16

G

Geographically Dispersed Parallel

Sysplex;17

guest;29

Index 103

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

H

Hardware Configuration Definition;14

Hardware Configuration Manager;15

Hardware Management Console;10

Hardware System Area;14

HCM;15

Head Disk Assembly;15

HSA;14

Hypersocket;17

hypervisor calls;24;47

I

I/O Configuration Data Set;14

I/O Configuration Program;14

ICF;8

Integrated Coupling Facility;8

Integrated Facility for Linux;8

Integrated Information Processor;8

Interpreted SIE;51

Interpretive Execution;51

interrupts;23

IOCDS;14

IOCP;14

IPL;14

K

kneecapped;8

L

LCSS;10

LIC;8

Licensed Internal Code;8

Logical Channel SubSystem;10

LPARs;12

M

Main storage;30

memory;Se Storage

minidisk;28

Multiple Chip Module;9

Multiple Image Facility;11

multiprocessor;6

N

n-way systems;9

O

Open System Adapter;16

P

page faults;23

Paging space;31

paging storage;9

Parallel Sysplex;17

paravirtualization;24

PCHID;10

Physical Channel ID;10

PMR;33

POR;14

Power On Reset;14

PR/SM;12

Print spooling;47

privilege classes;29

privileged;23

processing power;37

processor;7

Processor Resource/System Manager;12

processor storage;9

Processor unit;8

Program Directory;33

PTF;33

PU;8

Q

QDIO assist;52

R

RDEV;32

real device;32

real device control block;32

real storage;9

RSUs;33

S

SAP;8

Scheduling;48

104

SCSI via fibre;44

serial-I/O interfaces;10

service virtual machines;31

Shared File System;28

SIE;13;51

Start Interpretive Execution;13

Storage;9

subchannels;11

Support Element;10

SVM;31

switches;10

sysfs;54

system config;34

T

Temporary device;33

TN3270;17

transaction classes;49

Type 1 hypervisors;22

Type 2 hypervisors;22

U

Unit Record Devices;47

user;29

User Directory;34

V

vdev;32

virtual device numbers;32

virtual devices;32

virtual LANs;17

virtual machine;29

virtual memory;6

Virtual Switch;46

VMSES/E;33

VSWITCH;45

Z

z Application Assist Processors;8

z/TPF;18

z/VSE;18

Appendix A: Performance Tests A1

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

APPENDIX A: PERFORMANCE TESTS

1. TEST 1: Number of processors per Linux guest

1.1 Measurements tools and configuration

1.1.1 Specialized monitoring from within Linux: qkumon

 The developed xinetd service, qkumon (given in Appendix B.1), is used as

the main monitoring tool during this test. More specifically this test uses test

option “t”, which invokes “top” and parses the about using the script

“mon.awk” (see Appendix B.1.1 and B.1.4.1).

 The qkumon java client is used to inquire the qkumon service from a re-

mote host. The Java client plots the results in near real time view and logs

data to a file for later data processing.

1.1.2 IBM Performance Toolkit for VM

 The IBM Performance Toolkit is used to verify the general CPU usage and

to supply the x’44 diagnose count. The Toolkit can be accessed via 3270

(z/VM guest: perfsvm) or as a web service on VM system IP address port 81.

 A monitoring interval of 30 seconds is recommended to able to give a bet-

ter picture of the workload behaviour over time. (Default setting is 60 sec.).

From a privileged user run:

monitor sample interval nn sec

 From within perfsvm user (if the necessary user class has been applied):

cp monitor sample interval nn sec

 To store history files for the specific Linux guests for later analysis enable

benchmarking for the specific guests. From within performance monitor

(3270):

FC BENCH USER USERID FILE 00:00 TO 23:59

From script or activated from other user:

FCONCMD FC BENCH USER USERID FILE 00:00 TO 23:59

 USERID should be replaced with the name of the VM guest in question

and the benchmarking period can be adjusted fix local needs. History files

can be analysed using Performance Toolkit option “32: History data files*” or

“31: Graphics selection”.

 The X’44 Diagnose instruction count is derived from Toolkit option 4

“Privileged Operations”. The website unfortunately has to be supervised and

the value recorded manually.

A2 A.1 - TEST 1: Number of processors per Linux guest

1.2 WL1: Complete payroll processing

1.2.1 Workload description

 WL1 is a KMD “Perspektiv Løn” specific workload. This job covers com-

plete payroll processing (pdf and postscript file creation excluded). The print

output stream is redirected to disk. This job estimated to typically run a cou-

ple of times before the final money transfers and account updates. Further-

more larger customers run this kind of job as a batch job each night to detect

potential problems before final payroll processing.

 The workload is of “mixed nature”: A combination CPU usage (application

calculation + database queries) and disk usage (database, output file writing).

Several of the application “sub” programs are called during the processing,

which results in birth and termination of new processes, many of which ac-

cesses and manipulates the database.

1.2.2 Prerequisites

• Working “Perspektiv Løn” / mrdata application with adequate amount of

test data (minimum 100 employees).

• Dummy printer definition redirecting print to plain file instead of print-

ing using lpd or similar.

1.2.3 Settings and general test description

• Start-up the “Perspektiv” application and log in.

(Linux user mrdata, run /MR/MrMenu/Menustart) .

• If necessary change the active company in Perspektiv: “sf” command

• Run application 410: “Total Lønafvikling” (Complete payroll processing)

• “Afl. form" (delivery form): Typically 20 (and/or 10, 21).

• Print to: p(rinter): dummy

• Press <F1> to approve…

• Functions: choose all (putting x’es) and destination printer (p, dummy).

• <F1> to approve and start processing.

Appendix A: Performance Tests A3

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

1.3 WL2: Payslip PDF and PS file creation

1.3.1 Workload description

 Like WL1 this workload is a KMD “Perspektiv Løn” specific workload. It

covers complete payroll processing, but includes pdf and postscript file crea-

tion. This task is assumed to run a couple of times during the month: When

pay slips are created for different payment intervals.

 For a short period the workload begins like test 1: with a combination of

CPU usage (application calculation + database queries) and disk usage (data-

base, output file writing). The process is dominated by pdf-file creation and

pdf to ps conversion, which is characterized by heavy CPU usage caused by a

two sequentially running processes.

1.3.2 Prerequisites

• Working “Perspektiv Løn” / mrdata application with adequate amount of

test data (minimum 100 employees).

• “Perspektiv Løn” PDF option enabled (compiled with “P” in char array

“lonspec_dest” in MR.h. MR-script, MR.sh, updated in section “LON-

SPEC_PDF_MAIL” to delete ps-file and move pdf-file to tmp-directory).

1.3.3 Settings and general test description

• Start-up the “Perspektiv” application and log in.

(Linux user mrdata, run /MR/MrMenu/Menustart) .

• If necessary change the active company in Perspektiv: “sf” command

• Run application 422: “Udskrifter: Lønspecifikationer” (Print: Pay slips)

• “Afl. form" (delivery form): Typically 20 (and/or 10, 21).

• Print to: p(rinter): pdf

• Press <F1> to approve and start processing.

