
Semantic Querying with Ontologies

Saba Kashan Fallah

Kongens Lyngby 2007

IMM-M.Sc.-2007-89

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary

In this project the usage of syntactic-semantic lexical resources like FrameNet
combined with formal ontologies for the purpose of semantic interpretation of
domain specific text, is researched. Accurate ontology driven semantic interpre-
tation of natural language is only possible in terms of mappings based on reliable
linguistic semantics, that maps linguistic forms to ontological types. The novelty
of the method proposed in this report is to extend frame semantics with formal
domain specific ontological types, in order to achieve deep semantic interpre-
tation of text. The aim is deep semantic interpretation of scientific biomedical
text, which in contrast to shallow semantic interpretation is not based on lin-
guistic semantics only. Semantics of text is represented in terms of ontological
concepts/classes, and frame-based definitions/descriptors. The twofold seman-
tic representation provides not only mappings from text to nodes in ontological
hierarchies and reverse, but also a mapping from query descriptors to onto-
logical concepts and vice versa. Semantic annotations provided in the form of
descriptors are used in order to semantically search text, where descriptors of
user queries are matched against text-descriptors. Real ontological information
retrieval is implemented in terms of descriptor subsumption based on the onto-
logical hierarchies. Search based on the ontological hierarchy or input queries
or a combination of both is made possible. The ontological structures are in-
corporated in the system, not only as a collection of terms but true to their
nature as semantic networks. Methodologies and techniques for implementation
of the logical core of such a multi-dimensional system, is suggested along with
a proof-of-concept demo.

Key words: semantic interpretation, formal ontologies, frame semantics, ontol-
ogy driven information retrieval, frame-based grammar, ontological grammar,

ii

parsing techniques.

Resumé

I denne projekt, brugen af syntaktisk-semantisk leksikalske ressourcer s̊asom
FrameNet kombineret med formelle ontologier, med henblik p̊a semantisk for-
tolkning af domæne specifikke tekster, er undersøgt. Præcis ontologi baserede
semantiske fortolkninger af naturligt sprog er kun muligt, baseret p̊a afbild-
ninger (“mappings”) fra p̊alidelige lingvistisk baseret semantik, der overfører
lingvistiske mønstre til ontologiske typer. Det nyskabende ved metoden frem-
lagt i denne rapport, er at udvide frame-semantik med formelle domæne specifik
ontologi baseret semantiske typer, for at kunne opn̊a en dybtg̊aende semantik
fortolkning af tekst. Formålet er en dybtg̊aende semantisk fortolkning af vi-
denskabelige biomedicinske tekster, der i modsætning til en overfladisk seman-
tisk fortolkning, er ikke kun baseret p̊a lingvistisk semantik. Formel semantik
repræsenteret i form af ontologiske termer og frame baserede klasse definition-
er/beskriver er brugt til at repræsentere teksters semantik. Den dobbelt se-
mantiske repræsentation bidrager ikke alene med afbildninger fra tekst stykker
til knuder i ontologiske hierarkier og omvendt, men derimod ogs̊a med afbild-
ninger af forespørgsel beskriver til ontologiske koncepter og omvendt. Seman-
tiske annotationer i form af beskriver er brugt for at kunne søge tekst semantisk,
hvor beskriver af brugerens forespørgsler er forenet med beskriver fra tekster.
Søgninger baseret p̊a det ontologiske hierarki eller via forespørgsler, eller en
kombination af begge er blevet gjort muligt. De ontologiske strukturer er inkor-
poreret i systemet, hvor ontologier er ikke alene brugt som en samling af termer
men tro mod deres nature som semantiske netværker. Metodologier og teknikker
for implementering af den logiske kerne af s̊adan et multidimensional system er
blevet fors̊alet, samt med at en proof-of-concept demo er implementeret.

Nøgleord: semantisk fortolkning, formelle ontologier, frame-semantik, ontologi
baseret informations søgning, frame baseret grammatik, ontologisk grammatik,

iv

parsing teknikker.

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in fulfillment of the requirements for acquiring the M.Sc.
degree in engineering. It was prepared during spring and summer 2007 and has
been supervised by Professor Jørgen Fischer Nilsson.

The thesis deals with the topic of domain specific ontology-based semantic in-
terpretation of domain text, based on the notion of semantic frames. The main
focus is evaluation and demonstration of a semantic parser based on a ontolog-
ically constrained frame-based grammar.

I would like to thank everyone who has has help me with this thesis, especially
Jørgen Fischer Nilsson for his guidance and supervision. And I will further tank
my girlfriend and family for their support.

Lyngby, September 2007

Saba Kashan Fallah

vi

Contents

Summary i

Resumé iii

Preface v

1 Introduction 1

1.1 Semantic-interpretation and Semantic Frames 2

1.2 Formal Ontologies . 2

1.3 Ontology-driven Information Retrieval 3

1.4 Structuring of the Material . 4

2 Linguistic Theory and Formal Grammars 7

2.1 Formal Grammar . 7

2.2 Linguistic Properties and Notions 10

2.3 Co-occurrence Restrictions . 10

viii CONTENTS

3 Frame Semantics 15

3.1 Linguistic Semantics . 15

3.2 The Concept of Frame Semantics 16

3.3 Frame Networks and Relations 23

3.4 FrameNet . 24

4 Parsing 27

4.1 Parsing Strategies . 28

4.2 Bottom-up Parsing . 29

4.3 Top-down Depth-first Parsing . 32

4.4 Left-Corner Parsing . 34

4.5 Active Chart Parsing . 40

4.6 Earley’s Parsing Algorithm . 47

4.7 NLP using Tabled DCG . 48

5 Frame-Based Semantic Parsing 59

5.1 The System . 60

5.2 Underlying Ontology . 62

5.3 Ontology-Driven Frames . 65

5.4 Frame-based Syn-Sem grammar 71

5.5 Semantic Descriptors . 73

6 Implementation 81

6.1 Semantic Representations . 82

CONTENTS ix

6.2 Regulation Frames . 83

6.3 Transport Frames . 89

6.4 Linguistic-level Frames and the Ontology 90

6.5 GO Grammar . 92

6.6 Descriptor Implementation . 92

6.7 Strength and Weaknesses . 94

7 Conclusion 95

7.1 Discussion . 95

7.2 The way forward . 96

7.3 Final Remarks . 98

A Appendix A 101

A.1 Parsers . 101

A.2 Demo . 104

x CONTENTS

Chapter 1

Introduction

This project has been a study of ontology-based semantic interpretation of do-
main specific text, and how it can be used in ontology driven information re-
trieval. Semantic interpretations are based on the idea of frame semantics, which
is a method of describing meaning of linguistic expressions via structures called
frames. Frames, that model the semantic structures of events, are used in order
to analyze and represent meaning of text.

In order to facilitate ontology-based semantic interpretation, these frame struc-
tures must be constrained with ontological types. Since frames in domain
ontology-driven semantic interpretation, are supposed to describe events in the
considered domain of discourse, the frame-elements participating in these events
must satisfy conditions set with regard to their ontological types. This way of
constraining frames and their elements, is necessary in order to be able to de-
termine and verify the events modeled by frames, and expressed in linguistic
structures (text). Further frames extended with ontological type-constrains are
essential for being able to map linguistic expressions to corresponding, formally
defined compound concepts in domain ontologies.

In the following the concept of frame semantics is introduced in addition to an
introduction of formal ontologies and the way they are used in computer system
for e.g. the purpose of semantic interpretation. We will further introduce the
notion of ontology-driven information retrieval.

2 Introduction

A Brief introduction of frame semantics with regard to semantic interpretation is
introduced in Section 1.1. Section 1.2 introduces formal ontologies and their role
in computer systems. In Section 1.3 the concept of ontology-driven information
retrieval is elaborated on. An overview on how this document is structured, and
what to except from the content is given in Section 1.4.

1.1 Semantic-interpretation and Semantic Frames

Frame Semantics is a way of analyzing and describing meaning of natural lan-
guage. Semantics in natural language is the analysis of linguistic meaning,
based on the conventions of the language. Linguistic semantics is an account
of the syntactic-structures of the language and the corresponding semantic-
decomposition. I.e. it concerns with how the semantics is related to syntax.

Every linguistic expression is a reference to a situation or an event. Units in
semantic analysis are these events in relation with their constituents (entities
that participate in the events). The concept of frame semantics is concerned
with analysis and presentation of semantics of linguistic expression with respect
to certain underlying events. Structures called frames are used to specify events
and situations.

The concept of frame semantics is a linguistics approach to semantics, that is
based on empirical evidence in large collection of text. The idea is to extend this
linguistics founded semantic structures, with controlled vocabularies of formal
domain ontology, in order to be able to map form (text) to semantics (ontological
concepts). The motivation is in particular, to be able to recognize and analyze
natural language realizations (descriptions) of real life events and map them to
the corresponding ontological terms.

1.2 Formal Ontologies

Ontologies are included in computer systems with the purpose of modeling and
representation of domain knowledge in a structured computable format. The
formally structured knowledge in this way, can be used for reasoning, and for
generation, and querying of tacit information. These tacit information, that can
be induced are e.g. hierarchial relations between objects/entities or other kinds
of relational properties. This is in contrast to systems that are based on explicit
representations of knowledge.

1.3 Ontology-driven Information Retrieval 3

The concept of hierarchically classifying knowledge about a domain, is inspired
from philosophy, where philosophers for years have sought to categorize the
reality. The aim of using ontologies in information systems is not to give an
account of reality, but to represent a certain view on a domain (a particular
portion of reality), in a formal computer-readable format. Here in this project
a formal representation of the domain of biological processes in the form of an
ontology (Gene Ontology), lays the basis for a semantic parser.

Gene Ontology represents the shared conceptualization of bio-medical scientist,
consisting of a collection of concepts and axiomatized relations among these.
The vocabulary established by GO, represent how bio-medical science view and
express issues concerning biological processes. These terms represents objects
and phenomena that scientists believe exist. The ontology (as well as our sys-
tem) is committed to this vocabulary/terminology, used by scientist to describe
events in the field of bio-processes. The role of ontology in this sense is to
formalize this knowledge.

For the formalization a formal language like first-order logic is preferred, because
of the clear semantics and its deductive properties. Ontologies essentially are
hierarchical categorization of a set of entities that are related to each other in a
series of axiomatized relations. Axiomatized relations, means that the relations
are defined in terms of a rigorous formal language with clear semantics.

The backbone (skeleton) of each formal ontology is a taxonomy. Taxonomy is
the hierarchy established by categorizing entities with regard to their shared
properties. In order for any ontology based reasoning system to be consistent,
the considered ontology must be consistent itself. In particular the taxonomy of
the ontology must not contain any contradiction. Methodologies for eliminating
contradictions in ontologies are developed, one of which is OntoClean (see [?]
for more details). Consistent taxonomies are type hierarchies that are not only
used in semantic evaluation but also assist to meaningful semantic based search
and querying.

1.3 Ontology-driven Information Retrieval

Ontology-driven information retrieval is the idea of searching information in e.g.
text based on the semantics of the content. This is in contrast to conventional
key-word search which traditionally is based on occurrence of key-words in the
content and their distance.

The idea with ontology-driven or ontology assisted search, is to use the hierar-

4 Introduction

chically classified knowledge represented by ontologies in order to semantically
place information present in content. The content will be marked up (anno-
tated) in terms of contextual knowledge provided by the ontology. This method
of ontology-based semantic annotation provides a whole range of tacit informa-
tion, that are generalizations and specializations of information present in text;
or are contextually related to the information explicitly present in the content.

Concretely, the method consists of interpreting pieces of information in terms of
their place in classification hierarchies of ontologies, i.e. identifying the ontolog-
ical concepts corresponding to pieces of information. This is done by annotating
the semantics of the content via semantic structures that define the underlying
concept. This places the concepts of the content in the context established by
the ontologies.

Queries can be interpreted in the same way, and based on their place in the hier-
archy (ontology) matched with related concepts present in text. This basically
means that by placing information in ontological hierarchies we can answers
queries seeking some concept with more specific of general concept described i
text.

1.4 Structuring of the Material

Here follows an overview of this document. The subjects covered in each chapter
are briefly described.

Chapter 1 and 2 concern with the idea of frame semantics, and cover the linguis-
tics theories and phenomena that help us to understand, the concept and related
issues. Chapter 1 will start with an introduction of Context Free Grammars
(CFG) and some properties of natural languages that are not easily modeled by
CFG are accounted for. This is used as a starting point of a discursion on the
motivation for semantic frames. Chapter 2 will introduce the concept of frame
semantics in details. A long with introducing the pertaining terminology, con-
crete examples from the bio-medical domain has been considered in attempt to,
show what the real nature of frames are, and how they can be used in semantic
interpretation.

Chapter 4 is a full-scale study (tutorial) on different techniques of parsing. By
considering different techniques and implementing some of these in Prolog; and
covering a discussion on each technique’s weaknesses and strength; the attempt
has been to justify the choice of technology made for the implementation of a
small demo.

1.4 Structuring of the Material 5

Chapter 5 is a study on design of a semantic parser, based on frames extended
with formal ontologies. The systems and its properties in terms of requirements
and facilities are discussed, accompanied with an overview on the process of
identifying ontology based frames.

6 Introduction

Chapter 2

Linguistic Theory and Formal

Grammars

This chapter introduces the notion of generative grammars that is accompanied
with linguistic theories and notions. Knowledge of these notions will help un-
derstanding, the concepts of frames and frame semantics, which is key to the
method suggested in this project. Further it is crucial to understand these lin-
guistic notions in relation to formal grammars of natural languages, in order to
understand why lexical-resources like FrameNet are required in order to achieve
a sufficiently deep semantic interpretation.

We start by introducing formal grammar in Section 2.1.Section 2.2 covers some
linguistic notions that clarify interesting properties of natural language.

