
DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 1

INFORMATICS & MATHEMATICAL MODELING,
TECHNICAL UNIVERSITY OF DENMARK,
LYNGBY, DENMARK

DESIGN OF AN INTEGRATED
GFSK DEMODULATOR FOR A
BLUETOOTH RECEIVER
PROJECT REPORT

BY: KASHIF MUNIR VIRK SUPERVISER: DR. OLE OLSEN

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 2

ACKNOWLEDGEMENTS

I would like to acknowledge the technical advice received during this project from Dr. Søren
Sennels at Nokia, Denmark and Mr. Ole Hoejrup at Xilinx, Denmark. The financial
assistance received from the Centre for Integrated Electronics, DTU, Denmark through Dr.
Ole Olesen and Nokia, Denmark through Dr. Dan Rebild during the course of this project is
gratefully acknowledged. The cooperation of the staff at CIE, DTU and ASIC R&D, Nokia
is highly appreciated. Finally, special thanks to Mr. Flemming Stassen, my counsellor and
teacher for his help and advice during my M.Sc. degree.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 3

SYNOPSIS

This report digresses the project work carried out for the design of an integrated GFSK
demodulator for a receiver based on the BluetoothTM specification. Starting from the system
specification, the design description is presented as a set of hierarchical steps including
block diagram models of the designed system. The specific functional details of each system
block are introduced briefly. The models are refined and transformed to generate VHDL
code for design prototyping which is then synthesized, implemented and tested on an FPGA.
This report emphasizes the integrated system design methods employed using a BluetoothTM
receiver block as a design example.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 4

CONTENTS

CHAPTER 1 Page 11
Introduction

1.1 Introduction

1.2 Organization of the Report

1.3 Project Background

CHAPTER 2 Page 15

System Design Methodology

2.1 Integrated System Design

2.2 Selection of Design Automation Tools

2.2.1 Workstation-based Tools

2.2.2 PC-based Tools

CHAPTER 3 Page 21

A/D Conversion
3.1 A/D Converter Architectures

3.2 Flash A/D Converters

3.3 Oversampling A/D Converters

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 5

3.4 Considerations for the Selection of Sampling Frequency

CHAPTER 4 Page 25

System Algorithm Design

4.1 Spread Spectrum Modulation

4.1.1 Spectrum Spreading Techniques

4.1.2 Direct Sequence Spread Spectrum

4.1.3 Frequency Hopping Spread Spectrum

4.2 GFSK Modulation

4.2.1 Frequency Shift Keying [FSK]

4.2.2 Gaussian Frequency Shift Keying [GFSK]

4.3 Demodulation Algorithms for GFSK

4.3.1 Coherent Demodulation

4.3.2 NonCoherent Demodulation

4.3.3 Matched Filter-based Demodulation

4.3.4 Frequency Discriminator-based Demodulation

4.4 Detector Algorithms for GFSK

4.5 BluetoothTM Modulation Specification

CHAPTER 5 Page 34
System Architecture Design

5.1 Demodulator Architectures

5.1.1 Correlator-based Demodulator

5.1.2 Convolver-based Demodulator

5.2 Detector Architectures

5.2.1 Envelope Detector

5.2.2 Square Law Detector

5.3 System Architecture

5.4 Digital Filters

5.4.1 IIR Filters

5.4.2 FIR Filters

5.5 Digital Filter Design Flow

5.6 Digital Filter Design Algorithms

5.6.1 Bilinear Transformation Method

5.6.2 Impulse Invariant Method

5.6.3 Pole-Zero Placement Method

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 6

5.6.4 Window Method

5.6.5 Optimal Method

5.6.6 Frequency Sampling Method

CHAPTER 6 Page 45

System Validation

6.1 Floating-Point Model Validation

6.1.1 Floating-Point Arithmetic

6.1.2 Floating-Point System Model

6.2 Fixed-Point Model Validation

6.2.1 Fixed-Point Arithmetic

6.2.2 Fixed-Point System Model

6.2.2.1 Filter Design Toolbox

CHAPTER 7 Page 63

System Realization

7.1 Digital Filter Realization Structures

7.2 Finite Word Length/Quantization Effects

7.3 Filter Realization/Synthesis

7.3.1 Filter Realization Wizard

CHAPTER 8 Page 73

FPGA Implementation

8.1 FPGA-based Rapid Prototyping

8.2 VHDL Code Generation

8.2.1 XilinxTM Blockset-based System Model

8.3 Design Synthesis

8.4 Design Translation, Mapping, Placement & Routing

CHAPTER 9 Page 85
System Testing

9.1 FPGA Programming

9.2 FPGA Testing Strategies

CHAPTER 10 Page 88
Summary & Conclusions

10.1 Summary & Conclusions

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 7

10.1.1 Semi-Custom ASIC Design

10.1.2 System Model Refinement

10.1.3 Low-Power Design

APPENDIX A

Data Sheets of the Design Tools

APPENDIX B

System Models & Simulation Waveforms

APPENDIX C

Digital Filter Designs

APPENDIX D

Generated VHDL Code & Data Sheets of the XilinxTM IP Cores

APPENDIX E

XilinxTM FPGA Floorplan & Layout

APPENDIX F

XilinxTM Virtex 1000E Data Sheets and XilinxTM FPGA Test Board & Test Setup

APPENDIX G
References

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 8

FIGURES

Figure 1.1 BluetoothTM Reciever Block Diagram

Figure 1.2 BluetoothTM Receiver Architecture

Figure 2.1 System Design Methodology

Figure 2.2 The MATLABTM CoDesign Environment for Hardware & Software

Figure 2.3 The MATLABTM Deisgn Environment for System & Hardware-level Design

Figure 2.4 Impact of having a Common Design Environment on System Design Time

Figure 3.1 A/D Converter Functions

Figure 3.2 Common A/D Converter Architectures

Figure 4.1 Direct Sequence Spread Spectrum Modulation

Figure 4.2 The effect of Gaussian filter bandwidth on the signal frequency spectrum

Figure 4.3 Classification of Modulation Formats

Figure 5.1 Correlator-Based Demodulator

Figure 5.2 Convolver-based Demodulator

Figure 5.3 Decomposition of an FSK Signal into two ASK Signals

Figure 5.4 Frequency Discriminator-based FSK Demodulator

Figure 5.5 Block-level details of the Baseband Coprocessor

Figure 5.6 Convolver-based Demodulator Architecture

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 9

Figure 5.7 Digital Filter Block Diagram

Figure 5.8 Digital Matched Filter Block Diagram

Figure 5.9 Digital Filter Tolerance Scheme

Figure 5.10 Digital Filter Design Flow

Figure 6.1 Floating Point System Model

Figure 6.2 Settings of the quantization parameters for the Filter Design & Analysis Tool

Figure 6.3 Fixed-Point System Model

Figure 7.1 Direct Form I Filter Structure

Figure 7.2 A Linear Phase Structure for an FIR Filter with 7 Coefficients

Figure 7.3 Graphical User Interface of the Filter Realization Wizard

Figure 7.4 The Floating-Point Filter Block Synthesized by the Filter Realization Wizard

Figure 7.5 The Fixed-Point Filter Block converted from the Floating-Point Filter Block

Figure 7.6 Section of the Synthesized Fixed-Point Direct Form II Realization Structure

Figure 7.7 The Encapsulated Fixed-Point Delay Block (shown in red in Figure 7.6)

Figure 7.8 The Synthesized 49-Tap Direct Form II Bandpass FIR Filter Structure

Figure 7.9 Realized Fixed-Point System Model

Figure 8.1 The XilinxTM System Generator & MATLABTM Interface

Figure 8.2 XilinxTM Blockset-based System Model

Figure 8.3 Design Synthesis Using SynopsysTM FPGA Express Synthesis Environment

Figure B.1 Output after the Bernoulli Random Binary Generator Block

Figure B.2 Output after the Sum Block

Figure B.3 Output after the Relational Operator Block

Figure B.4 Output after the Zero Order-Hold1 Block

Figure B.5 Output after the Remez FIR Filter Design Block

Figure B.6 Output after the –0.5 Constant & Sum Blocks

Figure B.7 Output after the AWGN Channel Block

Figure B.8 Output after the Digital FIR Filter Design1 Block

Figure B.9 Output after the Abs1 Block

Figure B.10 Output after the Digital FIR Filter Design3 Block

Figure B.11 Output after the Bernoulli Random Binary Generator Block

Figure B.12 Output after the FixPt Sum Block

Figure B.13 Output after the FixPt Relational Operator Block

Figure B.14 Output after the FixPt Gateway Out Block

Figure B.15 Output after the Bernoulli Random Binary Generator Block

Figure B.16 Output after the FixPt Sum Block

Figure B.17 Output after the FixPt Relational Operator Block

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 10

Figure B.18 Output after the FixPt Gateway Out Block

Figure B.19 Output after the Bernoulli Random Binary Generator Block

Figure B.20 Output after the Adder2 Block

Figure B.21 Output after the Relational Block

Figure B.22 Output after the Gateway Out Block

Figure E.1 Custom-Built XilinxTM FPGA Test Board

Figure E.2 XlinxTM FPGA Test Setup

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 11

1

INTRODUCTION

1.1 INTRODUCTION
This report is the result of my M.Sc. research project that is the final part of my studies in
Computer Systems Engineering at the Institute of Informatics & Mathematical Modeling
[IMM] at the Danish Technical University [DTU]. This project was carried out at the Centre
for Integrated Electronics [CIE], Oersted Institute, DTU and Nokia, ASIC R&D,
Copenhagen, Denmark during the Spring of 2001. The duration of the project was limited to
six months as a full-time work.

1.2 ORGANIZATION OF THE REPORT
This report requires the reader to have familiarity with the fundamental concepts of
Communication Systems, Digital Signal Processing, Digital Systems, and ASIC Design &
Testing. Familiarity with the structure and operation of Electronic System Design
Automation (ESDA) tools can augment the comprehension of the subject matter as well.
However, some of the theoretical foundations for grasping the design details have been
discussed in chapters 3 to 5 of this report. An extensive list of references has been provided
as Appendix-G for thorough understanding of the ideas discussed in the report. Citations to
some of the references might not be found in the report but they are listed because they were
used to gain deeper insights into the respective subjects.

This report is organized as follows:

Chapter 1 gives an overview of the BluetoothTM receiver system and briefly describes how
this project work fits into the overall task of the receiver system design.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 12

Chapter 2 details the design methodology adopted for this project and the selection of the
design automation tools to implement the adopted design methodology.

Chapter 3 discusses A/D converters and the issues and considerations for selecting the
appropriate sampling rate for the designed system.

Chapter 4 elaborates the theoretical details of the modulation formats employed by the
BluetoothTM specification and the algorithm-level design of the GFSK demodulator.

Chapter 5 explains the architecture-level implementation of the demodulator and the
concepts of digital filtering employed to design the demodulator architecture.

Chapter 6 is the key chapter of this report that puts together all the details of the previous
chapters into a set of hierarchical system models for validating the performance of the
designed system architecture and extracting the design parameters for the system blocks.

Chapter 7 discusses the system realization steps and tradeoffs.

Chapter 8 is also an important chapter of this report as it explains the process of rapid
system prototyping by translating the refined system model into VHDL code and subsequent
synthesis, translation, mapping, placement, and routing of the FPGA.

Chapter 9 describes the issues and strategies of system testing considered for this project.

Chapter 10 summarizes and concludes the report by discussing the final design and gives
suggestions for further improvement.

1.3 PROJECT BACKGROUND
This project work is a part of the Confront project at the Centre for Integrated Electronics
(CIE), Oersted Institute, Technical University of Denmark (DTU), that involves the Design
of an integrated receiver based on the BluetoothTM specification. The proposed block diagram
of the BluetoothTM receiver is shown below:

Figure 1.1 BluetoothTM Reciever Block Diagram

The BluetoothTM receiver mainly consists of the following circuit blocks:

RF Frontend  Low-IF [33]

1) Low Noise Amplifier (LNA)

2) Image-reject Mixers

3) PLL-based Frequency Synthesizer

4) 90° Phase Shifter

5) Band Pass Filter

LNA FREQUENCY
SYNTHESIZER

900

BANDPASS
FILTER

VG
A+ DSPA/D

CONVERTERPN CODE
GENERATOR

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 13

6) Variable Gain Amplifier (VGA)

Baseband Backend

1) Analog-to Digital Converter (A/D)

2) Application-Specific Baseband Coprocessor / General-Purpose Control Processor

A brief functional description of each of the above circuit blocks is given below:

The RF signal received at the antenna is filtered through a SAW (Surface Acoustic Wave)
filter and amplified by a broadband, low-noise amplifier (LNA). After the LNA, the
amplified signal is split into in-phase (I-) and quadrature-phase (Q-) components and mixed
with the frequencies generated by the PLL frequency synthesizer, acting as a local oscillator,
in the image-reject mixers to down-convert it to an intermediate frequency (IF) of 1 MHz.
The down-converted signal is passed through the VGA (Variable Gain Amplifier) to
stabilize its (possibly) varying gain to a constant value so that it can be sampled by the A/D
Converter(s) of relatively less dynamic range. The sampled signal is input to the
Application-Specific Baseband Coprocessor where it is digitally demodulated and detected
to recover the binary bit-valued data for further processing.

This project work involves the design of the Baseband Backend for the BluetoothTM Receiver
that includes the design specification of the A/D Converter and the Application-Specific
Baseband Coprocessor and a detailed design investigation of the frequency hopping and
GFSK Demodulation algorithms to be processed by the Application-Specific Baseband Co-
processor.

SUMMARY
This chapter introduced the project and briefly described the receiver system based on the
BluetoothTM specification. To put the project work into perspective, the receiver system block
diagram was briefly explained indicating the place and function of the GFSK demodulation
block in the baseband backend.

LNA FREQUENCY
SYNTHESIZER

900

BANDPASS
FILTER

VG
A+

APPLICATION-SPECIFIC BASEBAND
COPROCESSOR

A/D
CONVERTER

BLUETOOTH RECEIVER ARCHITECTURE

GFSK
Demodulator Synchronization Automatic

Gain Control

GFSK DEMODULATOR

GFSK
DEMODULATION

ENVELOPE
DETECTION

THRESHOLD DETECTION

ENVELOPE
DETECTOR

BANDPASS
FILTER f2

ENVELOPE
DETECTOR

BANDPASS
FILTER f1

THRESHOLD
DETECTOR+

Figure 1.2 BluetoothTM Receiver Architecture

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 15

2

SYSTEM DESIGN
METHODOLOGY

2.1 INTEGRATED SYSTEM DESIGN
In order to design an integrated GFSK demodulator for a BluetoothTM Receiver a structured
design methodology was adopted.

A structured design methodology can be described as the overall system design strategy to
organize and solve the system design issues at different steps of the system design process.
Generally, the system design process is viewed as the development of a sequence of system
models, where each subsequent version of the system model is more refined than the
previous one. The refinement process continues until all the system design issues are
resolved [17].

A structured design methodology was primarily employed to reduce the complexity of the
design problem. Other important objectives of adopting such a design strategy were to:

• guarantee that the system performance goals are fulfilled. Therefore, the overall
performance goals were expressed in terms of sub-goals such as acceptable physical size
of the implemented chip, power consumption, speed, and the number of I/O pins, to
mention a few.

• attain a shorter and predictable design time so that the project could be accomplished
within the stipulated time frame. This implied that the risk of ending up with a non-
working integrated circuit due to design errors, erroneous interfaces, unsatisfactory
throughput, etc. must be minimized by using a good design method.

The degree of automation of the design process had a major impact on the overall design
process .

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 16

The starting point for the system design process was the System Specification. Starting from
the system specification, the system design process was mainly partitioned into two major
phases:

1) System Architecture Design

2) Integrated Circuit Design

These two phases were followed by the System Testing phase. This sequence of steps is
described in the figure below:

SYSTEM SPECIFICATION

SYSTEM ARCHITECTURE
DESIGN

INTEGRATED CIRCUIT
DESIGN

SYSTEM TESTING

Figure 2.1 System Design Methodology

System Specification
The BluetoothTM Specification [38], formulated by the Bluetooth Special Interest Group
(SIG) was used extensively to extract the system specification. The system specification
outlined the intended functions and performance criteria to be met by the designed system.

System Algorithm Design
The functions to be performed by the system being designed, as demanded by the system
specification were refined and organized into a set of system algorithms.

System Partitioning
System Partitioning, generally, is a system optimization process that involves the
segregation of the system algorithms for efficient mapping onto either hardware or software
and is carried out taking into consideration various factors, most important of them being
speed of execution, flexibility, communication overhead among various system blocks, etc.
In the context of this project, system partitioning was actually performed at a level higher
than the GFSK demodulator  at the level of baseband processing. The partitioning was
very coarse that separated the data-intensive baseband processing algorithms for mapping
onto an application-specific baseband coprocessor and code-intensive algorithms onto
software to be executed on a general-purpose control processor.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 17

System Architecture Design
A realization of the set of system algorithms in hardware (generally, either in hardware or
software or both), yielded the system architecture.

System Validation
In order to check the validity of the system architecture against the system specification,
system modeling was carried out and the resulting system model was subjected to system
simulation to ascertain whether the system being designed meets the performance criteria as
laid out in the system specification. System Validation was also used to extract the unknown
design parameters for the blocks constituting the system architecture.

2.2 SELECTION OF DESIGN AUTOMATION TOOLS
The main requirement of system-level codesign tools arose from the need to concurrently
model algorithmic, architectural, and hardware realized system blocks in a single
environment and the need for architectural exploration. The main purpose of architectural
exploration was to explore different hardware architectures to efficiently meet the
performance targets with minimal re-work of the high-level specification. Architectural
exploration was a multiple-choice exercise with each choice causing a ripple effect. The
automated codesign tools could predict such effects.

As mentioned earlier, the degree of automation of the design process had a major impact on
the overall design process. Considerable attention was paid in this project to the selection of
appropriate design automation tools.

DSP designers build systems that are more complicated than ever, while market pressures
force them to complete the designs in less time and at a lower cost. Most DSP systems are
complex and involve a wide variety of design disciplines. Tasks to be completed range from
algorithm, hardware, and software design to system simulation and integration/debugging.
As a result, designers typically must use multiple tools, ranging from filter design packages
to block diagram programming environments to hardware synthesis tools. DSP design tool
vendors have been increasing the design tool support for the various stages of the design
process by adding capabilities to the existing tools and by linking their tools to those
supplied by other companies [59].

2.2.1 WORKSTATION-BASED TOOLS
Mentor GraphicsTM, SynopsysTM, CadenceTM, and Hewlett-PackardTM have capable DSP
design tool offerings.

Mentor GraphicsTM has integrated the DSP Architect design entry tool, the MISTRAL 2
hardware synthesis technology, a VHDL simulator, and the TI TMS320C52 processor
simulation model providing a great deal of power within a single environment. However, the
DSP Architect currently has no way to generate C52 assembly code from a high level
specification, so the code running on the C52 has to be designed manually. Additionally, the
C52 processor model does not feature an interactive user interface, and this lack stifles
attempts to debug both the hardware and the software [62].

SynopsysTM has combined the COSSAP simulation environment and processor simulation
models for AT&T's DSP1610 fixed-point DSP chip allowing algorithms expressed as block
diagrams within COSSAP to be cosimulated with DSP1610 machine code executing on the
DSP1610 processor simulation model. Additional processor models are likely to be
integrated into COSSAP in the future. Additionally, COSSAP can probably provide

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 18

improved hardware synthesis capabilities from a combination of COSSAP's VHDL code
generation capabilities and SynopsysTM Behavioral Compiler hardware synthesis tool [60].

CadenceTM has also integrated Signal Processing Worksystem’s (SPW) Hardware Design
System (HDS) and the AT&T DSP1610 processor. The fixed-point optimizer option for
SPW aids design engineers in creating fixed-point implementations of floating-point
algorithms. The fixed-point optimizer allows the designer to specify a block diagram design
in floating-point, and then give the system target signal-to-quantization-noise performance
specifications. SPW then simulates the system using user-provided input signals and
calculates appropriate fixed-point parameters (signed/unsigned, number of integer bits,
number of fractional bits) for the different stages in the signal flow diagram. This is an
important capability for designers targeting reduced cost or high-speed fixed-point design
[61].

Hewlett-PackardTM’s Advanced Design System (ADS) is based on the Ptolemy design tool
developed at the University of California, Berkeley. ADS has a flexible graphical tool for
designing electronic systems, including DSP systems. The ADS DSP Designer provides
block-diagram based design entry, several kinds of dataflow and discrete event simulation
capabilities, C and assembly code generation, VHDL code generation, fixed-point
simulation, and support for several computational models [63].

2.2.2 PC-BASED TOOLS
HyperceptionTM's Hypersignal-Block Diagram package has C code generation capability,
the ability to generate a stand-alone executable program from a block diagram without actual
code generation. This is done by linking together pre-compiled object code to form a
complete executable that can run outside of Hypersignal-Block Diagram. This approach
works equally well for applications that execute on the PC as well as those that run on a DSP
add-in card. Because these stand-alone executables can make use of the MicrosoftTM
Windows graphical user interface, rapid generation of impressive-looking applications is
possible.

Additionally, HyperceptionTM has a standardized interface to a wide variety of DSP plug-in
boards. This standard device driver specification allows the user to make use of cards from
different manufacturers, and simplifies retargeting Hypersignal-Block Diagram to new
boards [64].

SignalogicTM’s DSPower is a generic block-diagram front end that can generate C code as
well as code for a variety of other tools, e.g., Hypersignal and MATLAB. This approach of
integration through code generation allows users to take advantage of the best features of
several different tools [65].

ElanixTM SystemView is another DSP system design package for communication system
design that offers interface to XilinxTM for VHDL code generation [66].

MathWorksTM provides a complete system-level design environment based on SimulinkTM,
a powerful block diagram-based simulation environment. SimulinkTM is built on top of
MATLABTM, the proven software for DSP algorithm development. SimulinkTM streamlines
communication system and DSP design by providing the fastest path from product concept
to validated system model to a working system prototype. It maximizes scarce engineering
resources by enabling to move a design effortlessly through algorithm development,
behavioral simulation, model verification, and system prototyping without having to transfer
data, rewrite code, or change software environments. With SimulinkTM, its possible to test
design concepts and tradeoffs earlier in the development process. By verifying the design at

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 19

the system level, the risk of expensive errors in software and/or silicon is minimized.
Eliminating these errors early cuts down the design time and development costs [67].

Design Automation Tool vendors have essentially two ways to increase DSP tool
capabilities. One is to add new capabilities to their own tools, providing better design
coverage within their tool suite. The other is to forge links to complementary tools. Both are
important and useful approaches, since no single tool is ever appropriate for all designs.
MathWorksTM has combined with XilinxTM to provide access to the rapid prototyping phase
through the System Generator Toolbox and xPC Toolbox for hardware-in-the-loop
simulation [67] [68].

MATLABTM and its associated tools were selected for this project, the main reason being
their availability and prior familiarity with some of the tools. Details of the tools deployed
for accomplishing specific design tasks are illustrated below:

SYSTEM-LEVEL CODESIGN
(MATLAB/Simulink)

Code Intensive
System Blocks

[DSP Implementation]

Data Intensive
System Blocks

[FPGA/ASIC Implementation]

C Code Generation
MATLAB Real-time Workshop

VHDL Code Generation
Xilinx System Generator

Figure 2.2 The MATLABTM CoDesign Environment for Hardware & Software

Figure 2.3 The MATLABTM Deisgn Environment for System & Hardware-level Design

Algorithm / Architecture
Design

(Communication, DSP,
Filter Design Toolboxes &

Communication, DSP
Blocksets)

System Validation
(MATLAB-Simulink)

Fixed Point Conversion
(Fixed-Point Blockset)

HDL Code Generation
(Simulink-Xilinx

System Generator)

Functional Simulation
(Model Technology

V-System)

Hardware Synthesis
(Synopsys

FPGA Express)

Hardware Testing
(Xilinx ChipScope)

SYSTEM DESIGN ASIC DESIGN

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 20

Figure 2.4 Impact of having a Common Design Environment on System Design Time [68]

SUMMARY
This chapter introduced the integrated system design issues and described the design flow
for handling complex integrated system designs. It explained the approach followed by
various design automation tools to have a common design environment for system-level
design and hardware/software-level design and such a set of tools used for this project to
implement the design.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 21

3

A/D CONVERSION

The Analog-to-Digital Converters (A/D Converters or ADCs) are a key building block in
digital communication receivers employing digital signal processing techniques. In bridging
the gap between the analog and the digital domains, the performance of the ADCs often
limits the achievable performance of the receiver. Many architectural choices in a receiver
are affected by the A/D Converter architecture. The essential parameters that generally
characterize A/D Converter architectures are speed, resolution, and power. In the context of
CMOS mixed-signal solutions to digital communication receivers, other important A/D
Converter parameters include input capacitance, settling time (time allowed for the sample-
and-hold circuit to settle to its final value while driving the input capacitance), latency
(through the A/D Converter), comparator metastability, and the output sparkle codes.

3.1 A/D CONVERTER ARCHITECTURES
The A/D Converter performs the following functions:

1) Signal Sampling

2) Signal Quantization

3) Signal Coding

Signal Sampling is essentially an operation of frequency translation or frequency mixing
where the sampled signal frequency is mixed with the sampling frequency of the local
oscillator that generates a series of impulses at the sampling frequency.

Signal Quantization involves rounding off the samples to the nearest quantization value.
This process introduces qunatization noise into the sampled signal.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 22

Signal Coding involves representation of each quantized signal sample in the format of a
unique b-bit binary sequence [14].

A/D CONVERTER

SAMPLING QUANTIZATION CODINGINPUT SIGNAL OUTPUT

Figure 3.1 A/D Converter Functions

The following A/D Converter architectures were investigated to select the appropriate
architecture for the BluetoothTM receiver:

Figure 3.2 Common A/D Converter Architectures

The most suitable type of A/D converters for the BluetoothTM receiver are the Flash
Converters The reason being that at an intermediate frequency (IF) of 1 MHz, the flash
converters provide the best performance in terms of converted bandwidth and resolution.

3.2 FLASH A/D CONVERTERS
The principle of operation of Flash Converterts is very simple. The input voltage is
compared with all the possible thresholds that define the transition between two successive

Data Converters

A/D Converters D/A Converters

Nyquist Rate A/D Converters Oversampling A/D Converters

Serial / Ramp /
Dual Slope / Integrating

Parallel / Flash

Self Calbrating/
Successive-Approximation

Cyclic / Algorithmic

Two-Step / Subranging

Folding

Interpolating

Time-Interleaved

1st Order Sigma-Delta

2nd Order Sigma-Delta

Multi-Stage / MASH

Pipelined Sigma-Delta

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 23

codes. Since for N bits there are 2N quantization steps, 2N-1 comparators are necessary. The
comparison operations are performed simultaneously and only one clock cycle is required to
perform the entire conversion. The necessary 2N-1 voltages are obtained with a resistive
divider. The outputs of the comparators are the input of a logic circuit encoding the result
into its digital code. The speed of a flash converter is determined by the speed of the
comparators and by the encoding logic. In general, the encoding logic is very fast and so the
comparator speed is the main concern. Moreover, even for medium resolution, the number
of comparators is very large which rises exponentially with the linear increase in resolution.
Thus the power dissipation and the silicon area rapidly reach unacceptable values. For 8 or
more bits of resolution, a more convenient technique is the 2-step or sub-ranging flash
converter.

As the flash converters are not efficient from the point of view of low-power operation.
Therefore, oversampling converters can provide better performance if they can be designed
to handle a converted bandwidth of 2 MHz [11].

3.3 OVERSAMPLING A/D CONVERTERS
Oversampling converters relax the requirements placed on the analog circuits at the expense
of more complicated digital circuits. This tradeoff becomes more desirable for modern sub-
micron process technologies operating at low-voltage power supplies where complicated
high-speed digital circuits are more easily realized in less area, but the realization of high-
resolution analog circuits is complicated by low-voltage power supplies and poor transistor
output impedances caused by short channel effects. With oversampling data converters, the
analog components have reduced the requirements on matching tolerances and amplifier
gains. A second advantage of oversampling converters is that they simplify the requirements
placed on the analog antialiasing filters for A/D converters. Furthermore, a sample-and-hold
amplifier is not required at the input of an oversampling A/D converter. By sampling a
signal at a rate much higher than the Nyquist rate, extra bits of resolution can be extracted
from A/D converters but this extra resolution can be obtained with lower oversampling rates
by spectrally shaping the quantization noise through the use of feedback. The use of shaped
quantization noise applied to oversampling signals is commonly referred to as delta-sigma
(∆-Σ) modulation [11] [12].

3.4 CONSIDERATIONS FOR THE SELECTION OF
SAMPLING FREQUENCY
Oversampling
Oversampling occurs when the signals of interest are bandlimited to f0 while the sampling
rate is at fs, where, fs>2f0 (2f0 being the Nyquist rate or, equivalently, the minimum sampling
rate for signals bandlimited to f0). Oversampling ratio, OSR, is defined as:

OSR = fs/2f0

OSRNSNR 10max log1076.102.6 ++=

The first term is the SNR due to the N-bit quantizer while the OSR term is the SNR
enhancement obtained from oversampling. Straight oversampling yields an SNR
improvement of 3 dB/octave. The reason for this SNR improvement through the use of
oversampling is that when quantized samples are averaged together, the signal portion adds

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 24

linearly, whereas, the noise portion adds as the square root of the sum of squares. While
oversampling improves the Signal-to-Noise Ratio (SNR), it does not improve linearity [11].

Oversampling With Noise Shaping
For a 1st Order Noise Shaping Loop:

OSRNSNR 10max log3017.576.102.6 +−+=

For a 2nd Order Noise Shaping Loop:

OSRNSNR 10max log509.1276.102.6 +−+=

The design of GFSK demodulator does not incorporate oversampling A/D converters
because designing oversampling converters has a separate set of design issues that have to be
dealt with separately and could not be addressed within the stipulated time of this project. As
a result, in the absence of quantization noise shaping, a high oversampling ratio has been
used to offset the effects of the quantization noise on the acceptable bit-error rate (BER).
The exact values of the A/D converter bits of resolution and oversampling ratio were
extracted through the simulation of the system model and will be described in chapter 6. The
resolution is 16-bits and the oversampling ratio is 20.

SUMMARY
This chapter introduced the A/D Converters that are an integral component of a DSP system
and discussed the considerations for the selection of an appropriate sampling rate for the
GFSK demodulator.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 25

4

SYSTEM ALGORITHM DESIGN

In order to design a demodulation algorithm for a Bluetooth receiver it was important to
precisely understand the modulation format used by a Bluetooth transmitter. A Bluetooth
Transmitter uses Frequency-Hopping Spread-Spectrum (FH-SS) as secondary modulation
preceded by Gaussian Frequency Shift Keying (GFSK) as primary modulation.

The secondary, spread spectrum modulation will be explained first.

4.1 SPREAD SPECTRUM MODULATION
Spread-Spectrum modulation, with its inherent interference attenuation capability, has over the
years become an increasingly popular technique for use in many different systems. Applications
range from anti-jam systems, to Code Division Multiple Access (CDMA) systems, to systems
designed to combat Multipath distortion. Spread-Spectrum modulation-based communication
systems have been developed since about 1950's. The initial applications have been to military anti-
jamming tactical communications, to guidance systems for missiles and space rockets, to
experimental anti-multipath systems, and other applications [23a].
A definition of Spread-Spectrum that adequately reflects the characteristics of this technique
is as follows:

Spread-Spectrum is a means of information transmission in which the modulated
signal occupies a bandwidth in excess of the minimum necessary to send the
information; the signal band spread is accomplished by means of a code which is
independent of the data, and a synchronized reception with the code at the receiver is
used for despreading and subsequent data recovery [23a].

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 26

Under this definition, standard modulation schemes such as FM and PCM which also spread the
spectrum of an information signal do not qualify as spread spectrum [23a].

Motivation For Spectrum Spreading

There are many reasons for spreading the spectrum, and if done properly, multiplicity of
benefits can accrue simultaneously. Some of these are :

1) Anti-jamming

2) Anti-interference

3) Low Probability of Intercept

4) Multiple-user random-access communications with selective addressing capability

4.1.1 SPECTRUM SPREADING TECHNIQUES
The means by which the spectrum is spread is crucial. Several of the techniques are :

Direct-Sequence Technique
In Direct-Sequence technique, a fast pseudorandomly generated code sequence causes phase
transitions in the carrier containing data.

Frequency Hopping Technique
In Frequency Hopping technique, the carrier is caused to shift frequency in a pseudorandom
way.

Time Hopping Technique
In Time Hopping technique, bursts of signal are initiated at pseudorandom times [23a]

4.1.2 DIRECT-SEQUENCE SPREAD-SPECTRUM
Direct-Sequence Spread-Spectrum (DS-SS) results when a primary modulated signal is
multiplied by a spreading signal in a mixer called the 'Spreading Correlator'. The spreading
code rate is :

Rc = 1 / Tc

where Tc is the time duration of a single pulse, called a chip having 100-1000 times shorter
duration than a data bit (Tc << Tb  bit duration). Consequently, the transmitted spectrum
will be 100-1000 times greater than the bandwidth of the primary-modulated signal, having
been finely chopped-up by a wideband, unique spreading code. The resulting signal
spectrum is highly correlated with the spectrum of the spreading code.

Figure 4.1 Direct Sequence Spread Spectrum Modulation [5]

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 27

4.1.3 FREQUENCY HOPPING SPREAD SPECTRUM
Frequency Hopping Spread Spectrum (FH-SS), spreads the primary-modulated signal energy
over a wide frequency band. A FH-SS transmitter switches from one narrowband frequency
to another at a specific rate and in accordance with a predefined frequency hopping code
sequence, sending several data bits at each narrow frequency band. By limiting the time
spent by a transmitter at each narrow frequency band, the probability of any two FH-SS
transmitters using the same narrow frequency band at the same time is minimized.

The frequency hopping rate is usually selected to be either equal to the (coded or uncoded)
symbol rate or faster than that rate. In a fast-hopped signal there are multiple hops per
symbol. On the other hand, in a slow-hopped signal hopping is performed at the symbol rate
[2].

Typically, the frequency spectrum is divided into 1-MHz channels, and frequency-hopped
systems must not spend too much time on any one channel  no more than 400 ms out of
any 20 seconds on a channel in the 900-MHz band, and no more than 400 ms out of 30
seconds at 2.4 GHz. They must also hop through at least 50 channels in the 900-MHz band
or 75 channels in the 2.4 GHz band.

The primary, GFSK modulation is explained next.

4.2 GFSK MODULATION
The GFSK Modulation is a form of the Continuous-Phase FSK (CP-FSK) which, in turn, is
a modification of the Discontinuous-Phase FSK modulation. Therefore, it is necessary to
first describe the Discontinuous-Phase FSK modulation and the Continuous-Phase FSK
Modulation schemes.

4.2.1 FREQUENCY SHIFT KEYING [FSK]
In the (Binary) FSK modulation, the 0's and 1's in the baseband digital signal are transmitted
using two different frequencies, f1 and f2 = f1+∆f (where ∆f = f2-f1) shifting from one
frequency to the other according to the binary value of the data sequence.

The Modulation Bandwidth for an FSK signal is

BFSK = 3 [maximum Bit Rate (fb)] + [maximum Frequency Shift (∆f)]

The Modulation Index for an FSK signal is

c
m f

fI ∆== β

where: fc = Modulation / Carrier Frequency

FSK is much less susceptible to corruption by unwanted amplitude modulation - due to
noise or transients. However, in general, there is no direct relationship between the (two)
frequencies of the (Binary) FSK modulated signal and the Bit Rate. So, in principle,
discontinuities in the transmitted waveform can occur. In order to avoid this problem,
Continuous Wave signals are used, which incorporate smooth transitions between the (two)
frequencies [4] [6].

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 28

4.2.2 GAUSSIAN FREQUENCY SHIFT KEYING [GFSK]
GFSK can be viewed as a form of the Continuous-Phase Frequency Shift Keying (CPFSK).
In CPFSK modulation, the high-frequency components in the output spectrum of the
modulated signal are reduced because of the continuous phase variation of the CPFSK-
modulated signal. In GFSK, the baseband signal is passed through a Pulse-Shaping Gaussian
Low Pass Filter before modulation in order to shape the pulses to give them half-sinusoidal
shape so that the phase trajectory of the FSK signal becomes smooth and the instantaneous
frequency variations over time are stabilized. This has the following advantages:

1) The envelope of the modulated signal is constant. This allows the GFSK modulated
signal to be operated with a Class-C Power Amplifier without introducing Spectrum
Regeneration. Therefore, lower power consumption and higher power efficiency can be
achieved.

2) The output spectrum has a narrow Main Lobe and a lower level of spectral Side Lobes
than in Discontinuous-Phase FSK. This keeps the adjacent channel interference to low
levels achieving high spectral efficiency. This is important for a bandlimited channel,
and particularly important when the channel is nonlinear.

3) The GFSK modulated signal can be demodulated by Non-Coherent Demodulation
schemes leading to low-cost GFSK receivers [9] [4].

The sole purpose of pre-modulation lowpass filtering is to narrow the transmitted spectrum
of the FSK modulated transmitted signal. It is important, however, that the lowpass filter
have a well-behaved time-domain response. A class of filters that has a well-behaved time
domain response is Gaussian Filters. The frequency response of a Gaussian Lowpass Filter is
'Gaussian' in nature, following the following relation:

2
2
1)(2)(τωπτω −= eH

where: ω = frequency (in radians/sec)

τ = constant

This is the shape of the Gaussian or Normal Probability Density Function.

A peculiar property of a filter with a Gaussian frequency response is that its time-domain or
impulse response is Gaussian as well. This can be seen by taking the inverse Fourier
transform of its frequency response

∫ ∫
+∞

∞−

+∞

∞−

−−−




== ωπτ

π
ωω

π
ωτωω deedeHth tjtj 2

2
1)(2

2
1)(

2
1)(

which yields
2

2
1)()(τ

t

eth −=

The impulse response of the Gaussian Filter is well-behaved, exhibiting no ringing or
overshoot. However, the frequency response of the filter tends to fall off rather slowly. In
general, the more gradual the frequency-domain response of a filter, the better its time-
domain response (exceptions are the digital FIR filters). Gaussian filters have one of the
most gradual frequency-domain responses of any analog filter type [9] [4].

The frequency-domain response of the Gaussian Filter is linear. This implies that the phase
of the Gaussian filter is linear.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 29

The bandwidth of the Gaussian Filter is often given in terms of its relation to the Bit Rate

T = Tb = 1/fb

where: T or Tb = Bit Period or Duration of the filter

fb = Bit Rate

If B (or W) is the 3-dB bandwidth of the filter, then the filter response can be specified in
terms of its Relative Bandwidth, or BT Product (also expressed as WTb)

BT = Filter Bandwidth ⋅ Bit Period = Bitrate
widthFilterBand

Figure 4.2 The effect of Gaussian filter bandwidth on the signal frequency spectrum

Gaussian Filters with smaller relative bandwidths cause faster spectral roll-offs. These faster
spectral roll-offs have a price, however. As the relative filter bandwidth is lowered, more
and more ISI (Inter-Symbol Interference) is imparted to the waveform. ISI is caused by data
bits in the periods preceding the present data period not fully settling out. Eye Diagram gives
a qualitative indication of the ISI [9] [4].

If the Gaussian Filter is tuned into an infinite bandwidth (BT = ∞, i.e., no filter is used) a
GFSK signal with a Modulation Index of Im can be expressed as a modulation by
Im(D[k]/(2Tb)) around a centre carrier frequency fc. Therefore, such a GFSK modulated
signal can be expressed as:

[] [] [][]tTnTtPkDIftS bmc)2/((2cos −+= π

where: [] []∑
=

−=
N

n
bnTtPkDtD

0
)(= Binary Data represented as a Rectangular Pulse Stream.

bT/1 = Bit Duration of the Baseband Modulating Signal

cf = Centre / Carrier Frequency

mI = Modulation Index

A Gaussian Filter is represented by the following Transfer Function:

[] 0
2

0
tjeeAG ωαωω −−=

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 30

where:)2/()2(ln 2
3dBB=α

The Impulse Response of a Gaussian Filter is:
[]20)(

0)/()(ββπ tteAtH −−=

where: bBTcfπβ
2ln

2=

So the GFSK modulated signal is:

[] 







⊗+= ∫

t

bbmc dTHDTItfAtS
0

0)2/))()((()2/2(2cos τττππ [4]

The reception of a GFSK modulated signal, generally, involves two steps:

1) Demodulation

2) Decoding / Detection

4.3 DEMODULATION ALGORITHMS FOR GFSK
As the GFSK modulation is a modified form of the FSK modulation, therefore, the
demodulation algorithms for the FSK modulated signals are applicable to the GFSK
modulated signals as well.

The concept of a matched filter is central to any optimal demodulation algorithm.

A matched filter is a filter whose frequency response is designed to exactly match the
frequency spectrum of the input signal. The operation of a matched filter is the same as
correlating a signal with a delayed copy of itself.

There are two types of algorithms for the FSK Demodulation:

1) Coherent / Synchronous Demodulation

2) Non-Coherent / Asynchronous Demodulation

4.3.1 COHERENT DEMODULATION
In phase-coherent or synchronous FSK demodulation, both the magnitude and the phase
response of the matched filters is required for demodulating the received signal, therefore,
exact knowledge of the phase of the incoming signal is required. In this demodulation
scheme, the phase of the received signal is estimated by correlating it with each of the
possible received signals [2] [3] [7].

4.3.2 NONCOHERENT DEMODULATION
In phase-noncoherent or asynchronous FSK demodulation, only the magnitude response of
the matched filters is required for demodulating the received signal, therefore, exact
knowledge of the phase of the incoming signal is not required. However, to prevent
significant overlap of the passbands of the two filters [which causes intersymbol interference
(ISI)], the frequency spacing must be at least ∆fT>>1, for orthogonal signaling [2] [3] [7].

Coherent demodulation is superior in performance to noncoherent demodulation but the
requirement of estimating the carrier phases makes coherent FSK demodulation quite

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 31

complex. Therefore, noncoherent demodulation is the most commonly used demodulation
scheme for most receivers and has been selected for the GFSK demodulator design.

In this design, noncoherent demodulation algorithm was adopted. Apart from its simplicity,
the main reason for the selection of noncoherent demodulation algorithm in the GFSK
demodulator design was that due to the use of FH-SS as secondary modulation, coherent
demodulation is not feasible because it is difficult to maintain phase coherence in the
synthesis of the frequencies used in the frequency hopping sequence and, also, in the
propagation of the signal over the channel as the signal is hopped from one frequency to
another over a wide frequency band [7].

The following most common algorithms for noncoherent FSK demodulation were
considered:

1) Matched filter-based demodulation

2) Frequency Discriminator-based demodulation

4.3.3 MATCHED FILTER BASED DEMODULATION
In this FSK demodulation algorithm, an FSK modulated signal is decomposed into two ASK
modulated signals at two different carrier frequencies. Therefore, two matched filters, one
for each carrier frequency, are used to demodulate the received FSK modulated signal. If one
carrier frequency is present in the absence of noise, it is assumed that the output of one
matched filter is zero and the output of the other matched filter is maximum and vice versa
[5].

4.3.4 FREQUENCY DISCRIMINATOR BASED DEMODULATION
In this algorithm, the frequency variations in the FSK modulated signal are converted into
amplitude variations [5].

The selection of either of the two above-mentioned demodulation algorithms was made on
the basis of their architectural details and will be discussed in the following chapter.

MODULATION

CONTINUOUS WAVE
MODULATION

DISCONTINUOUS WAVE
MODULATION

AMPLITUDE MODULATION ANGLE MODULATION

PHASE
MODULATION

FREQUENCY
MODULATION

DISCONTINUOUS PHASE
MODULATION

CONTINUOUS PHASE
MODULATION

PULSE
MODULATION

CARRIER
MODULATION

VESTIGIAL
SIDEBAND
AMPLITUDE

MODULATION

SINGLE
SIDEBAND

AMPLITUDE
MODULATION

DOUBLE
SIDEBAND

AMPLITUDE
MODULATION

NARROWBAND
FREQUENCY
MODULATION

WIDEBAND
FREQUENCY
MODULATION

AMPLITUDE
SHIFT KEYING

ON-OFF KEYING

QUADRATURE
AMPLITUDE

MODULATION

FREQUENCY
SHIFT KEYING

PHASE SHIFT
KEYING

MINIMUM SHIFT
KEYING

QUADRATURE
PHASE SHIFT

KEYING

OFFSET
QUADRATURE
PHASE SHIFT

KEYING

PULSE
AMPLITUDE

MODULATION

PULSE WIDTH/
DURATION

MODULATION

PULSE
POSITION

MODULATION

GAUSSIAN
MINIMUM SHIFT

KEYING

GAUSSIAN
FREQUENCY

SHIFT KEYING

PRIMARY MODULATION SECONDARY MODULATION

DIRECT SEQUENCE-
SPREAD SPECTRUM

MODULATION

FREQUENCY
HOPPING-SPREAD

SPECTRUM
MODULATION

HYBRID-SPREAD
SPECTRUM

MODULATION

SPREAD SPECTRUM MODULATION

Figure 4.3 Classification of Modulation Formats

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 33

4.4 DETECTION ALGORITHMS FOR GFSK
In Digital Communications, the terms Demodulation and Detection are used somewhat
interchangeably, although Demodulation emphasizes removal of the carrier, and Detection
includes the process of symbol decision [3].

There are two types of detection algorithms based on the optimum detection criterion:

1) Envelope Detection

2) Square Law Detection

Both types of algorithms are exactly equivalent in performance but their architectural
implementation details vary.

4.5 BLUETOOTH MODULATION SPECIFICATION
The Receiver based on the BluetoothTM specification is a Frequency-Hopped Spread
Spectrum (FHSS) System, with a hop rate of 1600 hops/sec (slow hopping), operating in the
Industrial, Scientific, and Medical (ISM) Band (2.402 - 2.480 GHz in Europe & North
America). The number of frequency hop channels is 79. The length of the Pseudo-random
Frequency Hop Sequence is 224 with the largest possible hop of 78 MHz. The Symbol Rate is
1Mb/s and the modulation scheme is 2-Level Gaussian-Filtered FSK (GFSK), baseband
filtered with a Gaussian Filter having a 3-dB Bandwidth of 500 KHz (Bandwidth-Symbol
Interval product, BT= 0.5). The Modulation Index can vary from 0.28 to 0.35, i.e., a
Frequency Deviation, ∆f, of ±140 KHz to ±175 KHz [1] [38].

SUMMARY
This chapter discussed the algorithmic design of the GFSK demodulator. The type of
demodulation algorithm selected was noncoherent demodulation. The selection of
demodulation and detection algorithms was postponed till the architecture design phase due
to their strong coupling to the architectural details and will be discussed in the following
chapter.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 34

5

SYSTEM ARCHITECTURE
DESIGN

5.1 DEMODULATOR ARCHITECTURES
Two realizations of a matched filter are available, therefore, two matched filter-based
demodulator architectures are possible:

1) Correlator-based Demodulator

2) Convolver-based Demodulator

5.1.1 CORRELATOR-BASED DEMODULATOR
In this case, for noncoherent demodulation, there are two correlators per signal waveform.
The received signal is correlated with the basis functions (quadrature carriers). The outputs
of the correlators are sampled at the end of the signal interval and are passed to the Detector.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 35

Figure 5.1 Correlator-Based Demodulator

5.1.2 CONVOLVER-BASED DEMODULATOR
The convolver-based demodulator is equivalent to the correlator-based demodulator where
the correlators are replaced by convolvers [2].

Figure 5.2 Convolver-based Demodulator

5.2 DETECTOR ARCHITECTURES
5.2.1 ENVELOPE DETECTOR
An envelope detector consists of a full-wave rectifier and a lowpass filter having a cut-off
frequency equal to the bandwidth of the signal. The envelope detector is matched to the
signal envelope and not to the signal itself. Ideally, the output of the envelope detector is of
the form:

d(t) = g1 + g2m(t)

where, g1 represents a dc component and g2 is a gain factor due to the signal demodulator.
The dc component can be eliminated by passing d(t) through a transformer, whose output is
g2m(t) [3].

A half-wave rectifier can also be used in an envelope detector but this results in reduced
detected signal energy and can potentially cause a higher bit error rate (BER) particularly if
the transmission channel is noisy.

LOWPASS
FILTER

LOWPASS
FILTER

COMPARE
coswc0t

coswc1t

DECISION

H0(w)

DECISION

H1(w)

ENVELOPE
DETECTOTOR

ENVELOPE
DETECTOTOR

COMPARE

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 36

5.2.2 SQUARE-LAW DETECTOR
A square-law detector consists of a pair of squaring multipliers followed by a summer [3].

As described earlier, an FSK signal can be considered as a superposition of two signal
waveforms. One of these has a transform centered at f1 with sidebands following a (sin f)/f
envelope. The second component is centered at f2 with a similar envelope. Therefore, in the
Convolver-based Demodulation, two Bandpass Filters having center frequencies of f1 and f2
having bandwidth Wf = 1/T (where T = Symbol Interval) act as Signal Correlators [6].

Figure 5.3 Decomposition of an FSK Signal into two ASK Signals [6]

The frequency discriminator-based demodulator uses two resonant circuits one tuned above and the
other tuned below the carrier frequency. The inputs to the two circuits are equal but of opposite
sign. The outputs of the resonant circuits are envelope detected and subtracted to give the
demodulated signal. This scheme yields a slightly poor performance than the matched filter
demodulation [5].

Figure 5.4 Frequency Discriminator-based FSK Demodulator [5]

The matched filter-based architecture was selected for this project because of its claimed superior
performance, fully digital implementation and the possibility of reusing most of its constituent
blocks in the PN Code acquisition and tracking designs as illustrated below:

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 37

BASEBAND PROCESSOR

ENVELOPE
DETECTOR

THRESHOLD
DETECTOR

PN CODE
GENERATOR

FH CODE
CLOCK

PLL

FREQUENCY HOPPING SPREAD SPECTRUM
SIGNAL ACQUISITION & CONTROL LOOP

NO [ACQUISITION]

YES [TRACKING]

GFSK
DEMODULATOR

LN
A FREQUENCY

SYNTHESIZER

900

BANDPASS
FILTER

VG
A+ A/D

CONVERTER

Figure 5.5 Block-level details of the Baseband Coprocessor

5.3 SYSTEM ARCHITECTURE
The convolver-based demodulator was implemented practically by approximating the convolvers
with bandpass filters which were followed by the envelope detectors comprising full-wave
rectifiers and low-pass filters.

BPF1

DECISION

BPF2

FULL-WAVE
RECTIFIER

FULL-WAVE
RECTIFIER

COMPARE

LPF

LPF

Figure 5.6 Convolver-based Demodulator Architecture

The Bandpass Filters can be realized as either analog or digital. Analog filters can be
cheaper, faster, and have greater dynamic range; digital filters outstrip their analog
counterparts in flexibility. The ability to create filters that have arbitrary frequency response
curve shapes, and filters that meet the performance constraints, such as passband width and
transition region width, is well beyond that of analog filters.

Quantization is a natural outgrowth of digital filtering and digital signal processing
development. Also, there is a growing need for fixed-point filters that meet power, cost, and
size restrictions. Quantization is performed to convert a floating-point filter to a fixed-point
filter.

5.4 DIGITAL FILTERS
A digital filter is a digital system that filters a digital input signal according to some pre-
designated criteria (e.g., selectively discriminate signals in different frequency bands and/or
modify the phase of the signals) and produces a digital output signal [16].

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 38

A digital filter can be represented by a block diagram:

DIGITAL FILTERx(nT) y(nT)

Figure 5.7 Digital Filter Block Diagram

Input x(nT) and output y(nT) are the excitation and response of the digital filter, respectively.
The response is related to the excitation by some rule of correspondence.

)()(nTxnTy ℜ=

where ℜ is an operator .
Unlike a transmission digital filter where the continuous data stream entering the filter is modified
to form a new continuous data stream, a digital matched filter output is a flow of individual results
which are analyzed to identify the individual point where the match occurred.

MATCHED
FILTER

INPUT DATA OUTPUT DATA

Figure 5.8 Digital Matched Filter Block Diagram

Digital Filters, like other systems, can be classified as linear or non-linear, causal or
noncausal, time-invariant or time-variant, and spectral or spatial.

Just as analog filters are characterized in terms of differential equations, digital filters are
characterized in terms of difference equations. Two types of digital filters can be identified,
non-recursive filters and recursive filters. If a digital filter is non-recursive, its impulse
reponse is of finite duration. On the other hand, in recursive digital filters, the impulse
response is usually, but not always, of infinite duration, but if the impulse response is of
infinite duration, then the digital filter is always recursive. Alternatively, digital filters can be
classified as:

1) Infinite Impulse Response Filters (IIR Filters)

2) Finite Impulse Response Filters (FIR Filters)

5.4.1 IIR FILTERS
The phase response if IIR filters is non-linear and their stability cannot always be
guaranteed. The effects of using a limited number of bits to implement IIR Filters, such as
roundoff noise and coefficient quantization errors are normally severe. IIR filters, however,
require relatively less coefficients for sharp cut-offs. Moreover, equivalent IIR filters can be
easily realized by transforming Analog Filters with similar specifications [16].

5.4.2 FIR FILTERS
FIR Filters can have exactly linear phase response. The implication of this is that no phase
distortion is introduced into the signal by the filter. Non-recursive FIR filters are always
stable and the effects of roundoff noise and coefficient quantization errors are normally less
severe [16].

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 39

5.5 DIGITAL FILTER DESIGN FLOW
The design of digital filters comprises five general steps as follows:

1) Tolerance Specification

2) Coefficient Approximation

3) Filter Realization/Synthesis

4) Analysis of Finite Word Length Effects

5) Filter Implementation & Testing

The characteristics of digital filters are often specified in the frequency domain. For
frequency selective filters, such as bandpass or lowpass filters, the specifications are often in
the form of tolerance schemes. An example tolerance diagram is as follows:

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

��������������������������������������
��������������������������������������

Passband Transition
band

Stopband

f0 fp fs

[H(f)]

1+&p

1-&p

1

&s

Figure 5.9 Digital Filter Tolerance Scheme [16]

The shaded horizontal lines indicate the tolerance limits. In the passband, the magnitude
response has a peak deviation of δp and, in the stopband, it has a maximum deviation of δs.
The width of the transition band determines the sharpness of the filter. The magnitude
response decreases monotonically from the passband to the stopband in this region. The
following are the key parameters of interest:

δp Passband deviation

δs Stopband deviation

fp Passband edge frequency

fs Stopband edge frequency

The edge frequencies are often expressed in normalized form, i.e., as a fraction of the
sampling frequency (f/Fs). Passband and stopband deviations may be expressed as ordinary
numbers or in decibels when they specify the passband ripple and minimum stopband
attenuation respectively. Thus the minimum stopband attenuation, As, and the peak passband
ripple, Ap, in decibels are given as:

As (Stopband attenuation) = -20log10δp

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 40

Ap (Passband ripple) = 20log10(1+δp) [16]

The coefficient approximation step is the process of generating a transfer function that
satisfies the desired specifications, which may concern the amplitude, phase, and possibly
the time domain response of the filter. The available methods for the solution of the
approximation problem can be classified as direct or indirect. In direct methods, the problem
is solved directly in the z domain. In indirect methods, a continuous-time transfer function is
first obtained and then converted into a corresponding discrete-time transfer function. Non-
recursive digital filters are always designed through direct methods whereas recursive filters
can be designed either through direct or indirect methods. Coefficient methods can also be
classified as closed-form or iterative. In closed-form methods, the problem is solved though
a small number of design steps using a set of closed-form formulas. In iterative methods, an
initial solution is assumed and through the application of optimization methods, a series of
progressively improved solutions are obtained until some design criterion is satisfied.

The synthesis of a digital filter is the process of converting the transfer function or some
other characterization of the digital filter into a network structure. This process is also
referred to as the realization step and the network structure obtained is said to be the
realization of the transfer function. As for coefficient approximation methods, realization
methods can be classified as direct or indirect. In direct methods, the transfer function is
expressed or transformed in some form that allows the identification of an interconnection of
elemental digital filter subnetworks. In indirect methods, an analog filter network is
converted into a topologically related digital filter network. The best realizations are those
that require the minimum number of unit delays, adders, and multipliers, and which are not
seriously affected by the use of finite precision arithmetic in the implementation.

During the coefficient approximation step the coefficients of the filter transfer function are
determined to a high degree of precision. In practice, however, digital hardware have a finite
precision which depends upon: the length of the registers to store binary numbers, the type
of the number system used (e.g., signed-magnitude, two’s complement), the type of
arithmetic used (e.g., fixed-point or floating-point), etc. Consequently, the filter coefficients
must be quantized (e.g., rounded or truncated) before they can be stored in registers. When
the transfer function coefficients are quantized, errors are introduced in the amplitude and
phase responses of the filter. In extreme cases, the required specifications can actually be
violated. Similarly, signals to be processed, as well as the internal signals of a digital filter
(e.g., products generated by multipliers), must be quantized. Since errors introduced by the
quantization of signals are actually sources of noise, they can have a dramatic effect on the
performance of a digital filter.

The implementation of a digital filter can assume two forms: software or hardware. In the
first case, implementation involves the simulation of the filter network on a general-purpose
digital computer, or a DSP chip. In the second case, it involves the conversion of the filter
network into a dedicated piece of hardware. The choice of implementation is usually
critically dependent on the application at hand. In non-real-time applications where a record
of the data to be processed is available, a software implementation may be entirely
satisfactory. In real-time applications, however, where data must be processed at a very high
rate (e.g., in communication systems) a hardware implementation is mandatory. Often the
best engineering solution might be partially in terms of software and partially in terms of
hardware, since software and hardware are highly exchangeable [15].

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 41

START

PERFORMANCE SPECIFICATION /
TOLERANCE GRAPH

REALIZATION OF FILTER STRUCTURE

CALCULATION OF FILTER COEFFICIENTS
[PARKS- MCCLLELAN ALGORITHM]

NOISE EFFECT ANALYSIS

INPUT SAMPLING QUANTIZATION NOISE EFFECTS
FILTER COEFFICIENT QUANTIZATION NOISE EFFECTS

ARITHMETIC TRUNCATION/ ROUNDING NOISE EFFECTS

 IMPLEMENTATION & TESTING

STOP

DIGITAL FILTER DESIGN FLOW

RESPECIFY

RESTRUCTURE

RECALCULATE
REDESIGN

Figure 5.10 Digital Filter Design Flow

5.6 DIGITAL FILTER DESIGN ALGORITHMS
Commonly used techniques for the design of IIR filters are based on transformations of
continuous-time IIR systems into discrete-time IIR systems. This is partly because
continuous-time filter design was a highly advanced field before discrete-time filters were of
interest and partly because of the difficulty of implementing a non-iterative direct design
method for IIR filters [12].

5.6.1 BILINEAR TRANSFORMATION METHOD
This is by far the most important method of obtaining IIR filter coefficients. In this method,
Bilinear Transformation is applied to convert an analog filter transfer function, H(s), into an
equivalent digital filter transfer function, H(z) as shown below:

T
ork

z
zks 21,

1
1 =

+
−=

The above transformation maps the analog transfer function, H(s), from the s-plane into the
discrete transfer function, H(z), in the z-plane [16].

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 42

5.6.2 IMPULSE INVARIANT METHOD
In this method, starting with a suitable analog transfer function, H(s), the filter impulse
response h(t), is obtained using the Laplace Transform. The h(t) so obtained is suitably
sampled to produce h(kT), where T is the sampling interval.

5.6.3 POLE-ZERO PLACEMENT METHOD
When a zero is placed at a given point on the z-plane, the frequency response will be zero at
the corresponding point. A pole, on the other hand, produces a peak at the corresponding
frequency point. Poles that are close to the unit circle give rise to large peaks, whereas zeros
close to or on the unit circle produce troughs or minima. Thus, by strategically placing the
poles and the zeros on the z-plane, simple lowpass, or other frequency-selective filters can
be obtained. For the coefficients of the filter to be real, the poles and the zeros must either be
real (i.e., lie on the positive or the negative real axis) or occur in complex conjugate pairs.

In contrast to IIR filters, FIR filters are almost entirely restricted to discrete-time
implementations. Consequently, the design techniques for FIR filters are based on directly
approximating the specified frequency response of the discrete-time system. Furthermore,
most techniques for approximating the magnitude response of an FIR system assume linear
phase constraint avoiding the complications involved in the direct implementation of IIR
systems [8].

An FIR filter is characterized by the following equations:

∑

∑
−

=

−

−

=

=

−=

1

0

1

0

)()(

)()()(

N

k

k

N

k

zkhzH

knxkhny

where: h(k), k=0, 1, 2, . . ., N-1 are the impulse response coefficients of the FIR filter,

H(z) is the transfer function of the FIR filter,

N is the FIR filter length.

The first equation is a time-domain, non-recursive difference equation of an FIR filter. The
second equation is the transfer function of an FIR filter.

The sole objective of most FIR filter coefficient calculation/approximation methods is to
obtain values of h(k) such that the resulting filter meets the design specifications, such as
amplitude-frequency response and throughput requirements. Several methods are available
for obtaining h(k). The following three methods are the most common, however, as they all
can lead to linear phase FIR filters.

5.6.4 WINDOW METHOD
The simplest method of FIR filter design is called the window method. The ideal transfer
function of a non-recursive digital filter is:

∑
+∞

−∞=

−=
k

k
idealideal zkhzH)()(

The corresponding ideal frequency response is:

∑
+∞

−∞=

−=
k

k
idealideal zkhzH)()(z=e

jωT

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 43

∑
+∞

−∞=

−=
k

kTj
ideal

Tj
ideal ekheH ωω)()(

The ideal frequency response)()(ωω
ideal

Tj
ideal HeH = and the corresponding ideal impulse

response hideal(k) are related by the inverse Fourier transform:

∫
−

=
π

π

ω ωω
π

deHkh kj
idealideal)(

2
1)(

For an FIR filter, the ideal impulse response has to be truncated by setting hideal(k)=0 for
k>N. However, this introduces undesirable ripples and overshoots called the Gibb’s
phenomenon. Direct truncation of hideal(k) is equivalent to multiplying hideal(k) by a
rectangular window of the form:



 −=

=
elsewhere

Nk
kw

0
1,...,1,01

)(

In the frequency domain this is equivalent to convolving)(ωidealH and)(ωW , where)(ωW
is the Fourier transform of w(k). As)(ωW has the (sinx)/x shape, truncation of hideal(k) leads
to overshoots and ripples in the frequency response.

A practical approach is to multiply hideal(k), by a suitable window function, w(k), whose
duration is finite. This yields an impulse response that decays smoothly towards zero,
however, the transition width is wider than for the rectangular window. The transition width
of the filter is determined by the width of the main lobe of the window. The side lobes
produce ripples in both the passband and the stopband.

Several window functions have been proposed. Some of the most common window
functions are:

Hamming

Hanning

Blackman

Bartlett/Triangular

Kaiser

Chebychev

Lanczos

Tukey [14]

The Kaiser window was used to design most of the filters in the system.

5.6.5 OPTIMAL METHOD
Inherent in the process of calculating suitable filter coefficients in the window method is the
problem of finding a suitable approximation to a specified or ideal frequency response. The
peak ripple of filters designed by the window method occurs near the band edges, and
decreases away from the band edges. If the ripples were distributed more evenly over the
passband and the stopband, a better approximation of the desired frequency response can be
achieved. The optimal method is based on the concept of equiripple passband and stopband.

The difference between the ideal and the practical filter response can be represented by an
error function:

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 44

[])()()()(ωωωω HHWE ideal −=

where: Hideal(ω) is the ideal filter response and W(ω) is a weighting function that allows the
relative error of approximation between different frequency bands (passbands, stopbands,
transitionbands) to be defined.

In the optimal method, the objective is to determine the filter coefficients, h(k), such that the
value of the maximum weighted error,)(ωE , is minimized in the passband and the
stopband. Mathematically, this may be expressed as:

min[max)(ωE]

over the passbands and the stopbands. It can be shown that when max)(ωE is minimized
the resulting filter response will have equiripple passbands and stopbands, with the ripple
alternating in sign between two equal-amplitude levels. For a given set of filter
specifications, the location of the extremal (the maxima and the minima are known as the
extrema) frequencies, apart from those at the band edges are not known a priori. Thus the
main problem in the optimal method is to find the locations of the extremal frequencies. A
technique employing the Remez Exchange Algorithm to find the extremal frequencies is
used. Knowing the locations if the extremal frequencies, it is a simple matter to work out the
actual frequency response and hence the impulse response of an FIR filter. For a given set of
specifications (i.e., passband edge frequencies, N, and the ratio between the passband and
the stopband ripples) the optimal method involves the following key steps:

1) use the Remez Exchange Algorithm to find the optimum set of extremal frequencies.

2) determine the frequency response using the extremal frequencies

3) obtain the impulse response coefficients

The heart of the optimal method is the first step where an iterative process is used to
determine the extremal freqiuencies of the filter whose amplitude-frequency response
satisfies the optimality condition. This step relies on the alternation theorem which specifies
the number of extremal frequencies that can exist for a given value of N [16].

The Remez Exchange Algorithm was used to model the pre-modulation Gaussian Lowpass
filter in the modulator section of the system model.

5.6.6 FREQUENCY SAMPLING METHOD
The frequency sampling method yields non-recursive FIR filters for both standard
frequency-selective filters (lowpass, bandpass, highpass) as well as filters with arbitrary
frequency response. A unique attraction of the frequency sampling method is that it also
allows recursive implementation of FIR filters, leading to computationally efficient filters.
With some restrictions, recursive FIR filters with integer coefficients may also be designed
which is convenient when implementing only primitive arithmetic operations as in systems
with standard microprocessors [16].

SUMMARY
This chapter outlined the architecture-level design of the GFSK demodulator. The
convolver-based architecture was selected for the demodulator where the convolvers were
implemented as bandpass filters using FIR filter banks. The envelope detector was
implemented with a full-wave rectifier followed by a low-pass filter.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 45

6

SYSTEM VALIDATION

This chapter discusses the validation of the designed architecture through various modeling
and simulation phases and extraction of the design parameters for the system blocks through
architectural exploration and iterative performance optimization.

As a first validation step, the designed architecture was validated by constructing a floating-
point system model.

6.1 FLOATING POINT MODEL VALIDATION
6.1.1 FLOATING POINT ARITHMETIC
In floating-point arithmetic, a number N is expressed as:

N = M x 2e

where e = an integer and

12
1 <≤ M

M and e are referred to as the mantissa and the exponent, respectively. Negative numbers are
handled in the same way as the fixed-point arithmetic.

Floating-point addition is carried out by shifting the mantissa of the smaller number to the
right and increasing the exponent until the exponents of the two numbers are equal. The
mantissas are then added to form the sum, which is subsequently put back into the
normalized representation. Multiplication is accomplished by multiplying mantissas, adding
exponents, and then readjusting the product.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 46

Floating-point arithmetic leads to increased cost of hardware and to reduced processing
speed. The reason is that hardware is in a sense duplicated since both the mantissa and the
exponent have to be manipulated. For software, non-real-time implementations on general
purpose digital computers, floating-point arithmetic is always preferred since neither the cost
of hardware nor the processing speed is a significant factor [15].

6.1.2 FLOATING-POINT SYSTEM MODELING
MODULATOR MODELING
As an initial step, the GFSK modulator had to be modeled to generate the necessary
modulation signal for the demodulator.

Transmit Bit Stream Generator
The data to be transmitted was modeled as a stochastic Bernoulli process with equal
probability of occurrence of a ‘1’ and a ‘0’. For the generation of the sequence of binary
numbers in the range [0,1], an initial seed number was provided to the random number
generation algorithm. The transmit data rate specified by the Bluetooth specification is 1
Mbit/sec that corresponds to a sample time of 1/106.

Oversampler
The binary data signal generated by the Benoulli Random Binary Generator block was
sampled at an arbitrarily high rate (to minimize the quantization noise to a reasonable value)
of 20Msamples/sec for subsequent Gaussian filtering.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 47

Gaussian Filter
The Gaussian filtering was performed to smooth out the sharp signal transitions by giving
them approximately half sinusoidal shape for the reasons explained in chapter 4. This
introduces an undesirable DC offset in the Gaussian filtered signal in case of a long chain of
‘1’s in the input signal as well as increased Inter-Symbol Interference (ISI). The Bluetooth
specification limits the occurrence of a long chain of ‘1’s through data whitening or
scrambling that is performed prior to Gaussian filtering.

The Gaussian Filter was implemented using the multiband filter design technique exploiting
the Parks-McCllelan algorithm with the Remez Exchange Algorithm explained in chapter 5.
The data for the filter band edge frequencies was extracted from slicing a Gaussian curve,
plotted in MATLABTM, into narrow bands. For more details please refer to Appendix-B & C.

Polar Signaling
Polar signaling was used before FM modulation because the data signal is analog in nature
after Gaussian filtering, therefore, FSK modulation cannot be applied. Moreover, Polar
signaling removes the condition of :

∆fTb > Symbol Rate

which is required in case of FSK employing Orthogonal signaling. Polar signal was achieved
by balancing the Gaussian filtered signal across the horizontal axis by the addition of a
constant DC level of –0.5.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 48

FM Modulation
The FM modulation uses a carrier frequency of 1MHz (the IF on the receiver side), a
frequency separation of 350 KHz (Bluetooth specification), and a sampling rate of 40
Msamples/sec to limit the quantization noise for achieving the Bit Error Rate (BER)
specified in the BluetoothTM specification.

Channel Model
The BluetoothTM specification does not specify a channel model. The Additive White
Gaussian Noise (AWGN) channel model was used with statistically independent Gaussian
noise samples corrupting data samples free of Inter-Symbol Interference (ISI). An SNR of 25
dB was used based upon calculations performed by the Analog Front-end designers. Other
channel impairments like channel fading, Doppler shift, etc., are not modeled.

DEMODULATOR MODELING
The demodulator model accepts the GFSK modulated signal at an IF of 1MHz, sampled at
40 Msamples/sec, and corrupted by AWGN.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 49

Demodulator Bandpass Filters
The two digital FIR bandpass filters in the demodulator stage, as explained in chapters 4 and
5, split the GFSK signal into two ASK modulated components. The upper bandpass filter
has an upper cutoff frequency of 1MHz+350KHz/2 = 1175KHz normalized to
1175KHz/20MHz = 0.05875 (where 20MHz is half the sampling frequency) and a lower
cutoff frequency of 1MHz normalized to 1MHz/20MHz = 0.05000.

Similarly the lower bandpass filter has an upper cutoff frequency of 1MHz normalized to
1MHz/20MHz = 0.05000 and a lower cutoff frequency of 1MHz-175KHz = 825KHz
normalized to 875KHz/20MHz = 0.04125.