A4 A.1 - TEST 1: Number of processors per Linux guest

1.4 Test results

1.4.1 Workload duration (run time)
Guest 1 Guest 2 Time saved saving Performance toolkit CPU usage

Test Repetition Linx02 Linx03 with 1 CPU in % Linx02 Linx03

runtime runtime (sec.) max max

(sec.) (sec.) % %

T1.1 1 42 36 6 14% 82.4 82.3

2 35 30 5 14% 61.7 60.6

3 36 28 8 22% 90.9 89

4 35 29 6 17% 60.6 56.7

T1.2 1 203 211 -8 -4% 98.1 96.2

2 193 190 3 2% 98.4 97.6

3 200 200 0 0% 99 97.6

4 185 187 -2 -1% 99.3 97.8

T1.3 1 44 58.9

2 32 94.7

T1.4 1 41 61.5

2 28 85.9

T1.5 1 163 101

2 189 99.9

T1.6 1 190 99.2

2 191 99.3

T1.7 1 45 48 3 6% 55.5 64

2 29 31 2 6% 90.5 91.1

3 29 31 2 6% 93.2 89.8

4 28 31 3 10% 89.7 90.6

T1.8 1 198 199 1 1% 98.2 98.2

2 186 186 0 0% 97.4 98.3

3 199 198 -1 -1% 97.3 98

4 201 204 3 1% 97.2 97.8

T1.9 1 29 89.1

2 27 91.7

3 28 91.7

T1.10 1 31 94.9

2 32 92.5

3 31 93.4

T1.11 1 201 99.4

2 190 99.5

T1.12 1 204 101

2 190 100

Guest running with 1 CPU

Table A1-1: Test 1; Runtime and maximum CPU-usage (real) test results

Appendix A: Performance Tests A5

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

1.4.2 Diagnose x’44 count

x'44 / sec

6.7

11.6

19.9

T1.3 WL1 3017

Linx02 2759

2 CPU 33.5

18.3

WL1 5291

590

11.4

4.2

T1.4 WL1 4.1

Linx03 16.9

1 CPU 4.7

WL1 14.2

17.3

42.7

26.1

46.3

51

T1.5 WL2 1924

Linx02 3.7

2 CPU 2.7

17.3

15.5

188

85.3

12

6.1

11.8

14.2

12.1

WL2 (KGF) 377

59.4

210

6

13.6

201

WL2 (KP) 1927

7.9

48.6

94

27.8

89.2

146

6

5.1

6.7

47.3

T1.6 (3) WL2 0.1

Linx03 32.8

1 CPU 21.4

1.3

68

48.4

0.4

2.4

1

0.6

9.3

329

9.7

16.8

T1.6 (3) WL2 15.6

Linx03 0.3

1 CPU 1.7

9.8

8

93.2

9.8

0.1

5.9

6.4

18.7

5.4

T1.9 WL1 14.5

Linx02 30.7

1 CPU WL1 615

4.5

4.5

5.3

4.6

WL1 5.9

13.9

6.2

17.7

T1.10 WL1 5367

Linx03 323

2 CPU WL1 5365

508

28.2

10.8

WL1 5369

443

4.8

5.7

5.4

6.7

7.3

9.5

5.5

T1.9 WL1 6.1

Linx02 6.1

1 CPU 5.6

4

5.3

T1.11 WL2 5.7

Linx02 7

1 CPU 34.6

30.8

6.9

5.6

4.5

2.9

5.1

19.4

T1.11 WL2 5.1

Linx02 6.4

1 CPU 5.1

6.4

6.5

5.5

3.7

5.9

11.1

8.4

T1.12 WL2 41.7

Linx03 1768

2 CPU 8.6

8.3

25.8

23.3

127

5.3

28.4

WL2 1737

3

6.7

3.4

4.6

4

307

5.9

6

Table A1-2: Diagnose x’44 instruction count readings from Performance Toolkit.

Running workloads indicated by black rectangles.

A6 A.1 - TEST 1: Number of processors per Linux guest

0

1000

2000

3000

4000

5000

6000

x'44 count/s, 2-CPU WL

x'44 count/s

T
1

.3

T
1

.4

T
1

.5

T
1

.5

T
1

.5

T
1

.3

T
1

.4

T
1

.5

T
1

.6

T
1

.6

T
1

.9

T
1

.1
0

T
1

.1
0

T
1

.1
2

T
1

.1
2

Figure A1-1 Diagnose x’44 instruction count over time. Gray bars indicate when a 2-

CPU guest are processing workload. Black bars indicate all other counts (“back-

ground noise” / idle time situations and when 1-CPU guest processes workloads).

As expected 2-CPU guests issues many diagnose x’44’ instructions.

Appendix A: Performance Tests A7

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

1.4.3 Workload characteristics

0

25

50

75

100

125

150

175

oracle CPU% mrdata CPU% (accumulated)

Figure A1-2: CPU usage characteristics for WL1. Contributions from oracle owned

and mrdata (application) owned processes in accumulated view. Performance toolkit

reading confirms general CPU readings ~ 1 whole CPU. (Not normalized Linux read-

ings, T1.7, 2-CPU-guest, workload during/execution time: 31s).

0

25

50

75

100

oracle CPU% mrdata CPU% (accumulated)

Figure A1-3: CPU usage characteristics for WL2. Contributions from oracle owned

and mrdata (application) owned processes in accumulated view. Performance toolkit

reading confirms general CPU readings ~ 1 whole CPU. (Not normalized Linux read-

ings, T1.8, 2-CPU-guest, workload during/execution time: 198s).

2. TEST 2: Memory usage

 All information on test 2 is provided in the report. This section is provided

to keep maintain consistent numbering.

A8 A.3 - TEST 3: Disk I/O, LVM stripes and caches

3. TEST 3: Disk I/O, LVM stripes and caches

3.1 Test results

3.1.1 Bonnie data from all tests (and repetitions)
 Sequential Write (nosync) Sequential Read Random seek

Test no.& Seq. Wr (char) Seq. Wr (block) Seq. Wr (rewrite) Seq Rd (char) Seq. Rd (block) Rand. Rd

repetition K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU K/sec %CPU

T3.1 R1 15649 99.1 138469 47 152236 35.7 15673 99.8 1065589 99.6 66204.5 116

T3.1 R2 15721 99.8 159941 54 39998 10 15664 99.9 1070200 100 60625.4 90.9

T3.1 R3 15692 99.7 123215 41.6 146013 32 15739 100 1062343 99.3 62647.8 94

T3.2 R1 15280 98.9 37659 13.6 51250 14.4 15586 99.9 1044292 99.6 90291.4 135

T3.2 R2 15759 99.7 40885 17.4 71241 19.8 15795 100 1058746 101 81637.7 102

T3.2 R3 16053 99.6 40236 16.6 54947 14.7 16097 99.9 1068024 99.8 59874.9 89.8

T3.3 R1 15714 99.7 31865 18.4 32764 14.1 14699 94.8 412219 75.5 26384.2 152

T3.3 R2 15224 99.1 28996 18.7 32375 11.9 14815 96.4 470583 88.9 15006.3 101

T3.3 R3 15619 99.3 42590 22.2 32404 12.4 15097 97.8 441478 81.7 25873.9 155

T3.4 R1 7336 48.9 11562 4.3 13201 3.7 14099 90.6 460521 74.7 28356.7 156

T3.4 R2 15424 98.5 32626 15.5 13508 3.7 14862 95.3 423915 72 29662.8 156

T3.4 R3 15528 98.7 32916 14.8 13588 3.5 14770 94.8 451571 79.2 8526.2 53.3

T3.5 R1 15682 99.5 44696 21.1 26321 9 14698 94.4 124241 23.5 2532 8.9

T3.5 R2 15554 99.5 44811 21.4 22885 9 15043 96.5 133565 18.6 2684.6 14.8

T3.5 R3 15663 99.3 44344 21.4 28269 8.3 15117 96.8 128900 22.6 2677.3 7.4

T3.6 R1 15743 99.88 43731 21.9 27505 7.9 14878 95.7 134007 21.2 2696.4 10.1

T3.6 R2 15674 99.4 44659 18.1 26692 6.9 14852 95.4 128302 19.3 2671.2 12.7

T3.6 R3 15664 99.7 44571 20.5 28190 9.4 14803 95.9 126337 17.3 2716.9 13.6

T3.7 R1 15490 98.4 45193 21.3 26911 10.1 14927 96.7 119300 19.6 2775.3 11.8

T3.7 R2 15519 99.3 44404 20.5 27530 8.8 14970 96.5 120347 19.1 2839.7 7.8

T3.7 R3 15646 99.3 44304 21.1 27356 8.7 14997 96.6 114494 18.1 2518.3 12

T3.8 R1 15376 97.6 31358 13.9 14256 4.5 15175 96.7 43642 5.1 1170 3.8

T3.8 R2 15691 99.4 31505 15.3 14850 4.5 15022 97.1 44945 4.6 1120 3.6

T3.8 R3 15574 98.5 31695 14.6 14886 4.1 15041 97 44993 6.3 1221.7 4

T3.9 R1 15467 98.1 31855 14.8 14165 4.2 15041 96.4 44663 5.5 1146.3 2.9

T3.9 R2 15543 98.6 32348 13.8 14221 4.3 15102 96.8 44606 4.8 1211.6 4.2

T3.9 R3 15594 98.8 31453 14.8 14832 4.7 15228 97.3 44204 5 1107.3 2.5

T3.10 R1 15357 98.1 30991 16.1 13867 4.8 15053 96.5 43918 5 1149.8 2.9

T3.10 R2 15242 98 13704 14.5 14300 4.6 15164 97 43989 6 1193.7 5.4

T3.10 R3 15387 97.4 30813 16.9 14720 4.4 15022 95.8 44939 5.2 868.3 2.4

3.1.2 Per Character sequential read/write data

T
es

t n
um

be
r

us
eM

em
S

w
a
pp

in
es

sp
in

es
s

M
in

id
is

k
ca

ch
e

LV
M

 s
tr
ip

es
C

U
 c

a
ch

e

S
e
q.