2.1 Formal Grammar

In the following the mathematical definition of a context-free grammar is given,
accompanied by corresponding terminology used in linguistics. An example of a
grammar is included which is a simple grammar of English. This simple English
grammar will set the stage for introducing some interesting linguistic properties.
Further we will discuss the notion of generative-grammar, that denotes the facts

8 Linguistic Theory and Formal Grammars

that formal grammars as formalizations, are used more extensively then just
analysis of syntax.

2.1.1 Context-Free Grammars

A Context-Free Grammar (CFG) recursively defines a language. Recursively de-
fines a language means that syntactical-categories in the grammar are defined in
terms of other syntactical-categories that are in return defined by others them-
selves. The language of a grammar is all acceptable strings of words (symbols)
that can be predicted by the grammar.

A context-free grammar is a formal system consisting of the following four
components:[11]

Terminals: a finite set of words (symbols) that any sentence of the language
is formed of. Correspondingly a sentence (string) of the language is a
sequence of these terminals. In the linguistic context terminals are referred
to as the lexicon where words are grouped into lexical categories (part of
speech classes) such as noun, verbs and adjectives.[10]

Nonterminals: a finite set of variables or syntactic-categories that each repre-
sent a phrase/structure-type in the language. In the linguistic context non-
terminals are referred to as phrasal categories or non-lexical categories.[10]

Start Symbol: is the variable (nonterminal) that defines all well-formed sen-
tences of the language. It is the entry-point of the language, that via
its sub-phrases(other nonterminals in the grammar) stipulates the valid
sentences of the language.

Production Rules: these are structures that recursively (via other nontermi-
nals) stipulate the valid patterns of a syntactic-category (phrasal-category).
A production-rule is a mathematical structure of the following form A→
ϕ, where A (a nonterminal) is the head or (as is preferred here) the left-
handside of the production rule and ϕ is the body or right-handside. The
head represents a valid structure that is defined by the body. The body
is a ordered set (a sequence) of terminals and nonterminals. Same nonter-
minal can be the head of a series of production rules that each define an
alternative for the syntactic pattern of the head.

The idea of using grammar to formalize a language is based on the notion of Con-
stituency. Constituency is concerned with how words group together to build
phrases that can in return be constituents of greater phrases. In the English

2.1 Formal Grammar 9

〈sent〉 →〈np〉〈vp〉
〈np〉 →(〈det〉) 〈nom〉
〈np〉 →〈adj 〉 〈np〉
〈nom〉 →〈noun〉
〈nom〉 →〈nom〉〈pp〉
〈vp〉 →〈verb〉〈pp〉
〈pp〉 →〈prep〉〈np〉
〈verb〉 →forces
〈noun〉→regulation|storage|glucose|cells
〈prep〉 →of|in
〈adj 〉 →liver

Table 2.1: Simple English Grammar

grammar of Table 2.1, every acceptable English sentence has two constituents a
noun-phrase followed by verb-phrase, and each of the constituents are defined in
terms of their own constituents (sub-phrases). Further the lexical parts of the
grammar (lexical-categories) consists of nouns, verbs and preps (prepositions).
The grammar is not complete due to the limitations of the attached lexicon
and due to deficiencies in terms of rules handling e.g. subject-verb agreement
restrictions and other restrictions in general. Additionally it is a fact that the
grammar over-generates, i.e. it generates inacceptable English sentence as well
as acceptable sentences.[10]

With the notion of CFG in place we can turn our focus on the more general
term of generative-grammars. The term Generative-grammar refers to recur-
sive formalizations similar to CFG, but is more general then the notion of CFG.
The term generative-grammar is preferred over CFG, as generative-ness and
rule-based characteristics of grammars, as formalizations are used extensively
in e.g. semantic-parsers or other NLP(Natural Language Processing) systems.
Generative-grammars can be formal systems of rules that e.g. stipulate the
correct syntactic structures and the corresponding semantics of phrases in a
language; or stipulate relations among terms in a controlled vocabulary (termi-
nology established by an ontology). Generally the notion generative-grammar
emphasizes the fact that a formal grammar of a language not only determines
the well-formedness of a language but also can be used to generate deduce con-
sistent data.[10]

10 Linguistic Theory and Formal Grammars

2.2 Linguistic Properties and Notions

In this section some linguistic notions are briefly introduced. In particular the
notion of headed phrases and the related notions of valence are explained. These
notions express linguistic properties that are semantically significant. I.e. no
semantic analysis without attention to these properties will be sound. In our
attempt to introduce these, we will start by looking at some simple restrictions
on patterns of syntactic structures. Further attribute-value pair matrices called
Feature-Structures (FS) are used in order to represent the material.

2.3 Co-occurrence Restrictions

Co-occurrence restrictions sanction what words can go together. Co-occurrence
comprise consist among others of transitivity and agreement. Transitivity is
important for us, since it is semantically dependent. An examples illustrating
this point is included below. The first sentence (1) is not a valid sentence since,
the verb force is transitive, i.e. it must be followed by a noun-phrase. The
transitiveness of the verb is in accordance to its meaning here, which is causing
something. Second sentence on the other hand does not violate the transitivity
restriction of the verb force, and is a meaningful acceptable English sentence.

1. *Insulin forces.
2. Insulin forces storage of glucose.

In the following we will use FS notation in order to introduce linguistic phe-
nomena like transitivity and agreement etc. Feature-structures are used in order
to represent syntactic and semantic information of lexical-entries (words). Sim-
ilarities (parallelism) in structures of different phrase-types are generalized in
FS-extended grammars like in Table 2.2.

Table 2.2 contains a set of FS-extended rules that handel the issues of transi-
tivity and agreement. Considering the three last rules b,c and d (in Table 2.2),
transitivity is stipulated by the patterns on righthand-sides, and in terms of the
values of the feature VAL (abbreviation of valence) of the left-most constituent.
Agreement which is concerned primarily with subject-object agreement is par-
tially covered in the rules by identity of the NUM feature values.

FS-extended grammatical rules of the kind included in Table 2.2 are based on
the unification operation FS.(See [10] for more details on unification.)

2.3 Co-occurrence Restrictions 11

a.

S→

phrase

POS noun

NUM 1

phrase

POS verb

NUM 1

b.

phrase

POS 1

NUM 2

→

word

POS 1

NUM 2

VAL itr

c.

phrase

POS 1

NUM 2

→

word

POS 1

NUM 2

VAL tr

NP

d.

phrase

POS 1

NUM 2

→

word

POS 1

NUM 2

VAL dtr

NP NP

Table 2.2: Rules covering Transitivity and Agreement
[10]

12 Linguistic Theory and Formal Grammars

b.
[

phrase
]

→ H

[

word

VAL itr

]

c.
[

phrase
]

→ H

[

word

VAL tr

]

NP

d.
[

phrase
]

→ H

[

word

VAL dtr

]

NP NP

Table 2.3: Head Rules
[10]

2.3.1 Headed Phrases and Valence

In order to understand co-occurrence restriction properties in general and va-
lence in particular, we have to consider the notion of headed phrases.

The notion of head is a way of indicating the fundamental relation a phrasal-
category has to one of its lexical-constituent. The structures of phrasal-categories
(e.g. NP or VP) dependent on the syntactic and semantic properties of one of
their lexical constituents, namely the head. Syntactic patterns and the corre-
sponding semantics of headed phrases are determined by their lexical heads.
This is expressed by the head-feature principle that follows below.

Head-Feature Principle:
Any headed-phrase inherits the features of its lexical head.[10]

In English, phrasal-categories are mostly governed or headed, by their left-most
lexical constituents.[10] The grammatical rules of Table 2.2 show how the heads
- the left-most constituents - dictate the features and structure of the phrases,
in terms of transitivity and agreement. With this in mind and the head-feature
principle at disposal, the three last rules (a),(b) and (c) from Table 2.2 can be
generalized to the rules in Table 2.3.

We will now take a look at the more relevant notions of valence and complement.
Complement is the term used for phrase-types that may occur after a head, in a
headed-phrase structure.Valence is the combinatory possibilities or sanctioned
patterns of the complements.[10] A phrase usually consists of the head and the
heads complements. This is what formally is expressed below as the head-
complement rule.

2.3 Co-occurrence Restrictions 13

Head-Complement Rule:

phrase

COMPS
〈 〉

→H

word

COMPS
〈

1 ... n

〉

1 ... n

Since valences of verbs mostly dependent on the verbs’ semantics, and vice versa;
the notions of valence and head-ness are very important in semantic analysis
of linguistic expressions in general, and for frame-based semantic-parsing in
particular. In frame-based semantic processing the underlying grammar is based
on case-based rules that express valence patterns of words, mostly verbs. Lexical
resources like FrameNet consist mainly of valence patterns for words in English.
But valence patterns included in e.g. FrameNet comprise more than just the
complements of the words they also include e.g. specifier along with the head
and complements.

There are co-occurrence restriction concerning what may co-occur with a word
positioned before the word. Specifiers are words that may come before a e.g.
verb in a sentence. Specifiers restrictions are concerned with non-complement
co-occurrence. The most common examples of specifiers are subjects of verbs
and determiners of nouns. The rule below expresses specifier constrain of
phrases.

Head-Specifier Rule:

phrase

SPR
〈〉

→ 1 H

word

SPR
〈

1

〉

Complete valence-patterns of verbs (in e.g. FrameNet) convey information on
the specifier constraints of the verb along with lists of its complements. An
example of such valence-pattern for the verb is given below.

〈

force,

HEAD verb

SPR

〈

[

HEAD
[

noun
]

]

〉

COMPS

〈[

phrase

HEAD noun

]〉

〉

Figure 2.1 illustrate head-complement and head-specifier rules in action, with

14 Linguistic Theory and Formal Grammars

regard to a verb-phrase headed by the verb force.

phrase

HEAD verb

SPR
〈 〉

COMPS
〈 〉

phrase

HEAD verb

SPR
〈

1

〉

COMPS
〈

2

〉

2 NP

storage of glucose

forces

1 NP

insulin

Figure 2.1: Valence Dictated by the Lexical-entry force

With these linguistic notions describing some interesting properties of natural
languages, we would be better equipped for a realistic semantic analysis. What
we have to realize from this is that linguistic properties are not easily modeled
by CFG; and that a realistic formalization of natural languages are case-based;
i.e. based on words that head or govern phrasal-structures. Further note that
with among others HFP in place natural languages can still be formalized with
general grammars that rely on lexicons. These lexicons present syntactic and
the corresponding semantic properties of words in a consistent format like e.g.
FS. Such a lexicon is e.g. FrameNet.[4]

Chapter 3

Frame Semantics

In this chapter the notion of semantic frames will be introduced. First linguistic
semantics in general is introduced; then the concept of frame semantics as se-
mantic structures, used with the aim of determining and representing meaning in
natural language, is presented. This lays the basis for understanding the notion
of frames, and why and how they are used in semantic parsing (interpretation).

Section 3.1 is a brief introduction of linguistic semantics. In section 3.2 the con-
cept of semantic frames is introduced accompanied by the notions of semantic-
roles, lexical-units, valence and valence-patterns which are illustrated by exam-
ples. In section 3.3 relations among frames and elements of these are explained.
Section 3.4 is a brief description on the FrameNet project.

3.1 Linguistic Semantics

The study of semantics with respect to natural languages is concerned with the
semantics of the individual words and how these combine to build the semantics
of phrases. I.e. semantics of a phrase is decomposed into the semantics of its
constituents.

Linguistic propositional meaning, is about structures for representing linguis-

16 Frame Semantics

tic meaning of words and establishing constraints (conditions) that predict
semantics of phrases in terms of semantic contributions of their immediate
constituents.[10] Below the constraints/conditions that predict the semantics
of the proposition “insulin forces storage of glucose” are listed.

event(CAUSATION)
event-participators(AGENT(a),EFFECT(e))
scene(AGENT(insulin) causes EFFECT(storage of glucose))

The verb force establishes/predicts a causes relation between insulin and “stor-
age of glucose”; insulin takes the role of an agent and “storage of glucose” the
role of the effect. The scene describes the general situation where a certain
agent causes an effect. These all together represent a causation event.

3.2 The Concept of Frame Semantics

Frame Semantics is a way of analyzing and describing meaning of natural lan-
guage. Semantics in natural language is the analysis of linguistic meaning based
on the conventions of the language. I.e. linguistic semantics is an account of
the syntactic structures and the corresponding semantics of these.

Every linguistic expression is a reference to a situation or an event.[10] The
focus of semantic analysis is on these events and the pertaining relations with
their elements (entities that participate in the events). The concept of frame
semantics is concerned with analysis and presentation of semantics of linguistic
expressions with respect to underlying abstract events. Structures called frames
are used to specify events/situations.

A frame is a structure consisting of a series of relations that link concepts
(ontological-classes) to the frame, in order to constitute more complex concept
denoted by the frame. A frame-structure is a way of representing an real event.

Prior to introducing frames and frame-annotation consider the semantic-structure
illustrated in Figure 3.1. It is a network consisting of entities and relations
among them. This semantic-structure depicts the event of “insulin causing stor-
age of glucose in liver-cells”. Each relation (edge in the graph) denotes the role
played by an participating entity (entity involved in the event). While insulin is
the actor that participates (has a leading part) in the cause of the event, insulin-
stimulus in the organism is the actual cause of the event; storage-of-glucose is
the effect of the event while liver-cells are the effected entities.

3.2 The Concept of Frame Semantics 17

Figure 3.1: Semantic Structure of Causation Event

While a semantic structure as in Figure 3.1 is general in its outlook on the event
and specifies all constituents (participating entities with respect to their roles)
frame annotations can be more restricted in their outlook and only partially
specify the event.

What is the nature of frame specifications, and how frame specifications are to
be represented, is relevant for our understanding of frames. By taking up the
discussion, we would emphasize on how frames are used to represent meaning of
linguistic structures, based on the outlook a certain governing word (e.g. verbs)
has on the underlying event. I.e. we want to emphasize here, that the way
meaning is represented via frames depends on the frame-evoking word, i.e. the
head of the phrase which represents the linguistic realization of the event.