Both bandpass filters yield optimum performance when designed using the Kaiser window
algorithm with β= 0.05 and a filter order of 48.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 50

Envelope Detection
As described in chapter 4, envelope detection involves full-wave rectification followed by
lowpass filtering. The full-wave rectifier is realized as an absolute-value function clipping
the signal if the magnitude of the input signal exceeds the maximum value representable
within 16-bits. The lowpass filter has a cutoff frequency equal to the lowest cutoff frequency
of the two bandpass filters, i.e., 825KHz normalized to 825KHz/20MHz = 0.04125 selected
through trial & error. The lowpass filter also uses the Kaiser window algorithm with β =
0.05 and has an order of 16. The envelope detectors in both the branches of the demodulator
are exactly symmetric.

Combiner/Adder
The combiner/adder simply combines or adds together the two signal components in the two
branches of the demodulator after envelope detection and inverting one of the signal
components before addition/combination.

Threshold Detection
The threshold detector or the magnitude comparator rehabilitates the combined signal. It just
acts like a Schmitt Trigger to recondition the received signal.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 51

Decimator
The decimator brings the sampling rate of the demodulated signal down to the data transmit
rate, i.e., 1Msample/sec.

Bit Error Rate Calculator
The bit error rate calculator calculates the ratio of the number of received bits in error to the
total number of bits transmitted by comparing the received data with the transmitted data
padded with necessary delays.

The complete floating-point model is illustrated below and the simulation waveforms at
different points are attached as Appendix-B. The Bit Error Rate (BER) is zero.

Figure 6.1 Floating Point System Model

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 53

To model the effects of quantization or finite word length as described in chapter 5, and to
ascertain the effects of limited precision supported by fixed-length arithmetic, the floating-
point model was transformed into a fixed-point model.

6.2 FIXED-POINT MODEL VALIDATION
6.2 1 FIXED POINT ARITHMETIC
In fixed-point arithmetic, the numbers are usually assumed to be proper fractions. Integers
and mixed numbers are avoided because:

1) the number of bits representing an integer cannot be reduced by rounding or truncation
without compromising the accuracy of the number value.

2) mixed-numbers are more difficult to multiply.

For these reasons, the binary point is usually set between the first and the second bit
positions in the register. The first position is reserved for the sign of the number.

Depending upon the representation of negative numbers, fixed-point arithmetic can assume
three forms:

1) Signed Magnitude

2) 1’s Complement

3) 2’s Complement

In the signed magnitude arithmetic a fractional number:

mbbbN −−−±=0 21

is represented as:





≤
≥

=
−−−

−−−

0....1
0....0

21

21

Nforbbb
Nforbbb

N
m

m
sm

The most significant bit is the sign bit.

The 1’s complement representation of a number N is defined as:





≤−−
≥

= − 022
0
NforN

NforN
N Lsm

where L, referred to as the wordlength, is the number of bit locations in the register to the
right of the binary point. The binary form of 2-2-L is a string of 1’s filling the L+1 locations
of the register. Thus the 1’s complement of a negative number can be deduced by
representing the number by L+1 bits, including 0’s if necessary, and then complementing
(changing 0’s into 1’s and 1’s into 0’s) all bits.

The 2’s complement of a negative number can be formed by adding 1 at the least significant
position of the 1’s complement. Similarly, a negative number can be recovered from its 2’s
complement by complementing and then adding 1 at the least significant position.

The merits and demerits of the three types of arithmetic can be envisaged by examining how
arithmetic operations are performed in each case.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 54

1’s complement addition of any two numbers is carried out by simply adding their 1’s
complements bit by bit. A carry bit at the most significant position, if generated, is added at
the least significant position (end around carry).

2’s complement addition is exactly the same except that a carry bit at the most significant
position is ignored.

Signed magnitude addition, on the other hand, is much more complicated as it involves sign
checks as well as complementing and end-around carry.

In the 1’s or the 2’s complement arithmetic, direct multiplication of the complements does
not always yield the product, and as a consequence special algorithms must be employed. By
contrast, signed-magnitude multiplication is accomplished by simply multiplying the
magnitudes of the two numbers bit by bit and then adjusting the sign bit of the product.

An important feature of the 1’s and the 2’s complement addition is that a sum
S=n1+n2+…+ni+… will always be evaluated correctly, even if overflow does occur in the
evaluation of the partial sums.

There are two basic disadvantages in a fixed-point arithmetic:

1) The range of numbers that can be handled is small

2) The percentage error produced by truncation or rounding tends to increase as the
magnitude of the number is decreased [17] [13].

An advantage of fractional fixed-point arithmetic is that parasitic oscillations are more easily
suppressed than they are in the floating-point arithmetic. Fixed-point arithmetic also requires
less chip area and is much faster than the floating-point arithmetic [15].

6.2.2 FIXED-POINT SYSTEM MODELING

Fixed-Point Gateway In

The Fixed-Point
Gateway In block
converts the Simulink
data type to a Fixed-
Point Blockset data type.

To convert the filters in the system from floating-point designs to fixed-point designs, the
Filter Design Toolbox was used.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 55

6.2.2.1 FILTER DESIGN TOOLBOX
The Filter Design Toolbox or the Quantized Filtering Toolbox is a collection of tools
built on top of the MATLABTM computing environment and the Signal Processing Toolbox.
It provides extensive simulation analysis and tools for the fixed-point and custom precision
floating-point filters. The Quantized Filtering Toolbox supports the simulation and bit-true
analysis of these filters in a wide range of precision and it mainly consists of the Filter
Design & Analysis Tool [67].

FILTER DESIGN & ANALYSIS TOOL
The Filter Design & Analysis Tool is a tool in the MATLABTM Filter Design Toolbox that
provides the functions needed to develop filters that meet the needs of fixed-point
algorithms and electronic systems. In addition to offering tools for analyzing the effects of
quantization on filter performance and signal processing performance, the FDA Tool offers
filter structures to develop prototype filter designs. With structures ranging from Finite
Impulse Response (FIR) filters to Infinite Impulse Response (IIR) filters, one can investigate
alternative fixed-point realizations of filters that might meet the performance goals.

Algorithmic filters are often designed using mathematical methods based on infinite
precision and range assuming that the filter coefficients and the filter states are stored with
infinite precision and range. However, real-time filters for embedded real-time DSP
applications are designed to represent numbers using a finite format. The Quantized Filtering
Toolbox can help design these filters by offering analysis tools for fixed-point and custom
precision floating-point filters [67].

The Graphical User Interface of the FDA Tool is quite intuitive to use and is illustrated
below:

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 56

Figure 6.2 Settings of the quantization parameters for the Filter Design & Analysis Tool

The details of the filters designed using the FDA Tool are attached as Appendix-C of this
report. The reader is referred to [4] for more detailed discussion about the selection of
various options in the FDA design environment. The quantized coefficients for the filters
generated by the FDA Tool were plugged into the corresponding fixed-point filter block
GUI’s in the fixed-point model. The Direct Form II coefficient structure was selected for
all the filters in the design because of its low sensitivity to coefficient quantization effects.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 57

Fixed-Point Bandpass Filters

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 58

Fixed-Point Envelope Detector

Fixed-Point Summer

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 59

Fixed-Point One-Bit Quantizer

Fixed-Point Threshold Detector

Fixed-Point Decimator

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 60

Fixed-Point Gateway Out

The complete fixed-point model is illustrated below and the simulation waveforms at
different points are attached as Appendix-B. The Bit Error Rate (BER) is zero.

Figure 6.3 Fixed-Point System Model

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 62

SUMMARY
This chapter described the system validation phase of the project which consisted of building
a set of hierarchical system models which were refined and transformed to bring them closer
to system realization and at the same time each model was validated to ascertain its
performance versus the system specification and to extract the design parameters for the
system blocks.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 63

7

SYSTEM REALIZATION

This chapter discusses the steps and issues of system realization which involved
synthesizing the filters used in the design, inserting the synthesized filter structures into the
fixed-point system model and validating the system model with realized filter structures.

7.1 DIGITAL FILTER REALIZATION STRUCTURES
Realization structures are essentially the block or signal flow diagram representations of the
different theoretically equivalent ways a digital filter transfer function can be arranged. In
most of the cases, they consist of an interconnection of unit delay elements, multipliers, and
adders.

Two types of realization methods have been proposed, namely, direct and indirect. In direct
methods, the transfer function is put in some form that allows the identification of an
interconnection of elemental digital filter subnetworks of low order. The most commonly
used realization methods of this class are [13-17]:

1) Direct / Direct Form I

2) Transposed Direct Form I

3) Direct Canonic / Direct Form II

4) Transposed Direct Form II

5) Linear Phase

6) Transposed Linear Phase

7) Frequency Sampling

8) Fast Convolution

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 64

9) Parallel

10) Series / Cascade

11) Lattice

12) Transposed Lattice

13) Ladder

14) Systolic

15) State-Space

In indirect methods, an analog filter network is converted into a topologically related digital
filter network through the application of network theoretic concepts in conjunction with
some simple transformations, e.g., wave structures.

Digital filter structures obtained by different methods can differ quite significantly with
respect to complexity, number of elements, and their properties. One structure might require
a large number of multipliers and yet be relatively insensitive to coefficient quantization
errors, and a second structure might be economical in terms of elements but generate
parasitic oscillations when signals are quantized, and so on.

Transversal / Direct Form I
The transversal / direct / tapped delay line structure is the most popular FIR structure. The
input, x(k), and output of the FIR filter for the direct form structure are related simply by:

∑
−

=
−=

1

0
)()()(

N

k
knxkhky

+

z-1z-1 z-1
x(n) x(n-1) x(n-2)

h(0) h(1) h(2) h(N-1)

y(n)

x[n-(N-1)]

Figure 7.1 Direct Form I Filter Structure

The symbol z-1 represents a delay of one sample or unit of time. Thus x(n-1) is x(n)
delayed by one sample. In digital implementations, the boxes labeled z-1 could represent
shift registers. The output sample, y(n), is a weighted sum of the present input, x(n), and
N-1 previous samples of the input, i.e., x(n-1) to x(n-N). For the transversal structure, the
computation of each output sample, y(n), requires:

• N-1 memory locations to store the N-1 input samples,

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 65

• N memory locations to store the N coefficients,

• N multiplications

• N-1 additions

Alternative filter structures can be obtained by using the transposition theorem. In essence, a
new filter structure is obtained by reversing the direction of all branches in a signal flow
graph and changing inputs to outputs and vice versa. This new filter structure has the same
transfer function as the original filter but the numerical properties are generally different.

Transposed Direct Form I
The transpose structure is similar to the direct structure, except that the partial sums feed
into succeeding stages. This method is more susceptible to roundoff noise than the direct
method.

Direct Canonic / Direct Form II
A digital network is said to be canonic if the number of unit delay elements employed is
equal to the order of the transfer function.

Linear Phase Structure
A variation of the transversal structure is the linear phase structure which takes advantage of
the symmetry or anti-symmetry in the impulse response coefficients for linear phase FIR
filters to reduce the computational complexity of the filter implementation.

+

z-1z-1 z-1
x(n)

h(0) h(1) h(2)

y(n)

z-1 z-1 z-1

+ +

+

h(3)

Figure 7.2 A Linear Phase Structure for an FIR Filter with 7 Coefficients

In a linear-phase filter, the coefficients are symmetrical, i.e., h(n)=±h(N-n-1). Thus the filter
equation can be rewritten to take account of this symmetry with a consequent reduction in
both the number of multiplications and additions. The number of multiplications is reduced
from N to N/2 for N even and to (N-1)/2 for N odd. A major drawback is that the group delay
for linear phase FIR filters is often too large to be useful in many applications.

Frequency Sampling
In the frequency sampling structure, the filters are characterized by the samples of the
desired frequency response, H(k), instead of its impulse response coefficients. For

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 66

narrowband filters, most of the frequency samples will be zero, and so the resulting
frequency sampling filter will require a smaller number of coefficients and hence
multiplications and additions than an equivalent transversal structure. However, the
frequency sampling structures suffer from high coefficient sensitivity, low dynamic range,
and severe stability problems.

Fast Convolution
The fast convolution method involves performing the convolution operation in the frequency
domain. Convolution in the time domain is equivalent to multiplication in the frequency
domain. Filtering is performed by first computing the DFTs of x(n) and h(n) (suitably zero
padded), multiplying these together and then obtaining their inverse. In practice, techniques
known as overlap-add and overlap-save are used in real-time filtering.

Lattice Form
FIR filters that are embedded in adaptive FIR filters are often realized by a lattice structure.
A drawback of such a structure is that the number of operations is high since there are two
multiplications and two additions for each filter coefficient.

Series / Cascade
High-order IIR filters are often realized as a cascade of several low-order filters in order to
reduce the sensitivity to coefficient errors. This approach, in principle, can also be used for
FIR filters, but the benefits are offset by a decrease in dynamic signal range. In the cascade
realization, the transfer function, H(z), is expressed as the product of second-order and first-
order sections.

Parallel
Parallel filter structures, comprising first- and second-order filter sections, can be obtained
by expanding the filter transfer function into partial fractions.

7.2 FINITE WORD LENGTH / QUANTIZATION
EFFECTS
The effect of finite word length depends on the filter structure, pole-zero configuration,
representation of negative numbers, rounding or truncation of products, overflow
characteristics, and the input signal. Finite word length gives rise to a large number of
phenomena caused by different types of nonlinearities. Some of those phenomena include
[17]:

1) Aliasing Errors

2) Round-off / Product Quantization Errors

3) Coefficient Quantization Errors

ALIASING ERRORS
Aliasing errors occur in A/D and D/A converters.

ROUND-OFF/PRODUCT QUANTIZATION
Rounding or truncation of products must be done so that the word length does not increase
above the limit. Product Quantization errors can be regarded as white noise sources which
give rise to output roundoff noise. However, both rounding and truncation are nonlinear
operations that may cause parasitic oscillations.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 67

COEFFICIENT QUANTIZATION ERRORS
The filter coefficients can only be represented with finite precision. Coefficient Quantization
errors introduce perturbations in the zeros and poles of the transfer function, which in turn
manifest themselves as a static deviation of the filter's frequency response from the ideal
frequency response.

It is frequently advantageous to use different word lengths for the filter coefficients and the
input samples. The coefficient word length can be chosen to satisfy prescribed frequency-
response specifications, whereas the input signal word length can be chosen to satisfy a
signal-to-noise ratio specification.

7.3 FILTER REALIZATION/SYNTHESIS
7.3.1 FILTER REALIZATION WIZARD
The Filter Realization Wizard is a tool in the MATLABTM DSP Blockset for automatically
generating floating-point, block diagram models of digital filters from the filter
specifications. The FRW automatically synthesizes digital filter structures with specific
architectures. The FRW graphical user interface enables the choice of the filter structure and
filter coefficients, the type of data to be filtered (fixed-point or floating-point), and
optimization criteria for the filter design. The FRW then builds the specified filter structure
composed of Sum, Gain, and Delay blocks that can be save under the specified name as a
MATLAB model [67].

The Architecture panel in the FRW GUI allows the option of the following realizations:

Architecture Parameters
 Direct-Form I Numerator, Denominator

 Direct-Form II Numerator, Denominator

 Lattice (AR) Lattice Coefficients

 Lattice (MA) Lattice Coefficients

 Lattice (ARMA) Lattice Coefficients, Ladder Coefficients

 Symmetric FIR Coefficients

The Optimization panel in the FRW GUI allows the choice of optimizing for zero gains and
unity gains. A zero-gain optimization removes zero-gain paths from the filter structure, and a
unity-gain optimization substitutes a wire (short circuit) for unity gains [67].

The filter coefficients generated by the MATLABTM Filter Design & Analysis Tool were
stored in a vector variable, e.g., for the bpf1, by the following command:

a = [-0.020996093750000 -0.025817871093750 -0.029907226562500

 -0.033111572265625 -0.035369873046875 -0.036590576171875

 -0.036773681640625 -0.035858154296875 -0.033874511718750

 -0.030944824218750 -0.027069091796875 -0.022399902343750

 -0.017089843750000 -0.011260986328125 -0.005096435546875

 0.001251220703125 0.007537841796875 0.013610839843750

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 68

 0.019317626953125 0.024444580078125 0.028869628906250

 0.032440185546875 0.035064697265625 0.036682128906250

 0.037231445312500 0.036682128906250 0.035064697265625

 0.032440185546875 0.028869628906250 0.024444580078125

 0.019317626953125 0.013610839843750 0.007537841796875

 0.001251220703125 -0.005096435546875 -0.011260986328125

 -0.017089843750000 -0.022399902343750 -0.027069091796875

 -0.030944824218750 -0.033874511718750 -0.035858154296875

 -0.036773681640625 -0.036590576171875 -0.035369873046875

 -0.033111572265625 -0.029907226562500 -0.025817871093750

 -0.020996093750000]

The variable ‘a’ was inserted as ‘Numerator’ in the Filter Realization Wizard to synthesize
the filter structure.

Figure 7.3 Graphical User Interface of the Filter Realization Wizard

The Blockset Library option refers to the selection of the adder, multiplier/gain, and delay
components comprising the filter structure from the library components of the Simulink
Blockset, DSP Blockset, or the Fixed-Point Blockset. DSP Blockset Library was selected to
keep compatibility with the floating-point filter models from the DSP Blockset Library.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 69

Figure 7.4 The Floating-Point Filter Block Synthesized by the Filter Realization Wizard

The filter structure synthesized by the Filter Realization Wizard is in the form of a floating-
point realized filter model that was saved in the work directory and plugged into the
floating-point system model to analyze the performance of the system model for different
realization structures for the component filter blocks. To ascertain the performance of the
fixed-point system model, the floating-point realized filter model was converted to its fixed-
point equivalent, e.g., for the bpf1 by the following command:

res = fixpt_convert('bpf1') [MATLABTM Fixed-Point Blockset User Manual, page 8-10]

the resulting fixed-point realized filter model was saved as bpf1-fixpt in the work directory
and plugged into the fixed-point system model.

Figure 7.5 The Fixed-Point Filter Block converted from the Floating-Point Filter Block

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 70

Figure 7.6 Section of the Synthesized Fixed-Point Direct Form II Realization Structure

Figure 7.7 The Encapsulated Fixed-Point Delay Block (shown in red in Figure 7.6)

SUMMARY
This chapter described the process of system realization and its validation and optimization

through the realized system model.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 71

Figure 7.8 The Synthesized 49-Tap Direct Form II Bandpass FIR Filter Structure

Figure 7.9 Realized Fixed-Point System Model

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 73

8

FPGA IMPLEMENTATION

8.1 FPGA-BASED RAPID PROTOTYPING
Approximately, 80% of the project development time is spent at the verification step.
Moving towards the System-on-a-Chip makes the verification gap even wider than the
design gap. Among the currently available design verification possibilities are [31]:

1) Formal Verification

2) Simulation

3) Accelerated Simulation

4) Emulation

5) Rapid Prototyping

Each design verification method plays its own role in the design process.

Formal Verification allows design verification with high level of confidence and is good for
maintaining functional equivalence at different stages of the design flow and eliminating
regression simulations.

Simulation is not expensive and good for initial block-by-block verification of the design,
and is widely supported by different abstraction-level commercial simulators.

When the performance of the simulation becomes insufficient to insure the desired test
coverage, the accelerated simulation takes place, which is implemented by reinforcing the
workstation performance by connecting it to the hardware emulation boards. Working upto
10,000 times faster than simulation, the FPGA-based emulation allows significant extension
of the test coverage.

Logic emulation fills a wide verification gap between simulation and actual silicon steps.

When the FPGA implementation achieves the speed of 10-20 MHz, one can speak about
rapid prototyping. Working close to the real speed, the rapid prototyping provides an

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 74

extensive, ‘live’ test coverage and can be extremely useful for subjective (eye, ear, etc.)
evaluation of an electronic product.

Since their introduction by Xilinx Inc., in 1985, the FPGAs became a key technology
enabling a rapid hardware prototyping. Their reprogrammability is the basic feature that
allows to build FPGA-based rapid prototyping systems.

FPGA Device Families
The FPGA capacity growth beyond 1 million gates in the last 2½ years, made possible by
switching to the 0.18 µ technology, allows to speak about the System-on-a-Programmable-
Chip (SOPC). The latest FPGAs incorporate numerous ‘system’ features like:

1) embedded memories capable to implement RAM, ROM, FIFO, CAM, etc.

2) clock-handling circuitry  DLL, PLL, etc.

3) embedded arithmetic resources (carry chains, dedicated multiplier and counter support,
etc.)

4) hierarchical architectures

5) combining LUT and product term logic

6) hierarchical routing resources including tri-state buses.

In parallel, large activity is observed regarding the FPGA-related design reuse:

1) FPGA vendor-provided macro block generators (COREGenerator from Xilinx Inc.,
MegaWizard IP Generator from Altera Corporation Inc.)

2) FPGA vendor-organized core, alliance, and partnership programs (Xilinx LogiCORE
and AllianceCORE, Altera AMPP).

3) FPGA design reuse methodology (Xilinx XRMM)

4) Related expert programs (Xilinx XPERTs program)

All this approaches the FPGA-based design and prototyping to a system design process.

The reprogrammable FPGA families which make interest for the rapid prototyping are:

1) Xilinx

2) Altera

3) Lucent ORCA

4) Actel ProASIC

The largest devices are offered by Xilinx (VirtexE) and Altera (Apex20KE) that are
fabricated with 0.18 µ process.

The majority of the reprogrammable FPGAs are based on the SRAM technology. An
exception is the Actel ProASIC family that is based on the Flash technology. The Flash
FPGAs do not require the startup bit-stream and are live at power-up. This makes the read
back of the configuration bit-stream impossible which attracts interest of the designers
delivering IPs because it guarantees security.

FPGA Design Tools
The FPGA design flow starts from the RTL synthesis step, which is usually performed by
one of the three market leader tools (Synopsys, Synplicity, and Exemplar). After synthesis,
the FPGA vendor-supplied placement and routing tools are used to produce the final
configuration bit-stream.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 75

FPGA-based Prototyping Platforms
According to their role and their characteristics, the FPGA-based prototyping platforms can
be classified into three major categories:

1) high-capacity commercial emulators represented by the three market leaders: Quickturn,
IKOS, and Mentor Graphics.

2) semi-custom prototyping platforms like Aptix and Simutech

3) custom platforms like the Xilinx Prototyping Platforms and platforms developed
through industry/university cooperation.

The first category covers the logic emulation field, and the last two categories are basically
related to the rapid prototyping field [31].

8.2 VHDL CODE GENERATION
VHDL Code generation was carried out to cut down the design time by reducing the number
of design iterations and saving the code debugging time and effort. For code generation, the
XilinxTM Blockset for MATLABTM/SimulinkTM was used.

XILINX BLOCKSET
The Xilinx Blockset, like other SimulinkTM Blocksets, contains elements that can be used to
build simulation models. In addition, models built from XilinxTM Blockset can be translated
using the Xilinx System Generator into synthesizable VHDL code.

The Xilinx Blockset elements include VHDL models and association with XilinxTM
LogiCORETMs. These models enable VHDL code to be generated for SimulinkTM designs
made up of XilinxTM blocks. The XilinxTM Blockset uses the XilinxTM System Generator tool
for VHDL code generation [68].

XILINX SYSTEM GENERATOR
The XilinxTM System Generator enables the design of high-performance DSP systems for
XilinxTM FPGAs using the MATLABTM tools from MathWorks. This software tool
automatically generates VHDL code from the system model in SimulinkTM. The generated
VHDL code is optimized for synthesis and implementation in XilinxTM Virtex FPGAs. To
maximize predictability, density, and performance the tool automatically maps the system
design to the optimized XilinxTM LogiCoreTM modules. LogiCoreTM is a library of IP cores
from Xilinx. Because the VHDL code is generated automatically with little or no manual
intervention, only the system representation of the design needs to be verified. With only one
design representation, the risk of errors is minimized.

When System Generator is invoked, VHDL code, customized cores, VHDL netlist, and test
vectors are generated according to the system parameters defined within the system model.
The cores are generated using the XilinxTM CORE Generator [68].

XILINX CORE GENERATOR
The XilinxTM CORE Generator system generates and delivers parameterizable cores for
XilinxTM FPGAs. It facilitates design reuse by integrating user-defined IP cores using the
XilinxTM IP Capture and thus reduces design time.

The CORE Generator contains a library of LogiCORETM parameterizable cores and Alliance
COREs alongwith datasheet of each core. LogiCORETMs are designed and supported by

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 76

XilinxTM, while AllianceCOREs are designed and supported by XilinxTM AllianceCORE
partners.

Figure 8.1 The XilinxTM System Generator & MATLABTM Interface [68]

8.2.1 XILINX BLOCKSET-BASED SYSTEM MODEL
Appropriate elements in the XilinxTM Blockset were used to convert the floating-point
representation of the system model in SimulinkTM to the bit-true representation used in the
hardware implementation. The model was then re-simulated to verify its performance with
quantified coefficient values and limited data bit-widths, which could lead to overflow,
saturation and scaling problems. When the model was converted to a form realizable in an
FPGA, and its performance met the specifications, the XlinxTM System Generator was
invoked to generate the VHDL code and the test bench.

The XilinxTM System Generator consists of a netlister, a mapper and a test-bench generator.
The netlister extracts a hierarchical representation of the model structure annotated with all
the element parameters and signal data types. The mapper then analyzes the elements in the
hierarchy and creates a VHDL description of the design. The mapper, where possible, uses
the XilinxTM CORE Generator to make hardware macros for specific design elements. When
an element or its parameter values imply functionality unavailable in the CORE Generator,

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 77

the mapper instantiates a reference to a parameterized, synthesizable entity in a synthesis
library or the user-supplied model.

The actual hardware entities used have additional inputs and outputs for control signals that
are not evident at the level of abstraction used in SimulinkTM. The mapper inserts the
necessary control ports and connects them up to control logic blocks.

The test-bench generator is an interactive tool that runs in the MATLABTM environment, in
which the designer captures the input stimuli and system outputs of selected simulation runs
for conversion to test vectors. The test-bench generator converts the captured simulation data
into VHDL code that will exercise the implemented model and test its outputs against the
expected results [68].

XilinxTM System Generator Gateway In

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 78

XilinxTM System Generator Bandpass Filters

XilinxTM System Generator Full-Wave Rectifier

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 79

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 80

XilinxTM System Generator Lowpass Filter

XilinxTM System Generator Summer

XilinxTM System Threshold Detector

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 81

XilinxTM System Generator Decimator

XilinxTM System Generator Gateway Out

XilinxTM System Generator Token
The System Generator Token invokes the VHDL code generation and core generation for all
the Xilinx Blockset elements. It enables mixed-mode system simulation.

Figure 8.2 XilinxTM Blockset-Based System Model

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 83

The generated VHDL code was compiled and synthesized for FPGA implementation using
the SynopsysTM FPGA Express. After synthesis, the design was run through the Xilinx
implementation tool  XilinxTM Design Manager (translate, map, place and route, generate
configuration bitstream) to produce a bitstream for downloading to an FPGA.

8.3 DESIGN SYNTHESIS
SYNOPSYS FPGA EXPRESS
SynopsysTM FPGA Express enables rapid design of FPGAs and CPLDs on Windows-based
PCs. It supports mixed circuit descriptions in any combination of VHDL, Verilog,
schematic, and netlist sources. An easy-to-use GUI speeds the design cycle from circuit
description to optimized design. Design requirements are entered easily with a familiar
spreadsheet interface. Advanced architecture-specific optimization technology, guided by
user entered design requirements result in synthesized designs that take full advantage of
high-density and high-performance FPGA and CPLD devices. FPGA Express supports
leading programmable architectures from ActelTM, AlteraTM, LucentTM Technologies, and
XilinxTM [60].

8.4 DESIGN TRANSLATION, MAPPING,
PLACEMENT & ROUTING
XILINX DESIGN MANAGER / FLOW ENGINE
The XilinxTM Design Manager manages the XilinxTM FPGA designs while the XilinxTM Flow
Engine implements the XilinxTM FPGA designs. The Flow Engine is closely integrated with
the Design Manager sharing many of the same menus and dialog boxes. The Design
Manager and the Flow Engine were used together to implement the FPGA design.

XILINX CONTRAINTS EDITOR
The XilinxTM Constraints Editor was used to lock the inputs and outputs in the design to
the specific pins on the FPGA package so that they are easily accessible while testing the
design on the test board.

XILINX FPGA EDITOR
The FPGA Editor is a graphical application for displaying and configuring FPGAs. This
application was used to display the placed & routed FPGA design.

SUMMARY
This chapter detailed the process of rapid design prototyping using the FPGA. The
objectives of rapid design prototyping were explained alongwith the sequence of steps and
software tools employed for converting the SimulinkTM-based system model to fit into an
FPGA.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 84

Figure 8.3 Design Synthesis Using The SynopsysTM FPGA Express Synthesis Environment

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 85

9

SYSTEM TESTING

9.1 FPGA PROGRAMMING
The configuration bt-stream file generated by the Flow Engine in the XilinxTM Design
Manager was loaded into the XilinxTM Hardware Debugger tool with the serial port of the
host computer linked to the XilinxTM Mulilinx Program Cable whose other end was
connected to the custom-built FPGA prototyping board. After performing checks on the
integrity of the connection between the PC and the FPGA board through the program cable,
the configuration bit stream was successfully downloaded to the VirtexTM 1000E FPGA on
the FPGA board.

9.2 FPGA TEST STRATEGIES
Testing the design was (and is) a significant challenge because of a number of reasons:

The amount of test vectors generated by the XilinxTM System Generator was huge (the test
vector file was several mega bytes large). As the required input into the FPGA is at 40
MSamples/s with each sample 16 bit wide, handling such a large amount of data was not
possible with the Pattern Generator available for test vector generation. Therefore, two
strategies were followed for testing the design:

1) SIGNATURE ANALYSIS
It was decided to adopt a sort of Signature Analysis approach for testing. The XBS-based
system model was simulated with pseudorandom noise as its input and the resulting system
response was recorded.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 86

The pattern generator was then programmed with a similar pseudorandom test vector
sequence which was then applied to the FPGA input on the test board. However, it was
found that the custom-built prototyping board was not designed to handle signals at 40 MHz
as it severely distorted both the input clock as well as the input test vectors. Moreover, the
number of FPGA pins available at the connectors on the FPGA board was limited. As the
XilinxTM VirtexE device used on the board is in Ball Grid Array (BGA) package, therefore,
direct probing was not possible.

To get access to the available pins at the connectors, the floorplan of the design was
modified using the XilinxTM Constraints Editor to lock the input and the output pads to
FPGA pins available at the connectors on the board. This step resulted in problems during
the placement and routing of the FPGA as the router program had to operate with the
stringent timing requirements as well as the pin-locking constraints. Several attempts were
made by increasing the number of the placement and routing passes to fit the design within
the device but apart from taking a lot of time for completion, it did not succeed in meeting
the timing constraints. This testing approach is still being followed by improving the design
of the connectors carrying input signals from the pattern generator to the FPGA board and
modifying the design to run at 20 or 10 Msamples/sec.

2) ON-CHIP PROBING
As the density of the FPGA design was causing the impracticality of attaching test
equipment probes to the device. The XilinxTM ChipScope tools were used to integrate key
logic analyzer hardware components with the target design inside the VirtexTM 1000E FPGA.
The ChipScope tools communicate with these logic analyzer hardware components and
provide a complete logic analyzer without the need for the cumbersome test probes or the
expensive test equipment.

XILINX CHIPSCOPE
The ChipScope tools include

• the ChipScope Logic Analyzer Core Generator

• the ChipScope Logic Analyzer Core Inserter, and

• the ChipScope Logic Analyzer

The ChipScope Logic Analyzer Core Generator provides netlists and instantiation templates
for the Integrated Controller (ICON) core annd the Integrated Logic Analyzer (ILA) core.

The ChipScope Logic Analyzer Core Inserter automatically inserts these two cores into the
synthesized design.

The ChipScope Logic Analyzer allows setup and trace display for the ILA core. The ILA
core provides the trigger and trace capture capability. The ICON core communicates to the
dedicated Boundary Scan pins.

The Logic Analyzer supports the Xilinx Multilinx program cable for communication
between the host computer and theFPGA. The ILA and the ICON cores can be placed in the
design either by [53]:

• generating the cores with the ChipScope Core Generator and then instantiating them
into the source HDL code, or

• inserting the cores into the post-synthesis EDIF (*.edf) netlist using the ChipScope
Core Inserter.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 87

The later approach was adopted for ILA and ICON core insertion into the design. The design
was then placed and routed using the Flow Engine in the XilinxTM Design Manager.
However, this design again ran into the problem of not meeting the timing constraints. This
approach is still being followed by optimizing the design to reduce on-chip logic
consumption and create more room for placement and routing on the chip.

The ChipScope Logic Analyzer supports user-selectable data channels range from 1 to 256
with the number of sample sizes range from 256 to 4096. The triggers can be changed in
real-time without affecting the design logic.

SUMMARY
This chapter explained the test strategies adopted for testing the design after configuring the
FPGA from the host computer. Two techniques were employed for testing and their relative
merits and demerits were elaborated alongwith the problems faced during the testing of such
a large prtotype.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 88

10

SUMMARY & CONCLUSIONS

10.1 SUMMARY & CONCLUSIONS
The increased size and complexity of designing highly integrated integrated circuits, coupled
with compressed design times, has led many ASIC designers to rethink their traditional
design processes. Compressed design times demand increasing the chance of success on the
first attempt. Therefore, ASIC designers have to develop a well-thought-out methodology
that includes all aspects of the design from concept to silicon.

A successful approach is to have a common design environment for designing all the system
components. This approach reduces design errors by reducing the level of manual
intervention in the design flow. It also facilitates the incorporation of optimization at every
design stage and to have early considerations of design verification. With only one design
representation, designers can significantly reduce, especially, the hardware development
time by quickly iterating between system-oriented and hardware-oriented approaches to their
designs. This is especially more important for DSP applications as many system-level design
tradeoffs are based upon the outcome of the hardware implementation.

The main emphasis of this project was to gain hands-on experience with such a common
design environment and to evaluate its performance using Bluetooth as a design example.
Although the project work was concentrated on the hardware design part of the design flow,
however, some insight was gained into the issues of software design, hardware/software
integration and system-level design as a whole. Familiarity was also gained with the
limitations of the design environment used and techniques were explored to devise
workaround methods to circumvent those limitations.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 89

The common design environment used for this project was MATLABTM alongwith its suite
of design tools. A GFSK Demodulator block from a BluetoothTM receiver was selected as a
design example.

Using SimulinkTM, and its Communications and DSP Blockset libraries, floating-point
algorithms were developed that defined the system functions. Within this design
environment, a floating-point model of the system was created and simulated to verify the
performance of the designed algorithms and to extract the unknown design parameters.
Working in this fashion, all the algorithms could be functionally verified while they were
still in a floating-point format. It was extremely important to know that the designed
algorithms are functionally correct before moving to subsequent stages in the design process.

After the floating-point system model was running, a Bit Error Rate (BER) check was
performed on the system to get a theoretical best case while meeting the system
specifications. This best case system model served as a starting point to optimize the system
design by taking out taps from the filter blocks to minimize the final system implementation
cost.

To determine the minimum number of filter taps that could be used, the number of taps was
decreased and the system model was resimulated to check the BER. After iteratively
simulating a number of times the filter orders were fixed to numbers that yielded the BER
within system specifications while keeping tolerance for slight performance degradation
after fixed-point conversion.

As floating-point algorithms cannot be used efficiently in low-power, small area hardware
implementations, therefore, the algorithms had to be converted into fixed-point data and
arithmetic representations.

After ensuring that the designed algorithms meet the system specifications, fixed-point
format transformation of the design was carried out which involved, among other tasks,
converting the signal nodes and design parameters to a fractional fixed-point format without
changing the underlying functional behavior. This step was performed to study the finite
word-length effects encountered when the algorithms are processed on silicon by the
computation elements having storage registers with finite bit-widths.

A fixed-point model of the transformed system algorithms was constructed using the Fixed-
Point Blockset library and the Quantized Filtering Toolbox to ensure that the functionality of
the adapted algorithms corresponds exactly to the floating-point system algorithms. The
MATLAB design environment provided a uniform test suite that could be used at every step
in the design process eliminating one potential source of uncertainty should problems arise.

As a second system optimization step, data bit-widths were minimized to lower the cost and
power consumption of the final system design. Simulations of the fixed-point system model
were used to optimize the data bit-widths and to check for their effects on the BER
achieving a compromise between the BER and system cost.

To explore the sensitivity of different hardware realization structures to quantization,
execution speed, silicon area, and system power requirements, the filter blocks were
synthesized into different realization structures using the Filter Realization Wizard. The
synthesized filter structures were plugged into the fixed-point system model and simulated
again to validate the system functionality.

Working in SimulinkTM, the functionally-validated floating-point system model was then
transformed into a bit-true and cycle-accurate system hardware model using the Xilinx
Blockset library. The model was re-simulated to verify its performance with quantified filter
coefficient values and limited data bit-widths, which could lead to overflow, saturation and

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 90

scaling problems. Necessary delays were also padded into different system blocks for faster
hardware execution through pipelined implementation. When the model was converted to a
form realizable in an FPGA, and its performance met the specifications, the VHDL code and
the testbench were generated using the XilinxTM System Generator tool alongwith the
XilinxTM CORE Generator tool.

The SynopsysTM FPGA Express was used to synthesize the generated VHDL code. The
XilinxTM ChipScope tool was used for test-point insertion so that various signals can be
monitored inside the FPGA-implemented design during hardware testing. The XilinxTM
Design Manager and Flow Engine were then used for mapping, translation, placement,
routing, and configuration bit stream generation.

The XilinxTM Hardware Debugger was used to download the configuration bitstream to a
XilinxTM Virtex series FPGA using the XilinxTM Multilinx programming cable on a custom-
built FPGA-test PCB (Printed Circuit Board). A Hewlett-PackardTM Pattern Generator was
used to generate the input test vectors and a Hewlett-PackardTM Logic Analyzer and a
Hewlett-PackardTM Digital Storage Oscilloscope were used to monitor the input and the
output signals.

10.1.1 SEMI-CUSTOM ASIC DESIGN
After having prototyped the system on an FPGA and having evaluated the system
performance, the prototyped design can be retargeted to a semi-custom ASIC using the
standard-cell-based design approach.

The anticipated issues in this process can be the custom XilinxTM IP cores for the system
blocks that cannot be retargeted to a standard-cell library. One possible solution can be to
generate the VHDL code for the system by turning off the core generation option in the
System Generator tool. This will not yield a fully-optimized VHDL code but it can be later
manually optimized and synthesized and mapped on a standard-cell library, possibly using
the SynopsysTM synthesis tools interfaced with the CadenceTM layout generation tools.

10.1.2 SYSTEM MODEL REFINEMENT
Inclusion of RF Distortions
The system model can be modified to include the RF frontend and RF propagation channel
distortion effects to make it reflect the real-world environment. While there are a large
number of RF frontend model parameters that one can play with in simulations, its important
to focus on the parameters that have the greatest effect on the performance of the system
being designed. Only those distortions should be included that are most important as each
distortion type requires a considerable amount of modeling effort and simulation time.

The most important RF propagation channel distortion is multipath distortion (present in
real-world digital communication channels).

Taking into account the accurate RF frontend and RF propagation channel models in
simulations can give an additional tool to improve performance and eliminate problems
before more costly hardware prototyping and testing ensues.

RF Frontend Distortions
The most important RF frontend distortion effects include power amplifier non-linearities,
and phase noise of the PLL frequency synthesizer.

There are power amplifiers in any communication system that transmits over an RF channel.
Unfortunately, power amplifiers do not have an unlimited amplifying capability. Every
power amplifier, at some point, starts clipping/compressing and distorting the signal being

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 91

amplified. Compression and distortion are modeled using the 1-dB compression point and
the 3rd-order intercept point. The 3rd-order intercept point specifies a theoretical point where
the power amplifier's fundamental output intercepts the 3rd-order distortion products. The 1-
dB compression point and the 3rd-order intercept point should be included when designing
the baseband DSP algorithms to avoid unexpected performance problems in the real-world
system.

All oscillators in RF communication systems have phase noise. Essentially, phase noise is
very small amounts of phase modulation on the oscillator that creates a modulation envelope
rather than the theoretical single frequency that it is expected to generate. Excessive phase
noise can raise havoc with any digital communication system using a local oscillator in the
RF frontend. Low phase noise oscillators can be used to avoid this problem, but they tend to
be much more expensive than their higher phase noise counterparts. System-level simulation
can do a system-level trade-off study of the lower cost of using a higher phase-noise
oscillator versus the increased signal processing that may be necessary to meet the system
BER requirements.

RF Propagation Channel Distortion
Multipath distortion causes Inter-Symbol Interference (ISI), and, therefore, can cause the
system to fail BER requirements. An accurate channel propagation model (e.g., Rician or
Rayleigh) should be added to decide whether (adaptive) equalization is required in the
baseband processor to correct for time-dispersion problems, thus canceling ISI.

Including these three key RF frontend distortions in the system analysis will yield better
results.

Inclusion of A/D Converter Model
An implicit model for the A/D converter was used in the system model that assumed flash
A/D conversion with excessive oversampling to compensate for the quantization noise
effects. To accurately model the system, however, an oversampling Σ-∆ A/D converter
model should be used with the oversampling ratio and the order of the noise-shaping loop
selected to achieve a converted SNR that fits well within the system noise budget for
achieving the specified BER.

Optimization of System Model
The present system model can be optimized in many ways. The most important optimization
can be reducing the filter order by using the Optimal or Parks-McClellan algorithm for
coefficient calculation. Wavelet transform-based techniques have also been tried for
designing the bandpass filters for FSK demodulation [29]. Another optimization can be to
reduce the input SNR, oversampling ratio and the data bit-width. Yet another optimization
option worth exploring can be to convert the RZ signal to a bipolar signal before Gaussian
filtering which might reduce the DC level introduced after Gaussian filtering and thus reduce
the ISI resulting in improved BER performance of the system making allowance for further
optimization in other system blocks.

As another option, the MATLABTM/SimulinkTM-based system models can be transported
either to COSSAPTM or SPWTM and can be further refined utilizing the more powerful
features available in those design environments that can also provide a more uniform
interface to semi-custom ASIC implementation.

10.1.3 LOW POWER DESIGN
A major factor in the size and weight of portable devices, possibly having BluetoothTM
capability in the future, is the size and weight of batteries which is directly impacted by the

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 92

power dissipated by the electronic circuits. Moreover, the significant cost of providing
power and associated cooling demands reduction in the power consumption of a portable
system.

Components Of Power Consumption
Dynamic Components:

1) Switching Component

2) Short Circuit Component

Static Component:

1) Leakage Component

Approaches To Low-Power Design
The approaches to power consumption reduction encompass all possible aspects of a system
design ranging from the technology being used for the system implementation, circuit and
logic topologies, the system architectures and even the system algorithms. Only algorithmic
and architectural transformations will be discussed here as these are the most relevant in the
context of the design flow used for the project.

Algorithmic Transformations
The choice of algorithms is the most highly leveraged decision in meeting the power
constraints. The ability for an algorithm to be parallelized is critical and the basic complexity
of the computation must be highly optimized. The most important algorithmic tradeoffs for
low-power design include scaling to lower voltage through exploitation of concurrency and
reduction in switching activity by minimizing the number of operations.

Voltage Reduction using Algorithmic Transformations
This includes removal of feedback paths as in IIR filters by algorithmic transformations to
achieve parallelism resulting in voltage scaling. The most common method to remove
feedback paths is loop unrolling.

Minimizing Number of Operations
The most effective approach to minimizing the number of operations is to convert
multiplications with constants (as in digital filter structures) into shift-add operations. The
application scope of this transformation is large. The basic idea is that multiplication with a
0 is a NOP (No OPeration) and, therefore, a multiplication with a constant degenerates to
shift-add operations corresponding to the 1's in the filter coefficient. Techniques and tools
exist to scale the filter coefficients so as to minimize the number of shift-add operations. In
addition, if an input is being multiplied with multiple coefficients, some of the shift-add
terms can be shared and the number of operations can be further reduced.

Architectural Transformations
Maintaining a given level of computation or throughput is a common concept in signal
processing where there is no advantage in performing the computation faster than some
given rate, since the processing element will simply have to wait until further processing is
required. One of the most important ramifications of only maintaining throughput is that it
enables an architecture-driven voltage scaling strategy, in which aggressive voltage
reduction is used to reduce power, and the resulting reduction in logic speed is compensated
through parallel architectures to maintain throughput [30].

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER 93

Finally, the choice of selecting either a convolver-based demodulator architecture alongwith
envelope detection or a frequency discriminator-based demodulator for the GFSK
demodulation for commercial Bluetooth designs seems quite even-handed. The recently
announced BlueCoreTM 01 single-chip Bluetooth solution by Cambridge Silicon Radio Ltd.,
U.K. [34] claims to use a digital demodulator that, probably, is a convolver-based digital
demodulator. On the other hand, the single-chip Bluetooth solution by the Broadcom
Corporation, U.S.A. [36] uses the frequency discriminator-based demodulator. Cadence
Design Systems Inc., has included both demodulators in its Bluetooth library for the Signal
Processing Worksystem (SPW) system-level design tool. Probably, the choice depends upon
the level of expertise and confidence of a particular design group in a particular architecture.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

APPENDICES

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

APPENDIX-A

DATA SHEETS OF THE DESIGN TOOLS

The MathWorks

System-Level Design Products
for DSP and Communications

2

To succeed in a competitive global marketplace,

electronics, telecommunications, and aerospace

companies must develop highly innovative

products and get them to market fast. With

ever-increasing IC density, processor speed, and

software complexity, traditional design tools no

longer ensure a company’s competitive edge.

Today’s engineers need tools that streamline the

design process and help them discover new ways

to achieve technological breakthroughs.

The MathWorks system-level design products

address these needs, whether you are analyzing

data and developing algorithm concepts, simulating

system and component behavior, performing

real-time prototyping, or testing the hardware or

software implementation. These products provide

a complete, integrated software environment that

accelerates development cycles and simplifies

design verification and reuse.

Our system-level design environment is based

on Simulink®, a powerful block diagram simulation

environment. Simulink is built on top of MATLAB®,

the leading software for DSP algorithm development.

Your entire design team can benefit from the tools

in the Simulink environment. These tools will

dramatically reduce the time you spend program-

ming and correcting design problems, freeing you

to explore ideas, develop leading-edge technology,

and deliver first-rate product designs on time.

The MathWorks DSP and Communications Design Environment 4

Total System Simulation 6

Tools for Real-World, Real-Time Design 8

Rapid Prototyping and Design Verification 10

About The MathWorks 11

3

Simulink®

A graphical simulation environment for
the system-level design and modeling of
digital, analog, and mixed-signal systems

MATLAB®

A high-performance technical computing
environment for algorithm development,
data analysis, and visualization

DSP Blockset
Simulink block libraries for the design
and simulation of real-time digital signal
processing systems

Signal Processing Toolbox
MATLAB functions and graphical user
interfaces (GUIs) for algorithm develop-
ment, signal and linear system analysis,
and spectral estimation

Communications Toolbox
Simulink block libraries and MATLAB

functions for modeling the physical layer
of a communications system

Fixed-Point Blockset
Simulink block libraries for the design
and simulation of bit-true algorithms

Stateflow®

A graphical environment for the design
and simulation of event-driven systems,
protocols, and control logic

Real-Time Workshop®

A real-time development environment
that automatically generates C code
directly from Simulink models

MATLAB and Simulink Report Generators
Data-reporting tools that generate RFT
and HTML format documents from
MATLAB programs and Simulink models

The MathWorks DSP and Communication Design Environment
Meeting the escalating demand for higher performance, lower cost, and faster delivery of products requires flaw-

less coordination among specialized development teams. Simulink offers a highly integrated alternative to traditional

tools and fragmented design processes, making it easy for design teams to work together. Because Simulink models

are portable across PC and UNIX platforms, every engineer on your team gets a consistent view of the design and

a clear, executable specification for each hardware and software component of your system.

Simulink streamlines communications and DSP design by providing the fastest path from product concept to vali-

dated system model. And it maximizes scarce engineering resources by enabling you to move a design effortlessly

through algorithm development, behavioral simulation, and model verification without having to transfer data, rewrite

code, or change software environments.

With Simulink, you can test design concepts and tradeoffs earlier in the development process. By verifying your

design at the system level, you minimize the risk of expensive errors in your software or silicon. Eliminating these

errors early cuts your design time and development costs.

4

Digital Receiver Design
This digital time-code receiver simulation illustrates a typical communications design problem that requires integration of signal
processing and event-driven functions such as control logic and synchronization. The Simulink system-level design environment, together
with the DSP Blockset (top and far right), and Stateflow (bottom right), gives you a single visual environment that lets you hierarchically
model multimode systems that include analog, digital, and mixed-signal components. Real-Time Workshop (far left) generates readable,
efficient C code from Simulink models for real-time prototyping and high-speed simulation. Simulink is the only simulation tool that is
fully integrated with MATLAB (bottom center), giving you instant access to advanced algorithms and analysis capabilities.

Simulink and MATLAB accelerate your design
process by providing integrated tools for
system-level design, algorithm development,
and analysis. Our open design environment
reduces development risk by providing rapid
real-time prototyping and simplified software
and hardware design verification.

UTC Time

UT1 Correction

Year

Day of Year

Daylight Savings #1

Daylight Savings #2

Leap Second

WWV Digital Time-Code Receiver

WWV
Display

WWV
Audio

01250

0.3

1999

243

1

1

0

Time Code

In

Clk
Symbols

Detect
Lock

Receiver

Symbols Out

IRIG-B
Decoder

Detect

Lock

En

Le

RF Env

Envelope

1
In

3
Detect

2
Clk

1
Symbols

Shift
RegisterEdge

Lock
Miss

P0
P1
PM
Clk

Delta

Symbol Sync

Lock
Miss
P0
P1
PM
Detect

Symbol

Symbol Detection

NOT
AND

Env

AGC

Edge

Detect

Leading Edge
Detector

Input

RF Env

Envelope
Detection

In

Gate
AGC

Automatic
Gain Control

1
In

Miss

P0

SearchTrack 1SeekSilence
en:cnt=N1estNhalfwin;
du: cnt;

Wait

SeekPulse
en: cnt=Nwin;
du: cnt;

TrackPulse
en: cnt=Nwin;
du: cnt;

TrackBlind
du: cnt;

[Edge]

/Lock=0;

[cnt == 0]

[Miss]

[cnt==0]

/N1=N1est;
 Lock=1;

[cnt==0]

[cnt == 0]
/Miss=1;
cnt=N1Nwin1;

[Edge]
/Miss = 0;
N1 += Nhalfwincnt;
cnt = N1Nhalfwin;

/Clock.Sync;
Integ.Start;

Integ 2

DisableEnable

Start
/PM=1;
 P1=1;
 P0=1;
 cnt = 0;

{cnt++;}

[cnt==NMarker]
/PM=0;

[cnt==NOne]
/P1=0;

[cnt==NZero]
/P0=0;

Clock 3

ResetLow
en: Clk=0;
 cnt=N11;
du: cnt;

High
en: Clk=1;

Wait

Sync

[!Lock][cnt == 0]

Algorithm
Development
and Analysis

System
Simulation

Real-Time
Prototype

MathWorks System-Level Design Environment

Implementation Tools

Digital,
Analog

Hardware
Design

DSP
Software

Development

Verification
Executable Spec

C Code

5

Rapidly design and validate
system models
Simulink enables you to graphically design

and simulate large-scale, complex systems

with a minimum of effort. Using drag-and-

drop editing and intuitive model navigation,

you can create and maintain models that are

easy to understand and modify—even on

systems that have thousands of blocks and

multiple hierarchical levels. You’ll produce a

working, validated model in a fraction of

the time it would take with conventional

simulation tools and languages.

Procedural languages are useful for

developing specific algorithms but make

it difficult to analyze, maintain, and share

complex system models. Simulink lets you

develop detailed designs—and integrate

your MATLAB and C code—within the

context of a concise, visual description of

system behavior. You build your designs

using hundreds of predefined blocks,

state-of-the art algorithms, and interactive

simulation and display capabilities.

Simulate multidomain systems
Simulink is the only system-level design

environment that provides integrated support

for discrete- and continuous-time-driven

systems and event-driven systems within a

single graphical model. Because it supports

multichannel, multirate systems, Simulink

lets you create cleanly partitioned, efficient

representations of real-world systems.

When you use Simulink with Stateflow

and the DSP Blockset, you can create fast,

accurate behavioral simulations of every

element of your system, including real-time

DSP software; digital, analog,

and mixed-signal datapath

hardware; control logic,

communications protocols,

and synchronization loops;

and channels, acoustics, and

other physical effects. These

integrated simulations let you

see immediately how each

design decision affects the behavior of the

whole system.

Instantly visualize and
tune your design
Simulink models give you instantaneous

feedback. You run simulations with a click

of the mouse, tune model parameters to

perform “what-if” analysis, and visualize

results dynamically on animated scope

displays. These interactive features help you

rapidly evaluate alternative algorithms and

determine optimal parameter settings.

Achieve high-performance simulation
Simulink’s high-performance, frame-based

DSP processing and state-of-the art contin-

uous time solvers ensure that interactivity

doesn’t come at the expense of simulation

speed. And when you need the optimal

performance for batch processing of large

data sets and Monte Carlo simulations, you

can use Real-Time Workshop to generate

standalone executable programs automati-

cally from your Simulink block diagram.

Analyze and optimize with MATLAB

When you use Simulink, MATLAB is always

at your fingertips for developing algorithms,

exploring and visualizing data, generating

test vectors, building custom interactive

displays, and creating scripts to automate

simulation experiments. You have instant

access to dozens of MATLAB toolboxes and

hundreds of advanced algorithms, giving

you an unparalleled range of tools for

analyzing and optimizing your design.

Total System Simulation
Simulink is your bridge between R&D and product implementation. It provides a highly

productive, easy-to-use, and open block diagram modeling environment that encourages

collaboration and complements traditional design and development tools. Simulink acceler-

ates product development by making it easy for systems engineers, DSP developers, and

hardware designers to create and maintain complete behavioral models, characterize

alternative algorithms and architectures, and verify system performance.

“The customer cannot

afford a broken design.

Using block diagram

tools like Simulink

reduces the risk of

finding design errors

before the design

goes to fabrication.”

—Robert Schutz, President, Silicon Arts Inc.

Silicon Arts Inc.—When Silicon Arts designed an ASIC for a TDMA satellite communications link, they chose Simulink over C
or alternative products because it integrated all the tools they needed to simulate, analyze, and verify the architecture of their target
system. Simulink’s integrated modeling and test environment enabled Silicon Arts to eliminate errors in their HDL designs. As a result,
their ASICs were built to the customer’s specs the first time.

6

Wireless System Simulation
This end-to-end simulation of an IS-136A
TDMA digital wireless voice transmission
link illustrates the ability to model the
performance of complex communications
systems. Beginning with a high-level
behavioral view of the system organization
(center) you can create, test, and modify
individual component designs such as a
channel coding subsystem (top right).
Integrated displays (bottom center) and
analysis tools provide immediate insight
and systematic understanding of your
system’s behavior. The Simulink Report
Generator (bottom left) automatically
generates system documentation in industry
standard document formats, facilitating the
transfer from system design to product
implementation.

Real-time Audio Design
This simulation of a real-time pitch-shifting system (center) builds on the DSP Blockset’s
advanced frame-based processing and audio I/O capabilities. Using built-in libraries (top
right) or C code, you can rapidly construct and interactively refine sophisticated models, define
test data and key system parameters, and present them in user-defined GUI dialogs (far left).
You can tune parameters interactively as the simulation is running and visualize output using
Simulink displays (bottom left). The same parameters and data can be used throughout the
design process to simplify verification and reduce design errors.

Base Station Transmitter

Mobile Station Receiver

IS136A TDMA Wireless Standard: Digital Voice Transmission

Receive Filter

IS136A
Frame Extractor

Random Binary
Generator

IS136A
Modulator

IS136A
Framing

IS136A
Demodulator

IS136A
Deframing

IS136A
Channel
Decoding

IS136A
Channel
Coding

Tx Data

Rx Data
Error Vec

Class 2 Error Rate
Calculation

0

Class 2 BER

Tx Data

Rx Data
Error Vec

Class 1 Error Rate
Calculation

0

Class 1 BER

Channel

BFI

Bad Frame
Indicator

 Transmit Filter

IS136A
Interleaver

IS136A
Deinterleaver

Pitch Shifter

To Wave
Device

In

Out
MA

Time-Varying
Lattice Filter

ST
FFT

Spectrogram

Rebuffer

DF2T

Pre-emphasis
Filter

Cepstrum

Power

ZeroCross

Pitch

Voicing

Pitch Track
and Voicing

Pitch

Voicing

Speech

Out

Pitch Shifter

Peak
Find

In Cnt

Residual

K
Out

Normalization

In

K

Power

Modified LPC

In Out

Modified
Real Cepstrum

z
-5

ellip

Highpass
Filter

From Wave
Device

z
-5

z
-10

z
-5

1

Frame Out

Raw Data

Frame In

Tail Bits

Frame Out

IS-136A Convolutional Encoder
Frame In CRC Bits

IS-136A CRC Generation

zeros(1,5)

1

 Frame In

7

Accelerating algorithm design
Simulink accelerates the transition from

numerical concepts to real-time algorithms

and real-world components. Its time-driven

simulation engine lets you accurately model

the operation of real-world software and

hardware and cleanly map your design to

an efficient implementation.

The Simulink environment provides

a rich set of high-level blocks for defining

algorithm behavior, as well as low-level

components for building structurally

accurate models of your design. To help

you build efficient real-time system models,

Simulink lets you easily incorporate MATLAB

M-files into any Simulink model. You’ll find

a Simulink or blockset equivalent for virtually

every MATLAB signal processing function.

An open, extensible system
Simulink gives you unmatched power to

create custom design libraries. Whether

you start from built-in blocks or from your

own C or MATLAB code, you can present

design parameters by giving each block a

unique appearance and dialog. And unlike

simulations coded only in C, your Simulink

models can be instantly reused or shared.

Advanced frame-based
DSP simulation
The DSP Blockset provides more than

200 advanced DSP and math functions,

including transforms, matrix math, FIR,

IIR, adaptive and multirate filters, spectral

analysis, and real-time data I/O—all using

efficient, frame-based

implementations. The DSP

Blockset is ideal for develop-

ing real-time speech, audio,

and baseband communications

algorithms and supports

sensor-based signal process-

ing applications.

Physical layer
communications simulation
The Communications Toolbox supplies

modulation and channel coding tech-

niques, channel models, and analysis tools

for the physical layer design of advanced

digital communications systems. The

Communications Toolbox works with the

DSP Blockset to model all aspects of signal

processing in a wide range of systems, includ-

ing broadband modems, wireless handsets

and base stations, and mass storage devices.

Bit-true fixed-point simulation
Using the Fixed-Point Blockset, you can

perform bit-true simulations of filters and

other signal processing components. The

blockset supplies fundamental arithmetic

and logical operations, and it lets you

control scaling and word length in algo-

rithms designed for fixed-point DSPs,

microcontrollers, and ASICs. Simulink’s

integer and arbitrary user-defined datatypes

enable you to cleanly incorporate bit-true

C code into Simulink simulations.

Fast, accurate analog and
mixed-signal models
Most simulation tools offer only discrete-

time approximations of analog behavior.

Simulink provides true continuous-time

solvers that ensure pinpoint accuracy and

rapid simulations. You no longer need to

rely on circuit simulations to characterize

the performance of nonlinear analog

and mixed-signal components such as

amplifiers, PLLs, and A/D converters.

Tools for Real-World, Real-Time Design
When you commit your intellectual property (IP) to HDL design and processor-specific code,

you limit your ability to keep pace with the rapid changes in semiconductor and software

technology. The Simulink block diagram environment helps you stay ahead by retrieving and

reusing your IP—including libraries of real-time DSP algorithms and optimized behavioral

models of real-world components. With Simulink, you not only develop, test, and maintain

these libraries and models; you also preserve them for use in future products.

“The Simulink models

exceeded our project

specifications for

required simulation speed.

Accurate simulations

can now be measured

in minutes rather than

hours or days.”

—Yuan Yuan, Motorola, Inc.

Motorola, Inc.—At the design center of Motorola’s Wireless Subscriber System Group, engineers designing mixed-signal
Phase-Locked Loop systems needed to speed up their design cycles by cutting simulation run times and improving simulation
resolution. Motorola chose Simulink when a benchmark comparison against their mixed-signal circuit simulators proved that
Simulink provided the fastest simulation while exceeding resolution specifications.

8

Graphical event-driven simulation
with Stateflow
Stateflow lets you graphically model event-

driven behavior within Simulink. Stateflow

simplifies the simulation of protocols,

synchronization loops, and control logic

signals that activate time-driven datapath

subsystems. Together, Simulink and

Stateflow provide the only system-level

environment that lets you model multiple

modes of operation within complex signal

processing and communications systems.

Automatic report generation
simplifies teamwork
The MATLAB and Simulink Report

Generators automatically generate complete

documentation of MATLAB programs and

Simulink models in standard formats, includ-

ing RTF and HTML. These tools ensure

an error-free handoff of your design as it

progresses from concept to implementation.

Modem Protocol Simulation
Stateflow lets you visually model complex event-driven
behavior within a Simulink block diagram. This system
simulates a modem protocol exchange (right). As the
simulation runs, animated state transitions let you see
exactly how the call modem (left) and the answer
modem (center) are interacting.

Mixed-Signal Simulation
This Simulink model simulates (top) and monitors
(bottom left) a Sigma Delta analog-to-digital
converter. Simulink’s true continuous-time
simulation provides high-resolution modeling of
nonlinearities, timing, and frequency characteristics
of analog and mixed-signal systems. Simulations
run in a fraction of the time taken by circuit
simulators and discrete-time system simulators.

Filter Design
MATLAB and Simulink streamline the creation

of efficient real-time filter designs. Simply define filter
parameters graphically using the Signal Processing

Toolbox’s filter designer (center), then drop the
equivalent real-time blocks into your Simulink model
using the DSP Blockset’s filter library (bottom right).

You can even use the DSP Blockset’s filter realization
wizard (top right) to generate optimized fixed-

or floating-point filter structures.

Input signal A/D Converter

Transmitter Input
Channel Output

Output

Transmitter

Trans. &
Rcvd.
Signal

Sigma-Delta

Sigma -Delta ModulatorRepeating
Sequence

Channel Input Received Output

Receiver

Input/Output

0.8

Gain2Analog
Butterworth

LP Filter

Input

<Received>

<Output>
<Trans. Channel>

<Trans. Channel>

Modem Simulation using Stateflow

Scope

GSTNDTE DCEV.34 ModemCall
Modem

V.34 ModemAnswer
Modem

9

Efficient code generation and
rapid prototyping
The MathWorks code-generation

tools—Real-Time Workshop and Stateflow

Coder—produce fast, portable C code

directly from Simulink and Stateflow

models. You can automatically generate

code and build real-time executables, giving

you an efficient and reliable way to test and

iterate your designs on DSP hardware. This

approach allows you to make necessary

changes before committing your designs

to production.

You can refine your model, generate

code, and evaluate results on your target

hardware—all within minutes. This rapid

prototyping approach helps you produce

more effective designs without wasting

months on error-prone, manual DSP

programming.

Customize and optimize
generated code
Real-Time Workshop and Stateflow Coder

generate readable, well documented code,

letting you easily identify and modify

time-critical algorithms to fit the real-time

constraints of your target environment.

Using the Target Language Compiler,

you can optimize the generated code and

include hand-coded routines automatically

at code-generation time. This feature makes

it easy to create and reuse processor-specific

algorithms and tailor code to meet specific

application requirements. As a result,

you can focus your valuable programming

resources on the implementation of

critical components.

Co-simulation and system verification
With Simulink, it’s easy to use your

system-level models to verify the specifica-

tions of your hardware or software imple-

mentation. You can use Simulink’s open

API to co-simulate with any C-callable

instruction set or HDL simulator or to

interface with DSP software development

tools. The parameterized models, test vector

generation, and data analysis capability of

Simulink and MATLAB provide a consistent

framework in which to regression-test

every element of your implementation.

Additional solutions from our
Connections partners
Our MATLAB Connections partners provide

simulators, development hardware, real-time

operating systems, and application-specific

tools that complement the MathWorks

DSP and communications design environ-

ment. Visit www.mathworks.com for an

up-to-date list of Connections partners and

available products.

Texas Instruments—TI’s goal is to shorten product development cycles by accelerating the flow of real-time DSP algorithms
from R&D into product design. Using MATLAB, Simulink, DSP Blockset, and Real-Time Workshop, engineers at the DSP Solutions
Research and Development Center refine implementation details directly in a reusable, hierarchical model of the system and
produce real-time software prototypes without the need for traditional DSP programming resources.

Rapid Prototyping and Design Verification
Test development and design verification can take up two-thirds of the design cycle. Errors

in hand-coded designs often slow this already time-consuming process. With its real-time

rapid prototyping tools, open co-simulation capabilities, and complementary third-party

products, Simulink helps you eliminate these errors, maximizing your programming resources,

saving project development time, and reducing design costs.

“Using Simulink helps

to tie the two sides of

the process together

in a way that lets

every engineer see the

whole project from concept

to testing to coding.”

—Dr. Randy Cole, Texas Instruments

MathWorks Web site
Our Web site, www.mathworks.com, offers

a wealth of information on MathWorks

products and services. You can get product

information, download products, access

technical support, and find out about

MathWorks-sponsored events.

Services and support
We provide an extensive service and

support network through The MathWorks

and our international contacts around the

globe. Whether you are requesting product

information, signing up for a training

course, or in need of technical support, you

can be assured of an immediate response

to your inquiry. Visit www.mathworks.com

for more information on these services

and programs.

Training
The MathWorks offers training courses

designed to help users of all levels of

experience become more proficient with

The MathWorks software tools. Each course

uses the latest software and is taught by a

MathWorks engineer with extensive teach-

ing experience. We’ll work with you to assess

your company’s training needs and help you

select the best option.

MATLAB Access program
The MATLAB Access program is a free

service that provides our customers with

a direct link to a number of benefits, includ-

ing personalized, Web-based self-service

resources, early notification of product

releases, technical support, and customer

service. MATLAB Access members are also

eligible to receive our quarterly electronic

newsletter, MATLAB Digest, and our product

newsletter, MATLAB News & Notes.

MATLAB based books
More than 200 books based on MATLAB and

Simulink have been published in a variety

of languages. Many books have companion

software written for MATLAB and Simulink.

The directory MATLAB Based Books is avail-

able on our Web site and in printed form.

MATLAB newsgroup
Participants from around the world discuss

MathWorks products, solve problems, and

share code in an unmoderated Usenet

newsgroup, comp.soft-sys.matlab. The

MathWorks follows the newsgroup’s activi-

ties closely, providing answers to technical

queries and posting announcements of

general interest.

MathWorks ftp site
The MathWorks maintains a software

library, ftp.mathworks.com, that contains

hundreds of free, user-contributed MATLAB

programs. This archive allows users to share

their efforts with others working in similar

application areas.

10

About The MathWorks
Founded in 1984, The MathWorks, Inc., has grown steadily into a company of more than 500

people with over 400,000 users of its software worldwide. The MathWorks diversified product

family provides powerful, tailored computational tools for engineers, scientists, and mathemati-

cians in over 100 countries on all seven continents. These technical people work at the world’s

most innovative technology companies, government research labs, and financial institutions, and

at more than 2,000 universities. They rely on The MathWorks because MATLAB and Simulink are

the fundamental tools for their engineering and scientific work.

The MathWorks, Inc.

Web: www.mathworks.com

E-mail: info@mathworks.com

Tel: 508-647-7000

Fax: 508-647-7101

Contact Information

© 1999 by The MathWorks, Inc. All rights reserved. MATLAB, Simulink, Stateflow,
Handle Graphics, and Real-Time Workshop are registered trademarks, and Target
Language Compiler is a trademark of The MathWorks, Inc. Other product or brand
names are trademarks or registered trademarks of their respective holders.

The MathWorks, Inc.
Tel: 508-647-7000
Fax: 508-647-7101
E-mail: info@mathworks.com
Web: www.mathworks.com

International Contacts
Australia
CEANET Pty., Ltd.
Tel: +61 (0) 2-9922-6311
Fax: +61 (0) 2-9922-5118
E-mail: info@ceanet.com.au
Web: www.ceanet.com.au

Brisbane office:
Tel: +61 (0) 7-3369-4499
Fax: +61 (0) 7-3369-4469

Brazil
OpenCadd Computacao Grafica
Tel: +55-11-816-3144
Fax: +55-11-816-7864
E-mail: info@opencadd.com.br

Czech Republic, Slovakia, Russia,
Ukraine, Belarus, Moldavia
Humusoft s.r.o.
Tel: +420-2-68-44-174
Fax: +420-2-68-44-174
E-mail: byron@humusoft.cz
Web: www.humusoft.cz

France
Scientific Software Group
Tel: +33 (0) 1-41-14-67-14
Fax: +33 (0) 1-41-14-67-15
E-mail: info@ssg.fr
Web: www.ssg.fr

Germany, Austria
Scientific Computers GmbH
Tel: +49 (0) 241-470-750
Fax: +49 (0) 241-449-83
E-mail: matlab.info@scientific.de
Web: www.scientific.de

Unterföhring (Munich) office:
Tel: +49 (0) 89-995-901-0
Fax: +49 (0) 89-995-901-11

India, Sri Lanka
Cranes Software International (P) Ltd.
Tel: +91 (0) 80-5302-636
Fax: +91 (0) 80-5546-299
E-mail: matlab@CRANES.XEEBLR.

xeemail.com

Israel
Omikron Delta (1927) Ltd.
Tel: +972 (0) 3-561-5151
Fax: +972 (0) 3-561-2962
E-mail: info@omikron.co.il
Web: www.omikron.co.il

Italy
Teoresi s.r.l.
Tel: +39 (0)11-240-80-00
Fax: +39 (0)11-240-80-24
E-mail: info@teoresi.it
Web: www.teoresi.it

Japan
Cybernet Systems Co., Ltd.
Tel: +81 (0) 3-5978-5410
Fax: +81 (0) 3-5978-5440
E-mail: infomatlab@cybernet.co.jp
Web: www.cybernet.co.jp

Korea
Kimhua Technologies, Inc.
Tel: +82 (0) 2-556-1257
Fax: +82 (0) 2-556-4020
E-mail: info@soft.kimhua.co.kr
Web: kimhua.co.kr

Mexico
Multion Consulting S.A. de C.V.
Tel: +52-5-598-9252
Fax: +52-5-563-0641
E-mail: info@multion.spin.com.mx

The Netherlands,
Belgium, Luxembourg
Scientific Software Benelux B. V.
Tel: +31 (0) 182-53-76-44
Fax: +31 (0) 182-57-0380
E-mail: info@ssb.nl
Web: www.ssb.nl

New Zealand
Hoare Research Software
Tel: +64-7-839-9102
Fax: +64-7-839-9103
E-mail: info@hrs.co.nz
Web: www.hrs.co.nz

The Nordic Countries and
Baltic States
Computer Solutions Europe AB
Tel: +46 (0) 8-15-30-22
Fax: +46 (0) 8-15-76-35
E-mail: info@comsol.se
Web: www.comsol.se

Søborg, Denmark office:
Tel: +45 (0) 39-66 56 50
Fax: +45 (0) 39-66 56 20
E-mail: info@comsol.dk
Web: www.comsol.dk

Helsinki, Finland office:
Tel: +358 (0) 9-455-00-55
Fax: +358 (0) 9-455-00-51
E-mail: info@comsol.fi
Web: www.comsol.fi

Trondheim, Norway office:
Tel: +47 (0) 73-84-24-00
Fax: +47 (0) 73-84-24-01
E-mail: info@comsol.no
Web: www.comsol.no

People’s Republic of China
World Express Computer
Systems Ltd.
Tel: +86-20-8354-6219

+86-20-8354-6225
Fax: +86-20-8354-7174

Poland
ONT
Tel: +48 (0) 12-636-25-52
Fax: +48 (0) 12-637-98-40
E-mail: info@ont.com.pl
Web: www.ont.com.pl

Singapore, Malaysia, Thailand,
The Philippines, Indonesia, Brunei
TechSource Systems Pte Ltd.
Tel: +65-842-4222
Fax: +65-842-5122
E-mail: info@techsource.com.sg

South Africa
Opti-Num Solutions
Tel: +27-11-325-6238
Fax: +27-11-325-6239
E-mail: info@optinum.co.za
Web: www.optinum.co.za

Spain, Portugal
Addlink Software Cientifico
Tel: +34 (9) 3-415-49-04
Fax: +34 (9) 3-415-72-68
E-mail: info@addlink.es
Web: www.addlink.es

Switzerland
Scientific Computers SC AG
Tel: +41 (0) 31-954-20-20
Fax: +41 (0) 31-954-20-22
E-mail: info@scientific.ch

Taiwan
Scientific Formosa, Inc.
Tel: +886 (0) 2-2505-0525
Fax: +886 (0) 2-2502-4478
E-mail: info@sciformosa.com.tw

TERASOFT, Inc.
Tel: +886-2-2778-3083
Fax: +886-2-2778-3183
E-mail: info@terasoft.com.tw
Web: www.terasoft.com.tw

U.K., Ireland
Cambridge Control Ltd.
A MathWorks Company
Tel: +44 (0) 1223-423-200
Fax: +44 (0) 1223-423-289
E-mail: info@camcontrol.co.uk
Web: www.camcontrol.co.uk

Hove, England office:
Tel: +44 (0) 1273-722-838
Fax: +44 (0) 1273-720-550
E-mail: info@camcontrol.co.uk

9689v00 4/99

MATLAB® 6

MATLAB PRODUCTS OVERVIEW
MATLAB® is a high-performance environment for applications

in engineering and science that includes tools for mathematical

computation, analysis, visualization, and algorithm development.