w
rit

e
(c

ha
r)

%
C

P
U

S
e
q.

 r
ea

d
(c

ha
r)

%
C

P
U

T3.1 60 x x x 15 99.5 15 99.9

T3.2 x 60 x x x 15 99.4 15 99.9

T3.3 x 0 x x x 15 99.4 15 96.3

T3.4 x 0 x x 12 82.0 14 93.6

T3.5 x 0 x x 15 99.4 15 95.9

T3.6 x 0 x 15 99.7 14 95.7

T3.7 x 0 x x 15 99.0 15 96.6

T3.8 x 0 x 15 98.5 15 96.9

T3.9 x 0 15 98.5 15 96.8

T3.10 x 0 x 15 97.8 15 96.4

Appendix B: Test Scripts & Programs B1

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

APPENDIX B: TEST SCRIPTS & PROGRAMS

1. qkumon - specialized monitoring within Linux

 qkumon is a developed xinetd service. The mon.sh test script sends output

from standard tools like “top” and system information from the /proc/ file

system to AWK-scripts (provided below) for processing into a simple comma

strings. These scripts in combination with xinetd function as a simple

server, which can be contacted by an arbitrary client via TCP/IP on port 5557.

1.1 /qkumon/mon.sh
#!/bin/bash

LINES=100

export LINES

while test 1; do

 read command

 case "$command" in

 (t) /usr/bin/top -b -n 1 | /qkumon/ora_mr.awk;;

 (m) /qkumon/memMeminfo.awk /proc/meminfo

 /qkumon/memVmstat.awk /proc/vmstat ;;

 (mi)/bin/date +"Test date: %d/%m/%Y %H:%M:%S"

 echo "time,sec.nano,app,slab,PageTables,vmallocUsed,Buffers,

 Cached,MemFree,SwapCached,SwapEvictedFromRealMem,

 SwapFree,Committed_AS,Mapped,Active,Inactive,pgfault,

 pgmajfault,pswpin,pswpout";;

 (*) break;;

 esac

done

Be aware the string provided after the echo statement should be given on

one line.

1.2 /etc/xinetd.d/qkumon
service qkumon

{

 socket_type = stream

 protocol = tcp

 wait = no

 user = root

 group = root

 server = /qkumon/mon.sh

 port = 5557

}

1.3 Configuration and activation

 In order to make the server functionality work, xinetd has to be installed

and the “qkumon service” has to be specified in the “/etc/services” file:

qkumon 5557/tcp # Simple script based monitoring tool

Afterward xinetd should be restarted:

/etc/init.d/xinetd restart

B2 B.1 - qkumon - specialized monitoring within Linux

1.4 qkumon help scripts

1.4.1 /qkumon/ora_mr.awk

 This awk scripts is hard coded to monitor “mrdata” and “oracle” owned

processes in particular.

#!/usr/bin/awk -f

AWK program

Output: comma-separated values:

oracle processes: Running, sleeping, undisruptable sleep, memory, cpu

mrdata processes: running, sleeping, undisruptable sleep, memory, cpu

rest processes: number running, cpu used

BEGIN {

 TIME="/bin/date +'%d/%m/%Y %H:%M:%S',%s"

 oRun=0; oSle=0; oDis=0;

 mRun=0; mSle=0; mDis=0;

 oMem=0; oCpu=0; mMem=0;

 mCpu=0; restCpu=0; restRunning=0

}

function Time() {

 TIME | getline t

 close(TIME)

 return t

}

($2=="oracle")&&($8=="R") {oRun++ ; oCpu+=$9 ; oMem+=$10 }

($2=="oracle")&&($8=="S") {oSle++ ; oCpu+=$9 ; oMem+=$10 }

($2=="oracle")&&($8=="D") {oDis++ ; oCpu+=$9 ; oMem+=$10 }

($2=="mrdata")&&($8=="R") {mRun++ ; mCpu+=$9 ; mMem+=$10 }

($2=="mrdata")&&($8=="S") {mSle++ ; mCpu+=$9 ; mMem+=$10 }

($2=="mrdata")&&($8=="D") {mDis++ ; mCpu+=$9 ; mMem+=$10 }

($9>0){restCpu+=$9}

($8=="R"){restRunning++}

END {

 restCpu -= (oCpu + mCpu)

 restRunning -= (oRun + mRun)

 print Time() "," oRun "," oSle "," oDis "," oMem "," oCpu ","

mRun "," mSle "," mDis "," mMem "," mCpu "," restRunning "," restCpu

}

Appendix B: Test Scripts & Programs B3

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

1.4.2 /qkumon/memMeminfo.awk

 This script processes /proc/meminfo data into a comma separated for-

mat optimized for easy plotting.

#!/usr/bin/awk -f

BEGIN {

 TIME="/bin/date +'%H:%M:%S, %s.%N'"

}

function Time() {

 TIME | getline t

 close(TIME)

 return substr(t, 1, 10) substr(t, 14, 10)

}

/^keyword/ => Searches for keyword in beginning of line

/^Slab/ {Slab=$2}

/^MemTotal/ {MemTotal=$2}

/^SwapCached/ {SwapCached=$2}

/^PageTables/ {PageTables=$2}

/^VmallocUsed/ {VmallocUsed=$2}

/^MemFree/ {MemFree=$2}

/^Buffers/ {Buffers=$2}

/^Cached/ {Cached=$2}

/^SwapTotal/ {SwapTotal=$2}

/^SwapFree/ {SwapFree=$2}

/^SwapCached/ {SwapCached=$2}

/^Committed_AS/ {Committed_AS=$2}

/^Mapped/ {Mapped=$2}

/^Active/ {Active=$2}

/^Inactive/ {Inactive=$2}

END {

 SwapEvictedFromRealMem = SwapTotal - SwapFree - SwapCached

 apps = MemTotal-MemFree-Buffers-Cached-SwapCached-Slab-PageTables-

VmallocUsed

 printf ("%s,", Time())

 printf ("%d,", apps)

 printf ("%d,", Slab)

 printf ("%d,", PageTables)

 printf ("%d,", VmallocUsed)

 printf ("%d,", Buffers)

 printf ("%d,", Cached)

 printf ("%d,", MemFree)

 printf ("%d,", SwapCached)

 printf ("%d,", SwapEvictedFromRealMem)

 printf ("%d,", SwapFree)

 printf ("%d,", Committed_AS)

 printf ("%d,", Mapped)

 printf ("%d,", Active)

 printf ("%d,", Inactive)

}

B4 B.1 - qkumon - specialized monitoring within Linux

1.4.3 /qkumon/memVmstat.awk

 This script parses the /proc/vmstat file and extracts information on

page faults and the number of pages swapped in and out, into a comma sepa-

rated string.