Denoting the same Causation Event of Figure 3.1 is possible in terms of a
first-order logic predicate. (3.1) is a predicate representing the causation event.
Each position in the predicate (3.1) represents a role in the event, which is
played by the argument. A more detailed representation of the causation-event
is represented by (3.2), where each role is represented by a functor-term. These
are examples of general predictions. But the key point here is that, different
words with the same underlying meaning represented by a frame, have different
predictions.

causation(insulin, insulin stimulus, storage of glucose, liver cells) (3.1)

causation(actor(insulin), cause(insulin stimulus),

effect(storage of glucose), effected(liver cells)) (3.2)

The idea of Frame Semantics (like first-order predicates with variables as ar-
guments) is to denote the abstract structure of e.g. causation events. Frames
(and frame-based annotation) can be represented by predicates but semantic-
structures (as in 3.1) are more suitable. This is due to the fact that frames are

18 Frame Semantics

thought as abstract structures representing the underlying meanings of linguis-
tic (natural language) expressions. Since events can be described in different
ways and looked at from different outlooks, annotations and the underlying
abstraction can have different forms and combinations.

Semantic annotation of an expression depending on the evoking word, can e.g.
be a structure like (3.3). (3.4) is frame-based semantic annotation of a different
expression with a different evoking word, but with the same underlying frame
as in (3.3). Essentially different combinatory possibilities comes about when
different words and the corresponding sentences present different outlook on
the same event.

[Actorinsulin]forces[Effectstorage of glucose][Effectedliver-cells] (3.3)

[Causeinsulin-stimulus response]causes[Effectstorage of glucose][Effectedliver-cells]
(3.4)

Frame specification is equivalent to feature-structures descriptions, used by lin-
guists to give an account of valence and agreement of phrases and semantics as
we saw in the previous chapter.

3.2.1 Semantic-Roles or Frame-Elements

A frame from our perspective is a structure for annotation and representation
of linguistic appearances of events in text. A frame represents the semantical
structure of an event, in terms of participators of the event by means of frame-
elements.

Frames are compound-concepts describing abstract events. Semantic-roles are
constitutes of these compound-concepts. Semantic-roles denote the role played
by an entity participating in a particular event. A semantic role is understood
in the context of the abstract event represented by the frame; similarly a frame
is defined and understood by means of its elements, i.e. the corresponding
semantic roles. Frame-elements represent the semantic-roles of an event denoted
by a frame.

Table 3.1 is the definition of Causation frame accompanied by definitions of the
pertaining frame-elements.

In order to illustrate the concept of semantic-roles a biological event is con-
sidered. Responsive-events are biological processes (or functions) caused by a
certain stimulus, e.g. insulin-stimulus in. Table 3.2 shows the term and defini-
tion of a concept from OBO.GO-ontology, which represent a biological-process

3.2 The Concept of Frame Semantics 19

Frame Frame Definition
Causation A Cause causes an Effect. Alternatively, an Actor, a

participant of a (implicit) Cause, may stand in for the
Cause.

Frame-element Frame-element Definition
Actor An entity which participates in a Cause.
Cause An animate or inanimate entity, a force, or event that

produces an effect.
Effect A positive or negative evaluation of the Phenomenon.
Effected Agents in a joint or reciprocal action.

Table 3.1: Causation Frame
[4]

Concept-term insulin-responsive hydrogen:glucose symporter activity
Definition Catalysis of the transfer of a solute or solutes from one

side of a membrane to the other according to the reac-
tion: glucose + H+ = glucose + H+, in response to a
stimulus by insulin.

Table 3.2: Insulin-Responsive Event
[5]

caused by insulin-stimulus. In the following the event described in the Table 3.2
will be referred to as insulin-responsive event.

The insulin-responsive event is analyzed here within the general (not biological
domain specific) causation-frame. Within causation-frame Actor(see Table 3.1)
represent the role played by an entity in the Cause of an event. Insulin partici-
pates in the event, that causes the considered insulin-responsive event, namely
the event of insulin-stimulus. In insulin-response the Cause of the event is the
insulin stimulus-event. The Effect of the event in alignment with causation
frame is the transfer of glucose through the membrane of a cell. The Effected
entities are the cells which states are changed as an result of the event.1

1In coming chapters we would continue with the example of “insulin forces storage of

glucose in liver cells”; but we will not identify “liver cells” as the effected entities. This is
due to the fact that the valence underlying the considered interpretations identifies the sub-
phrase “storage of glucose in liver-cell” as the effect of the causation event. Other valences
underlying the semantical analysis might result in interpretation like the one above.

20 Frame Semantics

3.2.2 Word Meanings and Lexical-units

A Lexical-unit is a pairing of a word with a frame, which represents the meaning
of the word. A word (a lemma in lexicography) evokes a frame if it is a lexical-
unit, i.e. paired with the frame. Frame-element realizations are the syntactic
dependents of the frame-evoking words. Usually the frame-evoking words are
verbs of a and FEs realizations are syntactic dependents of the verbs. Syntactic
dependent are complements and specifiers (see ??).

A word essentially evokes a frame if the meaning of the word is assumed to
be captured by the frame. Below two sentences - (3.5) and (3.6), describing
the same event, namely the causation-event depicted by Figure 3.1 are given; a
similar causation-event within the same context of cellular actions of insulin is
given as well(3.7).2

Insulin forces storage of glucose in liver cells. (3.5)

Insulin-stimulus responsecauses storage of glucose. (3.6)

Reduction of glucose-content in blood isbrought about

by insulin-stimulus response. (3.7)

A word can have different lexical-units with respect to different meanings of
the word. Different lexical-units have different syntactical and correspondingly
semantical patterns and combinatory possibilities. Considering a sentence gov-
erned by a frame-evoking word (in FrameNet jargon referred to as the Target)
makes the word (as mentioned before) a predicator that takes the word’s syntac-
tical dependents as arguments. E.g with respect to (3.5) force, is the predicator
that determines how the syntactical dependents are semantically interpreted.
I.e. insulin as the Actor, “storage of glucose” as the Effect and liver-cells as the
Effected entities, in accordance with causation frame that is evoked by force.v.3

2The sentence(3.5) is an example from a Wikipedia-article on Insulin [6]; (3.6) and (3.7)
are constructed sentences based on valence-patterns of cause.v and bring about.v lexical-units
of causation-frame.[4]

3The verb force is actually not a lexical-unit of causation-frame in FrameNet; the as-
sumption made here that it is a lexical-unit, is supported be lexical-data from VerbNet and
WordNet. These are as follows:

VerbNet: Verb-class force-59 some members: coerce,pressure,induce,lead

WordNet-2.1: force.v Sense 1: coerce,pressure,force (cause to do through pressure of neces-
sity)
Due to the hypernymy which is generalization/Is A -relation in WordNet, the following
synonym-set is the hypernym of the sense-1 of force.v induce, stimulate, cause, have,
get, make (cause to do; cause to act in a certain manner)

3.2 The Concept of Frame Semantics 21

SR-layer Actor target Effect Effected
PT-layer NP V[force] NP PP[in]

ST-layer +substance
-glucose

none +process
-regulation

+substance
-insulin

Table 3.3: A Valence-pattern of the LU force.v

3.2.3 Frame Valence

Each lexical-unit has different syntactic realizations of its frame-element. Va-
lence is the relation between acceptable syntactic patterns headed or governed by
a word, and the corresponding combination of semantic-roles. Valence basically
determines the semantic-roles of each dependent. Different syntactic patterns
has different meanings.

FrameNet project is an attempt of giving an comprehensive account of valence
patterns of words in English. Valence in terms of syntactical co-occurrence
possibilities of words were introduced in previous charter; but valence is closely
related to semantics, and semantics of a phrase is in return determined by the
syntactical structure comprising the phrase’s valence.[10] I.e. semantic of a
phrase is the semantical structure with constituents corresponding to syntactic
dependents of the phrase’s head-word.

The reason to use frames is, because generative grammars of English, does not
provide the relation between valid syntactic patterns and the corresponding
semantic realizations, with respect to a specific underlying meaning (frame se-
mantics). Syntactic and semantic combinatory possibilities for each lexical-unit
provide a comprehensive mapping from form to meaning.

The basic aim with FrameNet is to account for the range of all acceptable syntac-
tic constructions with respect to an intended meaning (frame) and a target-word
(frame-evoking word). Not all syntactical valid constructions are allowable in
English depending on the target-word. But an even more convincing reason
for considering frames as a means of natural-language processing and semantic
interpretation, is that not all allowable syntactical constructions can be realiza-
tions of acceptable (or desirable) semantic-interpretation.

Valence patterns are essentially the rules that constitute the grammar of our
semantic parser. In order to understand valence better an example is consider
here; and the structure of valence-patterns is explained with help of the valence-
pattern illustrated here. Table 3.2.3 shows one valence-pattern of the LU force.v
with respect to the causation meaning of the word. Valence patterns are struc-
tures in four-layer. The first layer is the semantic-role layer (SR-layer) which

22 Frame Semantics

S

VP

PP

NP

N

liver-cells

P

in

NP

PP

NP

N

glucose

P

of

NP

N

storage

V

forces

NP

N

insulin

Causation

Effected

PP

NP

N

liver-cells

P

in

Effect

NP

PP

NP

N

glucose

P

of

NP

N

storage

Target

V

forces

Actor

NP

N

insulin

Figure 3.2: English and Frame ParseTrees of sentence (3.5)

consists of a combination of some the frame-elements and the target-word. The
second layer is the phrase-type layer (PT-layer) which is a combination of phrase-
types (phrasal categories); these are the dependents (complements and specifier)
of the target word and are the syntactical realizations of the frame-elements.
The third layer is the grammatical-function layer which is the pattern consisting
of the grammatical-functions such as object, subject etc. In domain specific (or
deep semantic-interpretation) a fourth layer which is semantic-type layer (ST-
layer) is very important. The semantic-type layer consists of the ontological-
types (concepts) of the given constituents. The grammatical-function layer is of
no interest, since it does not contribute significantly to the semantics. Therefore
it is omitted in Table .

3.2 the shows the ordinary, and the corresponding frame-based parsing of the
sentence ‘‘insulin forces storage of glucose in liver-cells”. This illustrates how
parsing based on grammars consisting of valence-patterns, can directly yield
semantic annotation of the parsed text.

3.2.4 Semantic Constraints

While the first two layers (semantic-role and phrase-type layers) are part of the
parse-trees, the semantic-type layer is part of semantic evaluation/verification.

3.3 Frame Networks and Relations 23

I.e. any realizations of frame represented by the valence should satisfy all the
semantic constraints of this layer.

As we will see these semantic constraints are to be imposed, by means of formal
ontologies in order to provide deep semantic evaluation. Above in Table 3.2.3
the semantic constraints, constituted the semantic-type layer of the valence-
patterns. Of particular interest is what type a frame-element filler can be and
what it can not be.4

3.3 Frame Networks and Relations

Frame-to-frame relations are introduced in order to express relations among
frames. Frames are related in several way. The most important relations are
relations considering generalization (inheritance- and uses- relations).

3.3.1 Frame-to-Frame Relations

There are three important frame-to-frame relation that are briefly described
below.

Inheritance: A frame A fully inherits frame B if B has all FEs of A. FEs of B
may have different names and semantic-types that are derived (subtypes)
from FEs of A.[2]

Uses: A frame uses another frame when not all frame inheritance-relations of
the frame-elements are made explicit (not-full inheritance). The relation
expresses generalization similar to inheritance.[2]

Subframe: A frame A is a subframe of frame B, when B represent a compound
event consisting of more than one event, one of which is represented by
A.[2]

When for each FE in a parent-frame (inherited frame) there is a corresponding
FE in the child-frame (the inheriting frame) there is a full-inheritance relation
among the frames.[2]

Figure 3.3 shows the relations between Eventive-affecting-frame and Causation-
frame and transfer. While the relation among eventive-affecting and causation

4This is in accordance with how semantic constraints are defined in VerbNet.

24 Frame Semantics

Figure 3.3: Eventive-affecting Inherited by Causation, Used by Transfer

is that of full-inheritance, transfer only uses eventive-affecting to indicate the
mere generalization-relation among these two.

3.3.2 Frame-Element Relations

As briefly explain in 3.3.1 frame-inheritance requires that FEs of the inheriting-
frame have either same semantic-type as the inherited-frame or the types of the
FEs (of inheriting-frame) are subtypes of the inherited-frame. When this is the
case the relation among the FEs are monotonic.[2]

We are not going to use frame-relation for automated reasoning of any form;
but being aware of relations among frame helps when the right specializations of
one frame are chosen to represent the semantics of a concept in more specialized
way, then it would be with the super-frame. (See 5.3.3 for an example on this)

3.4 FrameNet

Purpose of Berkeley FrameNet project is essentially to give an account of valence-
patterns for each lexical-units,that are identified in English. This is not an com-
plete account firstly because the project is not completed, secondly because only

3.4 FrameNet 25

recognized lexical-units within the used collection of text are accounted for.

The starting point for identification of each lexical-unit is a frame. This means
that neither all lexical-units for e.g. a certain verb are identified, nor all lexical-
units for a frame are accounted for. As an evidence of this there are examples of
synonymous or nearly synonymous words, by other lexical-resources that are not
recognized in FrameNet (e.g. cause and force). While the verb force is paired
with Cause-Motion-frame it is not paired with the more general Causation-
frame.

26 Frame Semantics

Chapter 4

Parsing

This chapter is a tutorial on parsing and issues related to parsing. Different
strategies and the related algorithms, that make use of these strategies will be
studied. Prolog implementations of some of these algorithms is included to help
the discussion since the rigorous semantics of Prolog, is assumed to be clear for
the reader.

The relevance of the algorithms studied here must not be regarded restrict-
edly with respect to the actual implementation. The implementation technique
chosen for the system is a DCG-based implementation, that uses the tabling-
feature of XSB-Prolog. This makes the underlying parsing technique similar to
an active chart parser, a variant of Earley’s algorithm.[14] The study of parsing
techniques documented in this chapter, is a reflection of the process the project
went through before the choice of technology was made. This should be regarded
as an attempt to justify the choice. The hope is to establish the ground for an
appreciation of the technology (tabled DCG) used for the implementation.