The intuitive MATLAB language—available in both interactive

and runtime modes—enables technical professionals to express

their ideas and solutions naturally and faster than they could

with C and other traditional programming languages.

MATLAB environment
The MATLAB desktop front end includes a portfolio

of tools for accessing MATLAB features and functions:

• Command Window for interactive analysis, visualization,

and programming

• Command History for viewing and reusing commands

from previous sessions

• Launch Pad for accessing demos, help, and tools for all

installed MathWorks products

• Help to read and search documentation, including cutting

and pasting sample code

• Current Directory browser to open, run, and view files

• Workspace Browser to view and change MATLAB

data variables

• Array Editor to view and edit array data

• M-file Editor/Debugger to create, edit, and debug

MATLAB files

Additional interactive tools are available for importing data,

performing basic curve-fitting operations, and editing, viewing,

and annotating graphics.

Help and documentation
Built-in help browser with search facility, online documentation

(PDF format), examples, and demonstrations. Viewing or

printing of PDF-formatted documentation requires Adobe

Acrobat Reader (available on the MATLAB CD).

Supported operating systems
Windows 95/98/2000/NT; UNIX: Solaris, HP-UX, IRIX,

IRIX64, AIX, Digital UNIX; Linux. MATLAB is also compatible

with operating systems that support multibyte characters.

Supported computer platforms
Intel 486 or Pentium PCs, SunSPARC, SunULTRA, DEC Alpha,

SGI, IBM RS/6000

Multiplatform interoperability
MATLAB applications are fully transportable across platforms

without modification. MATLAB data files (MAT-files) from

different environments are converted automatically.

MATLAB toolboxes
Communications, Control System, Data Acquisition, Database,

Datafeed, Filter Design, Financial, Financial Derivatives, Financial

Time Series, Fuzzy Logic, GARCH, Image Processing, Instrument

Control, LMI Control, Mapping, Model Predictive Control,

µ-Analysis and Synthesis, Neural Network, Optimization,

Partial Differential Equation, Robust Control, Signal Processing,

Spline, Statistics, Symbolic Math, System Identification, Wavelet

MATLAB compatible products
Excel Link, MATLAB Compiler, MATLAB C/C++ Math Library,

MATLAB C/C++ Graphics Library, MATLAB Report Generator,

MATLAB Runtime Server, MATLAB Web Server

Simulink®

Simulink® is an interactive environment for modeling, simu-

lating, and analyzing dynamic systems. Built on top of MATLAB,

Simulink offers immediate access to an extensive range of tools

for model-based and system-level design.

Simulink blocksets
CDMA Reference, Communications, Dials & Gauges, DSP,

Fixed-Point, Nonlinear Control Design, Power System

Simulink compatible products
Motorola DSP Developer’s Kit, Real-Time Workshop®, Real-Time

Workshop Ada Coder, Real-Time Workshop Embedded Coder,

Real-Time Windows Target, Requirements Management

Interface, Simulink Performance Tools, Simulink Report

Generator, Stateflow®, Stateflow Coder, xPC Target

For numeric computation, visualization, algorithm development, and programming

NUMERIC COMPUTATION

Matrix operators
Add, subtract, multiply, power, left and right divide, transpose,

conjugate transpose, Kronecker tensor product

Array operators
Add, subtract, multiply, left and right divide, power, transpose,

conjugate transpose

Relational operators
Equal to, not equal to, less than, greater than, less than or

equal to, greater than or equal to

Logical operators
AND, OR, NOT, exclusive OR (XOR)

Bit operations
AND, OR, XOR, complement, maximum floating-point integer,

set bit, get bit, bit-wise shift

Set operators
Union, unique, intersection, difference, XOR

Elementary matrices
Zeros, ones, identity, uniformly and normally distributed

random numbers, linearly and logarithmically spaced vectors,

diagonal matrix

Special matrices
Companion, Hadamard, Hankel, Higham, Hilbert, inverse

Hilbert, magic square, Pascal, Rosser, Toeplitz, Vandermonde,

Wilkinson

Matrix manipulation
Extract diagonal; flip left/right; flip up/down; reshape; rotate;

permute; extract lower and upper triangular part; index into

matrix; concatenate; select elements, columns, and submatrices;

last index; find indices of nonzeros

Elementary functions
Sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, asin,

acos, atan, 4-quadrant atan, asec, acsc, acot, asinh, acosh, atanh,

asech, acsch, acoth, ceil, fix, floor, round, rem, abs, angle, sqrt,

exp, natural log, log base-10, log base-2, signum, modulus,

complex conjugate, real part, imaginary part

Specialized math functions
Airy, Bessel, Hankel, beta, incomplete beta, log beta, Jacobi

elliptic, complete elliptic integral, error function, complemen-

tary error function, scaled complementary error function,

inverse error, exponential integral, gamma, incomplete gamma,

log gamma, rational approximation and output, Legendre, cross

product, least common multiple, greatest common divisor,

factorial, prime factors, prime numbers, all possible permuta-

tions, coordinate transforms

Numerical linear algebra
Condition number, reciprocal condition estimate, norm, rank,

determinant, trace, null space, orthogonalization, reduced row

echelon form, linear equation solution, Cholesky factorization,

LU factorization, matrix inverse, QR decomposition, non-

negative and known covariance least-squares, pseudo inverse,

eigenvalues, eigenvectors, characteristic polynomial, Hessenberg

form, block form conversions, Schur decomposition, balancing,

singular value decomposition, matrix exponential, matrix loga-

rithm, matrix square root

Statistics
Maximum, minimum, mean, median, standard deviation,

variance, sort, sum, product, cumulative sum, cumulative

product, histogram, numerical integration, difference functions,

gradient, Laplacian, correlation coefficients, covariance matrix

Signal processing
1-D and 2-D digital filter; 1-D, 2-D, and multidimensional

(N-D) fast Fourier transform (FFT), inverse FFT, and convolu-

tion; deconvolution; magnitude; phase angle; phase unwrap

Interpolation
1-D, 2-D, and N-D table lookup and interpolation (methods:

linear, cubic, nearest, and spline), 1-D interpolation using FFT

method, 1-D piecewise cubic Hermite interpolating polynomial,

data gridding, hypersurface fitting

MATLAB 6

Geometric analysis
2-D, 3-D, and N-D Delaunay triangulation; 2-D and N-D

search triangulation for nearest point, closest triangle search,

convex hull, Voronoi diagram; rectangle intersection area;

area of polygon

Polynomials
Roots, characteristic polynomial, piecewise polynomial,

evaluate, evaluate with matrix, partial-fraction expansion,

polynomial fit, differentiate, integrate, multiply, divide

Differential equations
Initial value problems: one-step and multistep, low, medium,

and variable order solvers for nonstiff and stiff ordinary

differential equations (ODEs) and differential-algebraic

equations (DAEs)

Time-series, 2-D and 3-D phase plane plots; event location

capability; problems involving mass matrices (time- and

state-dependent, sparse, singular); consistent initial conditions

for DAEs

Boundary value problems: two-point boundary value problems

(BVPs) for ODEs; collocation method; general, nonseparated

boundary conditions; determining unknown parameters

Partial differential equations (PDEs): initial-boundary value

problems for systems of parabolic and elliptic PDEs in 1-D

Sparse matrix operations
Sparse identity matrix; uniform, normally distributed, and

symmetric random matrix; diagonal matrix; conversion to

full; conversion to external format; nonzero elements and

indices; replace nonzeros with ones; allocate memory for

nonzeros; test if sparse; visualize sparse pattern; graph theory

plot; column and symmetric minimum degree permutation;

column and symmetric approximate minimum degree

permutation; symmetric indefinite; reverse Cuthill-McKee,

Dulmage-Mendelsohn, column, and random permutation;

norm and condition estimate; rank; symbolic factorization

analysis; least-squares; least-squares augmented system;

selective eigenvalues and singular values; incomplete LU

and Cholesky factorization; estimation of matrix 2-norm

Iterative methods for sparse linear equations: preconditioned

conjugate gradients, biconjugate gradients, biconjugate

gradients stabilized, conjugate gradients squared, conjugate

gradients on the normal equations via LSQR, minimum

residual, generalized minimum residual, quasi-minimal

residual, symmetric LQ

Nonlinear numerical methods
1-D and 2-D integral evaluation (methods: Simpson’s rule and

Lobatto rule), minimize function of several variables, find zero

of function, plot function

Time and date
Serial date number, date string, date vector, current date and

time (number, string, and vector), calendar, day of week, end

of month, date formatted tick labels, wall clock, CPU clock,

date, elapsed time, stopwatch, wait time

Miscellaneous variables and constants
Most recent answer, machine epsilon, largest number, smallest

number, pi, i, j, infinity, NaN, computer type

GRAPHICS AND VISUALIZATION

2-D graphics
Linear plot, loglog plot, semilog plot, scatter plot, filled-area

plot, polar plot, vertical and horizontal bar graph, stem plot,

pie chart, stairstep plot, error bars, histogram, angle histogram,

Pareto chart, stem plot, compass plot, comet plot, feather plot,

quiver plot, function plot

3-D graphics
Line plot, filled polygon, contour plot, ribbon plot, stem plot,

comet plot, scatter plot, pseudocolor plot, quiver plot, mesh

surface plot, triangular mesh and surface plot, combination

mesh and contour plot, parametric surface contour, mesh plot

with zero plane, vertical and horizontal bar graph, pie chart,

shaded surface, combination surface and contour plot, waterfall

plot, cylinder, sphere, ellipsoid, patch

Surface and patch properties
Vectorized patch, face coloring and lighting, edge coloring

and lighting, surface or wire frame, hidden line removal mode,

mesh style (row, column, or both), line style, line width, texture

mapping, marker style, marker face and edge color, marker size,

face and edge transparency and visibility

Volume and vector visualization
Isosurface extraction, isosurface normals, isosurface end caps,

contours in slice planes, streamlines from 2-D or 3-D vector

data, 3-D cone plot, extract subset of volume dataset, reduce

volume dataset, smooth 3-D data, reduce number of patch

faces, reduce size of patch faces, convert surface data to patch

data, 2-D and 3-D quiver plot, vector field divergence, curl

and angular velocity of vector field, streamtube, streamribbon,

streamslice, streamparticle, interpolate streamline vertices

from speed

Image display and file I/O
Display image (indexed, grayscale, and RGB), display data

as image with arbitrary scaling, display image with color

calibration scale, set colormap, read image from file, read

header information from image file, write image to file

Supported file formats: TIFF, JPEG, GIF, BMP, PNG, XWD,

PCX, HDF, HDF-EOS, CUR, ICO

Color and rendering
Built-in and user-definable colormaps, pseudocolor axis

scaling, shading, lighting, HSV/RGB conversion, brighten,

spin colormap, plot colormap, custom pointers, transparency

Renderers: Painters, Z-buffer, OpenGL

Lighting control
Face and edge lighting models (Phong, Gouraud, and flat),

reflectance properties (ambient, diffuse, and specular), create

light object, light position, direction, color, material reflectance

(shiny, dull, metal, and user-defined)

Camera control
Perspective and orthographic projection; 3-D data aspect ratio;

transformation matrix; camera position, target, upvector, view-

point, and angle control; orbit, pan/tilt, dolly, zoom, roll, walk,

or interactively move camera

Camera Toolbar allows you to interactively control motion,

select axis, set scene light, and set projection type.

Graphical object control
Create figure, axes, tiled axes, line, text, patch, rectangle, surface,

image, user interface control, user interface menu, user interface

context menu

Get current figure and axes handles, close figure, clear figure,

clear axes, control axis scaling, control pseudocolor axis scaling,

hold graph, get and set object properties, reset object properties,

delete object, flush pending graphics events, modal figures, print

graph, save graph to file, set paper orientation and position

Axis control
Position, limits, and units; axis direction; tick mark spacing,

direction, length, and labels; scaling (log/linear); pseudocolor

axis scaling; grid lines; grid line style; color; visibility; axis color;

current point; 3-D axis aspect ratio; zoom; camera position;

label font style and size

Graph annotation
Title, axes labels, text annotation, grid lines, colorbar, legend,

contour plot elevation labels, LaTex-style subscripts and super-

scripts, mixed fonts and sizes, multiline text, Greek symbols

Animation
Get movie frame, play recorded movie, convert frame to

indexed image, convert indexed image to movie frame,

read/write AVI movie files

Sound
Play sound, read/write Sun audio (.au) file, convert linear to

µ-law encoding, convert µ-law encoding to linear, read/write

8- or 16-bit WAV files, play sound using Windows output

device, record sound using Windows input device

Exportable graphics format
Encapsulated PostScript (EPS), EPS with TIFF preview, Adobe

Illustrator EPS, Enhanced Windows metafile, Windows bitmap

(BMP), HDF, PCX, PPM, JPEG, PNG, HPGL, and TIFF

PROGRAMMING

Data types
Complex double-precision; single-precision; unsigned and

signed 8-, 16-, and 32-bit integers; character/string; sparse;

cell arrays; structures; objects; multidimensional; logical;

empty; user-defined; function handle array; Java array;

Java object

Multidimensional arrays
Create, assign, index, concatenate, reshape, number of dimen-

sions, permute, shift dimensions, remove singleton dimensions,

flip along specified dimension, pointwise elementary math

operations, interpolation, data gridding

Cell arrays and structures
Create, reshape, replace lists of variables, apply functions

and operators, nest, display, display cells graphically, get

field names, get and set field contents, remove field, convert

to double, numeric

Object-oriented programming
Create object class, display class method names, convert object

to structure array, loading prebuilt JAVA objects

Overloadable operators for arrays and matrices: add, subtract,

multiply, left/right divide, power, equal to, not equal to, less than,

greater than, less than or equal to, greater than or equal to, AND,

OR, NOT, XOR, subscripting, transpose, colon, concatenation,

assignment, referencing, indexing

Programming constructs and argument handling
If, else, elseif, end, for, while, break, continue, return, error,

warning, global and persistent variables, switch, case, otherwise,

try, catch, evaluate, run, validate number of input and output

arguments, number of function input and output arguments

File I/O
Open file, close file, read/write binary data, read/write formatted

data, read line, inquire status, get/set file-position indicator,

rewind, seek to any relative or absolute file position, read/write

formatted string, read/write ASCII delimited file, read/write

spreadsheet (.wk1) file, read spreadsheet (.xls) file, read/write

image to/from graphics file, read/write Sun (.au) sound file,

read/write Windows (.wav) sound file, read movie (.avi) file,

create movie (.avi) file, read/write via serial port, gateways to

HDF and HDF-EOS libraries, load Handle Graphics® objects

from file, append to binary/text file

Import Wizard allows you to interactively import ASCII text

data, AVI, GIF, CUR, HDF, ICO, JPEG, MATLAB MAT, PNG,

WAV, AU, SND, CSV, XLS, WK1, and PCX files

String manipulation
Convert number, integer, or matrix to string; convert string

to double precision value or numeric array; convert binary

and base B to decimal integer; test for string; execute; compare;

convert to uppercase or lowercase; convert hexadecimal to IEEE

floating-point number or decimal integer; convert decimal to

hexadecimal, binary, or base B string; search and replace;

identify first token in a string; concatenate; find one string

in another; replace string; find match; remove blanks

Graphical user interface (GUI) development
GUI controls: list boxes, pull-down menus, push buttons, radio

buttons, check boxes, pop-up menus, editable textboxes, fixed

textboxes, sliders, frames, context menus

GUI events: wait for event, mouse-button events, callbacks,

rubberband box, mouse selection

Dialog boxes: generic with user-specifiable icon, platform-

specific load/save file, input, list, warning, error, help, print,

page position/setup, question, message, open/close file, color,

font selection

Interactive GUI design interface (GUIDE) includes layout editor,

alignment tool, callback editor, property editor, menu editor,

and object browser

M-file programming tools
Integrated M-file Editor/Debugger, M-file execution profiler,

profiler textual and graphic summary reports in HTML, M-file

to P-file (pre-parsed pseudo-code to maintain privacy) converter,

list functions in memory, save MATLAB session text, access

source control systems

MATLAB 6

Debugging
Interactive editor and debugger, set and clear breakpoints,

continue execution, change workspace context, display stack,

show status, single and multiple line step, list file with line

numbers, exit debug mode

Files and operating system
List directory, list MATLAB specific files, display M-file contents,

edit M-file, search all M-files for keyword, change working

directory, print working directory, delete file, get environment

variable, execute operating system command, time, date, open

Web browser

External interfaces
MATLAB provides interfaces to external protocols, applications,

and languages such as C, C++, Fortran, and Java. These inter-

faces allow you to:

• Transparently call and exchange data with C, C++,

Fortran, and Java routines directly from MATLAB

• Communicate and exchange data with devices and

instruments via the serial communications port

• Call MATLAB from C and Fortran programs, using it as

a math and graphics engine

• Use ActiveX components and DDE (Dynamic Data Exchange)

• Incorporate prebuilt Java objects into MATLAB applications

The MATLAB Notebook (Windows only)
The Notebook combines the word processing of Microsoft Word

with the numeric computation and graphics of MATLAB to

create live technical reports, electronic class notes, and home-

work assignments incorporating any MATLAB commands, data,

calculations, or graphics.

Hardcopy printers and plotters
PostScript printers, color PostScript printers, Level-2

PostScript printers, HP LaserJet, HP DeskJet, HP PaintJet,

Epson 9-pin printers, Epson 24-pin printers, HP 7475A

plotter, QuickDraw printers

Desktop publishing support
Supports Microsoft Word, PowerPoint, TeX, QuarkXPress,

FrameMaker, PageMaker, and other standard desktop

publishing software

For demos, application examples,
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)241 470 750
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest
of Europe.

Tel: 508.647.7000 info@mathworks.com www.mathworks.com 9319v02 11/00

© 2000 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

Simulink® is an interactive tool for modeling,

simulating, and analyzing dynamic systems.

It enables you to build graphical block

diagrams, simulate dynamic systems,

evaluate system performance, and refine

your designs. Simulink integrates seamlessly

with MATLAB®, providing you with immedi-

ate access to an extensive range of analysis

and design tools. These benefits make

Simulink the tool of choice for control system

design, DSP design, communications system

design, and other simulation applications.

Creating Models
Simulink provides a complete set of model-

ing tools that you can use to quickly develop

detailed block diagrams of your systems.

Features such as block libraries, hierarchical

modeling, signal labeling, and subsystem

customization provide a powerful set of

capabilities for creating, modifying, and

maintaining block diagrams. These modeling

features, together with Simulink’s compre-

hensive set of predefined blocks, make it

easy to create concise representations of

your systems, regardless of their complexity.

Simulink® 4
for modeling, simulation, and analysis of dynamic systems

KEY FEATURES

USABILITY
■ Extensive library of predefined blocks

■ Graphical debugger

■ Model Browser for navigating model hierarchies

■ Finder for searching models and libraries

■ Customizable blocks that can incorporate existing

C, Ada, MATLAB, and Fortran code

COMPUTATIONAL SUPPORT
■ Linear, nonlinear, continuous-time, discrete-time,

multirate, conditionally executed, mixed-signal,

and hybrid systems

■ Support for matrix signals and operations

■ Bitwise Logical Operator block logically masks, inverts,

or shifts the bits of an unsigned integer signal

An engine model uses Trigger blocks to

model conditionally executed behavior.

As a function of the crankshaft angle, a

pulse triggers a cylinder to fire.

1

Throttle Ang.

pi/30

rpm
to

rad/s

integrator input

controller output

enable integration

prevent windup

limit
output

Kp

Proportional Gain

Ki

Integral Gain

T

z-1

Discrete-Time
Integrator0

2

N

1

Desired
rpm

2

trigger

1

mass(k)
z

1

Unit Delay

[0.152]

Init

Trigger

1

mass(k+1)

KEY FEATURES (continued)

LARGE MODEL DEVELOPMENT
■ Models can be grouped into hierarchies to create a

simplified view of components or subsystems

■ Simulink data objects enable you to create application-

specific MATLAB data types for your Simulink models

■ Simulink Explorer GUI for viewing and editing data

objects

■ Library Browser for convenient block selection

■ Intellectual property protection using S-functions

(requires Real-Time Workshop® 4.0)

■ Simulations can be run from the MATLAB command line,

either interactively or in batch mode

Extensible Block Library
Simulink comes with more than 200 built-in

blocks that implement commonly required

modeling functions. The blocks are grouped

into libraries according to their behavior:

Sources, Sinks, Discrete, Continuous,

Nonlinear, Math, Functions & Tables, and

Signals & Systems.

In addition, Simulink offers features for

creating customized blocks and block

libraries. You can customize not only the

functionality of a block, but also its user

interface, using icons and dialog boxes. For

example, you can create blocks to model the

behavior of specialized mechanical, circuit,

or software components, such as motors,

inverters, servo-valves, power plants, filters,

tires, modems, receivers, or other dynamic

components. Custom blocks can be saved

in your own block library for future use

and can be shared with work groups,

vendors, and customers.

S-Functions
An S-function (system-function) is a custom

code module that defines the behavior of a

Simulink block. Simulink provides tem-

plates for creating your own S-functions

using existing or newly-developed code

(C, Ada, Fortran, or MATLAB). Once you

have created an S-function, you can

include it in your model, using Simulink’s

S-function block.

S-functions reduce the time required to

model large-scale systems by allowing you

to incorporate existing code into your

model. Simulink provides multi-port and

multi-rate S-function support to enhance

usability and permit different sample times

(C and MATLAB only).

Masks
Simulink’s mask editor allows you to create a

custom user interface, called a mask, for any

subsystem or S-function block. The mask

can include a custom icon, parameter dialog,

online help, and initialization script. Custom

masks allow you to tailor a block’s appearance

and user interface for specific applications.

The Library Browser makes

it easy to navigate through

block libraries and then drag

and drop selected blocks

onto your model.

Simulink Data Objects
Simulink is used in many applications to

create high-fidelity plant models of real-

world systems and to design algorithms to

control these systems. To represent these

systems and algorithms more accurately,

you can use Simulink data objects to define

new MATLAB data types that are specific

to your application and then use them as

parameters and signals in your Simulink

models. You can view and edit all Simulink

data with the Simulink Explorer.

Model Library Support
Model library support makes it easy to build

and maintain libraries of customized blocks.

You can create a block whose properties are

defined in the model library. Then, when you

make a change to the library version of the

block, the change propagates through any

models that use that block.

The Simulink Explorer provides you with a graphical user interface for viewing and editing Simulink data objects.

Using the Simulink Explorer, you can view most classes of variables in the MATLAB workspace, and filter and sort

variables by variable name and class. You can also view and edit property values.

The short-time fast Fourier transform (FFT) block is a masked subsystem in this model,

built using the DSP Blockset. The parameters for the short-time FFT block are controlled

through the dialog box (top right image). The block diagram for the detailed subsystem

(center image) remains hidden from view until the user chooses to reveal it.

This feature makes it easy to reuse blocks

across multiple systems, as well as systems with

large numbers of models, and models with

many levels. You can modify a block’s behavior

and its attributes in every model simply by

applying the change to the library source.

Configurable Subsystem Block
A Configurable Subsystem block represents

any block contained in a specified library of

blocks. Using the Configurable Subsystem

block’s dialog box, you can specify which

block in the library it represents. You can

also specify the inputs and outputs of the

selected block.

Configurable Subsystem blocks simplify the

creation of models that represent families

of designs. For example, suppose that you

want to model an automobile that offers a

choice of engines. To model such a design,

you would first create a library of models of

the engine types available with the car. You

would then use a Configurable Subsystem

block in your car model to represent the

choice of engines. To model a particular

variant of the basic car design, you need

only choose the engine type, using the

configurable engine block’s dialog. This

enables you to rapidly swap design choices

in and out of your model.

Short-Time
Spectrum

1

Out

hamming

In

Out

Win

Window

In Out

Normalization

|FFT| ^ 2

Magnitude
FFT

DF2T

Direct-Form II
Transpose Filter

1

In

Model Navigation Tools
Library Browser (Windows only)—provides

a tree-structured view of all block libraries

installed on your system.

Model Browser (Windows only)—enables

you to navigate your model hierarchically,

and open systems directly in your model.

Finder dialog box—enables you to search

Simulink models for objects that satisfy

specified search criteria.

Block diagram zooming—greatly simplifies

model viewing by allowing you to enlarge or

shrink the view.

Scalar and Vector Connections
Simulink supports the modeling of single-

input/single-output (SISO) and multi-input/

multi-output (MIMO) systems.

The Mux block is used to collect multiple

signals into a vectored signal bundle that can

function as a data bus. The Demux block is

used to disassemble vectored signals so that

they can be accessed as individual signals.

The Bus Selector block provides support for

larger models by making it easy to select a

subset of signals from a bus defined by a

Mux or another Bus Selector block.

Because most Simulink blocks support

vectored operations, you can greatly reduce

the number of blocks needed to model your

system. This results in clean, simple, and

easy-to-read block diagrams.

Matrix Signal Support
Many Simulink blocks accept or output

matrix signals. A matrix signal is a two-

dimensional array of signal elements

1

Act.
Comd.

Zero-Order
Hold

Zero-Order
Hold

Zero-Order
Hold

Zero-Order
Hold

1-exp(-deltat1/Ts)

z-exp(-deltat1/Ts)

Stick Filter

1-exp(-W2*deltat1)

z-exp(-W2*deltat1)

Pitch Sensor Filter

-K-

Ka

Kq

Ki

Kf

T

z-1

Discrete-Time
Integrator

ActPos

Error
StopInt

Anti-Wind-Up

1-exp(-deltat1/Tal)

z-exp(-deltat1/Tal)

Alpha Sensor Filter

2

Actuator Pos.

1

States

represented by a matrix. Each matrix

element represents the value of the corre-

sponding signal element at the current time

step. You can use Simulink source blocks

(for example, Sine Wave or Constant) to

generate matrix signals.

You can use the following Simulink blocks

for matrix operations on matrix signals:

• The Product block supports both element-

by-element and matrix multiplication and

inversion of inputs.

• The Gain block supports matrix and

element-by-element multiplication of the

input signal by a gain factor. Both input

signals and gain factors can be matrices.

You can use Simulink’s Mux and Demux

blocks to multiplex matrix signals. For

example, you can:

• Generate signal buses by feeding matrix
signals into Mux blocks along with vector
or scalar signals

• Manipulate the elements of a signal bus
by splitting it into its components using
a Demux block, and then connecting the
demuxed signals to nonvirtual blocks,
such as the Gain block

This Simulink model represents a digital control system for

an aircraft. The Simulink debugger allows you to graphically

diagnose modeling errors. The debugger lets you step

through the simulation block by block, or run to a break-

point. The currently executing block is displayed in yellow.

You can also display block states, block inputs and outputs,

and other information while running a model.

Simulink debugger has both graphical

and command-line user interfaces.

State-of-the-Art Integration Algorithms
The Simulink simulation engine offers

numerous features for simulating large,

challenging systems. Foremost among

these is the set of integration algorithms,

called solvers, that are based on the MATLAB

ordinary differential equation (ODE) suite.

These solvers are well suited to continuous-

time (analog), discrete-time, hybrid, and

mixed-signal simulations of any size. In

addition, they provide fast, reliable, and

extremely accurate simulation results. For

complete handling of discrete systems, the

DSP Blockset is also recommended.

The solvers support differential algebraic

equations (DAEs) with multichannel alge-

braic loops. An algebraic constraint block

facilitates the solution of a system in which

an algebraic constraint applies to the govern-

ing set of equations. The solvers also support

stiff systems, systems with algebraic loops,

and systems with state events (such as

discontinuities, including instantaneous

changes in plant dynamics).

Conditionally Executed Subsystems
With Simulink, you can build and simulate

models with subsystems that execute

conditionally; and are therefore dependent

upon controlling logic signals. The signals

can either enable or trigger the execution

of the subsystem.

Two blocks, the Trigger block and the

Enable block, can be placed in any Simulink

subsystem. An enabled or triggered subsys-

tem includes an additional input signal to

handle controlling logic.

When conditionally executed subsystems are

disabled they are not executed during the

simulation, which noticeably improves pro-

cessing speed within multimode systems.

Event-Based Simulation Support
Simulink is tightly integrated with Stateflow®,

the MathWorks’ solution for modeling event-

To create a configurable subsystem, you first create a library of blocks representing the various

block configurations. Then, within a model, you can choose a block from your library using the

configurable subsystem's right-click menu.

Simulation
After building your block diagram in

Simulink, you can debug it using the interac-

tive Simulink debugger. Then, you can run

interactive simulations and view the results

live. The powerful suite of solvers available

in Simulink make simulation results

extremely accurate.

Simulink Debugger
The Simulink debugger is an interactive

tool for locating and diagnosing errors

in a Simulink model. It enables you to

quickly pinpoint problems in your model

by running simulations step-by-step

and displaying intermediate block states

and input and output values. The

Cmd.

Act. Pos.

Act. Meas.
[Non-Linear]

Non-Linear Actuator Subsystem

Cmd.

Act. Pos.

Act. Meas.

[Linear]

Linear Actuator Subsystem

Template

Cmd.

Act. Pos.

Act. Meas.

Configurable Actuator

driven behavior. The seamless interaction

between Simulink and Stateflow gives you the

ability to model and simulate your system’s

dynamic and event-driven behavior as a

single, integrated system. (For example,

Simulink and Stateflow share an integrated

Finder.) Designers of automotive, aerospace,

telecommunications, and many other types of

embedded systems have a complete solution

to perform faster, more accurate and extensive

simulations of complex, large-scale systems.

You can use Stateflow charts to include

supervisory control logic within your

Simulink model for activating or

deactivating conditionally executed

subsystems in Simulink. The Stateflow chart

receives input from the Simulink model,

determines the actions to be taken, changes

states appropriately, and sends logic signals to

activate or deactivate the triggered and

enabled subsystems in Simulink.

Data Typing
Simulink supports complex numbers for

basic blocks and complex/real conversions.

In addition, the Data Type Conversion block

allows you to convert a signal of one type

(such as a float) to a signal of another type

(int32, for example).

Many of the blocks in Simulink support

several data types. The ability to specify the

data types of a model’s signal and block

parameters is particularly useful in real-

time applications such as microcontrollers

and DSPs. With this capability, you can

specify the optimal data types required to

represent signals, block parameters, and

mathematical operations exactly as they are

represented on these devices. Additionally,

by choosing the appropriate data types for

your model’s signals and parameters, you

can dramatically increase the performance

and decrease the size of code generated

from the model. Supported data types are

double-precision floating point; single-pre-

cision floating point; signed and unsigned

8-, 16-, and 32-bit integers; and Boolean.

Audits and Revision Histories
Simulink models are compatible with

standard configuration control software

such as SCCS and RCS. As a result, audits

and revision histories are easily maintained

for large projects and for models shared

within a multi-platform workgroup.

Analysis
Simulink includes many features for

detailed system analysis. Key capabilities

include: linearization, equilibrium point

determination, animation, parameter

optimization, and parametric analysis.

Extracting Linear Models
The dynamics of nonlinear block diagrams

can be approximated through linearization,

enabling you to apply design techniques

that require linear model representations.

You can use Simulink’s linmod function to

obtain linear state-space models from your

block diagrams.

Animation
Simulink provides immediate access to

MATLAB’s powerful 2-D and 3-D graphics

and animation capabilities. You can use

MATLAB to enhance your visual displays

and gain deeper insight into your system’s

behavior as the simulation progresses.

Integration with MATLAB
Because Simulink is built on top of MATLAB,

it provides a unique development environment.

This system allows you to run simulations

either interactively, using Simulink’s

graphical interface, or systematically, by

running sets of experiments in batch mode

from the MATLAB command line. You can

then generate test vectors and analyze the

results collectively.

Related Products
Simulink is the foundation for a family

of design solutions, spanning DSP,

communications, control, and power

system design.

Companion products include:

• Real-Time Workshop for code

generation

• Stateflow for event-driven systems

and logic design

• Simulink Performance Tools for

simulation acceleration and more

• Block libraries for specialized applica-

tions, such as the DSP Blockset,

the Fixed-Point Blockset, the Power

System Blockset, and the

Communications Blockset. ■

9320v02 10/00

For demos, application examples,
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)89 995901 0
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest
of Europe.

Tel: 508.647.7000 info@mathworks.com www.mathworks.com

© 2000 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

The Communications Blockset builds upon

the Simulink® system-level design environ-

ment by providing more than 150 blocks to

model the components of a communications

system’s physical layer.

Example systems that can be designed

with the Communications Blockset include

cellular handsets and base stations, cordless

phones, digital subscriber lines (DSLs),

cable and dial-up modems, local area net-

works (LANs), wireless LANs, digital video

broadcasting and satellite systems. The

blockset can also be used for system-level

design of the semiconductors used in such

products. Other applications include the

design of read channels for mass storage

devices such as tape drives, disk drives

and DVDs.

The blockset is used in conjunction with

other MathWorks products including the

DSP Blockset and the Communication

Toolbox. For large models or long

simulation runs, the Real-time Workshop®

can generate a stand-alone C executable.

You can also design the link layer of your

communications system in Stateflow,®

the MathWorks control logic design tool.

The Simulink Environment
Performing system-level design with

Simulink and the Communication Blockset

allows the rapid high-level design and

testing of complete end-to-end communica-

tions systems. You can easily explore ideas

and evaluate tradeoffs early in the design

process. The resultant validated design

can be used as an executable specification

or reference model for the hardware

or embedded software design stage.

CONTINUED ON BACK PAGE

KEY FEATURES

■ Convolutional coding including a posteriori probability (APP)

and Viterbi decoders

■ Block coding with Reed-Solomon, Hamming, BCH, and

general cyclic and linear codes

■ Block and convolutional interleaving libraries that

support general interleaving, as well as several special cases

■ Baseband and passband digital modulation libraries including

amplitude modulation (PAM, QAM), frequency modulation

(FSK), and phase modulation (PSK, DPSK)

■ A continuous phase modulation (CPM) library including

CPSK, MSK, GMSK and partial response techniques

■ Typical channel models including binary symmetric, additive

white Gaussian noise (AWGN), Rician and multipath

Rayleigh fading

■ Sequence operations for the manipulation of data including

conversion, repeating, phase shifting, interlacing, and puncturing

■ Display devices such as eye-diagram and scatter plot to visual-

ize modulated signals and an error meter to calculate bit or

symbol error rates

■ Full C source code for all transmitter and receiver blocks

allowing you to modify or add other proprietary functionality

■ Signal sources for the generation of test signals

AWGN

for designing and simulating communication systems with Simulink

Communications Blockset 2

The MathWorks

This model built with the Communications

Blockset implements the ETSI EN 300 744

terrestrial digital video broadcasting standard,

which utilizes 2048 carrier OFDM.

Digital Video Broadcasting-Terrestrial
2k Mode, Nonhierarchical Transmission

BER

Total Errors

Total Bits

Total Errors

Total Bits

BER

MPEG
Source

FFT

(204,188)
Shortened

Reed-Solomon
Encoder

(204,188)
Shortened

Reed-Solomon
Decoder

Convolutional
Interleaver

I=12

Convolutional
Deinterleaver

I=12

OFDM
Transmitter

OFDM
Receiver

DVB-T
64-QAM
Mapper

Integer to Bit
Converter

Integer to Bit
Converter

Viterbi
Decoder

Rate 3/4
Punctured

Convolutional
Code

Error Rate
Calculation

Tx

Rx

Error Rate
Calculation

Tx

Rx

0.0001322

531

4.016e+006

0

0

3.685e+006

DVB-T
64-QAM

Demapper

Delayed
Scatter Plot

DVB-T
Inner

Interleaver

DVB-T
Inner

Deinterleaver

AWGN

Blocks

COMMUNICATION SOURCES

Bernoulli random binary generator
Binary vector noise generator
Gaussian noise generator
PN sequence generator
Poisson integer generator
Random integer generator
Rayleigh noise generator
Rician noise generator
Uniform noise generator
Voltage-controlled oscillator
Discrete-time VCO
Triggered read from file

COMMUNICATION SINKS

Continuous-time eye and scatter diagrams
Discrete-time eye and scatter diagrams
Error rate calculation
Triggered write to file

SOURCE CODING

A-Law compressor and expander
µ-Law compressor and expander
Differential encode and decode
DPCM encode and decode
Sampled quantizer encode
Enabled quantizer encode
Quantizer decode

CHANNEL CODING

Block Coding

BCH encoder and decoder
Binary cyclic encoder and decoder
Binary RS encoder and decoder
Binary linear encoder and decoder
Hamming encoder and decoder
Integer RS encoder and decoder

Convolutional Coding
Convolutional encoder
APP decoder
Viterbi decoder

INTERLEAVING

Block Interleaving

Algebraic interleaver and deinterleaver
General block interleaver and deinterleaver
Matrix interleaver and deinterleaver
Matrix helical scan interleaver and deinterleaver
Random interleaver and deinterleaver

Convolutional Interleaving

Convolutional interleaver and deinterleaver
General multiplexed interleaver and deinterleaver
Helical interleaver and deinterleaver

11 1 1
11

0
00

 ..101

c = m G

2
3

1
0 3

2
0
1

The Communications Blockset library contains 10 sub-libraries, each providing

blocks for different aspects of communications system design.

Here the output of the scatter plot block shows the constellation of a noisy 64-QAM signal.

Communications Blockset Library 2.0
Copyright 1996-2000 The MathWorks, Inc.

101 5

dB lin

Utility
Functions

Synchronization

11 1 1
11

0
00

 ..101

Source
Coding

Modulation

2
3

1
0 3

2
0
1

Interleaving

Demos

Comm
Sources

Comm
Sinks

Channels

c = m G

Channel
Coding

1
2
3
4
5

1
1
2
2
3

Basic Comm
Functions

MODULATION

Digital Baseband and Passband Amplitude Modulation

General QAM modulator and demodulator
M-PAM modulator and demodulator
Rectangular QAM modulator and demodulator

Phase Modulation

BPSK modulator and demodulator
DBPSK modulator and demodulator
DQPSK modulator and demodulator
M-DPSK modulator and demodulator
M-PSK modulator and demodulator
OQPSK modulator and demodulator
QPSK modulator and demodulator

Frequency Modulation

M-FSK modulator and demodulator

Continuous Phase Modulation

CPFSK modulator and demodulator
CPM modulator and demodulator
GMSK modulator and demodulator
MSK modulator and demodulator

Analog Baseband and Passband

DSB AM modulator and demodulator
DSBSC AM modulator and demodulator
FM modulator and demodulator
PM modulator and demodulator
SSB AM modulator and demodulator

CHANNELS

AWGN channel
Binary symmetric channel
Multipath Rayleigh fading channel
Rician fading channel

SYNCHRONIZATION

Phase-locked loop
Baseband PLL
Charge pump PLL
Linearized baseband PLL

BASIC COMM FUNCTIONS

Integrators

Discrete modulo integrator
Integrate and dump
Modulo integrator
Windowed integrator

Sequence Operations

Complex phase difference
Complex phase shift
Interlacer and deinterlacer
Repeat and derepeat
Puncture and insert zero
Scrambler and descrambler

UTILITY FUNCTIONS

Bit to integer converter
Data mapper
dB

1
2
3
4
5

1
1
2
2
3

101 5

dB lin

Here a tutorial example shows how

you can quickly build a communication

system comprising a channel, modulation

scheme, and coding.

Viterbi Decoder

Viterbi Decoder

Unbuffer

Terminator1

Terminator

Scalar
quantizer

Sampled
Quantizer Encode

Info

Error Rate
Calculation

Tx

Rx

Error Rate Calculation

0.01203

566

4.706e+004

Display

Convolutional
Encoder

Convolutional
Encoder

Re(u)

Complex to
Real-Imag

Buffer

Bernoulli bin

Bernoulli Random
Binary Generator

BPSK

BPSK
Modulator
Baseband

AWGN
AWGN

Channel

This BER plot can be calculated by a MATLAB script that runs your simulation many times for

different Eb/No values.

The MathWorks 9869v00 10/00

USING THE COMMUNICATIONS BLOCKSET WITH OTHER MATHWORKS PRODUCTS
To run the Communications Blockset, the Communications Toolbox, the

Signal Processing Toolbox, Simulink and the DSP Blockset must also be installed.

For demos, application examples,
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)89 995901 0
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest
of Europe.

Being based on Simulink, the Communications

Blockset handles arbitrarily complex systems

by allowing you to build and navigate

models hierarchically. You can process all

the multi-rate digital signals that are typical

in communications systems, such as frames,

bits and symbols. And you can make use of

Simulink’s continuous time features to

model analog signals.

Simulink provides the interactive,

block diagram simulation environment

including model construction, navigation,

simulation management and debugging.

It also provides primitive analog and

discrete, linear and non-linear building

blocks, such as arithmetic, logic and

relational operators, subsystems, Laplace

transforms, z-transforms, look-up tables,

polynomials and switches. You also have

the ability to add your own custom C code

or M code modules using the Simulink

S-function block. ■

MATLAB® With MATLAB you can create

scripts to automate the running of your

simulation multiple times to calculate

bit-error plots. You can also use it for post

processing of simulation data as well as

numerous ancillary parameter manipula-

tion and generation tasks.

Real-Time Workshop For large models or

long simulation runs, Real-time Workshop

can generate a standalone C executable

for running multiple simulations or for

co-simulation with low-level EDA tools.

Stateflow® You can also integrate your

physical layer design in Simulink and the

Communications Blockset with your link-

layer design in Stateflow, The MathWorks

control logic design product.

The DSP Blockset This provides all the

key DSP blocks common in any digital

communications system. These blocks

include filters, adaptive filters, interpola-

tion, signal operations, transforms, vector

math, matrix math, linear algebra, and

frequency scopes. The Communications

Blockset also makes extensive internal use

of the DSP Blockset.

The Communication Toolbox This provides

a number of support functions for error

correction coding including polynomial

creation and Galois field computations.

The Communications Blockset also

makes extensive internal use of the

Communications Toolbox.

Tel: 508.647.7000 info@mathworks.com www.mathworks.com

© 2000 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

The Communications Toolbox is a library

of MATLAB® functions that facilitate the

design of communication system algorithms

and components.

This toolbox builds upon the powerful

capabilities of MATLAB and the Signal

Processing Toolbox by providing functions to

model the components of a communications

system’s physical layer. These functions can be

used to analyze and develop components in

products such as cellular handsets and base

stations, cordless phones, digital subscriber

lines (DSLs), cable and dial-up modems, local

area networks (LANs), wireless LANs, and

satellite systems. The toolbox also offers a

foundation for research and education in

communication systems engineering.

For complete end-to-end communication

system-level design, The Mathworks also

offers the Communications Blockset.

Together with Simulink, this blockset

provides a block diagram simulation

environment that is ideal for modeling

all the analog and multirate digital signals

typical in communication systems, such

as frames, bits, and symbols.

The MathWorks

Communications Toolbox 2
for designing and simulating communication system algorithms with MATLAB®

KEY FEATURES

■ Signal generator functions for creating test signals

■ Display functions, such as eye diagram and scatter plots, to visualize

modulated signals

■ Source coding, including quantizers, differential pulse code modulation

(DPCM), µ-law, and A-Law companders

■ Block coding with Reed-Solomon, Hamming, BCH, general cyclic, and

linear codes

■ Convolutional coding, including Viterbi decoders

■ Baseband and passband digital modulation functions, including

amplitude shift keying (ASK), phase shift keying (PSK), and frequency

shift keying (FSK)

■ Baseband and passband analog modulation libraries, including analog

modulation (AM), frequency modulation (FM), and phase modulation

(PM)

■ An additive white Gaussian noise (AWGN) channel

■ Galois field calculations for GF(qm) polynomial manipulation and

representation

Signal display functions like this scatter plot help you to quickly

visualize a modulated signal with a single function call.

Creating a 32-tone baseband FSK modulated signal is as easy as

calling the dmodce function with appropriate parameters.

% Number of symbols and tone spacing

M = 32, tone =.25;

% Symbol and sample rates

Fd = 1; Fs = 6;

% Generate 200 random symbols

x = randint(200,1,M);

% Perform FSK modulation

y = dmodce(x,Fd,Fs,’fsk’,M,tone);

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

Q
ua

dr
at

ur
e

In-Phase

Scatter plot

Functions

Signal Sources

randerr Generate bit error patterns

randint Generate matrix of uniformly distributed
random integers

randsrc Generate random matrix using
prescribed alphabet

wgn Generate white Gaussian noise

Signal Analysis Functions

biterr, Compute number of bit or symbol errors
symerr and bit or symbol error rate

eyediagram Generate an eye diagram

scatterplot Generate a scatter diagram

Source Coding

compand Source code µ-law or A-law compressor or
expander

dpcmenco, Encode and decode using differential
dpcmdeco pulse code modulation

dpcmopt Optimize differential pulse code
modulation parameters

lloyds Optimize quantization parameters
using the Lloyd algorithm

quantiz Produce a quantization index and
a quantized output value

Error-Control Coding

bchpoly, Produce parameters or generator
cyclpoly, polynomial for BCH, cyclic, or
rspoly Reed-Solomon code

convenc Convolutionally encode binary data

cyclgen, Produce parity check and generator
hammgen matrix for cyclic and Hamming code

encode, Block encoder and decoder
decode

gen2par Convert between parity-check and
generator matrices

gfweight Calculate the minimum distance of a linear
block code

rsencof, Encode or decode an ASCII file using
rsdecof Reed-Solomon code

syndtable Produce syndrome decoding table

vitdec Decode convolutionally encoded binary data
using the Viterbi algorithm

Lower-Level Functions for Error-Control Coding

bchenco, BCH encoder and decoder
bchdeco

rsenco, Reed-Solomon encoder and decoder
rsdeco

rsencode, Reed-Solomon encoding and decoding
rsdecode using the exponential format

Modulation

Analog Passband and Baseband Modulation and Demodulation

amod, Passband modulate and demodulate an
ademod analog signal with double sideband AM,

single sideband AM, QAM, FM, or PM

amodce, Baseband modulate and demodulate
ademodce an analog signal using complex envelope

with double sideband AM, single sideband
AM, QAM, FM, or PM

Digital Passband and Baseband Modulation and Demodulation

dmod, Passband modulate and demodulate
ddemod a digital signal with ASK, PSK, QASK, FSK,

or MSK

dmodce, Baseband modulate and demodulate
ddemodce a digital signal using complex envelope

with ASK, PSK, QASK, FSK, or MSK

A plot from the eye diagram function shows the

decision point of a modulated signal.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-4

-2

0

2

4

6

Time

A
m

pl
itu

de

Eye Diagram for In-Phase Signal

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-4

-2

0

2

4

6

Time

A
m

pl
itu

de

Eye Diagram for Quadrature Signal

Digital Mapping/Demapping

modmap Map a digital signal to an analog signal

demodmap Demap a digital message from a demodulated
signal

apkconst Plot a combined circular APK-PSK signal
constellation

qaskdeco Demap a message from a QASK square
signal constellation

qaskenco Map a message to a QASK square signal
constellation

Special Filters
hilbiir Design a Hilbert transform IIR filter

hank2sys Convert a Hankel matrix to a linear
system model

rcosfir, Design a raised cosine FIR or IIR filter
rcosiir (lower-level function)

rcosflt Filter the input signal using a raised cosine filter

rcosine Design a raised cosine filter

Channel Functions
awgn Add white Gaussian noise to a signal

Galois Field Computation Functions
flxor Perform integer exclusive OR (XOR) computation

gfadd, Add, divide, multiply, and subtract
gfdeconv, polynomials over a Galois field
gfconv, gfsub

gfmul, Multiply and divide elements of
gfdiv a Galois field

gfcosets Produce cyclotomic cosets for a Galois field

gfplus Add elements of a Galois field of characteristic
two

gffilter Filter data using polynomials over a prime
Galois field

gftrunc Minimize the length of a polynomial
representation

gflineq Solve the linear equation Ax=b over a prime
Galois field

gfminpol Find the minimal polynomial of an element
of a Galois field

gfroots Find the roots of a polynomial over a prime
Galois field

gfprimck Check whether a polynomial over a Galois field
is primitive

gfprimdf, Provide default primitive polynomials
gfprimfd and find primitive polynomials for a Galois field

gfrank Compute the rank of a matrix over a Galois field

gfrepcov Convert one GF(2) polynomial representation to
another

gftuple Simplify or convert the format of elements of a
Galois field

gfpretty Display a polynomial in traditional format

Utilities
bi2de, Convert between binary vectors and
de2bi decimal numbers

erf Error function (in MATLAB)

erfc Complementary error function (in MATLAB)

istrellis Check if input is a valid trellis structure

marcumq Generalized Marcum Q function

oct2dec Convert octal numbers to decimal numbers

poly2trellis Convert convolutional code polynomials
to trellis description

vec2mat Convert a vector into a matrix

Here, the symbol error function is used to calculate the symbol error rate of

M-ary PSK for a range of Eb/No value.

2 4 6 8 10 12 14 16
10

-4

10
-3

10
-2

10
-1

10
0

Eb/No

S
ym

bo
l E

rr
or

 R
at

e

Performance of M-ary PSK

Empirical
Reference

M=16

M=8

M=4

M=2

PRODUCT REQUIREMENTS
The Communications Toolbox is available

on all MathWorks supported platforms. It

requires the Signal Processing Toolbox.

% Define symbol rate and sampling rate

Fd = 1; Fs = 4;

% Define alphabet (quaternary).

M = 4;

% Generate 2048 random integers in the range [0,M-1]

msg_mod = randsrc(2048,1,[0:M-1]);

% Digitally modulate and upsample the signal

msg_tx = dmodce(msg_mod, Fd, Fs, ‘psk’, M);

% Add Gaussian noise to the signal at 10dB SNR. The noise signal is

% calibrated using the ‘measured’ option. The noise power is scaled for

% oversampling.

msg_rx = awgn(msg_tx, 10, ‘measured’, [], ‘dB’);

% Demodulate, detect, and downsample the signal

msg_demod = ddemodce(msg_rx, Fd, Fs, ‘psk’, M);

% Calculate bit error count, BER, symbol error count and SER

[errBit ratBit] = biterr(msg_mod, msg_demod, log2(M));

[errSym ratSym] = symerr(msg_mod, msg_demod);

In this code sample, Communications Toolbox functions generate random integers, modulate with QPSK, add Gaussian noise and demodulate,

then calculate bit error and symbol error rates.

The MathWorks Tel: 508.647.7000 info@mathworks.com www.mathworks.com

© 2000 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

9060v01 10/00

For demos, application examples,
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)89 995901 0
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest
of Europe.

The DSP Blockset is an intuitive tool, com-

posed of Simulink® block libraries, for the rapid

design, graphical simulation, and prototyping of

DSP systems. It is a component of the DSP and

Communications Design Suites, which provide

complete system-level design capability.

DSP Blockset models are constructed within

the Simulink environment. You select blocks

from the available libraries and interconnect

them in various configurations using the

mouse. Signal source blocks are available

for testing your models. You can visualize

your simulation interactively or pass simula-

tion results to MATLAB® for post-processing.

In addition to the built-in blocks, you can

incorporate C code, MATLAB functions, and

M-files. You can use Real-Time Workshop®

to generate ANSI standard C code directly

from your model.

The DSP Blockset provides the algorithmic

foundation for many applications in

speech and audio processing, telephony,

wireless and broadband communications,

computer peripherals, radar/sonar, and

medical electronics. It contains blocks

for filter design, spectral estimation, and

transforms, among others.

Working with the DSP Blockset
The DSP Blockset complements the power-

ful algorithm development and signal

analysis tools in MATLAB by providing

an interactive block diagram environment

for system-level simulation and real-time

algorithm design.

Advanced Signal Processing
The DSP Blockset offers a wide range of

built-in DSP techniques, including trans-

forms, buffering, filter design, and linear

algebra. You can create sophisticated DSP

simulations without low-level program-

ming and easily add your own custom

algorithms.

The MathWorks

DSP Blockset 4
for designing, simulating, and prototyping digital signal processing systems

KEY FEATURES
■ Signal processing blocks—including FFT, DFT, and their

inverses; window functions; decimation/interpolation; and

linear prediction

■ Spectral estimation blocks—including short-time FFT, Yule-

Walker AR, Burg, and modified covariance methods

■ Filter design blocks—including traditional FIR and IIR filters,

adaptive filters, lattice filters, and multirate filters

■ Filter structure blocks—including Direct Form II Transpose,

biquadratic, and lattice filters

■ Filter Realization Wizard for automatically generating block

diagram models of digital filters from your specifications

■ Math functions—including normalization and cumulative

sum, matrices and linear algebra (such as QR factorization, and

singular value decomposition), and polynomial functions

(such as least squares polynomial fit)

■ Numerous blocks for statistics, quantizers, signal operations,

signal management, and a variety of other operations

Dea

Soft T

ut1

ut2

ut3

ut4
[8x1]

[8x1]

[16x1]

[32x1]

3

Synthesis
Filter Bank

Dead Zone

Soft Threshold

noisdopp

Signal From
Workspace

Time

Residual

z
-49

Integer Delay2
Time

Input Signal

Time

Denoised Signal

In1

In2

In3

In4

Out1

Out2

Out3

Out4

Delay Alignment

3

Analysis
Filter Bank

[64x1]

[64x1]

[64x1]

[8x1]

[8x1]

[16x1]

[32x1]

[8x1]

[8x1]

[16x1]

[32x1] [32x1]

[16x1]

[8x1]

[8x1]
[64x1]

[64x1]

[64x1]
Output

[64x1]

Residual

[64x1]
Input

[64x1]

[64x1]

Input

A Doppler signal with additive wideband noise is

decomposed using wavelet techniques.

DSP Sources
Chirp, Identity Matrix,

Constant Diagonal Matrix,

Multiphase Clock, Constant

Ramp, N-Sample Enable,

Counter, Random Source,

DSP Constant, Signal From

Workspace, Discrete Impulse,

Sine Wave, From Wave

Device, Triggered Signal From

Workspace, From Wave File,

Window Function

DSP Sinks
Display, Time Scope, Matrix

Viewer, To Wave Device,

Signal To Workspace, To

Wave File, Spectrum Scope,

Triggered To Workspace,

Vector Scope

Filtering
Filter Designs

Analog Filter Design, Least

Squares FIR Filter Design,

Digital FIR Filter Design,

Remez FIR Filter Design,

Digital FIR Raised Cosine

Filter Design, Yule-Walker IIR

Filter Design, Digital IIR

Filter Design

Filter Structures
Analog Filter Design,

Overlap-Add FFT Filter,

Biquadratic Filter, Overlap-

Save FFT Filter, Direct-Form

II Transpose Filter, Time-

Varying Direct-Form II

Transpose Filter, Filter

Realization Wizard, Time-

Varying Lattice Filter

Multirate Filters
Dyadic Analysis Filter Bank,

FIR Rate Conversion, Dyadic

Synthesis Filter Bank, Wavelet

Analysis, FIR Decimation,

Wavelet Synthesis, FIR

Interpolation

Adaptive Filters
Kalman Adaptive Filter, RLS

Adaptive Filter, LMS Adaptive

Filter

Estimation
Linear Prediction

Autocorrelation LPC

Parametric Estimation
Burg AR Estimator, Modified

Covariance AR Estimator,

Covariance AR Estimator,

Yule-Walker AR Estimator

Power Spectrum Estimation
Burg Method, Modified

Covariance Method,

Covariance Method, Short-

Time FFT, Magnitude FFT,

Yule-Walker Method

Math Functions

Matrices and Linear Algebra
Matrix Operations

Constant Diagonal Matrix,

Matrix Scaling, Create

Diagonal Matrix, Matrix

Square, Extract Diagonal,

Matrix Sum, Extract

Triangular Matrix, Permute

Matrix, Identity Matrix,

Reciprocal Condition, Matrix

Concatenation (Simulink

block), Submatrix, Matrix 1-

Norm, Toeplitz, Matrix

Multiply, Transpose, Matrix

Product

Linear System Solvers
Levinson-Durbin, Cholesky

Solver, LU Solver, Backward

Substitution, Forward

Substitution, QR Solver, LDL

Solver, SVD Solver

Sample Blocks

This DSP Blockset

model compares

several of the spectral

estimation methods

available in the DSP

Blockset.

A comparison of spectral
analysis techniques

AR Process

White Noise

Freq

Vector
Scope

0.1

Variance
Level

ST-FFT

Short-Time FFTOverlap
Buffer

MCov AR

Modified Covariance
Method

1

u
|FFT| ^ 2

Magnitude
FFT

Horiz Cat

Combine
Plots

Burg

Burg Method

DF2T

All-pole Filter

-C-

AR Coefficients

[64x1]

1285

[64x1]

[64x1]

[64x1]

[64x1]

[64x1]

128

[128x1]

[128x1]

STFFT

128

128

MCov

128Burg

128

128

Actual

[128x4]

Matrix Factorizations
Cholesky Factorization, QR

Factorization, LDL

Factorization, Singular Value

Decomposition, LU

Factorization

Matrix Inverses
Cholesky Inverse, LU Inverse,

LDL Inverse, Pseudoinverse

Math Operations
Complex Exponential, dB

Gain, Cumulative Sum,

Normalization, dB

Conversion, Difference

Polynomial Functions
Least Squares Polynomial Fit,

Polynomial Stability Test,

Polynomial Evaluation

Quantizers
Quantizer, Uniform Encoder,

Uniform Decoder

Signal Management
Buffers

Buffer, Stack, Delay Line,

Triggered Delay Line, Queue,

Unbuffer

Indexing
Flip, Submatrix, Multiport

Selector, Variable Selector,

Selector

Signal Attributes
Check Signal Attributes,

Convert 2-D to 1-D,

Contiguous Copy, Frame

Status Conversion, Convert

1-D to 2-D, Inherit Complexity

Switches and Counters
Counter, Multiphase Clock,

Edge Detector, N-Sample

Enable, Event-Count

Comparator, N-Sample

Switch

Signal Operations
Convolution, Unwrap,

Downsample, Upsample,

Integer Delay, Variable

Fractional Delay, Pad,

Variable Integer Delay,

Repeat, Window Function,

Sample and Hold, Zero Pad

Statistics
Autocorrelation, Median,

Correlation, Minimum,

Detrend, RMS, Histogram,

Sort, Maximum, Standard

Deviation, Mean, Variance

Transforms
Analytic Signal, IDCT,

Complex Cepstrum, IFFT,

DCT, Real Cepstrum, FFT

LPC Analysis and Synthesis of Speech

Analysis Synthesis

hamming

In Out

Window To Wave
Device

In
Out

AR

Time-Varying
Synthesis Filter

In

Out
MA

Time-Varying
Analysis Filter

eout

Residual

kout

Reflection
Coefficients

DF2T

Pre-
Emphasis

Overlap
Analysis
Windows

DF2T

De-emphasis

KAutocorr
LPC

Autocorrelation
LPC

mtlb*0.32

8 kHz
Signal

"MATLAB"

[80x1] [80x1]

[80x1]

[80x1] [160x1] [160x1]
[80x1]

[80x1]

[80x1]

12
12

12

12 [80x1] [80x1]

DSP Blockset features such as frame-

based processing, real-time audio,

and a linear algebra library enable

the design of real-time speech and

audio algorithms.

The block diagram shown here simulates an adaptive equal-

izer using the DSP Blockset’s LMS adaptive filter algorithm.

The scope shows the input signal (top), the signal plus noise

(middle), and the error signal (bottom).

Adaptive Noise Cancellation Demo

DSP

Sine Wave
Results

fir1

Noise FilterNoise

In

Err

Out

Taps

nLMS

LMS
Adaptive Filter1

FFT

Freq
Response

Flip
User

Filter
Taps

Input Signal
Input Signal

Signal + Noise

Error Signal

The MathWorks Tel: 508.647.7000 info@mathworks.com www.mathworks.com 8355v06 11/00

© 2000 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

For demos, application examples,
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)89 995901 0
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest
of Europe.

Spectral Analysis: Short-Time FFT

dB
 (1 ohm)

dB Conversion

 U.'

Transpose

Matrix
Viewer

Spectogram

ST-FFT

Short-Time FFT

Freq

Short-Time
Spectrum

Vector
Selector

From Wave
Device1

Portable C Code Generation
DSP Blockset interfaces seamlessly with

Real-Time Workshop®, allowing you to

automatically generate real-time ANSI C

code from your Simulink DSP simulations

that is suitable for use in embedded real-

time applications. This code-generation

facility lets you streamline prototyping and

implementation on programmable float-

ing-point DSP hardware.

DSP Blockset and Simulink
Simulink is an interactive environment for

modeling, analyzing, and simulating a wide

variety of dynamic systems, including discrete,

analog, and hybrid systems. The DSP Blockset

adds fundamental simulation capability to the

Simulink environment (efficient processing of

frame-based data, and DSP algorithms such as

filters, transforms, and windows). DSP

Blockset and Simulink together let you develop

efficient DSP applications and evaluate them

within your end-to-end system simulation.

DSP Blockset and the Signal Processing and
Filter Design Toolboxes
You can use the DSP Blockset with the Signal

Processing Toolbox to design digital and

analog filters. Adding the Filter Design Toolbox

enables you to design advanced digital filters.

Through a Simulink dialog box, you can

specify filter parameters that the Signal

Processing Toolbox and the Filter Design

Toolbox can use to generate filter coefficients.

You can use the resulting filter as part of your

Simulink DSP simulation. Similarly, the Filter

Realization Wizard of the DSP Blockset can

accept filter parameters created by the Signal

Processing and Filter Design toolboxes to

create a custom filter in block-diagram format.

Product Requirements
The DSP Blockset runs on all MathWorks

supported platforms. It requires the Signal

Processing Toolbox 5, Simulink 4, and

MATLAB 6. ■

This model of a short-time FFT incorporates many features

of the DSP Blockset, including frame-based processing, the

ability to read from Microsoft Windows audio devices, and

visualization blocks, such as the matrix viewer.

1

Out

hamming

In

Out

Win

Window

In Out

Normalization

|FFT| ^ 2

Magnitude
FFT

DF2T

Direct-Form II
Transpose Filter

1

In

Frame-based Simulation
Relevant blocks support frame-based

simulation, as well as traditional sample-

based simulation, for greater speed and more

accurate representation of real-time systems.

A frame is a collection of consecutive samples

that have been stored in a single vector. By

propagating these multisample frames instead

of the individual signal samples, DSP systems

can take advantage of the speed of DSP

algorithm execution while reducing over-

head and handling demands.

Multichannel Processing
DSP Blockset blocks can generate and process

matrix signals with standard MATLAB matrix

notation. Matrix dimensions are automati-

cally detected by all blocks. The combination

of matrix support and frame-based process-

ing means that you can use the DSP Blockset

for processing real-time multichannel data.

For example, a frame-based matrix with

three columns contains three channels of

data, one frame per channel.

Simple Handling of Real and Complex Values
Each block implicitly handles real and

complex input signals. Separate blocks

for real and complex data processing values

are not required.

Multirate Processing
DSP Blockset can support multirate process-

ing without requiring you to explicitly set the

sample time of multirate blocks. The correct

sample time and frame size are automatically

propagated from block to block.

The MathWorks

KEY FEATURES
■ A comprehensive set of signal and linear system models

■ Tools for analog filter design

■ Tools for Finite Impulse Response (FIR) and Infinite Impulse

Response (IIR) digital filter design, analysis, and implementation

■ The most widely used transforms, such as fast Fourier

transform (FFT) and discrete cosine transform (DCT)

■ Methods for spectrum estimation and statistical signal processing

■ Functions for parametric time-series modeling

■ Routines for waveform generation, including a Gaussian pulse

generator, a periodic sinc generator, and a pulse train generator

■ Data windowing algorithms

Signal Processing Toolbox 5
for algorithm development, signal and linear system analysis, and time-series modeling

The Signal Processing Toolbox is a collection

of MATLAB® functions that provides a

rich, customizable framework for analog

and digital signal processing (DSP). Graphical

user interfaces (GUIs) support interactive

designs and analyses, while command-line

functions support advanced algorithm devel-

opment.

The Signal Processing Toolbox is the ideal

environment for signal analysis and DSP

algorithm development. It uses industry-

tested signal processing algorithms that

have been carefully chosen and imple-

mented for maximum efficiency and

numeric reliability.

Signal Processing Toolbox functions are

implemented as M-files routines written in

the MATLAB language, which give you access

to the source code and algorithms. The open-

system philosophy of MATLAB and the

toolboxes enables you to make changes to

existing functions or add your own.

You can use the toolbox in speech and audio

processing, communications, digital control,

radar, geophysics, test instrumentation, real-

time control, finance, medicine, and other

applications.

FDATool (above) is a built-in GUI that lets you design many types

of FIR and IIR filters. You select the filter types from the available

methods in the GUI. This diagram shows the GUI with Filter Design

Toolbox installed. The figure at left shows an annotatable print

preview of the filter’s magnitude response.