#!/usr/bin/awk -f

/^keyword/ => Searches for keyword in beginning of line

/^pgfault/ {pgfault=$2}

/^pgmajfault/ {pgmajfault=$2}

/^pswpin/ {pswpin=$2}

/^pswpout/ {pswpout=$2}

END {

 printf ("%d,", pgfault)

 printf ("%d,", pgmajfault)

 printf ("%d,", pswpin)

 printf ("%d\n", pswpout)

}

Appendix B: Test Scripts & Programs B5

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

2. useMem - memory consumer program

2.1 useMem.c
// ---

// * useMem.c - Memory hungry program e.g. for tests of swapping

// *

// * Startup argument: Memory to occupy from beginning in MB

// *

// * By Klaus Johansen (qku / s053075) 2007-07-19)

// *

// * Changelog:

// * 2007-07-20: Support of 0 worker threads + initialize increments

// * added monitor thread

// * 2007-07-23: Thread safe wake-up of main after mem in/decrease

// * 2007-08-01: Renamed to useMem

// * 2007-08-20: Write comma separated, reset 'oldValues' on create thread

// * added begin date, time stamp, etc.; messages to stderr

// * 2007-09-22: Corrected error: changed assignment to expression in if,

// * and throughput calculation correspondingly

// ---

#include <stdio.h> // I/O...

#include <pthread.h> // Thread support

#include <time.h> // Nanosleep

#include <stdlib.h> // rand()

#include <errno.h> // evaluate errors from nanosleep

#include <sys/time.h> // for writeTime() including milli sec

#include <time.h> // for writeDate()

#define MAX_THREAD 50

#define MAX_MEM (RAND_MAX)

#define MAX_MEM_MB (RAND_MAX/(1024*1024))

#define TOINC 0x04000000

#define _MULTI_THREADED

const unsigned int kb128iMax = 128*1024/sizeof(unsigned long int);

// ---

// Prototyping

// ---

void memChange(int);

void *worker(void *);

void *monitor(void *arg);

void threadChange(int);

void writeTime();

void writeDate();

// ---

// User defined types

// ---

typedef struct {

 int id;

 unsigned long int kb128count;

 unsigned int stop;

} workerParm;

// ---

// Global variables

// ---

unsigned int currentMemSize = 0x04000000; // 64MB

unsigned int numActiveThreads = 1;

unsigned char wait = 0;

unsigned char stop = 0;

unsigned char flagToStop = 0;

unsigned char threadsWaiting = 0;

B6 B.2 - useMem - memory consumer program

unsigned long int *memChunkPtr;

unsigned long int oldValues[MAX_THREAD];

struct timespec interval; // timespec struc for nanosleep

// Working threads vars:

pthread_t *threads;

pthread_t monitorThread;

workerParm *parms;

// Sync related

pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t count_threshold_cv = PTHREAD_COND_INITIALIZER;

pthread_mutex_t canRunAgain_mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t canRunAgain_cv = PTHREAD_COND_INITIALIZER;

// ---

// Main function

// ---

int main(int argc, char* argv[]) {

 unsigned int i;

 // Initialization

 srand(5); // Seeding random number generator

 threads=(pthread_t *)malloc(MAX_THREAD*sizeof(*threads));

 parms=(workerParm *)malloc(sizeof(workerParm)*MAX_THREAD);

 interval.tv_sec = 0;

 interval.tv_nsec = 0; // 1000; // (long)(100*1e+6);

 // "Welcome message"

 fprintf(stderr, "Maximum memory usage: %dMB\n", MAX_MEM_MB);

 // Change memory size to occupy from start if argument is given

 if (argc > 1) {

 unsigned int tmp;

 if (sscanf(argv[1], "%d", &tmp) == 1) {

 if (tmp*1024 <= RAND_MAX/1024){

 currentMemSize = 1024*1024*tmp; // from MB to bytes

 fprintf(stderr, "Memory usage set to: %d bytes (%d MB)\n", currentMemSize,

 currentMemSize/(1024*1024));

 } else {

 fprintf(stderr, "Argument not accepted.\n");

 exit(1);

 }

 }

 if (argc == 3) {

 if (sscanf(argv[2], "%d", &tmp) == 1) {

 if (tmp <= MAX_THREAD){

 numActiveThreads = tmp;

 } else {

 fprintf(stderr,

 "Argument 2 (number of threads) not accepted, should be < %d.\n" ,

 MAX_THREAD);

 exit(1);

 }

 }

 }

 } else {

 fprintf(stderr, "Memory usage defaluts to %d MB and number of threads to %d\n",

 currentMemSize/(1024*1024), numActiveThreads);

 }

 memChunkPtr = (unsigned long int *)malloc(currentMemSize);

 if (memChunkPtr == NULL) {

 fprintf(stderr, "Malloc failed, exiting...\n");

Appendix B: Test Scripts & Programs B7

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 exit(2);

 }

 memset(memChunkPtr, '\xAA', currentMemSize);

 fprintf(stderr, "Memory initialized\n");

 // Output Descriptive text and running date

 writeDate();

 printf ("time , elapsed time, threads, memory usage, thoughput (kb) \n");

 // Creation of workerthread

 for (i=0; i < numActiveThreads ; i++){

 int ret;

 parms[i].id=i;

 parms[i].stop = 0;

 parms[i].kb128count = 0;

 ret = pthread_create(&threads[i], NULL, worker, (void *)(parms+i));

 if (ret== 0) {

 fprintf(stderr, "Thread %d created successfully\n", i);

 } else {

 fprintf(stderr, "Thread %d NOT created\n", i);

 }

 }

 // Creation of monitor thread

 {

 int ret = pthread_create(&monitorThread, NULL, monitor, NULL);

 if (ret== 0) {

 fprintf(stderr, "Monitor thread %d created successfully\n", i);

 } else {

 fprintf(stderr, "Monitor thread %d NOT created\n", i);

 }

 }

 fprintf(stderr, "%d thread(s) running\n", numActiveThreads);

 // Interactive input loop;

 while (stop == 0){

 int cmd;

 cmd = getchar();

 switch (cmd) {

 case '-':

 case '+':

 memChange(cmd);

 break;

 case 't':

 case 'g':

 threadChange(cmd);

 break;

 case 'q':

 stop = 1;

 break;

 }

 }

 // Wait for all threads to stop

 for (i=0; i<numActiveThreads; i++) {

 pthread_join(threads[i],NULL);

 }

 // Free memory and exit

 free (memChunkPtr);

 return 0;

}

B8 B.2 - useMem - memory consumer program

// ---

// Function: memChange - Increase / decrease memory by 64MB

// input: '+' increase memory

// '-' decrease memory

// ---

void memChange(int cmd){

 long int newMemSize=0;

 //threadsWaiting = 0; // Reset number of waiting threads (from last run)

 flagToStop = 1; // Signal threads to sleep as they reach end of loop

 // Wait for all active threads sleeping...

 pthread_mutex_lock(&count_mutex);

 while (threadsWaiting < numActiveThreads) {

 //pthread releases mutex while waiting...

 pthread_cond_wait(&count_threshold_cv, &count_mutex);

 }

 pthread_mutex_unlock(&count_mutex);

 if (cmd == '-') {

 //Decrease memory size

 newMemSize = currentMemSize - TOINC;

 if (newMemSize <= TOINC) { // > inc/dec block size

 fprintf(stderr, "New Value below %d MB\n", TOINC/1024/1024);

 newMemSize = 0;

 }

 } else {

 //Increase memory size

 newMemSize = currentMemSize + TOINC;

 if (newMemSize > MAX_MEM) {

 fprintf(stderr, "New Value limited reached (%d MB)\n", MAX_MEM_MB);

 newMemSize = 0;

 }

 }

 // Resize memory chunk

 if (newMemSize > 0) {

 memChunkPtr = (unsigned long int *) realloc(memChunkPtr, newMemSize);

 currentMemSize = newMemSize;

 if (cmd == '+') {

 memset(((unsigned char*)memChunkPtr)+currentMemSize-TOINC, '\xAA', TOINC);

 fprintf(stderr, "New memory initialized. ");