First in Section 4.1 we will look at different dimensions and principles in pars-
ing. In Section 4.2 we will be considering principles of bottom-up parsing; and
in Section 4.3 we will look at recursive descendent (top-down) parsing. In Sec-
tion 4.4 left-corner parsing is considered. Section 4.5 explains the principles of
active-chart parsing; and in Section 4.6 we look at Earley’s parsing algorithm
which is an active-chart parser variant. Finally at Section 4.7 we will be ex-

28 Parsing

plaining the technology used for the implementation; we show how DCG-based
systems can be extended with attributes in order to evaluate semantics.

4.1 Parsing Strategies

With respect to the aim of implementing a domain specific semantic parser,
there are some eminent issues to be addressed with relation to the different ways
parsing is conducted. Concerning the bigger problem (bigger than pure parsing
issues) with regard to the choice of technique for the implementation, it must
be considered here that not only efficiency and left-recursion (typical parsing
issues) are important, but also having a natural way (notation) of expressing
semantics of parse-trees with regard to attribution of grammatical categories is
desirable as well. The latter is with regard to difficulties of e.g. implementing
an attribute extended parser.

To be able to understand difficulties pertaining to the implementation of a se-
mantic parser (issues concerning parsing as well as semantic evaluation), it is
preferred to start with the three main dimensions (or principles) in parsing,
which stipulate the basic conditions for any parsing technique. Explanations of
the different techniques, differing from each other with respect to these dimen-
sions, and principles they uphold, are given afterwards in the following sections.

4.1.1 Dimensions and Principles in Parsing

The core task of parsing (recognition) is to determine whether a string of words
is a well-formed sentence of a language or not. In order to accomplish this
task several parsing strategies can be considered. Parsing strategies basically
evolve around three dimensions. The parsing strategies and the corresponding
algorithms that adhere to the principles of these strategies are differentiated with
regard to the position they take on these three dimensions. These dimensions
are shortly introduced here, but are comprehensively illustrated through the
introductions of the different approaches to parsing in the following sections.

Goal or Data driven: this dimension concerns with the direction of the pars-
ing process. The goal-driven approach is taken when wellformed-ness of an
input string is determined by setting the goal of deriving the input string
from the grammar rules. Starting off with on of the production rules of the
start-symbol S, the attempt is to recursively derive matching sub-strings

4.2 Bottom-up Parsing 29

of the constituents (of S) that combined together in accordance to the pro-
duction rule- corresponding Right-Hand Side(RHS)- will match the input
string. The data-driven principle is pursued when wellformed-ness is de-
termined by incrementally building constituents. The process starts with
the words in the input string and ends with a combination of constituents
that matches at least one of the structural patterns of start-symbol(one of
the RHSs of S).

Derivation or Phrase-buildup Direction: this dimension reflects the way
production rules are used. More precisely this dimension concerns, in what
direction strings of symbols (terminals and non-terminals) are matched
against rules. I.e. whether based on the RHS of a rule - it can be based on
the left-most constituent or whole of the RHS - the Left-Hand Side(LHS)
is determined, or whether by selecting the LHS of a rule a commitment to
the corresponding constituents is made.

Handling Non-determinism: this dimension is concerned with the way deriva-
tion or matching is handled with regard to possible alternatives. This di-
mension essentially concerns whether only one matching or derivation is
pursued all the way until it fails (or succeeds), or several possible matches
and derivations are pursued simultaneously. The first approach results in
a depth-first search that e.g. - in the case of top-down parsing - recursively
drives one constituent at a time, by trying one production rule at a time.
The latter approach results in a breath-first that at each step can pursue
all the different alternatives simultaneously.

4.2 Bottom-up Parsing

Generally when a data-driven or bottom-up approach is pursued, constituents
are built starting at the level of words. Matching the words against RHSs of
grammar rules lexical-categories are determined their; and these will incremen-
tally be combine into bigger constituents. The process is essentially a series
of steps, and at each step results from previous steps are combined to build
bigger categories. At each step, if the pattern of a sub-string of the symbols at
hand matches the pattern of a rule’s RHS, the parsing process will arrive at the
next state where the newly recognized LHS symbol has replaced the matching
substring. This newly recognized symbol will respectively combine with other
symbols to constitute even bigger constituents in coming steps. This incremen-
tal approach will finally lead to the built-up of the start-symbol’s constituents,
and at the very end to the built-up of the start-symbol itself. Further it is
of interest here - with regard to phrase-buildup direction consider above - to
emphasize the way rules are used. Rules are used from right-to-left.

30 Parsing

In order to illustrate bottom-up parsing consider the grammar rules in Ta-
ble 4.1 that stipulate some of the acceptable storing-frame realizations. The
input string of “storage of glucose”, can be parsed using the rules in Table 4.1.
This string can be parsed in a bottom-up fashion, starting from left in the in-
put string and matching the words with some of the rules’ RHSs to determine
their lexical-categories. Combinations of recognized categories ordered in accor-
dance to some rule can constitute bigger constituent, that can in return form
〈noun(storage)〉〈theme〉, forms 〈storing〉.

This process is illustrated by Table 4.2, that lists the sequence of steps taken by
the parser. The parsing process is illustrated in the table by showing the rule
used at each step, and the state of parsing in terms of a string of symbols that
consists of the recognized categories and terminals (words) yet to be processed.
Parsing this particular input string can be summarized as follows: processing
the words in the input string “storage of glucose” from left to right, storage
is recognized (steps 1-2) to be a 〈np(storage)〉. of glucose is recognized to be
〈pp(of)〉 (steps 3-6), which is in return is a 〈theme〉 (step 7). At the end we
have a string of non-terminals 〈np(storage)〉〈theme〉 that matches the one of the
RHSs the 〈storing〉 namely 〈np(storage)〉〈theme〉.

The process just described, corresponds to going from the bottom of the parsing
tree in Figure 4.1 to the top, starting from left. Therefore this approach is a
bottom-up and depth-first parsing strategy. It is a depth-first search because
constituents are built as big as they can get from left, before remains of the
string are processed.

Before ending this section it is in place to consider the following facts about the
grammar rules in Table 4.1. The categories with arguments e.g. 〈np(storage)〉

〈storing〉→〈np(storage)〉〈theme〉〈goal〉
〈storing〉→〈np(storage)〉〈theme〉
〈theme〉→〈pp(of)〉
〈goal〉→〈pp(in)〉
〈np〉→〈noun〉

〈np(X)〉→〈noun(X)〉
〈pp〉→〈prep〉 〈np〉

〈pp(X)〉→〈prep(X)〉 〈np〉
〈noun(storage)〉→storage

〈noun〉→glucose
〈prep(of)〉→of
〈prep(in)〉→in

Table 4.1: Storing-Frame Grammar Rules

4.2 Bottom-up Parsing 31

Step Production Rule Parsing State

1 〈noun(storage)〉→ storage 〈noun(storage)〉 of glucose
2 〈np(storage)〉→ 〈noun(storage)〉 〈np(storage)〉 of glucose
3 〈prep(of)〉 → of 〈np(storage)〉〈prep(of)〉 glucose
4 〈noun〉→ glucose 〈np(storage)〉〈prep(of)〉〈noun〉
5 〈np〉→ 〈noun〉 〈np(storage)〉〈prep(of)〉〈np〉
6 〈pp(of)〉→〈prep(of)〉〈np〉 〈np(storage)〉〈pp(of)〉
7 〈theme〉→〈pp(of)〉 〈np(storage)〉〈theme〉
8 〈storing〉→〈np(storage)〉〈theme〉 〈storing〉

Table 4.2: Bottom-up Parsing of “storage of glucose”

storing

theme

pp

np

noun

glucose

p

of

noun

storage

Figure 4.1: Parse-tree of “storage of glucose”

32 Parsing

and 〈pp(of)〉 emphasize the acceptable words for the categories. E.g. 〈np(storage)〉
means that the noun-phrase must be with the word storage - which is the target
of the storing frame. Similarly 〈pp(of)〉 stipulates, that the acceptable preposi-
tion is of - this is due to the valence-patterns of the target storage.

4.3 Top-down Depth-first Parsing

Top-down parsing can be breath-first or depth-first. In the following the depth-
first approach is illustrated and explain. The principle of breath-first strategy
is illustrated in 4.5.1, where a breath-first algorithm is studied.

A goal-driven or top-down parsing strategy starts out with the goal of deriving
sentences that match the input string, i.e. the start-symbol of the language’s
grammar is the main goal. The input string should at least satisfy one of the
S’s RHSs, i.e. the input string must be derivable from at least one of the S’s
alternatives. Matching the data against one RHS of S means to replace the
main goal, with the sub-goals of deriving the corresponding constituents.

In depth-first search whenever there is more than one choice for a category, i.e.
more than one production rule representing the same non-terminal, the search
will go on with the first alternative until it fails. If it succeeds with a sub-goal it
will keep the result and process the symbol-string at hand based on the results
so far. If it fails it will reconsider the latest sub-goal by backtracking and trying
with the sub-goal’s other alternatives. When the grammar is ambiguous, that
is it provides more than one parsing tree for an input string, it corresponds to
all possible backtrackings in a derivation tree that leads to a successful parse.

The search tree (derivation-tree) in Figure 4.2 illustrates top-down parsing of
the string “storage of glucose” with respect to the rules in Table 4.1. The
tree mimics the search a standard Prolog system (SWI-Prolog) goes through
for parsing the input string, provided with the grammar in Table 4.1 (e.g. in
DCG-based parsing).

The process works as follows: starting with the sub-goals at each step from left to
right, the derivation will go on with the left-most sub-goal until it is resolved - it
is matched at word level - or it fails. The later causes the system to backtrack to
the node above to try to resolve the failing sub-goal with alternative rules. When
all subgoals are resolved, the input string is recognized and is derivable from
the main-goal that was the start-symbol. Considering the derivation-tree above
first branch in the tree - with node (2) as top - fails, since the derivation does
not match the empty string. The second branch is initiated when the system

4.3 Top-down Depth-first Parsing 33

(1)
storing

storage of glucose

(10)
np(storage),theme
storage of glucose

(11)
noun(storage),theme
storage of glucose

(12)
pp(of)

of glucose

(13)
prep(of),np
of glucose

(14)
np

glucose

(15)
noun

glucose

succeeds

(2)
np(storage),theme,goal

storage of glucose

fails(3)
noun(storage),theme,goal

storage of glucose

(4)
pp(of),goal
of glucose

(5)
prep(of),np,goal

of glucose

fails(6)
np,goal
glucose

(7)
noun,goal
glucose

fails(8)
pp(in)

(9)
p(in),np

fails

Figure 4.2: Top-down Depth-first Parsing

34 Parsing

backtracks all the way back to the top of the tree, and begins the derivation of
the second alternative of the start-symbol.

A crucial issue to be observed here about top-down parsing is that, when the
system backtracks the derivations that already are recognized to match the
string are done again. I.e. top-down parsing or recursive-descendent parsing
- as it is also called - inherently has some efficiency issues that are related to
redundant repetitions. The same point can be made about bottom-up depth-
first parsing, since some alternatives may backtrack and new matching must be
made to build bigger constituents at higher levels.

4.4 Left-Corner Parsing

Left-corner parsing takes advantage of combining top-down and bottom-up tech-
niques. The essential idea of left-corner parsing is to combine top-down predic-
tions with bottom-up built-up of constituents in order to avoid weaknesses of
pure top-down or bottom-up techniques. Left-corner parsing - though interest-
ing in itself - is not efficient enough to be considered for implementation. But
introducing left-corner algorithm here helps us to understand the underlying
principles of an algorithm with more desirable characteristics, namely Earley’s
algorithm.

In the following the motivation for combining top-down and bottom-up ap-
proaches in order to get a more efficient parsing is considered; and left-corner
parsing itself is introduced after wards.

4.4.1 Motivation

The motivation for left-corner parsing is to overcome inefficiencies inherently
present in top-down and bottom-up approaches. When top-down parsing is
conducted, the process starts at each step with some prediction/goal (e.g. 〈np〉)
and uses the RHSs of the corresponding production rules one at a time to
produce the pertaining derivations. When each derivation is at a level where no
other rules can be applied the input string is matched against RHS of the last
descendent (e.g. 〈noun〉 is last descendent of 〈np〉). If no match is found the
process will backtrack and choose an alternative RHS of the prediction. The
main point is that alternatives of LHS are chosen with no regard of how the
structure of the input string looks like. This means that the process in worst
case must backtrack lots of times, where derivation of descendants are repeated.

4.4 Left-Corner Parsing 35

In order to illustrate this consider the following the grammar - that is the sim-
plified version of the grammar in Table 4.1 - below. The input string is “storage
of glucose” again. The parser is deriving the first alternative of 〈storing〉 - cor-
responding to rule 4.1) -, and is at a stage where it has recognized the three
words in the input string to have the following structure 〈np〉〈theme〉 and is left
with the empty string. The parsing will proceed looking for 〈goal〉, which results
in backtracks starting at the level of the rules (4.8) and(4.9). This is because
none of RHSs of 〈prep〉 match the empty string. Since all other descendants
backtrack too, the process will backtrack all the way to the top - the main goal
〈storing〉. The parser will proceed at this stage by attempting to match the
input string with an alternative derivations of 〈storing〉, using the rule (4.2). It
derives the structure 〈np〉〈theme〉 again, which is redundant since this is done
once already. The tree in Figure 4.2 shows this process in details.