Sample Functions

Filter Analysis
abs Magnitude

angle Phase angle

freqs Laplace transform
requency response

freqspace Frequency spacing for
frequency response.

freqz Z-transform frequency
response

freqzplot Plot frequency response
data

grpdelay Group delay

impz Discrete impulse
response

unwrap Unwrap phase

zplane Discrete pole-zero plot

Filter Implementation
conv Convolution

conv2 2-D convolution

deconv Deconvolution

fftfilt Overlap-add filter
implementation

filter Filter implementation

filter2 Two-dimensional digital
filtering

filtfilt Zero-phase version
of filter

filtic Determine filter initial
conditions

latcfilt Lattice filter implemen-
tation

medfilt1 1-Dimensional median
filtering

sgolayfilt Savitzky-Golay filter
implementation

sosfilt Second-order sections
(biquad) filter imple-
mentation

upfirdn Up sample, FIR filter,
down sample

FIR Filter Design
convmtx Convolution matrix

cremez Complex and nonlinear
phase equiripple FIR
filter design

fir1 Window based FIR
filter design - low, high,
band, stop, multi

fir2 FIR arbitrary shape
filter design using the
frequency sampling
method

fircls Constrained Least
Squares filter design –
arbitrary response

fircls1 Constrained Least
Squares FIR filter design
– low and highpass

firls Optimal least-squares
FIR filter design

firrcos Raised cosine FIR
filter design

intfilt Interpolation FIR
filter design

kaiserord Kaiser window design
based filter order
estimation

remez Optimal Chebyshev-
norm FIR filter design

remezord Remez design based
filter order estimation

sgolay Savitzky-Golay FIR
smoothing filter design

IIR Digital Filter Design
butter Butterworth filter design

cheby1 Chebyshev type I filter
design

cheby2 Chebyshev type II filter
design

ellip Elliptic filter design

maxflat Generalized Butterworth
lowpass filter design

yulewalk Yule-Walker filter design

IIR Filter Order Estimation
buttord Butterworth filter order

estimation

cheb1ord Chebyshev type I filter
order estimation

cheb2ord Chebyshev type II filter
order estimation

ellipord Elliptic filter order
estimation

Analog Lowpass Filter Prototypes
besselap Bessel filter prototype

buttap Butterworth filter
prototype

cheb1ap Chebyshev type I filter
prototype (passband
ripple)

cheb2ap Chebyshev type II filter
prototype (stopband
ripple)

ellipap Elliptic filter prototype

Analog Filter Design
besself Bessel analog filter

design

butter Butterworth filter design

cheby1 Chebyshev type I filter
design

cheby2 Chebyshev type II filter
design

ellip Elliptic filter design

Analog Filter Transformation
lp2bp Lowpass to bandpass

analog filter
transformation

lp2bs Lowpass to bandstop
analog filter
transformation

lp2hp Lowpass to highpass
analog filter
transformation

lp2lp Lowpass to lowpass
analog filter
transformation

Filter Discretization
bilinear Bilinear transformation

with optional prewarping

impinvar Impulse invariance
analog to digital
conversion

Linear System Transformations

latc2tf Lattice or lattice ladder
to transfer function
conversion

polystab Polynomial stabilization

polyscale Scale roots of polynomial

residuez Z-transform partial frac-
tion expansion

sos2ss Second-order sections to
state-space conversion

sos2tf Second-order sections to
transfer function con-
version

sos2zp Second-order sections to
zero-pole conversion

ss2sos State-space to second-
order sections
conversion

ss2tf State-space to transfer
function conversion

ss2zp State-space to zero-pole
conversion

tf2latc Transfer function to
lattice or lattice ladder
conversion

tf2sos Transfer function to
second-order sections
conversion

tf2ss Transfer function to
state-space conversion

tf2zp Transfer function to
zero-pole conversion

zp2sos Zero-pole to second-
order sections
conversion

zp2ss Zero-pole to state-space
conversion

zp2tf Zero-pole to transfer
function conversion

Windows

bartlett Bartlett window

blackman Blackman window

boxcar Rectangular window

chebwin Chebyshev window

hamming Hamming window

hann Hanning window

kaiser Kaiser window

triang Triangular window

Transforms
czt Chirp-z transform

dct Discrete cosine
transform

dftmtx Discrete Fourier
transform matrix

fft Fast Fourier transform

fft2 2-D fast Fourier
transform

fftshift Swap vector halves

hilbert Discrete-time analytic
signal via Hilbert
transform

idct Inverse discrete cosine
transform

ifft Inverse fast Fourier
transform

ifft2 Inverse 2-D fast Fourier
transform

Cepstral Analysis

cceps Complex cepstrum

icceps Inverse complex
cepstrum

rceps Real cepstrum and
minimum phase
reconstruction

Statistical Signal Processing
and Spectral Analysis

cohere Coherence function

estimate
corrcoef Correlation coefficients

corrmtx Autocorrelation matrix

cov Covariance matrix

csd Cross spectral density

pburg Power spectral density
estimate via Burg's
method

pcov Power spectral density
estimate via the covari-
ance method

peig Power spectral density
estimate via the eigen-
vector method

periodogram Power spectral density
estimate via the
periodogram method

pmcov Power spectral density
estimate via the
modified covariance
method

pmtm Power spectral density
estimate via the
Thomson multitaper
method

pmusic Power spectral density
estimate via the MUSIC
method

pwelch Power spectral density
estimate via Welch's
method

pyulear Power spectral density
estimate via the Yule-
Walker AR Method

rooteig Sinusoid frequency and
power estimation via the
eigenvector algorithm

rootmusic Sinusoid frequency and
power estimation via
the MUSIC algorithm

tfe Transfer function
estimate

xcorr Cross-correlation
function

xcorr2 2-D cross-correlation

xcov Covariance function

Parametric Modeling

arburg AR parametric modeling
via Burg's method

arcov AR parametric modeling
via covariance method

armcov AR parametric modeling
via modified covariance
method

aryule AR parametric modeling
via the Yule-Walker
method

invfreqs Analog filter fit to
frequency response

invfreqz Discrete filter fit to
frequency response

prony Prony's discrete filter
fit to time response

stmcb Steiglitz-McBride
iteration for ARMA
modeling

Linear Prediction
ac2rc Autocorrelation

sequence to reflection
coefficients conversion

ac2poly Autocorrelation
sequence to prediction
polynomial conversion

is2rc Inverse sine parameters
to reflection coefficients
conversion

lar2rc Log area ratios to reflec-
tion coefficients
conversion

levinson Levinson-Durbin
recursion

lpc Linear predictive
coefficients using auto-
correlation method

lsf2poly Line spectral frequencies
to prediction polyno-
mial conversion

poly2ac Prediction polynomial
to autocorrelation
sequence conversion

poly2lsf Prediction polynomial
to line spectral frequen-
cies conversion

poly2rc Prediction polynomial
to reflection coefficients
conversion

rc2ac Reflection coefficients to
autocorrelation
sequence conversion

rc2is Reflection coefficients to
inverse sine parameters
conversion

rc2lar Reflection coefficients
to log area ratios
conversion

rc2poly Reflection coefficients to
prediction polynomial
conversion

rlevinson Reverse Levinson-
Durbin recursion

schurrc Schur algorithm

Multirate Signal Processing
decimate Resample data at a lower

sample rate

interp Resample data at a
higher sample rate

interp1 General 1-D
interpolation. (MATLAB
Toolbox)

resample Resample sequence
with new sampling rate

spline Cubic spline
interpolation

upfirdn Up sample, FIR filter,
down sample

Waveform Generation

chirp Swept-frequency cosine
generator

diric Dirichlet (periodic sinc)
function

gauspuls Gaussian RF pulse
generator

gmonopuls Gaussian monopulse
generator

pulstran Pulse train generator

rectpuls Sampled aperiodic
rectangle generator

sawtooth Sawtooth function

sinc Sinc or sin(pi*x)/(pi*x)
function

square Square wave function

tripuls Sampled aperiodic
triangle generator

vco Voltage controlled
oscillator

Specialized Operations
buffer Buffer a signal vector

into a matrix of data
frames

cell2sos Convert cell array to
second-order-section
matrix

cplxpair Order vector into
complex conjugate pairs

demod Demodulation for
communications
simulation

dpss Discrete prolate
spheroidal sequences
(Slepian sequences)

eqtflength Equalize the length
of a discrete-time
transfer function

modulate Modulation for
communications
simulation

seqperiod Find minimum-length
repeating sequence in
a vector

sos2cell Convert second-order-
section matrix to cell
array

specgram Spectrogram, for speech
signals

stem Plot discrete data
sequence

strips Strip plot

udecode Uniform decoding of
the input

uencode Uniform quantization
and encoding of the
input into N-bits

Graphical User Interfaces

fdatool Filter Design and
Analysis Tool

sptool Signal Processing Tool

Signal and Linear System Models
The Signal Processing Toolbox provides a

broad range of models for representing

signals and linear time-invariant systems,

allowing you to choose the method that

best suits your application, including

representations for transfer functions state

space, and zero-pole-gain. The toolbox

also includes functions for transforming

models from one representation to another.

Filter Design
The Signal Processing Toolbox features a full

suite of design methods for finite impulse

response (FIR) and infinite impulse response

(IIR) digital filters. These methods support

the rapid design and evaluation of lowpass,

highpass, bandpass, bandstop, and multi-

band filters such as Butterworth, Chebyshev,

elliptic, Yule-Walker, window-based, least-

squares, and Parks-McClellan. The filter

structures available include the direct forms

I and II, lattice, lattice-ladder, and second-

order sections. You can comment among the

various realizations with tools provided.

Spectral Analysis
The Signal Processing Toolbox provides

unsurpassed facilities for frequency-domain

analysis and spectral estimation. Several of

these methods are based on a highly opti-

mized FFT. The toolbox includes functions

for computing the discrete Fourier, discrete

cosine, Hilbert, and other transforms useful

in analysis, coding, and filtering. The spectral

analysis methods available include Welch's,

Burg's, modified covariance, Yule-Walker, the

multitaper method, and the MUSIC method.

Visualization
The GUIs in the Signal Processing Toolbox

let you interactively view and measure

signals, design and apply filters, and perform

spectral analysis while exploring the effects

of different analysis parameters and methods.

They are particularly useful for visualizing

time-frequency information, spectra, and

pole-zero locations. For example, you can

interactively design a filter by graphically

placing the poles and zeroes in the z-plane.

The Signal Processing Toolbox provides

two GUIs:

FDATool is a comprehensive tool for

designing and analyzing digital filters

that helps you:

• Access most FIR and IIR filter design

methods in the toolbox using a

simplified, graphical interface

• Analyze filters by exchanging magnitude,

phase, impulse, and step responses and by

calculating group delay and pole-zero plots

• Import previously designed filters and

filter coefficients that you have stored

in the MATLAB workspace. Export

filter coefficients

• Access additional filter design methods

and quantization features of the Filter

Design Toolbox (when that optional

product is installed)

• Print filter response directly from the

GUI with the option to annotate plots

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

10

20

30

40

Power Spectral Density Estimates for a 4th Order AR Model

Normalized Angular Frequency (∗π rads/sample)

P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 (

dB
 /

ra
ds

/s
am

pl
e)

MUSIC
Yule AR
Burg
Welch
MTM
Covariance
Mod Covar

Spectral analysis of a signal

using a range of parametric and

nonparametric techniques.

SPTool’s Filter Designer includes a Pole/Zero editor

that lets you design a filter through the graphical

placement of poles and zeroes. The Filter Viewer

lets you view all characteristics of the filter.

SPTool is a suite of GUI tools providing

access to many of the signal, filter, and

spectral analysis functions that helps you:

• Measure and analyze the time-domain

information of one or more signals and

send audio signal to the PC’s sound card

• Design and edit FIR and IIR filters

of various lengths and types and with

standard (lowpass, highpass, bandpass,

bandstop, and multiband) configura-

tions, as well as design filters by

graphically placing poles and zeroes

in the z-plane

• View the characteristics of a designed or

imported filter, including its magnitude

response, phase response, group delay,

pole-zero plot, impulse response, and

step response

• Apply the filter to a selected signal

• Graphically analyze frequency-domain

data using a variety of spectral estimation

methods, including Burg, FFT, multitaper

(MTM), MUSIC, eigenvector, Welch, and

Yule-Walker AR

An Interactive Demo
The Signal Processing Toolbox provides

specgramdemo, a user-friendly GUI that

interactively calculates a signal’s time-frequency

distribution. Specgramdemo presents:

• The original time series data

• The spectrogram of the input signal

• The power spectral density of the

input signal

• A colorbar indicating the color scale

of the spectrogram

• A signal panner that lets you focus in and

out on the signal

• A crosshair locator that locates individual

data points on the spectrogram

You can evaluate time/frequency informa-

tion in the spectrogram by using the signal

panner or the crosshair locator. This will

allow you to locate data points in the spec-

trogram. They will display and interactively

update a frequency slice of the input signal,

a time slice of signal, and a readout of time

and frequency values.

You can call the specgramdemo from

the MATLAB command line by typing

specgramdemo(y,FS) where y is the

input signal and Fs is the signal’s sampling

rate. Context-sensitive help is available

for specgramdemo.

Product Requirements
The Signal Processing Toolbox runs on all

MathWorks supported platforms. It requires

MATLAB 6. ■

The MathWorks Tel: 508.647.7000 info@mathworks.com www.mathworks.com 9317v03 11/00

© 2000 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

Specgramdemo is a user-friendly GUI that provides interactive

calculations of a signal’s time-frequency distribution.

For demos, application examples,
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)89 995901 0
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest
of Europe.

The Fixed-Point Blockset allows engineers

to efficiently design control systems and

digital filters that will be implemented

using fixed-point arithmetic. A block

diagram containing detailed fixed-point

information about the system model is

constructed in Simulink®. You can perform

a bit-true simulation to observe the effects

of limited range and precision.

Simulations are automatically instrumented

to log overflows, saturations, and signal

extremes. Tools are provided to automate

scaling decisions and to compare the fixed-

point implementation against a floating-point

benchmark. When combined with Real-Time

Workshop®, an efficient, integer-only C code

representation of the design can be auto-

matically generated. This C code can be used

in a production target or for rapid prototyp-

ing. When Real-Time Workshop Embedded

Coder is used, real-time C code can be gen-

erated for use on an integer production,

embedded target.

The MathWorks

Fixed-Point Blockset 3
for modeling, simulation, testing, and automatically generating
pure integer code for fixed-point applications

The parameter dialogs and

scope displays provide immedi-

ate interaction with the running

model. You can change param-

eters as you work and see the

results immediately in the

scope displays.

KEY FEATURES
■ Supports fixed-point bit-widths from 1 to 128 bits for

bit-true simulation

■ Supports complex numbers, and single, double, and custom

floating-point types

■ Provides automatic scaling tools. Allows data type and scaling

to be configured independently for each signal

■ Allows modes for rounding and overflow handling to be

independently configured for each block

■ Eases layout of models with high-level blocks (including filters)

such as tapped delay line, dot product, matrix gain, and FIR

filter. Automatic layout of fixed-point filters using the DSP

Blockset Filter Realization Wizard

■ Obtains floating-point simulations for debugging and

benchmarking

DEMO:

LEAD FILTER
&

LAG FILTER

Fixed-Point Realization
verses

Floating-Point Realization

Zero-Order
Hold3

Sum1

Reference1

Mux

Mux4

Mux

Mux2

Lead Comparison

Lag Comparison

1-PoleZz -1
LeadKdc*(1-PoleZ)/(1-LeadZeroZ)*[1 -LeadZeroZ](z)

IEEE Double
Lead Filter

1-PoleZz -1
LagKdc*(1-PoleZ)/(1-LagZeroZ)*[1 -LagZeroZ](z)

IEEE Double
Lag Filter

K (1-p) (z - a)

(1-a) (z - p)

Fixed Point
Lead Filter

K (1-p) (z - a)

(1-a) (z - p)

Fixed Point
Lag Filter

FixPt
GUI

Out

FixPt to Dbl4

Out

FixPt to Dbl3

Out

FixPt to Dbl2

Out

FixPt to Dbl1

Out

FixPt to Dbl
0.5

Constant1

In

ADC & Analog
ShiftnScale

With the Fixed-Point Blockset, you can compare fixed-point and float-

ing-point realizations of filters.

KEY FEATURES (CONTINUED)

■ Reduces specification overhead with mechanisms that automatically

propagate data type and scaling choices

■ Allows sensor-driven and actuator-driven scaling to be used

■ Generates code that includes every operation (such as shifts) needed

to account for differences in fixed-point locations

■ Allows non-standard bit-widths to support implementation of

custom hardware designs such as ASICs or FPGAs

■ Provides full compatibility with rapid prototyping systems for

bit-true emulation on floating-point chips

■ Exploits Simulink capabilities for closed-loop simulation of fixed-

point digital system interaction with analog systems

The Fixed-Point Blockset streamlines the

process of developing embedded software

for use on fixed-point processors. It pro-

vides blocks to support operations

normally used in embedded control systems

and digital filtering, including:

• Arithmetic blocks—for multiplying, divid-

ing, adding, or subtracting input values

• Delay blocks—for describing memory and

states

• Conversion blocks—for converting from

one data type to another

• Decision logic blocks —for relational

operations, Boolean logic, bitwise logic,

and switches

• Nonlinear blocks—for saturation, dead

zone, and relay

• Look-up table blocks—for approximating

one- or two-dimensional functions

• Discrete-time blocks—for creating a

discrete-time system

• Filter blocks—for modeling discrete-time

filters

• Additional key blocks that support fixed-

point designs such as multiplexers,

demultiplexers, scopes, and displays are

available in Simulink

Digital Filter Design
The Fixed-Point Blockset lets you design dis-

crete-time digital filters using one of many

transformation methods. When you combine

the Fixed-Point Blockset and the DSP

Blockset, you can use the DSP Filter

Realization Wizard to automatically lay out

large or small fixed-point filters in a variety

of useful realizations.

The Fixed-Point Blockset lets you fine-tune

realizations, reducing costs and improving

signal quality. When you have achieved

the desired performance, you can use

Real-Time Workshop to generate rapid

The Fixed-Point Blockset GUI provides convenient access to global overrides

and min/max logging settings, logged min/max data, the automatic scaling

tool, and the signal comparison tool.

prototyping C code and evaluate the code’s

performance with respect to your system’s

real-time constraints. You can alter the

model based on feedback from the rapid

prototyping system. When you are satisfied

with the performance of the rapid proto-

typing system, you can use the model and

the generated code as specifications or as

components of your implementation.

Automatic Scaling
The minimum and maximum values

encountered during a simulation can be

logged to the MATLAB® workspace. These

values can then be accessed by the auto-

matic scaling script, autofixexp. This

script automatically changes the scaling

for signals in the model.

Scaling is automatically modified to cover

the simulation range and optimize preci-

sion. If the output data type is a generalized

fixed-point number, then you have the

option of locking the output scaling.

Otherwise, scaling will be automatically

optimized.

Fixed-Point Blockset GUI
The Fixed-Point Blockset GUI allows you to

easily control the parameters associated with

automatic scaling and display the simulation

results for a given model. The Fixed-Point

Blockset GUI lets you:

• Turn logging on or off for all blocks

• Override the output data type with doubles

for all blocks

• Invoke automatic scaling

• Run the simulation

• Display the data type and scaling results

• View logged overflows and saturations

• View logged minimum and maximum

values

Customized single-precision and fixed-point filters can be created using the Filter

Realization Wizard of the DSP Blockset. Each filter is constructed from the FixPt

Sum, FixPt Gain, and FixPt Unit Delay blocks from the Fixed-Point Blockset.

Data Type Support
The Fixed-Point Blockset offers extensive

support for data types. The blocks support

inheritance and propagation of data type and

scaling information between blocks in the

model. This capability can be used to signifi-

cantly reduce the amount of configuration

information you need to supply.

Code Generation Support
All blocks support code generation with

Real-Time Workshop. The following features

are supported:

Pure integer code. All blocks generate pure

integer code when used with fixed-point

signals and parameters. If blocks handle

floating-point signals or parameters, then

Real-Time Workshop generates the necessary

floating-point code.

Languages. ANSI C

Derivatives Compare output from the FixPt
Derivative blocks to output from analo-
gous Simulink derivatives built using the
Discrete Filter and Transfer Fcn blocks.

Integrators Compare output from the FixPt
Integrator blocks (Trapezoidal,
Backward, and Forward) to output from
analogous Simulink integrators sup-
ported by the Discrete Integrator block.

Lead and Lag Compare output from the FixPt Lead
and Lag Filter block to Output from
analogous Simulink filters built using
the Discrete Filter block.

State-Space Compare output from the FixPt State-
Space Realization block to output from
the analogous built-in Simulink block.

Fixed-Point Model fixed-point time-varying and
Direct Form time-invariant filters using direct
Filters form realizations.

Storage class of variables. Typically, code

can be generated for any word size from

1-32 bits or 1-64 bits. The upper limit is

determined by the largest integer size that

the target compiler provides. Odd sizes are

emulated; this provides great flexibility in

rapid prototyping. The most efficient code

is produced when the target's native sizes

are used.

Storage class of parameters. Code can be

generated for parameters from 1-32 bits, in

most cases. The larger sizes (such as 64 bits)

are currently not supported.

Rounding modes. The following four

rounding modes are supported: Toward

Zero, Toward Nearest, Toward Ceiling, and

Toward Floor. Toward Floor generates the

most efficient code in most cases.

Overflow handling. Saturation mode and

Wrapping mode are supported. Wrapping

must be selected for Real-Time Workshop

to exclude saturation code.

Blocks. All blocks generate code for all

operations, with the following exceptions:

the FixPt Look-Up Table and FixPt Look-

Up Table (2-D) blocks generate code for all

look-up methods except extrapolation.

Scaling. Radix point-only scaling is sup-

ported. Slope/bias scaling is supported for

all blocks except when it leads to highly

inefficient code.

Demos
The Fixed-Point Blockset provides basic and

advanced demos that allow you to explore

the capabilities of the product by changing

block parameters and observing the effects

of those changes. Basic demos illustrate

the basic functionality of the Fixed-Point

Blockset. These can be accessed through

the Fixed-Point Library’s Demos block.

Advanced demos illustrate the functionality

of systems and filters built with fixed-point

blocks. The output of these demos is

analogous to that of built-in Simulink

blocks with identical input. Advanced

demos can be accessed through the Fixed-

Point Library’s Filters & Systems Examples

block or by typing fixptsys at the

command line.

Converting Doubles Convert a double-precision
to Fixed-Point Value value to fixed-point value.

Converting Fixed-Point Convert a fixed-point value
to Fixed-Point to another fixed-point value.

Inherit Fixed-Point Convert a fixed-point
to Fixed-Point value to an inherited
Conversion fixed-point value.

Fixed-Point Sine Add and multiply two
Wave Example fixed-point values.

Automatic Scaling Simulate a fixed-point
in Feedback Control feedback design.

Basic Demos

Advanced Demos

Fixed-point
absolute value

Fixed-point
bitwise operator

Fixed-point
constant

Fixed-point
conversion

Fixed-point
inherited
conversion

Fixed-point
dead zone

Fixed-point
dot product

Fixed-point
dynamic
look-up table

Fixed-point
finite impulse
response filter

Fixed-point
gain

Fixed-point
gateway in

Fixed-point
gateway in
inherited

Fixed-point
gateway out

Fixed-point
integer delay

Fixed-point
logical operator

Fixed-point
look-up table

Fixed-point
look-up
table (2-D)

Fixed-point
matrix gain

Fixed-point
minmax

Fixed-point
multiport switch

Fixed-point
product

Fixed-point
relational
operator

Fixed-point
relay

Fixed-point
saturation

Fixed-point
sign

Fixed-point
sum

Fixed-point
switch

Fixed-point
tapped delay

Fixed-point
unary minus

Fixed-point
unit delay

Fixed-point
zero-order hold

|u|

Bitwise
AND
0x25

0

Convert

u
y

xdat

ydat

y

1

In

u
y

Out

 -4
Z

AND

K

min

<=

 4
Delays

-u

1

z

Sample Blocks

You can easily convert Simulink built-in block data types to fixed-point data types. This example shows conversion

from a floating-point input to a 5-bit fixed-point value. The scope display (right) shows the output from the Scope

block in the model. The parameter dialog box (left) allows easy modification of block parameters.

Zero-Order
Hold

Signal
Generator Scope

Mux

Mux

Out

FixPt to Dbl1

In

Dbl To FixPt1

doubledouble doublesfix5_En2
double

System Requirements

For simulation
MATLAB and Simulink

For code generation
MATLAB, Simulink, Real-Time Workshop,

For embedded code generation
MATLAB, Simulink, and Real-Time

Workshop, Real-Time Workshop

Embedded Coder

To create an executable from the generated

code, you must have the appropriate C

compiler and linker.

Platforms Supported
Windows 95, 98, 2000 Windows NT 4.0,

and UNIX systems

Related Products
Control System Toolbox—a MATLAB

toolbox for implementing the most preva-

lent classical and modern linear control

techniques for the design and analysis of

automatic control systems

DSP Blockset—a Simulink block library

for the design, simulation, and prototyping

of digital signal processing systems

For more information on these and other

related products visit www.mathworks.com.

The MathWorks Tel: 508.647.7000 info@mathworks.com www.mathworks.com

© 2000 by The MathWorks, Inc. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

8360v05 10/00

For demos, application examples,
tutorials, user stories, and pricing:

•Visit www.mathworks.com

•Contact The MathWorks directly

US & Canada 508-647-7000

Benelux +31 (0)182 53 76 44
France +33 (0)1 41 14 6714
Germany +49 (0)89 995901 0
Spain +34 93 362 13 00
Switzerland +41 (0)31 954 20 20
UK +44 (0)1223 423 200

Visit www.mathworks.com to obtain
contact information for authorized
MathWorks representatives in countries
throughout Asia Pacific, Latin America,
the Middle East, Africa, and the rest
of Europe.

Fixed-Point Blockset Specifications

Supported Data Types

• Fixed-point:

– Integer, fractional, and generalized

fixed-point

– Unsigned and twos complement

formats

– Word size from 1 to 128 bits

• Floating-point:

– IEEE-style singles and doubles

– A nonstandard IEEE-style data type,

mantissa 1 to 52 bits, exponent 2 to

11 bits

Supported Overflow Handling Operations

• Saturate

• Wrap

Supported Scaling Modes

• General scaling modes:

– Radix point-only

• Noncontiguous radix point with

fixed-point word

– Slope/bias

• Constant scaling:

– Constant vector scaling

– Constant matrix scaling

Supported Rounding Methods

• Toward Zero

• Toward Nearest

• Toward Ceiling

• Toward Floor

System Generator V1.1

March 30, 2001 Product Datasheet
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
E-Mail: logicore@xilinx.com
URL: http://www.xilinx.com/

Introduction
Xilinx announces the System Generator™ V1.1 for
Simulink®. The System Generator enables you to develop
high-performance DSP systems for Xilinx Virtex™/E,
Virtex™-II, and Spartan®-II FPGAs using The MathWorks
products, the MATLAB® and Simulink.

Features
• System-level abstraction of FPGA circuits

- Visual data-flow paradigm
- Bit-/cycle-true Simulink library for common functions
- Sample rate vs. explicit clocking

• Automatic code generation from a Simulink model
- Synthesizable VHDL for a Xilinx Blockset model
- Simulink hierarchy is preserved in VHDL
- HDL testbench
- ModelSim script files

• Support for user-created Simulink library elements
using the Black Box

• Transparent access to Xilinx IP via the Xilinx CORE
Generator™ System
- FPGA designs are generated using Xilinx LogiCORE

algorithms ensuring that the most efficient code is
being generated.

Figure 1: Xilinx System Generator for Simulink
March 30, 2001 1

System Generator V1.1
Functional Description
Figure 2 shows the general flow of the System Generator
functionality as it fits in with The MathWorks and Xilinx
implementation software tools.The Simulink Block Library
contains blocksets used to model systems within the
Simulink GUI. The System Generator software provides an
additional blockset to the library: the Xilinx Blockset. As
shown in the flow diagram, the blockset elements can be
instantiated within a Simulink model (within the MATLAB
environment) just like any other Simulink block. You can
model and simulate with the Xilinx Blockset as you are
accustomed to doing within Simulink.

When you are through modeling you can then add the
System Generator token at the level of hierarchy you would

like to generate code. When the HDL code generation
software is invoked, VHDL code, cores, and test vectors are
generated according to system parameters defined within
the model. The cores are created using the Xilinx CORE
Generator. The VHDL source can be compiled and
simulated in a VHDL simulator, and an FPGA
implementation can be obtained by applying a synthesis
tool to the VHDL. After synthesis, the System Generator
project can be run through the Xilinx implementation tools
(build, map, place, and route) to produce a bitstream for
download to an FPGA device.

Figure 2: System Generator Flow Diagram

Library

Simulation

Synthesis

MATLAB Environment

Simulink

Z 1–

k

System Model
OutputInput

Synthesis
Compiler

CORE
Generator

FPGA
Place & Route

Logic
Simulator

Bit stream Pass/Fail

Simulation
Data

EDIF + Timing

EDIF

Xilinx
Design Tools
Environment

Test
Vectors

VHDL Core
Parameters

ENTITY mult IS
 GENERIC(w:
 PORT(a,b:IN
 PORT(y:OUT
 END ENTITY
...

+

System Generator
Code Generation Software

- VHDL Netlister
- Testbench generator
- Control signal inference

including
S-functions

(including
Xilinx
Blockset)
2 March 30, 2001

Xilinx Blockset

The Xilinx Blockset is a major component of this release of
the System Generator.

Like other Simulink Blocksets, the Xilinx Blockset contains
elements that can be used to build simulation models. In
addition, models built from the Xilinx Blockset can be
translated using the System Generator into synthesizable
VHDL circuits. After the System Generator has been
installed, the Xilinx Blockset will be visible in the Simulink
Library Browser.

Xilinx Blockset elements include VHDL models and
association with Xilinx LogiCOREs. These models enable
VHDL code to be generated for Simulink designs made up
of Xilinx blocks.

Currently, the Xilinx Blockset contains the following
elements:

• Basic Elements
- System Generator
- Black Box
- Concat
- Constant
- Convert
- Counter
- Delay
- Down Sample
- Get Valid Bit
- Mux
- Register
- Set Valid Bit
- Slice
- Sync
- Up Sample

• DSP
- DDS
- FFT
- FIR

• Math
- Accumulator
- AddSub
- CMult
- Inverter
- Logical
- Mult
- Negate
- Relational
- Scale
- Shift
- SineCosine
- Threshold

• MATLAB I/O
- Clear Quantization Error
- Display
- Enable Adapter
- Gateway In

- Gateway Out
- Quantization Error
- Sample Time

• Memory
- Dual Port RAM
- FIFO
- ROM
- Single Port RAM

System Generator Token

A special Xilinx Blockset element is the System Generator
token. This token can be selected from the Simulink Library
Browser, from within the basic elements of the Xilinx
Blockset.

The System Generator token invokes the Code Generation
Software, the second major portion of the tool. By placing
the System Generator token on your Simulink project
sheet, you can generate VHDL code and cores for all the
Xilinx Blockset elements on that sheet and on any sheets
beneath it in its project hierarchy. This also enables you to
simulate a mixed mode design and then generate a digital
realization of the digital portion of the design by placing the
token in the digital hierarchy only.

VHDL Code Generation Software

The System Generator includes software to enable
translation and simulation. The translation software is
invoked from Simulink and provides an interface to the
Xilinx FPGA software. This interface includes a compiler to
translate a Simulink model into a synthesizable VHDL
model, including generation of Xilinx cores where
appropriate. FPGA designs are generated using Xilinx
LogiCOREs, ensuring that the most efficient code is being
generated.

Simulation software provides C++ fixed-point arithmetic
libraries to support Xilinx Blockset and user-written, run-
time parameterizable Simulink S-functions, including
support for rounding and overflow. The Simulation software
set also includes classes which allow a user to create a
C++ executable model and easily incorporate it as a
Simulink S-function for simulation.

Testbench Generation

When enabled, a VHDL testbench “wrapper” file is created
for your generated designs. The testbench “wrapper” file is
named to match the top-level VHDL file generated for your
project. For example, if your top-level VHDL file is named
integrate, the System Generator will create a wrapper file
integrate_testbench.vhd. The top level of the project
is determined by the name of the Simulink sheet from
which you have invoked the System Generator token. You
may run the testbench (which uses these test vectors) in a
behavioral simulator such as ModelSim from Model
Technology. It should report any discrepancies between the
Simulink simulation and the VHDL simulation. You can
March 30, 2001 3

System Generator V1.1
verify the translation of your Simulink design using this
method.

Black Box Token

The Xilinx Blockset “Black Box” token gives you the ability
to instantiate your own specialized functions in your design,
and subsequently into a generated model. Any Simulink
subsystem may be treated as a “Black Box” if you so
choose. You may want to build a model out of non-Xilinx
blocks, or you may have a VHDL-representation of
functionality that you wish to turn into a Simulink model.
Similar to the System Generator token, the Black Box token
may be placed on any Simulink subsystem, identifying the
subsystem as a Black Box.

Documentation
When you have purchased the System Generator, you may
access the online software manuals from the Xilinx home
page (http://www.xilinx.com). The System Generator tool
from Xilinx is released with the following documents:

• System Generator Quick Start Guide
• System Generator Tutorial
• System Generator Reference Guide
• System Generator Datasheet

The MathWorks Documentation

The MathWorks provides a printed documentation suite
that you should have received with your purchase of
MATLAB‚ and Simulink. The software manuals include the
following:

• Using MATLAB
• MATLAB New Features Guide
• Getting Started with MATLAB
• User’s Guide for MATLAB Toolboxes, including:
• Communications Toolbox
• Signal Processing Toolbox
• Wavelet Toolbox
• Control System Toolbox
• Image Processing Toolbox
• Using Simulink
• DSP Blockset User’s Guide - for use with Simulink

Related Information
Xilinx products are not intended for use in life support
appliances, devices, or systems. Use of a Xilinx product in
such applications without the written consent of the
appropriate Xilinx officer is prohibited.

Copyright 1991-2000 Xilinx, Inc. All Rights Reserved.

MATLAB and Simulink are registered trademarks of The
MathWorks, Inc.

Ordering Information
The Xilinx System Generator is provided under Xilinx Time-
Based Software License Agreement. For purchase, price,
and availability information, please visit the Xilinx IP Center
at www.xilinx.com/ipcenter or contact your local Xilinx
Sales Representative.
4 March 30, 2001

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

APPENDIX-B

SYSTEM MODELS & SIMULATION WAVEFORMS

Figure B.1 Output after the Bernoulli Random Binary Generator Block

Figure B.2 Output after the Sum Block

Figure B.3 Output after the Relational Operator Block

Figure B.4 Output after the Zero Order-Hold1 Block

Figure B.5 Output after the Remez FIR Filter Design Block

(note the half sinusoidal shape given to the rectangular pulse by the Gaussian Filter)

Figure B.6 Output after the –0.5 Constant & Sum Blocks
(note the polar signal almost evenly balanced above and below the zero axis)

Figure B.7 Output after the AWGN Channel Block
(note the Gaussian noise added to the Transmitted GFSK Modulated waveform sampled

at 40 Msamples/sec)

Figure B.8 Output after the Digital FIR Filter Design1 Block
(note the amplitude variation in the envelope of the waveform due to Bandpass Filtering)

Figure B.9 Output after the Abs1 Block

(note the full-wave rectification action on the Bandpass filtered waveform)

Figure B.10 Output after the Digital FIR Filter Design3 Block
(note the Lowpass filtering action on the full-wave rectified waveform)

Figure B.11 Output after the Bernoulli Random Binary Generator Block

Figure B.12 Output after the FixPt Sum Block
(note the coarseness of the waveform due to quantization effects)

Figure B.13 Output after the FixPt Relational Operator Block
(note the jitter in the waveform due to quantization effects)

Figure B.14 Output after the FixPt Gateway Out Block

Figure B.15 Output after the Bernoulli Random Binary Generator Block

Figure B.16 Output after the FixPt Sum Block
(note the decrease in the coarseness of the waveform because of the realization structure)

Figure B.17 Output after the FixPt Relational Operator Block
(note the absence of jitter in the waveform because of the realization structure)

Figure B.18 Output after the FixPt Gateway Out Block

Figure B.19 Output after the Bernoulli Random Binary Generator Block

Figure B.20 Output after the Adder2 Block

Figure B.21 Output after the Relational Block

Figure B.22 Output after the Gateway Out Block

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

APPENDIX-C

DIGITAL FILTER DESIGNS

0 f (MHz)

Mag. (dB)

|
Fc1

|
Fc2

Bandpass FIR Filter (Fc+175KHz)

Fs/2

0

0 2 4 6 8 10 12 14 16 18 20
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Frequency (MHz)

M
ag

ni
tu

de
 (d

B)

Bandpass FIR Filter (Fc+175KHz)

0 2 4 6 8 10 12 14 16 18 20
-50

0

50

100

150

200

250

300

Frequency (MHz)

Ph
as

e
(d

eg
re

es
)

Bandpass FIR Filter (Fc+175KHz)

0 2 4 6 8 10 12 14 16 18
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (d

B)

0 2 4 6 8 10 12 14 16 18
-50

0

50

100

150

200

250

300

Frequency (MHz)

Ph
as

e
(d

eg
re

es
)

Bandpass FIR Filter (Fc+175KHz)

0 2 4 6 8 10 12 14 16 18
24

24

24

24

24

24

24

24

G
ro

up
 d

el
ay

 (i
n

sa
m

pl
es

)

Frequency (MHz)

Banpass FIR Filter (Fc+175KHz)

0 5 10 15 20 25 30 35 40 45
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Samples

Im
pu

ls
e

re
sp

on
se

Banpass FIR Filter (Fc+175KHz)

0 10 20 30 40 50 60 70 80 90
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Samples

Banpass FIR Filter (Fc+175KHz)

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

Banpass FIR Filter (Fc+175KHz)

 tp052054

Banpass FIR Filter (Fc+175KHz) Coefficients

Numerator:
-0.021010546482473
-0.025826494386943
-0.029902293829211
-0.033116131744129
-0.035371259235019
-0.036598925828189
-0.036760488957429
-0.035848633556422
-0.033887663161267
-0.030932851674557
-0.027068873080600
-0.022407354078926
-0.017083620982623
-0.011252736509903
-0.005084943543988
+0.001239349104595
+0.007534889975890
+0.013617058859811
+0.019307328190382
+0.024438549002062
+0.028859903609829
+0.032441377020734
+0.035077613389060
+0.036691042161149
+0.037234180368410
+0.036691042161149
+0.035077613389060
+0.032441377020734
+0.028859903609829
+0.024438549002062
+0.019307328190382
+0.013617058859811
+0.007534889975890
+0.001239349104595
-0.005084943543988
-0.011252736509903
-0.017083620982623
-0.022407354078926
-0.027068873080600
-0.030932851674557
-0.033887663161267
-0.035848633556422
-0.036760488957429
-0.036598925828189
-0.035371259235019
-0.033116131744129
-0.029902293829211

 Page 1

 tp052054

-0.025826494386943
-0.021010546482473

Denominator:
1.000000000000000

 Page 2

0 f (MHz)

Mag. (dB)

|
Fc1

|
Fc2

Bandpass FIR Filter (Fc-175KHz)

Fs/2

0

0 2 4 6 8 10 12 14 16 18 20
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Frequency (MHz)

M
ag

ni
tu

de
 (d

B)

Banpass FIR Filter (Fc-175KHz)

0 2 4 6 8 10 12 14 16 18 20
-50

0

50

100

150

200

250

300

350

Frequency (MHz)

Ph
as

e
(d

eg
re

es
)

Banpass FIR Filter (Fc-175KHz)

0 2 4 6 8 10 12 14 16 18
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (d

B)

0 2 4 6 8 10 12 14 16 18
-50

0

50

100

150

200

250

300

350

Frequency (MHz)

Ph
as

e
(d

eg
re

es
)

Banpass FIR Filter (Fc-175KHz)

0 2 4 6 8 10 12 14 16 18
24

24

24

24

24

24

24

24

G
ro

up
 d

el
ay

 (i
n

sa
m

pl
es

)

Frequency (MHz)

Banpass FIR Filter (Fc-175KHz)

0 5 10 15 20 25 30 35 40 45
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Samples

Im
pu

ls
e

re
sp

on
se

Banpass FIR Filter (Fc-175KHz)

0 10 20 30 40 50 60 70 80 90
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Samples

Banpass FIR Filter (Fc-175KHz)

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

Banpass FIR Filter (Fc-175KHz)

 tp031015

Banpass FIR Filter (Fc-175KHz) Coefficients

Numerator:
-0.035204205764639
-0.036446359985027
-0.036941147287746
-0.036676109163124
-0.035654609367599
-0.033895806788862
-0.031434294555958
-0.028319412218227
-0.024614244820661
-0.020394329425854
-0.015746095928389
-0.010765074739325
-0.005553908961575
-0.000220212921059
+0.005125677729270
+0.010373016729035
+0.015412969782573
+0.020140899694514
+0.024458565519616
+0.028276188960688
+0.031514344037111
+0.034105629781590
+0.035996090324467
+0.037146352094480
+0.037532453886856
+0.037146352094480
+0.035996090324467
+0.034105629781590
+0.031514344037111
+0.028276188960688
+0.024458565519616
+0.020140899694514
+0.015412969782573
+0.010373016729035
+0.005125677729270
-0.000220212921059
-0.005553908961575
-0.010765074739325
-0.015746095928389
-0.020394329425854
-0.024614244820661
-0.028319412218227
-0.031434294555958
-0.033895806788862
-0.035654609367599
-0.036676109163124
-0.036941147287746

 Page 1

 tp031015

-0.036446359985027
-0.035204205764639

Denominator:
1.000000000000000

 Page 2

0 f (MHz)

Mag. (dB)

|
Fc

Lowpass FIR Filter (Fc=0.825MHz)

Fs/2

0

0 2 4 6 8 10 12 14 16 18 20
-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (MHz)

M
ag

ni
tu

de
 (d

B)

Lowpass FIR Filter (Fc=0.825MHz)

0 2 4 6 8 10 12 14 16 18 20
-200

-150

-100

-50

0

50

100

Frequency (MHz)

Ph
as

e
(d

eg
re

es
)

Lowpass FIR Filter (Fc=0.825MHz)

0 2 4 6 8 10 12 14 16 18
-80

-70

-60

-50

-40

-30

-20

-10

0

M
ag

ni
tu

de
 (d

B)

0 2 4 6 8 10 12 14 16 18
-200

-150

-100

-50

0

50

100

Frequency (MHz)
Ph

as
e

(d
eg

re
es

)

Lowpass FIR Filter (Fc=0.825MHz)

0 2 4 6 8 10 12 14 16 18
8

8

8

8

8

G
ro

up
 d

el
ay

 (i
n

sa
m

pl
es

)

Frequency (MHz)

Lowpass FIR Filter (Fc=0.825MHz)

0 2 4 6 8 10 12 14 16
0.052

0.054

0.056

0.058

0.06

0.062

0.064

Samples

Im
pu

ls
e

re
sp

on
se

Lowpass FIR Filter (Fc=0.825MHz)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples

Lowpass FIR Filter (Fc=0.825MHz)

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

Lowpass FIR Filter (Fc=0.825MHz)

 tp213728

Lowpass FIR Filter (Fc=0.825MHz) Coefficients

Numerator:
0.052201125324047
0.054606764546536
0.056742892204744
0.058588146486140
0.060123995734790
0.061334961963488
0.062208807908864
0.062736685153841
0.062913241355097
0.062736685153841
0.062208807908864
0.061334961963488
0.060123995734790
0.058588146486140
0.056742892204744
0.054606764546536
0.052201125324047

Denominator:
1.000000000000000

 Page 1

GAUSSIAN LOWPASS PASS FILTER DESIGN

FREQUENCY SCALE VALUE ON THE GAUSSIAN CURVE NORMALIZED

FREQUENCY
147.0588K 2.5 0.968
294.1176K 5.0 0.884
441.1764K 7.5 0.750
500.0000K 8.5 0.700
588.2350K 10.0 0.600
735.2940K 12.5 0.460
882.3530K 15.0 0.328
1029.4110K 17.0 0.220
1176.4700K 20.0 0.136
1323.5290K 22.5 0.080
1470.5880K 25.0 0.044
1617.6468K 27.5 0.024

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

APPENDIX-D

GENERATED VHDL CODE & DATA SHEETS OF THE
XILINX IP CORES

The file vhdlFiles gives a list of the VHDL code that is needed for the System Generator project.
This list contains both the generated files, as well as Xilinx Blockset (XBS) library files (stored in the
default location $MATLAB/toolbox/xilinx/sysgen/vhdl). The list of files is presented in the
order of dependencies. The file in the list is necessary for the other files to simulate or synthesize.
When creating a synthesis project file, the VHDL files have to be entered into the project in the order
mentioned in the vhdlFiles [48].

The vhdlFiles file for this project is listed below:

const_pkg.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/conv_pkg.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/synth_reg.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/synth_reg_w_init.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/synth_valid_pipe.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/synth_mult.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/xlshutter.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/xldelay.vhd

C:/matlabR12/toolbox/xilinx/sysgen/vhdl/synth_negate.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/xlconvert.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/xlclockdriver.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/xldsamp.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/xlconstant.vhd
C:/matlabR12/toolbox/xilinx/sysgen/vhdl/xladdsub.vhd

clock_driver.vhd
xlrelational_core1.vhd
xlnegate_core1.vhd
xlfir_core1.vhd
xlfir_core2.vhd
xlfir_core3.vhd
xlfir_core4.vhd
xlfir.vhd
xlnegate.vhd
xlrelational.vhd
gaussianxlx5.vhd

A listing of the top file in the design hierarchy follows as it was modified to include a DLL (Delay
Locked Loop) core into the design to minimize clock skew. The DLL core was generated by the Xilinx
CORE Generator and inserted in the System Generator-generated file gaussianxlx4.vhd and
saved as gaussianxlx5.vhd. The beginning and end of the modified sections of code are marked
by: kmv. Figure 8.3 is reproduced again for comparison.

 1
gaussianxlx5.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use work.conv_pkg.all;

entity gaussianxlx5 is
 generic (
 gaussianxlx5_Gateway_In_arith: integer := xlSigned;
 gaussianxlx5_Gateway_In_bin_pt: integer := 15;
 gaussianxlx5_Gateway_In_width: integer := 16;
 gaussianxlx5_Gateway_Out1_arith: integer := xlUnsigned;
 gaussianxlx5_Gateway_Out1_bin_pt: integer := 0;
 gaussianxlx5_Gateway_Out1_width: integer := 1
);
 port (
 ce: in std_logic;
 CLKIN_P: in std_logic;
 clr: in std_logic;
 LOCKED: out std_logic; --kmv

 gaussianxlx5_Gateway_In: in std_logic_vector (gaussianxlx5_Gateway_In_width - 1 downto 0);
 gaussianxlx5_Gateway_In_valid: in std_logic;
 gaussianxlx5_Gateway_Out1: inout std_logic_vector (gaussianxlx5_Gateway_Out1_width - 1 downto 0);
 gaussianxlx5_Gateway_Out1_valid: inout std_logic
);
end gaussianxlx5;

architecture structural of gaussianxlx5 is

-----------------------kmv-----------------------
component CLKDLL
 port (CLKIN, CLKFB, RST : in STD_LOGIC;
 CLK0, CLK90, CLK180, CLK270, CLK2X, CLKDV, LOCKED : out std_logic);
end component;

component IBUFG
 port (I : in STD_LOGIC; O : out std_logic);
end component;

component BUFG
 port (I : in STD_LOGIC; O : out std_logic);
end component;

-----------------------kmv-----------------------

component clock_driver
 port (
 ce: in std_logic;
 ce40: inout std_logic;
 clk: in std_logic;
 clk40: inout std_logic;
 clr: in std_logic;
 clr40: inout std_logic
);
 end component;
 component xlconvert
 generic (
 din_arith: integer := xlSigned;
 din_bin_pt: integer := 30;
 din_width: integer := 39;
 dout_arith: integer := xlUnsigned;
 dout_bin_pt: integer := 15;
 dout_width: integer := 16;
 latency: integer := 4;
 overflow: integer := xlSaturate;
 quantization: integer := xlRound

 2
);
 port (
 ce: in std_logic;
 clk: in std_logic;
 clr: in std_logic;
 din: in std_logic_vector (din_width - 1 downto 0);
 din_valid: in std_logic;
 dout: inout std_logic_vector (dout_width - 1 downto 0);
 dout_valid: inout std_logic
);
 end component;
 component xlrelational
 generic (
 a_arith: integer := xlSigned;
 a_bin_pt: integer := 30;
 a_width: integer := 39;
 b_arith: integer := xlSigned;
 b_bin_pt: integer := 0;
 b_width: integer := 1;
 c_data_type: integer := 0;
 c_has_a_eq_b: integer := 0;
 c_has_a_ge_b: integer := 0;
 c_has_a_gt_b: integer := 0;
 c_has_a_le_b: integer := 0;
 c_has_a_lt_b: integer := 0;
 c_has_a_ne_b: integer := 0;
 c_has_ce: integer := 1;
 c_has_qa_eq_b: integer := 0;
 c_has_qa_ge_b: integer := 1;
 c_has_qa_gt_b: integer := 0;
 c_has_qa_le_b: integer := 0;
 c_has_qa_lt_b: integer := 0;
 c_has_qa_ne_b: integer := 0;
 c_has_sclr: integer := 1;
 c_pipe_stages: integer := 0;
 c_width: integer := 39;
 core: boolean := true;
 dout_arith: integer := xlUnsigned;
 dout_bin_pt: integer := 0;
 dout_width: integer := 1;
 latency: integer := 3
);
 port (
 a: in std_logic_vector (a_width - 1 downto 0);
 a_valid: in std_logic;
 b: in std_logic_vector (b_width - 1 downto 0);
 b_valid: in std_logic;
 ce: in std_logic;
 clk: in std_logic;
 clr: in std_logic;
 dout: inout std_logic_vector (dout_width - 1 downto 0);
 dout_valid: inout std_logic
);
 end component;
 component xldsamp
 generic (
 d_arith: integer := xlUnsigned;
 d_bin_pt: integer := 0;
 d_width: integer := 1;
 init_valid: integer := 0;
 passthru: integer := 1;
 q_arith: integer := xlUnsigned;
 q_bin_pt: integer := 0;
 q_width: integer := 1
);
 port (
 d: in std_logic_vector (d_width - 1 downto 0);
 d_valid: in std_logic;
 dest_ce: in std_logic;
 dest_clk: in std_logic;

 3
 dest_clr: in std_logic;
 q: inout std_logic_vector (q_width - 1 downto 0);
 q_valid: inout std_logic;
 src_ce: in std_logic;
 src_clk: in std_logic;
 src_clr: in std_logic
);
 end component;
 component xlconstant
 generic (
 const_arith: integer := xlSigned;
 const_bin_pt: integer := 0;
 const_index: integer := 0;
 const_width: integer := 1;
 dout_arith: integer := xlSigned;
 dout_bin_pt: integer := 0;
 dout_width: integer := 1
);
 port (
 dout: inout std_logic_vector (dout_width - 1 downto 0);
 dout_valid: inout std_logic
);
 end component;
 component xlnegate
 generic (
 a_arith: integer := xlSigned;
 a_bin_pt: integer := 30;
 a_width: integer := 38;
 c_has_q: integer := 0;
 c_has_s: integer := 1;
 c_width: integer := 38;
 core: boolean := true;
 latency: integer := 0;
 overflow: integer := xlWrap;
 p_arith: integer := xlSigned;
 p_bin_pt: integer := 30;
 p_width: integer := 39;
 quantization: integer := xlTruncate
);
 port (
 a: in std_logic_vector (a_width - 1 downto 0);
 a_valid: in std_logic;
 ce: in std_logic;
 clk: in std_logic;
 clr: in std_logic;
 p: inout std_logic_vector (p_width - 1 downto 0);
 p_valid: inout std_logic
);
 end component;
 component xladdsub
 generic (
 a_arith: integer := xlUnsigned;
 a_bin_pt: integer := 15;
 a_width: integer := 16;
 b_arith: integer := xlUnsigned;
 b_bin_pt: integer := 15;
 b_width: integer := 16;
 full_s_arith: integer := xlUnsigned;
 full_s_width: integer := 17;
 latency: integer := 5;
 mode: integer := 1;
 overflow: integer := xlWrap;
 quantization: integer := xlTruncate;
 s_arith: integer := xlUnsigned;
 s_bin_pt: integer := 15;
 s_width: integer := 17
);
 port (
 a: in std_logic_vector (a_width - 1 downto 0);
 a_valid: in std_logic;

 4
 b: in std_logic_vector (b_width - 1 downto 0);
 b_valid: in std_logic;
 ce: in std_logic;
 clk: in std_logic;
 clr: in std_logic;
 s: inout std_logic_vector (s_width - 1 downto 0);
 s_valid: inout std_logic
);
 end component;
 component xlfir
 generic (
-- synopsys translate_off
 c_mem_init_file: string := "gaussianxlx5_FIR3.mif";
-- synopsys translate_on
 c_baat: integer := 16;
 c_channels: integer := 1;
 c_coeff_type: integer := 0;
 c_coeff_width: integer := 16;
 c_data_type: integer := 0;
 c_data_width: integer := 16;
 c_filter_type: integer := 0;
 c_has_sel_i: integer := 0;
 c_has_sel_o: integer := 0;
 c_latency: integer := 12;
 c_reg_output: integer := 1;
 c_response: integer := 0;
 c_result_width: integer := 38;
 c_saturate: integer := 0;
 c_taps: integer := 49;
 c_use_model_func: integer := 0;
 c_zpf: integer := 1;
 clks_per_sample: integer := 1;
 din_arith: integer := xlSigned;
 din_bin_pt: integer := 15;
 din_width: integer := 16;
 dout_arith: integer := xlSigned;
 dout_bin_pt: integer := 30;
 dout_width: integer := 38;
 extra_registers: integer := 12;
 latency: integer := 25;
 uid: integer := 2
);
 port (
 core_ce: in std_logic;
 core_clk: in std_logic;
 core_clr: in std_logic;
 din: in std_logic_vector (din_width - 1 downto 0);
 din_valid: in std_logic;
 dout: inout std_logic_vector (dout_width - 1 downto 0);
 dout_valid: inout std_logic;
 sample_ce: in std_logic;
 sample_clk: in std_logic;
 sample_clr: in std_logic
);
 end component;

 signal CLKIN, CLK, CLK0 : std_logic; --kmv--
 signal ce40: std_logic;
 signal clk40: std_logic;
 signal clr40: std_logic;
 signal from_fir_1: std_logic_vector (37 downto 0);
 signal from_fir_1_valid: std_logic;
 signal from_fir_2: std_logic_vector (37 downto 0);
 signal from_fir_2_valid: std_logic;
 signal gnd: std_logic;
 signal net: std_logic_vector (15 downto 0);
 signal net1: std_logic_vector (38 downto 0);
 signal net10: std_logic_vector (37 downto 0);
 signal net10_valid: std_logic;
 signal net11: std_logic_vector (0 downto 0);

 5
 signal net11_valid: std_logic;
 signal net12: std_logic_vector (0 downto 0);
 signal net12_valid: std_logic;
 signal net13: std_logic_vector (38 downto 0);
 signal net13_valid: std_logic;
 signal net14: std_logic_vector (0 downto 0);
 signal net14_valid: std_logic;
 signal net1_valid: std_logic;
 signal net2: std_logic_vector (16 downto 0);
 signal net2_valid: std_logic;

 signal net3: std_logic_vector (15 downto 0);
 signal net3_valid: std_logic;
 signal net4: std_logic_vector (15 downto 0);
 signal net4_valid: std_logic;
 signal net5: std_logic_vector (37 downto 0);
 signal net5_valid: std_logic;
 signal net6: std_logic_vector (38 downto 0);
 signal net6_valid: std_logic;
 signal net7: std_logic_vector (16 downto 0);
 signal net7_valid: std_logic;
 signal net8: std_logic_vector (15 downto 0);
 signal net8_valid: std_logic;
 signal net9: std_logic_vector (15 downto 0);
 signal net9_valid: std_logic;
 signal net_valid: std_logic;

begin

------------------kmv------------------------
U1: IBUFG port map (I=>CLKIN_P, O=>CLKIN);

U2: CLKDLL port map (CLKIN=>CLKIN, CLKFB=>CLK, RST=>clr,
 CLK0=>CLK0, LOCKED=>LOCKED);

U3: BUFG port map (I=>CLK0, O=>CLK);
------------------kmv------------------------

 gnd <= '0';

 net <= gaussianxlx5_Gateway_In;
 gaussianxlx5_Gateway_Out1 <= net14;
 gaussianxlx5_Gateway_Out1_valid <= net14_valid;
 net_valid <= gaussianxlx5_Gateway_In_valid;

 Add1: xladdsub
 generic map (
 a_arith => xlUnsigned,
 a_bin_pt => 15,
 a_width => 16,
 b_arith => xlUnsigned,
 b_bin_pt => 15,
 b_width => 16,
 full_s_arith => xlUnsigned,
 full_s_width => 17,
 latency => 5,
 mode => 1,
 overflow => xlWrap,
 quantization => xlTruncate,
 s_arith => xlUnsigned,
 s_bin_pt => 15,
 s_width => 17
)
 port map (
 a => net4,
 a_valid => net4_valid,
 b => net3,
 b_valid => net3_valid,
 ce => ce,
 clk => clk,

 6
 clr => clr,
 s => net2,
 s_valid => net2_valid
);

 Add2: xladdsub
 generic map (
 a_arith => xlUnsigned,
 a_bin_pt => 15,
 a_width => 16,
 b_arith => xlUnsigned,
 b_bin_pt => 15,
 b_width => 16,
 full_s_arith => xlUnsigned,
 full_s_width => 17,
 latency => 5,
 mode => 1,
 overflow => xlWrap,
 quantization => xlTruncate,
 s_arith => xlUnsigned,
 s_bin_pt => 15,
 s_width => 17
)
 port map (
 a => net9,
 a_valid => net9_valid,
 b => net8,
 b_valid => net8_valid,
 ce => ce,
 clk => clk,
 clr => clr,
 s => net7,
 s_valid => net7_valid
);

 Constant1: xlconstant
 generic map (
 const_arith => xlSigned,
 const_bin_pt => 0,
 const_index => 0,
 const_width => 1,
 dout_arith => xlSigned,
 dout_bin_pt => 0,
 dout_width => 1
)
 port map (
 dout => net11,
 dout_valid => net11_valid
);

 Convert: xlconvert
 generic map (
 din_arith => xlSigned,
 din_bin_pt => 30,
 din_width => 38,
 dout_arith => xlUnsigned,
 dout_bin_pt => 15,
 dout_width => 16,
 latency => 4,
 overflow => xlSaturate,
 quantization => xlRound
)
 port map (
 ce => ce,
 clk => clk,
 clr => clr,
 din => net5,
 din_valid => net5_valid,
 dout => net3,
 dout_valid => net3_valid

 7
);

 Convert1: xlconvert
 generic map (
 din_arith => xlSigned,
 din_bin_pt => 30,
 din_width => 39,
 dout_arith => xlUnsigned,
 dout_bin_pt => 15,
 dout_width => 16,
 latency => 4,
 overflow => xlSaturate,
 quantization => xlRound
)
 port map (
 ce => ce,
 clk => clk,
 clr => clr,
 din => net1,
 din_valid => net1_valid,
 dout => net4,
 dout_valid => net4_valid
);

 Convert2: xlconvert
 generic map (
 din_arith => xlSigned,
 din_bin_pt => 30,
 din_width => 38,
 dout_arith => xlUnsigned,
 dout_bin_pt => 15,
 dout_width => 16,
 latency => 4,
 overflow => xlSaturate,
 quantization => xlRound
)
 port map (
 ce => ce,
 clk => clk,
 clr => clr,
 din => net10,
 din_valid => net10_valid,
 dout => net8,
 dout_valid => net8_valid
);

 Convert3: xlconvert
 generic map (
 din_arith => xlSigned,
 din_bin_pt => 30,
 din_width => 39,
 dout_arith => xlUnsigned,
 dout_bin_pt => 15,
 dout_width => 16,
 latency => 4,
 overflow => xlSaturate,
 quantization => xlRound
)
 port map (
 ce => ce,
 clk => clk,
 clr => clr,
 din => net6,
 din_valid => net6_valid,
 dout => net9,
 dout_valid => net9_valid
);

 Down_Sample: xldsamp
 generic map (

 8
 d_arith => xlUnsigned,
 d_bin_pt => 0,
 d_width => 1,
 init_valid => 0,
 passthru => 1,
 q_arith => xlUnsigned,
 q_bin_pt => 0,
 q_width => 1
)
 port map (
 d => net12,
 d_valid => net12_valid,
 dest_ce => ce40,
 dest_clk => clk40,
 dest_clr => clr40,
 q => net14,
 q_valid => net14_valid,
 src_ce => ce,
 src_clk => clk,
 src_clr => clr
);

 FIR: xlfir
 generic map (
-- synopsys translate_off
 c_mem_init_file => "gaussianxlx5_FIR.mif",
-- synopsys translate_on
 c_baat => 17,
 c_channels => 1,
 c_coeff_type => 0,
 c_coeff_width => 16,
 c_data_type => 1,
 c_data_width => 17,
 c_filter_type => 0,
 c_has_sel_i => 0,
 c_has_sel_o => 0,
 c_latency => 11,
 c_reg_output => 1,
 c_response => 0,
 c_result_width => 38,
 c_saturate => 0,
 c_taps => 17,
 c_use_model_func => 0,
 c_zpf => 1,
 clks_per_sample => 1,
 din_arith => xlUnsigned,
 din_bin_pt => 15,
 din_width => 17,
 dout_arith => xlSigned,
 dout_bin_pt => 30,
 dout_width => 38,
 extra_registers => 0,
 latency => 12,
 uid => 1
)
 port map (
 core_ce => ce,
 core_clk => clk,
 core_clr => clr,
 din => net2,
 din_valid => net2_valid,
 dout => from_fir_1,
 dout_valid => from_fir_1_valid,
 sample_ce => ce,
 sample_clk => clk,
 sample_clr => clr
);

 FIR1: xlfir
 generic map (

 9
-- synopsys translate_off
 c_mem_init_file => "gaussianxlx5_FIR1.mif",
-- synopsys translate_on
 c_baat => 17,
 c_channels => 1,
 c_coeff_type => 0,
 c_coeff_width => 16,
 c_data_type => 1,
 c_data_width => 17,
 c_filter_type => 0,
 c_has_sel_i => 0,
 c_has_sel_o => 0,
 c_latency => 11,
 c_reg_output => 1,
 c_response => 0,
 c_result_width => 38,
 c_saturate => 0,
 c_taps => 17,
 c_use_model_func => 0,
 c_zpf => 1,
 clks_per_sample => 1,
 din_arith => xlUnsigned,
 din_bin_pt => 15,
 din_width => 17,
 dout_arith => xlSigned,
 dout_bin_pt => 30,
 dout_width => 38,
 extra_registers => 0,
 latency => 12,
 uid => 3
)
 port map (
 core_ce => ce,
 core_clk => clk,
 core_clr => clr,
 din => net7,
 din_valid => net7_valid,
 dout => from_fir_2,
 dout_valid => from_fir_2_valid,
 sample_ce => ce,
 sample_clk => clk,
 sample_clr => clr
);

 FIR2: xlfir
 generic map (
-- synopsys translate_off
 c_mem_init_file => "gaussianxlx5_FIR2.mif",
-- synopsys translate_on
 c_baat => 16,
 c_channels => 1,
 c_coeff_type => 0,
 c_coeff_width => 16,
 c_data_type => 0,
 c_data_width => 16,
 c_filter_type => 0,
 c_has_sel_i => 0,
 c_has_sel_o => 0,
 c_latency => 12,
 c_reg_output => 1,
 c_response => 0,
 c_result_width => 38,
 c_saturate => 0,
 c_taps => 49,
 c_use_model_func => 0,
 c_zpf => 1,
 clks_per_sample => 1,
 din_arith => xlSigned,
 din_bin_pt => 15,
 din_width => 16,

 10
 dout_arith => xlSigned,
 dout_bin_pt => 30,
 dout_width => 38,
 extra_registers => 12,
 latency => 25,
 uid => 0
)
 port map (
 core_ce => ce,
 core_clk => clk,
 core_clr => clr,
 din => net,
 din_valid => net_valid,
 dout => net5,
 dout_valid => net5_valid,
 sample_ce => ce,
 sample_clk => clk,
 sample_clr => clr
);

 FIR3: xlfir
 generic map (
-- synopsys translate_off
 c_mem_init_file => "gaussianxlx5_FIR3.mif",
-- synopsys translate_on
 c_baat => 16,
 c_channels => 1,
 c_coeff_type => 0,
 c_coeff_width => 16,
 c_data_type => 0,
 c_data_width => 16,
 c_filter_type => 0,
 c_has_sel_i => 0,
 c_has_sel_o => 0,
 c_latency => 12,
 c_reg_output => 1,
 c_response => 0,
 c_result_width => 38,
 c_saturate => 0,
 c_taps => 49,
 c_use_model_func => 0,
 c_zpf => 1,
 clks_per_sample => 1,
 din_arith => xlSigned,
 din_bin_pt => 15,
 din_width => 16,
 dout_arith => xlSigned,
 dout_bin_pt => 30,
 dout_width => 38,
 extra_registers => 12,
 latency => 25,
 uid => 2
)
 port map (
 core_ce => ce,
 core_clk => clk,
 core_clr => clr,
 din => net,
 din_valid => net_valid,
 dout => net10,
 dout_valid => net10_valid,
 sample_ce => ce,
 sample_clk => clk,
 sample_clr => clr
);

 Negate: xlnegate
 generic map (
 a_arith => xlSigned,
 a_bin_pt => 30,

 11
 a_width => 38,
 c_has_q => 0,
 c_has_s => 1,
 c_width => 38,
 core => true,
 latency => 0,
 overflow => xlWrap,
 p_arith => xlSigned,
 p_bin_pt => 30,
 p_width => 39,
 quantization => xlTruncate
)
 port map (
 a => net5,
 a_valid => net5_valid,
 ce => gnd,
 clk => gnd,
 clr => gnd,
 p => net1,
 p_valid => net1_valid
);

 Negate1: xlnegate
 generic map (
 a_arith => xlSigned,
 a_bin_pt => 30,
 a_width => 38,
 c_has_q => 0,
 c_has_s => 1,
 c_width => 38,
 core => true,
 latency => 0,
 overflow => xlWrap,
 p_arith => xlSigned,
 p_bin_pt => 30,
 p_width => 39,
 quantization => xlTruncate
)
 port map (
 a => net10,
 a_valid => net10_valid,
 ce => gnd,
 clk => gnd,
 clr => gnd,
 p => net6,
 p_valid => net6_valid
);

 Relational: xlrelational
 generic map (
 a_arith => xlSigned,
 a_bin_pt => 30,
 a_width => 39,
 b_arith => xlSigned,
 b_bin_pt => 0,
 b_width => 1,
 c_data_type => 0,
 c_has_a_eq_b => 0,
 c_has_a_ge_b => 0,
 c_has_a_gt_b => 0,
 c_has_a_le_b => 0,
 c_has_a_lt_b => 0,
 c_has_a_ne_b => 0,
 c_has_ce => 1,
 c_has_qa_eq_b => 0,
 c_has_qa_ge_b => 1,
 c_has_qa_gt_b => 0,
 c_has_qa_le_b => 0,
 c_has_qa_lt_b => 0,
 c_has_qa_ne_b => 0,

 12
 c_has_sclr => 1,
 c_pipe_stages => 0,
 c_width => 39,
 core => true,
 dout_arith => xlUnsigned,
 dout_bin_pt => 0,
 dout_width => 1,
 latency => 3
)
 port map (
 a => net13,
 a_valid => net13_valid,
 b => net11,
 b_valid => net11_valid,
 ce => ce,
 clk => clk,
 clr => clr,
 dout => net12,
 dout_valid => net12_valid
);

 addsub: xladdsub
 generic map (
 a_arith => xlSigned,
 a_bin_pt => 30,
 a_width => 38,
 b_arith => xlSigned,
 b_bin_pt => 30,
 b_width => 38,
 full_s_arith => xlSigned,
 full_s_width => 39,
 latency => 5,
 mode => 2,
 overflow => xlWrap,
 quantization => xlTruncate,
 s_arith => xlSigned,
 s_bin_pt => 30,
 s_width => 39
)
 port map (
 a => from_fir_1,
 a_valid => from_fir_1_valid,
 b => from_fir_2,
 b_valid => from_fir_2_valid,
 ce => ce,
 clk => clk,
 clr => clr,
 s => net13,
 s_valid => net13_valid
);

 clock_driver_1: clock_driver
 port map (
 ce => ce,
 ce40 => ce40,
 clk => clk,
 clk40 => clk40,
 clr => clr,
 clr40 => clr40
);
end structural;

March 9 2001 Product Specification

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 1

Distributed Arithmetic FIR Filter
V5.0.0

Xilinx, Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
FAX: +1 408-559-7114
URL: www.xilinx.com/ipcenter
Support: www.support.xilinx.com

1 Features

• Drop-in module for VirtexTM, VirtexTM-E, SpartanTM-II and VirtexTM-II FPGAs
• High-performance finite impulse response (FIR), half-band, Hilbert transform, interpolated

filters, polyphase decimator, polyphase interpolator, half-band decimator and half-band
interpolator implementations

• Highly parameterizable
• 2-to-1024 taps
• 1-to-32 bit input data precision
• Signed or unsigned input data
• Signed or unsigned filter coefficients
• 1-to-32 bit coefficient precision
• 1-to-8 channels
• Support for interpolation and decimation factors of between 1 and 8 inclusive
• Coefficient symmetry exploited (symmetric/negative-symmetric) to produce compact

implementations
• Serial and parallel filters supported. The user may specify the degree of parallelism and

tradeoff FPGA logic resources for sample rate in order to generate an optimal design
• Data-flow style core interface and control
• On-line coefficient reload capability
• Incorporates Xilinx Smart-IP technology for maximum performance
• To be used with version 3.1i or later of the Xilinx CORE Generator System

2 General Description

The Xilinx filter Core is a highly parameterizable, area efficient high-performance FIR filter.
Several highly optimized filters can be realized with the filter Core Generator: single-rate, half-
band, Hilbert transform and interpolated filters, in addition to polyphase decimators and
interpolators and half-band decimators and interpolators. Structure in the coefficient set is
exploited to produce area-efficient FPGA implementations. Sufficient arithmetic precision is
employed in the internal data-path to avoid the possibility of overflow. The filter always presents a
full-precision result at its output port.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 2

The conventional single-rate FIR version of the core computes the convolution sum defined in Eq. (1)

 y k a n x k n k
n

N

() () () , ,= − =
=

−

∑ 0 1
0

1

K (1)

where N is the number of filter coefficients. The conventional tapped delay line realization of this
inner-product calculation is shown in Figure 1.

z-1z-1x(n)

y(n)

z-1 z-1 z-1

a(0) a(1) a(2) a(3) a(4) a(N-1)

Figure 1: Conventional tapped-delay line FIR filter mechanization.

Even though the figure is a useful conceptualization of the computation performed by the core,
the actual FPGA realization is quite different. A distributed arithmetic (DA) realization [1] [2] is
employed. With this approach there are no explicit multipliers employed in the design, only look-
up tables (LUTs), shift registers and a scaling accumulator.

2.1 Filter Realization – Distributed Arithmetic

A simplified view of a DA FIR is shown in Figure 2. In its most obvious and direct form, DA based
computations are bit-serial in nature – serial distributed arithmetic (SDA) FIR. Extensions to the
basic algorithm remove this potential throughput limitation [2]. The advantage of a distributed
arithmetic approach is its efficiency of mechanization. The basic operations required are a
sequence of table look-ups, additions, subtractions and shifts of the input data sequence. All of
these functions efficiently map to FPGAs. Input samples are presented to the input parallel-to-
serial shift register (PSC) at the input signal sample rate. As the new sample is serialized, the bit-
wide output is presented to a bit-serial shift register or time-skew buffer (TSB). The TSB stores
the input sample history in a bit-serial format and is used in forming the required inner-product
computation. The TSB is itself constructed using a cascade of shorter bit–serial shift registers.
The nodes in the cascade connection of TSB’s are used as address inputs to a look-up table.
This LUT stores all possible partial products [2] over the filter coefficient space.

subtract on last
bit of DA procesing

sequence

Scaling
Accumulator

y(n)

2-1

Add/Sub

2N

W ord
LUT

B
x(n)

Paralle l-to-Serial
Converter

B-bit Shift Registers

DA LUT Address
Sequence

Partia l
Products

N-1
Shift RegistersPSC

Time Skew Buffer (TSB)

Figure 2: Serial distributed arithmetic FIR filter.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 3

Several observations provide valuable insight into the operation of a DA FIR filter. In a
conventional multiply-accumulate (MAC) based FIR realization, the sample throughput is coupled
to the filter length. With a DA architecture the system sample rate is related to the bit precision of
the input data samples. Each bit of an input sample must be indexed and processed in turn
before a new output sample is available. For B-bit precision input samples, B clock cycles are
required to form a new output sample for a non-symmetrical filter, and B+1 clock cycles are
needed for a symmetrical filter. The rate at which data bits are indexed occurs at the bit-clock
rate. The bit-clock frequency is greater than the filter sample rate (fs) and is equal to Bfs for a
non-symmetrical filter and (B+1)fs for a symmetrical filter. In a conventional instruction-set
(processor) approach to the problem, the required number of multiply-accumulate operations are
implemented using a time-shared or scheduled MAC unit. The filter sample throughput is
inversely proportional to the number of filter taps. As the filter length is increased the system
sample rate is proportionately decreased. This is not the case with DA based architectures. The
filter sample rate is de-coupled from the filter length. The trade off introduced here is one of
silicon area (FPGA logic resources) for time. As the filter length is increased in a DA FIR filter,
more logic resources are consumed, but throughput is maintained.

Figure 3 provides a comparison between a DA FIR architecture and a conventional scheduled
MAC-based approach. The clock rate is assumed to be 120 MHz for both filter architectures.
Several values of input sample precision for the DA FIR are presented. The dependency of the
DA filter throughput on the sample precision is apparent from the plots. For 8-bit precision input
samples, the DA FIR maintains a higher throughput for filter lengths greater than 8 taps. When
the sample precision is increased to 16 bits, the crossover point is 16 taps.