 }

 fprintf(stderr, "Memory usage: %d MB\n", currentMemSize/1024/1024);

 }

 // Signal all threads to start again... (safely)

 pthread_mutex_lock(&canRunAgain_mutex);

 flagToStop = 0;

 pthread_cond_broadcast(&canRunAgain_cv);

 pthread_mutex_unlock(&canRunAgain_mutex);

 // Wait for all active threads is awake again, since this function

 // should not be invoked again before all working threads is awake

 pthread_mutex_lock(&count_mutex);

 while (threadsWaiting > 0) {

 //pthread releases mutex while waiting...

 pthread_cond_wait(&count_threshold_cv, &count_mutex);

 }

 pthread_mutex_unlock(&count_mutex);

}

// ---

// Function: threadChange - Increase / decrease number of worker threads

// input: '+' increase memory

// '-' decrease memory

// ---

void threadChange(int cmd) {

 if (cmd == 't') {

Appendix B: Test Scripts & Programs B9

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 // Create a thread

 if (numActiveThreads < MAX_THREAD) {

 int ret;

 int i=numActiveThreads; // acutal count equals new array index

 parms[i].id=i;

 parms[i].stop = 0;

 parms[i].kb128count = 0;

 oldValues[i] = 0;

 ret = pthread_create(&threads[i], NULL, worker, (void *)(parms+i));

 if (ret== 0) {

 numActiveThreads++;

 fprintf(stderr, "%d thread(s) running\n", numActiveThreads);

 } else {

 fprintf(stderr, "Thread %d NOT created\n", i);

 }

 } else {

 printf ("Maximum number of threads reached (%d)\n" , MAX_THREAD);

 }

 } else {

 // stop a thread

 if (numActiveThreads > 0) {

 parms[numActiveThreads-1].stop = 1;

 pthread_join(threads[numActiveThreads-1],NULL); // Await thread stopping

 numActiveThreads--;

 fprintf(stderr, "%d thread(s) running\n", numActiveThreads);

 } else {

 printf ("All threads already stopped\n");

 }

 }

}

// ---

// Function: Worker thread - continuesly writes into memory chunck

// ---

void *worker(void *arg) {

 workerParm *p=(workerParm *)arg;

 unsigned int actualIndex;

 unsigned kb128LocalCount = 0;

 struct timespec rest;

 // Find a random place in memory chunk where to begin iterations

 do {

 actualIndex = rand();

 }

 while (actualIndex >= currentMemSize/sizeof(unsigned long int));

 fprintf(stderr, "Workerthread %d has started with memory chunk index %d \n",

 p->id, actualIndex);

 // Repeat until thread is stopped...

 while (p->stop == 0 && stop == 0) {

 // Increment iterator and fix potential overflow

 // Always do before accessing memory, since memsize might have changed

 actualIndex ++;

 if (actualIndex >= currentMemSize/sizeof(unsigned long int))

 actualIndex = 0;

 // Modify data in memory to ensure memory page in memory

 memChunkPtr[actualIndex] += kb128LocalCount;

 kb128LocalCount++;

 if (kb128LocalCount == kb128iMax) {

B10 B.2 - useMem - memory consumer program

 kb128LocalCount= 0;

 p->kb128count++;

 }

 // Wait according to actual "interval"-interruption by a non-blocked

 // signal is handled

 while (wait && nanosleep(&interval, &rest) == -1) {

 if (errno != EINTR) {

 printf ("problem calling nanosleep in thread %d\n", p->id);

 exit(3);

 }

 }

 // Going to sleep if "main-thread" has flag'ed to do...

 if (flagToStop > 0) {

 // Signal main thread that thread is going to wait (safe manner)

 pthread_mutex_lock(&count_mutex);

 threadsWaiting ++;

 pthread_cond_signal(&count_threshold_cv);

 pthread_mutex_unlock(&count_mutex);

 //wait for main has finished / flagToStop turn 0 (safe manner)

 pthread_mutex_lock(&canRunAgain_mutex);

 while (flagToStop > 0) {

 //pthread releases mutex while waiting...

 pthread_cond_wait(&canRunAgain_cv, &canRunAgain_mutex);

 }

 pthread_mutex_unlock(&canRunAgain_mutex);

 // Signal main thread that this thead is running again (safe manner)

 pthread_mutex_lock(&count_mutex);

 threadsWaiting --;

 pthread_cond_signal(&count_threshold_cv);

 pthread_mutex_unlock(&count_mutex);

 }

 }

 fprintf(stderr, "Workerthread %d stopping\n", p->id);

 pthread_exit(NULL);

}

// ---

// Function: Monitor thread -

// calculates number of bytes processes by worker threads

// Runs approximately 1 time pr. sec.

// ---

void *monitor(void *arg) {

 unsigned long int sinceLast;

 unsigned int i;

 struct timespec interval;

 struct timespec rest;

 interval.tv_sec = 1;

 interval.tv_nsec = 0;

 // Init oldValues array

 for (i=0; i<MAX_THREAD; i++)

 oldValues[i] = 0;

 // Keep running until program is stopped

 while (stop == 0) {

 sinceLast=0; // reset counter

Appendix B: Test Scripts & Programs B11

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 // Since parms[i] is only updated by the threads, this is reasonably safe

 for (i=0; i<numActiveThreads; i++) {

 sinceLast += parms[i].kb128count - oldValues[i] ;

 oldValues[i]=parms[i].kb128count;

 }

 writeTime();

 printf("%d, %d, %d \n", numActiveThreads, currentMemSize/1024/1024, (sinceLast/8));

 // Wait according to actual "interval" - interruption by a non-blocked

 // signal is handeld

 while (nanosleep(&interval, &rest) == -1) {

 if (errno != EINTR) {

 printf ("problem calling nanosleep from monitor thread\n");

 exit(4);

 }

 }

 }

 pthread_exit(NULL);

}

// ---

// Function: writeTime -

// Writes current time and program elapsed in format:

// "hh:mm:ss , elapSec.elapMilliSec , "

// ---

void writeTime() {

 static time_t startSec = 0;

 struct timeval tv;

 struct timezone tz;

 struct tm *tm;

 gettimeofday(&tv, &tz);

 tm=localtime(&tv.tv_sec);

 if (startSec == 0)

 startSec = tv.tv_sec;

 printf("%d:%02d:%02d , %d.%d ,", tm->tm_hour, tm->tm_min, tm->tm_sec,

 tv.tv_sec-startSec, tv.tv_usec/1000);

}

void writeDate() {

 time_t rawtime;

 struct tm * timeinfo;

 time (&rawtime);

 timeinfo = localtime (&rawtime);

 printf ("Test date: %s", asctime (timeinfo));

}

2.2 Makefile for useMem (uM)
CC = gcc

LLIBS = pthread

all: useMem.c

 $(CC) useMem.c -lpthread -o uM -O3 -march=z900 -funroll-loops

B12 B.3 - memMeter, qkumon Java client

3. memMeter, qkumon Java client

 The memMeter program is a small Java program (see Figure 3-1) made in

NetBeans. It establishes a TCP connection to the qkumon xinetd service men-

tioned above (B.1); it plots the received data and saves data in a log file as

well.

 The program uses the JChart2D charting library in version 2.2.1, which

can be found via the project homepage: http://jchart2d.sourceforge.net/. It

has been necessary to make some adjustments to one of existing charts (or

more specifically one of the so-called “traces”), in order to produce a plot with

a fixed interval on the x-axis. The source code for the main application class

and the new “trace” are given below.

Figure 3-1: The GUI of the MemMeter java client for the qkumon/mem.awk monitor.