〈storing〉 → 〈np〉〈theme〉〈goal〉 (4.1)

〈storing〉 → 〈np〉〈theme〉 (4.2)

〈theme〉 → 〈pp〉 (4.3)

〈goal〉 → 〈pp〉 (4.4)

〈np〉 → 〈noun〉 (4.5)

〈noun〉 → glucose (4.6)

〈noun〉 → storage (4.7)

〈prep〉 → of (4.8)

〈prep〉 → in (4.9)

In the bottom-up approach the process starts at the bottom with the input
string. The aim is to combine input words to build constituents, and combine
these constituents to bigger constituents, all the way to the start-symbol. In
this process any constituents that can be built using the grammar rules from
right to left are built; with no regard to whether it will match a well-formed
phrasal-structure further up in the process. The process backtracks if no RHS
is matched. This can be at the cost of a series of repetitions, where alternative
built-ups are considered. This is in particular the case when the grammar is
ambiguous.[12]

4.4.2 Left-corner Algorithm

In what follows the left-corner parsing algorithm is introduced. The introduction
will be started by defining the left-corner of a production rule, as the first (left

36 Parsing

most) symbol on the RHS of a rule. E.g. 〈np〉 is the left corner of the rule
〈storing〉 → np〈theme〉〈goal〉, similarly glucose is the left corner of the rule
〈noun〉 → glucose.

There are three different operations that are of interest with regard to left-
corner parsing here, and active chart parsing algorithms introduced in following
sections; these operations are prediction, scanning and completion. But before
considering these operation the notion of a complete category should be consid-
ered, because of the central role it plays. A category is complete if its considered
RHS - the RHS of the rule under consideration - is derived, i.e. all of its con-
stituents are completely derived. Having introduced this notion, the underlying
ideas of prediction, scanning and completion are introduced below. The aim
is to indicate the idea of these operations, as the concrete implementations of
these operations vary from algorithm to algorithm.

Prediction: Prediction is the top-down operation of restricting the parsing
process to a goal, that is the category to be derived. Left-corner parsing
starts by making the prediction, that the input string will make a sentence,
i.e. the starting goal will naturally be the start-symbol - similar to top-
down parsing. In left-corner parsing as the process proceeds and categories
are completed bottom-up, new predictions are made to guide the parsing
process.

Scanning: Left-corner parsing proceeds by determining the category of the
word ahead in the input string, and trying to complete the current goal
in a recursive process. Scanning is the simple operation of using words
or other complete categories to advance the completion of the current
goal. Scanning is generally part of the a bottom-up approach that consist
of completing categories starting from the lexical-categories of the word
ahead; and then making new predictions based on the rules that the com-
pleted category at hand is the left-corner of.

Completing: Completion is the operation that combines the bottom-up and
top-down principles. Completion essentially makes use of scanning and
prediction to complete the current goal’s constituents from left-to-right.
Scanning as it is described above starts off the recursive bottom-up comple-
tion of the sub-categories from left to right guided by the new predictions.

As indicated above these operations are mutually dependent (mutually recur-
sive). In order to summarize what was implicit above; left-corner parser basically
alternates between bottom-up scanning and top-down predictions to complete
categories; in the completion process new predictions are made as old predictions
are completed recursively from left to right, starting with the lexical-category
of the next word in the input string.

4.4 Left-Corner Parsing 37

� �

1 l e f t c o r n e r r e c o g n i z e r (StartSymbol , Word l i s t) :−
2 scan (StartSymbol , Wordl i s t , []) .

4 scan (Pred i c t i on , [Word |Word l i s t] , RmWordlist) :−
5 l e x (Word , LexCat) ,
6 complete (Pred i c t i on , LexCat , Wordl i s t , RmWordlist) .

8 complete (Pred i c t i on , Pred i c t i on , Wordl i s t , Word l i s t) .
9 complete (Pred i c t i on , CompleteCat , Wordl i s t , RmWordlist) :−

10 LHS −−−> [CompleteCat | Pred i c t i on s] ,
11 p r e d i c t (Pred i c t i on s , Wordl i s t , RmWordlist1) ,
12 complete (Pred i c t i on ,LHS, RmWordlist1 , RmWordlist) .

14 p r e d i c t ([] , Word l i s t , Word l i s t) .
15 p r e d i c t ([P red i c t i on | Pred i c t i on s] , Word l i s t , RmWordlist) :−
16 scan (Pred i c t i on , Wordl i s t , RmWordlist1) ,
17 p r e d i c t (Pred i c t i on s , RmWordlist1 , RmWordlist) .

� �

Listing 4.1: Left–corner Recognizer

In order to make this more concrete consider the following small example. We as-
sume that a 〈np(storage)〉 has been recognized; i.e. the first word “storage’ of the
input string “storage of glucose” is recognized to be and 〈np(storage)〉. The left-
corner parser will proceed looking for a rule in the grammar with 〈np(storage)〉
as its left-corner. If the input string is supposed to be of category 〈storing〉,
that is derivable from the 〈storing〉 → 〈np〉〈theme〉, the remaining of the in-
put string (“of glucose”) has to be recognizable as a 〈theme〉. 〈theme〉 is hence
the prediction, the goal to be followed unless its fails, in which case it causes
the system to backtrack as usual. The left-corner parser will continue alter-
nating between bottom-up and top-down steps as described above until it has
recognized 〈theme〉, thereby completing the sentence.

Listing 4.1 shows the Prolog implementation of left-corner recognizer. 1 First
there is the main prediction (lines 1- 2) that the input string(Wordlist) is a
derivation of StartSymbol. The parsing process starts off by scanning the first
word of the input string, and trying to complete the main prediction recursively
in a bottom-up manner by means of the recursive predicate complete (lines 9-12).
If the scanned LexCat or completed category CompleteCat is the left-corner of a
rule (line 10) the process proceeds by predicting by means of predict predicate all
the remaining constituents of the rule (Predictions). If the predictions succeed,

1The source of this program is [12]. In ordet to enhance the understanding of the algorithm
the predicates are renamed to adhere to the terminology used here - in particular the operations
considered above, scan, complete and predict). Furthermore reader friendly argument names
have replaced the original ones.

38 Parsing

� �

1 s t o r i n g −−−> [np , theme] .
2 theme −−−> [pp] .
3 np −−−> [noun] .
4 pp −−−> [prep , np] .
5 l e x (s torage , noun) . l e x (g l ucose , noun) .
6 l e x (of , prep) .

8 l i n k (np , s t o r i n g) .
9 l i n k (pp , theme) .

10 l i n k (noun , np) . l i n k (noun , s t o r i n g) .
11 l i n k (prep , pp) . l i n k (prep , theme) .
12 l i n k (X,X) .

� �

Listing 4.2: Tiny Frame–based Grammar with Links

that is LHS has completed, the attempt of completing the current prediction
(Prediction in line 9) continues recursively until the process arrives at the current
prediction (in line 8) as the latest completed category. The role of predict

predicate (lines 15-17) is to set the next constituent - after left-corner - as the
new goal, and continue this until all constituents are completed(line 14).

The left-corner parsing is illustrated in Figure 4.3 where the combined top-down
prediction and bottom-up completion is depicted by showing how the parsing
tree is gradually built. The example below (Figure 4.3) shows left-corner parsing
of our input string, based on the grammar listed in Listing 4.2. Figure 4.3 shows
e.g. that at step (2) an 〈np〉 is recognized (completed) and at step (3) 〈theme〉 is
predicted in accordance with left-corner algorithm, since 〈theme〉 is the second
constituent of 〈storing〉.

Here follows some facts about left-corner parsers and the way left-corner pars-
ing is introduced here. Left-corner parsing is introduced here as a front runner
for the more complex but efficient algorithm of Earley’s parsing algorithm, that
like left-corner algorithm combines a bottom-up approach with top-down predic-
tions. The operations of scan,complete and predict introduced above are somehow
imposed here, since the operations are mutually recursive and don’t adhere to
pure scanning, prediction and completion in the way these three operations are
defined and used in Earley’s algorithm (See Section 4.6). But due to the in-
troduction of the Earley algorithm later on in this chapter, it is preferable to
introduce the concepts of scanning, prediction and completion here.

One of the advantages of left-corner parser is that it does not have a left-
recursion problem. Left-recursion occurs when a recursive rule has itself as
the left-corner. In the top-down (or recursive-descendent) approach this will

4.4 Left-Corner Parsing 39

(1) storing

noun

storage of glucose

(2) storing

np

noun

storage of glucose

(3) storing

np theme

noun

storage of glucose

(4) storing

np theme

noun prep

storage of glucose

(5) storing

np theme

pp

noun prep np

storage of glucose

(6) storing

np theme

pp

noun prep np

noun

storage of glucose

(7) storing

np theme

pp

noun prep np

noun

storage of glucose

(8) storing

np theme

pp

noun prep np

noun

storage of glucose

Figure 4.3: Illustration of Left-corner Recognition

40 Parsing

lead to an loop where the sub-goal is the goal itself all the time. But since in
a bottom-up approachs the rules are matched from right to left, i.e. first the
constituents are built and then the corresponding category the process will not
end up in a loop.

One of the weaknesses of left-corner parser - as it is introduced in Listing 4.1
- is that, if the grammar is ambiguous left-corner parser suffers from a similar
problem as pure bottom-up parser, namely completed categories that can not
constitute the prediction. There must be a means of determining that a category
will eventually lead to the left-corner of the current prediction, and others will
not. This information can be provided by links, that link any Category1 with
any other Category2 whose left-corner is Category1; or Category1 is the left-corner
of a category that is linked to Category2. Completion of a category that is not
leading to the prediction can be stopped using the information provided by links.
I.e. the completion of a category, which is not linked to the prediction, will not
be initiated. The tiny grammar and the corresponding links for the considered
example (Figure 4.3) are listed in Listing 4.2.

4.5 Active Chart Parsing

In this section active chart parsing will be introduced. The study of parsing
strategies and algorithms has now arrived closer to its destination, Earley’s
algorithm which is an active chart parser.

The algorithms we have considered so far, do not use any external data-repository.
I.e. they do not use any data-structure for the purpose to store intermediate
results and auxiliary information. All of this kind of intermediate data are im-
plicit to the parsers. Chart parsers on the other hand (active as well as passive)
use data-structures to store information about the state of the parsing process.

A chart in this context can be described as an account of the information avail-
able to the parser during the parsing of a particular string. These information
are basically at to levels, at the level of words and at the level of the information
pertaining to processing of categories. The input string which is essentially an
ordered sequence of words, - ordered with respect to the words positions - is
represented by a data-structure that conveys the positional information of each
word in the input string as well as the word itself. Further data-structures to
represent the state of the parsing process in terms of categories processed or
under processing are used. These structures represent the so called dotted rules
accompanied with positional information to give an account of the progress of
each category in the process.

4.5 Active Chart Parsing 41

In dotted rule notation, the derivation state of category X given the production
rule X → αβ, where α is recognized and β is expected, can be represented as the
following X → α �β. The dot in dotted rule notation of this form, indicates how
far derivation of the category X has progressed, in terms of the constituents
of the category, with respect to the particular rule (X → αβ). Dotted rule
notation combined with positional information is a way of representing where in
the input string, search for a category using one of its production rules, started
and how far it has progressed. In particular these are structures of e.g. this form
(γ → 〈np〉 � 〈theme〉, 0, 1), which essentially represent the state of the category
in terms of completion.

A snap shot of the parsing process of the input string “storage of glucose” is
represented below in terms of derivation state notations (just introduced). The
first word is recognized to be a 〈np〉. (4.12) represent this state, i.e. derivation of
〈np〉 have been started at position 0, and after recognition of the first word as a
〈noun〉 - represented by 4.13 - 〈np〉 has completed at position 1. (4.10) represent
the state of deriving 〈storing〉, that started at position 0 and is at position 1
after completing the first constituent (〈np〉) and is looking for a 〈theme〉 now.
(4.11) represent the state of 〈theme〉 which is predicted and deriving it has just
started at position 1.

(〈storing〉 → 〈np〉 � 〈theme〉, 0, 1) (4.10)

(〈theme〉 → �〈pp〉, 1, 1) (4.11)

(〈np〉 → 〈noun〉�, 0, 1) (4.12)

(〈noun〉 → storage�, 0, 1) (4.13)

The states above joined together represent the chart in Figure 4.4. The chart
is the words positioned on a line, with arcs representing the dotted production
rules that go from position to position. The chart represent the state of parsing
process in terms of arcs representing the derivation states of the categories.

In the following we will distinguish between active arcs and passive arcs. Arcs
representing uncomplete categories are active arcs. Passive arcs represent com-
plete categories in a chart. In the above example (4.10) and (4.11) are active
arcs; and (4.12) is a passive arc. Chart parsers can use active charts or passive
charts; thereby the notions active chart parser and passive chart parser. An
active chart is a chart that has active arcs included as well as passive arcs - e.g.
the chart in Figure 4.4. A passive chart is a one that includes passive arcs only.
Passive chart parsing is when no predictions are made, i.e. no active arcs are
considered and only complete arcs are built, in a bottom-up approach using the
rules from right to left. A passive chart parser progressively adds more arcs to

42 Parsing

0

np→noun�

storing→np�theme

Storage 1

theme→�pp

of 2 glucose 3

Figure 4.4: Example of a Chart corresponding to the input string “storage of
glucose”

the chart as the input string is processed word by word and more complete arcs
can be built right-to-left, combining complete arcs that are already included in
the chart.[12] Active chart parser on the other hand function by adding predic-
tions to the chart and completing them as the process proceeds. Active chart
parsing can be top-down or bottom-up.

Active chart parsers can implement a breath-first search or a depth-first search,
in case an agenda is used. An agenda is a data-structure used to keep track of
newly made arcs - prediction and progressed arcs - that has to be processed.
Arcs in the agenda are processed one by one, checking whether they can combine
with any arc in any ways; whether they complete any arc in the chart, or they
can proceed (progress) by combining with a complete constituent, that they
currently expecting. Whether the agenda is a stack (FILO) or a queue (FIFO),
determines the search approach. I.e. how the agenda is implemented determines
whether the search is a depth-first or breath-first search. If the agenda is a stack
then the search is a depth-first, as newly created arcs are pursued first. If the
agenda is a queue the search is a breath-first search, because all possible choices
(arcs) for e.g. a category are pursued simultaneously.2

The main motivation for active chart parsing algorithms - and Earley’s algorithm
- is to get rid of inefficiencies due to redundant repetitions. When a pure top-
down or bottom-up algorithm backtracks there is a vast amount of work that
is repeated. Furthermore chart parsers can handle left recursive grammars as
well.