0 50 100 150 200 250
0

10

20

30

40

50

60

FILTER LENGTH

S
A

M
P

LE
 R

A
T

E
 (

M
H

Z
)

SINGLE MAC
B=8
B=12
B=16

Figure 3: Throughput (sample rate) comparison of single-MAC based FIR and DA FIR as a
function of filter length. B is the DA FIR input sample precision. The clock rate is 120 MHz.

Figure 4 provides a similar comparison but for a dual-MAC architecture.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 4

0 50 100 150 200 250
0

20

40

60

80

100

120

FILTER LENGTH

S
A

M
P

LE
 R

A
T

E
 (

M
H

Z
)

DUAL MAC
B=8
B=12
B=16

Figure 4: Throughput (sample rate) comparison of dual-MAC based FIR and DA FIR as a
function of filter length. B is the DA FIR input sample precision. The clock rate is 120 MHz.

2.2 Increasing the Speed of Multiplication - Parallel Distributed Arithmetic

In its most obvious and direct form, DA based computations are bit-serial in nature – each bit of
the samples must be indexed in turn before a new output sample becomes available (SDA FIR).
When the input samples are represented with B bits of precision, B clock cycles are required to
complete an inner-product calculation (for a non-symmetrical impulse response). Additional
speed may be obtained in several ways. One approach is to partition the input words into M
subwords and process these subwords in parallel. This method requires M-times as many
memory look-up tables and so comes at a cost of increased storage requirements. Maximum
speed is achieved by factoring the input variables into single bit subwords. The resulting structure
is a fully parallel DA (PDA) FIR filter. With this factoring a new output sample is computed on
each clock cycle. PDA FIR filters provide exceptionally high-performance. The Xilinx filter Core
provides support for parallel DA FIR implementations. Filters may be designed that process
several bits in a clock period, through to a completely parallel architecture that processes all the
bits of the input data during a single clock period. For example, consider a non-symmetrical filter
with 12-bit precision input samples. Using a serial DA filter, new output samples are available
every 12 clock periods. If the data samples are processed 2-bits-at-a-time (2-BAAT), a new
output sample is ready every 12/2 = 6 clock cycles. With 3-,4-, 6- and 12-BAAT implementations,
a new result is available every 4, 3, 2 and 1 clock cycles respectively.

Another way to view the problem is in terms of the number of clock cycles L needed to produce a
filter output sample. And indeed, this is how the degree of computation parallelism is presented to
the user on the filter design GUI. So for example, let’s consider a filter core with a master system
clock (and this is not necessarily the filter sample rate) equal to 150 MHz. Also assume that the
input sample precision is 12 bits and that the impulse response is not symmetrical. For this set of
parameters the valid values of L (and these are presented on the core GUI) are 12, 6, 4, 3, 2 and
1. The corresponding filter sample rate (or throughput) for each value of L is 150/12=12.5,
150/6=25, 150/4=37.5, 150/3=50, 150/2=75 and 150/1=150 MHz respectively. If the filter employs
a symmetrical impulse response the valid values of L are different – and this is associated with
the hardware architecture that is employed to exploit the coefficient symmetry in order to produce

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 5

the most compact (in terms of FPGA logic resources) realization. So for a filter with 12-bit
precision input samples and a symmetrical impulse response, the valid values of L are 13, 7, 5, 4,
3, 2 and 1. Again, using a filter core master clock frequency of 150 MHz, the sample rate for each
value of L is 11.539, 21.429, 30, 37.5, 50, 75 and 150 MHz respectively.

The higher the degree of filter parallelism (fewer number of clock cycles per output sample or
smaller L), the greater the FPGA logic resources required to implement the design.

Specifying the number of clock cycles per output sample is an extremely powerful mechanism
that allows the designer to tradeoff silicon area with filter throughput.

2.3 Exploiting Filter Symmetry

The impulse response for many filters possess significant symmetry. This symmetry can be
exploited to minimize arithmetic requirements and produce area efficient filter realizations.
Figure 5 shows the impulse response for a 9-tap symmetric FIR filter.

a3 a5
(=a3)

a2

a1

a0 a4 a6
(=a2)

a7
(=a1)

a8
(=a0)

Figure 5: Symmetric FIR – odd number of terms.

Instead of implementing this filter using the architecture shown in Figure 1, the more efficient
signal flow-graph in Figure 6 can be used. In general the former approach requires N
multiplications and (N-1) additions. In contrast, the architecture in Figure 6 requires only

N / 2 multiplications and approximately N additions. This significant reduction in the

computation workload can be exploited to generate efficient filter hardware implementations.

z-1z-1z-1

z-1 z-1z-1

a3a2a1a0

x(n)

y(n)

a4

z-1

z-1

Figure 6: Exploiting coefficient symmetry – odd number of filter taps.

Coefficient symmetry for an even number of terms can be exploited as shown in Figure 7.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 6

z-1z-1z-1

z-1 z-1z-1

a3a2a1a0

x(n)

y(n)

a4

z-1

z-1 z-1

Figure 7: Exploiting coefficient symmetry – even number of filter taps.

The impulse response for a negative, or odd, symmetric filter is shown in Figure 8.

a3

a5=-a4

a2

a1

a0

a4

a6=-a3

a7=-a2

a8=-a1

a9=-a0

Figure 8: Negative Symmetric impulse response.

This symmetry is easily exploited in a manner similar to that shown in Figure 6 and Figure 7. In
this case the middle layer of adders are replaced by subtracters as illustrated in Figure 9.

z-1z-1z-1

z-1 z-1z-1

a3a2a1a0

x(n)

y(n)

a4

z-1

z-1 z-1

+ + + + +

Figure 9: FIR architecture exploiting negative symmetry.

Again, as highlighted above, the symmetry properties can be utilized to produce an efficient
hardware realization.

The example considered here illustrates a filter with an even number of terms, the filter structure
for an odd number of terms is a simple extension of the same principle.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 7

Even though none of the filter classes supported by the filter core use explicit multipliers, the
various symmetries can still be exploited using a distributed arithmetic implementation to produce
efficient FPGA realizations.

The filter compiler interface allows the filter symmetry to be specified. When the impulse
response does exhibit symmetry, the filter logic requirements can be significantly reduced in
comparison to an implementation that does not exploit the impulse response structure. For
example a 100 tap non-symmetric filter with 12-bit data samples and 12-bit coefficients consumes
519 Virtex logic slices [3]. In contrast, a 100 tap symmetric filter is realized with 354 slices. This
represents approximately a 30% savings in area.

3 Filter Throughput

The signal sample rate for a filter is a function of the core bit clock frequency, fclk Hz, the input
data sample precision B, the number of channels, the number of clock cycles (L) per output
sample and the coefficient symmetry. For a single channel non-symmetrical FIR filter using L=B
clock cycles per output sample, the filter sample frequency, or sample throughput, is fclk/B Hz. If
the filter is symmetrical, then the sample rate is fclk/(B+1) Hz. If the number of clock cycles per
output sample is changed to L=1, the sample throughput is simply fclk Hz. For L=2, the
throughput is fclk/2 Hz.

As a specific example, consider a filter with a core clock frequency equal to 100 MHz, 10-bit input
samples, L=10 and a non-symmetrical coefficient set. The filter sample rate is 100/10 = 10 MHz.
Observe that this figure is independent of the number of filter taps. If a symmetrical realization
had been generated, the sample throughput would be 100/11 = 9.0909 MHz. For L=1 the sample
rate would be 100 MHz (non-symmetrical FIR).

If the input sample precision is changed to 8 bits, with L=8, the filter sample rate for a non-
symmetrical filter would be 100/8 = 12.5 MHz.

4 Processing Multiple Channels
In many applications the same filter must be applied to several data streams. A common example
is the simple digital down converter shown in Figure 10. Here a complex base-band signal
x n x n jx nI Q() () ()= + is applied to a matched filter M(z). The in-phase and quadrature

components are each processed by the same filter.

M(z)

M(z)

(DDS)

v(n)

xI(n)

xQ(n)

I

Q

DDS = Direct Digital Synthesizer

Figure 10: Digital down converter.

One candidate solution to this problem is to simply employ two separate filters. However, this can
be wasteful of logic resources. A more efficient design can be realized using a filter architecture
that shares logic resources between multiple sample streams. Several of the filter classes

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 8

supported by the filter core provide in-built support for multi-channel processing and can
accommodate up to 8 independent data streams. As more channels are processed by a filter
core, the sample throughput is commensurately reduced. For example, if the sample rate (not the
core bit clock CLK) for a single channel filter is fs, a two-channel version of the same filter will
process two sample streams, each with a sample rate of fs/2. A three channel version of the filter
will process three data streams, and support a sample rate of fs/3 for each of the streams.

A multi-channel filter implementation is very efficient in terms of the amount of logic resources
utilized. A filter with two or more channels can be realized using virtually the same amount of
logic resources as a single channel version of the same filter. The tradeoff that needs to be
addressed when employing multi-channel filters is one of sample rate versus logic requirements.
As the number of channels is increased, the logic area remains approximately constant, but the
sample rate for an individual input stream will decrease.

The number of channels to be supported by a filter core is specified through the filter
customization GUI.

The multirate filters (polyphase decimator, polyphase interpolator, half-band decimator and half-
band interpolator) provide support for single channel operation only.

5 Filter Configurations

Eight classes of filters are supported by the filter compiler: 1. conventional single-rate FIR, 2. half-
band FIR, 3. Hilbert transform [5], 4. interpolated FIR [4] [6], 5. Polyphase decimator, 6.
Polyphase interpolator, 7. half-band decimator and 8. half-band interpolator. The interpolated FIR
should not be confused with an interpolation filter. Interpolated filters are single rate systems that
can be employed to produce efficient realizations of narrow-band filters, and with some minor
enhancements, wide-band filters can also be accommodated.

Each of the filter categories supported by the DA FIR core are described in separate sections
below.

5.1 Single Rate FIR

The basic FIR filter core is a single-rate (input sample rate = output sample rate) finite impulse
response filter. Figure 11 shows the schematic symbol for a single channel instance of this
module. Filter input data is supplied on the DIN port and filter output samples are presented on
the DOUT port. The CLK signal is the bit-rate clock for the core, and is recognized as being
different (higher frequency) to the input signal sample frequency. The ND, RDY and RFD signals
are filter interface/control signals that permit a simple and efficient data-flow style interface for
supplying input samples and reading output samples from the filter. The core interface signals are
discussed in detail in the Interface and Control section of the product guide.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 9

DIN[N-1:0]

ND

CLK RFD

DOUT[R-1:0]

RDY

Figure 11: Single channel FIR symbol.

A P-channel filter core is shown in Figure 12. The output ports SEL_I and SEL_O are provided to
indicate the active input and output data stream respectively. The SEL_I signal can be used to
multiplex several input sources on to the time-shared input bus DIN. SEL_I is employed as the
multiplexer select signal in this example. In a similar manner, the SEL_O signal may be used to
de-multiplex the time-division multiplexed filter output bus DOUT. This is useful for generating P
separate filter output samples to present to down-stream processes.

DIN[N-1:0]

ND

CLK RFD

DOUT[R-1:0]

RDY

SEL_I[CEIL(LOG_2(P)-1:0]

SEL_O[CEIL(LOG_2(P)-1:0]

Figure 12: Multi-channel FIR symbol.

Table 1 lists the FIR filter port names and port functional definitions.

Table 1: FIR core signal pinout.

Signal Name Direction Description

CLK Input BIT CLOCK (active rising edge)

ND Input NEW DATA (active high) – When this signal is
asserted the data sample presented on the DIN
port is loaded into the PSC shown in Figure 2
and an inner-product computation is started. ND
should not be asserted while RFD is low. Doing
so will corrupt the calculation.

DIN[N-1:0] Input FILTER INPUT DATA SAMPLE – N-bit wide
filter input sample.

RDY Output FILTER OUTPUT SAMPLE READY (active
high) Indicates that a new filter output sample is
available on the DOUT port.

RFD Output READY FOR DATA – (active high) Indicates

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 10

when the final bit of the current data sample is
about to be processed and new data may be
supplied to the filter.

SEL_I[ceil(log_2(P))-1:0] Output INPUT CHANNEL SELECT This is a standard
binary count generated by the core that
indicates the current filter input channel number.

SEL_O[ceil(log_2(P))-1:0] Output OUTPUT CHANNEL SELECT This is a standard
binary count generated by the core that
indicates the current filter output channel
number.

DOUT[R-1:0] Output FILTER OUTPUT SAMPLE R-bit wide output
sample bus for the FIR, half-band and
interpolated filters. R depends on the filter
parameters (data precision, coefficient
precision, number of taps and coefficient
optimization selection) and is always supplied
as a full-precision output port to avoid any
potential for overflow.

DOUT_I[N-1:0] Output FILTER OUTPUT SAMPLE, Hilbert transform –
In-phase (I) component. A Hilbert transform
accepts real valued input data and produces a
complex result. This port is the real or in-phase
component of the result. Since this output port is
simply an access point to the center of the filter
memory buffer, it carries the same precision as
the input sample data stream, i.e., N bits.

DOUT_Q[R-1:0] Output FILTER OUTPUT SAMPLE, Hilbert transform –
quadrature (Q) component. A Hilbert transform
accepts real valued input data and produces a
complex result. This port is the imaginary or
quadrature component of the result.

5.2 Half-Band FIR

The frequency response for a half-band filter is shown in Figure 13.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 11

1+δp

1−δp
1

δs

−δs
Ωπ

|H(ejΩ)|

PASSBAND

STOPBAND

Ωp Ωs

0.5

π
2

Figure 13: Half-band filter – magnitude frequency response.

Observe from the figure that the magnitude frequency response is symmetrical about quarter
sample frequency π/2 radians. The sample rate is normalized to 2π radians/sec. The passband
and stopband frequencies are positioned such that

Ω Ωp s= −π

The passband and stopband ripple, δ p and δ s respectively, are equal δ δp s= . These

properties are reflected in the filter impulse response. It can be shown [5] that approximately half
of the filter coefficients will be zero for an odd number of taps. This is illustrated in Figure 14 for
an 11-tap half-band filter.

0 2 4 6 8 10

-0.2

0

0.2

0.4

0.6

COEFFICIENT INDEX

Figure 14: Half-band filter impulse response.

The interleaved zero values in the coefficient data can be exploited to realize an efficient
realization like that shown in Figure 15.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 12

x (n)

y(n)

z -1 z-1 z -1

a4

z -1 z -1

a5

z-1 z -1

a8a6

z -1z-1

a2a0

z -1

a10

Figure 15: Half-band filter architecture.

This same structure, can of course, be utilized to generate an efficient DA FPGA implementation.
The Half-Band filter selection in the compiler is intended for this purpose. This filter is available in
the Filter Type field of the user interface. The user must supply the complete list of filter
coefficients, including the 0 value samples, when using the half-band filter. The filter coefficient
file format is discussed in greater detail in the Filter Coefficient Data section.

The half-band filter core has the same port definitions as the single-rate FIR filter.

5.3 Hilbert Transform

Hilbert transformers [5] are used in a variety of ways in digital communication systems.

An ideal Hilbert transform provides a phase shift of 90 degrees for positive frequencies and –90
degrees for negative frequencies. It can be shown [5] that the impulse response corresponding to
this frequency domain characteristic is odd-symmetric and has interleaved zero’s as shown in
Figure 16.

4096

1365

0

-1365

0 0
819

0

-819

-4096

0

Figure 16: Impulse response of a Hilbert transformer.

Both the alternating zero-valued coefficients and the negative symmetry can be utilized to
produce an efficient hardware realization. A Hilbert transformer accepts a real-valued signal and
produces a complex (I,Q) output signal. The quadrature (Q) component of the output signal is
produced by a FIR filter with an impulse response like that shown in Figure 16. The in-phase (I)
component is simply the input signal delayed by an appropriate amount to compensate for the
phase delay of the FIR process employed for generating the Q output. This is easily and
efficiently achieved by accessing the center tap of the sample history delay of the Q channel FIR
filter as shown in Figure 17. In this figure x(n) is the real-valued input signal and yI(n) and yQ(n)
are the in-phase and quadrature outputs respectively.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 13

x(n)

yQ (n)

z-1 z -1 z-1

a4

z-1 z-1 z-1 z -1

-a2-a4

z-1z -1

a2a0

z-1

-a0

y I(n)

Figure 17: FIR filter realization of a Hilbert transformer.

Figure 18 shows the architecture for a Hilbert transformer that exploits both the zero-valued and
the negative symmetry characteristics of the impulse response.

z-1z-2z-2

z-2 z-1z-2

a4a2a0

x(n)

yQ(n)

+ + +

yI(n)

Figure 18: Hilbert transformer exploiting zero-valued filter coefficients and negative symmetry.

The DA equivalent of this architecture is used for realizing the Xilinx Hilbert transformer.

Figure 19 shows the symbol for the Hilbert transform core. The DIN port is the filter input signal,
and the ports DOUT_I and DOUT_Q are the I and Q outputs respectively.

DIN[N-1:0]

ND

CLK

RFD

DOUT_I[N-1:0]

RDY

DOUT_Q[R-1:0]

Figure 19: Hilbert transform symbol.

The Hilbert transform core has the same data-flow interface and control signals (ND, RDY,RFD)
as the single-rate FIR filter core.

The Hilbert transform core also supports multiple channels as shown in Figure 20.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 14

DIN[N-1:0]

ND

CLK

RFD

DOUT_I[N-1:0]

RDY

DOUT_Q[R-1:0]

SEL_I[CEIL(LOG_2(P)-1:0]

SEL_O[CEIL(LOG_2(P)-1:0]

Figure 20: Multi-channel Hilbert transform core.

5.4 Interpolated FIR

An interpolated FIR (IFIR) [4] [6] has a similar architecture to a conventional FIR filter, but with the
unit delay operator replaced by k-1 units of delay. k is referred to as the zero-packing factor. An
N-tap IFIR filter is shown in Figure 21.

z-Dz-Dx(n)

y(n)

z-D z-D z-D

a(0) a(1) a(2) a(3) a(4) a(N-1)

D = k-1

Figure 21:Interpolated FIR (IFIR). The zero-packing factor is k.

This architecture is functionally equivalent to inserting k-1 zeros between the coefficients of a
prototype filter coefficient set.

Interpolated filters are useful for realizing efficient implementations of both narrow-band and wide-
band filters. A filter system based on an IFIR approach requires not only the IFIR but also an
image rejection filter. References [4] and [6] provide the details of how these systems are
realized, and how to design the IFIR and the image rejection filters.

The IFIR filter core takes advantage of the k-1 zeros in the impulse response to realize and area
efficient FPGA implementation. The FPGA area required by an IFIR filter is not a strong function
of the zero-packing factor.

THE IFIR FILTER IS A SINGLE-RATE STRUCTURE. IT DOES NOT PROVIDE AN EMBEDDED
SAMPLE RATE CHANGE – THE INPUT SAMPLE RATE IS THE SAME AS THE OUTPUT
SAMPLE RATE.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 15

5.5 Polyphase Decimator

The polyphase decimation filter option implements the computationally efficient M-to-1 polyphase
decimating filter shown in Figure 22.

h0(n)

h1(n)

hM-3(n)

x(n)

hM-2(n)

hM-1(n)

y(n)

Figure 22: M-to-1 polyphase decimator.

A set of N prototype filter coefficients a a aN0 1 1, , ,K − are mapped to the M polyphase sub-filters

h n h n h nM0 1 1(), (), , ()K − according to Eq. (2).

h n a i Mr i M r N M ii () () , , , , , ,= + = − = − +0 1 1 0 1K K (2)

The polyphase segments are accessed by delivering the input samples x(n) to their inputs via an
input commutator which starts at the segment index i = M-1 and decrements to index 0. After the
commutator has executed one cycle and delivered M input samples to the filter, a single output is
taken as the summation of the outputs from the polyphase segments. The output sample ′f s rate
is

′=f
f

Ms
s

where f s is sample rate of the input data stream x n n(), , , ,= 0 1 2 K We observe that each of the

polyphase segments is operating at the low output sample rate ′f s (compared to the high input

sample rate f s) and a total of N operations are performed per output point.

In the Xilinx decimator, the polyphase segments are realized using distributed arithmetic
techniques. M sub-filters, all operating in parallel, are employed in the filter architecture.

The polyphase decimator provides support for single-channel operation only.

5.6 Polyphase Interpolator

The polyphase interpolation filter option implements the computationally efficient 1-to-P
interpolation filter shown in Figure 23.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 16

h0(n)

h1(n)

hP-3(n)

x(n)

hP-2(n)

hP-1(n)

y(n)

Figure 23: 1-to-P polyphase interpolator.

A set of N prototype filter coefficients a a aN0 1 1, , ,K − are mapped to the P polyphase sub-filters

h n h n h nP0 1 1(), (), , ()K − according to Eq. (3).

h n a i i P r N P ii () (Pr) , , , , , ,= + = − = − +0 1 1 0 1K K (3)

Each new input sample x n() engages all of the polyphase segments in parallel. For each input
sample delivered to the filter, P output samples, one from each segment, are delivered to the filter
output port as indicated by the commutator in Figure 23.

The output sample ′f s rate is

′ =f f Ps s

where f s is sample rate of the input data stream x n n(), , , ,= 0 1 2 K We observe that each of the

polyphase segments is operating at the low input sample rate fs (compared to the high output

sample rate ′fs) and a total of N operations are performed per output point.

Like the polyphase decimator, each filter segment in the interpolator is constructed using
distributed arithmetic techniques. P concurrently operating segments are employed in the filter
realization.

The polyphase interpolator provides support for single-channel operation only.

5.7 Half-Band Decimator

The half-band decimator is a polyphase filter with an embedded 2-to-1 downsampling of the input
signal. The structure is shown in Figure 24.

h0(n)

h1(n)
x(n) y(n)

Figure 24: Half-band decimation filter.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 17

The filter is very similar in nature to the polyphase decimator described in 5.5 with the decimation
factor set to M=2. However, there is a subtle difference in the implementation that makes the half-
band decimator a more area efficient 2-to-1 down-sampling filter when the frequency response
reflects a true half-band characteristic.

The frequency and time response of a half-band filter are shown in Figure 13 and Figure 14
respectively. Observe the alternating zero-valued coefficients in the impulse response. Figure 25
exposes the details of a 7-tap half-band polyphase filter when the coefficients are allocated to the
two polyphase segments h n0 () and h n1() in Figure 24. Figure 25(a) is the filter impulse

response, note that a a1 50= = . Figure 25(b) provides a detailed illustration of the polyphase
sub-filters and shows how the filter coefficients are allocated to the two polyphase arms. In the
bottom arm, h n1(), the only non-zero coefficient is the center value of the impulse response a3.
Figure 25(c) shows the optimized architecture when the redundant multipliers and adders are
removed. The final structure has a reduced computation workload in contrast to a more general
2:1 down-sampling filter. The number of multiply-accumulate (MAC) operations required to
compute an output sample has been lowered by a factor of approximately two.

The arithmetic optimizations described above are exploited in the Xilinx half-band decimating filter
to minimize the logic requirements of the FPGA implementation.

Even though the previous description and associated figures have represented and described the
half-band filter in terms of MAC operations, and the signal flow-graphs indicate explicit multiply
operations, as with all of the filters discussed in this document, the underlying implementation is
done using distributed arithmetic techniques.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 18

a0

a2

a1=0

a3
a4

a5=0 a6

(a)

x(n)
y(n)

(b)

z-1z-1 z-1

a0 a2 a4 a6

z-1z-1

a1=0 a3 a5=0

x(n)
y(n)

(c)

z-1z-1 z-1

a0 a2 a4 a6

z-1

a3

Figure 25: 7-tap half-band decimation filter. (a) Impulse response. (b) Polyphase partition. (c)
Reduced complexity (hardware optimized) realization. The high density of zero-valued filter
coefficients are exploited in the FPGA realization to produce a minimal area implementation.

5.8 Half-Band Interpolator

Just as the half-band decimator is an optimized version of the more general polyphase
decimation filter, the half-band interpolator is a special case of a polyphase interpolator. The half-
band interpolator is shown in Figure 26.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 19

h0(n)

h1(n)
x(n) y(n)

Figure 26: Half-band interpolation filter.

The coefficient set for a true half-band interpolator is identical to that of a half-band decimator
with the same specifications. The large number of zero entries in the impulse response is
exploited in exactly the same manner as with the half-band decimator to produce hardware
optimized half-band interpolators. The process is presented in Figure 27. Figure 27(a) is the
impulse response, Figure 27(b) shows the polyphase partition and Figure 27(c) is the optimized
architecture that has taken full advantage of the 0 entries in the coefficient data.

Like the polyphase decimator and interpolator, the half-band interpolator only supports single
channel input data streams.

5.9 Small Non-Zero Even Terms in a Half-Band Filter Impulse Response

Certain filter design software may result in small non-zero values for the odd terms in the half-
band filter impulse response. In this situation it may be useful to force these values to 0 and re-
evaluate the frequency response to assess if it is still acceptable for the intended application. If
the odd terms are not identically zero the hardware optimizations described above are not
possible. If the small non-zero value terms cannot be ignored, the general polyphase decimator
or interpolator described in Sections 5.5 and 5.6 respectively using a rate change of two are more
appropriate.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 20

a0

a2

a1=0

a3
a4

a5=0 a6

(a)

(c)

z-1z-1

x(n)

y(n)

z-1

a0 a2 a4 a6

z-1z-1

a1=0 a3 a5=0

0

1
The first output is taken from the
port 0, then port 1.

z-1z-1

x(n)

y(n)

z-1

a0 a2 a4 a6

z-1

a3

0

1
The first output is taken from the
port 0, then port 1.

Figure 27: 7-tap half-band interpolation filter. (a) Impulse response. (b) Polyphase partition. (c)
Reduced complexity (hardware optimized) realization. The high density of zero-valued filter
coefficients are exploited in the FPGA realization to produce a minimal area implementation.

6 On-Line Coefficient Reload

All of the filters provide an interface for loading new coefficient data. While the new coefficient
values are being loaded, and some internal data structures are subsequently initialized, the filter
ceases to process input samples. The coefficient reload time is a function of the filter length and
type.

A high-level view of the reloadable DA FIR architecture is shown in Figure 28. Observe that the
DA LUT build engine in addition to resources to store the new coefficient vector (coefficient
buffer) are integrated with the FIR filter engine.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 21

DA FIR
Filter

DA LUT
Build

Engine

Coefficient
Buffer

Memory

Block
Memory

CLK
ND

DIN

RDY
RFD

DOUT

LD_DIN

COEF_LD
LD_WE

Figure 28: High-level view of DA FIR with reloadable coefficients.

Figure 29 is the symbol for a single-rate FIR supporting coefficient reload. The signals that
support the reload operation are LD_DIN, COEF_LD and LD_WE. The LD_DIN port is used to
supply the new vector of coefficients to the core. COEF_LD is asserted to initiate a load operation
and LD_WE is a write enable signal for the internal coefficient buffer.

When a coefficient load operation is initiated the new vector of coefficients are first written to an
internal buffer – the coefficient buffer. Once the load operation has completed, the DA LUT build-
engine is automatically started. The build-engine uses the values in the coefficient buffer to re-
initialize the DA LUT.

CLK

ND

DIN[]

RDY

RFD

DOUT[]

LD_DIN[]

COEF_LD

LD_WE

Figure 29: Single-rate FIR filter with coefficient reload functionality.

Figure 30 shows the timing for a coefficient reload operation. COEF_LD is asserted to start the
procedure. The new vector of coefficients are then written to the internal memory buffer
synchronously with the core master clock CLK. LD_WE may be used to control the flow of
coefficient data from the external coefficient source, for example a microprocessor, to the core.
LD_WE performs a clock-enable function for the load process.

Asserting COEF_LD forces RFD to the inactive state (low) indicating that the core cannot accept
any new input samples. Note, during the reload operation the filter inner-product engine is
suspended. Once the new coefficients have been loaded and the DA LUT build engine has
constructed the new partial-product lookup tables, RFD will be asserted indicating that the core is

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 22

ready to accept new input samples and resume normal operation. The filter sample history buffer
(regressor vector) is cleared when a new coefficient vector is loaded.

Asserting COEF_LD will also force RDY to the inactive state (low).

COEF_LD may be re-asserted again at any point during an update procedure (even once the DA
LUT build-engine is running) to start a new coefficient configuration.

RDY

COEF_LD

CLK

RFD

LD_DIN a(0) a(n-1)a(1) a(2) a(3) a(4) a(5) a(n-2)

LD_WE

DA LUT BUILD ENGINE
INITIALIZES DA LUT DURING
THIS INTERVAL.
RFD IS ASSERTED TO INDICATE
THE FILTER MAY GO ON_LINE WITH
THE NEW COEFFICIENTS

NEW COEFFICIENT VECTOR IS NOW BUFFERED
INTERNALLY

Figure 30: Coefficient reload timing.

Coefficient Reload – Typical Use Model

The typical sequence of events that would occur to engage the coefficient reload would be

1. Pulse COEF_LD for a single clock cycle to initiate a coefficient load operation.

2. Supply a length N vector new coefficient data on the LD_DIN port. The coefficients can be
written to the internal buffer at a rate of one value per clock cycle. The coefficient source may
use LD_WE to control the rate at which coefficients are delivered. This is useful for systems
in which the coefficient source may not be able to accommodate the core bit clock –
remember the coefficients are written to the internal buffer synchronously with the core
master clock signal CLK.

3. Wait until RFD is asserted, indicating the filter may now be put back on-line and process input
samples with the new coefficient vector.

7 CORE Generator Parameters

A filter core is customized using a configuration wizard. The wizard screens are shown in Figures
31 through 33.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 23

Figure 31: Filter parameterization screen – field 1.

Figure 32: Parameterization screen – field2 or Coefficients panel. The coefficient
parameterization screen is accessed using the Coefficients tab on the primary GUI shown in
Figure 31.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 24

Figure 33: Filter parameterization screen – field 3.

The user supplied parameters are:

• Component Name: The user defined filter component name.

• Filter Type: Eight filter types are supported 1. Single rate FIR, 2. Half-band FIR, 3. Hilbert
transform, 4. Interpolated FIR, 5. Polyphase decimator, 6. Polyphase interpolator, 7. Half-
band decimator, and 8. Half-band interpolator.

• Number of Channels: The number of channels processed by the filter. One to a maximum of
8 channels can be accommodated by a single filter core. The polyphase decimator and
polyphase interpolator provide single channel support only.

• Zero Packing Factor: This field is applicable to the interpolated filter only. The zero packing
factor specifies the number of 0’s inserted between the coefficient data supplied by the user
in the .coe (filter coefficient file). This is an integer value between 2 and 8 inclusive. A zero
packing factor of k will insert k-1 0’s between the supplied coefficient values.

• Sample Rate Change: This field is applicable to the polyphase decimator and interpolator
structures. When the decimator is selected, the Sample Rate Change value defines the

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 25

decimation factor. For the interpolation filter it defines the up-sampling factor. Sample rate
changes of between 1 to 8 inclusive are supported for both up-sampling and down-sampling.

• Number of Taps: The number of filter taps. For a symmetric impulse response (either even
or odd symmetric) the number of filters taps is between 2 and 1024 inclusive. For a non-
symmetrical coefficient set the range is 2 to 1024 inclusive.

• Coefficient Width: The bit precision of the coefficient data. This is an integer value between
1 and 32 inclusive. The Coefficient Width parameter is accessed using the Coefficients user
interface (UI) shown in Figure 32. This sub-panel is enabled using the Coefficients tab on the
primary GUI.

• Coefficient Data Type: The coefficient data can be specified as either signed or unsigned.
When the signed option is selected conventional two’s complement representation is
assumed. The Coefficient Data Type parameter is accessed using the Coefficients user UI
shown in Figure 32. This sub-panel is accessed using the Coefficients tab on the primary
GUI.

• Coefficient Reload: When the Fixed radio button on the Coefficient Reload panel is selected
the filter Core will be generated without a coefficient reload interface. When the Reloadable
button is selected a coefficient reload interface is provided on the Core.

• Optimize Coefficients: The look-up tables employed in the filter mechanization can be
optimized to minimize the amount of FPGA logic fabric employed by the core. The
optimization is data (filter coefficient set) dependent.

• Load Coefficients: The filter coefficients are supplied in a coefficient or coe file. This is an
ASCII file with a “.coe” extension. The file format is described in detail below. Activating this
tab presents a browser window that lets the user select a coefficient file.

• Show Coefficients: Selecting this tab on the Coefficients panel displays the filter coefficient
data.

• Input Data Width: The precision (in bits) of the filter input data samples. The input sample
precision is an integer value between 1 and 32 inclusive.

• Input Data Type: The filter input data can be specified as either signed or unsigned. The
signed option employs conventional two’s complement arithmetic.

• Implementation Option: Selecting the Serial option generates an SDA FIR filter. This is a
fully serial DA FIR filter. In this case, if a non-symmetric impulse response is specified, B (B is
the bit precision of the input data) clock cycles are required to generate a new output sample
(B clock cycles per output point). If a symmetric impulse response is employed, B+1 clock
cycles are required per output point.

If the Parallel filter is specified a fully parallel PDA filter is produced. The fully parallel filter
produces a new output sample on every clock edge. Choosing the Clock Cycles/Sample
option allows the degree of filter parallelism to be specified using the associated pull-down
menu. The menu presents the valid set of values (L) that can be selected to specify the
number of cycles per output sample of the internal polyphase filter segments. For example,
selecting L=3 for a polyphase decimator will result in a filter where each internal DA sub-filter
generates a new output sample every 3 clock cycles.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 26

For all of the polyphase filters, including the half-band decimation and half-band interpolation
filters, the Clock Cycles/Sample value refers to the individual filters that are employed to
construct all of the multirate architectures.

• Impulse Response: Indicates structure present in the coefficient set. The user may specify a
symmetric, negative (odd)-symmetric or non-symmetric impulse response.

• Output Options: The filter output bus can be registered or unregistered. When the registered
output option is selected, the filter output bus DOUT is maintained at the core output between
successive assertions of RDY. In the unregistered mode the output sample is only valid when
RDY is active. At other times the port will change on successive clock cycles.

• Information: This field reports the filter latency (the number of clock cycles between
presenting an input data sample and the corresponding filter output sample) and the number
of clock cycles per sample. The filter latency is also available in the component instantiation
file. This file has a base-name that is the same as the filter component name, with a .vho
extension for a VHDL design flow or a .veo extension for a Verilog flow. For example, if the
filter component name is my_filt, and a VHDL flow has been selected, the instantiation file will
be named my_fir.vho. If a Verilog flow had been selected this file would be called my_fir.veo.

8 XCO File Parameters

The parameters supplied via the filter customization wizard are captured and logged to the .xco
file. The full name of this file is simply the Component Name with a .xco file extension. Table 2
defines the .xco file parameter names and range specifications.

Table 2: XCO file parameter names, definitions and range specifications.

Parameter Name Definition Range
BusFormat Controls the notation

employed for identifying buses
in the output edif netlist file.

{BusFormatAngleBracket |
BusFormatParen}

SimulationOutputProducts Core HDL simulation selection
– either VHDL or Verilog.

{VHDL | VERILOG}

ViewlogicLibraryAlias Pathname to Viewlogic
directory

Valid path name for the user’s
operating system.

XilinxFamily The FPGA target device
family.

{Virtex | Spartan2}

DesignFlow HDL flow specifier. {VHDL | VERILOG}

FlowVendor Design flow vendor
information.

{Other | Synplicity | Exemplar |
Synopsis | Foundation}

coefficient_file File of filter coefficient values.
The file format is defined in
Section 10.

Any valid file name for the
user’s operating system
consisting of the letters a…z,
0…9 and ‘_’.

coefficient_data_type The filter coefficient data type.
When the type signed is
selected conventional 2’s
complement arithmetic is
employed.

{signed | unsigned}

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 27

number_of_taps The number of filter taps. [2,…,1024]
register_output When true, an output register

is inserted at the output of the
filter datapath. In this case the
filter output will remain valid
during successive transitions
of the filter output port(s).
When this parameter is false,
the filter output is not
registered and the output
sample is valid only during the
clock cycle demarcated by the
RDY control signal.

{true | false}

optimize_coefficients When true, logic optimization
is performed on the filter look-
up tables. Selecting
optimization will result in the
most compact (minimum
FPGA logic resources)
implementation. If this
parameter is false, no logic
optimization is performed.

{true | false}

component_name Textbox that defines the filter
component name.

Any valid file name for the
user’s operating system
consisting of the letters a…z,
0…9 and ‘_’.

zero_packing_factor This field is only applicable to
interpolated filters and controls
the number of 0’s inserted
between the user supplied
coefficient values. A value of 2
results in a single 0 valued
entry between the user
coefficients, a value of 3
inserts 2 0’s between the user
coefficients and so on. For all
filters other than the
interpolated filter this
parameter should be 1.

[1,…,8]

impulse_response This parameter allows the user
to identify structure in the filter
coefficient data. Coefficient
vectors that are identified
(explicitly by the user) as
being structured (symmetric or
negative symmetric) result in
minimal size hardware
implementations.

{non_symmetric | symmetric |
negative_symmetric}

sample_rate_change This parameter specifies the
sample rate change
embedded in the filter. For all
single-rate filters the rate
change is considered to be 1.

[1,…,8]

number_of_channels The number of channels
supported by the filter. All

[1,…,8]

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 28

multirate filters support only a
single channel.

clock_cycles_per_sample Number of clock cycles
required to generate a filter
output sample. In the context
of any of the multirate filters,
this value is associated with
the sub-filters (polyphase
segments) and not the final
output result.

The valid set of values for this
parameter is a function of
several other parameters,
including input_data_width
and impulse_response. This
value will be a minimum of 1,
corresponding to a full parallel
implementation in which a new
output sample is available on
every clock edge, to a
maximum ot
input_data_width+1.

filter_type The filter type specifier. { single_rate_fir | half-band |
hilbert_transform | interpolated
| interpolation | decimation |
decimating_half-band | half-
band_interpolating }

coefficient_width Number of bits used to
represent the filter coefficient
values.

[1,2,…,32]

input_data_width Number of bits used to
represent the filter input
samples.

[1,2,…,32]

implementation_option This field defines the degree of
filter parallelism and is further
discussed in Section 2.2.

{clock_cycles_per_output_sa
mple | parallel | serial}

input_data_type The filter input sample data
type. When the type signed is
selected conventional 2’s
complement arithmetic is
employed.

{signed | unsigned}

coefficient_reload This parameter controls the
presence (or not) of a
coefficient reload interface.
When defined as
stop_during_reload the
interface is included. When
defined as fixed_coefficients
no coefficient reload feature is
present.

{stop_during_reload |
fixed_coefficients}

Figure 34 is an example .xco file. The ‘#’ characters at the start of the first five lines in the
example identify in-line comments.

Xilinx CORE Generator 3.1.01i
Username = chrisd
COREGenPath = c:\xilinx\coregen
ProjectPath = C:\xilinx_projects\projects\FIR\coregen\reload
ExpandedProjectPath = C:\xilinx_projects\projects\FIR\coregen\reload
SET BusFormat = BusFormatParen
SET SimulationOutputProducts = VHDL

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 29

SET ViewlogicLibraryAlias = ""
SET XilinxFamily = Virtex2
SET DesignFlow = VHDL
SET FlowVendor = Synplicity
SELECT Distributed_Arithmetic_FIR_Filter Virtex2 Xilinx,_Inc. 5.0
CSET coefficient_file = C:\xilinx_projects\projects\FIR\coregen\reload\h.coe
CSET coefficient_data_type = signed
CSET number_of_taps = 16
CSET register_output = false
CSET optimize_coefficients = false
CSET component_name = f
CSET zero_packing_factor = 1
CSET impulse_response = non_symmetric
CSET sample_rate_change = 4
CSET number_of_channels = 1
CSET clock_cycles_per_sample = 10
CSET filter_type = interpolation
CSET coefficient_width = 16
CSET input_data_width = 10
CSET input_data_type = signed
CSET coefficient_reload = stop_during_reload
GENERATE

Figure 34: Example .xco File.

9 Interface, Control and Timing

All of the filter classes employ a data-flow style interface for supplying input samples to the core
and for reading the filter output port. ND (New Data), RFD (Read For Data) and RDY (Ready) are
used to co-ordinate I/O operations. In addition, for multi-channel filters, SEL_I and SEL_O are
supplied to indicate the active input and output stream respectively.

9.1 Nomenclature

In the timing diagrams supplied in this section the notation x n() and y n() are used to denote the
filter input and output samples respectively. In some diagrams, for space reasons, the variable
name (xor y) has been omitted and the diagram is only annotated with the index value n.

9.2 Timing: Single Rate and Multi-Channel Filters

The timing for a single channel filter, with L clock cycles per output sample and a registered
output port is shown in Figure 35. The ND input signal is used for loading a new input sample into
the filter. It is effectively used internally as a clock enable, and the actual sample load operation
occurs on the rising of the clock (CLK). When the core is ready to accept a new input sample the
RFD signal is asserted. When a new output sample is available RDY is asserted for a single clock
period. When the registered output option is selected the output sample will remain valid between
successive assertions of RDY.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 30

CLK

ND

RFD

1 L-3 L-2 L-1 0 10L-1L-2
PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT

new filter output sample

y(n) y(n+1)

new filter output sample

interval depends on filter latency†

INPUT SAMPLE LOADED ON THIS CLOCK EDGE

i i+1 i i+1

† The latency is reported on the filter GUI

Figure 35: Single channel FIR filter timing. L clock cycles per output sample, registered output.

Figure 36 shows the timing for a single channel filter with an unregistered output port. The input
timing is the same as for the registered output example, but now the filter result is valid for only a
single clock period and is framed by RDY.

For the two cases described so far, the host system is supplying input samples at the highest
frequency possible, that is, every L clock ticks. This does not have to be the case, data samples
can be supplied at a lower rate without disturbing the operation of the filter as shown in Figure 37.
In this example, even though the filter has been designed specifying L clock cycles per output
sample, new data is supplied to the filter every L+2 clock periods. Observe that RFD is still
asserted on the Lth clock cycle of a data sample epoch, but the host system only supplies a new
input sample 2 clock cycles later. RFD remains active until the new input sample has been
accepted by the filter core. This occurs synchronously with the positive going edge of the clock
and with ND effectively acting as an active high clock enable.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 31

CLK

ND

RFD

PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT

new filter output samplenew filter output sample

interval depends on filter latency†

VALID VALID

1 L-3 L-2 L-1 0 10L-1L-2 i i+1 i i+1

† The latency is reported on the filter GUI

Figure 36: Single channel FIR filter timing. L clock cycles per output sample, unregistered output.

CLK

ND

RFD

PSC
DATA
OUT

RDY

DIN VALID

new filter input sample x(n)

VALID

new filter input sample x(n+1)

DOUT y(n) y(n+1)

new filter output sample

interval depends on filter latency†

1 L-3 L-2 L-1 0 10 i i+1 i i+1

† The latency is reported on the filter GUI

Figure 37: Single channel FIR filter timing. L clock cycles per output sample, registered output.
Input samples supplied every L+2 clock periods.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 32

As a specific example of the filter interface timing, consider a non-symmetric single-channel FIR
filter with 10-bit precision input samples and a full serial realization (L=10). The timing diagram is
shown in Figure 38. Ten clock cycles are needed to process each new input sample.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN VALID VALID VALID

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

y(n+1)y(n)

0 1 2

Figure 38: Single channel FIR filter timing. Full serial implementation, 10-bit input samples,
registered output. For L=10, there are 10 clock periods between successive output samples.

A symmetrical filter with B-bit precision input samples requires in general B+1 clock periods for a
full serial (SDA) implementation. Figure 39 shows the timing for a single channel symmetrical FIR
employing 10-bit input samples. In this case, eleven clock cycles (L=11) are required to process
each new piece of data.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN VALID VALID VALID

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

y(n+1)y(n)

Figure 39: Single channel FIR filter timing. Full serial implementation, 10-bit input samples,
symmetrical impulse response, registered output. 11 clock periods are required to process each
new input sample.

The previous two figures illustrated the timing for full serial, or SDA filter implementations with
symmetrical and non-symmetrical coefficient data. The Core Generator filter core supports
various types of parallel filter realizations. The greater the degree of filter parallelism employed,
the higher the filter sample rate. Filter parallelism is specified in terms of the number of clock
cycles (L) required to compute an output sample. This value is accessed via the filter core GUI
when the Multi clock cycles per output sample is selected in the Implementation Option field. The
associated drop-down menu indicates valid options for L. The valid options for L depend on the
filter parameters – symmetrical/non-symmetrical coefficient data and precision of the input
samples. For example, for an input sample precision B=10 and using a non-symmetrical impulse
response, the valid values for L are {1, 2, 3, 4, 5, 10}. For B=10 and a symmetrical impulse
response L={1, 2, 3, 4, 6, 11}.

Figure 40, Figure 41 and Figure 42 illustrate the timing diagrams for a filter with B=10 bit
precision input samples, with L=2, 4 and 6 respectively.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 33

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

y(n+1)y(n)

0 1 01

x(n+2)x(n+1) x(n+3) x(n+4) x(n+5) x(n+6) x(n+7) x(n+8) x(n+9) x(n+10) x(n+11)

y(n+2) y(n+3) y(n+4) y(n+5) y(n+6) y(n+7) y(n+8) y(n+9) y(n+10)

Figure 40: Single channel FIR filter timing. PDA FIR with B=10-bit input samples, L=2 clock
cycles per output sample, registered output. There are 2 clock periods between successive
output samples.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

y(n+1)y(n)

0 1 23

x(n+1) x(n+2) x(n+3) x(n+4) x(n+5)

y(n+2) y(n+3) y(n+4)

interval depends
on filter latency

Figure 41: Single channel FIR filter timing. PDA FIR with B=10-bit input samples, L=4 clock
cycles per output sample, registered output. There are 4 clock periods between successive
output samples.

RDY

PSC
DATA
OUT

ND

CLK

DOUT

RFD

0 1

DIN x(n)

2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1

y(n)

2 3 45

x(n+1) x(n+2) x(n+3)

y(n+1) y(n+2)

interval depends
on filter latency

Figure 42: Single channel FIR filter timing. Symmetrical PDA FIR with B=10-bit input samples,
L=6 clock cycles per output sample, registered output. There are 6 clock periods between
successive output samples.

Figure 43 illustrates the filter timing for a fully parallel DA (PDA) FIR filter. Observe that after the
initial start-up latency a new output sample is available on every clock edge. The number of clock
cycles in the start-up latency period is a function of the filter parameters. This value is reported in
the filter design GUI in addition to the associated .vho (or .veo, refer to Section 8) file.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 34

The figure shows ND valid on every clock edge – so a new input sample is delivered to the filter
on each clock edge. Of course, ND may be removed for an arbitrary number of clock cycles in
order to temporarily suspend the filter operation. No internal state information is lost when this is
done, and the filter will resume normal operation when ND is re-applied (placed in the active
again).

RDY

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+12)x(n+2) x(n+3) x(n+4) x(n+5) x(n+6) x(n+7) x(n+8) x(n+9) x(n+10) x(n+11) x(n+13) x(n+14) x(n+15) x(n+16) x(n+17) x(n+18) x(n+19) x(n+20) x(n+21) x(n+22)

y(n+5)y(n) y(n+1) y(n+2) y(n+3) y(n+4) y(n+6) y(n+7) y(n+8) y(n+9)

interval depends
on filter latency

Figure 43: Fully parallel implementation. Single channel filter. With a fully parallel implementation
a new output sample is available on each clock edge (after the start-up latency) independent of
the filter length or the bit precision of the input data samples.

Figure 44 and Figure 45 demonstrate the timing for a multi-channel filter. Multi-channel filters
provide two additional output ports, SEL_I and SEL_O, that indicate the active input and output
channel respectively. Figure 44 illustrates a filter with an unregistered output while Figure 45
shows the timing for registered output samples.

RDY

PSC
DATA
OUT

SEL_I CHAN 0 CHAN 1 CHAN 2 CHAN 0CHAN N-1

ND

CLK

SEL_O CHAN 0 CHAN 1 CHAN 2 CHAN N-1

INTERVAL DEPENDS ON FILTER PARAMETERS

DOUT

RFD

B0 B1 BB-1 B0 B1 BB-1 B0 B1
BB-1 B0 B1

BB-1 B0 B1
BB-1

DIN VALID VALID VALID VALID VALID VALID

VALID VALID VALID VALID VALID VALID

Figure 44: Multi-channel FIR filter timing. Non-symmetrical impulse response, B-bit input
samples, unregistered output.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 35

RDY

PSC
DATA
OUT

SEL_I CHAN 0 CHAN 1 CHAN 2 CHAN 0CHAN N-1

ND

CLK

SEL_O CHAN 0 CHAN 1 CHAN 2 CHAN N-1

INTERVAL DEPENDS ON FILTER PARAMETERS

DOUT y0,n y1,n y2,n yN-1,n y0,n+1

RFD

B0 B1 BB-1 B0 B1 BB-1 B0 B1
BB-1 B0 B1

BB-1 B0 B1
BB-1

DIN VALID VALID VALID VALID VALID VALID

CHAN 0

Figure 45: Multi-channel FIR filter timing. Non-symmetrical impulse response, B-bit input
samples, registered output.

9.3 Polyphase Decimator Timing

Figure 46 demonstrates the timing for a polyphase decimator with M B= =4 8, and 8 clock
cycles per output point (Clock Cycles/Output Sample=8). Remember, for all of the multirate filter
structures, the number of clock cycles per output point specification (Clock Cycles/Output
Sample) refers to the individual filter segments that comprise the filter, and is not directly
associated with the filter output port DOUT. Observe that in this case, the filter is always able to
accept input samples, as indicated by RFD=1. New output samples become available after M, in
this case 4, input samples have been delivered to the filter. New output samples are produced in
response to each new block of 4 input values. Delivering the final value in each M-tuple causes a
new inner product calculation to commence. The resulting output sample becomes available a
number of clock cycles k after the final sample in the M-tuple is delivered. The exact value of k is
a function of the filter parameterization. It is tightly coupled to the input sample bit precision, the
value specified for the Clock Cycles/Output Sample parameter, in addition to the number of
internal pipeline stages and the data buffering depth in the filter. It is always recommended to use
the output control signal RDY to coordinate all processes that are data sinks for the filter output
port DOUT.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 36

ND

CLK

RFD

DIN 0 1 2 3 4 5 6 7 8 9 10 11

First Input Sample Delivered to Filter

CLOCK
CYCLE # 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7 0 1 7

Interval Depends on Filter Parameters

RDY

DOUT y(0) y(1)

First Output Available

Figure 46: Polyphase decimator timing. 8-bit precision input samples, down-sampling factor
M=4.L=8.

Figure 47 illustrates the timing for a 4-to-1 polyphase decimator with similar parameters to the
filter considered in Figure 46, but in this case the number of Clock Cycles/Output Sample is L=4.
Observe that even though the input sample precision (B=8) is the same as in the filter
demonstrated in Figure 46, samples can be presented to filter every 4 clock cycles, in contrast to
every 8 clock periods in the previous example. The filter supports double the input sample rate,
and hence twice the bandwidth, of the filter with L=8.

ND

CLK

RFD

DIN 0 1 2 3 4 5 6 7 8 9 10 11

First Input Sample Delivered to Filter

CLOCK
CYCLE #

Interval Depends on Filter Parameters

RDY

DOUT y(0) y(1)

First Output Available

0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32 0 1 32

Figure 47: Polyphase decimator timing. 8-bit precision input samples, down-sampling factor
M=4.L=4.

9.3.1 Polyphase Decimator – Burst Input Mode

Internal buffering in the polyphase decimator allows the user to burst samples into the DIN port.
This is illustrated in Figure 48 for a down-sampling factor M=4, 12-bit input samples and L=12.
This figure shows the timing for the filter starting from rest, that is, no data has previously been
applied to the input port. Notice in this case that a total of 8 samples may be written to the filter
before the device removes RFD.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 37

RDY

ND

CLK

DOUT

RFD

DIN x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

y(0)

Figure 48: Polyphase decimator timing. 12-bit precision input samples, down-sampling factor
M=4, L=12. Burst input data operation. Diagram shows the timing when the filter is started from
from rest, that is, no data has previously been applied to the input port.

Once the filter has moved out of this start-up state input samples must obey the timing diagram
shown in Figure 49. Only 4 samples can be supplied in each data burst.

RDY

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+2) x(n+3) x(n+4) x(n+5) x(n+6)

NEW OUTPUT

x(n+7)

NEW OUTPUT

Figure 49: Polyphase decimator timing. 12-bit precision input samples, down-sampling factor
M=4, L=12. Burst input data operation. Diagram shows the timing after the filter has moved out of
the start-up timing shown in Figure 48.

As with the Clock Cycles/Output Sample parameter for the single-rate filters, this parameter can
be used with all the multirate filters to tradeoff performance with silicon area.

9.4 Polyphase Interpolator Timing

Figure 50 shows the timing for a polyphase interpolator that supports a sample rate change of
P=4, eight bit precision input samples (B=8) and 8 clock-cycles-per-output-point. Again, just like
the polyphase decimator, the number of clock cycles specified per output point is associated with
the individual sub-filters in the polyphase structure. In this example, each subfilter produces a
new output sample every 8 clock cycles. The 4 polyphase segments are actually operating
concurrently, so in fact, internal to the filter, 4 new output samples are available every 8 clock
cycles. When the new block of output samples are available, they are sequenced to the filter
output port DOUT using an internal multiplexor. The multiplexor select signal is referenced to the
filter master clock signal CLK. As shown in Figure 50, the vector of P output samples is validated
by the core output control signal RDY.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 38

RDY

CLOCK
CYCLE #

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+2) x(n+3)

interval depends on filter latency - Which is a
 Function of the Filter Parameters

y(n) y(n+1) y(n+2) y(n+3)

50 76 50 76 50 76 50 76

y(n+4) y(n+5) y(n+6) y(n+7)

4 4 4 4

y(n+8) y(n+9) y(n+10) y(n+11)

Figure 50: Polyphase interpolator timing. 8-bit precision input samples, up-sampling factor P=4.
L=8.

Figure 51 shows the timing for an interpolator with similar parameters to the example
demonstrated in Figure 50, but in this case a value of L=4 has been used. This means that each
polyphase segment produces a new output sample every 4 clock cycles. In addition, all 4 outputs
become available (internally) in parallel. Observe that after the initial startup latency a new
interpolant is available at the filter output port DOUT on each successive rising edge of the clock .

RDY

CLOCK
CYCLE #

ND

CLK

DOUT

RFD

DIN x(n) x(n+1) x(n+2) x(n+3)

interval depends on filter latency - Which is a
 Function of the Filter Parameters

y(n) y(n+1) y(n+2) y(n+3) y(n+4) y(n+5) y(n+6) y(n+7) y(n+8) y(n+9) y(n+10) y(n+11)

30 21 30 21 30 21 30 21 30 21 30 21

x(n+4) x(n+5)

y(n+12)y(n+13) y(n+14)

Figure 51: Polyphase interpolator timing. 8-bit precision input samples, up-sampling factor P=4.
L=4.

10 Filter Coefficient Data

The filter coefficients are supplied to the filter compiler using a coefficient file with a .coe
extension. This is an ASCII text file with a single line header that defines the radix of the number
representation used for the coefficient data, followed by the coefficient values themselves. This is
shown in Figure 52 for an N-tap filter.

radix=coefficient_radix;
coefdata=
a(0),
a(1),
a(2),
….
a(N-1);

Figure 52: Filter coefficient file format.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 39

The filter coefficients must be supplied as integers in either base-10, base-16 or base-2
representation. This corresponds to coefficient_radix=10, coefficient_radix=16 and
coefficient_radix=2 respectively.

The coefficient values may also be placed on a single line as shown in Figure 53.

radix=coefficient_radix;
coefdata=a(0),a(1),a(2),….,a(N-1);

Figure 53: Filter coefficient file format – coefficient data on a single line.

The coefficient file format for each of the filter classes supported by the core are discussed below.

10.1 FIR

The coefficient file for the single-rate FIR filter is straightforward and consists of a one-line header
followed by the filter coefficient data. For example, the filter coefficient file for an 8-tap filter using
a base-10 representation for the coefficient values is shown in Figure 54.

radix=10;
coefdata=20,-256,200,255,255,200,-256,20;

Figure 54: Filter coefficient file – 8-tap filter, base-10 coefficient values.

Irrespective of the filter possessing positive or negative symmetry, the coefficient file should
contain the complete set of coefficient values. The filter coefficient file for the non-symmetric
impulse response shown in Figure 55 is presented in Figure 56.

255

200

-180

80

220

180
100

-48

40

Figure 55: Non-symmetric impulse response.

radix=10;
coefdata=255,200,-180,80,220,180,100,-48,40;

Figure 56: Coefficient file for the non-symmetric impulse response in Figure 55.

The coefficient file for the negative-symmetric filter characterized by the impulse response in
Figure 57 is shown in Figure 58.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 40

200

-200

-100

10080

-40

30

-80

40

-30

Figure 57: Symmetric impulse response.

radix=10;
coefdata=30,-40,80,-100,-200,200,100,-80,40,-30;

Figure 58: Coefficient file for the symmetric impulse response in Figure 57.

10.2 Half-Band Filter

As described in a previous section, every second filter coefficient for a half-band filter with an odd
number of terms will be zero. When specifying the filter coefficient data for this filter class, the
zero value entries need to be included in the coefficient file. For example, the filter coefficient file
that specifies the filter impulse response in Figure 59 is shown in Figure 60.

2047

1283 1283

0

-375

0
220

0

-375

220
0

Figure 59: 11-tap half-band filter impulse response.

radix=10;
coefdata=220,0,-375,0,1283,2047,1283,0,-375,0,220;

Figure 60: Coefficient file for the half-band filter impulse response shown in Figure 59.

The filter coefficient set is parsed by the filter compiler. If either the alternating zero entries are
absent, or the coefficient set is not even-symmetric, this will be flagged as an error and the filter

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 41

will not be generated. A dialog box will be presented to indicate the nature of the problem under
these circumstances.

Technically, the zero-valued entries for a half-band filter can occur at the filter impulse response
extremities as shown in Figure 61. However, observe that these values do not contribute to the
result.

a3

2047

1283 1283

0

-375

0 0

-375

0

Figure 61: 9-tap half-band filter impulse response.

This condition is detected when the filter is specified. If the number of taps is such that the zero-
valued coefficients form the first and last entry of the impulse response, the filter length is
reported as an invalid value. The number of taps N for a half-band filter must obey N = 3 + 4n,
where n=0,1,2,3,…. For example, a half-band filter may have 11,15,19 and 23 taps, but not 9, 13,
17 or 21 taps.

10.3 Hilbert Transform

The impulse response for a 10-term approximation to a Hilbert transformer is shown in Figure 62.
The odd-symmetry and zero-valued coefficients are both exploited to generate an efficient FPGA
realization. The coefficient data file for the Hilbert transform must contain the zero-valued entries.
For example, the .coe file corresponding to Figure 62 is shown in Figure 63.

4096

1365

0

-1365

0 0
819

0

-819

-4096

0

Figure 62: Hilbert transform – impulse response.

radix=10;
coefdata=-819,0,-1365,0,-4096 ,0,4096 ,0 ,1365,0,819;

Figure 63: Coefficient file for the Hilbert transformer with the impulse response shown in Figure 62.

In practice, some optimization methods used for designing a Hilbert transform may lead to the
presence of small even-numbered coefficients. If the Hilbert Transform filter class is used in the
filter compiler, these terms must be forced to zero by the user.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 42

Just like the half-band filter, the zero-valued entries for a Hilbert transformer can occur at the filter
impulse response extremities. However, these values do not contribute to the result.

This condition is detected when the filter is specified. If the number of taps is such that the zero-
valued coefficients form the first and last entry of the impulse response, the filter length is
reported as an invalid value. The number of taps N for a Hilbert transformer must obey N = 3 +
4n, where n=0,1,2,3,…. For example, a Hilbert transform filter may have 11,15,19 and 23 taps,
but not 9, 13, 17 or 21 taps.

10.4 Interpolated Filter

In a previous section it was explained that an IFIR filter is similar to a conventional FIR, but with
the unit delay operator replaced by k-1 units of delay. k is referred to as the zero-packing factor.
One way to realize this substitution is by the insertion of k-1 zeros between the coefficient values
of a prototype filter. When specifying an IFIR architecture, the full set of prototype coefficients are
supplied in the coefficient file, without the zeros implied by the zero-packing factor. The zero-
packing factor is defined through the filter user interface. For example, consider the filter
coefficient data in the .coe file shown in Figure 64.

radix=10;
coefdata=-200,1200,2047,1200,-200;

Figure 64: Prototype coefficient data for IFIR example.

If a zero-packing factor of k=2 is specified, the equivalent filter impulse response will be as shown
in Figure 65.

2047

-200

12001200

0 00 0

-200

Figure 65: Equivalent IFIR impulse response for the coefficient data shown in Figure 64 with a
zero-packing factor k=2.

If the zero-packing factor is changed to k=3, the impulse response will be as shown in Figure 66.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 43

2047

0 00 0

-200

1200 1200

-200

00 0 0

Figure 66: Equivalent IFIR impulse response for the coefficient data shown in Figure 64 with a
zero-packing factor k=3.

These examples have utilized a symmetrical prototype impulse response, this is not a restriction
of the filter core. The prototype filter coefficient set can be symmetrical, non-symmetrical or
negative symmetric.

11 Core Resource Utilization

The logic utilization for a filter is a function of the filter length, coefficient precision, coefficient
symmetry and input data precision. Table 2 through Table 8 provide logic resource requirements
for a number of filter configurations.

Table 3: Virtex logic slice utilization for several filter FIR filter configurations. 10-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

Symmetrical4
Non-symmetrical

31
29

34
33

41
36

43
43

66
67

Symmetrical8
Non-symmetrical

36
45

38
50

44
53

49
60

72
82

Symmetrical32
Non-symmetrical

103
141

108
146

113
151

117
154

157
196

Symmetrical80
Non-symmetrical

247
363

251
369

255
373

261
376

332
454

Symmetrical128
Non-symmetrical

370
532

377
536

380
537

385
543

493
646

Symmetrical256 731 747 740 749 940

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 44

Table 4: Virtex logic slice utilization for several filter FIR filter configurations. 12-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

Symmetrical4
Non-symmetrical

34
30

35
35

41
39

47
45

69
66

Symmetrical8
Non-symmetrical

36
50

41
53

45
56

52
62

75
87

Symmetrical32
Non-symmetrical

111
160

114
161

118
168

125
173

166
214

Symmetrical80
Non-symmetrical

268
408

273
414

277
413

279
424

353
498

Symmetrical128
Non-symmetrical

402
595

415
601

417
599

421
607

521
718

Symmetrical256 797 806 819 810 1003

Table 5: Virtex logic slice utilization for several half-band filter configurations. 14-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

7 Symmetrical 38 42 47 53 77

31 Symmetrical 84 96 100 104 147

79 Symmetrical 171 194 203 206 274

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 45

Table 6: Virtex logic slice utilization for several Hilbert transformer configurations. 14-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

7 Odd symmetric 41 49 57 66 99

31 Odd symmetric 75 88 96 104 157

79 Odd symmetric 158 187 198 204 289

Table 7: Virtex logic slice utilization for several interpolated filter configurations. 16-bit filter
coefficients. Filter coefficient optimization is off. Single channel. Signed input, signed coefficients,
unregistered output. Zero packing factor is 4.

Filter Length Symmetry Input Sample Precision

4-bit 8-bit 12-bit 16-bit 32-bit

Symmetrical8
Non-symmetrical

44
56

54
66

63
71

69
84

107
122

Symmetrical32
Non-symmetrical

146
189

170
214

198
239

201
264

303
366

Symmetrical80
Non-symmetrical

359
488

410
550

474
609

477
668

705
897

Table 8: Virtex logic slice utilization for several PDA FIR filter configurations. 12-bit filter
coefficients. 12-bit input data, 60-taps. Filter coefficient optimization is off. Single channel. Signed
input, signed coefficients, unregistered output, non-symmetrical impulse response. Filter master
clock frequency is 150 MHz.

Number of Clock
Cycles per Output Sample

Slice Count Filter Sample Rate† (MHz)

1 3072 150
2 1571 75
3 994 50
4 802 37.5
6 511 25
12 268 12.5

† The filter sample rate is not at all dependent on the number of filter taps.

DISTRIBUTED ARITHMETIC FIR FILTER

© 2001 Xilinx, Inc. All rights reserved. (Version 5.0.0) 46

12 Ordering Information

This core is downloadable free of charge from the Xilinx IP Center (www.xilinx.com/ipcenter), for
use with version 3.1i and later versions of the Xilinx Core Generator System. The Core Generator
System is bundled with the Alliance and Foundation implementation tools.

To order Xilinx software contact your local Xilinx sales representative. For information on the
Xilinx sales office nearest you, please refer to:

http://www.xilinx.com/company/sales.htm

13 Reference

[1] Peled and B. Liu, “A New Hardware Realization of Digital Filters”, IEEE Trans. on Acoust.,
Speech, Signal Processing, vol. ASSP-22, pp. 456-462, Dec. 1974.

[2] S. A. White, ``Applications of Distributed Arithmetic to Digital Signal Processing'', IEEE ASSP
Magazine, Vol. 6(3), pp. 4-19, July 1989.

[3] Xilinx Inc., Xilinx Product Guide, Xilinx Inc., San Jose California, 1999.

[4] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice Hall, Englewood Cliffs, New
Jersey, 1993.

[5] M. E. Frerking, Digital Signal Processing in Communication Systems, Van Nostrand
Reinhold, New York, 1994.

[6] C. H. Dick, “Implementing Area Optimized Narrow-Band FIR Filters Using Xilinx FPGAs”,
SPIE International Symposium on Voice, Video and Data Communications – Configurable
Computing: Technology an Applications Stream, Boston, Massachusetts USA, pp. 227-238,
Nov 1-6, 1998. Also available at: http://www.xilinx.com/products/logicore/coredocs.htm

Adder/Subtracter V4.0

March 2, 2001 Product Specification

addsub.fm Page 1 Tuesday, February 27, 2001 9:19 AM
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
URL: www.xilinx.com/ipcenter
Support: support.xilinx.com

Features
• Drop-in module for Virtex™, Virtex™-II, Virtex™-E and

Spartan−ΙΙ FPGAs
• Generates Adder, Subtracter and Adder/Subtracter
• Supports 2’s complement signed and unsigned

operations
• Supports inputs ranging from 1 to 256 bits wide

• Supports outputs ranging from 1 to 258 bits wide
• Optional registered output with optional clock enable

and asynchronous and synchronous controls
• Optional Bypass (Load) capability
• Optional pipelined operation
• Incorporates Xilinx Smart-IP technology for maximum

performance
• To be used with version 3.1i and later of the Xilinx

CORE Generator System

Functional Description
The Adder/Subtracter module can create adders (A+B),
subtracters (A-B) and adder/subtracters which operate on
signed or unsigned data. The data inputs are provided on
the A and B input buses, and optionally, the B value can be
set to a constant. The result is available on the output bus.
Optional carry input and carry/borrow/overflow outputs are
available. Outputs can be registered or non-registered.
When a registered output is selected options are also pro-

Figure 1: Main Adder/Subtracter Parameterization Screen
March 2, 2001 1

Adder/Subtracter V4.0Adder/Subtracter V4.0

addsub.fm Page 2 Tuesday, February 27, 2001 9:19 AM
vided for Clock Enable, Asynchronous Set, Clear, and
Init, and Synchronous Set, Clear and Init. An optional
Bypass capability is also provided which can load the
value on the B port directly into the output register. A regis-
tered module can be optionally pipelined. The module can
optionally be generated as a Relationally Placed Macro
(RPM) or as unplaced logic. When an RPM is generated
the logic is placed in a column.

Pinout
Signal names for the schematic symbol are shown in Fig-
ure 3 and described in Table 1. Note that Figure 3 shows
the C_OUT and Q_C_OUT pins which appear on adder
configurations. For a subtracter these pins are named
B_IN, B_OUT and Q_B_OUT, respectively.

Table 1: Core Signal Pinout

Signal
Signal

Direction
Description

A[N:0] Input A Input bus
A_SIGNED Input A Input sign control

B_SIGNED Input B Input sign control

B[M:0] Input B Input bus

ADD Input Controls the operation performed
by an Adder/Subtracter (High = Ad-
dition, Low = Subtraction).

Figure 2: Adder/Subtracter Register Options Parame-
terization Screen

C_IN Input Carry Input
B_IN Input Borrow Input (Subtracter only)

OVFL Output Overflow Output (signed modules
only)

C_OUT Output Carry Output (Adder and Adder/
Subtracter only)

B_OUT Output Borrow Output (Subtracter only -
active low)

S[P:0] Output Non-registered output

D_OVFL Internal

D_C_OUT Internal

D[P:0] Internal

BYPASS Input Bypass Control Signal

CE Input Clock Enable

CLK Input Clock - rising edge clock signal

ASET Input Asynchronous Set: forces regis-
tered output to a high state when
driven

ACLR Input Asynchronous Clear - forces out-
puts to a low state when driven

SSET Input Synchronous Set - forces regis-
tered output to a high state on next
concurrent clock edge

SCLR Input Synchronous Clear - forces regis-
tered output to a low state on next
concurrent clock edge

AINIT Input Asynchronous Initialize - forces
registered outputs to user defined
state when driven

SINIT Input Synchronous Initialize - forces reg-
istered outputs to user defined
state on next concurrent clock
edge

Q_OVFL Output Registered Overflow Output
(signed modules only)

Q_C_OUT Output Registered Carry Output (Adder
and Adder/Subtracter only)

Q_B_OUT Output Registered Borrow Output (Sub-
tracter only)

Q[P:0] Output Registered output
Note:

All control inputs are Active High. Should an Active Low
input be required for a particular control pin an inverter
must be placed in the path to the pin. The inverter will be
absorbed appropriately during mapping.

Table 1: Core Signal Pinout (Cont.)

Signal
Signal

Direction
Description
2 March 2, 2001

Xilinx, Inc.

addsub.fm Page 3 Tuesday, February 27, 2001 9:19 AM
CORE Generator Parameters
The main CORE Generator parameterization screen for
this module is shown in Figure 1. The parameters are as
follows:

• Component Name: The component name is used as
the base name of the output files generated for this
module. Names must begin with a letter and must be
composed from the following characters: a to z, 0 to 9
and “_”.

• Operation: Select the appropriate radio button for the
operation required. The default setting is Add.

• Port A Input Options:
- Port A Width: Enter the width of the Port A input.

The valid range is 1 to 256. The default value is 16.
- Port A Sign: Enter the sign of the Port A input. The

default value is Unsigned.
• Port B Input Options:

- Port B Width: Enter the width of the Port B input.
The valid range is 1 to 256. The default value is 16.

- Port B Sign: Enter the sign of the Port B data. The
default value is Unsigned.