Appendix B: Test Scripts & Programs B13

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

3.1 qkuMeterGUI.java
import info.monitorenter.gui.chart.Chart2D;

import info.monitorenter.gui.chart.rangepolicies.RangePolicyForcedPoint;

import info.monitorenter.gui.chart.traces.Trace2DXspan;

import java.awt.Color;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.DataOutputStream;

import java.io.FileWriter;

import java.io.IOException;

import java.io.InputStreamReader;

import java.net.Socket;

import java.net.UnknownHostException;

import java.util.Vector;

import javax.swing.JLabel;

import javax.swing.JTextField;

/*

 * qkuMeterGUI.java

 * Created on 23 May 2007, 14:54

 */

public class qkuMeterGUI extends javax.swing.JFrame {

 /**

 * Creates new form qkuMeterGUI

 */

 public qkuMeterGUI() {

 initComponents();

 // Create an ITrace:

 // Note that dynamic charts need limited amount of values!!!

 chartA.getAxisY().setRangePolicy(new RangePolicyForcedPoint());

 meterThreadA = new dataGatherThread(chartA, textPortA);

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 // <editor-fold defaultstate="collapsed" desc=" Generated Code ">

 private void initComponents() {

 jLabel1 = new javax.swing.JLabel();

 textIPaddress = new javax.swing.JTextField();

 buttonStart = new javax.swing.JButton();

 buttonStop = new javax.swing.JButton();

 buttonReset = new javax.swing.JButton();

 jLabel4 = new javax.swing.JLabel();

 textPortA = new javax.swing.JTextField();

 chartA = new info.monitorenter.gui.chart.Chart2D();

 jLabel6 = new javax.swing.JLabel();

 textXspan = new javax.swing.JTextField();

 textLogFile = new javax.swing.JTextField();

 buttonLog = new javax.swing.JButton();

 textLog = new javax.swing.JTextField();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 setTitle("memMeter");

 jLabel1.setText("IP address:");

 textIPaddress.setText("172.31.218.12");

 textIPaddress.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 textIPaddressActionPerformed(evt);

 }

 });

 buttonStart.setText("Start");

B14 B.3 - memMeter, qkumon Java client

 buttonStart.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 buttonStartActionPerformed(evt);

 }

 });

 buttonStop.setText("Stop");

 buttonStop.setEnabled(false);

 buttonStop.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 buttonStopActionPerformed(evt);

 }

 });

 buttonReset.setText("Reset graphs");

 buttonReset.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 buttonResetActionPerformed(evt);

 }

 });

 jLabel4.setText("Port A");

 textPortA.setText("5557");

 textPortA.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 textPortAActionPerformed(evt);

 }

 });

 javax.swing.GroupLayout chartALayout = new javax.swing.GroupLayout(chartA);

 chartA.setLayout(chartALayout);

 chartALayout.setHorizontalGroup(

 chartALayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGap(0, 768, Short.MAX_VALUE)

);

 chartALayout.setVerticalGroup(

 chartALayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGap(0, 425, Short.MAX_VALUE)

);

 jLabel6.setText("x span: ");

 textXspan.setText("30");

 textLogFile.setText("c:\\qku\\data\\log.csv");

 buttonLog.setText("Log");

 buttonLog.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 buttonLogActionPerformed(evt);

 }

 });

 javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane());

 getContentPane().setLayout(layout);

 layout.setHorizontalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, lay-

out.createSequentialGroup()

 .addContainerGap()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING)

 .addComponent(chartA, javax.swing.GroupLayout.Alignment.LEADING,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,

Short.MAX_VALUE)

 .addGroup(layout.createSequentialGroup()

 .addComponent(jLabel1)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

Appendix B: Test Scripts & Programs B15

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 .addComponent(textIPaddress, javax.swing.GroupLayout.DEFAULT_SIZE,

94, Short.MAX_VALUE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(jLabel4)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(textPortA, javax.swing.GroupLayout.PREFERRED_SIZE,

39, javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(textLogFile, javax.swing.GroupLayout.PREFERRED_SIZE,

213, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addGap(57, 57, 57)

 .addComponent(textLog, javax.swing.GroupLayout.PREFERRED_SIZE, 207,

javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(buttonLog))

 .addGroup(javax.swing.GroupLayout.Alignment.LEADING, lay-

out.createSequentialGroup()

 .addComponent(buttonStart)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(buttonStop)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, 469, Short.MAX_VALUE)

 .addComponent(jLabel6)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(textXspan, javax.swing.GroupLayout.PREFERRED_SIZE,

35, javax.swing.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(buttonReset)))

 .addContainerGap())

);

 layout.setVerticalGroup(

 layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)

 .addGroup(layout.createSequentialGroup()

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(jLabel1)

 .addComponent(textLogFile, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(buttonLog)

 .addComponent(textLog, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(jLabel4)

 .addComponent(textPortA, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addComponent(textIPaddress, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

 .addComponent(chartA, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)

 .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE)

 .addComponent(buttonStop)

 .addComponent(buttonStart)

 .addComponent(buttonReset)

 .addComponent(jLabel6)

 .addComponent(textXspan, javax.swing.GroupLayout.PREFERRED_SIZE,

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE))

 .addContainerGap())

);

 pack();

 }// </editor-fold>

 private void buttonLogActionPerformed(java.awt.event.ActionEvent evt) {

B16 B.3 - memMeter, qkumon Java client

 if (bw != null) {

 try {

 bw.newLine();

 bw.write(textLog.getText());

 } catch (IOException ignore) {

 System.out.println("IOException writing log text");

 }

 } else {

 try {

 BufferedWriter bw = new BufferedWriter(

 new FileWriter(textLogFile.getText(),true));

 bw.newLine();

 bw.write(textLog.getText());

 bw.close();

 } catch (IOException ex) {

 System.out.println(

 "IOException writing log text (file not already open)\n" + ex);

 }

 }

 }

 private void textPortAActionPerformed(java.awt.event.ActionEvent evt) {

 }

 private void buttonResetActionPerformed(java.awt.event.ActionEvent evt) {

 oRunTrace.removeAllPoints();

 oSleTrace.removeAllPoints();

 }

 private void buttonStopActionPerformed(java.awt.event.ActionEvent evt) {

 buttonStart.setEnabled(true);

 buttonStop.setEnabled(false);

 }

 private void buttonStartActionPerformed(java.awt.event.ActionEvent evt) {

 buttonStart.setEnabled(false);

 buttonStop.setEnabled(true);

 meterThreadA.wakeup();

 }

 private void textIPaddressActionPerformed(java.awt.event.ActionEvent evt) {

 // TODO add your handling code here:

 }

 public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() {

 public void run() {

 new qkuMeterGUI().setVisible(true);

 }

 });

 }

 // Variables declaration - do not modify

 private javax.swing.JButton buttonLog;

 private javax.swing.JButton buttonReset;

 private javax.swing.JButton buttonStart;

 private javax.swing.JButton buttonStop;

 private info.monitorenter.gui.chart.Chart2D chartA;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel4;

 private javax.swing.JLabel jLabel6;

 private javax.swing.JTextField textIPaddress;

 private javax.swing.JTextField textLog;

 private javax.swing.JTextField textLogFile;

 private javax.swing.JTextField textPortA;

 private javax.swing.JTextField textXspan;

 // End of variables declaration

Appendix B: Test Scripts & Programs B17

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 dataGatherThread meterThreadA = null;

 dataGatherThread meterThreadB = null;

 Trace2DXspan oRunTrace = null;

 Trace2DXspan oSleTrace = null;

 Double xFirst = Double.MAX_VALUE;

 BufferedWriter bw = null;

 class dataGatherThread extends Thread {

 Vector<Trace2DXspan> traces = new Vector<Trace2DXspan>();

 JTextField textPort;

 JLabel labelCurrentVal;

 public Trace2DXspan createTrace(int parmnum, Color c, String name, String unit1,

 String unit2){

 Trace2DXspan trace = new Trace2DXspan();

 trace.setColor(c);

 trace.setName(name);

 trace.setPhysicalUnits(unit1, unit2);

 if (traces.size() < parmnum+1) {

 traces.setSize(parmnum+5);

 }

 traces.setElementAt(trace, parmnum);

 return trace;