2Arcs predicting the category are added to the queue one after another, and will be added
to the chart on after another in order to be processed.

4.5 Active Chart Parsing 43

4.5.1 Active Chart Parsing Breath-first

In what follows a general active chart parser is considered that can be imple-
mented as a bottom-up or top-down parser, or it can be implemented to conduct
a breath-first or depth-fist search. After the introduction of the general algo-
rithm a bottom-up breath-first version of it is implemented. In Section 4.6
Earley’s algorithm is introduced, which is an active chart breath-first algorithm
with look ahead.

Before introducing the general algorithm consider the notion of the fundamental
rule that plays a central role in the algorithm. The fundamental rule defines the
way an active arc, can combine with a passive arc. An active arc can combine
with a passive arc if the active arc expects the category of the passive arc at the
position that the passive arc starts. I.e. the non-terminal at the right of the dot
of the active arc, is the LHS of the passive arc as is illustrated in Figure 4.5.
Figure 4.5 shows the way an active arc is combined with a passive arc right of it
to create a new arc, that when added to the chart will result in chart illustrated
at the bottom of the figure.

n1

α→β�Cγ

... n2

C→δ�

... n3

n1

α→β�Cγ

α→βδ�γ

... n2

C→δ�

... n3

Figure 4.5: Fundamental Rule of Arc Combination

Consider the following general active chart parsing algorithm in Listing 4.3.
Concrete differences, in how the steps in the general algorithm are carried out
determine whether the algorithm is a top-down or bottom-up parsing algorithm.

In the bottom-up variant of the general algorithm (Listing 4.4) the chart is ini-
tialized by recording tuples that represent each word in the input string with
their position (start and end positions). The chart at this initial state is equiv-
alent to the alignment of words enclosed in positions - like e.g. in Figure4.4
without the arcs. The agenda is initialized by adding complete arcs to the
agenda that corresponding to the lexical categories of the words in the input

44 Parsing

� �

1 ac t i v e−chart−r e c o gn i z e r (input−s t r i n g)
2 begin

3 i n i t i a l i z e −cha r t (input−s t r i n g)
4 i n i t i a l i z e −agenda

6 while not empty (agenda)
7 do arc←remove− f i r s t (agenda)
8 i f not i s−in−cha r t (arc)
9 then add−to−cha r t (arc)

10 complete (arc) // app l y fundamenta l r u l e
11 p r e d i c t (arc)

13 i s−complete (s t a r t−symbol)
14 end

� �

Listing 4.3: General Active Chart Parsing Algorithm

string. Since a breath-first search is aimed here, new arcs are appended at the
end of a list that is the agenda, and removed from the front of the list. I.e. the
agenda is essentially a queue. After the initial states the arcs are removed from
the agenda and processed according to the fundamental rule and left-corner
prediction(prediction as introduced in 4.4.2).

Applying the fundamental rule - Listing 4.3 line 10- means proceeding the com-
pletion of any prospective category - category corresponding to an active arc in
the chart or on agenda - by combining a passive arc immediately to the right
with the corresponding active arc. Prediction here is conducted like prediction
in left-corner parsing (see 4.4.2). I.e. the LHS of a passive chart is matched
against the left-corner of rules, if matches are found the corresponding active
arcs beginning at the position where the passive arc begins and ending at the
position where the passive arc ends, are added to the agenda. To illustrate this
consider the complete arc (4.14), based on the rule 〈storing〉 → 〈np〉〈theme〉
(4.15) is predicted.

(〈np〉 → 〈noun〉�, 0, 1) (4.14)

(〈storing〉 → 〈np〉 � 〈theme〉, 0, 1) (4.15)

When the agenda is empty and there no more predictions to be made the chart is
checked - Listing4.3 line13 - to se whether there is a complete arc corresponding
to the start-symbol of the grammar, if there is then there is a complete sentence
of the language that is recognized.

Listing 4.4 includes the Prolog implementation of a bottom-up, breath-first ac-

4.5 Active Chart Parsing 45

� �

1 p r e d i c t (arc (E, S , [] , Cat1) ,Agenda , Agenda1) :−
2 f i n d a l l (arc (E, S ,RHS, Cat2) , Cat2−−−>[Cat1 |RHS] , NewArcs) ,
3 append (Agenda , NewArcs , Agenda1) .
4 p r e d i c t (, Agenda , Agenda) .

6 complete (arc (E1 , S1 , [] , Cat1) ,Agenda , Agenda1) :−
7 f i n d a l l (arc (E1 , S2 ,RHS, Cat2) , arc (S1 , S2 , [Cat1 |RHS] , Cat2) ,

NewArcs) ,
8 append (Agenda , NewArcs , Agenda1) .
9 complete (, Agenda , Agenda) .

11 scan (arc (E1 , S1 , [Cat2 |RHS] , Cat1) ,Agenda , Agenda1) :−
12 f i n d a l l (arc (E2 , S1 ,RHS, Cat1) , arc (E2 ,E1 , [] , Cat2) ,NewArcs)

,
13 append (Agenda , NewArcs , Agenda1) .
14 scan (, Agenda , Agenda) .

16 process agenda ([]) .
17 process agenda ([Arc | Agenda]) :−
18 a d d t o c h a r t (Arc , Agenda , NewAgenda) ,
19 process agenda (NewAgenda) .

21 a d d t o c h a r t (Arc , Agenda1 , Agenda4) :−
22 \+Arc , ! ,
23 a s s e r t z (Arc) ,
24 p r e d i c t (Arc , Agenda1 , Agenda2) ,
25 complete (Arc , Agenda2 , Agenda3) ,
26 scan (Arc , Agenda3 , Agenda4) .
27 a d d t o c h a r t (, Agenda , Agenda) .

29 b o t t om up a c t i v e c h a r t (S tar t , S t r i n g) :−
30 c l e an cha r t ,
31 i n i t c h a r t (S tr ing , 0) ,
32 i n i t a g e n d a (Agenda) ,
33 process agenda (Agenda) ,
34 l e n g t h (S tr ing , N) ,
35 arc (N, 0 , [] , S t a r t) .

� �

Listing 4.4: Bottom–up Breath–first Implementation of The General ACP
Algorithm

46 Parsing

tive chart parser. First consider the following information about the imple-
mentation, regarding the Prolog code and design choices that are made. The
predicate findall (representation form ,condition , result list) is a built-in predi-
cate that for each time a condition is true builds a term of the form of
representation form and puts it on the result list . Arcs are represented here as
dynamic predicates of the form arc(End,Start,RemainingRHS,Category).3; Start

and End represent the start- and end-positions of the arc; RemainingRHS repre-
sent the list with remaining constituents; if this list is empty the arc is passive
otherwise it is active. Dynamic predicates can be inserted on demand into the
Prolog-system data-base by e.g. assertz predicate.

With these basic facts about the implementation in place, the implementations
inner workings can be studied now. Consider the scan operation implemented
at lines 11-14. When an active arc is added to the chart and can be combined
with passive arcs on the chart, each time there is such passive arc in the chart a
new combined arc is created that should be added to the end of the agenda-list.
I.e. scan is a operation that applies the fundamental rule to combine active arcs
from the agenda to passive arcs in the chart, by scanning for passive arcs in the
chart.

The predicate complete - at lines 6-9 - defines the case when a passive arc is
added to the chart. In this case for each time the passive arc from the agenda
can combine with a active arc in the chart, a new arc is added to the agenda.
complete applies the fundamental rule to combine passive arcs from agenda with
active arcs in the chart i.e. in the opposite direction compared with scan.

The predicate predict - at lines 1-4 - makes predictions as described above.
I.e. each time a passive arc is about to be added to the chart new active arcs
are created based on the rules that have the passive arc’s category as their left-
corner. Furthermore there is the recursive predicate of process agenda - at line 16
- that essentially is the main loop of the algorithm - like the loop in general
algorithm at line 6 in Listing 4.3. Finally bottom up active chart (Start Symbol,

Input String) - at line 29 - is the main-predicate that takes a start-symbol and
an input-string as arguments, and answer whether the string is well-formed with
respect to the grammar and the start-symbol.

3The way arcs are represented here are measured, to be more efficient - due to the inner
workings of Prolog systems - then the usual representations arc(RemainingRHS,Category,
Start,End).[13]

4.6 Earley’s Parsing Algorithm 47

� �

1 p r e d i c t (arc (E, , [Cat |] ,) , Agenda1 , Agenda2) :−
2 word (Word ,E,) ,
3 f i n d a l l (Arc , (Cat −−−> RHS, p r e d i c t a u x (Cat ,RHS,Word ,E

, Arc)) ,NewArcs) ,
4 append (Agenda1 , NewArcs , Agenda2) .
5 p r e d i c t (, Agenda , Agenda) .

8 p r e d i c t a u x (Cat , [Cat1 |RHS] ,Word ,P, arc (P,P , [Cat1 |RHS] , Cat)) :−
9 l e x (Word , Cat2) ,

10 l i n k (Cat2 , Cat1) .
� �

Listing 4.5: Earley Algorithm Predict Operation

4.6 Earley’s Parsing Algorithm

Earley’s parsing algorithm is a variant of an active chart parser, that has the
characteristics desirable for any natural language processor. As indicated before
a parser that is efficient in terms of execution-time, and can handle left-recursive
grammars is desirable; and Earley’s parser exhibit both of these characteristics,
as it is one of the most efficient algorithms - if not the most efficient algorithm
- for parsing CFGs, and it handles left-recursion as well. Earley’s parser is a
bottom-up, breath-first active chart parser with look-ahead capabilities. In this
section we will see how Earley’s parser is implemented using the above imple-
mentation (4.5.1) with minor changes; and furthermore how links - introduced
before in combination with left-corner parsing - can be used to facilitate the
look-ahead capabilities of the Earley’s parser.

Earley-parser’s execution-time is cubic, i.e. Θ(n3) where n is the length of the
input string. It has a quadratic time Θ(n2) for unambiguous grammars; and it
handles left-recursive grammar rules as well. The Earley’s parser is a bottom-
up active chart algorithm; and the only difference with the bottom-up active
chart parser introduced above (in 4.5.1) is a top-down prediction combined with
- restricted by - look-ahead capabilities. In left-corner parsing and Earley’s
parsing information about how categories are linked together is used to discard
predictions that would not drive any prefix of the remaining symbol-string at
hand.

Listing 4.5 includes the only changes made to the implementation of Listing 4.4.
The changes affect only the way predictions are made. predict aux clause - at
line 8 in the Listing 4.5 - looks at the word ahead and checks whether the
candidate prediction (Cat) will eventually complete. As mentioned before use

48 Parsing

of links are similar here as for the extension of left-corner parser, that used
this mechanism to discard redundant predictions. I.e. categories that are not
linked to the lexical-category of the word ahead in the input string will not be
considered. predict (line 1) uses predict aux to filter redundant predictions in
the way just considered.

4.7 NLP using Tabled DCG

In the following section we will be considering a technique used for the actual
implementation of our semantic parser. Until now in this chapter, an overview
of the different parsing strategies and their strengths and weaknesses were pro-
vided. But none of these algorithms are further elaborated on in this project,
in order to facilitate our semantic parser. Prolog-based technique of Definite
Clause Grammars (DCG) is preferred over e.g. an extension of the Earley’s
algorithm considered above (Section 4.6). Though it might be argued here that
DCG does not exhibit the same characteristics as Earley’s parsers, we will see
that some Prolog-system - XSB-Prolog and Mercury in particular - come with
features (Tabling) that converts ordinary DCG parsing to a variant of Earley’s
parsing that exhibit all the advantages of Earley’s parser. So at the same time
as the simple and natural notation of DCG is used, the advantages of Earley’s
parser are facilitated by the system.

First DCG is introduced and illustrated via the familiar example of storing-
frame; afterwards the notion of Tabling is introduced, with regard to its imple-
mentation in XSB-Prolog. At the end we consider how well-formed strings are
semantically evaluated via attribution - extending grammars with attributes.

4.7.1 Definite Clause Grammar Top-down Parsing

Definite Clause Grammar (DCG) is a notation used in Prolog-systems for rep-
resentation of a language. Categories in the grammar are predicates, using
difference-lists. A grammar described, using predicates in this way, functions as
a top-down, depth-first parser (recursive descendant), i.e. it follows the same
search strategy as Prolog’s top-down, depth-first deduction (SLD-resolution).
This kind of top-down, depth-first derivation is considered already in Figure 4.2
that shows an dcg-based parsing of the input string “storage of glucose”.

Prolog-systems like SWI-Prolog and XSB-Prolog allow a DCG notation that is
similar to BNF notation. A clause in DCG notation like e.g. storing−−>np,

4.7 NLP using Tabled DCG 49

� �

1 s t o r i n g (A,C) :−np (A,B) , theme (B,C) .
2 theme (A,B) :−pp (A,B) .
3 pp (A,C) :−prep (A,B) , np (B,C) .
4 np (A,B) :−noun (A,B) .
5 noun ([s t o ra g e |B] ,B) .
6 noun ([g l u c o s e |B] ,B) .
7 prep ([o f |B] ,B) .

� �

Listing 4.6: Tiny DCG for Storing Frame

theme, which is an abbreviation for an ordinary clause, has additional implicit
arguments for the involved predicates that appear at compile time. I.e. the
DCG clause storing−−>np,theme is equivalent to storing (A,C):−np(A,B),theme(

B,C). A grammar written in DCG-notation is compiled into Prolog predicates
whit difference lists. In the following example - included in Listing 4.6 - DCG
will be considered in its purest form, that is predicates with difference-lists.

Consider clause 3 in Listing 4.6 with the predicate pp(A,C). The string matching
the phrase pp, is thought to be the difference-list between the first argument
and second argument. In order to illustrate DCG in action, consider the the
clauses of Listing 4.6 which constitute the grammar. A derivation-tree like the
one depicted in Figure 4.6 is produced by the Prolog-system, when parsing of
“storage of glucose” is initiated by querying the system with the following goal
← storing([storage, of, glucose], []). In Figure 4.6 each step in the derivation
is depicted by including the rule applied in left of the arrow, and the resulting
substitution (unification) at the right of each arrow.