- Constant Value: When this check box is checked
Port B is set to the value that is typed into the
adjacent text box. The Constant Value must be
entered in hex format and must not exceed the
specified Port B Width. In most cases specifying
Port B to be a constant will create a module without
Port B. The only exception to this is when bypass
functionality is requested, as Port B is needed to
provide the bypass data in this case. The default
setting is for the Port B value to be provided via Port
B.

• Output Options:
- Select the appropriate radio button for the types of

outputs required. The output options settings
selected here apply to all outputs. The default setting
is registered.

- Latency: Enter the required number of clock cycles
delay from input to output for the module. See
Pipelined Operation for more details. This control is
available only when a registered output only has
been requested via the Output Options.

- Output Width: The output width is specified using
the pull-down list. The valid range varies depending
on the settings of Port A Width, Port A Sign, and
Port B Width and Port B Sign as shown in Table 2.

• Register Options: This button is only enabled when a
registered output has been requested via the Output
Options. Clicking on this button brings up the Register
Options parameterization screen (see Figure 2).

• Carry/Overflow Options:
- Carry/Borrow Input: The presence of a C_IN or

B_IN pin is controlled by the setting of this check
box. The pin generated for adders and adder/
subtracters is named C_IN. The pin generated for
subtracters is named B_IN. The default behavior is
to generate a C_IN or B_IN pin.

- Carry/Borrow Output: The presence of a C_OUT
or B_OUT pin is controlled by the setting of this
check box. This option is only enabled when the
module generates an unsigned result (see Table 2).
The pin generated for adders and adder/subtracters
is named C_OUT. The pin generated for subtracters
is named B_OUT. The default behavior is to not
generate a C_OUT or B_OUT pin.

- Overflow Output: The presence of an OVFL pin is
controlled by the setting of this check box. This
option is only enabled when the module generates a
signed result (see Table 2). The default behavior is
to not generate an OVFL pin.

• Bypass: Activating the BYPASS pin allows the value on
Port B to pass through the logic and be loaded into the
output register on the next active clock edge. This
check box is only available on a registered module. The
default is for no BYPASS pin to be generated.

• CE Override for Bypass: This parameter controls
whether or not the BYPASS input is qualified by CE.
When this box is checked the activation of the BYPASS
signal will also enable the register. When this box is
unchecked the register needs to have CE active in
order to load the Port B data. By default this check box
is checked.

• Bypass Sense: BYPASS is the only pin that has a
parameter to control its active sense. This is because
selection of an Active Low bypass results in a
significant area savings for the module. By default this
parameter is set to Active High so that it conforms with
the active sense of all other control signals.

Figure 2: Core Schematic Symbol
March 2, 2001 3

Adder/Subtracter V4.0Adder/Subtracter V4.0

addsub.fm Page 4 Tuesday, February 27, 2001 9:19 AM
• Create RPM: When this box is checked the module will
be generated with relative location attributes attached.
The resulting placement of the module will be in a
column with two bits per slice. The default operation is
to create an RPM.
Note that when a module is created as an RPM it is
possible that one or more of the module dimensions
may exceed those of the device being targeted. If this is
the case mapping errors will occur and the compilation
process will fail. In this case the module should be re-
generated with the Create RPM checkbox unchecked.

The Register Options parameterization screen for this mod-
ule is shown in Figure 2. The parameters are as follows:

• Clock Enable: When this box is checked the module is
generated with a clock enable input. The default setting
is unchecked.

• CE Overrides: This parameter controls whether or not
the SSET, SCLR, and SINIT inputs are qualified by CE.
This parameter is only enabled when a Clock Enable
input has been requested.

When CE Overrides Sync Controls is selected an
active level on any of the synchronous control inputs will
only be acted upon when the CE pin is Active. Note that
this is not the way that the dedicated inputs on the flip-
flop primitives work, and so setting the CE Overrides
parameter to CE Overrides Sync Controls will force the
synchronous control functionality to be implemented
using logic in the Look Up Tables (LUTs) preceding the
output register. This results in increased resource utiliza-
tion even when asynchronous controls are not present.

When Sync Controls override CE is selected an active
level on any of the synchronous control inputs will be
acted upon irrespective of the state of the CE pin. This
setting is more efficient when asynchronous inputs are
not present because it allows the dedicated inputs on the
flip-flop primitives to be used for the synchronous control
functions. It is less efficient when the presence of asyn-
chronous inputs force the synchronous control function-

ality to be implemented using logic in the LUTs preceding
the output register. This is because the CE signal has to
be gated with the synchronous control inputs so that they
can all generate a CE signal to the flip-flops, slowing
down the CE path and resulting in slower overall opera-
tion of the module.

The default setting is Sync Controls Override CE so
that a more efficient implementation can be generated.

• Asynchronous Settings: All asynchronous controls
are implemented using the dedicated inputs on the flip-
flop primitives. The module can be generated with the
following asynchronous control inputs by clicking on the
appropriate button:
- None: No asynchronous control inputs. This is the

default setting.
- Set: An ASET input pin is generated.
- Clear: An ACLR input pin is generated.
- Set and Clear: Both ASET and ACLR input pins are

generated. ACLR has priority over ASET when both
are asserted at the same time.

- Init: An AINIT input pin is generated which, when
asserted, will asynchronously set the output register
to the value defined in the Asynchronous Init Value
text box.

• Asynchronous Init Value: This text box accepts a hex
value whose width must be less than or equal to the
Input Bus Width. If a value is entered that is fewer bits
than the data width of the output register it is padded
with zeros. An invalid value is highlighted in red in the
text box.
The default value is 0.

• Synchronous Settings: When no asynchronous
controls are implemented (i.e. the Asynchronous
Setting is None) the synchronous controls can be
implemented using the dedicated inputs on the flip-flop
primitives. There are exceptions to this, see the
description of the Set/Clear Priority and CE Overrides
parameters.

Note:
1. Q represents the larger of N or M.

Table 2: Availability of Carry/Borrow/Overflow Outputs and Output Data Type/Size Against Input Data Type

A[N:0] B[M:0] S[P:0] Valid Values for P1 C_OUT/B_OUT OVFL
Unsigned Unsigned Unsigned P = Q Available Not Available

P = Q + 1 Not Available Not Available

Unsigned Signed or by
input pin

Signed P = Q + 2 Not Available Not Available

Signed or by
input pin

Unsigned Signed P = Q + 2 Not Available Not Available

Signed or by
input pin

Signed or by
input pin

Signed P = Q Not Available Available

P = Q + 1 Not Available Not Available
4 March 2, 2001

Xilinx, Inc.

addsub.fm Page 5 Tuesday, February 27, 2001 9:19 AM
When asynchronous controls are present any synchro-
nous control functionality must be implemented using
logic in the Look Up Tables (LUTs) preceding the output
register. In the case when a non-registered output is not
present, this logic can (in some cases) be absorbed into
the same LUTs used to implement the gate function. In
cases where this is not possible the synchronous control
logic will require an additional LUT per output bit.

The module can be generated with the following syn-
chronous control inputs by clicking on the appropriate
button:
- None: No synchronous control inputs. This is the

default setting.
- Set: An SSET input pin is generated.
- Clear: An SCLR input pin is generated.
- Set and Clear: Both SSET and SCLR input pins are

generated. SCLR/SSET priority is defined by the
setting of the Set/Clear Priority parameter.

- Init: An SINIT input pin is generated which, when
asserted, will asynchronously set the output register
to the value defined in the Synchronous Init Value
text box.

• Set/Clear Priority: By selecting the appropriate radio
button the priority of synchronous clear to synchronous
set can be controlled. This parameter is only enabled
when both synchronous set and synchronous clear
have been requested.

It is not possible for Set to override Clear when the syn-
chronous control functionality is implemented using the
dedicated inputs on the flip-flop primitives. This can only
be implemented using logic in the LUTs preceding the
output register.

The default setting is Clear Overrides Set so that a
more efficient implementation can be generated.

• Synchronous Init Value: This text box accepts a hex
value whose width must be less than or equal to the
Input Bus Width. If a value is entered that is fewer bits
than the data width of the register it is padded with
zeros. An invalid value is highlighted in red in the text
box. This parameter is only enabled when the
Synchronous Settings parameter is set to Init. The
default value is 0.

Pipelined Operation
The adder/subtracter module can be optionally pipelined in
order to improve speed.

The pipelined operation is controlled by the Latency text
box on the main parameterization screen. When the Output
Options are set to Registered, this control becomes
enabled. A latency of 1 is the normal registered operation
of the module, and other values of latency specify the num-

ber of clock cycles between data operands being set on the
inputs and the sum or difference appearing at the outputs.

When a pipelined adder/subtracter has been generated,
the data within the pipeline will be invalidated by a change
in the state of the ADD input; the outputs will not be valid
until the number of clock cycles specified by the latency
control. Similarly, after power up, the module will take the
same number of clock cycles for the outputs to become
valid.

If bypass is requested on a pipelined module, the bypass
value will appear on the outputs after the number of clock
cycles specified by the latency control.

Power On Conditions
See the FD-based Register datasheet for information on
the power up values for registered modules.

Parameter Values in the XCO File
Names of XCO file parameters and their parameter values
are identical to the names and values shown in the GUI,
except that underscore characters (_) are used instead of
spaces. The text in an XCO file is case insensitive.

Table 3 shows the XCO file parameters and values, and
summarizes the GUI defaults. The following is an example
of the CSET parameters in an XCO file:

CSET component_name = abc123
CSET operation = adder
CSET port_a_width = 16
CSET port_a_sign = unsigned
CSET port_b_width = 16
CSET port_b_sign = unsigned
CSET port_b_constant = FALSE
CSET port_b_constant_value = 0000
CSET output_options = registered
CSET latency = 1
CSET output_width = 16
CSET carry_borrow_input = TRUE
CSET carry_borrow_output = FALSE
CSET overflow_output = FALSE
CSET bypass = FALSE
CSET ce_override_for_bypass = FALSE
CSET bypass_sense = active_high
CSET create_rpm = TRUE
CSET clock_enable = FALSE
CSET ce_overrides = sync_controls_override_ce
CSET asynchronous_settings = none
CSET async_init_value = 0000
CSET synchronous_settings = none
CSET sync_init_value = 0000
CSET set_clear_priority = clear_overrides_set
March 2, 2001 5

Adder/Subtracter V4.0Adder/Subtracter V4.0

addsub.fm Page 6 Tuesday, February 27, 2001 9:19 AM
Core Resource Utilization
For an accurate measure of the usage of primitives, slices,
and CLBs for a particular point solution, check the Display
Core Viewer after Generation checkbox in the CORE
Generator.

Ordering Information
TThis core can be downloaded, free of cost, from the Xilinx
IP Center (http://www.xilinx.com/ipcenter) for use with the
Xilinx CORE Generator™ System V3.1i and later. The
CORE Generator System tool is bundled with all Xilinx Alli-
ance and Foundation Series Software packages.

To order Xilinx software online, visit the Xilinx Silicon
Expresso Cafe at http://toolbox.xilinx.com/cgi-bin/xil-
inx.storefront/en/catalog//1006.

Xilinx software can also be ordered through your local Xil-
inx sales office. Information on the sales office nearest you
is available at http://www.xilinx.com/company/sales.htm.
6 March 2, 2001

Xilinx, Inc.

addsub.fm Page 7 Tuesday, February 27, 2001 9:19 AM
Table 3: Default Values and XCO File Values

Parameter XCO File values Default GUI Setting
component_name ASCII text starting with a letter and based upon the follow-

ing character set: a..z, 0..9 and _
blank

operation One of the following keywords: add, subtract, add_subtract adder

port_a_width Integer in the range 1 to 256 16

port_a_sign One of the following keywords: unsigned, signed, pin unsigned

port_b_width Integer in the range 1 to 256 16

port_b_sign One of the following keywords: unsigned, signed, pin unsigned

port_b_constant One of the following keywords: true, false false

port_b_constant_value Hex value whose value does not exceed
2 port_b_width - 1

0

output_options One of the following keywords: non_registered, registered,
both

registered

latency Integer in the range 0 to either output_width or 64, whichev-
er is smaller. If overflow is also required, the maximum val-
ue is reduced by 1.

1

output_width See Table 2 16

carry_borrow_input One of the following keywords: true, false true

carry_borrow_output One of the following keywords: true, false false

overflow_output One of the following keywords: true, false false

bypass One of the following keywords: true, false false

ce_override_for_bypass One of the following keywords: true, false true

bypass_sense One of the following keywords: active_high, active_low active_high

create_rpm One of the following keywords: true, false true

clock_enable One of the following keywords: true, false false

ce_overrides One of the following keywords: sync_controls_override_ce,
ce_overrides_sync_controls

sync_controls_override_ce

asynchronous_settings One of the following keywords: none, set, clear,
set_and_clear, init

none

async_init_value Hex value whose value does not exceed
2 output_width - 1

0

synchronous_settings One of the following keywords: none, set, clear,
set_and_clear, init

none

sync_init_value Hex value whose value does not exceed

2 output_width - 1

0

set_clear_priority One of the following keywords: clear_overrides_set,
set_overrides_clear

clear_overrides_set
March 2, 2001 7

Comparator V4.0

March 2, 2001 Product Specification
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124
Phone: +1 408-559-7778
Fax: +1 408-559-7114
URL: www.xilinx.com/ipcenter
Support: support.xilinx.com

Features
• Drop-in module for Virtex™−ΙΙ, Virtex™, Virtex™-E and

Spartan™−ΙΙ FPGAs
• Generates comparison logic for A = B, A <> B, A <= B,

A < B, A >= B or A > B
• Operates on twos complement signed or unsigned data
• Supports inputs from 1 to 256 bits wide
• Optional compare to constant capability
• Optional clock enable and asynchronous and

synchronous controls
• Incorporates Xilinx Smart-IP technology for maximum

performance
• To be used with version 3.1i and later of the Xilinx

CORE Generator System

Figure 1: Main Comparator Parameterization Screen
March 2, 2001 1

Comparator V4.0Comparator V4.0
Functional Description
The comparator is used to create comparison logic that
performs one of the following functions: A = B, A <> B, A <=
B, A < B, A >= B or A > B. A and B are external ports of up
to 256 bits wide and B can optionally be set to a constant
value. The module can handle twos complement signed or
unsigned data. Options are provided for Clock Enable,
Asynchronous Set and Clear, and Synchronous Set
and Clear. The module can optionally be generated as a
Relationally Placed Macro (RPM) or as unplaced logic.
When an RPM is generated the logic is placed in a column.

Pinout
Signal names for the schematic symbol are shown in Fig-
ure 3 and described in Table 1.

CORE Generator Parameters
The main CORE Generator parameterization screen for
this module is shown in Figure 1. The parameters are as
follows:

• Component Name: The component name is used as
the base name of the output files generated for this
module. Names must begin with a letter and must be
composed from the following characters: a to z, 0 to 9
and “_”.

• Operation: Select the appropriate radio button for the

operation required. The default setting is A = B.
• Input Options:

- Input Width: Enter the width of ports A and B. The
valid range is 1 to 256. The default value is 16. Note
that the minimum width is 2 for signed data.

- Input Sign: Enter the sign of the input data. The
default setting is Unsigned.

- Port B Constant: When this check box is checked
the Port B value will be set to the value specified in
the Port B Constant Value text box. The default is
for the Port B value to come from Port B.

- Port B Constant Value: Enter the value for the Port
B constant. The Constant Value must be provided in
hex and must not exceed the specified Input Width.
This text box is only enabled when the Port B
Constant check box is checked. The default value is
0.

• Output Options: Select the appropriate radio button for
the types of outputs required. The default setting is Non
Registered.
- Register Options: This button is only enabled when

a registered output has been requested via the
Output Options. Clicking on this button brings up
the Register Options parameterization screen (see
Figure 2).

- Create RPM: When this box is checked the module
is generated with relative location attributes
attached. The resulting placement of the module is
in a column with two bits per slice. The default
operation is to create an RPM.
Note that when a module is created as an RPM it is
possible that one or more of the module dimensions

Figure 2: Comparator Register Options Parameteriza-
tion Screen

Figure 2: Core Schematic Symbol
2 March 2, 2001

Xilinx, Inc.
Table 1: Core Signal Pinout may exceed those of the device being targeted. If this is
the case mapping errors will occur and the compilation
process will fail. In this case the module should be re-
generated with the Create RPM checkbox unchecked.

The Register Options parameterization screen for this mod-
ule is shown in Figure 2. The parameters are as follows:

• Clock Enable: When this box is checked the module is
generated with a clock enable input. The default setting
is unchecked.

• CE Overrides: This parameter controls whether or not
the SSET and SCLR inputs are qualified by CE. This
parameter is only enabled when a Clock Enable input
has been requested.

When CE Overrides Sync Controls is selected an
active level on any of the synchronous control inputs will
only be acted upon when the CE pin is also Active. Note
that this is not the way that the dedicated inputs on the
flip-flop primitives work, and so setting the CE Overrides
parameter to CE Overrides Sync Controls will force
any synchronous control functionality to be implemented
using logic in the Look Up Tables (LUTs) preceding the
output register. This results in increased resource utiliza-
tion.

When Sync Controls Override CE is selected an active
level on any of the synchronous control inputs is acted
upon irrespective of the state of the CE pin. This setting
allows the dedicated inputs on the flip-flop primitives to
be used for the synchronous control functions provided
that asynchronous controls are not requested. If both
asynchronous and synchronous controls are requested,
the synchronous control functionality must be imple-
mented using logic in the LUTs preceding the output reg-
ister. In this case, the CE input has to be gated with the
synchronous control inputs so that each synchronous
control input and the CE input can generate a CE signal
to the flip-flops. This results in a performance degrada-
tion for the module due to the additional gating in the CE
path.

The default setting is Sync Controls Override CE so
that a more efficient implementation can be generated.

• Asynchronous Settings: All asynchronous controls
are implemented using the dedicated inputs on the flip-
flop primitives. The module can be generated with the
following asynchronous control inputs by clicking on the
appropriate button:
- None: No asynchronous control inputs. This is the

default setting.
- Set: An ASET control pin is generated.
- Clear: An ACLR control pin is generated.
- Set and Clear: Both ASET and ACLR control pins

are generated. ACLR has priority over ASET when
both are asserted at the same time.

• Power On Reset Value: This text box accepts a value
of 0 or 1 and defines the power on value for the output

Signal
Signal

Direction
Description

A[N:0] Input Comparator Input

B[N:0] Input Comparator Input

A_EQ_B Output A Equals B Asynchronous
Output

Q_A_EQ_B Output A Equals B Registered Out-
put

A_NE_B Output A Not Equal to B Asynchro-
nous Output

Q_A_NE_B Output A Not Equal to B Registered
Output

A_LE_B Output A Less Than or Equal to B
Asynchronous Output

Q_A_LE_B Output A Less Than or Equal to B
Registered Output

A_LT_B Output A Less Than B Asynchro-
nous Output

Q_A_LT_B Output A Less Than B Registered
Output

A_GE_B Output A Greater Than or Equal to B
Asynchronous Output

Q_A_GE_B Output A Greater Than or Equal to B
Registered Output

A_GT_B Output A Greater Than B Asynchro-
nous Output

Q_A_GT_B Output A Greater Than B Registered
Output

CE Input Clock Enable

CLK Input Clock - rising edge clock sig-
nal

ASET Input Asynchronous Set - forces
the registered output to a
high state when driven

ACLR Input Asynchronous Clear - forces
outputs to a low state when
driven

SSET Input Synchronous Set - forces the
registered output to a high
state on next concurrent
clock edge

SCLR Input Synchronous Clear - forces
the registered output to a low
state on next concurrent
clock edge

Note:
All control inputs are Active High. Should an Active Low
input be required for a particular control pin an inverter
must be placed in the path to the pin. The inverter will be
absorbed appropriately during mapping.
March 2, 2001 3

Comparator V4.0Comparator V4.0
register. The default value is 0.
• Synchronous Settings: When no asynchronous

controls are requested (i.e. the Asynchronous Setting
is None) the synchronous controls can be implemented
using the dedicated inputs on the flip-flop primitives.
There are exceptions to this which are described in the
sections for the Set/Clear Priority and CE Overrides
parameters.
When asynchronous controls are present any synchro-
nous control functionality must be implemented using
logic in the Look Up Tables (LUTs) preceding the output
register. With modules where a non-registered output is
not required there are combinations of parameters that
allow this logic to be absorbed into the same LUTs used
to implement the function. In cases where this absorp-
tion is not possible the synchronous control logic will
require an additional LUT per output bit.
The module can be generated with the following syn-
chronous control inputs by clicking on the appropriate
button:
- None: No synchronous control inputs. This is the

default setting.
- Set: An SSET control pin is generated.
- Clear: An SCLR control pin is generated.
- Set and Clear: Both SSET and SCLR control pins

are generated. SCLR/SSET priority is defined by the
setting of the Set/Clear Priority parameter.

• Set/Clear Priority: By selecting the appropriate radio
button the relative priority of SCLR and SSET can be
controlled. This parameter is only enabled when Set
and Clear is selected for Synchronous Settings.

A setting of Clear Overrides Set corresponds to the
native operation of the flip-flop primitive. This setting will
result in a more efficient implementation when asynchro-
nous controls are not requested. A setting of Set Over-
rides Clear can only be implemented using logic in the
LUTs preceding the output register.

The default setting is Clear Overrides Set so that the
dedicated inputs on the flip-flops can be used if avail-
able.

Parameter Values in the XCO File
Names of XCO file parameters and their parameter values
are identical to the names and values shown in the GUI,
except that underscore characters (_) are used instead of
spaces. The text in an XCO file is case insensitive.

Table 2 shows the XCO file parameters and values, and
summarizes the GUI defaults. The following is an example
of the CSET parameters in an XCO file:

CSET component_name = abc123
CSET operation = a_eq_b
CSET input_width = 16
CSET input_sign = unsigned
CSET port_b_constant = FALSE
CSET port_b_constant_value = 0
CSET output_options = non_registered
CSET create_rpm = TRUE
CSET clock_enable = FALSE
CSET ce_overrides = sync_controls_override_ce
CSET asynchronous_settings = none
CSET power_on_reset_value = 0
CSET synchronous_settings = none
CSET set_clear_priority = clear_overrides_set

Core Resource Utilization
For an accurate measure of the usage of primitives, slices,
and CLBs for a particular point solution, check the Display
Core Viewer after Generation checkbox in the CORE
Generator.

Ordering Information
This core can be downloaded, free of cost, from the Xilinx
IP Center (http://www.xilinx.com/ipcenter) for use with the
Xilinx CORE Generator™ System V3.1i and later. The
CORE Generator System tool is bundled with all Xilinx Alli-
ance and Foundation Series Software packages.

To order Xilinx software online, visit the Xilinx Silicon
Expresso Cafe at http://toolbox.xilinx.com/cgi-bin/xil-
inx.storefront/en/catalog//1006.

Xilinx software can also be ordered through your local Xil-
inx sales office. Information on the sales office nearest you
is available at http://www.xilinx.com/company/sales.htm.
4 March 2, 2001

Xilinx, Inc.
Table 2: XCO File Values and Default Values

Parameter XCO File Values Default GUI Setting
component_name ASCII text starting with a letter and based

upon the following character set: a..z, 0..9
and _

blank

operation One of the following keywords: a_eq_b,
a_le_b, a_lt_b, a_ne_b, a_ge_b or a_gt_b

a_eq_b

input_width Integer in the range 1 to 256 16

input_sign One of the following keywords: unsigned or
signed

unsigned

port_b_constant One of the following keywords: true, false false

port_b_constant_value Hex value whose value does not exceed
2 input_width - 1

0

output_options One of the following keywords:
non_registered, registered or both

non_registered

create_rpm One of the following keywords: true, false true

clock_enable One of the following keywords: true, false false

ce_overrides One of the following keywords:
sync_controls_override_ce,
ce_overrides_sync_controls

sync_controls_override_ce

asynchronous_settings One of the following keywords: none, set,
clear, set_and_clear

none

power_on_reset_value One of the following values: 0, 1 0

synchronous_settings One of the following keywords: none, set,
clear, set_and_clear

none

set_clear_priority One of the following keywords:
clear_overrides_set or set_overrides_clear

clear_overrides_set
March 2, 2001 5

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

APPENDIX-E

XILINX FPGA FLOORPLAN & LAYOUT

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

APPENDIX-F

XILINX VIRTEX 1000E DATA SHEETS AND XILINX
FPGA TEST BOARD & TEST SETUP

Features
• Fast, High-Density 1.8 V FPGA Family

- Densities from 58 Kb to 4 Mb system gates
- 130 MHz internal performance (four LUT levels)
- Designed for low-power operation
- PCI compliant 3.3 V, 32/64-bit, 33/ 66-MHz

• Highly Flexible SelectI/O+™ Technology
- Supports 20 high-performance interface standards
- Up to 804 singled-ended I/Os or 344 differential I/O

pairs for an aggregate bandwidth of > 100 Gb/s
• Differential Signalling Support

- LVDS (622 Mb/s), BLVDS (Bus LVDS), LVPECL
- Differential I/O signals can be input, output, or I/O
- Compatible with standard differential devices
- LVPECL and LVDS clock inputs for 300+ MHz

clocks
• Proprietary High-Performance SelectLink™

Technology
- Double Data Rate (DDR) to Virtex-E link
- Web-based HDL generation methodology

• Sophisticated SelectRAM+™ Memory Hierarchy
- 1 Mb of internal configurable distributed RAM
- Up to 832 Kb of synchronous internal block RAM
- True Dual-Port™ BlockRAM capability
- Memory bandwidth up to 1.66 Tb/s (equivalent

bandwidth of over 100 RAMBUS channels)
- Designed for high-performance Interfaces to

External Memories
- 200 MHz ZBT* SRAMs
- 200 Mb/s DDR SDRAMs
- Supported by free Synthesizable reference design

• High-Performance Built-In Clock Management Circuitry
- Eight fully digital Delay-Locked Loops (DLLs)
- Digitally-Synthesized 50% duty cycle for Double

Data Rate (DDR) Applications
- Clock Multiply and Divide
- Zero-delay conversion of high-speed LVPECL/LVDS

clocks to any I/O standard
• Flexible Architecture Balances Speed and Density

- Dedicated carry logic for high-speed arithmetic
- Dedicated multiplier support
- Cascade chain for wide-input function
- Abundant registers/latches with clock enable, and

dual synchronous/asynchronous set and reset
- Internal 3-state bussing
- IEEE 1149.1 boundary-scan logic
- Die-temperature sensor diode

• Supported by Xilinx Foundation™ and Alliance Series™
Development Systems
- Further compile time reduction of 50%
- Internet Team Design (ITD) tool ideal for

million-plus gate density designs
- Wide selection of PC and workstation platforms

• SRAM-Based In-System Configuration
- Unlimited re-programmability

• Advanced Packaging Options
- 0.8 mm Chip-scale
- 1.0 mm BGA
- 1.27 mm BGA
- HQ/PQ

• 0.18 mm 6-Layer Metal Process
• 100% Factory Tested

* ZBT is a trademark of Integrated Device Technology, Inc.

0

Virtex™-E 1.8 V
Field Programmable Gate Arrays

DS022-1 (v2.0) April 2, 2001 0 0 Preliminary Product Specification

R

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DS022-1 (v2.0) April 2, 2001 www.xilinx.com Module 1 of 4
Preliminary Product Specification 1-800-255-7778 1

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Virtex-E Compared to Virtex Devices
The Virtex-E family offers up to 43,200 logic cells in devices
up to 30% faster than the Virtex family.

I/O performance is increased to 622 Mb/s using Source
Synchronous data transmission architectures and synchro-
nous system performance up to 240 MHz using sin-
gled-ended SelectI/O technology. Additional I/O standards
are supported, notably LVPECL, LVDS, and BLVDS, which
use two pins per signal. Almost all signal pins can be used
for these new standards.

Virtex-E devices have up to 640 Kb of faster (250 MHz)
block SelectRAM, but the individual RAMs are the same
size and structure as in the Virtex family. They also have
eight DLLs instead of the four in Virtex devices. Each indi-
vidual DLL is slightly improved with easier clock mirroring
and 4x frequency multiplication.

VCCINT, the supply voltage for the internal logic and mem-
ory, is 1.8 V, instead of 2.5 V for Virtex devices. Advanced
processing and 0.18 mm design rules have resulted in
smaller dice, faster speed, and lower power consumption.

I/O pins are 3 V tolerant, and can be 5 V tolerant with an
external 100 W resistor. PCI 5 V is not supported. With the
addition of appropriate external resistors, any pin can toler-
ate any voltage desired.

Banking rules are different. With Virtex devices, all input
buffers are powered by VCCINT. With Virtex-E devices, the
LVTTL, LVCMOS2, and PCI input buffers are powered by
the I/O supply voltage VCCO.

The Virtex-E family is not bitstream-compatible with the Vir-
tex family, but Virtex designs can be compiled into equiva-
lent Virtex-E devices.

The same device in the same package for the Virtex-E and
Virtex families are pin-compatible with some minor excep-
tions. See the data sheet pinout section for details.

General Description
The Virtex-E FPGA family delivers high-performance,
high-capacity programmable logic solutions. Dramatic
increases in silicon efficiency result from optimizing the new
architecture for place-and-route efficiency and exploiting an
aggressive 6-layer metal 0.18 mm CMOS process. These
advances make Virtex-E FPGAs powerful and flexible alter-
natives to mask-programmed gate arrays. The Virtex-E fam-
ily includes the nine members in Table 1.

Building on experience gained from Virtex FPGAs, the
Virtex-E family is an evolutionary step forward in program-
mable logic design. Combining a wide variety of program-
mable system features, a rich hierarchy of fast, flexible
interconnect resources, and advanced process technology,
the Virtex-E family delivers a high-speed and high-capacity
programmable logic solution that enhances design flexibility
while reducing time-to-market.

Virtex-E Architecture
Virtex-E devices feature a flexible, regular architecture that
comprises an array of configurable logic blocks (CLBs) sur-
rounded by programmable input/output blocks (IOBs), all
interconnected by a rich hierarchy of fast, versatile routing

Table 1: Virtex-E Field-Programmable Gate Array Family Members

Device
System
Gates

Logic
Gates

CLB
Array

Logic
Cells

Differential
I/O Pairs

User
I/O

BlockRAM
Bits

Distributed
RAM Bits

XCV50E 71,693 20,736 16 x 24 1,728 83 176 65,536 24,576

XCV100E 128,236 32,400 20 x 30 2,700 83 196 81,920 38,400

XCV200E 306,393 63,504 28 x 42 5,292 119 284 114,688 75,264

XCV300E 411,955 82,944 32 x 48 6,912 137 316 131,072 98,304

XCV400E 569,952 129,600 40 x 60 10,800 183 404 163,840 153,600

XCV600E 985,882 186,624 48 x 72 15,552 247 512 294,912 221,184

XCV1000E 1,569,178 331,776 64 x 96 27,648 281 660 393,216 393,216

XCV1600E 2,188,742 419,904 72 x 108 34,992 344 724 589,824 497,664

XCV2000E 2,541,952 518,400 80 x 120 43,200 344 804 655,360 614,400

XCV2600E 3,263,755 685,584 92 x 138 57,132 344 804 753,664 812,544

XCV3200E 4,074,387 876,096 104 x 156 73,008 344 804 851,968 1,038,336
Module 1 of 4 www.xilinx.com DS022-1 (v2.0) April 2, 2001
2 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

resources. The abundance of routing resources permits the
Virtex-E family to accommodate even the largest and most
complex designs.

Virtex-E FPGAs are SRAM-based, and are customized by
loading configuration data into internal memory cells. Con-
figuration data can be read from an external SPROM (mas-
ter serial mode), or can be written into the FPGA
(SelectMAP™, slave serial, and JTAG modes).

The standard Xilinx Foundation Series™ and Alliance
Series™ Development systems deliver complete design
support for Virtex-E, covering every aspect from behavioral
and schematic entry, through simulation, automatic design
translation and implementation, to the creation and down-
loading of a configuration bit stream.

Higher Performance
Virtex-E devices provide better performance than previous
generations of FPGAs. Designs can achieve synchronous
system clock rates up to 240 MHz including I/O or 622 Mb/s
using Source Synchronous data transmission architech-
tures. Virtex-E I/Os comply fully with 3.3 V PCI specifica-
tions, and interfaces can be implemented that operate at
33 MHz or 66 MHz.

While performance is design-dependent, many designs
operate internally at speeds in excess of 133 MHz and can

achieve over 311 MHz. Table 2 shows performance data for
representative circuits, using worst-case timing parameters.

Virtex-E Device/Package Combinations and Maximum I/O

Table 2: Performance for Common Circuit Functions

Function Bits Virtex-E (-7)

Register-to-Register

Adder 16

64

4.3 ns

6.3 ns

Pipelined Multiplier 8 x 8

16 x 16

4.4 ns

5.1 ns

Address Decoder 16

64

3.8 ns

5.5 ns

16:1 Multiplexer 4.6 ns

Parity Tree 9

18

36

3.5 ns

4.3 ns

5.9 ns

Chip-to-Chip

HSTL Class IV

LVTTL,16mA, fast slew

LVDS

Table 3: Virtex-E Family Maximum User I/O by Device/Package (Excluding Dedicated Clock Pins)

X
C

V
50

E

X
C

V
10

0E

X
C

V
20

0E

X
C

V
30

0E

X
C

V
40

0E

X
C

V
60

0E

X
C

V
10

00
E

X
C

V
16

00
E

X
C

V
20

00
E

X
C

V
26

00
E

X
C

V
32

00
E

CS144 94 94 94

PQ240 158 158 158 158 158

HQ240 158 158

BG352 196 260 260

BG432 316 316 316

BG560 404 404 404 404 404

FG256 176 176 176 176

FG456 284 312

FG676 404 444

FG680 512 512 512 512

FG860 660 660 660

FG900 512 660 700

FG1156 660 724 804 804

CG1156 804
DS022-1 (v2.0) April 2, 2001 www.xilinx.com Module 1 of 4
Preliminary Product Specification 1-800-255-7778 3

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Virtex-E Ordering Information

Revision History
The following table shows the revision history for this document.

Figure 1: Ordering Information

Date Version Revision

12/7/99 1.0 Initial Xilinx release.

1/10/00 1.1 Re-released with spd.txt v. 1.18, FG860/900/1156 package information, and additional DLL,
Select RAM and SelectI/O information.

1/28/00 1.2 Added Delay Measurement Methodology table, updated SelectI/O section, Figures 30, 54,
& 55, text explaining Table 5, TBYP values, buffered Hex Line info, p. 8, I/O Timing
Measurement notes, notes for Tables 15, 16, and corrected F1156 pinout table footnote
references.

2/29/00 1.3 Updated pinout tables, VCC page 20, and corrected Figure 20.

5/23/00 1.4 Correction to table on p. 22.

7/10/00 1.5 • Numerous minor edits.
• Data sheet upgraded to Preliminary.
• Preview -8 numbers added to Virtex-E Electrical Characteristics tables.

8/1/00 1.6 • Reformatted entire document to follow new style guidelines.
• Changed speed grade values in tables on pages 35-37.

9/20/00 1.7 • Min values added to Virtex-E Electrical Characteristics tables.
• XCV2600E and XCV3200E numbers added to Virtex-E Electrical Characteristics

tables (Module 3).
• Corrected user I/O count for XCV100E device in Table 1 (Module 1).
• Changed several pins to “No Connect in the XCV100E“ and removed duplicate VCCINT

pins in Table ~ (Module 4).
• Changed pin J10 to “No connect in XCV600E” in Table 74 (Module 4).
• Changed pin J30 to “VREF option only in the XCV600E” in Table 74 (Module 4).
• Corrected pair 18 in Table 75 (Module 4) to be “AO in the XCV1000E, XCV1600E“.

Example: XCV300E-6PQ240C

Device Type Temperature Range
C = Commercial (Tj = 0 C to +85 C)
 I = Industrial (Tj = -40 C to +100 C)

Number of Pins

Package Type
BG = Ball Grid Array
FG = Fine Pitch Ball Grid Array
HQ = High Heat Dissipation

Speed Grade
(-6, -7, -8)

DS022_043_072000
Module 1 of 4 www.xilinx.com DS022-1 (v2.0) April 2, 2001
4 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Virtex-E Data Sheet
The Virtex-E Data Sheet contains the following modules:

• DS022-1, Virtex-E 1.8V FPGAs:
Introduction and Ordering Information (Module 1)

• DS022-2, Virtex-E 1.8V FPGAs:
Functional Description (Module 2)

• DS022-3, Virtex-E 1.8V FPGAs:
DC and Switching Characteristics (Module 3)

• DS022-4, Virtex-E 1.8V FPGAs:
Pinout Tables (Module 4)

11/20/00 1.8 • Upgraded speed grade -8 numbers in Virtex-E Electrical Characteristics tables to
Preliminary.

• Updated minimums in Table 13 and added notes to Table 14.
• Added to note 2 to Absolute Maximum Ratings.
• Changed speed grade -8 numbers for TSHCKO32, TREG, TBCCS, and TICKOF.

• Changed all minimum hold times to –0.4 under Global Clock Set-Up and Hold for
LVTTL Standard, with DLL.

• Revised maximum TDLLPW in -6 speed grade for DLL Timing Parameters.

• Changed GCLK0 to BA22 for FG860 package in Table 46.

2/12/01 1.9 • Revised footnote for Table 14.
• Added numbers to Virtex-E Electrical Characteristics tables for XCV1000E and

XCV2000E devices.
• Updated Table 27 and Table 78 to include values for XCV400E and XCV600E devices.
• Revised Table 62 to include pinout information for the XCV400E and XCV600E devices

in the BG560 package.
• Updated footnotes 1 and 2 for Table 76 to include XCV2600E and XCV3200E devices.

4/2/01 2.0 • Updated numerous values in Virtex-E Switching Characteristics tables.
• Converted data sheet to modularized format. See the Virtex-E Data Sheet section.

Date Version Revision
DS022-1 (v2.0) April 2, 2001 www.xilinx.com Module 1 of 4
Preliminary Product Specification 1-800-255-7778 5

http://www.xilinx.com/partinfo/ds022-2.pdf
http://www.xilinx.com/partinfo/ds022-3.pdf
http://www.xilinx.com/partinfo/ds022-4.pdf
http://www.xilinx.com

Architectural Description

Virtex-E Array
The Virtex-E user-programmable gate array, shown in
Figure 1, comprises two major configurable elements: con-
figurable logic blocks (CLBs) and input/output blocks (IOBs).

• CLBs provide the functional elements for constructing
logic

• IOBs provide the interface between the package pins
and the CLBs

CLBs interconnect through a general routing matrix (GRM).
The GRM comprises an array of routing switches located at
the intersections of horizontal and vertical routing channels.
Each CLB nests into a VersaBlock™ that also provides local
routing resources to connect the CLB to the GRM.

The VersaRing™ I/O interface provides additional routing
resources around the periphery of the device. This routing
improves I/O routability and facilitates pin locking.

The Virtex-E architecture also includes the following circuits
that connect to the GRM.

• Dedicated block memories of 4096 bits each

• Clock DLLs for clock-distribution delay compensation
and clock domain control

• 3-State buffers (BUFTs) associated with each CLB that
drive dedicated segmentable horizontal routing
resources

Values stored in static memory cells control the configurable
logic elements and interconnect resources. These values
load into the memory cells on power-up, and can reload if
necessary to change the function of the device.

Input/Output Block
The Virtex-E IOB, Figure 2, features SelectI/O+ inputs and
outputs that support a wide variety of I/O signalling stan-
dards, see Table 1.

The three IOB storage elements function either as
edge-triggered D-type flip-flops or as level-sensitive latches.
Each IOB has a clock signal (CLK) shared by the three
flip-flops and independent clock enable signals for each
flip-flop.

0

Virtex™-E 1.8 V
Field Programmable Gate Arrays

DS022-2 (v2.1) April 19, 2001 0 0 Preliminary Product Specification

R

Figure 1: Virtex-E Architecture Overview

DLLDLL

IO
B

s IO
B

s

VersaRing

VersaRing

ds022_01_121099

C
L

B
s

B
R

A
M

s

B
R

A
M

s

B
R

A
M

s

C
L

B
s

C
L

B
s

B
R

A
M

s

C
L

B
s

DLLDLL

DLLDLLDLLDLL

Figure 2: Virtex-E Input/Output Block (IOB)

OBUFT

IBUF

Vref

ds022_02_091300

SR

CLK

ICE

OCE

O

I

IQ

T
TCE

D
CE

Q

SR

D
CE

Q

SR

D
CE

Q

SR

PAD

Programmable
Delay

Weak
Keeper
© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 1

http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

In addition to the CLK and CE control signals, the three
flip-flops share a Set/Reset (SR). For each flip-flop, this sig-
nal can be independently configured as a synchronous Set,
a synchronous Reset, an asynchronous Preset, or an asyn-
chronous Clear.

The output buffer and all of the IOB control signals have
independent polarity controls.

All pads are protected against damage from electrostatic
discharge (ESD) and from over-voltage transients. When
PCI 3.3 V compliance is required, a conventional clamp
diode is connected to the output supply voltage, VCCO.

Optional pull-up, pull-down and weak-keeper circuits are
attached to each pad. Prior to configuration all outputs not
involved in configuration are forced into their high-imped-
ance state. The pull-down resistors and the weak-keeper
circuits are inactive, but I/Os can optionally be pulled up.

The activation of pull-up resistors prior to configuration is
controlled on a global basis by the configuration mode pins.
If the pull-up resistors are not activated, all the pins are in a
high-impedance state. Consequently, external pull-up or
pull-down resistors must be provided on pins required to be
at a well-defined logic level prior to configuration.

All Virtex-E IOBs support IEEE 1149.1-compatible bound-
ary scan testing.

Input Path

The Virtex-E IOB input path routes the input signal directly
to internal logic and/ or through an optional input flip-flop.

An optional delay element at the D-input of this flip-flop elim-
inates pad-to-pad hold time. The delay is matched to the
internal clock-distribution delay of the FPGA, and when
used, assures that the pad-to-pad hold time is zero.

Each input buffer can be configured to conform to any of the
low-voltage signalling standards supported. In some of
these standards the input buffer utilizes a user-supplied
threshold voltage, VREF. The need to supply VREF imposes
constraints on which standards can be used in close prox-
imity to each other. <Link>See “I/O Banking” on page 2.

There are optional pull-up and pull-down resistors at each
input for use after configuration. Their value is in the range
50 – 100 kW.

Output Path

The output path includes a 3-state output buffer that drives
the output signal onto the pad. The output signal can be
routed to the buffer directly from the internal logic or through
an optional IOB output flip-flop.

The 3-state control of the output can also be routed directly
from the internal logic or through a flip-flip that provides syn-
chronous enable and disable.

Each output driver can be individually programmed for a
wide range of low-voltage signalling standards. Each output
buffer can source up to 24 mA and sink up to 48 mA. Drive
strength and slew rate controls minimize bus transients.

In most signalling standards, the output High voltage
depends on an externally supplied VCCO voltage. The need
to supply VCCO imposes constraints on which standards
can be used in close proximity to each other. <Link>See
“I/O Banking” on page 2.

An optional weak-keeper circuit is connected to each out-
put. When selected, the circuit monitors the voltage on the
pad and weakly drives the pin High or Low to match the
input signal. If the pin is connected to a multiple-source sig-
nal, the weak keeper holds the signal in its last state if all
drivers are disabled. Maintaining a valid logic level in this
way eliminates bus chatter.

Since the weak-keeper circuit uses the IOB input buffer to
monitor the input level, an appropriate VREF voltage must be
provided if the signalling standard requires one. The provi-
sion of this voltage must comply with the I/O banking rules.

I/O Banking

Some of the I/O standards described above require VCCO
and/or VREF voltages. These voltages are externally sup-
plied and connected to device pins that serve groups of
IOBs, called banks. Consequently, restrictions exist about
which I/O standards can be combined within a given bank.

Table 1: Supported I/O Standards

I/O

Standard

Output

VCCO

Input

VCCO

Input

VREF

Board
Termination

Voltage (VTT)

LVTTL 3.3 3.3 N/A N/A

LVCMOS2 2.5 2.5 N/A N/A

LVCMOS18 1.8 1.8 N/A N/A

SSTL3 I & II 3.3 N/A 1.50 1.50

SSTL2 I & II 2.5 N/A 1.25 1.25

GTL N/A N/A 0.80 1.20

GTL+ N/A N/A 1.0 1.50

HSTL I 1.5 N/A 0.75 0.75

HSTL III & IV 1.5 N/A 0.90 1.50

CTT 3.3 N/A 1.50 1.50

AGP-2X 3.3 N/A 1.32 N/A

PCI33_3 3.3 3.3 N/A N/A

PCI66_3 3.3 3.3 N/A N/A

BLVDS & LVDS 2.5 N/A N/A N/A

LVPECL 3.3 N/A N/A N/A
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
2 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Eight I/O banks result from separating each edge of the
FPGA into two banks, as shown in Figure 3. Each bank has
multiple VCCO pins, all of which must be connected to the
same voltage. This voltage is determined by the output
standards in use.

Within a bank, output standards can be mixed only if they
use the same VCCO. Compatible standards are shown in
Table 2. GTL and GTL+ appear under all voltages because
their open-drain outputs do not depend on VCCO.

Some input standards require a user-supplied threshold
voltage, VREF. In this case, certain user-I/O pins are auto-
matically configured as inputs for the VREF voltage. Approx-
imately one in six of the I/O pins in the bank assume this
role.

The VREF pins within a bank are interconnected internally
and consequently only one VREF voltage can be used within
each bank. All VREF pins in the bank, however, must be con-
nected to the external voltage source for correct operation.

Within a bank, inputs that require VREF can be mixed with
those that do not. However, only one VREF voltage can be
used within a bank.

In Virtex-E, input buffers with LVTTL, LVCMOS2,
LVCMOS18, PCI33_3, PCI66_3 standards are supplied by
VCCO rather than VCCINT. For these standards, only input
and output buffers that have the same VCCO can be mixed
together.

The VCCO and VREF pins for each bank appear in the device
pin-out tables and diagrams. The diagrams also show the
bank affiliation of each I/O.

Within a given package, the number of VREF and VCCO pins
can vary depending on the size of device. In larger devices,
more I/O pins convert to VREF pins. Since these are always
a super set of the VREF pins used for smaller devices, it is
possible to design a PCB that permits migration to a larger
device if necessary. All the VREF pins for the largest device
anticipated must be connected to the VREF voltage, and not
used for I/O.

In smaller devices, some VCCO pins used in larger devices
do not connect within the package. These unconnected pins
can be left unconnected externally, or can be connected to
the VCCO voltage to permit migration to a larger device if
necessary.

Configurable Logic Blocks
The basic building block of the Virtex-E CLB is the logic cell
(LC). An LC includes a 4-input function generator, carry
logic, and a storage element. The output from the function
generator in each LC drives both the CLB output and the D
input of the flip-flop. Each Virtex-E CLB contains four LCs,
organized in two similar slices, as shown in Figure 4.
Figure 5 shows a more detailed view of a single slice.

In addition to the four basic LCs, the Virtex-E CLB contains
logic that combines function generators to provide functions
of five or six inputs. Consequently, when estimating the
number of system gates provided by a given device, each
CLB counts as 4.5 LCs.

Look-Up Tables

Virtex-E function generators are implemented as 4-input
look-up tables (LUTs). In addition to operating as a function
generator, each LUT can provide a 16 x 1-bit synchronous
RAM. Furthermore, the two LUTs within a slice can be com-
bined to create a 16 x 2-bit or 32 x 1-bit synchronous RAM,
or a 16 x 1-bit dual-port synchronous RAM.

The Virtex-E LUT can also provide a 16-bit shift register that
is ideal for capturing high-speed or burst-mode data. This
mode can also be used to store data in applications such as
Digital Signal Processing.

Figure 3: Virtex-E I/O Banks

Table 2: Compatible Output Standards

VCCO Compatible Standards

3.3 V PCI, LVTTL, SSTL3 I, SSTL3 II, CTT, AGP, GTL,
GTL+, LVPECL

2.5 V SSTL2 I, SSTL2 II, LVCMOS2, GTL, GTL+,
BLVDS, LVDS

1.8 V LVCMOS18, GTL, GTL+

1.5 V HSTL I, HSTL III, HSTL IV, GTL, GTL+

ds022_03_121799

Bank 0

GCLK3 GCLK2

GCLK1 GCLK0

Bank 1

Bank 5 Bank 4

VirtexE
Device

B
an

k
7

B
an

k
6

B
an

k
2

B
an

k
3

DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 3

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Storage Elements

The storage elements in the Virtex-E slice can be config-
ured either as edge-triggered D-type flip-flops or as
level-sensitive latches. The D inputs can be driven either by

the function generators within the slice or directly from slice
inputs, bypassing the function generators.

In addition to Clock and Clock Enable signals, each Slice
has synchronous set and reset signals (SR and BY). SR

Figure 4: 2-Slice Virtex-E CLB

F1

F2

F3

F4

G1

G2

G3

G4

Carry &
Control

Carry &
Control

Carry &
Control

Carry &
Control

LUT

CINCIN

COUT COUT

YQ

XQXQ

YQ

X

XB

Y
YBYB

Y

BX

BY

BX

BY

G1

G2

G3

G4

F1

F2

F3

F4

Slice 1 Slice 0

XB

X

LUTLUT

LUT D
CE

Q

RC

SP

D
CE

Q

RC

SP

D
CE

Q

RC

SP

D
CE

Q

RC

SP

ds022_04_121799

Figure 5: Detailed View of Virtex-E Slice

BY

F5IN

SR
CLK
CE

BX

YB

Y

YQ

XB

X

XQ

G4
G3
G2
G1

F4
F3
F2
F1

CIN

0

1

1

0

F5 F5

ds022_05_092000

COUT

CY

D
CE

Q

D
CE

Q

F6

CK WSO

WSH
WE
A4

BY DG

BX DI

DI

O

WEI3
I2
I1
I0

LUT

CY

I3
I2
I1
I0

O

DIWE

LUT

INIT

INIT

REV

REV
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
4 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

forces a storage element into the initialization state speci-
fied for it in the configuration. BY forces it into the opposite
state. Alternatively, these signals can be configured to oper-
ate asynchronously. All of the control signals are indepen-
dently invertible, and are shared by the two flip-flops within
the slice.

Additional Logic

The F5 multiplexer in each slice combines the function gen-
erator outputs. This combination provides either a function
generator that can implement any 5-input function, a 4:1
multiplexer, or selected functions of up to nine inputs.

Similarly, the F6 multiplexer combines the outputs of all four
function generators in the CLB by selecting one of the
F5-multiplexer outputs. This permits the implementation of
any 6-input function, an 8:1 multiplexer, or selected func-
tions of up to 19 inputs.

Each CLB has four direct feedthrough paths, two per slice.
These paths provide extra data input lines or additional local
routing that does not consume logic resources.

Arithmetic Logic

Dedicated carry logic provides fast arithmetic carry capabil-
ity for high-speed arithmetic functions. The Virtex-E CLB
supports two separate carry chains, one per Slice. The
height of the carry chains is two bits per CLB.

The arithmetic logic includes an XOR gate that allows a
2-bit full adder to be implemented within a slice. In addition,
a dedicated AND gate improves the efficiency of multiplier
implementation. The dedicated carry path can also be used
to cascade function generators for implementing wide logic
functions.

BUFTs

Each Virtex-E CLB contains two 3-state drivers (BUFTs)
that can drive on-chip busses. <Link>See “Dedicated Rout-
ing” on page 7. Each Virtex-E BUFT has an independent
3-state control pin and an independent input pin.

Block SelectRAM

Virtex-E FPGAs incorporate large block SelectRAM memo-
ries. These complement the Distributed SelectRAM memo-
ries that provide shallow RAM structures implemented in
CLBs.

Block SelectRAM memory blocks are organized in columns,
starting at the left (column 0) and right outside edges and
inserted every 12 CLB columns (see notes for smaller
devices). Each memory block is four CLBs high, and each
memory column extends the full height of the chip, immedi-
ately adjacent (to the right, except for column 0) of the CLB
column locations indicated in Table 3.

Table 4 shows the amount of block SelectRAM memory that
is available in each Virtex-E device.

As illustrated in Figure 6, each block SelectRAM cell is a
fully synchronous dual-ported (True Dual PortÔ) 4096-bit
RAM with independent control signals for each port. The
data widths of the two ports can be configured indepen-
dently, providing built-in bus-width conversion.

Table 3: CLB/Block RAM Column Locations

Device/Col. 0 12 24 36 48 60 72 84 96 108 120

XCV50E Columns 0, 6, 18, & 24

XCV100E Columns 0, 12, 18, & 30

XCV200E Columns 0, 12, 30, & 42

XCV300E Ö Ö Ö Ö

XCV400E Ö Ö Ö Ö

XCV600E Ö Ö Ö Ö Ö Ö

XCV1000E Ö Ö Ö Ö Ö Ö

XCV1600E Ö Ö Ö Ö Ö Ö Ö Ö

XCV2000E Ö Ö Ö Ö Ö Ö Ö Ö

XCV2600E TBD

XCV3200E TBD

Table 4: Virtex-E Block SelectRAM Amounts

Virtex-E Device # of Blocks Block SelectRAM Bits

XCV50E 16 65,536

XCV100E 20 81,920

XCV200E 28 114,688

XCV300E 32 131,072

XCV400E 40 163,840

XCV600E 72 294,912

XCV1000E 96 393,216

XCV1600E 144 589,824

XCV2000E 160 655,360

XCV2600E 184 753,664

XCV3200E 208 851,968
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 5

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Table 5 shows the depth and width aspect ratios for the
block SelectRAM. The Virtex-E block SelectRAM also
includes dedicated routing to provide an efficient interface
with both CLBs and other block SelectRAMs.

Programmable Routing Matrix
It is the longest delay path that limits the speed of any
worst-case design. Consequently, the Virtex-E routing
architecture and its place-and-route software were defined
in a joint optimization process. This joint optimization mini-
mizes long-path delays, and consequently, yields the best
system performance.

The joint optimization also reduces design compilation
times because the architecture is software-friendly. Design
cycles are correspondingly reduced due to shorter design
iteration times.

Local Routing

The VersaBlock provides local routing resources (see
Figure 7), providing three types of connections:

• Interconnections among the LUTs, flip-flops, and GRM
• Internal CLB feedback paths that provide high-speed

connections to LUTs within the same CLB, chaining
them together with minimal routing delay

• Direct paths that provide high-speed connections
between horizontally adjacent CLBs, eliminating the
delay of the GRM.

General Purpose Routing

Most Virtex-E signals are routed on the general purpose
routing, and consequently, the majority of interconnect
resources are associated with this level of the routing hier-
archy. General-purpose routing resources are located in
horizontal and vertical routing channels associated with the
CLB rows and columns and are as follows:

• Adjacent to each CLB is a General Routing Matrix
(GRM). The GRM is the switch matrix through which
horizontal and vertical routing resources connect, and
is also the means by which the CLB gains access to
the general purpose routing.

• 24 single-length lines route GRM signals to adjacent
GRMs in each of the four directions.

• 72 buffered Hex lines route GRM signals to another
GRMs six-blocks away in each one of the four
directions. Organized in a staggered pattern, Hex lines
are driven only at their endpoints. Hex-line signals can
be accessed either at the endpoints or at the midpoint
(three blocks from the source). One third of the Hex
lines are bidirectional, while the remaining ones are
uni-directional.

• 12 Longlines are buffered, bidirectional wires that
distribute signals across the device quickly and
efficiently. Vertical Longlines span the full height of the
device, and horizontal ones span the full width of the
device.

I/O Routing

Virtex-E devices have additional routing resources around
their periphery that form an interface between the CLB array
and the IOBs. This additional routing, called the
VersaRing, facilitates pin-swapping and pin-locking, such
that logic redesigns can adapt to existing PCB layouts.
Time-to-market is reduced, since PCBs and other system
components can be manufactured while the logic design is
still in progress.

Figure 6: Dual-Port Block SelectRAM

Table 5: Block SelectRAM Port Aspect Ratios

Width Depth ADDR Bus Data Bus

1 4096 ADDR<11:0> DATA<0>

2 2048 ADDR<10:0> DATA<1:0>

4 1024 ADDR<9:0> DATA<3:0>

8 512 ADDR<8:0> DATA<7:0>

16 256 ADDR<7:0> DATA<15:0>

WEB
ENB
RSTB
 CLKB
ADDRB[#:0]
DIB[#:0]

WEA
ENA
RSTA
 CLKA
ADDRA[#:0]
DIA[#:0]

DOA[#:0]

DOB[#:0]

RAMB4_S#_S#

ds022_06_121699
Figure 7: Virtex-E Local Routing

XCVE_ds_007

CLB

GRM

To
Adjacent

GRM
To Adjacent
GRM

Direct
Connection
To Adjacent
CLB

To Adjacent
GRM

To Adjacent
GRM

Direct Connection
To Adjacent

CLB
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
6 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Dedicated Routing

Some classes of signal require dedicated routing resources to
maximize performance. In the Virtex-E architecture, dedi-
cated routing resources are provided for two classes of signal.

• Horizontal routing resources are provided for on-chip
3-state busses. Four partitionable bus lines are
provided per CLB row, permitting multiple busses
within a row, as shown in Figure 8.

• Two dedicated nets per CLB propagate carry signals
vertically to the adjacent CLB.Global Clock Distribution
Network

• DLL Location

Clock Routing

Clock Routing resources distribute clocks and other signals
with very high fanout throughout the device. Virtex-E
devices include two tiers of clock routing resources referred
to as global and local clock routing resources.

• The global routing resources are four dedicated global
nets with dedicated input pins that are designed to
distribute high-fanout clock signals with minimal skew.
Each global clock net can drive all CLB, IOB, and block
RAM clock pins. The global nets can be driven only by
global buffers. There are four global buffers, one for
each global net.

• The local clock routing resources consist of 24
backbone lines, 12 across the top of the chip and 12
across bottom. From these lines, up to 12 unique
signals per column can be distributed via the 12
longlines in the column. These local resources are
more flexible than the global resources since they are
not restricted to routing only to clock pins.

Global Clock Distribution
Virtex-E provides high-speed, low-skew clock distribution
through the global routing resources described above. A
typical clock distribution net is shown in Figure 9.

Four global buffers are provided, two at the top center of the
device and two at the bottom center. These drive the four
global nets that in turn drive any clock pin.

Four dedicated clock pads are provided, one adjacent to
each of the global buffers. The input to the global buffer is
selected either from these pads or from signals in the gen-
eral purpose routing.

Digital Delay-Locked Loops

There are eight DLLs (Delay-Locked Loops) per device,
with four located at the top and four at the bottom,
Figure 10. The DLLs can be used to eliminate skew
between the clock input pad and the internal clock input pins
throughout the device. Each DLL can drive two global clock
networks.The DLL monitors the input clock and the distrib-
uted clock, and automatically adjusts a clock delay element.
Additional delay is introduced such that clock edges arrive
at internal flip-flops synchronized with clock edges arriving
at the input.

In addition to eliminating clock-distribution delay, the DLL
provides advanced control of multiple clock domains. The
DLL provides four quadrature phases of the source clock,
and can double the clock or divide the clock by 1.5, 2, 2.5, 3,
4, 5, 8, or 16.

Figure 8: BUFT Connections to Dedicated Horizontal Bus LInes

CLB CLB CLB CLB

buft_c.eps

Tri-State
Lines

Figure 9: Global Clock Distribution Network

G
lobal C

lock S
pine

Global Clock Column

GCLKPAD2

GCLKBUF2

GCLKPAD3

GCLKBUF3

GCLKBUF1

GCLKPAD1

GCLKBUF0

GCLKPAD0

Global Clock Rows

XCVE_009
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 7

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

The DLL also operates as a clock mirror. By driving the out-
put from a DLL off-chip and then back on again, the DLL can
be used to de-skew a board level clock among multiple
devices.

To guarantee that the system clock is operating correctly
prior to the FPGA starting up after configuration, the DLL
can delay the completion of the configuration process until
after it has achieved lock. For more information about DLL
functionality, see the Design Consideration section of the
data sheet.

Boundary Scan
Virtex-E devices support all the mandatory boundary-scan
instructions specified in the IEEE standard 1149.1. A Test
Access Port (TAP) and registers are provided that imple-
ment the EXTEST, INTEST, SAMPLE/PRELOAD, BYPASS,
IDCODE, USERCODE, and HIGHZ instructions. The TAP

also supports two internal scan chains and configura-
tion/readback of the device.

The JTAG input pins (TDI, TMS, TCK) do not have a VCCO
requirement and operate with either 2.5 V or 3.3 V input sig-
nalling levels. The output pin (TDO) is sourced from the
VCCO in bank 2, and for proper operation of LVTTL 3.3 V lev-
els, the bank should be supplied with 3.3 V.

Boundary-scan operation is independent of individual IOB
configurations, and unaffected by package type. All IOBs,
including un-bonded ones, are treated as independent
3-state bidirectional pins in a single scan chain. Retention of
the bidirectional test capability after configuration facilitates
the testing of external interconnections.

Table 6 lists the boundary-scan instructions supported in
Virtex-E FPGAs. Internal signals can be captured during
EXTEST by connecting them to un-bonded or unused IOBs.
They can also be connected to the unused outputs of IOBs
defined as unidirectional input pins.

Before the device is configured, all instructions except
USER1 and USER2 are available. After configuration, all
instructions are available. During configuration, it is recom-
mended that those operations using the boundary-scan
register (SAMPLE/PRELOAD, INTEST, EXTEST) not be
performed.

In addition to the test instructions outlined above, the
boundary-scan circuitry can be used to configure the
FPGA, and also to read back the configuration data.

Figure 11 is a diagram of the Virtex-E Series boundary scan
logic. It includes three bits of Data Register per IOB, the
IEEE 1149.1 Test Access Port controller, and the Instruction
Register with decodes.

Figure 10: DLL Locations
XCVE_0010

DLLDLL

Primary DLLs

S
econdary D

LLsS
ec

on
da

ry
 D

LL
s

DLLDLLDLLDLL

DLLDLL
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
8 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Instruction Set

The Virtex-E Series boundary scan instruction set also
includes instructions to configure the device and read back
configuration data (CFG_IN, CFG_OUT, and JSTART). The
complete instruction set is coded as shown in Table 6..

Figure 11: Virtex-E Family Boundary Scan Logic

D Q

D Q

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

IOB

M
U
X

BYPASS
REGISTER

IOB IOB

TDO

TDI

IOB IOB IOB

1

0

1

0

1

0

1

0

1

0

sd

LE

D Q

D Q

D Q

1

0

1

0

1

0

1

0

D Q

LE

sd

sd

LE

D Q

sd

LE

D Q

IOB

D Q
1

0
D Q

LE

sd

IOB.T

DATA IN

IOB.I

IOB.Q

IOB.T

IOB.I

SHIFT/
CAPTURE

CLOCK DATA
REGISTER

DATAOUT UPDATE EXTEST

X9016

INSTRUCTION REGISTER

Table 6: Boundary Scan Instructions

Boundary-Scan
Command

Binary
Code(4:0) Description

EXTEST 00000 Enables boundary-scan
EXTEST operation

SAMPLE/
PRELOAD

00001 Enables boundary-scan
SAMPLE/PRELOAD
operation

USER1 00010 Access user-defined
register 1

USER2 00011 Access user-defined
register 2

CFG_OUT 00100 Access the
configuration bus for
read operations.

CFG_IN 00101 Access the
configuration bus for
write operations.

INTEST 00111 Enables boundary-scan
INTEST operation

USERCODE 01000 Enables shifting out
USER code

IDCODE 01001 Enables shifting out of
ID Code

HIGHZ 01010 3-states output pins
while enabling the
Bypass Register

JSTART 01100 Clock the start-up
sequence when
StartupClk is TCK

BYPASS 11111 Enables BYPASS

RESERVED All other
codes

Xilinx reserved
instructions

Table 6: Boundary Scan Instructions (Continued)

Boundary-Scan
Command

Binary
Code(4:0) Description
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 9

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Data Registers

The primary data register is the boundary scan register. For
each IOB pin in the FPGA, bonded or not, it includes three
bits for In, Out, and 3-State Control. Non-IOB pins have
appropriate partial bit population if input-only or output-only.
Each EXTEST CAPTURED-OR state captures all In, Out,
and 3-state pins.

The other standard data register is the single flip-flop
BYPASS register. It synchronizes data being passed
through the FPGA to the next downstream boundary scan
device.

The FPGA supports up to two additional internal scan
chains that can be specified using the BSCAN macro. The
macro provides two user pins (SEL1 and SEL2) which are
decodes of the USER1 and USER2 instructions respec-
tively. For these instructions, two corresponding pins (T
DO1 and TDO2) allow user scan data to be shifted out of
TDO.

Likewise, there are individual clock pins (DRCK1 and
DRCK2) for each user register. There is a common input pin
(TDI) and shared output pins that represent the state of the
TAP controller (RESET, SHIFT, and UPDATE).

Bit Sequence

The order within each IOB is: In, Out, 3-State. The
input-only pins contribute only the In bit to the boundary
scan I/O data register, while the output-only pins contributes
all three bits.

From a cavity-up view of the chip (as shown in EPIC), start-
ing in the upper right chip corner, the boundary scan
data-register bits are ordered as shown in Figure 12.

BSDL (Boundary Scan Description Language) files for Vir-
tex-E Series devices are available on the Xilinx web site in
the File Download area.

Identification Registers

The IDCODE register is supported. By using the IDCODE,
the device connected to the JTAG port can be determined.

The IDCODE register has the following binary format:

vvvv:ffff:fffa:aaaa:aaaa:cccc:cccc:ccc1

where

v = the die version number

f = the family code (05 for Virtex-E family)

a = the number of CLB rows (ranges from 16 for

XCV50E to 104 for XCV3200E)

c = the company code (49h for Xilinx)

The USERCODE register is supported. By using the USER-
CODE, a user-programmable identification code can be
loaded and shifted out for examination. The identification
code (see Table 7) is embedded in the bitstream during bit-
stream generation and is valid only after configuration.

Including Boundary Scan in a Design

Since the boundary scan pins are dedicated, no special ele-
ment needs to be added to the design unless an internal
data register (USER1 or USER2) is desired.

If an internal data register is used, insert the boundary scan
symbol and connect the necessary pins as appropriate.

Figure 12: Boundary Scan Bit Sequence

Bit 0 (TDO end)
Bit 1
Bit 2

Right half of top-edge IOBs (Right to Left)

GCLK2
GCLK3

Left half of top-edge IOBs (Right to Left)

Left-edge IOBs (Top to Bottom)

M1
M0
M2

Left half of bottom-edge IOBs (Left to Right)

GCLK1
GCLK0

Right half of bottom-edge IOBs (Left to Right)

DONE
PROG

Right-edge IOBs (Bottom to Top)

CCLK(TDI end)

990602001

Table 7: IDCODEs Assigned to Virtex-E FPGAs

FPGA IDCODE

XCV50E v0A10093h

XCV100E v0A14093h

XCV200E v0A1C093h

XCV300E v0A20093h

XCV400E v0A28093h

XCV600E v0A30093h

XCV1000E v0A40093h

XCV1600E v0A48093h

XCV2000E v0A50093h

XCV2600E v0A5C093h

XCV3200E v0A68093h
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
10 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Development System
Virtex-E FPGAs are supported by the Xilinx Foundation and
Alliance Series CAE tools. The basic methodology for Vir-
tex-E design consists of three interrelated steps: design
entry, implementation, and verification. Industry-standard
tools are used for design entry and simulation (for example,
Synopsys FPGA Express), while Xilinx provides proprietary
architecture-specific tools for implementation.

The Xilinx development system is integrated under the Xil-
inx Design Manager (XDM™) software, providing designers
with a common user interface regardless of their choice of
entry and verification tools. The XDM software simplifies the
selection of implementation options with pull-down menus
and on-line help.

Application programs ranging from schematic capture to
Placement and Routing (PAR) can be accessed through the
XDM software. The program command sequence is gener-
ated prior to execution, and stored for documentation.

Several advanced software features facilitate Virtex-E
design. RPMs, for example, are schematic-based macros
with relative location constraints to guide their placement.
They help ensure optimal implementation of common func-
tions.

For HDL design entry, the Xilinx FPGA Foundation develop-
ment system provides interfaces to the following synthesis
design environments.

• Synopsys (FPGA Compiler, FPGA Express)
• Exemplar (Spectrum)
• Synplicity (Synplify)

For schematic design entry, the Xilinx FPGA Foundation
and Alliance development system provides interfaces to the
following schematic-capture design environments.

• Mentor Graphics V8 (Design Architect, QuickSim II)
• Viewlogic Systems (Viewdraw)

Third-party vendors support many other environments.

A standard interface-file specification, Electronic Design
Interchange Format (EDIF), simplifies file transfers into and
out of the development system.

Virtex-E FPGAs are supported by a unified library of stan-
dard functions. This library contains over 400 primitives and
macros, ranging from 2-input AND gates to 16-bit accumu-
lators, and includes arithmetic functions, comparators,
counters, data registers, decoders, encoders, I/O functions,
latches, Boolean functions, multiplexers, shift registers, and
barrel shifters.

The “soft macro” portion of the library contains detailed
descriptions of common logic functions, but does not con-
tain any partitioning or placement information. The perfor-
mance of these macros depends, therefore, on the
partitioning and placement obtained during implementation.

RPMs, on the other hand, do contain predetermined parti-
tioning and placement information that permits optimal
implementation of these functions. Users can create their
own library of soft macros or RPMs based on the macros
and primitives in the standard library.

The design environment supports hierarchical design entry,
with high-level schematics that comprise major functional
blocks, while lower-level schematics define the logic in
these blocks. These hierarchical design elements are auto-
matically combined by the implementation tools. Different
design entry tools can be combined within a hierarchical
design, thus allowing the most convenient entry method to
be used for each portion of the design.

Design Implementation
The place-and-route tools (PAR) automatically provide the
implementation flow described in this section. The parti-
tioner takes the EDIF net list for the design and maps the
logic into the architectural resources of the FPGA (CLBs
and IOBs, for example). The placer then determines the
best locations for these blocks based on their interconnec-
tions and the desired performance. Finally, the router inter-
connects the blocks.

The PAR algorithms support fully automatic implementation
of most designs. For demanding applications, however, the
user can exercise various degrees of control over the pro-
cess. User partitioning, placement, and routing information
is optionally specified during the design-entry process. The
implementation of highly structured designs can benefit
greatly from basic floor planning.

The implementation software incorporates Timing Wizard®

timing-driven placement and routing. Designers specify tim-
ing requirements along entire paths during design entry.
The timing path analysis routines in PAR then recognize
these user-specified requirements and accommodate them.

Timing requirements are entered on a schematic in a form
directly relating to the system requirements, such as the tar-
geted clock frequency, or the maximum allowable delay
between two registers. In this way, the overall performance
of the system along entire signal paths is automatically tai-
lored to user-generated specifications. Specific timing infor-
mation for individual nets is unnecessary.

Design Verification
In addition to conventional software simulation, FPGA users
can use in-circuit debugging techniques. Because Xilinx
devices are infinitely reprogrammable, designs can be veri-
fied in real time without the need for extensive sets of soft-
ware simulation vectors.