 }

 public dataGatherThread(Chart2D chart, JTextField p) {

 traces.setSize(20);

 chart.addTrace(createTrace(2, Color.GREEN, "app", "", ""));

 chart.addTrace(createTrace(3, Color.PINK, "slab", "", ""));

 chart.addTrace(createTrace(4, Color.BLUE, "PageTables", "", ""));

 chart.addTrace(createTrace(5, Color.CYAN, "vmallocUsed", "", ""));

 chart.addTrace(createTrace(6, Color.YELLOW, "Buffers", "", ""));

 chart.addTrace(createTrace(7, Color.ORANGE, "Cache", "", ""));

 chart.addTrace(createTrace(8, Color.BLACK, "MemFree", "", ""));

 chart.addTrace(createTrace(9, Color.RED, "SwapCached", "", ""));

 chart.addTrace(createTrace(20, Color.RED, "SwapCached", "", ""));

 chart.addTrace(createTrace(10, Color.LIGHT_GRAY, "Swap", "", ""));

 textPort = p;

 start();

 }

 public synchronized void wakeup() {

 this.notify();

 }

 public synchronized void run() {

 //System.out.println("Thread is living!!!!!!!!");

 while(true) {

 Socket clientSocket = null;

 DataOutputStream os = null;

 BufferedReader br = null;

 while (buttonStop.isEnabled() == false) {

 try {

 //System.out.println("Thread is going to wait...");

 this.wait();

 //System.out.println("Thread woke up...");

 } catch (InterruptedException ignore) {}

 }

 String ipadd = textIPaddress.getText();

 String toSend = new String("m\n");

B18 B.3 - memMeter, qkumon Java client

 for (Trace2DXspan t : traces) {

 if (t != null) {

 t.setXSpan(new Integer(textXspan.getText()));

 }

 }

 try {

 clientSocket = new Socket(ipadd, new Integer(textPort.getText()));

 os = new DataOutputStream(clientSocket.getOutputStream());

 br = new BufferedReader(

 new InputStreamReader(clientSocket.getInputStream()));

 } catch (UnknownHostException e) {

 System.err.println("Don't know about host: hostname");

 buttonStopActionPerformed(null);

 } catch (IOException e) {

 System.err.println("Failed creating sockets and streams");

 buttonStopActionPerformed(null);

 }

 try {

 bw = new BufferedWriter(new FileWriter(textLogFile.getText(),true));

 } catch (IOException ex) {

 System.err.println("Problem opening log file");

 buttonStopActionPerformed(null);

 }

 try {

 os.writeBytes("mi\n");

 bw.write("\n" + br.readLine() + "\n");

 bw.write(br.readLine());

 } catch (IOException ex) {

 System.err.println("Logging date and desciptive text failed");

 buttonStopActionPerformed(null);

 }

 while (buttonStop.isEnabled()) {

 if (clientSocket != null && os != null && br != null) {

 try {

 //System.out.print("Now writing: " + toSend);

 os.writeBytes(toSend);

 //System.out.println("Now reading...");

 String responseLine = br.readLine();

 if (responseLine != null) {

 //System.out.println(responseLine);

 String[] responseValues = responseLine.split(",");

 if (responseValues.length > 1) {

 bw.newLine();

 bw.write(responseLine);

 Double xSinceEpoc = new Double(responseValues[1]);

 if (xSinceEpoc < xFirst) xFirst = xSinceEpoc;

 xSinceEpoc = xSinceEpoc - xFirst;

 Double y = new Double(0);

 for (int i = 2; i < responseValues.length; i++) {

 y += new Double(responseValues[i])/1024;

 if (traces.get(i) != null) {

 traces.get(i).addPoint(xSinceEpoc, y);

 }

 // Ugly fix to get swapCached shown twice

 if (i == 9) {

 y += new Double(responseValues[9])/1024;

Appendix B: Test Scripts & Programs B19

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 if (traces.get(20) != null) {

 traces.get(20).addPoint(xSinceEpoc, y);

 }

 }

 }

 }

 try {

 Thread.sleep(400);

 } catch (InterruptedException ignore) {}

 } else {

 //System.out.println("Null!! :-(");;

 }

 } catch (UnknownHostException e) {

 System.err.println("Trying to connect to unknown host: " + e);

 } catch (IOException e) {

 System.err.println("IOException: " + e);

 break;

 }

 }

 }

 try {

 os.writeBytes("q\n");

 os.close();

 br.close();

 clientSocket.close();

 bw.close();

 bw = null;

 } catch (IOException e) {

 System.err.println("IOException (closing): " + e);

 }

 }

 }

 }

}

B20 B.3 - memMeter, qkumon Java client

3.2 \info\monitorenter\gui\chart\traces\Trace2DXspan.java
/*

 * Trace2DXspan is a modification of Trace2DLtd modified by Klaus Johansen.

 * This modified version makes is "fix" the x-axis to a certain "span" width.

 * Points with x < (newest x - span) are discarded.

 *

 * Trace2DLtd is a RingBuffer- based fast implementation of a ITrace2D.

 * Copyright (C) 2002 Achim Westermann, Achim.Westermann@gmx.de

 *

 * This library is free software; you can redistribute it and/or

 * modify it under the terms of the GNU Lesser General Public

 * License as published by the Free Software Foundation; either

 * version 2.1 of the License, or (at your option) any later version.

 *

 * This library is distributed in the hope that it will be useful,

 * but WITHOUT ANY WARRANTY; without even the implied warranty of

 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

 * Lesser General Public License for more details.

 *

 * You should have received a copy of the GNU Lesser General Public

 * License along with this library; if not, write to the Free Software

 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

 *

 * If you modify or optimize the code in a useful way please let me know.

 * Achim.Westermann@gmx.de

 */

package info.monitorenter.gui.chart.traces;

import info.monitorenter.gui.chart.Chart2D;

import info.monitorenter.gui.chart.ITrace2D;

import info.monitorenter.gui.chart.TracePoint2D;

import info.monitorenter.util.collections.IRingBuffer;

import info.monitorenter.util.collections.RingBufferArrayFast;

import java.util.Iterator;

/**

 * Additional to the Trace2DSimple the Trace2DLimited adds the following

 * functionality:

 * <p>

 *

 * The amount of internal tracepoints is limited to the maxsize, passed to

 * the constructor.

 * If a new tracepoint is inserted and the maxsize has been reached, the

 * tracepoint residing for the longest time in this trace is thrown away.

 *

 * Take this implementation to display frequently changing data (nonstatic, time -

 * dependant values). You will avoid a huge growing amount of tracepoints that

 * would increase the time for scaling and painting until system hangs or

 * java.lang.OutOfMemoryError is thrown.

 * <p>

 *

 * @author Achim Westermann

 *

 * @version $Revision: 1.3 $

 */

public class Trace2DXspan extends ATrace2D implements ITrace2D {

 /**

 * Internal fast fifo buffer implentation based upon indexed access to an

 * array.

 */

 protected IRingBuffer m_buffer;

 private Integer xSpan;

 /**

 * Defcon of this stateless instance.

 */

 public Trace2DXspan() {

 this(new Integer(600), new Integer(30), Trace2DLtd.class.getName() + "-" +

 getInstanceCount());

Appendix B: Test Scripts & Programs B21

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 }

 public Trace2DXspan(final int maxsize, final int span) {

 this(maxsize, span , Trace2DLtd.class.getName() + "-" + getInstanceCount());

 }

 /**

 * Constructs an instance with a buffersize of maxsize and a default name.

 * <p>

 *

 * @param maxsize

 * the buffer size for the maximum amount of points that will be

 * shown.

 *

 * @param name

 * the name that will be displayed for this trace.