Previously in Section 4.2 we looked at productions rules with categories that
took arguments e.g. 〈storing〉 → 〈np(storage)〉〈theme〉〈goal〉 or 〈noun(storage)〉 →
storage. This form of productions rules can be used in combination with frame-
based grammars, since frames are target dependent. E.g. valid linguistic ap-
pearances of storing-frame can be valences of the lexical-units like storage.n and
srore.v. This can be achieved in DCG by escaping the DCG-notation and using
Prolog in order to restrict the category-type to a certain word. This is illus-
trated in Listing 4.6 below, where e.g. noun(N)−−>[N],{noun([N],[])} restrict the
derivation of the category noun(N) to the word N via the goal in the curly brack-
ets (noun([N],[])). In reality the goal of e.g. ← noun(storage, [storage|B], B) is
replaced by the goal of ← noun([storage|B], B). This mechanism of escaping
DCG is more important for semantic evaluation (see 4.7.3) then for category-
restriction.

50 Parsing

← storing([storage, of, glucose], [])

storing (A,C):−np(A,B),theme(B,C)

← np([storage, of, glucose], B), theme(B, [])

np(A,B):−noun(A,B)

← noun([storage, of, glucose], B), theme(B, [])

noun([storage |B],B) B=[of,glucose]

← theme([of, glucose], [])

theme(A,B):−pp(A,B)

← pp([of, glucose], [])

pp(A,C):−prep(A,B),np(B,C)

← prep([of, glucose], B′), np(B′, [])

prep([of |B],B) B′=[glucose]

← np([glucose], [])

np(A,B):−noun(A,B)

← noun([glucose], [])
noun([storage |B],B)

noun([storage |B],B)

fails ←

Figure 4.6: Derivation-tree of the Goal ← storing([storage, of, glucose], [])

4.7 NLP using Tabled DCG 51

� �

1 s t o r i n g −−> np (s t o ra g e) , theme , goa l .
2 s t o r i n g −−> np (s t o ra g e) , theme .
3 theme −−> pp (o f) .
4 goa l −−> pp (in) .
5 np −−> noun .
6 np (N) −−> noun (N) .
7 noun (N) −−>[N] ,{ noun ([N] , []) } .
8 pp −−> prep , np .
9 pp (P) −−> prep (P) , np .

10 prep (P) −−>[P] ,{ prep ([P] , []) } .
11 noun −−> [s t o ra g e] .
12 noun −−> [g l u c o s e] .
13 noun −−> [c e l l s] .
14 prep −−> [o f] .
15 prep −−> [in] .

� �

Listing 4.7: Storing–frame DCG with Category Restriction

4.7.2 Prolog Systems with Tabling

DCG is a recursive-descent parser (top-down and depth-first); hence - as con-
sidered in previous sections - it is inefficient and does not handle left-recursive
grammars. These are the main motivations to look for other parsing tech-
niques such as Earley’s parsing algorithm, which is efficient and can handle
left-recursive grammars. Earley’s parsing algorithm is more complex, and cor-
respondingly more difficult to implement and extend with e.g. attribution for
the purpose of semantic evaluation. Fortunately there are Prolog systems like
XSB and Mercury, that implement a feature that make ordinary DCG to a
variant of Earley’s parser. The feature is tabling, also called memoization or
lemmatization.[14]

With tabling the simplicity of DCG notation remains untouched, as efficiency
and left-recursion handling is provided. In the following we will use XSB-Prolog
with tabling in order to implement a demo of a frame-based semantic parser.
Consider the following that describes the basic idea of tabling:

“The idea is very simple: never make the same procedure call twice: the first
time a call is made, remember all the answers it returns, and if it’s ever made
again, use those previously computed answers to satisfy the later request.”[14]

The basis of tabling implementation is a forest of SLD-resolution trees that each
act as a server. For each goal there is one goal-server, that derives the answers
of the particular goal via SLD-resolution. Each time a tabled predicate - a

52 Parsing

� �

1 l i n k (np , s t o r i n g) .
2 l i n k (noun , np) .
3 l i n k (srorage , noun) . l i n k (g l ucose , noun) .
4 l i n k (pp , theme) .
5 l i n k (prep , pp) . l i n k (of , prep) .
6 l i n k (X,X) .

8 l i n k e d (Cat1 , Cat2) :− l i n k (Cat1 , Cat2) .
9 l i n k e d (Cat1 , Cat3) :− l i n k (Cat1 , Cat2) , l i n k e d (Cat2 , Cat3) .

� �

Listing 4.8: Transitive Closure of cyclic graphs

predicate specified to be resolved by tabling - is called a separate goal-server
with a corresponding derivation-tree answers the goal, which is communicated
back asynchronously. If the goal server is not already created it will be created
and maintained while the program executes. Answers are send to any other
requesting process (tree). This model of execution eliminates duplicates of the
same goal. Furthermore this means that only a finite number of calls are made
even if the definite clauses are left-recursive.[14]

Typical examples that illustrate the power of tabling well, are transitive closure
of cyclic graphs. In left-corner parsing as well as Earley parsing, information
about how categories are linked were used to discard non-derivable predictions.
Listing 4.8 includes the definition of the recursive predicate linked (at lines 8-
9), that defines the transitive closure of link -relation. The links (link facts)
included in Listing 4.8 (lines 1-5) together with non-ground link predicate (at
line 6) present a cyclic graph depicted in Figure 4.7.

When transitive closure is defined as in Listing 4.8 and the graph is cyclic,
problems occur with goals where the answers suppose to be NO - with e.g. the
goal ← linked(np, theme). Standard Prolog-systems - systems without tabling
- do not reply with any answer, because they enter a loop. The SLD-resolution
tree in Figure 4.8 illustrates how an infinite loop is entered when the goal is
← linked(np, theme). This is due to the fact that each category is linked to
itself. Obviously if the categories were not linked to themselves - i.e. if the
graph were acyclic - the program would terminate with the answer “NO”. But
if linked where left-recursive the problem would not be solved by constraining
the program to trees only. This brings up the real motivation for using tabled
resolution systems, which are able to handle left-recursive DCGs.

It is intuitively clear, that the goal should terminate when tabling is used, since
there should be a finite number of calls for a finite graph. Figure 4.9 illustrates
tabling based resolution of the problem above. Each time a goal, with linked -

4.7 NLP using Tabled DCG 53

storing theme

np pp

noun prep

storage glucose of

Figure 4.7: Storing Grammar Category Links

← linked(np, theme)

← link(np, theme) ← link(np, Cat2), linked(Cat2, theme)

fails ← linked(storing, theme)

← link(storing, theme) ← link(storing, Cat2′), linked(Cat2′, theme)

fails ← linked(storing, theme)

Figure 4.8: Resolution-tree showing the Entrance of an Infinite Loop

54 Parsing

predicate is called a sperate tree is created. Basically two trees are created; one
for the main goal of ← linked(np, theme) (figure (1)), and one for the sub-goal
of ← linked(storing, theme) (figure (2)). Since in tabling systems no goal is
evaluated more than once, tree (2) sends the answer NO - due to the fact that
the goal← linked(storing, theme) fails - back to its master tree (1). This makes
tree (1) to terminate with the answer “NO”- resulting with the derivation-tree
shown at the bottom.

(1) ← linked(np, theme)

← link(np, theme) ← link(np, Cat2), linked(Cat2, theme)

fails ← linked(storing, theme)

(2) ← linked(storing, theme)

← link(np, theme) ← link(np, Cat2), linked(Cat2, theme)

fails ← linked(storing, theme)

fails

(1) ← linked(np, theme)

← link(np, theme) ← link(np, Cat2), linked(Cat2, theme)

fails ← linked(storing, theme)

fails

Figure 4.9: Tabled Resolution of the Goal ?−linked(np,theme)

The recognizer provided by tabled DCG in XSB-Prolog is a variant of Earley’s
algorithm, i.e. an active chart parsing algorithm.[14] It is easy to see why since
each sub-goal with its own tree is an arc, and all of these trees together comprise
the chart. The conclusion is that tabled-DCG exhibits all the characteristics of
and efficient parser plus it can - as we will see in 4.7.3 - easily be extended with

4.7 NLP using Tabled DCG 55

attributes to evaluate semantics of a well-formed input-string.

One might argue that Earley’s parser is still more efficient, since when it finishes
we wold have all possible parses of the input on the chart. This is actually also
the case with tabled-DCG, since all the goal-servers created will run while the
program runs all possible answers can be collect efficiently - since they are
already resolved.

4.7.3 Semantics and Attributed Grammars

Extending grammars with attributes, is a method in order to account for (among
others) the semantics of syntactic structures. Based on defining a set of at-
tributes for the production rules of a formal grammar; and based on defining
rules that determine how these attributes are assigned values; and based on
constraints expressed in terms of conditions that must be satisfied by syntac-
tic structures of the language, context-sensitive properties of a language are
specified.

Grammars extended with attributes in the way described above, are mainly
used for semantic evaluation of syntax structures. The aim of semantic parsing
is semantic annotation of sentences or parts of sentences that are recognizable.
This basically means that, syntax categories are evaluated with regard to certain
attributes. I.e. we think of attribute functions that map syntax categories
into attribute-values that are semantic descriptors of the linguistic structures.
Grammars extended with attributes, conditions (e.g. semantic constrains) and
attribute functions that assign the values of attributes - given a category - are
called attributed grammars.

The attributed grammar in Table 4.3 is an example of augmenting a CFG in
order to specify context-sensitive semantics and conditions. As considered an
attribute Sem - sem for semantic descriptor - with corresponding evaluation
rules for each category is given in order to evaluate semantics. Further seman-
tic constraints (conditions) are given in order to verify the semantics of the
underlying linguistic structures. The attribute Sem is a compound structure
(feature-structure) which is synthesized. I.e. When considering the parse-tree
corresponding to well-formed syntactic structures, the values of the attribute
Sem are sent up from descendants to the parents, where they will be included
in the semantic descriptors of the parents.

An attributed grammar can be implemented as it is, using DCG-notation. In or-
der to illustrate this consider the following DCG-implementation in Listing 4.9,
that implements the attributed grammar considered in Table 4.3.

56 Parsing

〈storing〉 ::= 〈np(storage)〉〈theme〉
Sem(〈storing〉)←[type:transport,elements:[Sem(〈theme〉)]]

〈theme〉 ::= 〈pp(of)〉
Sem(〈theme〉)←theme:Sem(〈pp(of)〉)
Condition: Sem(〈pp(of)〉) is a substance

〈pp(X)〉 ::= 〈p(X)〉〈np〉
Sem(〈pp(X)〉)←Sem(〈np〉)

〈np(X)〉 ::= 〈noun(X)〉
Sem(〈np(X)〉)←Sem(〈noun(X)〉)

〈np〉 ::= 〈noun〉
Sem(〈np〉)←Sem(〈noun〉)

〈noun〉 ::= glucose
Sem(〈np〉)←Sem(glucose)

〈noun(storage)〉 ::= storage
〈p(of)〉 ::= of

Table 4.3: Attributed Frame-based Grammar

� �

1 s t o r i n g ([type : t r an spo r t , SemTheme]) −−>
2 np (s t o ra g e) , theme (SemTheme) .
3 theme (theme :SemPP) −−>
4 pp (SemPP, o f) ,{ subsumed (SemPP, sub s t ance) } .
5 pp (SemNP) −−> prep , np (SemNP) .
6 pp (SemNP,X) −−> prep (X) , np (SemNP) .
7 prep (P) −−>[P] ,{ prep ([P] , []) } .
8 np (Noun)−−>noun (Noun) .
9 np (SemN,X)−−>noun (SemN,X) .

10 noun (SemN,N) −−>[N] ,{ noun (SemN , [N] , []) } .
11 noun (s torage , [s t o ra g e |B] ,B) .
12 noun (g l ucose , [g l u c o s e |B] ,B) .
13 prep ([o f |B] ,B) .

� �

Listing 4.9: Attribute Grammar in DCG

4.7 NLP using Tabled DCG 57

Considering line 1 in Listing 4.9; it is shown how the semantics of storing is
composed of the semantic value (contribution) of the constituent theme and an
additional feature-value pair. At line 4 an example of a semantic constraint
on the type of the semantic-role filler of theme is seen. A sentence having the
underlying frame of storing as its meaning, should satisfy this condition. For
more details on semantic evaluation and verification see 6 where a detailed ex-
planation of the entire demo, which is essentially a attributed DCG is included.

58 Parsing

Chapter 5

Frame-Based Semantic

Parsing

In this chapter the design issues of the system are discussed. An account of
the requirements and how these requirements are to be met is represented in
this chapter; and in the next chapter we will look at the implementation itself
in details. First a description of the system in terms of general use-cases is
included; what is required for the implementation in terms components and
design choices that are made follows afterwards.

Section 5.1 gives an overview of the system and its requirements. Section 5.2
introduces the ontologies used in the system, and shows how their vocabulary
can be formalized by a grammar. How to derive context-sensitive frames from
ontological concepts is covered in Section 5.3. In Section 5.4 our frame-based
grammar is considered, and its properties are explained. Section 5.5 covers
ontology-driven search in terms of frame-based semantic descriptors; further
how the concept of ontology-driven search is realized here, is described in details.

60 Frame-Based Semantic Parsing

5.1 The System

Some of the important characteristics of the system suggested here, are con-
sidered in the following. The purpose is to provide and overview on what the
system is in terms of purpose, functionality and abilities. Before starting the
discussion here the system can briefly be described, as a frame-based syntactic-
semantic DCG, that is extended with semantic attributes in order to provide
semantics of well-formed syntactic structures.