The development system supports both software simulation
and in-circuit debugging techniques. For simulation, the
system extracts the post-layout timing information from the
design database, and back-annotates this information into
the net list for use by the simulator. Alternatively, the user
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 11

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

can verify timing-critical portions of the design using the
TRCE® static timing analyzer.

For in-circuit debugging, an optional download and read-
back cable is available. This cable connects the FPGA in the
target system to a PC or workstation. After downloading the
design into the FPGA, the designer can single-step the
logic, readback the contents of the flip-flops, and so observe
the internal logic state. Simple modifications can be down-
loaded into the system in a matter of minutes.

Configuration
Virtex-E devices are configured by loading configuration
data into the internal configuration memory. Some of the
pins used for this are dedicated configuration pins, while
others can be re-used as general purpose inputs and out-
puts once configuration is complete.

The dedicated pins are the mode pins (M2, M1, M0), the
configuration clock pin (CCLK), the INIT pin, the DONE pin
and the boundary-scan pins (TDI, TDO, TMS, TCK).
Depending on the configuration mode chosen, CCLK can
be an output generated by the FPGA, or can be generated
externally and provided to the FPGA as an input.

For correct operation, these pins require a VCCO of 3.3 V or
2.5 V. At 3.3 V the pins operate as LVTTL, and at 2.5 V they
operate as LVCMOS. All affected pins fall in banks 2 or 3.

Configuration Modes
Virtex-E supports the following four configuration modes.

• Slave-serial mode
• Master-serial mode
• SelectMAP mode
• Boundary-scan mode (JTAG)

The Configuration mode pins (M2, M1, M0) select among
these configuration modes with the option in each case of
having the IOB pins either pulled up or left floating prior to
configuration. The selection codes are listed in Table 8.

Configuration through the boundary-scan port is always
available, independent of the mode selection. Selecting the
boundary-scan mode simply turns off the other modes. The
three mode pins have internal pull-up resistors, and default
to a logic High if left unconnected.

Table 8: Configuration Codes

Configuration Mode M2 M1 M0 CCLK Direction Data Width Serial Dout Configuration Pull-ups

Master-serial mode 0 0 0 Out 1 Yes No

Boundary-scan mode 1 0 1 N/A 1 No No

SelectMAP mode 1 1 0 In 8 No No

Slave-serial mode 1 1 1 In 1 Yes No

Master-serial mode 1 0 0 Out 1 Yes Yes

Boundary-scan mode 0 0 1 N/A 1 No Yes

SelectMAP mode 0 1 0 In 8 No Yes

Slave-serial mode 0 1 1 In 1 Yes Yes
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
12 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Table 9 lists the total number of bits required to configure
each device.

Slave Serial Mode

In slave serial mode, the FPGA receives configuration data
in bit-serial form from a serial PROM or other source of
serial configuration data. The serial bitstream must be setup

at the DIN input pin a short time before each rising edge of
an externally generated CCLK.

For more information on serial PROMs, see the PROM data
sheet at http://www.xilinx.com/partinfo/ds026.pdf.

Multiple FPGAs can be daisy-chained for configuration from a
single source. After a particular FPGA has been configured,
the data for the next device is routed to the DOUT pin. The
data on the DOUT pin changes on the rising edge of CCLK.

The change of DOUT on the rising edge of CCLK differs
from previous families, but does not cause a problem for
mixed configuration chains. This change was made to
improve serial-configuration rates for Virtex and Virtex-E
only chains.

Figure 13 shows a full master/slave system. A Virtex-E
device in slave serial mode should be connected as shown
in the third device from the left

Slave-serial mode is selected by applying <111> or <011> to
the mode pins (M2, M1, M0). A weak pull-up on the mode pins
makes slave serial the default mode if the pins are left uncon-
nected. Figure 14 shows slave-serial configuration timing.

Table 10 provides more detail about the characteristics
shown in Figure 14. Configuration must be delayed until the
INIT pins of all daisy-chained FPGAs are High.

Table 9: Virtex-E Bitstream Lengths

Device # of Configuration Bits

XCV50E 630,048

XCV100E 863,840

XCV200E 1,442,016

XCV300E 1, 875,648

XCV400E 2,693,440

XCV600E 3,961,632

XCV1000E 6,587,520

XCV1600E 8,308,992

XCV2000E 10,159,648

XCV2600E 12,922,336

XCV3200E 16,283,712

Table 10: Master/Slave Serial Mode Programming Switching

Description
Figure 14

References Symbol Values Units

CCLK

DIN setup/hold, slave mode 1/2 TDCC/TCCD 5.0 / 0.0 ns, min

DIN setup/hold, master mode 1/2 TDSCK/TSCKD 5.0 / 0.0 ns, min

DOUT 3 TCCO 12.0 ns, max

High time 4 TCCH 5.0 ns, min

Low time 5 TCCL 5.0 ns, min

Maximum Frequency FCC 66 MHz, max

Frequency Tolerance, master mode with respect to nominal +45% –30%
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 13

http://www.xilinx.com
http://www.xilinx.com/partinfo/ds026.pdf

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

.

Master Serial Mode

In master serial mode, the CCLK output of the FPGA drives
a Xilinx Serial PROM that feeds bit-serial data to the DIN
input. The FPGA accepts this data on each rising CCLK
edge. After the FPGA has been loaded, the data for the next
device in a daisy-chain is presented on the DOUT pin after
the rising CCLK edge.

The interface is identical to slave serial except that an inter-
nal oscillator is used to generate the configuration clock
(CCLK). A wide range of frequencies can be selected for
CCLK which always starts at a slow default frequency. Con-
figuration bits then switch CCLK to a higher frequency for
the remainder of the configuration. Switching to a lower fre-
quency is prohibited.

The CCLK frequency is set using the ConfigRate option in
the bitstream generation software. The maximum CCLK fre-
quency that can be selected is 60 MHz. When selecting a
CCLK frequency, ensure that the serial PROM and any
daisy-chained FPGAs are fast enough to support the clock
rate.

On power-up, the CCLK frequency is approximately
2.5 MHz. This frequency is used until the ConfigRate bits
have been loaded when the frequency changes to the
selected ConfigRate. Unless a different frequency is speci-
fied in the design, the default ConfigRate is 4 MHz.

In a full master/slave system (Figure 13), the left-most
device operates in master-serial mode. The remaining
devices operate in slave-serial mode. The SPROM RESET
pin is driven by INIT, and the CE input is driven by DONE.
There is the potential for contention on the DONE pin,
depending on the start-up sequence options chosen.

The sequence of operations necessary to configure a Vir-
tex-E FPGA serially appears in Figure 15.

Figure 13: Master/Slave Serial Mode Circuit Diagram

VIRTEX-E
MASTER
SERIAL

VIRTEX-E,
XC4000XL,

SLAVE

XC1701L

PROGRAM

M2

M0 M1

DOUT

CCLK CLK

3.3V

DATA

CE CEO

RESET/OE DONE

DIN

INIT INITDONE

PROGRAM PROGRAM

CCLK

DIN DOUT

M2
M0 M1

(Low Reset Option Used)

4.7 K

XCVE_ds_013

N/C

N/C

Figure 14: Slave Serial Mode Programming Switching Characteristics

4 TCCH

3 TCCO

5 TCCL2 TCCD1 TDCC

DIN

CCLK

DOUT
(Output)

X5379_a

Figure 15: Serial Configuration Flowchart

Apply Power

Set PROGRAM = High

Release INIT If used to delay
configuration

Load a Configuration Bit

High

Low

FPGA makes a final
clearing pass and releases

INIT when finished.

FPGA starts to clear
configuration memory.

ds009_15_111799

Configuration Completed

End of
Bitstream?

Yes

No

Once per bitstream,
FPGA checks data using CRC

and pulls INIT Low on error.

If no CRC errors found,
FPGA enters start-up phase

causing DONE to go High.

INIT?
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
14 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Figure 16 shows the timing of master-serial configuration.
Master serial mode is selected by a <000> or <100> on the
mode pins (M2, M1, M0). Table 10 shows the timing infor-
mation for Figure 16.

At power-up, VCC must rise from 1.0 V to VCC Min in less
than 50 ms, otherwise delay configuration by pulling PRO-
GRAM Low until VCC is valid.

SelectMAP Mode

The SelectMAP mode is the fastest configuration option.
Byte-wide data is written into the FPGA with a BUSY flag
controlling the flow of data.

An external data source provides a byte stream, CCLK, a
Chip Select (CS) signal and a Write signal (WRITE). If
BUSY is asserted (High) by the FPGA, the data must be
held until BUSY goes Low.

Data can also be read using the SelectMAP mode. If
WRITE is not asserted, configuration data is read out of the
FPGA as part of a readback operation.

After configuration, the pins of the SelectMAP port can be
used as additional user I/O. Alternatively, the port can be
retained to permit high-speed 8-bit readback.

Retention of the SelectMAP port is selectable on a
design-by-design basis when the bitstream is generated. If
retention is selected, PROHIBIT constraints are required to

prevent the SelectMAP-port pins from being used as user
I/O.

Multiple Virtex-E FPGAs can be configured using the
SelectMAP mode, and be made to start-up simultaneously.
To configure multiple devices in this way, wire the individual
CCLK, Data, WRITE, and BUSY pins of all the devices in
parallel. The individual devices are loaded separately by
asserting the CS pin of each device in turn and writing the
appropriate data. See Table 11 for SelectMAP Write Timing
Characteristics.

Write

Write operations send packets of configuration data into the
FPGA. The sequence of operations for a multi-cycle write
operation is shown below. Note that a configuration packet
can be split into many such sequences. The packet does
not have to complete within one assertion of CS, illustrated
in Figure 17.

1. Assert WRITE and CS Low. Note that when CS is
asserted on successive CCLKs, WRITE must remain
either asserted or de-asserted. Otherwise, an abort is
initiated, as described below.

2. Drive data onto D[7:0]. Note that to avoid contention,
the data source should not be enabled while CS is Low
and WRITE is High. Similarly, while WRITE is High, no
more that one CS should be asserted.

3. At the rising edge of CCLK: If BUSY is Low, the data is
accepted on this clock. If BUSY is High (from a previous
write), the data is not accepted. Acceptance instead
occurs on the first clock after BUSY goes Low, and the
data must be held until this has happened.

4. Repeat steps 2 and 3 until all the data has been sent.

5. De-assert CS and WRITE.

Figure 16: Master Serial Mode Programming
Switching Characteristics

Serial Data In

CCLK
(Output)

Serial DOUT
(Output)

1 TDSCK

2 TCKDS

X3223_a

Table 11: SelectMAP Write Timing Characteristics

Description Symbol Units

CCLK

D0-7 Setup/Hold 1/2 TSMDCC/TSMCCD 5.0 / 1.0 ns, min

CS Setup/Hold 3/4 TSMCSCC/TSMCCCS 7.0 / 1.0 ns, min

WRITE Setup/Hold 5/6 TSMCCW/TSMWCC 7.0 / 1.0 ns, min

BUSY Propagation Delay 7 TSMCKBY 12.0 ns, max

Maximum Frequency FCC 66 MHz, max

Maximum Frequency with no handshake FCCNH 50 MHz, max
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 15

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

A flowchart for the write operation appears in Figure 18.
Note that if CCLK is slower than fCCNH, the FPGA never
asserts BUSY, In this case, the above handshake is unnec-
essary, and data can simply be entered into the FPGA every
CCLK cycle.

Abort

During a given assertion of CS, the user cannot switch from
a write to a read, or vice-versa. This action causes the cur-
rent packet command to be aborted. The device remains
BUSY until the aborted operation has completed. Following
an abort, data is assumed to be unaligned to word bound-

aries, and the FPGA requires a new synchronization word
prior to accepting any new packets.

To initiate an abort during a write operation, de-assert
WRITE. At the rising edge of CCLK, an abort is initiated, as
shown in Figure 19.

Boundary-Scan Mode

In the boundary-scan mode, no non-dedicated pins are
required, configuration being done entirely through the
IEEE 1149.1 Test Access Port.

Configuration through the TAP uses the CFG_IN instruc-
tion. This instruction allows data input on TDI to be con-
verted into data packets for the internal configuration bus.

The following steps are required to configure the FPGA
through the boundary-scan port (when using TCK as a
start-up clock).

1. Load the CFG_IN instruction into the boundary-scan
instruction register (IR).

2. Enter the Shift-DR (SDR) state.

3. Shift a configuration bitstream into TDI.

4. Return to Run-Test-Idle (RTI).

5. Load the JSTART instruction into IR.

6. Enter the SDR state.

7. Clock TCK through the startup sequence.

8. Return to RTI.

Configuration and readback via the TAP is always available.
The boundary-scan mode is selected by a <101> or <001>
on the mode pins (M2, M1, M0).

Configuration Sequence
The configuration of Virtex-E devices is a three-phase pro-
cess. First, the configuration memory is cleared. Next, con-
figuration data is loaded into the memory, and finally, the
logic is activated by a start-up process.

Configuration is automatically initiated on power-up unless
it is delayed by the user, as described below. The configura-
tion process can also be initiated by asserting PROGRAM.
The end of the memory-clearing phase is signalled by INIT
going High, and the completion of the entire process is sig-
nalled by DONE going High.

Figure 17: Write Operations

Figure 18: SelectMAP Flowchart for Write Operations

X8796_b

CCLK

No Write Write No Write Write

DATA[7:0]

CS

WRITE

3

5

BUSY

4

6

7

1 2

Apply Power

Set PROGRAM = High

Release INIT If used to delay
configuration

On first FPGA

Set WRITE = Low

Enter Data Source

Set CS = Low

On first FPGASet CS = High

Apply Configuration Byte

INIT?

High

Low

Busy?

Low

High

Disable Data Source

Set WRITE = High

When all DONE pins
are released, DONE goes High

and start-up sequences complete.

If no errors,
later FPGAs enter start-up phase

releasing DONE.

If no errors,
first FPGAs enter start-up phase

releasing DONE.

Once per bitstream,
FPGA checks data using CRC

and pulls INIT Low on error.

FPGA makes a final
clearing pass and releases

INIT when finished.

FPGA starts to clear
configuration memory.

For any other FPGAs

ds009_18_111799

Repeat Sequence A

Configuration Completed

Sequence A

End of Data?

Yes

No

Figure 19: SelectMAP Write Abort Waveforms

X8797_c

CCLK

CS

WRITE

Abort

DATA[7:0]

BUSY
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
16 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

The power-up timing of configuration signals is shown in
Figure 20.

The corresponding timing characteristics are listed in
Table 12.

Delaying Configuration

INIT can be held Low using an open-drain driver. An
open-drain is required since INIT is a bidirectional
open-drain pin that is held Low by the FPGA while the con-
figuration memory is being cleared. Extending the time that
the pin is Low causes the configuration sequencer to wait.
Thus, configuration is delayed by preventing entry into the
phase where data is loaded.

Start-Up Sequence

The default Start-up sequence is that one CCLK cycle after
DONE goes High, the global 3-state signal (GTS) is
released. This permits device outputs to turn on as neces-
sary.

One CCLK cycle later, the Global Set/Reset (GSR) and Glo-
bal Write Enable (GWE) signals are released. This permits
the internal storage elements to begin changing state in
response to the logic and the user clock.

The relative timing of these events can be changed. In addi-
tion, the GTS, GSR, and GWE events can be made depen-
dent on the DONE pins of multiple devices all going High,
forcing the devices to start synchronously. The sequence
can also be paused at any stage until lock has been
achieved on any or all DLLs.

Readback
The configuration data stored in the Virtex-E configuration
memory can be readback for verification. Along with the
configuration data it is possible to readback the contents all
flip-flops/latches, LUT RAMs, and block RAMs. This capa-
bility is used for real-time debugging. For more detailed
information, see application note XAPP138 “Virtex FPGA
Series Configuration and Readback”.

Figure 20: Power-up Timing Configuration Signals

Table 12: Power-up Timing Characteristics

Description Symbol Value Units

Power-on Reset1 TPOR 2.0 ms, max

Program Latency TPL 100.0 ms, max

CCLK (output) Delay TICCK

0.5 ms, min

4.0 ms, max

Program Pulse Width TPROGRAM 300 ns, min

Notes:
1. TPOR delay is the initialization time required after VCCINT and

VCCO in Bank 2 reach the recommended operating voltage.

VALID

PROGRAM

Vcc

CCLK OUTPUT or INPUT

M0, M1, M2
(Required)

TPL

TICCK

ds022_020_022900

TPOR

INIT
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 17

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Design Considerations
This section contains more detailed design information on
the following features.

• Delay-Locked Loop . . . see page 18
• BlockRAM . . . see page 22
• SelectI/O . . . see page 28

Using DLLs
The Virtex-E FPGA series provides up to eight fully digital
dedicated on-chip Delay-Locked Loop (DLL) circuits which
provide zero propagation delay, low clock skew between
output clock signals distributed throughout the device, and
advanced clock domain control. These dedicated DLLs can
be used to implement several circuits which improve and
simplify system level design.

Introduction
As FPGAs grow in size, quality on-chip clock distribution
becomes increasingly important. Clock skew and clock
delay impact device performance and the task of managing
clock skew and clock delay with conventional clock trees
becomes more difficult in large devices. The Virtex-E series
of devices resolve this potential problem by providing up to
eight fully digital dedicated on-chip DLL circuits, which pro-
vide zero propagation delay and low clock skew between
output clock signals distributed throughout the device.

Each DLL can drive up to two global clock routing networks
within the device. The global clock distribution network min-
imizes clock skews due to loading differences. By monitor-
ing a sample of the DLL output clock, the DLL can
compensate for the delay on the routing network, effectively
eliminating the delay from the external input port to the indi-
vidual clock loads within the device.

In addition to providing zero delay with respect to a user
source clock, the DLL can provide multiple phases of the
source clock. The DLL can also act as a clock doubler or it
can divide the user source clock by up to 16.

Clock multiplication gives the designer a number of design
alternatives. For instance, a 50 MHz source clock doubled
by the DLL can drive an FPGA design operating at 100
MHz. This technique can simplify board design because the
clock path on the board no longer distributes such a
high-speed signal. A multiplied clock also provides design-
ers the option of time-domain-multiplexing, using one circuit
twice per clock cycle, consuming less area than two copies
of the same circuit. Two DLLs in can be connected in series
to increase the effective clock multiplication factor to four.

The DLL can also act as a clock mirror. By driving the DLL
output off-chip and then back in again, the DLL can be used
to de-skew a board level clock between multiple devices.

In order to guarantee the system clock establishes prior to
the device “waking up,” the DLL can delay the completion of
the device configuration process until after the DLL
achieves lock.

By taking advantage of the DLL to remove on-chip clock
delay, the designer can greatly simplify and improve system
level design involving high-fanout, high-performance clocks.

Library DLL Symbols
Figure 21 shows the simplified Xilinx library DLL macro
symbol, BUFGDLL. This macro delivers a quick and effi-
cient way to provide a system clock with zero propagation
delay throughout the device. Figure 22 and Figure 23 show
the two library DLL primitives. These symbols provide
access to the complete set of DLL features when imple-
menting more complex applications.

Figure 21: Simplified DLL Macro Symbol BUFGDLL

Figure 22: Standard DLL Symbol CLKDLL

Figure 23: High Frequency DLL Symbol CLKDLLHF

0ns

ds022_25_121099

OI

CLK0
CLK90
CLK180
CLK270

CLK2X

CLKDV

LOCKED

CLKIN

CLKFB

RST

ds022_26_121099

CLKDLL

CLK0
CLK180

CLKDV

LOCKED

CLKIN
CLKFB

RST

ds022_027_121099

CLKDLLHF
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
18 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

BUFGDLL Pin Descriptions
Use the BUFGDLL macro as the simplest way to provide
zero propagation delay for a high-fanout on-chip clock from
an external input. This macro uses the IBUFG, CLKDLL and
BUFG primitives to implement the most basic DLL applica-
tion as shown in Figure 24.

This symbol does not provide access to the advanced clock
domain controls or to the clock multiplication or clock divi-
sion features of the DLL. This symbol also does not provide
access to the RST, or LOCKED pins of the DLL. For access
to these features, a designer must use the library DLL prim-
itives described in the following sections.

Source Clock Input — I

The I pin provides the user source clock, the clock signal on
which the DLL operates, to the BUFGDLL. For the BUF-
GDLL macro the source clock frequency must fall in the low
frequency range as specified in the data sheet. The BUF-
GDLL requires an external signal source clock. Therefore,
only an external input port can source the signal that drives
the BUFGDLL I pin.

Clock Output — O

The clock output pin O represents a delay-compensated
version of the source clock (I) signal. This signal, sourced by
a global clock buffer BUFG symbol, takes advantage of the
dedicated global clock routing resources of the device.

The output clock has a 50-50 duty cycle unless you deacti-
vate the duty cycle correction property.

CLKDLL Primitive Pin Descriptions
The library CLKDLL primitives provide access to the com-
plete set of DLL features needed when implementing more
complex applications with the DLL.

Source Clock Input — CLKIN

The CLKIN pin provides the user source clock (the clock
signal on which the DLL operates) to the DLL. The CLKIN
frequency must fall in the ranges specified in the data sheet.
A global clock buffer (BUFG) driven from another CLKDLL,
one of the global clock input buffers (IBUFG), or an
IO_LVDS_DLL pin on the same edge of the device (top or
bottom) must source this clock signal. There are four
IO_LVDS_DLL input pins that can be used as inputs to the

DLLs. This makes a total of eight usable input pins for DLLs
in the Virtex-E family.

Feedback Clock Input — CLKFB

The DLL requires a reference or feedback signal to provide
the delay-compensated output. Connect only the CLK0 or
CLK2X DLL outputs to the feedback clock input (CLKFB)
pin to provide the necessary feedback to the DLL. The feed-
back clock input can also be provided through one of the fol-
lowing pins.

IBUFG - Global Clock Input Pad

IO_LVDS_DLL - the pin adjacent to IBUF

If an IBUFG sources the CLKFB pin, the following special
rules apply.

1. An external input port must source the signal that drives
the IBUFG I pin.

2. The CLK2X output must feedback to the device if both
the CLK0 and CLK2X outputs are driving off chip
devices.

3. That signal must directly drive only OBUFs and nothing
else.

These rules enable the software determine which DLL clock
output sources the CLKFB pin.

Reset Input — RST

When the reset pin RST activates the LOCKED signal deac-
tivates within four source clock cycles. The RST pin, active
High, must either connect to a dynamic signal or tied to
ground. As the DLL delay taps reset to zero, glitches can
occur on the DLL clock output pins. Activation of the RST
pin can also severely affect the duty cycle of the clock out-
put pins. Furthermore, the DLL output clocks no longer
de-skew with respect to one another. For these reasons,
rarely use the reset pin unless re-configuring the device or
changing the input frequency.

2x Clock Output — CLK2X

The output pin CLK2X provides a frequency-doubled clock
with an automatic 50/50 duty-cycle correction. Until the
CLKDLL has achieved lock, the CLK2X output appears as a
1x version of the input clock with a 25/75 duty cycle. This
behavior allows the DLL to lock on the correct edge with
respect to source clock. This pin is not available on the
CLKDLLHF primitive.

Clock Divide Output — CLKDV

The clock divide output pin CLKDV provides a lower fre-
quency version of the source clock. The CLKDV_DIVIDE
property controls CLKDV such that the source clock is
divided by N where N is either 1.5, 2, 2.5, 3, 4, 5, 8, or 16.

This feature provides automatic duty cycle correction such
that the CLKDV output pin always has a 50/50 duty cycle,
with the exception of noninteger divides in HF mode, where
the duty cycle is 1/3 for N=1.5 and 2/5 for N=2.5.

Figure 24: BUFGDLL Schematic

CLK0
CLK90
CLK180
CLK270

CLK2X

CLKDV

LOCKED

CLKIN

CLKFB

RST

ds022_28_121099

CLKDLL
BUFGIBUFG

OIOI
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 19

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

1x Clock Outputs — CLK[0|90|180|270]

The 1x clock output pin CLK0 represents a delay-compen-
sated version of the source clock (CLKIN) signal. The
CLKDLL primitive provides three phase-shifted versions of
the CLK0 signal while CLKDLLHF provides only the 180
phase-shifted version. The relationship between phase shift
and the corresponding period shift appears in Table 13.

The timing diagrams in Figure 25 illustrate the DLL clock
output characteristics.

The DLL provides duty cycle correction on all 1x clock out-
puts such that all 1x clock outputs by default have a 50/50
duty cycle. The DUTY_CYCLE_CORRECTION property
(TRUE by default), controls this feature. In order to deacti-
vate the DLL duty cycle correction, attach the
DUTY_CYCLE_CORRECTION=FALSE property to the
DLL symbol. When duty cycle correction deactivates, the
output clock has the same duty cycle as the source clock.

The DLL clock outputs can drive an OBUF, a BUFG, or they
can route directly to destination clock pins. The DLL clock
outputs can only drive the BUFGs that reside on the same
edge (top or bottom).

Locked Output — LOCKED

To achieve lock, the DLL might need to sample several thou-
sand clock cycles. After the DLL achieves lock, the
LOCKED signal activates. The DLL timing parameter sec-
tion of the data sheet provides estimates for locking times.

To guarantee that the system clock is established prior to
the device “waking up,” the DLL can delay the completion of
the device configuration process until after the DLL locks.
The STARTUP_WAIT property activates this feature.

Until the LOCKED signal activates, the DLL output clocks
are not valid and can exhibit glitches, spikes, or other spuri-
ous movement. In particular the CLK2X output appears as a
1x clock with a 25/75 duty cycle.

DLL Properties

Properties provide access to some of the Virtex-E series
DLL features, (for example, clock division and duty cycle
correction).

Duty Cycle Correction Property

The 1x clock outputs, CLK0, CLK90, CLK180, and CLK270,
use the duty-cycle corrected default, exhibiting a 50/50 duty
cycle. The DUTY_CYCLE_CORRECTION property (by
default TRUE) controls this feature. To deactivate the DLL
duty-cycle correction for the 1x clock outputs, attach the
DUTY_CYCLE_CORRECTION=FALSE property to the
DLL symbol. When duty-cycle correction deactivates, the
output clock has the same duty cycle as the source clock.

Clock Divide Property

The CLKDV_DIVIDE property specifies how the signal on
the CLKDV pin is frequency divided with respect to the
CLK0 pin. The values allowed for this property are 1.5, 2,
2.5, 3, 4, 5, 8, or 16; the default value is 2.

Startup Delay Property

This property, STARTUP_WAIT, takes on a value of TRUE
or FALSE (the default value). When TRUE the device con-
figuration DONE signal waits until the DLL locks before
going to High.

Virtex-E DLL Location Constraints

As shown in Figure 26, there are four additional DLLs in the
Virtex-E devices, for a total of eight per Virtex-E device.
These DLLs are located in silicon, at the top and bottom of
the two innermost block SelectRAM columns. The location
constraint LOC, attached to the DLL symbol with the identi-
fier DLL0S, DLL0P, DLL1S, DLL1P, DLL2S, DLL2P, DLL3S,
or DLL3P, controls the DLL location.

The LOC property uses the following form:

Table 13: Relationship of Phase-Shifted Output Clock
to Period Shift

Phase (degrees) Period Shift (percent)

0 0%

90 25%

180 50%

270 75%

Figure 25: DLL Output Characteristics
ds022_29_121099

CLKIN

CLK2X

CLK0

CLK90

CLK180

CLK270

CLKDV

CLKDV_DIVIDE=2

DUTY_CYCLE_CORRECTION=FALSE

CLK0

CLK90

CLK180

CLK270

DUTY_CYCLE_CORRECTION=TRUE

t
0 90 180 270 0 90 180 270
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
20 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

LOC = DLL0P

Design Factors
Use the following design considerations to avoid pitfalls and
improve success designing with Xilinx devices.

Input Clock

The output clock signal of a DLL, essentially a delayed ver-
sion of the input clock signal, reflects any instability on the
input clock in the output waveform. For this reason the qual-
ity of the DLL input clock relates directly to the quality of the
output clock waveforms generated by the DLL. The DLL
input clock requirements are specified in the data sheet.

In most systems a crystal oscillator generates the system
clock. The DLL can be used with any commercially available
quartz crystal oscillator. For example, most crystal oscilla-
tors produce an output waveform with a frequency tolerance
of 100 PPM, meaning 0.01 percent change in the clock
period. The DLL operates reliably on an input waveform with
a frequency drift of up to 1 ns — orders of magnitude in
excess of that needed to support any crystal oscillator in the
industry. However, the cycle-to-cycle jitter must be kept to
less than 300 ps in the low frequencies and 150 ps for the
high frequencies.

Input Clock Changes

Changing the period of the input clock beyond the maximum
drift amount requires a manual reset of the CLKDLL. Failure
to reset the DLL produces an unreliable lock signal and out-
put clock.

It is possible to stop the input clock with little impact to the
DLL. Stopping the clock should be limited to less than
100 ms to keep device cooling to a minimum. The clock
should be stopped during a Low phase, and when restored
the full High period should be seen. During this time,
LOCKED stays High and remains High when the clock is
restored.

When the clock is stopped, one to four more clocks are still
observed as the delay line is flushed. When the clock is
restarted, the output clocks are not observed for one to four

clocks as the delay line is filled. The most common case is
two or three clocks.

In a similar manner, a phase shift of the input clock is also
possible. The phase shift propagates to the output one to
four clocks after the original shift, with no disruption to the
CLKDLL control.

Output Clocks

As mentioned earlier in the DLL pin descriptions, some
restrictions apply regarding the connectivity of the output
pins. The DLL clock outputs can drive an OBUF, a global
clock buffer BUFG, or they can route directly to destination
clock pins. The only BUFGs that the DLL clock outputs can
drive are the two on the same edge of the device (top or bot-
tom). In addition, the CLK2X output of the secondary DLL
can connect directly to the CLKIN of the primary DLL in the
same quadrant.

Do not use the DLL output clock signals until after activation
of the LOCKED signal. Prior to the activation of the
LOCKED signal, the DLL output clocks are not valid and
can exhibit glitches, spikes, or other spurious movement.

Useful Application Examples
The Virtex-E DLL can be used in a variety of creative and
useful applications. The following examples show some of
the more common applications. The Verilog and VHDL
example files are available at:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp132.zip

Standard Usage

The circuit shown in Figure 27 resembles the BUFGDLL
macro implemented to provide access to the RST and
LOCKED pins of the CLKDLL.

Board Level De-skew of Multiple Non-Virtex-E
Devices

The circuit shown in Figure 28 can be used to de-skew a
system clock between a Virtex-E chip and other non-Vir-
tex-E chips on the same board. This application is com-
monly used when the Virtex-E device is used in conjunction
with other standard products such as SRAM or DRAM
devices. While designing the board level route, ensure that

Figure 26: Virtex Series DLLs
x132_14_100799

B
R
A
M

DLL-3P

DLL-1P

DLL-3S

DLL-1S

DLL-2S

DLL-0S

DLL-2P

DLL-0P

Bottom Right
Half Edge

B
R
A
M

B
R
A
M

B
R
A
M

Figure 27: Standard DLL Implementation

CLK0
CLK90
CLK180
CLK270

CLK2X

CLKDV

LOCKED

CLKIN

CLKFB

RST

ds022_028_121099

CLKDLL BUFGIBUFG

IBUF OBUF
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 21

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp132.zip

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

the return net delay to the source equals the delay to the
other chips involved.

Board-level de-skew is not required for low-fanout clock net-
works. It is recommended for systems that have fanout lim-
itations on the clock network, or if the clock distribution chip
cannot handle the load.

Do not use the DLL output clock signals until after activation
of the LOCKED signal. Prior to the activation of the
LOCKED signal, the DLL output clocks are not valid and
can exhibit glitches, spikes, or other spurious movement.

The dll_mirror_1 files in the xapp132.zip file show the VHDL
and Verilog implementation of this circuit.

De-skew of Clock and Its 2x Multiple

The circuit shown in Figure 29 implements a 2x clock multi-
plier and also uses the CLK0 clock output with a zero ns
skew between registers on the same chip. Alternatively, a
clock divider circuit can be implemented using similar con-
nections.

Because any single DLL can access only two BUFGs at
most, any additional output clock signals must be routed
from the DLL in this example on the high speed backbone
routing.

The dll_2x files in the xapp132.zip file show the VHDL and
Verilog implementation of this circuit.

Virtex-E 4x Clock

Two DLLs located in the same half-edge (top-left, top-right,
bottom-right, bottom-left) can be connected together, with-
out using a BUFG between the CLKDLLs, to generate a 4x
clock as shown in Figure 30. Virtex-E devices, like the Virtex
devices, have four clock networks that are available for inter-
nal de-skewing of the clock. Each of the eight DLLs have
access to two of the four clock networks. Although all the
DLLs can be used for internal de-skewing, the presence of
two GCLKBUFs on the top and two on the bottom indicate
that only two of the four DLLs on the top (and two of the four
DLLs on the bottom) can be used for this purpose.

The dll_4xe files in the xapp132.zip file show the DLL imple-
mentation in Verilog for Virtex-E devices. These files can be
found at:

ftp://ftp.xilinx.com/pub/applications/xapp/xapp132.zip

Using Block SelectRAM+ Features
The Virtex FPGA Series provides dedicated blocks of
on-chip, true dual-read/write port synchronous RAM, with
4096 memory cells. Each port of the block SelectRAM+
memory can be independently configured as a read/write
port, a read port, a write port, and can be configured to a
specific data width. The block SelectRAM+ memory offers
new capabilities allowing the FPGA designer to simplify
designs.

Figure 28: DLL De-skew of Board Level Clock

Figure 29: DLL De-skew of Clock and 2x Multiple

ds022_029_121099

CLK0
CLK90
CLK180
CLK270

CLK2X

CLKDV

LOCKED

CLKIN

CLKFB

RST

CLKDLL OBUFIBUFG

CLK0
CLK90
CLK180
CLK270

CLK2X

CLKDV

LOCKED

CLKIN

CLKFB

RST

CLKDLL BUFG

IBUFG

Non-Virtex-E Chip

Non-Virtex-E Chip

Other Non_Virtex-E Chips

Virtex-E Device

CLK0
CLK90
CLK180
CLK270

CLK2X

CLKDV

LOCKED

CLKIN

CLKFB

RST

ds022_030_121099

CLKDLL BUFGIBUFG

IBUF OBUF

BUFG

Figure 30: DLL Generation of 4x Clock in Virtex-E
Devices

ds022_031_041901

RST

CLKFB

CLKIN

CLKDLL-S

LOCKED

CLKDV
INV

BUFG

OBUF

IBUFG

CLK2X

CLK0
CLK90

CLK180
CLK270

RST

CLKFB

CLKIN

CLKDLL-P

LOCKED

CLKDV

CLK2X

CLK0
CLK90

CLK180
CLK270
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
22 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com
ftp://ftp.xilinx.com/pub/applications/xapp/xapp132.zip
ftp://ftp.xilinx.com/pub/applications/xapp/xapp132.zip
ftp://ftp.xilinx.com/pub/applications/xapp/xapp132.zip
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Operating Modes
VIrtex-E block SelectRAM+ memory supports two operating
modes:

• Read Through
• Write Back

Read Through (one clock edge)

The read address is registered on the read port clock edge
and data appears on the output after the RAM access time.
Some memories might place the latch/register at the out-
puts, depending on whether a faster clock-to-out versus
set-up time is desired. This is generally considered to be an
inferior solution, since it changes the read operation to an
asynchronous function with the possibility of missing an
address/control line transition during the generation of the
read pulse clock.

Write Back (one clock edge)

The write address is registered on the write port clock edge
and the data input is written to the memory and mirrored on
the output.

Block SelectRAM+ Characteristics
• All inputs are registered with the port clock and have a

set-up to clock timing specification.
• All outputs have a read through or write back function

depending on the state of the port WE pin. The outputs
relative to the port clock are available after the
clock-to-out timing specification.

• The block SelectRAMs are true SRAM memories and
do not have a combinatorial path from the address to
the output. The LUT SelectRAM+ cells in the CLBs are
still available with this function.

• The ports are completely independent from each other
(i.e., clocking, control, address, read/write function, and
data width) without arbitration.

• A write operation requires only one clock edge.
• A read operation requires only one clock edge.

The output ports are latched with a self timed circuit to guar-
antee a glitch free read. The state of the output port does
not change until the port executes another read or write
operation.

Library Primitives
Figure 31 and Figure 32 show the two generic library block
SelectRAM+ primitives. Table 14 describes all of the avail-
able primitives for synthesis and simulation.

Figure 31: Dual-Port Block SelectRAM+ Memory

Figure 32: Single-Port Block SelectRAM+ Memory

Table 14: Available Library Primitives

Primitive Port A Width Port B Width

RAMB4_S1

RAMB4_S1_S1

RAMB4_S1_S2

RAMB4_S1_S4

RAMB4_S1_S8

RAMB4_S1_S16

1

N/A

1

2

4

8

16

RAMB4_S2

RAMB4_S2_S2

RAMB4_S2_S4

RAMB4_S2_S8

RAMB4_S2_S16

2

N/A

2

4

8

16

WEB
ENB
RSTB
 CLKB
ADDRB[#:0]
DIB[#:0]

WEA
ENA
RSTA
 CLKA
ADDRA[#:0]
DIA[#:0]

DOA[#:0]

DOB[#:0]

RAMB4_S#_S#

ds022_032_121399

ds022_033_121399

DO[#:0]

WE

EN

RST

 CLK

ADDR[#:0]

DI[#:0]

RAMB4_S#
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 23

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Port Signals
Each block SelectRAM+ port operates independently of the
others while accessing the same set of 4096 memory cells.

Table 15 describes the depth and width aspect ratios for the
block SelectRAM+ memory.

Clock—CLK[A|B]

Each port is fully synchronous with independent clock pins.
All port input pins have setup time referenced to the port
CLK pin. The data output bus has a clock-to-out time refer-
enced to the CLK pin.

Enable—EN[A|B]

The enable pin affects the read, write and reset functionality
of the port. Ports with an inactive enable pin keep the output
pins in the previous state and do not write data to the mem-
ory cells.

Write Enable—WE[A|B]

Activating the write enable pin allows the port to write to the
memory cells. When active, the contents of the data input
bus are written to the RAM at the address pointed to by the
address bus, and the new data also reflects on the data out
bus. When inactive, a read operation occurs and the con-
tents of the memory cells referenced by the address bus
reflect on the data out bus.

Reset—RST[A|B]

The reset pin forces the data output bus latches to zero syn-
chronously. This does not affect the memory cells of the
RAM and does not disturb a write operation on the other
port.

Address Bus—ADDR[A|B]<#:0>

The address bus selects the memory cells for read or write.
The width of the port determines the required width of this
bus as shown in Table 15.

Data In Bus—DI[A|B]<#:0>

The data in bus provides the new data value to be written
into the RAM. This bus and the port have the same width, as
shown in Table 15.

Data Output Bus—DO[A|B]<#:0>

The data out bus reflects the contents of the memory cells
referenced by the address bus at the last active clock edge.
During a write operation, the data out bus reflects the data
in bus. The width of this bus equals the width of the port.
The allowed widths appear in Table 15.

Inverting Control Pins
The four control pins (CLK, EN, WE and RST) for each port
have independent inversion control as a configuration
option.

Address Mapping
Each port accesses the same set of 4096 memory cells
using an addressing scheme dependent on the width of the
port.

The physical RAM location addressed for a particular width
are described in the following formula (of interest only when
the two ports use different aspect ratios).

Start = ((ADDRport +1) * Widthport) –1

End = ADDRport * Widthport

Table 16 shows low order address mapping for each port
width.

RAMB4_S4

RAMB4_S4_S4

RAMB4_S4_S8

RAMB4_S4_S16

4

N/A

4

8

16

RAMB4_S8

RAMB4_S8_S8

RAMB4_S8_S16

8

N/A

8

16

RAMB4_S16

RAMB4_S16_S16
16

N/A

16

Table 15: Block SelectRAM+ Port Aspect Ratios

Width Depth ADDR Bus Data Bus

1 4096 ADDR<11:0> DATA<0>

2 2048 ADDR<10:0> DATA<1:0>

4 1024 ADDR<9:0> DATA<3:0>

8 512 ADDR<8:0> DATA<7:0>

16 256 ADDR<7:0> DATA<15:0>

Table 14: Available Library Primitives

Primitive Port A Width Port B Width

Table 16: Port Address Mapping

Port

Width

Port

Addresses

1 4095... 1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

2 2047... 07 06 05 04 03 02 01 00

4 1023... 03 02 01 00

8 511... 01 00

16 255... 00
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
24 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Creating Larger RAM Structures
The block SelectRAM+ columns have specialized routing to
allow cascading blocks together with minimal routing delays.
This achieves wider or deeper RAM structures with a smaller
timing penalty than when using normal routing channels.

Location Constraints
Block SelectRAM+ instances can have LOC properties
attached to them to constrain the placement. The block
SelectRAM+ placement locations are separate from the
CLB location naming convention, allowing the LOC proper-
ties to transfer easily from array to array.

The LOC properties use the following form.

LOC = RAMB4_R#C#

RAMB4_R0C0 is the upper left RAMB4 location on the
device.

Conflict Resolution
The block SelectRAM+ memory is a true dual-read/write
port RAM that allows simultaneous access of the same
memory cell from both ports. When one port writes to a
given memory cell, the other port must not address that

memory cell (for a write or a read) within the clock-to-clock
setup window. The following lists specifics of port and mem-
ory cell write conflict resolution.

• If both ports write to the same memory cell
simultaneously, violating the clock-to-clock setup
requirement, consider the data stored as invalid.

• If one port attempts a read of the same memory cell
the other simultaneously writes, violating the
clock-to-clock setup requirement, the following occurs.
- The write succeeds
- The data out on the writing port accurately reflects

the data written.
- The data out on the reading port is invalid.

Conflicts do not cause any physical damage.

Single Port Timing

Figure 33 shows a timing diagram for a single port of a block
SelectRAM+ memory. The block SelectRAM+ AC switching
characteristics are specified in the data sheet. The block
SelectRAM+ memory is initially disabled.

At the first rising edge of the CLK pin, the ADDR, DI, EN,
WE, and RST pins are sampled. The EN pin is High and the
WE pin is Low indicating a read operation. The DO bus con-
tains the contents of the memory location, 0x00, as indi-
cated by the ADDR bus.

At the second rising edge of the CLK pin, the ADDR, DI, EN,
WR, and RST pins are sampled again. The EN and WE pins
are High indicating a write operation. The DO bus mirrors the
DI bus. The DI bus is written to the memory location 0x0F.

At the third rising edge of the CLK pin, the ADDR, DI, EN,
WR, and RST pins are sampled again. The EN pin is High
and the WE pin is Low indicating a read operation. The DO

bus contains the contents of the memory location 0x7E as
indicated by the ADDR bus.

At the fourth rising edge of the CLK pin, the ADDR, DI, EN,
WR, and RST pins are sampled again. The EN pin is Low
indicating that the block SelectRAM+ memory is now dis-
abled. The DO bus retains the last value.

Dual Port Timing

Figure 34 shows a timing diagram for a true dual-port
read/write block SelectRAM+ memory. The clock on port A
has a longer period than the clock on Port B. The timing
parameter TBCCS, (clock-to-clock set-up) is shown on this
diagram. The parameter, TBCCS is violated once in the dia-

Figure 33: Timing Diagram for Single Port Block SelectRAM+ Memory
ds022_0343_121399

CLK

TBPWH

TBACK

ADDR 00

DDDD

MEM (00) CCCC MEM (7E)

0F

CCCC

7E 8F

BBBB 2222DIN

DOUT

EN

RST

WE

DISABLED READ WRITE READ DISABLED

TBDCK

TBECK

TBWCK

TBCKO

TBPWL
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 25

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

gram. All other timing parameters are identical to the single
port version shown in Figure 33.

TBCCS is only of importance when the address of both ports
are the same and at least one port is performing a write
operation. When the clock-to-clock set-up parameter is vio-
lated for a WRITE-WRITE condition, the contents of the
memory at that location are invalid. When the clock-to-clock
set-up parameter is violated for a WRITE-READ condition,
the contents of the memory are correct, but the read port
has invalid data.

At the first rising edge of the CLKA, memory location 0x00 is
to be written with the value 0xAAAA and is mirrored on the

DOA bus. The last operation of Port B was a read to the
same memory location 0x00. The DOB bus of Port B does
not change with the new value on Port A, and retains the
last read value. A short time later, Port B executes another
read to memory location 0x00, and the DOB bus now
reflects the new memory value written by Port A.

At the second rising edge of CLKA, memory location 0x7E
is written with the value 0x9999 and is mirrored on the DOA
bus. Port B then executes a read operation to the same
memory location without violating the TBCCS parameter and
the DOB reflects the new memory values written by Port A.

At the third rising edge of CLKA, the TBCCS parameter is
violated with two writes to memory location 0x0F. The DOA
and DOB busses reflect the contents of the DIA and DIB
busses, but the stored value at 0x0F is invalid.

At the fourth rising edge of CLKA, a read operation is per-
formed at memory location 0x0F and invalid data is present
on the DOA bus. Port B also executes a read operation to
memory location 0x0F and also reads invalid data.

At the fifth rising edge of CLKA a read operation is per-
formed that does not violate the TBCCS parameter to the
previous write of 0x7E by Port B. THe DOA bus reflects the
recently written value by Port B.

Initialization
The block SelectRAM+ memory can initialize during the
device configuration sequence. The 16 initialization proper-

ties of 64 hex values each (a total of 4096 bits) set the ini-
tialization of each RAM. These properties appear in
Table 17. Any initialization properties not explicitly set con-
figure as zeros. Partial initialization strings pad with zeros.
Initialization strings greater than 64 hex values generate an
error. The RAMs can be simulated with the initialization val-
ues using generics in VHDL simulators and parameters in
Verilog simulators.

Initialization in VHDL and Synopsys
The block SelectRAM+ structures can be initialized in VHDL
for both simulation and synthesis for inclusion in the EDIF
output file. The simulation of the VHDL code uses a generic
to pass the initialization. The Synopsys FPGA compiler
does not presently support generics. The initialization val-
ues instead attach as attributes to the RAM by a built-in
Synopsys dc_script. The translate_off statement stops syn-

Figure 34: Timing Diagram for a True Dual-port Read/Write Block SelectRAM+ Memory
ds022_035_121399

CLK_A

P
O

R
T

 A
P

O
R

T
 B

ADDR_A 00 7E 0F

00 00 7E 7E 1A0F 0F

0F 7E

AAAA 9999 AAAA 0000 1111

2222AAAA 9999 AAAA UNKNOWN

EN_A

WE_A

DI_A

DO_A

1111 1111 1111 2222 FFFFBBBB 1111

AAAAMEM (00) 9999 2222 FFFFBBBB UNKNOWN

CLK_B

ADDR_B

EN_B

WE_B

DI_B

DO_B

TBCCS
VIOLATION

TBCCS
TBCCS
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
26 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

thesis translation of the generic statements. The VHDL Ini-
tialization Example illustrates a code module that employs
these techniques.

Initialization in Verilog and Synopsys
The block SelectRAM+ structures can be initialized in Ver-
ilog for both simulation and synthesis for inclusion in the
EDIF output file. The simulation of the Verilog code uses a
defparam to pass the initialization. The Synopsys FPGA
compiler does not presently support defparam. The initial-
ization values instead attach as attributes to the RAM by a
built-in Synopsys dc_script. The translate_off statement
stops synthesis translation of the defparam statements. The
Verilog Initialization Example illustrates a code module that
employs these techniques.

Design Examples

Creating a 32-bit Single-Port RAM

The true dual-read/write port functionality of the block
SelectRAM+ memory allows a single port, 128 deep by
32-bit wide RAM to be created using a single block
SelectRAM+ cell as shown in Figure 35.

Interleaving the memory space, setting the LSB of the
address bus of Port A to 1 (VCC), and the LSB of the
address bus of Port B to 0 (GND), allows a 32-bit wide sin-
gle port RAM to be created.

Creating Two Single-Port RAMs

The true dual-read/write port functionality of the block
SelectRAM+ memory allows a single RAM to be split into
two single port memories of 2K bits each as shown in
Figure 36.

In this example, a 512K x 4 RAM (Port A) and a 128 x 16
RAM (Port B) are created out of a single block SelectRAM+.
The address space for the RAM is split by fixing the MSB of
Port A to 1 (VCC) for the upper 2K bits and the MSB of Port
B to 0 (GND) for the lower 2K bits.

Table 17: RAM Initialization Properties

Property Memory Cells

INIT_00 255 to 0

INIT_01 511 to 256

INIT_02 767 to 512

INIT_03 1023 to 768

INIT_04 1279 to 1024

INIT_05 1535 to 1280

INIT_06 1791 to 2047

INIT_07 2047 to 1792

INIT_08 2303 to 2048

INIT_09 2559 to 2304

INIT_0a 2815 to 2560

INIT_0b 3071 to 2816

INIT_0c 3327 to 3072

INIT_0d 3583 to 3328

INIT_0e 3839 to 3584

INIT_0f 4095 to 3840

Figure 35: Single Port 128 x 32 RAM

Figure 36: 512 x 4 RAM and 128 x 16 RAM

WEB
ENB
RSTB
 CLKB
ADDRB[7:0]
DIB[15:0]

WEA
ENA
RSTA
 CLKA
ADDRA[7:0]
DIA[15:0]

ADDR[6:0], VCC

CLK

EN
RST

WE

CLK

EN
RST

WE

DI[31:16]

ADDR[6:0], GND
DI[15:0]

DOA[15:0] DO[31:16]

DO[15:0]DOB[15:0]

RAMB4_S16_S16

ds022_036_121399

WEB
ENB
RSTB
 CLKB
ADDRB[7:0]
DIB[15:0]

WEA
ENA
RSTA
 CLKA
ADDRA[9:0]
DIA[3:0]

VCC, ADDR1[8:0]
DI1[3:0]

WE1
EN1

RST1
CLK1

WE2
EN2

RST2
CLK2

GND, ADDR2[6:0]
DI2[15:0]

DOA[3:0] DO1[3:0]

DO2[15:0]DOB[15:0]

RAMB4_S4_S16

ds022_037_121399
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 27

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

VHDL Initialization Example

Block Memory Generation

The CoreGen program generates memory structures using the block SelectRAM+ features. This program outputs VHDL or
Verilog simulation code templates and an EDIF file for inclusion in a design.

library IEEE;
use IEEE.std_logic_1164.all;
entity MYMEM is
port (CLK, WE:in std_logic;
ADDR: in std_logic_vector(8 downto 0);
DIN: in std_logic_vector(7 downto 0);
DOUT: out std_logic_vector(7 downto 0));
end MYMEM;
architecture BEHAVE of MYMEM is
signal logic0, logic1: std_logic;
component RAMB4_S8
--synopsys translate_off
generic(INIT_00,INIT_01, INIT_02, INIT_03,
INIT_04, INIT_05, INIT_06, INIT_07,
INIT_08, INIT_09, INIT_0a, INIT_0b, INIT_0c,
INIT_0d, INIT_0e, INIT_0f : BIT_VECTOR(255
downto 0)
:=
X"00
00000000000000000000");
--synopsys translate_on
port (WE, EN, RST, CLK: in STD_LOGIC;
ADDR: in STD_LOGIC_VECTOR(8 downto 0);
DI: in STD_LOGIC_VECTOR(7 downto 0);
DO: out STD_LOGIC_VECTOR(7 downto 0));
end component;

--synopsys dc_script_begin
--set_attribute ram0 INIT_00
"0123456789ABCDEF0123456789ABCDEF0123456789ABC
DEF0123456789ABCDEF" -type string
--set_attribute ram0 INIT_01
"FEDCBA9876543210FEDCBA9876543210FEDCBA9876543
210FEDCBA9876543210" -type string
--synopsys dc_script_end
begin
logic0 <=’0’;
logic1 <=’1’;
ram0: RAMB4_S8
--synopsys translate_off
generic map (
INIT_00 =>
X"0123456789ABCDEF0123456789ABCDEF0123456789AB
CDEF0123456789ABCDEF",
INIT_01 =>
X"FEDCBA9876543210FEDCBA9876543210FEDCBA987654
3210FEDCBA9876543210")
--synopsys translate_on
port map (WE=>WE, EN=>logic1, RST=>logic0,
CLK=>CLK,ADDR=>ADDR, DI=>DIN, DO=>DOUT);
end BEHAVE;

Verilog Initialization Example
module MYMEM (CLK, WE, ADDR, DIN, DOUT);
input CLK, WE;
input [8:0] ADDR;
input [7:0] DIN;
output [7:0] DOUT;
wire logic0, logic1;
//synopsys dc_script_begin
//set_attribute ram0 INIT_00
"0123456789ABCDEF0123456789ABCDEF0123456789ABC
DEF0123456789ABCDEF" -type string
//set_attribute ram0 INIT_01
"FEDCBA9876543210FEDCBA9876543210FEDCBA9876543
210FEDCBA9876543210" -type string
//synopsys dc_script_end

assign logic0 = 1’b0;
assign logic1 = 1’b1;
RAMB4_S8 ram0 (.WE(WE), .EN(logic1),
.RST(logic0), .CLK(CLK), .ADDR(ADDR), .DI(DIN),
.DO(DOUT));
//synopsys translate_off
defparam ram0.INIT_00 =
256h’0123456789ABCDEF0123456789ABCDEF012345678
9ABCDEF0123456789ABCDEF;
defparam ram0.INIT_01 =
256h’FEDCBA9876543210FEDCBA9876543210FEDCBA987
6543210FEDCBA9876543210;
//synopsys translate_on
endmodule

Using SelectI/O
The Virtex-E FPGA series includes a highly configurable,
high-performance I/O resource, called SelectI/O™ to pro-
vide support for a wide variety of I/O standards. The
SelectI/O resource is a robust set of features including pro-
grammable control of output drive strength, slew rate, and
input delay and hold time. Taking advantage of the flexibility
and SelectI/O features and the design considerations
described in this document can improve and simplify sys-
tem level design.

Introduction
As FPGAs continue to grow in size and capacity, the larger
and more complex systems designed for them demand an
increased variety of I/O standards. Furthermore, as system
clock speeds continue to increase, the need for high perfor-
mance I/O becomes more important.

While chip-to-chip delays have an increasingly substantial
impact on overall system speed, the task of achieving the
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
28 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

desired system performance becomes more difficult with
the proliferation of low-voltage I/O standards. SelectI/O, the
revolutionary input/output resources of Virtex-E devices,
resolve this potential problem by providing a highly config-
urable, high-performance alternative to the I/O resources of
more conventional programmable devices. Virtex-E SelectI/O
features combine the flexibility and time-to-market advan-
tages of programmable logic with the high performance pre-
viously available only with ASICs and custom ICs.

Each SelectI/O block can support up to 20 I/O standards.
Supporting such a variety of I/O standards allows the sup-
port of a wide variety of applications, from general purpose
standard applications to high-speed low-voltage memory
busses.

SelectI/O blocks also provide selectable output drive
strengths and programmable slew rates for the LVTTL out-
put buffers, as well as an optional, programmable weak
pull-up, weak pull-down, or weak “keeper” circuit ideal for
use in external bussing applications.

Each Input/Output Block (IOB) includes three registers, one
each for the input, output, and 3-state signals within the
IOB. These registers are optionally configurable as either a
D-type flip-flop or as a level sensitive latch.

The input buffer has an optional delay element used to guar-
antee a zero hold time requirement for input signals regis-
tered within the IOB.

The Virtex-E SelectI/O features also provide dedicated
resources for input reference voltage (VREF) and output
source voltage (VCCO), along with a convenient banking
system that simplifies board design.

By taking advantage of the built-in features and wide variety
of I/O standards supported by the SelectI/O features, sys-
tem-level design and board design can be greatly simplified
and improved.

Fundamentals
Modern bus applications, pioneered by the largest and most
influential companies in the digital electronics industry, are
commonly introduced with a new I/O standard tailored spe-
cifically to the needs of that application. The bus I/O stan-
dards provide specifications to other vendors who create
products designed to interface with these applications.
Each standard often has its own specifications for current,
voltage, I/O buffering, and termination techniques.

The ability to provide the flexibility and time-to-market
advantages of programmable logic is increasingly depen-
dent on the capability of the programmable logic device to
support an ever increasing variety of I/O standards

The SelectI/O resources feature highly configurable input
and output buffers which provide support for a wide variety
of I/O standards. As shown in Table 18, each buffer type can
support a variety of voltage requirements.

Overview of Supported I/O Standards
This section provides a brief overview of the I/O standards
supported by all Virtex-E devices.

While most I/O standards specify a range of allowed volt-
ages, this document records typical voltage values only.
Detailed information on each specification can be found on
the Electronic Industry Alliance Jedec website at:

http://www.jedec.org

LVTTL — Low-Voltage TTL

The Low-Voltage TTL, or LVTTL standard is a general pur-
pose EIA/JESDSA standard for 3.3V applications that uses
an LVTTL input buffer and a Push-Pull output buffer. This
standard requires a 3.3V output source voltage (VCCO), but
does not require the use of a reference voltage (VREF) or a
termination voltage (VTT).

LVCMOS2 — Low-Voltage CMOS for 2.5 Volts

The Low-Voltage CMOS for 2.5 Volts or lower, or LVCMOS2
standard is an extension of the LVCMOS standard (JESD
8.-5) used for general purpose 2.5V applications. This stan-
dard requires a 2.5V output source voltage (VCCO), but
does not require the use of a reference voltage (VREF) or a
board termination voltage (VTT).

Table 18: Virtex-E Supported I/O Standards

I/O Standard
Output
VCCO

Input
VCCO

Input
VREF

Board
Termination

Voltage
(VTT)

LVTTL 3.3 3.3 N/A N/A

LVCMOS2 2.5 2.5 N/A N/A

LVCMOS18 1.8 1.8 N/A N/A

SSTL3 I & II 3.3 N/A 1.50 1.50

SSTL2 I & II 2.5 N/A 1.25 1.25

GTL N/A N/A 0.80 1.20

GTL+ N/A N/A 1.0 1.50

HSTL I 1.5 N/A 0.75 0.75

HSTL III & IV 1.5 N/A 0.90 1.50

CTT 3.3 N/A 1.50 1.50

AGP-2X 3.3 N/A 1.32 N/A

PCI33_3 3.3 3.3 N/A N/A

PCI66_3 3.3 3.3 N/A N/A

BLVDS & LVDS 2.5 N/A N/A N/A

LVPECL 3.3 N/A N/A N/A
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 29

http://www.xilinx.com
/http://www.jedec.org

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

LVCMOS18 — 1.8 V Low Voltage CMOS

This standard is an extension of the LVCMOS standard. It is
used in general purpose 1.8 V applications. The use of a
reference voltage (VREF) or a board termination voltage
(VTT) is not required.

PCI — Peripheral Component Interface

The Peripheral Component Interface, or PCI standard spec-
ifies support for both 33 MHz and 66 MHz PCI bus applica-
tions. It uses a LVTTL input buffer and a Push-Pull output
buffer. This standard does not require the use of a reference
voltage (VREF) or a board termination voltage (VTT), how-
ever, it does require a 3.3V output source voltage (VCCO).

GTL — Gunning Transceiver Logic Terminated

The Gunning Transceiver Logic, or GTL standard is a
high-speed bus standard (JESD8.3) invented by Xerox. Xil-
inx has implemented the terminated variation for this stan-
dard. This standard requires a differential amplifier input
buffer and a Open Drain output buffer.

GTL+ — Gunning Transceiver Logic Plus

The Gunning Transceiver Logic Plus, or GTL+ standard is a
high-speed bus standard (JESD8.3) first used by the Pen-
tium Pro processor.

HSTL — High-Speed Transceiver Logic

The High-Speed Transceiver Logic, or HSTL standard is a
general purpose high-speed, 1.5V bus standard sponsored
by IBM (EIA/JESD 8-6). This standard has four variations or
classes. SelectI/O devices support Class I, III, and IV. This
standard requires a Differential Amplifier input buffer and a
Push-Pull output buffer.

SSTL3 — Stub Series Terminated Logic for 3.3V

The Stub Series Terminated Logic for 3.3V, or SSTL3 stan-
dard is a general purpose 3.3V memory bus standard also
sponsored by Hitachi and IBM (JESD8-8). This standard
has two classes, I and II. SelectI/O devices support both
classes for the SSTL3 standard. This standard requires a
Differential Amplifier input buffer and an Push-Pull output
buffer.

SSTL2 — Stub Series Terminated Logic for 2.5V

The Stub Series Terminated Logic for 2.5V, or SSTL2 stan-
dard is a general purpose 2.5V memory bus standard spon-
sored by Hitachi and IBM (JESD8-9). This standard has two
classes, I and II. SelectI/O devices support both classes for
the SSTL2 standard. This standard requires a Differential
Amplifier input buffer and an Push-Pull output buffer.

CTT — Center Tap Terminated

The Center Tap Terminated, or CTT standard is a 3.3V
memory bus standard sponsored by Fujitsu (JESD8-4).
This standard requires a Differential Amplifier input buffer
and a Push-Pull output buffer.

AGP-2X — Advanced Graphics Port

The Intel AGP standard is a 3.3V Advanced Graphics
Port-2X bus standard used with the Pentium II processor for
graphics applications. This standard requires a Push-Pull
output buffer and a Differential Amplifier input buffer.

LVDS — Low Voltage Differential Signal

LVDS is a differential I/O standard. It requires that one data
bit is carried through two signal lines. As with all differential
signaling standards, LVDS has an inherent noise immunity
over single-ended I/O standards. The voltage swing
between two signal lines is approximately 350mV. The use
of a reference voltage (VREF) or a board termination voltage
(VTT) is not required. LVDS requires the use of two pins per
input or output. LVDS requires external resistor termination.

BLVDS — Bus LVDS

This standard allows for bidirectional LVDS communication
between two or more devices. The external resistor termi-
nation is different than the one for standard LVDS.

LVPECL — Low Voltage Positive Emitter Coupled
Logic

LVPECL is another differential I/O standard. It requires two
signal lines for transmitting one data bit. This standard
specifies two pins per input or output. The voltage swing
between these two signal lines is approximately 850 mV.
The use of a reference voltage (VREF) or a board termina-
tion voltage (VTT) is not required. The LVPECL standard
requires external resistor termination.

Library Symbols
The Xilinx library includes an extensive list of symbols
designed to provide support for the variety of SelectI/O fea-
tures. Most of these symbols represent variations of the five
generic SelectI/O symbols.

• IBUF (input buffer)
• IBUFG (global clock input buffer)
• OBUF (output buffer)
• OBUFT (3-state output buffer)
• IOBUF (input/output buffer)

IBUF

Signals used as inputs to the Virtex-E device must source
an input buffer (IBUF) via an external input port. The generic
Virtex-E IBUF symbol appears in Figure 37. The extension

Figure 37: Input Buffer (IBUF) Symbols

OI

IBUF

x133_01_111699
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
30 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

to the base name defines which I/O standard the IBUF
uses. The assumed standard is LVTTL when the generic
IBUF has no specified extension.

The following list details the variations of the IBUF symbol:

• IBUF
• IBUF_LVCMOS2
• IBUF_PCI33_3
• IBUF_PCI66_3
• IBUF_GTL
• IBUF_GTLP
• IBUF_HSTL_I
• IBUF_HSTL_III
• IBUF_HSTL_IV
• IBUF_SSTL3_I
• IBUF_SSTL3_II
• IBUF_SSTL2_I
• IBUF_SSTL2_II
• IBUF_CTT
• IBUF_AGP
• IBUF_LVCMOS18
• IBUF_LVDS
• IBUF_LVPECL

When the IBUF symbol supports an I/O standard that
requires a VREF, the IBUF automatically configures as a dif-
ferential amplifier input buffer. The VREF voltage must be
supplied on the VREF pins. In the case of LVDS, LVPECL,
and BLVDS, VREF is not required.

The voltage reference signal is “banked” within the Virtex-E
device on a half-edge basis such that for all packages there
are eight independent VREF banks internally. See Figure 38
for a representation of the Virtex-E I/O banks. Within each
bank approximately one of every six I/O pins is automati-
cally configured as a VREF input. After placing a differential
amplifier input signal within a given VREF bank, the same
external source must drive all I/O pins configured as a VREF
input.

IBUF placement restrictions require that any differential
amplifier input signals within a bank be of the same stan-
dard. How to specify a specific location for the IBUF via the
LOC property is described below. Table 19 summarizes the
Virtex-E input standards compatibility requirements.

An optional delay element is associated with each IBUF.
When the IBUF drives a flip-flop within the IOB, the delay
element by default activates to ensure a zero hold-time
requirement. The NODELAY=TRUE property overrides this
default.

When the IBUF does not drive a flip-flop within the IOB, the
delay element de-activates by default to provide higher per-
formance. To delay the input signal, activate the delay ele-
ment with the DELAY=TRUE property.

IBUFG

Signals used as high fanout clock inputs to the Virtex-E
device should drive a global clock input buffer (IBUFG) via
an external input port in order to take advantage of one of
the four dedicated global clock distribution networks. The
output of the IBUFG symbol can drive only a CLKDLL,
CLKDLLHF, or BUFG symbol. The generic Virtex-E IBUFG
symbol appears in Figure 39.

The extension to the base name determines which I/O stan-
dard is used by the IBUFG. With no extension specified for
the generic IBUFG symbol, the assumed standard is
LVTTL.

Table 19: Xilinx Input Standards Compatibility
Requirements

Rule 1 Standards with the same input VCCO, output VCCO,
and VREF can be placed within the same bank.

Figure 38: Virtex-E I/O Banks

Figure 39: Virtex-E Global Clock Input Buffer (IBUFG)
Symbol

ds022_42_012100

Bank 0

GCLK3 GCLK2

GCLK1 GCLK0

Bank 1

Bank 5 Bank 4

Virtex-E
Device

B
an

k
7

B
an

k
6

B
an

k
2

B
an

k
3

OI

IBUFG

x133_03_111699
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 31

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

The following list details variations of the IBUFG symbol.

• IBUFG
• IBUFG_LVCMOS2
• IBUFG_PCI33_3
• IBUFG_PCI66_3
• IBUFG_GTL
• IBUFG_GTLP
• IBUFG_HSTL_I
• IBUFG_HSTL_III
• IBUFG_HSTL_IV
• IBUFG_SSTL3_I
• IBUFG_SSTL3_II
• IBUFG_SSTL2_I
• IBUFG_SSTL2_II
• IBUFG_CTT
• IBUFG_AGP
• IBUFG_LVCMOS18
• IBUFG_LVDS
• IBUFG_LVPECL

When the IBUFG symbol supports an I/O standard that
requires a differential amplifier input, the IBUFG automati-
cally configures as a differential amplifier input buffer. The
low-voltage I/O standards with a differential amplifier input
require an external reference voltage input VREF.

The voltage reference signal is “banked” within the Virtex-E
device on a half-edge basis such that for all packages there
are eight independent VREF banks internally. See Figure 38
for a representation of the Virtex-E I/O banks. Within each
bank approximately one of every six I/O pins is automati-
cally configured as a VREF input. After placing a differential
amplifier input signal within a given VREF bank, the same
external source must drive all I/O pins configured as a VREF
input.

IBUFG placement restrictions require any differential ampli-
fier input signals within a bank be of the same standard. The
LOC property can specify a location for the IBUFG.

As an added convenience, the BUFGP can be used to
instantiate a high fanout clock input. The BUFGP symbol
represents a combination of the LVTTL IBUFG and BUFG
symbols, such that the output of the BUFGP can connect
directly to the clock pins throughout the design.

Unlike previous architectures, the Virtex-E BUFGP symbol
can only be placed in a global clock pad location. The LOC
property can specify a location for the BUFGP.

OBUF

An OBUF must drive outputs through an external output
port. The generic output buffer (OBUF) symbol appears in
Figure 40.

The extension to the base name defines which I/O standard
the OBUF uses. With no extension specified for the generic
OBUF symbol, the assumed standard is slew rate limited
LVTTL with 12 mA drive strength.

The LVTTL OBUF additionally can support one of two slew
rate modes to minimize bus transients. By default, the slew
rate for each output buffer is reduced to minimize power bus
transients when switching non-critical signals.

LVTTL output buffers have selectable drive strengths.

The format for LVTTL OBUF symbol names is as follows:

OBUF_<slew_rate>_<drive_strength>

where <slew_rate> is either F (Fast) or S (Slow), and
<drive_strength> is specified in milliamps (2, 4, 6, 8, 12, 16,
or 24).

The following list details variations of the OBUF symbol.

• OBUF
• OBUF_S_2
• OBUF_S_4
• OBUF_S_6
• OBUF_S_8
• OBUF_S_12
• OBUF_S_16
• OBUF_S_24
• OBUF_F_2
• OBUF_F_4
• OBUF_F_6
• OBUF_F_8
• OBUF_F_12
• OBUF_F_16
• OBUF_F_24
• OBUF_LVCMOS2
• OBUF_PCI33_3
• OBUF_PCI66_3
• OBUF_GTL
• OBUF_GTLP
• OBUF_HSTL_I
• OBUF_HSTL_III
• OBUF_HSTL_IV
• OBUF_SSTL3_I
• OBUF_SSTL3_II
• OBUF_SSTL2_I
• OBUF_SSTL2_II
• OBUF_CTT
• OBUF_AGP
• OBUF_LVCMOS18
• OBUF_LVDS
• OBUF_LVPECL

Figure 40: Virtex-E Output Buffer (OBUF) Symbol

OI

OBUF

x133_04_111699
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
32 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

The Virtex-E series supports eight banks for the HQ and PQ
packages. The CS packages support four VCCO banks.

OBUF placement restrictions require that within a given
VCCO bank each OBUF share the same output source drive
voltage. Input buffers of any type and output buffers that do
not require VCCO can be placed within any VCCO bank.
Table 20 summarizes the Virtex-E output compatibility
requirements. The LOC property can specify a location for
the OBUF.

OBUFT

The generic 3-state output buffer OBUFT (see Figure 41)
typically implements 3-state outputs or bidirectional I/O.

The extension to the base name defines which I/O standard
OBUFT uses. With no extension specified for the generic
OBUFT symbol, the assumed standard is slew rate limited
LVTTL with 12 mA drive strength.

The LVTTL OBUFT additionally can support one of two slew
rate modes to minimize bus transients. By default, the slew
rate for each output buffer is reduced to minimize power bus
transients when switching non-critical signals.

LVTTL 3-state output buffers have selectable drive
strengths.

The format for LVTTL OBUFT symbol names is as follows:

OBUFT_<slew_rate>_<drive_strength>

where <slew_rate> is either F (Fast) or S (Slow), and
<drive_strength> is specified in milliamps (2, 4, 6, 8, 12, 16,
or 24).

The following list details variations of the OBUFT symbol.