 */

 public Trace2DXspan(final int maxsize, final int span, final String name) {

 this.m_buffer = new RingBufferArrayFast(maxsize);

 xSpan = new Integer(span);

 //xMax = new Integer(span);

 this.setName(name);

 }

 /**

 * @see ATrace2D#addPointInternal(info.monitorenter.gui.chart.TracePoint2D)

 */

 public boolean addPointInternal(final TracePoint2D p) {

 TracePoint2D removed = (TracePoint2D) this.m_buffer.add(p);

 if (removed == null) {

 TracePoint2D oldest = (TracePoint2D)this.m_buffer.getOldest();

 if (oldest.getX() < ((int)p.getX()) - xSpan) {

 removed = (TracePoint2D)this.m_buffer.remove();

 } else {

 // no point was removed

 // use bound checks of calling addPoint

 return true;

 }

 }

 while (removed != null) {

 double tmpx;

 double tmpy;

 tmpy = removed.getY();

 if (tmpy >= this.m_maxY) {

 tmpy = this.m_maxY;

 this.maxYSearch();

 this.firePropertyChange(PROPERTY_MAX_Y, new Double(tmpy),

 new Double(this.m_maxY));

 } else if (tmpy <= this.m_minY) {

 tmpy = this.m_minY;

 this.minYSearch();

 this.firePropertyChange(PROPERTY_MIN_Y, new Double(tmpy),

 new Double(this.m_minY));

 }

 // scale the new point, check for new bounds!

 this.firePointAdded(p);

 removed = null;

 TracePoint2D oldest = (TracePoint2D)this.m_buffer.getOldest();

 if (oldest.getX() < ((int)p.getX()) - xSpan) {

 removed = (TracePoint2D)this.m_buffer.remove();

 }

 // scale the new point, check for new bounds!

 }

B22 B.3 - memMeter, qkumon Java client

 return false;

 }

 /**

 * @see info.monitorenter.gui.chart.ITrace2D#getMaxSize()

 */

 public int getMaxSize() {

 return this.m_buffer.getBufferSize();

 }

 /**

 * Returns the acutal amount of points in this trace.

 * <p>

 * @return the acutal amount of points in this trace.

 * @see info.monitorenter.gui.chart.ITrace2D#getSize()

 */

 public int getSize() {

 return this.m_buffer.size();

 }

 /**

 * @see info.monitorenter.gui.chart.ITrace2D#isEmpty()

 */

 public boolean isEmpty() {

 return this.m_buffer.isEmpty();

 }

 /**

 * @see info.monitorenter.gui.chart.ITrace2D#iterator()

 */

 public Iterator iterator() {

 if (Chart2D.DEBUG_THREADING) {

 System.out.println("Trace2DXspan.iterator, 0 locks");

 }

 synchronized (this.m_renderer) {

 if (Chart2D.DEBUG_THREADING) {

 System.out.println("Trace2DXspan.iterator, 1 lock");

 }

 synchronized (this) {

 if (Chart2D.DEBUG_THREADING) {

 System.out.println("Trace2DXspan.iterator, 2 locks");

 }

 return this.m_buffer.iteratorL2F();

 }

 }

 }

 /**

 * @see info.monitorenter.gui.chart.ITrace2D#removeAllPoints()

 */

 public void removeAllPointsInternal() {

 this.m_buffer.clear();

 }

 /**

 * <p>

 * Returns false always because internally a ringbuffer is used which does not

 * allow removing of values because that would break the contract of a

 * ringbuffer.

 * </p>

 * @param point

 * the point to remove.

 *

 * @return false always because internally a ringbuffer is used which does not

 * allow removing of values because that would break the contract of a

 * ringbuffer.

 */

 protected boolean removePointInternal(final TracePoint2D point) {

 return false;

 }

Appendix B: Test Scripts & Programs B23

Availability and performance aspects for mainframe consolidated servers
By Klaus Johansen, at IMM, DTU, for KMD A/S

 /**

 * Sets the maximum amount of points that may be displayed.

 * <p>

 *

 * Don't use this too often as decreases in size may cause expensive array

 * copy operations and new searches on all points for bound changes.

 * <p>

 *

 * TODO: Only search for bounds if size is smaller than before, debug and

 * test.

 *

 * @param amount

 * the new maximum amount of points to show.

 */

 public final void setMaxSize(final int amount) {

 if (Chart2D.DEBUG_THREADING) {

 System.out.println("Trace2DXspan.setMaxSize, 0 locks");

 }

 synchronized (this.m_renderer) {

 if (Chart2D.DEBUG_THREADING) {

 System.out.println("Trace2DXspan.setMaxSize, 1 lock");

 }

 synchronized (this) {

 if (Chart2D.DEBUG_THREADING) {

 System.out.println("Trace2DXspan.setMaxSize, 2 locks");

 }

 this.m_buffer.setBufferSize(amount);

 double xmin = this.m_minX;

 this.minXSearch();

 if (this.m_minX != xmin) {

 this.firePropertyChange(PROPERTY_MIN_X, new Double(xmin),

 new Double(this.m_minX));

 }

 double xmax = this.m_maxX;

 this.maxXSearch();

 if (this.m_maxX != xmax) {

 this.firePropertyChange(PROPERTY_MAX_X, new Double(xmax),

 new Double(this.m_maxX));

 }

 double ymax = this.m_maxY;

 this.maxYSearch();

 if (this.m_maxY != ymax) {

 this.firePropertyChange(PROPERTY_MAX_Y, new Double(ymax),

 new Double(this.m_maxY));

 }

 double ymin = this.m_minY;

 this.minYSearch();

 if (this.m_minY != ymin) {

 this.firePropertyChange(PROPERTY_MIN_Y, new Double(ymin),

 new Double(this.m_minY));

 }

 }

 }

 }

 /**

 * <p>

 * Method triggered by

 * <code>{@link TracePoint2D#setLocation(double, double)}</code>,

 * <code>{@link #addPoint(TracePoint2D)}</code> or

 * <code>{@link #removePoint(TracePoint2D)}</code>.

 * </p>

 * <p>

 * Bound checks are performed and property change events for the properties

 * <code>{@link ITrace2D#PROPERTY_MAX_X}</code>,

 * <code>{@link ITrace2D#PROPERTY_MIN_X}</code>,

B24 B.3 - memMeter, qkumon Java client

 * <code>{@link ITrace2D#PROPERTY_MAX_Y}</code> and

 * <code>{@link ITrace2D#PROPERTY_MIN_Y}</code> are fired if the add bounds

 * have changed due to the modification of the point.

 * </p>

 *

 * @param changed

 * the point that has been changed which may be a newly added point

 * (from <code>{@link #addPoint(TracePoint2D)}</code>, a removed

 * one or a modified one.

 * @param added

 * if true the points values dominate old bounds, if false the bounds

 * are rechecked against the removed points values.

 */

 public void firePointChanged(final TracePoint2D changed, final boolean added) {

 double tmpx = changed.getX();

 double tmpy = changed.getY();

 if (added) {

 if (((int)tmpx) > this.m_maxX) {

 this.m_maxX = (int)tmpx;

 //this.expandMaxXErrorBarBounds();

 this.firePropertyChange(PROPERTY_MAX_X, null, new Double(this.m_maxX +1));

 this.m_minX = this.m_maxX-xSpan;

 this.firePropertyChange(PROPERTY_MIN_X, null, new Double(this.m_minX));

 }

 if (tmpy > this.m_maxY) {

 this.m_maxY = tmpy;

 //this.expandMaxYErrorBarBounds();

 this.firePropertyChange(PROPERTY_MAX_Y, null, new Double(this.m_maxY));

 } else if (tmpy < this.m_minY) {

 this.m_minY = tmpy;

 //this.expandMinYErrorBarBounds();

 this.firePropertyChange(PROPERTY_MIN_Y, null, new Double(this.m_minY));

 }

 } else {

 if (tmpy >= this.m_maxY) {

 tmpy = this.m_maxY;

 this.maxYSearch();

 this.firePropertyChange(PROPERTY_MAX_Y, new Double(tmpy),

 new Double(this.m_maxY));

 } else if (tmpy <= this.m_minY) {

 tmpy = this.m_minY;

 this.minYSearch();

 this.firePropertyChange(PROPERTY_MIN_Y, new Double(tmpy),

 new Double(this.m_minY));

 }

 if (this.getSize() == 0) {

 //this.m_firsttime = true;

 }

 }

 }

 public Integer getXSpan() {

 return xSpan;

 }

 public void setXSpan(Integer xSpan) {

 this.xSpan = xSpan;

 }

}