• OBUFT
• OBUFT_S_2
• OBUFT_S_4
• OBUFT_S_6
• OBUFT_S_8
• OBUFT_S_12
• OBUFT_S_16
• OBUFT_S_24
• OBUFT_F_2
• OBUFT_F_4
• OBUFT_F_6
• OBUFT_F_8
• OBUFT_F_12
• OBUFT_F_16
• OBUFT_F_24
• OBUFT_LVCMOS2
• OBUFT_PCI33_3
• OBUFT_PCI66_3
• OBUFT_GTL
• OBUFT_GTLP
• OBUFT_HSTL_I
• OBUFT_HSTL_III
• OBUFT_HSTL_IV
• OBUFT_SSTL3_I
• OBUFT_SSTL3_II
• OBUFT_SSTL2_I
• OBUFT_SSTL2_II
• OBUFT_CTT
• OBUFT_AGP
• OBUFT_LVCMOS18
• OBUFT_LVDS
• OBUFT_LVPECL

The Virtex-E series supports eight banks for the HQ and PQ
packages. The CS package supports four VCCO banks.

The SelectI/O OBUFT placement restrictions require that
within a given VCCO bank each OBUFT share the same out-
put source drive voltage. Input buffers of any type and out-
put buffers that do not require VCCO can be placed within
the same VCCO bank.

The LOC property can specify a location for the OBUFT.

3-state output buffers and bidirectional buffers can have
either a weak pull-up resistor, a weak pull-down resistor, or
a weak “keeper” circuit. Control this feature by adding the
appropriate symbol to the output net of the OBUFT (PUL-
LUP, PULLDOWN, or KEEPER).

The weak “keeper” circuit requires the input buffer within the
IOB to sample the I/O signal. So, OBUFTs programmed for
an I/O standard that requires a VREF have automatic place-
ment of a VREF in the bank with an OBUFT configured with

Table 20: Output Standards Compatibility
Requirements

Rule 1 Only outputs with standards that share compatible
VCCO can be used within the same bank.

Rule 2 There are no placement restrictions for outputs
with standards that do not require a VCCO.

VCCO Compatible Standards

3.3 LVTTL, SSTL3_I, SSTL3_II, CTT, AGP, GTL,
GTL+, PCI33_3, PCI66_3

2.5 SSTL2_I, SSTL2_II, LVCMOS2, GTL, GTL+

1.5 HSTL_I, HSTL_III, HSTL_IV, GTL, GTL+

Figure 41: 3-State Output Buffer Symbol (OBUFT)

OI

OBUFT

x133_05_111699

T

DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 33

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

a weak “keeper” circuit. This restriction does not affect most
circuit design as applications using an OBUFT configured
with a weak “keeper” typically implement a bidirectional I/O.
In this case the IBUF (and the corresponding VREF) are
explicitly placed.

The LOC property can specify a location for the OBUFT.

IOBUF

Use the IOBUF symbol for bidirectional signals that require
both an input buffer and a 3-state output buffer with an
active high 3-state pin. The generic input/output buffer
IOBUF appears in Figure 42.

The extension to the base name defines which I/O standard
the IOBUF uses. With no extension specified for the generic
IOBUF symbol, the assumed standard is LVTTL input buffer
and slew rate limited LVTTL with 12 mA drive strength for
the output buffer.

The LVTTL IOBUF additionally can support one of two slew
rate modes to minimize bus transients. By default, the slew
rate for each output buffer is reduced to minimize power bus
transients when switching non-critical signals.

LVTTL bidirectional buffers have selectable output drive
strengths.

The format for LVTTL IOBUF symbol names is as follows:

IOBUF_<slew_rate>_<drive_strength>

where <slew_rate> is either F (Fast) or S (Slow), and
<drive_strength> is specified in milliamps (2, 4, 6, 8, 12, 16,
or 24).

The following list details variations of the IOBUF symbol.

• IOBUF
• IOBUF_S_2
• IOBUF_S_4
• IOBUF_S_6
• IOBUF_S_8
• IOBUF_S_12
• IOBUF_S_16
• IOBUF_S_24
• IOBUF_F_2
• IOBUF_F_4
• IOBUF_F_6

• IOBUF_F_8
• IOBUF_F_12
• IOBUF_F_16
• IOBUF_F_24
• IOBUF_LVCMOS2
• IOBUF_PCI33_3
• IOBUF_PCI66_3
• IOBUF_GTL
• IOBUF_GTLP
• IOBUF_HSTL_I
• IOBUF_HSTL_III
• IOBUF_HSTL_IV
• IOBUF_SSTL3_I
• IOBUF_SSTL3_II
• IOBUF_SSTL2_I
• IOBUF_SSTL2_II
• IOBUF_CTT
• IOBUF_AGP
• IOBUF_LVCMOS18
• IOBUF_LVDS
• IOBUF_LVPECL

When the IOBUF symbol used supports an I/O standard
that requires a differential amplifier input, the IOBUF auto-
matically configures with a differential amplifier input buffer.
The low-voltage I/O standards with a differential amplifier
input require an external reference voltage input VREF.

The voltage reference signal is “banked” within the Virtex-E
device on a half-edge basis such that for all packages there
are eight independent VREF banks internally. See Figure 38,
page 31 for a representation of the Virtex-E I/O banks.
Within each bank approximately one of every six I/O pins is
automatically configured as a VREF input. After placing a dif-
ferential amplifier input signal within a given VREF bank, the
same external source must drive all I/O pins configured as a
VREF input.

IOBUF placement restrictions require any differential ampli-
fier input signals within a bank be of the same standard.

The Virtex-E series supports eight banks for the HQ and PQ
packages. The CS package supports four VCCO banks.

Additional restrictions on the Virtex-E SelectI/O IOBUF
placement require that within a given VCCO bank each
IOBUF must share the same output source drive voltage.
Input buffers of any type and output buffers that do not
require VCCO can be placed within the same VCCO bank.
The LOC property can specify a location for the IOBUF.

An optional delay element is associated with the input path
in each IOBUF. When the IOBUF drives an input flip-flop
within the IOB, the delay element activates by default to
ensure a zero hold-time requirement. Override this default
with the NODELAY=TRUE property.

Figure 42: Input/Output Buffer Symbol (IOBUF)

IOI

IOBUF

x133_06_111699

T

O

Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
34 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

In the case when the IOBUF does not drive an input flip-flop
within the IOB, the delay element de-activates by default to
provide higher performance. To delay the input signal, acti-
vate the delay element with the DELAY=TRUE property.

3-state output buffers and bidirectional buffers can have
either a weak pull-up resistor, a weak pull-down resistor, or
a weak “keeper” circuit. Control this feature by adding the
appropriate symbol to the output net of the IOBUF (PUL-
LUP, PULLDOWN, or KEEPER).

SelectI/O Properties
Access to some of the SelectI/O features (for example, loca-
tion constraints, input delay, output drive strength, and slew
rate) is available through properties associated with these
features.

Input Delay Properties

An optional delay element is associated with each IBUF.
When the IBUF drives a flip-flop within the IOB, the delay
element activates by default to ensure a zero hold-time
requirement. Use the NODELAY=TRUE property to over-
ride this default.

In the case when the IBUF does not drive a flip-flop within
the IOB, the delay element by default de-activates to pro-
vide higher performance. To delay the input signal, activate
the delay element with the DELAY=TRUE property.

IOB Flip-Flop/Latch Property

The Virtex-E series I/O Block (IOB) includes an optional
register on the input path, an optional register on the output
path, and an optional register on the 3-state control pin. The
design implementation software automatically takes advan-
tage of these registers when the following option for the Map
program is specified.

map –pr b <filename>

Alternatively, the IOB = TRUE property can be placed on a
register to force the mapper to place the register in an IOB.

Location Constraints

Specify the location of each SelectI/O symbol with the loca-
tion constraint LOC attached to the SelectI/O symbol. The
external port identifier indicates the value of the location
constrain. The format of the port identifier depends on the
package chosen for the specific design.

The LOC properties use the following form:

LOC=A42

LOC=P37

Output Slew Rate Property

As mentioned above, a variety of symbol names provide the
option of choosing the desired slew rate for the output buff-
ers. In the case of the LVTTL output buffers (OBUF, OBUFT,
and IOBUF), slew rate control can be alternatively pro-
gramed with the SLEW= property. By default, the slew rate

for each output buffer is reduced to minimize power bus
transients when switching non-critical signals. The SLEW=
property has one of the two following values.

SLEW=SLOW

SLEW=FAST

Output Drive Strength Property

The desired output drive strength can be additionally speci-
fied by choosing the appropriate library symbol. The Xilinx
library also provides an alternative method for specifying
this feature. For the LVTTL output buffers (OBUF, OBUFT,
and IOBUF, the desired drive strength can be specified with
the DRIVE= property. This property could have one of the
following seven values.

DRIVE=2
DRIVE=4
DRIVE=6
DRIVE=8
DRIVE=12 (Default)
DRIVE=16
DRIVE=24

Design Considerations

Reference Voltage (VREF) Pins

Low-voltage I/O standards with a differential amplifier input
buffer require an input reference voltage (VREF). Provide the
VREF as an external signal to the device.

The voltage reference signal is “banked” within the device
on a half-edge basis such that for all packages there are
eight independent VREF banks internally. See Figure 38,
page 31 for a representation of the Virtex-E I/O banks.
Within each bank approximately one of every six I/O pins is
automatically configured as a VREF input. After placing a dif-
ferential amplifier input signal within a given VREF bank, the
same external source must drive all I/O pins configured as a
VREF input.

Within each VREF bank, any input buffers that require a
VREF signal must be of the same type. Output buffers of any
type and input buffers can be placed without requiring a ref-
erence voltage within the same VREF bank.

Output Drive Source Voltage (VCCO) Pins

Many of the low voltage I/O standards supported by
SelectI/O devices require a different output drive source
voltage (VCCO). As a result each device can often have to
support multiple output drive source voltages.

The Virtex-E series supports eight banks for the HQ and PQ
packages. The CS package supports four VCCO banks.

Output buffers within a given VCCO bank must share the
same output drive source voltage. Input buffers for LVTTL,
LVCMOS2, LVCMOS18, PCI33_3, and PCI 66_3 use the
VCCO voltage for Input VCCO voltage.
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 35

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Transmission Line Effects

The delay of an electrical signal along a wire is dominated
by the rise and fall times when the signal travels a short dis-
tance. Transmission line delays vary with inductance and
capacitance, but a well-designed board can experience
delays of approximately 180 ps per inch.

Transmission line effects, or reflections, typically start at
1.5" for fast (1.5 ns) rise and fall times. Poor (or non-exis-
tent) termination or changes in the transmission line imped-
ance cause these reflections and can cause additional
delay in longer traces. As system speeds continue to
increase, the effect of I/O delays can become a limiting fac-
tor and therefore transmission line termination becomes
increasingly more important.

Termination Techniques

A variety of termination techniques reduce the impact of
transmission line effects.

The following lists output termination techniques.

• None
• Series
• Parallel (Shunt)
• Series and Parallel (Series-Shunt)

Input termination techniques include the following.

• None
• Parallel (Shunt)

These termination techniques can be applied in any combi-
nation. A generic example of each combination of termina-
tion methods appears in Figure 43.

Simultaneous Switching Guidelines

Ground bounce can occur with high-speed digital ICs when
multiple outputs change states simultaneously, causing
undesired transient behavior on an output, or in the internal
logic. This problem is also referred to as the Simultaneous
Switching Output (SSO) problem.

Ground bounce is primarily due to current changes in the
combined inductance of ground pins, bond wires, and
ground metallization. The IC internal ground level deviates
from the external system ground level for a short duration (a
few nanoseconds) after multiple outputs change state
simultaneously.

Ground bounce affects stable Low outputs and all inputs
because they interpret the incoming signal by comparing it
to the internal ground. If the ground bounce amplitude
exceeds the actual instantaneous noise margin, then a
non-changing input can be interpreted as a short pulse with
a polarity opposite to the ground bounce.

Table 21 provides guidelines for the maximum number of
simultaneously switching outputs allowed per output
power/ground pair to avoid the effects of ground bounce. See
Table 22 for the number of effective output power/ground pairs
for each Virtex-E device and package combination.

Figure 43: Overview of Standard Input and Output
Termination Methods

x133_07_111699

Unterminated Double Parallel Terminated

Series-Parallel Terminated Output
Driving a Parallel Terminated Input

VTTVTT

VREF

Series Terminated Output Driving
 a Parallel Terminated Input

VTT

VREF

Unterminated Output Driving
a Parallel Terminated Input

VTT

VREF

VTTVTT

VREF

Series Terminated Output

VREF

Z=50

Z=50

Z=50

Z=50

Z=50

Z=50
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
36 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Table 21: Guidelines for Max Number of Simultaneously Switching Outputs per Power/Ground Pair

Package

Standard BGA, CS, FGA HQ PQ, TQ

LVTTL Slow Slew Rate, 2 mA drive 68 49 36

LVTTL Slow Slew Rate, 4 mA drive 41 31 20

LVTTL Slow Slew Rate, 6 mA drive 29 22 15

LVTTL Slow Slew Rate, 8 mA drive 22 17 12

LVTTL Slow Slew Rate, 12 mA drive 17 12 9

LVTTL Slow Slew Rate, 16 mA drive 14 10 7

LVTTL Slow Slew Rate, 24 mA drive 9 7 5

LVTTL Fast Slew Rate, 2 mA drive 40 29 21

LVTTL Fast Slew Rate, 4 mA drive 24 18 12

LVTTL Fast Slew Rate, 6 mA drive 17 13 9

LVTTL Fast Slew Rate, 8 mA drive 13 10 7

LVTTL Fast Slew Rate, 12 mA drive 10 7 5

LVTTL Fast Slew Rate, 16 mA drive 8 6 4

LVTTL Fast Slew Rate, 24 mA drive 5 4 3

LVCMOS2 10 7 5

PCI 8 6 4

GTL 4 4 4

GTL+ 4 4 4

HSTL Class I 18 13 9

HSTL Class III 9 7 5

HSTL Class IV 5 4 3

SSTL2 Class I 15 11 8

SSTL2 Class II 10 7 5

SSTL3 Class I 11 8 6

SSTL3 Class II 7 5 4

CTT 14 10 7

AGP 9 7 5

Note: This analysis assumes a 35 pF load for each output.
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 37

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Application Examples
Creating a design with the SelectI/O features requires the
instantiation of the desired library symbol within the design
code. At the board level, designers need to know the termi-
nation techniques required for each I/O standard.

This section describes some common application examples
illustrating the termination techniques recommended by
each of the standards supported by the SelectI/O features.

Termination Examples

Circuit examples involving typical termination techniques for
each of the SelectI/O standards follow. For a full range of
accepted values for the DC voltage specifications for each
standard, refer to the table associated with each figure.

The resistors used in each termination technique example
and the transmission lines depicted represent board level
components and are not meant to represent components
on the device.

GTL

A sample circuit illustrating a valid termination technique for
GTL is shown in Figure 44. Table 23 lists DC voltage speci-
fications.

Table 22: Virtex-E Equivalent Power/Ground Pairs

Pkg/Part XCV100E XCV200E XCV300E XCV400E XCV600E XCV1000E XCV1600E XCV2000E

CS144 12 12

PQ240 20 20 20 20

HQ240 20 20

BG352 20 32 32

BG432 32 40 40

BG560 40 40 56 58 60

FG256(1) 20 24 24

FG456 40 40

FG676 54 56

FG680(2) 46 56 56 56

FG860 58 60 64

FG900 56 58 60

FG1156 96 104 120

Notes:
1. Virtex-E devices in FG256 packages have more VCCO than Virtex series devices.
2. FG680 numbers are preliminary.

Table 23: GTL Voltage Specifications

Parameter Min Typ Max

VCCO - N/A -

VREF = N ´ VTT
1 0.74 0.8 0.86

VTT 1.14 1.2 1.26

VIH = VREF + 0.05 0.79 0.85 -

VIL = VREF – 0.05 - 0.75 0.81

VOH - - -

VOL - 0.2 0.4

IOH at VOH(mA) - - -

IOLat VOL(mA) at 0.4V 32 - -

IOLat VOL(mA) at 0.2V - - 40

Notes:
1. N must be greater than or equal to 0.653 and less than or

equal to 0.68.
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
38 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

GTL+

A sample circuit illustrating a valid termination technique for
GTL+ appears in Figure 45. DC voltage specifications
appear in Table 24.

HSTL

A sample circuit illustrating a valid termination technique for
HSTL_I appears in Figure 46. A sample circuit illustrating a
valid termination technique for HSTL_III appears in
Figure 47.

Figure 44: Terminated GTL

Figure 45: Terminated GTL+

Table 24: GTL+ Voltage Specifications

Parameter Min Typ Max

VCCO - - -

VREF = N ´ VTT
1 0.88 1.0 1.12

VTT 1.35 1.5 1.65

VIH = VREF + 0.1 0.98 1.1 -

VIL = VREF – 0.1 - 0.9 1.02

VOH - - -

VOL 0.3 0.45 0.6

IOH at VOH (mA) - - -

IOLat VOL (mA) at 0.6V 36 - -

IOLat VOL (mA) at 0.3V - - 48

Notes:
1. N must be greater than or equal to 0.653 and less than or

equal to 0.68.

VREF = 0.8V

VTT = 1.2V

50Ω50Ω
VCCO = N/A

Z = 50

GTL

x133_08_111699

VTT = 1.2V

VREF = 1.0V

VTT = 1.5V

50Ω
VCCO = N/A

Z = 50

GTL+

x133_09_012400

50Ω

VTT = 1.5V

Table 25: HSTL Class I Voltage Specification

Parameter Min Typ Max

VCCO 1.40 1.50 1.60

VREF 0.68 0.75 0.90

VTT - VCCO ´ 0.5 -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 8 - -

Figure 46: Terminated HSTL Class I

Table 26: HSTL Class III Voltage Specification

Parameter Min Typ Max

VCCO 1.40 1.50 1.60

VREF
(1) - 0.90 -

VTT - VCCO -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 24 - -

Note: Per EIA/JESD8-6, “The value of VREF is to be selected
by the user to provide optimum noise margin in the use
conditions specified by the user.”

VREF = 0.75V

VTT= 0.75V

50Ω

VCCO = 1.5V

Z = 50

HSTL Class I

x133_10_111699
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 39

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

A sample circuit illustrating a valid termination technique for
HSTL_IV appears in Figure 48.

SSTL3_I

A sample circuit illustrating a valid termination technique for
SSTL3_I appears in Figure 49. DC voltage specifications
appear in Table 28.

Figure 47: Terminated HSTL Class III

Table 27: HSTL Class IV Voltage Specification

Parameter Min Typ Max

VCCO 1.40 1.50 1.60

VREF - 0.90 -

VTT - VCCO -

VIH VREF + 0.1 - -

VIL - - VREF – 0.1

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 48 - -

Note: Per EIA/JESD8-6, “The value of VREF is to be selected
by the user to provide optimum noise margin in the use
conditions specified by the user.

Figure 48: Terminated HSTL Class IV

VREF = 0.9V

VTT= 1.5V

50Ω
VCCO = 1.5V

Z = 50

HSTL Class III

x133_11_111699

50Ω
Z = 50

HSTL Class IV

x133_12_111699

50Ω

VREF = 0.9V

VTT= 1.5VVTT= 1.5VVCCO = 1.5V

Table 28: SSTL3_I Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF = 0.45 ´ VCCO 1.3 1.5 1.7

VTT = VREF 1.3 1.5 1.7

VIH = VREF + 0.2 1.5 1.7 3.9(1)

VIL = VREF – 0.2 -0.3(2) 1.3 1.5

VOH = VREF + 0.6 1.9 - -

VOL = VREF – 0.6 - - 1.1

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 8 - -

Notes:
1. VIH maximum is VCCO + 0.3
2. VIL minimum does not conform to the formula

Figure 49: Terminated SSTL3 Class I

50Ω
Z = 50

SSTL3 Class I

x133_13_111699

25Ω

VREF = 1.5V

VTT= 1.5V
VCCO = 3.3V
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
40 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

SSTL3_II

A sample circuit illustrating a valid termination technique for
SSTL3_II appears in Figure 50. DC voltage specifications
appear in Table 29.

SSTL2_I

A sample circuit illustrating a valid termination technique for
SSTL2_I appears in Figure 51. DC voltage specifications
appear in Table 30.

SSTL2_II

A sample circuit illustrating a valid termination technique for
SSTL2_II appears in Figure 52. DC voltage specifications
appear in Table 31.

Table 29: SSTL3_II Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF = 0.45 ´ VCCO 1.3 1.5 1.7

VTT = VREF 1.3 1.5 1.7

VIH = VREF + 0.2 1.5 1.7 3.9(1)

VIL= VREF – 0.2 -0.3(2) 1.3 1.5

VOH = VREF + 0.8 2.1 - -

VOL= VREF – 0.8 - - 0.9

IOH at VOH (mA) -16 - -

IOLat VOL (mA) 16 - -

Notes:
1. VIH maximum is VCCO + 0.3
2. VIL minimum does not conform to the formula

Figure 50: Terminated SSTL3 Class II

Figure 51: Terminated SSTL2 Class I

50Ω
Z = 50

SSTL3 Class II

x133_14_111699

25Ω
50Ω

VREF = 1.5V

VTT= 1.5VVTT= 1.5V
VCCO = 3.3V

50Ω

Z = 50

SSTL2 Class I

xap133_15_011000

25Ω

V
REF

 = 1.25V

V
TT

= 1.25V
V

CCO
 = 2.5V

Table 30: SSTL2_I Voltage Specifications

Parameter Min Typ Max

VCCO 2.3 2.5 2.7

VREF = 0.5 ´ VCCO 1.15 1.25 1.35

VTT = VREF + N(1) 1.11 1.25 1.39

VIH = VREF + 0.18 1.33 1.43 3.0(2)

VIL = VREF – 0.18 -0.3(3) 1.07 1.17

VOH = VREF + 0.61 1.76 - -

VOL= VREF – 0.61 - - 0.74

IOH at VOH (mA) -7.6 - -

IOLat VOL (mA) 7.6 - -

Notes:
1. N must be greater than or equal to -0.04 and less than or

equal to 0.04.
2. VIH maximum is VCCO + 0.3.
3. VIL minimum does not conform to the formula.

Table 31: SSTL2_II Voltage Specifications

Parameter Min Typ Max

VCCO 2.3 2.5 2.7

VREF = 0.5 ´ VCCO 1.15 1.25 1.35

VTT = VREF + N(1) 1.11 1.25 1.39

VIH = VREF + 0.18 1.33 1.43 3.0(2)

VIL = VREF – 0.18 -0.3(3) 1.07 1.17

VOH = VREF + 0.8 1.95 - -

VOL = VREF – 0.8 - - 0.55

IOH at VOH (mA) -15.2 - -

IOLat VOL (mA) 15.2 - -

Notes:
1. N must be greater than or equal to -0.04 and less than or

equal to 0.04.
2. VIH maximum is VCCO + 0.3.
3. VIL minimum does not conform to the formula.

Figure 52: Terminated SSTL2 Class II

50Ω
Z = 50

SSTL2 Class II

x133_16_111699

25Ω
50Ω

VREF = 1.25V

VTT= 1.25VVTT= 1.25V
VCCO = 2.5V
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 41

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

CTT

A sample circuit illustrating a valid termination technique for
CTT appear in Figure 53. DC voltage specifications appear
in Table 32.

PCI33_3 & PCI66_3

PCI33_3 or PCI66_3 require no termination. DC voltage
specifications appear in Table 33.

LVTTL

LVTTL requires no termination. DC voltage specifications
appears in Table 34.

LVCMOS2

LVCMOS2 requires no termination. DC voltage specifica-
tions appear in Table 35.

Table 32: CTT Voltage Specifications

Parameter Min Typ Max

VCCO 2.05(1) 3.3 3.6

VREF 1.35 1.5 1.65

VTT 1.35 1.5 1.65

VIH = VREF + 0.2 1.55 1.7 -

VIL = VREF – 0.2 - 1.3 1.45

VOH = VREF + 0.4 1.75 1.9 -

VOL= VREF – 0.4 - 1.1 1.25

IOH at VOH (mA) -8 - -

IOLat VOL (mA) 8 - -

Notes:
1. Timing delays are calculated based on VCCO min of 3.0V.

Figure 53: Terminated CTT

Table 33: PCI33_3 and PCI66_3 Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF - - -

VTT - - -

VIH = 0.5 ´ VCCO 1.5 1.65 VCCO + 0.5

VIL = 0.3 ´ VCCO -0.5 0.99 1.08

VOH = 0.9 ´ VCCO 2.7 - -

VOL= 0.1 ´ VCCO - - 0.36

VREF= 1.5V

VTT = 1.5V

50Ω
VCCO = 3.3V

Z = 50

CTT

x133_17_111699

IOH at VOH (mA) Note 1 - -

IOLat VOL (mA) Note 1 - -

Notes:
1. Tested according to the relevant specification.

Table 34: LVTTL Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF - - -

VTT - - -

VIH 2.0 - 3.6

VIL -0.5 - 0.8

VOH 2.4 - -

VOL - - 0.4

IOH at VOH (mA) -24 - -

IOLat VOL (mA) 24 - -

Notes:
1. Note: VOLand VOH for lower drive currents sample tested.

Table 35: LVCMOS2 Voltage Specifications

Parameter Min Typ Max

VCCO 2.3 2.5 2.7

VREF - - -

VTT - - -

VIH 1.7 - 3.6

VIL -0.5 - 0.7

VOH 1.9 - -

VOL - - 0.4

IOH at VOH (mA) -12 - -

IOLat VOL (mA) 12 - -

Table 33: PCI33_3 and PCI66_3 Voltage Specifications

Parameter Min Typ Max
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
42 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

LVCMOS18

LVCMOS18 does not require termination. Table 36 lists DC
voltage specifications.

AGP-2X
The specification for the AGP-2X standard does not docu-
ment a recommended termination technique. DC voltage
specifications appear in Table 37.

LVDS

Depending on whether the device is transmitting an LVDS
signal or receiving an LVDS signal, there are two different
circuits used for LVDS termination. A sample circuit illustrat-
ing a valid termination technique for transmitting LVDS sig-
nals appears in Figure 54. A sample circuit illustrating a
valid termination for receiving LVDS signals appears in
Figure 55. Table 38 lists DC voltage specifications. Further
information on the specific termination resistor packs shown
can be found on Table 40.

Table 36: LVCMOS18 Voltage Specifications

Parameter Min Typ Max

VCCO 1.70 1.80 1.90

VREF - - -

VTT - - -

VIH 0.7 x VCCO - 1.95

VIL – 0.5 - 0.2 x VCCO

VOH VCCO – 0.4 - -

VOL - - 0.4

IOH at VOH (mA) –8 - -

IOLat VOL (mA) 8 - -

Table 37: AGP-2X Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF = N ´ VCCO
(1) 1.17 1.32 1.48

VTT - - -

VIH = VREF + 0.2 1.37 1.52 -

VIL = VREF – 0.2 - 1.12 1.28

VOH = 0.9 ´ VCCO 2.7 3.0 -

VOL = 0.1 ´ VCCO - 0.33 0.36

IOH at VOH (mA) Note 2 - -

IOLat VOL (mA) Note 2 - -

Notes:
1. N must be greater than or equal to 0.39 and less than or

equal to 0.41.
2. Tested according to the relevant specification.

Figure 54: Transmitting LVDS Signal Circuit

Figure 55: Receiving LVDS Signal Circuit

Table 38: LVDS Voltage Specifications

Parameter Min Typ Max

VCCO 2.375 2.5 2.625

VICM
(2) 0.2 1.25 2.2

VOCM
(1) 1.125 1.25 1.375

VIDIFF (1) 0.1 0.35 -

VODIFF (1) 0.25 0.35 0.45

VOH
(1) 1.25 - -

VOL
(1) - - 1.25

Notes:
1. Measured with a 100 W resistor across Q and Q.
2. Measured with a differential input voltage = +/- 350 mV.

x133_19_122799

Q Z0 = 50Ω

Z0 = 50Ω

Q

Virtex-E
FPGA

to LVDS Receiver

to LVDS Receiver

RDIV
140

RS

165

RS

165

2.5V

VCCO = 2.5V
LVDS
Output

DATA
Transmit

1/4 of Bourns
Part Number

CAT16-LV4F12

x133_29_122799

Q Z0 = 50Ω LVDS_IN

LVDS_IN

Z0 = 50Ω

RT
100Ω

Q

DATA
Receive

from
LVDS
Driver

VIRTEX-E
FPGA

+

–

DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 43

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

LVPECL
Depending on whether the device is transmitting or receiv-
ing an LVPECL signal, two different circuits are used for
LVPECL termination. A sample circuit illustrating a valid ter-
mination technique for transmitting LVPECL signals
appears in Figure 56. A sample circuit illustrating a valid ter-
mination for receiving LVPECL signals appears in
Figure 57. Table 39 lists DC voltage specifications. Further
information on the specific termination resistor packs shown
can be found on Table 40.

Termination Resistor Packs
Resistor packs are available with the values and the config-
uration required for LVDS and LVPECL termination from
Bourns, Inc., as listed in Table. For pricing and availability,
please contact Bourns directly at http://www.bourns.com.

LVDS Design Guide
The SelectI/O library elements have been expanded for Vir-
tex-E devices to include new LVDS variants. At this time all
of the cells might not be included in the Synthesis libraries.
The 2.1i-Service Pack 2 update for Alliance and Foundation
software includes these cells in the VHDL and Verilog librar-
ies. It is necessary to combine these cells to create the
P-side (positive) and N-side (negative) as described in the
input, output, 3-state and bidirectional sections.

Table 39: LVPECL Voltage Specifications

Parameter Min Typ Max

VCCO 3.0 3.3 3.6

VREF - - -

VTT - - -

VIH 1.49 - 2.72

VIL 0.86 - 2.125

VOH 1.8 - -

VOL - - 1.57

Notes:
1. For more detailed information, see LVPECL DC

Specifications

Figure 56: Transmitting LVPECL Signal Circuit

Figure 57: Receiving LVPECL Signal Circuit

x133_20_122799

Q Z0 = 50Ω LVPECL_OUT

LVPECL_OUT

Z0 = 50Ω

Q

Virtex-E
FPGA

to LVPECL Receiver

to LVPECL Receiver

RDIV
187

RS

100

RS

100

3.3V

DATA
Transmit

1/4 of Bourns
Part Number

CAT16-PC4F12

x133_21_122799

Q Z0 = 50Ω

LVPECL_IN

LVPECL_IN

Z0 = 50Ω

RT
100Ω

Q

DATA
Receive

from
LVPECL
Driver

VIRTEX-E
FPGA

+

–

Table 40: Bourns LVDS/LVPECL Resistor Packs

 Part Number I/O Standard
Term.
for:

Pairs/
Pack Pins

CAT16-LV2F6 LVDS Driver 2 8

CAT16-LV4F12 LVDS Driver 4 16

CAT16-PC2F6 LVPECL Driver 2 8

CAT16-PC4F12 LVPECL Driver 4 16

CAT16-PT2F2 LVDS/LVPECL Receiver 2 8

CAT16-PT4F4 LVDS/LVPECL Receiver 4 16

Figure 58: LVDS elements

OI

IBUF_LVDS

OI

OBUF_LVDS IOBUF_LVDS

O

OT

I

OBUFT_LVDS

OI

IBUFG_LVDS

IO

T

I

x133_22_122299
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
44 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com
http://www.bourns.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Creating LVDS Global Clock Input Buffers
Global clock input buffers can be combined with adjacent
IOBs to form LVDS clock input buffers. P-side is the GCLK-
PAD location; N-side is the adjacent IO_LVDS_DLL site.

HDL Instantiation

Only one global clock input buffer is required to be instanti-
ated in the design and placed on the correct GCLKPAD
location. The N-side of the buffer is reserved and no other
IOB is allowed to be placed on this location.

In the physical device, a configuration option is enabled that
routes the pad wire to the differential input buffer located in
the GCLKIOB. The output of this buffer then drives the out-
put of the GCLKIOB cell. In EPIC it appears that the second
buffer is unused. Any attempt to use this location for another
purpose leads to a DRC error in the software.

VHDL Instantiation

gclk0_p : IBUFG_LVDS port map
(I=>clk_external, O=>clk_internal);

Verilog Instantiation

IBUFG_LVDS gclk0_p (.I(clk_external),
.O(clk_internal));

Location constraints
All LVDS buffers must be explicitly placed on a device. For
the global clock input buffers this can be done with the fol-
lowing constraint in the .ucf or .ncf file.

NET clk_external LOC = GCLKPAD3;

GCLKPAD3 can also be replaced with the package pin
name such as D17 for the BG432 package.

Optional N-side

Some designers might prefer to also instantiate the N-side
buffer for the global clock buffer. This allows the top-level net
list to include net connections for both PCB layout and sys-
tem-level integration. In this case, only the output P-side
IBUFG connection has a net connected to it. Since the
N-side IBUFG does not have a connection in the EDIF net
list, it is trimmed from the design in MAP.

VHDL Instantiation

gclk0_p : IBUFG_LVDS port map
(I=>clk_p_external, O=>clk_internal);

gclk0_n : IBUFG_LVDS port map
(I=>clk_n_external, O=>clk_internal);

Verilog Instantiation

IBUFG_LVDS gclk0_p (.I(clk_p_external),
.O(clk_internal));

IBUFG_LVDS gclk0_n (.I(clk_n_external),
.O(clk_internal));

Location Constraints

All LVDS buffers must be explicitly placed on a device. For
the global clock input buffers this can be done with the fol-
lowing constraint in the .ucf or .ncf file.

NET clk_p_external LOC = GCLKPAD3;

NET clk_n_external LOC = C17;

GCLKPAD3 can also be replaced with the package pin
name, such as D17 for the BG432 package.

Creating LVDS Input Buffers
An LVDS input buffer can be placed in a wide number of IOB
locations. The exact location is dependent on the package
that is used. The Virtex-E package information lists the pos-
sible locations as IO_L#P for the P-side and IO_L#N for the
N-side where # is the pair number.

HDL Instantiation
Only one input buffer is required to be instantiated in the
design and placed on the correct IO_L#P location. The
N-side of the buffer is reserved and no other IOB is allowed
to be placed on this location. In the physical device, a con-
figuration option is enabled that routes the pad wire from the
IO_L#N IOB to the differential input buffer located in the
IO_L#P IOB. The output of this buffer then drives the output
of the IO_L#P cell or the input register in the IO_L#P IOB. In
EPIC it appears that the second buffer is unused. Any
attempt to use this location for another purpose leads to a
DRC error in the software.

Table 41: Global Clock Input Buffer Pair Locations

Pkg

GCLK 3 GCLK 2 GCLK 1 GCLK 0

P N P N P N P N

CS144 A6 C6 A7 B7 M7 M6 K7 N8

PQ240 P213 P215 P210 P209 P89 P87 P92 P93

HQ240 P213 P215 P210 P209 P89 P87 P92 P93

BG352 D14 A15 B14 A13 AF14 AD14 AE13 AC13

BG432 D17 C17 A16 B16 AK16 AL17 AL16 AH15

BG560 A17 C18 D17 E17 AJ17 AM18 AL17 AM17

FG256 B8 A7 C9 A8 R8 T8 N8 N9

FG456 C11 B11 A11 D11 Yll AA11 W12 U12

FG676 E13 B13 C13 F14 AB13 AF13 AA14 AC14

FG680 A20 C22 D21 A19 AU22 AT22 AW19 AT21

FG860 C22 A22 B22 D22 AY22 AW21 BA22 AW20

FG900 C15 A15 E15 E16 AK16 AH16 AJ16 AF16

FG115
6

E17 C17 D17 J18 Al19 AL17 AH18 AM18
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 45

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

VHDL Instantiation

data0_p : IBUF_LVDS port map (I=>data(0),
O=>data_int(0));

Verilog Instantiation

IBUF_LVDS data0_p (.I(data[0]),
.O(data_int[0]));

Location Constraints

All LVDS buffers must be explicitly placed on a device. For
the input buffers this can be done with the following con-
straint in the .ucf or .ncf file.

NET data<0> LOC = D28; # IO_L0P

Optional N-side

Some designers might prefer to also instantiate the N-side
buffer for the input buffer. This allows the top-level net list to
include net connections for both PCB layout and sys-
tem-level integration. In this case, only the output P-side
IBUF connection has a net connected to it. Since the N-side
IBUF does not have a connection in the EDIF net list, it is
trimmed from the design in MAP.

VHDL Instantiation

data0_p : IBUF_LVDS port map
(I=>data_p(0), O=>data_int(0));

data0_n : IBUF_LVDS port map
(I=>data_n(0), O=>open);

Verilog Instantiation

IBUF_LVDS data0_p (.I(data_p[0]),
.O(data_int[0]));

IBUF_LVDS data0_n (.I(data_n[0]), .O());

Location Constraints

All LVDS buffers must be explicitly placed on a device. For
the global clock input buffers this can be done with the fol-
lowing constraint in the .ucf or .ncf file.

NET data_p<0> LOC = D28; # IO_L0P

NET data_n<0> LOC = B29; # IO_L0N

Adding an Input Register

All LVDS buffers can have an input register in the IOB. The
input register is in the P-side IOB only. All the normal IOB
register options are available (FD, FDE, FDC, FDCE, FDP,
FDPE, FDR, FDRE, FDS, FDSE, LD, LDE, LDC, LDCE,
LDP, LDPE). The register elements can be inferred or
explicitly instantiated in the HDL code.

The register elements can be packed in the IOB using the
IOB property to TRUE on the register or by using the “map
-pr [i|o|b]” where “i” is inputs only, “o” is outputs only and “b”
is both inputs and outputs.

To improve design coding times VHDL and Verilog synthesis
macro libraries available to explicitly create these structures.

The input library macros are listed in Table 42. The I and IB
inputs to the macros are the external net connections.

Creating LVDS Output Buffers
LVDS output buffers can be placed in a wide number of IOB
locations. The exact locations are dependent on the pack-
age used. The Virtex-E package information lists the possi-
ble locations as IO_L#P for the P-side and IO_L#N for the
N-side, where # is the pair number.

HDL Instantiation

Both output buffers are required to be instantiated in the
design and placed on the correct IO_L#P and IO_L#N loca-
tions. The IOB must have the same net source the following
pins, clock (C), set/reset (SR), output (O), output clock
enable (OCE). In addition, the output (O) pins must be
inverted with respect to each other, and if output registers
are used, the INIT states must be opposite values (one
HIGH and one LOW). Failure to follow these rules leads to
DRC errors in software.

VHDL Instantiation

data0_p : OBUF_LVDS port map
(I=>data_int(0), O=>data_p(0));

data0_inv: INV port map
(I=>data_int(0), O=>data_n_int(0));

data0_n : OBUF_LVDS port map
(I=>data_n_int(0), O=>data_n(0));

Table 42: Input Library Macros

Name Inputs Outputs

IBUFDS_FD_LVDS I, IB, C Q

IBUFDS_FDE_LVDS I, IB, CE, C Q

IBUFDS_FDC_LVDS I, IB, C, CLR Q

IBUFDS_FDCE_LVDS I, IB, CE, C, CLR Q

IBUFDS_FDP_LVDS I, IB, C, PRE Q

IBUFDS_FDPE_LVDS I, IB, CE, C, PRE Q

IBUFDS_FDR_LVDS I, IB, C, R Q

IBUFDS_FDRE_LVDS I, IB, CE, C, R Q

IBUFDS_FDS_LVDS I, IB, C, S Q

IBUFDS_FDSE_LVDS I, IB, CE, C, S Q

IBUFDS_LD_LVDS I, IB, G Q

IBUFDS_LDE_LVDS I, IB, GE, G Q

IBUFDS_LDC_LVDS I, IB, G, CLR Q

IBUFDS_LDCE_LVDS I, IB, GE, G, CLR Q

IBUFDS_LDP_LVDS I, IB, G, PRE Q

IBUFDS_LDPE_LVDS I, IB, GE, G, PRE Q
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
46 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Verilog Instantiation

OBUF_LVDS data0_p (.I(data_int[0]),
.O(data_p[0]));

INV data0_inv (.I(data_int[0],
.O(data_n_int[0]);

OBUF_LVDS data0_n (.I(data_n_int[0]),
.O(data_n[0]));

Location Constraints

All LVDS buffers must be explicitly placed on a device. For
the output buffers this can be done with the following con-
straint in the .ucf or .ncf file.

NET data_p<0> LOC = D28; # IO_L0P

NET data_n<0> LOC = B29; # IO_L0N

Synchronous vs. Asynchronous Outputs

If the outputs are synchronous (registered in the IOB) then
any IO_L#P|N pair can be used. If the outputs are asynchro-
nous (no output register), then they must use one of the
pairs that are part of the same IOB group at the end of a
ROW or COLUMN in the device.

The LVDS pairs that can be used as asynchronous outputs
are listed in the Virtex-E pinout tables. Some pairs are
marked as asynchronous-capable for all devices in that
package, and others are marked as available only for that
device in the package. If the device size might change at
some point in the product lifetime, then only the common
pairs for all packages should be used.

Adding an Output Register

All LVDS buffers can have an output register in the IOB. The
output registers must be in both the P-side and N-side IOBs.
All the normal IOB register options are available (FD, FDE,
FDC, FDCE, FDP, FDPE, FDR, FDRE, FDS, FDSE, LD,
LDE, LDC, LDCE, LDP, LDPE). The register elements can
be inferred or explicitly instantiated in the HDL code.

Special care must be taken to insure that the D pins of the
registers are inverted and that the INIT states of the regis-
ters are opposite. The clock pin (C), clock enable (CE) and
set/reset (CLR/PRE or S/R) pins must connect to the same
source. Failure to do this leads to a DRC error in the soft-
ware.

The register elements can be packed in the IOB using the
IOB property to TRUE on the register or by using the “map
-pr [i|o|b]” where “i” is inputs only, “o” is outputs only and “b”
is both inputs and outputs.

To improve design coding times VHDL and Verilog synthe-
sis macro libraries have been developed to explicitly create
these structures. The output library macros are listed in

Table 43. The O and OB inputs to the macros are the exter-
nal net connections.

Creating LVDS Output 3-State Buffers
LVDS output 3-state buffers can be placed in a wide number
of IOB locations. The exact locations are dependent on the
package used. The Virtex-E package information lists the
possible locations as IO_L#P for the P-side and IO_L#N for
the N-side, where # is the pair number.

HDL Instantiation

Both output 3-state buffers are required to be instantiated in
the design and placed on the correct IO_L#P and IO_L#N
locations. The IOB must have the same net source the fol-
lowing pins, clock (C), set/reset (SR), 3-state (T), 3-state
clock enable (TCE), output (O), output clock enable (OCE).
In addition, the output (O) pins must be inverted with
respect to each other, and if output registers are used, the
INIT states must be opposite values (one High and one
Low). If 3-state registers are used, they must be initialized to
the same state. Failure to follow these rules leads to DRC
errors in the software.

Table 43: Output Library Macros

Name Inputs Outputs

OBUFDS_FD_LVDS D, C O, OB

OBUFDS_FDE_LVDS DD, CE, C O, OB

OBUFDS_FDC_LVDS D, C, CLR O, OB

OBUFDS_FDCE_LVDS D, CE, C, CLR O, OB

OBUFDS_FDP_LVDS D, C, PRE O, OB

OBUFDS_FDPE_LVDS D, CE, C, PRE O, OB

OBUFDS_FDR_LVDS D, C, R O, OB

OBUFDS_FDRE_LVDS D, CE, C, R O, OB

OBUFDS_FDS_LVDS D, C, S O, OB

OBUFDS_FDSE_LVDS D, CE, C, S O, OB

OBUFDS_LD_LVDS D, G O, OB

OBUFDS_LDE_LVDS D, GE, G O, OB

OBUFDS_LDC_LVDS D, G, CLR O, OB

OBUFDS_LDCE_LVDS D, GE, G, CLR O, OB

OBUFDS_LDP_LVDS D, G, PRE O, OB

OBUFDS_LDPE_LVDS D, GE, G, PRE O, OB
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 47

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

VHDL Instantiation

data0_p: OBUFT_LVDS port map
(I=>data_int(0), T=>data_tri,
O=>data_p(0));

data0_inv: INV port map
(I=>data_int(0), O=>data_n_int(0));

data0_n: OBUFT_LVDS port map
(I=>data_n_int(0), T=>data_tri,
O=>data_n(0));

Verilog Instantiation

OBUFT_LVDS data0_p (.I(data_int[0]),
.T(data_tri), .O(data_p[0]));

INV data0_inv (.I(data_int[0],
.O(data_n_int[0]);

OBUFT_LVDS data0_n (.I(data_n_int[0]),
.T(data_tri), .O(data_n[0]));

Location Constraints

All LVDS buffers must be explicitly placed on a device. For
the output buffers this can be done with the following con-
straint in the .ucf or .ncf file.

NET data_p<0> LOC = D28; # IO_L0P

NET data_n<0> LOC = B29; # IO_L0N

Synchronous vs. Asynchronous 3-State Outputs

If the outputs are synchronous (registered in the IOB), then
any IO_L#P|N pair can be used. If the outputs are asynchro-
nous (no output register), then they must use one of the
pairs that are part of the same IOB group at the end of a
ROW or COLUMN in the device. This applies for either the
3-state pin or the data out pin.

LVDS pairs that can be used as asynchronous outputs are
listed in the Virtex-E pinout tables. Some pairs are marked
as “asynchronous capable” for all devices in that package,
and others are marked as available only for that device in
the package. If the device size might be changed at some
point in the product lifetime, then only the common pairs for
all packages should be used.

Adding Output and 3-State Registers
All LVDS buffers can have an output register in the IOB. The
output registers must be in both the P-side and N-side IOBs.
All the normal IOB register options are available (FD, FDE,
FDC, FDCE, FDP, FDPE, FDR, FDRE, FDS, FDSE, LD,
LDE, LDC, LDCE, LDP, LDPE). The register elements can
be inferred or explicitly instantiated in the HDL code.

Special care must be taken to insure that the D pins of the
registers are inverted and that the INIT states of the regis-
ters are opposite. The 3-state (T), 3-state clock enable
(CE), clock pin (C), output clock enable (CE) and set/reset

(CLR/PRE or S/R) pins must connect to the same source.
Failure to do this leads to a DRC error in the software.

The register elements can be packed in the IOB using the
IOB property to TRUE on the register or by using the “map
-pr [i|o|b]” where “i” is inputs only, “o” is outputs only and “b”
is both inputs and outputs.

To improve design coding times VHDL and Verilog synthe-
sis macro libraries have been developed to explicitly create
these structures. The input library macros are listed below.
The 3-state is configured to be 3-stated at GSR and when
the PRE,CLR,S or R is asserted and shares it's clock
enable with the output register. If this is not desirable then
the library can be updated by the user for the desired func-
tionality. The O and OB inputs to the macros are the exter-
nal net connections.

Creating a LVDS Bidirectional Buffer
LVDS bidirectional buffers can be placed in a wide number
of IOB locations. The exact locations are dependent on the
package used. The Virtex-E package information lists the
possible locations as IO_L#P for the P-side and IO_L#N for
the N-side, where # is the pair number.

HDL Instantiation
Both bidirectional buffers are required to be instantiated in
the design and placed on the correct IO_L#P and IO_L#N
locations. The IOB must have the same net source the fol-
lowing pins, clock (C), set/reset (SR), 3-state (T), 3-state
clock enable (TCE), output (O), output clock enable (OCE).
In addition, the output (O) pins must be inverted with
respect to each other, and if output registers are used, the
INIT states must be opposite values (one HIGH and one
LOW). If 3-state registers are used, they must be initialized
to the same state. Failure to follow these rules leads to DRC
errors in the software.

VHDL Instantiation

data0_p: IOBUF_LVDS port map
(I=>data_out(0), T=>data_tri,
IO=>data_p(0), O=>data_int(0));

data0_inv: INV port map
(I=>data_out(0), O=>data_n_out(0));

data0_n : IOBUF_LVDS port map
(I=>data_n_out(0), T=>data_tri,
IO=>data_n(0), O=>open);

Verilog Instantiation

IOBUF_LVDS data0_p(.I(data_out[0]),
.T(data_tri), .IO(data_p[0]),
.O(data_int[0]);

INV data0_inv (.I(data_out[0],
.O(data_n_out[0]);

IOBUF_LVDS
data0_n(.I(data_n_out[0]),.T(data_tri),.
IO(data_n[0]).O());
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
48 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Location Constraints

All LVDS buffers must be explicitly placed on a device. For
the output buffers this can be done with the following con-
straint in the .ucf or .ncf file.

NET data_p<0> LOC = D28; # IO_L0P

NET data_n<0> LOC = B29; # IO_L0N

Synchronous vs. Asynchronous Bidirectional
Buffers

If the output side of the bidirectional buffers are synchro-
nous (registered in the IOB), then any IO_L#P|N pair can be
used. If the output side of the bidirectional buffers are asyn-
chronous (no output register), then they must use one of the
pairs that is a part of the asynchronous LVDS IOB group.
This applies for either the 3-state pin or the data out pin.

The LVDS pairs that can be used as asynchronous bidirec-
tional buffers are listed in the Virtex-E pinout tables. Some
pairs are marked as asynchronous capable for all devices in
that package, and others are marked as available only for
that device in the package. If the device size might change
at some point in the product’s lifetime, then only the com-
mon pairs for all packages should be used.

Adding Output and 3-State Registers

All LVDS buffers can have an output and input registers in
the IOB. The output registers must be in both the P-side and

N-side IOBs, the input register is only in the P-side. All the
normal IOB register options are available (FD, FDE, FDC,
FDCE, FDP, FDPE, FDR, FDRE, FDS, FDSE, LD, LDE,
LDC, LDCE, LDP, LDPE). The register elements can be
inferred or explicitly instantiated in the HDL code. Special
care must be taken to insure that the D pins of the registers
are inverted and that the INIT states of the registers are
opposite. The 3-state (T), 3-state clock enable (CE), clock
pin (C), output clock enable (CE), and set/reset (CLR/PRE
or S/R) pins must connect to the same source. Failure to do
this leads to a DRC error in the software.

The register elements can be packed in the IOB using the
IOB property to TRUE on the register or by using the “map
-pr [i|o|b]” where “i” is inputs only, “o” is outputs only and “b”
is both inputs and outputs. To improve design coding times
VHDL and Verilog synthesis macro libraries have been
developed to explicitly create these structures. The bidirec-
tional I/O library macros are listed in Table 44. The 3-state is
configured to be 3-stated at GSR and when the PRE,CLR,S
or R is asserted and shares its clock enable with the output
and input register. If this is not desirable then the library can
be updated be the user for the desired functionality. The I/O
and IOB inputs to the macros are the external net connec-
tions.
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 49

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Revision History
The following table shows the revision history for this document.

Table 44: Bidirectional I/O Library Macros

Name Inputs Bidirectional Outputs

IOBUFDS_FD_LVDS D, T, C IO, IOB Q

IOBUFDS_FDE_LVDS D, T, CE, C IO, IOB Q

IOBUFDS_FDC_LVDS D, T, C, CLR IO, IOB Q

IOBUFDS_FDCE_LVDS D, T, CE, C, CLR IO, IOB Q

IOBUFDS_FDP_LVDS D, T, C, PRE IO, IOB Q

IOBUFDS_FDPE_LVDS D, T, CE, C, PRE IO, IOB Q

IOBUFDS_FDR_LVDS D, T, C, R IO, IOB Q

IOBUFDS_FDRE_LVDS D, T, CE, C, R IO, IOB Q

IOBUFDS_FDS_LVDS D, T, C, S IO, IOB Q

IOBUFDS_FDSE_LVDS D, T, CE, C, S IO, IOB Q

IOBUFDS_LD_LVDS D, T, G IO, IOB Q

IOBUFDS_LDE_LVDS D, T, GE, G IO, IOB Q

IOBUFDS_LDC_LVDS D, T, G, CLR IO, IOB Q

IOBUFDS_LDCE_LVDS D, T, GE, G, CLR IO, IOB Q

IOBUFDS_LDP_LVDS D, T, G, PRE IO, IOB Q

IOBUFDS_LDPE_LVDS D, T, GE, G, PRE IO, IOB Q

Date Version Revision

12/7/99 1.0 Initial Xilinx release.

1/10/00 1.1 Re-released with spd.txt v. 1.18, FG860/900/1156 package information, and additional DLL,
Select RAM and SelectI/O information.

1/28/00 1.2 Added Delay Measurement Methodology table, updated SelectI/O section, Figures 30, 54,
& 55, text explaining Table 5, TBYP values, buffered Hex Line info, p. 8, I/O Timing
Measurement notes, notes for Tables 15, 16, and corrected F1156 pinout table footnote
references.

2/29/00 1.3 Updated pinout tables, VCC page 20, and corrected Figure 20.

5/23/00 1.4 Correction to table on p. 22.

7/10/00 1.5 • Numerous minor edits.
• Data sheet upgraded to Preliminary.
• Preview -8 numbers added to Virtex-E Electrical Characteristics tables.

8/1/00 1.6 • Reformatted entire document to follow new style guidelines.
• Changed speed grade values in tables on pages 35-37.
Module 2 of 4 www.xilinx.com DS022-2 (v2.1) April 19, 2001
50 1-800-255-7778 Preliminary Product Specification

http://www.xilinx.com

Virtex™-E 1.8 V Field Programmable Gate Arrays
R

Virtex-E Data Sheet
The Virtex-E Data Sheet contains the following modules:

• DS022-1, Virtex-E 1.8V FPGAs:
Introduction and Ordering Information (Module 1)

• DS022-2, Virtex-E 1.8V FPGAs:
Functional Description (Module 2)

• DS022-3, Virtex-E 1.8V FPGAs:
DC and Switching Characteristics (Module 3)

• DS022-4, Virtex-E 1.8V FPGAs:
Pinout Tables (Module 4)

9/20/00 1.7 • Min values added to Virtex-E Electrical Characteristics tables.
• XCV2600E and XCV3200E numbers added to Virtex-E Electrical Characteristics

tables (Module 3).
• Corrected user I/O count for XCV100E device in Table 1 (Module 1).
• Changed several pins to “No Connect in the XCV100E“ and removed duplicate VCCINT

pins in Table ~ (Module 4).
• Changed pin J10 to “No connect in XCV600E” in Table 74 (Module 4).
• Changed pin J30 to “VREF option only in the XCV600E” in Table 74 (Module 4).
• Corrected pair 18 in Table 75 (Module 4) to be “AO in the XCV1000E, XCV1600E“.

11/20/00 1.8 • Upgraded speed grade -8 numbers in Virtex-E Electrical Characteristics tables to
Preliminary.

• Updated minimums in Table 13 and added notes to Table 14.
• Added to note 2 to Absolute Maximum Ratings.
• Changed speed grade -8 numbers for TSHCKO32, TREG, TBCCS, and TICKOF.

• Changed all minimum hold times to –0.4 under Global Clock Set-Up and Hold for
LVTTL Standard, with DLL.

• Revised maximum TDLLPW in -6 speed grade for DLL Timing Parameters.

• Changed GCLK0 to BA22 for FG860 package in Table 46.

2/12/01 1.9 • Revised footnote for Table 14.
• Added numbers to Virtex-E Electrical Characteristics tables for XCV1000E and

XCV2000E devices.
• Updated Table 27 and Table 78 to include values for XCV400E and XCV600E devices.
• Revised Table 62 to include pinout information for the XCV400E and XCV600E devices

in the BG560 package.
• Updated footnotes 1 and 2 for Table 76 to include XCV2600E and XCV3200E devices.

4/02/01 2.0 • Updated numerous values in Virtex-E Switching Characteristics tables.
• Converted data sheet to modularized format. See the Virtex-E Data Sheet section.

4/19/01 2.1 • Modified Figure 30 "DLL Generation of 4x Clock in Virtex-E Devices."

Date Version Revision
DS022-2 (v2.1) April 19, 2001 www.xilinx.com Module 2 of 4
Preliminary Product Specification 1-800-255-7778 51

http://www.xilinx.com/partinfo/ds022-3.pdf
http://www.xilinx.com
http://www.xilinx.com/partinfo/ds022-4.pdf
http://www.xilinx.com/partinfo/ds022-1.pdf

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

Figure E.1 Custom-Built Xilinx FPGA Test Board

Figure E.2 Xlinx FPGA Test Setup

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

APPENDIX-G

REFERENCES
BOOKS
[1] Bluetooth Revealed  An Insider’s Guide to the Open Specification for Global

Wireless Communications, Brent A. Miller, Chatschick Bisdikian, Prentice-Hall Inc.,
2000.

[2] Digital Communications, 4th Ed., John G. Proakis, McGraw-Hill Inc., 2001.

[3] Digital Communications  Fundamentals and Applications, 2nd Ed., Bernard Sklar,
Prentice-Hall Inc., 2001.

[4] Communication Systems, 4thEd., Simon Haykin, John Wiley & Sons Inc., 2001.

[5] Modern Digital and Analog Communication Systems, B. P. Lathi, Oxford University
Press, 1998.

[6] Analog & Digital Communication Systems, 4thEd., Martin S. Roden, Prentice-Hall
Inc., 1995.

[7] Introduction to Communication Systems, 2nd Ed., Ferrel G. Stremler, Addison-
Wesley Publishing Company, 1990.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

[8] Communications Receivers  DSP, Software Radios, and Design, 3rd Ed., Ulrich
Rohde, Jerry Whitaker, McGraw-Hill Inc., 2001.

[9] RF and Microwave Circuit Design for Wireless Communications, Lawrence E.
Larson, Artech House Publishers, 1996.

 [10] Integrated Converters  D/A & A/D Architectures, Analysis & Simulation, Paul G.
A. Jespers, Oxford University Press, 2001.

[11 Analog Integrated Circuits, David Johns, Kenneth W. Martin, John Wiley & Sons
Inc., 1996.

[12] Analog-Digital ASICs  Circuit Techniques, Design Tools & Applications, R. Soin,
F. Maloberti, J. Franca, Peter Peregrinus Ltd., 1991.

[13] Discrete-Time Signal Processing, Alan V. Oppenheim, Ronald W. Schafer, John R.
Buck, Prentice-Hall Inc., 1999.

[14] Digital Signal Processing  Principles, Architectures, and Applications, John G.
Proakis, Dimitris G. Manolakis, Prentice-Hall, Inc., 1996.

[15] Digital Filters  Analysis, Design & Applications, Andreas Antoniou, McGraw-
Hill, Inc., 1993.

[16] Digital Signal Processing  A Practical Approach, Emmanuel C. Ifeachor, Barrie
W. Jervis, Addison-Wesley Longman Limited, 1993.

[17] DSP Integrated Circuits, Lars Wanhammar, Academic Press, 1999.

[18] VLSI Digital Signal Processing Systems, Keshab K. Parhi, John Wiley & Sons Inc.,
1999.

[19] The Designer's Guide to VHDL, Peter J. Ashenden, Morgan-Kaufmann Publishers
Inc., 1996.

[20] Analysis and Design of Digital Systems with VHDL, Allen Dewey, PWS Publishing
Company, 1997.

[21] System-on-a-Chip Design and Test, Rochit Rajsuman, Artech House, 2000.

[22] Digital Systems Testing and Testable Design, Miron Abramovici, Melvin A. Breuer,
Arthur D. Friedman, IEEE Press, 1993.

[23] Digital Circuit Testing & Testability, Parag K. Lala, Academic Press, 1995.

ARTICLES
[23a] Theory of Spread Spectrum Communications  A Tutorial, D. L. Schilling, L. B.

Milstein, R. L. Pickholtz, IEEE Transactions on Communication, vol. COM-30, May
1982.

[24] Digital Filter Sets for Frequency Shift Keyed Modems, A. P. Breen, C. C. Goodyear,
IEEE Proceedings, 1989.

[25] Design of Digital Discriminator Filters for Voiceband FSK Data Modems, C. C.
Goodyear, P. M. Hughes, M. Rahim, IEEE Proceedings, 1989.

[26] Applications of Distributed Arithmetic to Digital Signal Processing: A Tutorial
Review, Stanley A. White, IEEE ASSP Magazine,  July 1989.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

[27] An All-CMOS Architecture for a Low-Power, Frequency-Hopped 900 MHz, Spread
Spectrum Transceiver, Jonathan Min, Henry Samueli, Ahmad Reza Rofougaran,
Asad A. Abidi, IEEE Custom Integrated Circuits Conference, 1994.

[28] A Low-Power Baseband Receiver I.C. for Frequency-Hopped Spread Spectrum
Applications, Jonathan Min, Henry Samueli, Huan-Chang Liu, IEEE Custom
Integrated Circuits Conference, 1995.

[29] A Novel, Pure Digital Signal Processing, NonCoherent Receiver based on Filter
Bank Realization for Frequency Shift Keying, Tsai-Pao Lee, Kwang-Cheng Chen,
IEEE, 1995.

[30] Minimizing Power Consumption in Digital CMOS Circuits, Anantha P.
Chandrakasan & Robert W. Brodersen, Proceedings of the IEEE, April, 1995.

[31] FPGA-based Rapid Prototyping: An Overview, Helena Krupnova, Gabriele Saucier
(Institut National Polytechnique de Grenoble, France), Proceedings of BEC, 2000.

[32] Bluetooth’s Slow Dawn, Ron Schneiderman, IEEE Spectrum, 2000

[33] Bluetooth Radio Architectures, James P. K. Gilb, IEEE Radio Frequency Integrated
Circuits Symposium 2000.

[34] BlueCoreTM01 Single Chip Bluetooth System  Product Overview Data Sheet,
Cambridge Silicon Radio Ltd., UK, 2001.

[35] A Fully-Integrated Single-Chip SOC for Bluetooth, Frank Op't Eynde et al.(Alcatel
Microelectronics, Belgium & Turkey & TTP Communications, UK), IEEE
International Solid-State Circuits Conference, 2001.

[36] A 2.4 GHz CMOS Transceiver for Bluetooth, H. Darabi et al. (Broadcom
Corporation, USA), IEEE International Solid-State Circuits Conference, 2001.

[37] A 22mW Bluetooth RF Transceiver with Direct RF Modulation and On-Chip IF
Filtering, Norm Filliol et al. (Conexant Systems Inc., Canada & Theta
Microelectronics, Greece & University of Oulu, Finland), IEEE International Solid-
State Circuits Conference, 2001.

MANUALS
[38] Bluetooth Specification, Bluetooth Special Interest Group.

[39] MATLAB User Guide, MathWorks Inc., 2000

[40] Simulink User Guide, MathWorks Inc., 2000

[41] Communication Toolbox User Guide, MathWorks Inc., 2000

[42] Signal Processing Toolbox User Guide, MathWorks Inc., 2000

[43] Filter Design Toolbox User Guide, MathWorks Inc., 2000

[44] Communication Blockset User Guide, MathWorks Inc., 2000

[45] DSP Blockset User Guide, MathWorks Inc., 2000

[46] Fixed-Point Blockset User Guide, MathWorks Inc., 2000

[47] Xilinx Blockset Reference Guide, Xilinx Inc., 2000.

[48] Xilinx System Generator Quick Start Guide, Xilinx Inc., 2000.

DESIGN OF AN INTEGRATED GFSK DEMODULATOR FOR A BLUETOOTH RECEIVER

[49] Xilinx CORE Generator User Guide, Xilinx Inc., 1999.

[50] Xilinx LogiBLOX Guide, Xilinx Inc., 2000.

[51] Synopsys FPGA Compiler II/FPGA Express VHDL Reference Manual, Synopsys
Inc., 1999.

[52] Xilinx Design Manager/Flow Engine Guide, Xilinx Inc., 2000.

[53] Xilinx Chip Scope Guide, Xilinx Inc., 2000.

[54] Xilinx FPGA Editor Guide, Xilinx Inc., 2000.

[55] Xilinx Hardware Debugger Guide, Xilinx Inc., 2000.

[56] Xilinx Hardware User Guide, Xilinx Inc., 2000.

[57] Getting Started with the MultiLINX Cable, Application Note: HW-MultiLINX, Carl
Carmichael, XAPP168 (v 1.0), October 6, 1999

WEB SITES
[58] Bluetooth Website www.bluetooth.com

[59] Berkeley Design Technology Inc. Website www.bdti.com

[60] Synopsys Inc. Website www.synopsys.com

[61] Cadence Inc. Website www.cadence.com

[62] Mentor Graphics Inc. Website www.mentorgraphics.com

[63] Hewlett-Packard Inc. Website www.agilent.com

[64] Hyperception Inc. Website www.hypersignal.com

[65] Signalogic Inc. Website www.signalogic.com

[66] Elanix Inc. Website www.elanix.com

[67] Mathworks Inc. Website www.mathworks.com

[68] Xilinx Inc. Website www.xilinx.com

	Appendix.pdf
	SystemGenerator.pdf
	System Generator V1.1
	Introduction
	Features
	Functional Description
	Documentation
	Related Information
	Ordering Information

	AddSub.pdf
	Adder/Subtracter V4.0
	Features
	Functional Description
	Pinout
	CORE Generator Parameters
	Pipelined Operation
	Power On Conditions
	Parameter Values in the XCO File
	Core Resource Utilization
	Ordering Information

	Compare.pdf
	Comparator V4.0
	Features
	Functional Description
	Pinout
	CORE Generator Parameters
	Parameter Values in the XCO File
	Core Resource Utilization
	Ordering Information

	ds022-1.pdf
	Features
	Virtex-E Compared to Virtex Devices
	General Description
	Virtex-E Architecture
	Higher Performance

	Virtex-E Device/Package Combinations and Maximum I/O
	Virtex-E Ordering Information
	Revision History
	Virtex-E Data Sheet

	ds022-2.pdf
	Architectural Description
	Virtex-E Array
	Input/Output Block
	Input Path
	Output Path
	I/O Banking

	Configurable Logic Blocks
	Look-Up Tables
	Storage Elements
	Additional Logic
	Arithmetic Logic
	BUFTs
	Block SelectRAM

	Programmable Routing Matrix
	Local Routing
	General Purpose Routing
	I/O Routing
	Dedicated Routing
	Clock Routing

	Global Clock Distribution
	Digital Delay-Locked Loops

	Boundary Scan
	Instruction Set
	Data Registers
	Bit Sequence
	Identification Registers
	Including Boundary Scan in a Design

	Development System
	Design Implementation
	Design Verification

	Configuration
	Configuration Modes
	Slave Serial Mode
	Master Serial Mode
	SelectMAP Mode
	Write
	Abort

	Boundary-Scan Mode

	Configuration Sequence
	Delaying Configuration
	Start-Up Sequence

	Readback
	Design Considerations
	Using DLLs
	Introduction
	Library DLL Symbols
	BUFGDLL Pin Descriptions
	Source Clock Input — I
	Clock Output — O

	CLKDLL Primitive Pin Descriptions
	Source Clock Input — CLKIN
	Feedback Clock Input — CLKFB
	Reset Input — RST
	2x Clock Output — CLK2X
	Clock Divide Output — CLKDV
	1x Clock Outputs — CLK[0|90|180|270]
	Locked Output — LOCKED
	DLL Properties
	Duty Cycle Correction Property
	Clock Divide Property
	Startup Delay Property
	Virtex-E DLL Location Constraints

	Design Factors
	Input Clock
	Input Clock Changes
	Output Clocks

	Useful Application Examples
	Standard Usage
	Board Level De-skew of Multiple Non-Virtex-E Devices
	De-skew of Clock and Its 2x Multiple
	Virtex-E 4x Clock

	Using Block SelectRAM+ Features
	Operating Modes
	Read Through (one clock edge)
	Write Back (one clock edge)

	Block SelectRAM+ Characteristics
	Library Primitives
	Port Signals
	Clock—CLK[A|B]
	Enable—EN[A|B]
	Write Enable—WE[A|B]
	Reset—RST[A|B]
	Address Bus—ADDR[A|B]<#:0>
	Data In Bus—DI[A|B]<#:0>
	Data Output Bus—DO[A|B]<#:0>

	Inverting Control Pins
	Address Mapping
	Creating Larger RAM Structures
	Location Constraints
	Conflict Resolution
	Single Port Timing
	Dual Port Timing

	Initialization
	Initialization in VHDL and Synopsys
	Initialization in Verilog and Synopsys
	Design Examples
	Creating a 32-bit Single-Port RAM
	Creating Two Single-Port RAMs

	VHDL Initialization Example
	Block Memory Generation

	Verilog Initialization Example

	Using SelectI/O
	Introduction
	Fundamentals
	Overview of Supported I/O Standards
	LVTTL — Low-Voltage TTL
	LVCMOS2 — Low-Voltage CMOS for 2.5 Volts
	LVCMOS18 — 1.8 V Low Voltage CMOS
	PCI — Peripheral Component Interface
	GTL — Gunning Transceiver Logic Terminated
	GTL+ — Gunning Transceiver Logic Plus
	HSTL — High-Speed Transceiver Logic
	SSTL3 — Stub Series Terminated Logic for 3.3V
	SSTL2 — Stub Series Terminated Logic for 2.5V
	CTT — Center Tap Terminated
	AGP-2X — Advanced Graphics Port
	LVDS — Low Voltage Differential Signal
	BLVDS — Bus LVDS
	LVPECL — Low Voltage Positive Emitter Coupled Logic

	Library Symbols
	IBUF
	IBUFG
	OBUF
	OBUFT
	IOBUF

	SelectI/O Properties
	Input Delay Properties
	IOB Flip-Flop/Latch Property
	Location Constraints
	Output Slew Rate Property
	Output Drive Strength Property

	Design Considerations
	Reference Voltage (VREF) Pins
	Output Drive Source Voltage (VCCO) Pins
	Transmission Line Effects
	Termination Techniques
	Simultaneous Switching Guidelines

	Application Examples
	Termination Examples
	GTL
	GTL+

	HSTL
	SSTL3_I
	SSTL3_II
	SSTL2_I
	SSTL2_II
	CTT
	PCI33_3 & PCI66_3
	LVTTL
	LVCMOS2
	LVCMOS18
	AGP-2X
	LVDS
	LVPECL

	Termination Resistor Packs
	LVDS Design Guide
	Creating LVDS Global Clock Input Buffers
	HDL Instantiation
	VHDL Instantiation
	Verilog Instantiation

	Location constraints
	Optional N-side
	VHDL Instantiation
	Verilog Instantiation

	Location Constraints

	Creating LVDS Input Buffers
	HDL Instantiation
	VHDL Instantiation
	Verilog Instantiation

	Location Constraints
	Optional N-side
	VHDL Instantiation
	Verilog Instantiation

	Location Constraints
	Adding an Input Register

	Creating LVDS Output Buffers
	HDL Instantiation
	VHDL Instantiation
	Verilog Instantiation

	Location Constraints
	Synchronous vs. Asynchronous Outputs
	Adding an Output Register

	Creating LVDS Output 3-State Buffers
	HDL Instantiation
	VHDL Instantiation
	Verilog Instantiation

	Location Constraints
	Synchronous vs. Asynchronous 3-State Outputs
	Adding Output and 3-State Registers

	Creating a LVDS Bidirectional Buffer
	HDL Instantiation
	VHDL Instantiation
	Verilog Instantiation

	Location Constraints
	Synchronous vs. Asynchronous Bidirectional Buffers
	Adding Output and 3-State Registers

	Revision History
	Virtex-E Data Sheet