The semantic parser here facilitates two types of semantic representations as
the result of semantically parsing domain specific text. The semantic interpre-
tations are essentially twofold. Semantics of a piece of text is on one side the
ontological concept, that it maps to in accordance with the frame-based analy-
sis of the text; and on the other side the semantic structure of the underlying
frame that is represented in terms of frame-based semantic descriptors (that we
will call semantic descriptor or semantic definition). Semantic descriptors are
the direct result of semantic parsing, since the grammar is a frame-based gram-
mar analyzing the text in terms of syntactic-semantic combinations (valence
patterns). That the semantics descriptors are the direct result of frame-based
semantic parsing, is due to the fact that the semantic elements (frame-elements)
will be part of the parse-tree.

Semantic descriptors can easily be converted to corresponding ontological terms,
since the vocabulary of the biological ontologies considered here are highly reg-
ular. However the role played by the ontologies with respect to, first semantic
parsing, and second search (or information retrieval), is not limited to a vocab-
ulary’s (a collection of terms) language formalized by a grammar. As we will
see the hierarchical structure of the ontology, based on is-a relations (the tax-
onomy) is used in order to impose semantic constraints on frame participants
(frame-elements) during parsing, i.e. in order to semantically verify and eval-
uate input string; and taxonomies additionally are used to assist information
retrieval when e.g. no direct hit is in place for a query.

The key points to be made about the characteristics of the system suggested
here is first of all how the logical (Prolog) representation of the taxonomy is
incorporated into the semantic parser, and is used for assisting information re-
trieval; second how the power-full resolution system of Prolog, enables us to do
the twofold semantic interpretation in one logic program, namely a frame-based
DCG semantic parser based on frames; and how it enables us with minimal
efforts to implement real ontology driven search on descriptors, based on sub-
sumption supported by the taxonomy.

After this overview general use-cases and an overview on the resources con-

5.1 The System 61

tributing to the system are included below.

5.1.1 Use-Cases

Generally the use-case is of the following: the query (provided by the user) is
semantically interpreted, as it is with open text sentences; it will provide a se-
mantic descriptor that will be hold against descriptors found in text in order
to provide a semantically relevant result in term of a match. Matching the de-
scriptors is done via subsumption operation on descriptors, i.e. more specialized
(detailed) text-descriptors are provided to the more general query-descriptors
or vice versa. This is basically the essence of ontology driven querying, since
the underlying ontology is used to relate information in accordance to their
generality or specialization via their place in the hierarchy.

We have a unique way of translating sentences to go-terms but we can also
translate go-terms to definitions (and actually linguistic structures i.e. text),
so another use-case is thought based on nodes in the ontology (actually the
taxonomy). In this case the ontology’s graph is used for navigation through
possible result. The user can navigate through the ontology and go up or down
in the hierarchy. As the user goes up in the ontology, the terms are more general
and depending on the texts available, there will in principle be more results; as
the user goes down and the terms gets more specific and narrow, there are less
result.1 This (as we will see in Section 5.5) goes back to subsumption operation
on descriptors, since as the query descriptor gets more specific there are less
descriptors that can be subsumed by them.

5.1.2 Resources Contributing to the System

There are different resources that contribute to the system. Figure 5.1 gives
a rough overview of the involved resources. We view the resources in to main
groups, namely ontologies and lexical resources. The contribution of the on-
tologies is both direct and indirect; direct in form of a taxonomy represented in
Prolog that is part of the program; and indirect in terms of how frames included
in the system are identified based on the upper-level terms of the ontologies.
FrameNet frames contribute indirectly in terms of frames that are customized
and extended with ontological semantic type, i.e. ontologies contribute to bio-
process frames identified for the system.

1This method is best illustrated by GoPubMed where search results are sorted by GO-terms
and represented hierarchically corresponding the GO-ontologies.

62 Frame-Based Semantic Parsing

A more detailed description of these resources and how they are contributing to
(are part of) the system is included in the following sections.

5.2 Underlying Ontology

The purpose of this system is deep semantic interpretation. Deep semantic inter-
pretation is meant here as in contrast to shallow semantic interpretation, which
is semantic labeling (semantic markup) of text based on linguistic semantics
only. Shallow semantics can be either thematic-role labeling based on general
linguistic semantics or semantic-role labeling based on frame semantics (e.g.
pure FrameNet frames). Deep semantic interpretation is when linguistic seman-
tics is extended with semantic constraints based on formal ontologies. This is
the case here as semantic-roles and frames are explicitly constrained by means
of formal ontological classes or types. This means that an entity participating
in an event with a specific role must be of a certain type satisfying its semantic
constraint. The taxonomies are essentially type hierarchies used in this way to
verify semantics of linguistic structures.

The semantics here is based formal ontologies from OBO Foundary. The on-

Figure 5.1: Resources and Their Contribution

5.2 Underlying Ontology 63

tologies used are as following:

Biological Process: is part of GO; represents an account of biological pro-
cesses; is part of OBO Foundry and makes only use of two relations is a
and part of

Chemical Entities of Biological Interest: abbreviated to CHEBI, represents
chemical entities like insulin and glucose etc.

Cellular Component: is part of GO; represent an account on cells and their
components; is part of OBO Foundry and makes only use of two relations
is a and part of

It is proper to inform that the ontologies are not used in full scale. They are
presented in miniature versions that still adhere to the hierarchies and con-
straints of the ontologies in full scale.2 This means that we will not represent
any contradiction to the go-ontologies, as they are represented in miniature in
our small proof of concept demo.

The relation of primary interest here is is-a relation, i.e. we are primarily
interested in the taxonomies, that make up the backbone of the ontologies.
Only the taxonomies are included in the system, i.e. trees based on is-a relations
among ontological term. An example of such miniature taxonomy is depicted in
Figure 5.2. Though the taxonomies are not represented in full scale, the idea of
using them as axiomatized formal structures in order to verify semantics should
be clear.

The underlying terminology (vocabulary), established by the OBO ontologies is
highly regular and can be expressed by a grammar. This is an interesting charac-
teristic that we will capitalize on, first in relation to taxonomy-based navigation
search, and second in relation to how ontological terms are determined based
on frames, i.e. how we can define rules for evaluating term-attributes of frame-
based grammar rules. In the following we will look at such a grammar and study
some properties of this that will help us in our design.

5.2.1 Ontological Grammar

In this section the emphasis is put on the regularity of the vocabulary (on-
tological terminology) OBO ontologies, but first some properties of these are
considered.

2The main reason for representing the ontologies in this way is memory space.

64 Frame-Based Semantic Parsing

entity

is a is a is a

cells

is a

process

is a is a

substance

is a is a

liver
cells

transport

is a

regulation

is a is a

insulin glucose

import
positive

regulation
negative

regulation

Figure 5.2: GO Taxonomy

OBO ontologies are controlled vocabularies that formalize the medical and bi-
ological knowledge. Basically they consist of terms and a finite collection of
relations that structure the terms into a hierarchy. OBO.GO (Gene Ontol-
ogy) which underlies the system here consists of three controlled vocabularies
(corresponding to cellular-component, molecular-function and biological-process
ontologies) that comprise a collection of terms hierarchally related by means of
is a and part of relations.[8] The syntactic structure of the compound terms are
regular and can therefore be analyzed (parsed) and interpreted by computers
via a CFG. Compound terms’ definitions (e.g. frame descriptors same as our
sematic descriptors) can automatically be built by attribution of formal gram-
mars on these.[9] Such an grammar is given in Table 5.1. As we see such a
grammar merely stipulate the syntactic structures of terms.

The novelty of recognizing that the vocabulary can be modeled with a forman
grammar, lies in realizing that the compound terms are composed of atomic
terms that correspond to the upper levels of the taxonomies. Most of the com-
pound terms are combinations of atomic upper-level terms. By attribution of
the rules corresponding to the atomic terms we can have a attributed grammar,
that maps ontological terms to corresponding semantic descriptors.

Another further interesting point about the grammar above is that based on
syntactical structure of a term the relations among terms can be determined.
E.g. positiv regulation is subsumed by (is-a) regulation, or glucose import is a

5.3 Ontology-Driven Frames 65

〈term〉::=〈np〉
〈np〉::=〈np〉 〈pp〉
〈np〉::=〈noun〉
〈pp〉::=〈prep〉〈np〉
〈np〉::=〈adj 〉〈np〉

〈noun〉::=Regulation
〈noun〉::=Transport
〈noun〉::=Import
〈noun〉::=Glucose
〈adj 〉::=Positiv
〈prep〉::=of

Table 5.1: Simple GO-vocabulary Grammar

subsumed by import. As follows below, when frame definitions with semantic
constraints, are defined/identified for ground (or atomic) terms like regulation
transport etc. any valid specializations of these semantic structures will repre-
sent compound subsumed terms of the ground terms.

The key point to have in mind from here, is that a system for semantic parsing
based on a taxonomy containing of ground/atomic (upper level) terms only, is
in principle as rich with ontological information as a system based on a full-scale
taxonomy. Further the system can be based on linguistic properties in terms
of frame, identified for the upper-level terms only. The demo implemented
in combination with this project is a proof os this fact, where frames that
model linguistic appearances of the terms Regulation and Transport are the only
identified frames (with the exception of lacking-frame see 5.3.4 for explanation).

5.3 Ontology-Driven Frames

A sufficiently deep semantic interpretation is a one not based on thematic-roles
labeling, but on a more nuanced semantic-role labeling that account for the se-
mantics of natural language expressions, based on the predictions of head words.
This is particularly important when text is semantically interpreted based on
domain ontologies, because mappings from linguistic expressions to ontological
concepts must be established that require more accuracy. Such deep semantic
interpretations are provided by semantic frames and collections of pertaining
lexical-units, linked with ontological concepts. As indicated before, semantic
parsing at this level can be realized by linking central (atomic) concepts with
sets of frames representing their semantics in text based on pertaining lexical-
units.

66 Frame-Based Semantic Parsing

In the following the atomic terms of interest are identified, and then correspond-
ing FrameNet frames are selected that can model syntax and semantics of the
identified atomic terms in text.

5.3.1 Ontology-Concepts To Frames

Frames are identified for the upper-level atomic terms in the biological-process
(Bio-Process) ontology, in order to parse sentences (or phrases) representing
the meaning corresponding to these atomic terms, or any terms subsumed by
them. Parsing sentences that represent compound-terms, via frames pertaining
to the upper-level terms (more general terms), i.e. sub-terms of the upper-level
terms results in frame-annotations(see section 3.2 page 16) that can be mapped
to the relevant sub-term based on semantic attribution rules introduced in the
grammar.

In the following what frames are identified, and why those particular frames
are selected is described. But before going on with the process of identifying
the frames, the atomic concepts must be identified first. The starting point is
essentially the ontological concepts, that are regarded as the atomic concepts.
In order to do this, consider the Figure 5.3 that shows a sub-graph of the Bio-
Process ontology. In particular the expansion of the ontology’s graph down to
the level of the term “Positive Regulation of Glucose Import” is included here.3

The main concepts we will concentrate on here are the concepts of Biological
Regulation and Transport. As we see in Figure 5.4 these to concepts are part of
the taxonomical backbone of the upper-level of the ontology.4 Further we can
see in Figure 5.3 that all the concepts of interest for us, are subsumed by these
to general concepts.

Frames that capture the meaning of these real life events are identified and rules
based on their valence-patterns are introduced into the grammar. The frames
of FrameNet are based on corpus evidence and their meaning can be broader or
narrower then the intended meaning by the scientific conceptualization of Bio-
logical processes. Therefore a selection of FrameNet frames are identified that
represent the intended meanings of these biological processes, as sub-concepts
of the broader cognitive concepts they represent in open text, (i.e. everything in
the targeted natural language). The identified frames are customized (special-

3The term “Positive Regulation of Glucose Import” is the result of querying the GO Bio-
Process ontology with the keywords insulin glucose. The search was conducted via AmiGO
that is a internet-based search application for Gene ontology database.

4We will abstract from Cellular Process in this work.

5.3 Ontology-Driven Frames 67

Figure 5.3: GO-Term “Positive Regulation of Glucose Import” placed in the
hierarchy

68 Frame-Based Semantic Parsing

Figure 5.4: GO.Bio-process Upper-level Terms and Corresponding Atomic
Terms

5.3 Ontology-Driven Frames 69

ized) with these scientifically described (conceptualized) events in mind. The
fusion that results from this process provide us with linguistic level information
(Lexical Units and valence-patterns) from one side and formalized structured
knowledge bases from the other side and mapping between these two sides. The
whole idea with using frames is to be able to map form (text) to semantics (term
or nodes in the taxonomy).

In the following we will be identifying frames for each of the to atomic concept
identified here, i.e. Regulation and Transport.

5.3.2 Regulation

Two frames that relate to regulation are identified. Causation frame describes
the event when a Cause causes an Effect, or when a participant an Actor (we
will call it Agent) that is involved in the Cause causes an Effect. The idea is
that some event or object is responsible for the occurrence of some other event,
or establishment of some state.[4] That causation-frame represents the meaning
of regulation, may seem improvised and indirect. But if we consider the fact
that regulation is also meant, as when a substance is responsible for a certain
process it will not be odd to use causation frame. The outlook on the event
here (with causation) is the Effect as an event, not the change with respect to
a position on a scale.

The other frame identified here that represents the meaning of regulation more
directly in the sense of the word, is Cause-Change-Position-On-Scale. This
frame describes the event that an Agent or a Cause have an effect on the position
of an Item on some scale (the Attribute). The change can be represented by two
values, i.e. a change from an initial value Value-1 to an end value Value-2. It
can also be represented with respect to a magnitude of the change (Difference)
or a direction (Path).[4]

The linguistic expressions of these frames are very important, since the attached
LUs (Lexical Units) and the pertaining pattern-valences are the main building
blocks in our grammar. Some of the most prominent LUs pertaining to causation
are cause.v, force.v, bring-about.v ; and similarly some of the pertaining LUs for
change-position-on-scale are reduction.n,increase.n, increase.vand decrease.v.5

5the letters after dot, indicate part-of-speech, e.g. .n in reduction.n for noun.

70 Frame-Based Semantic Parsing

5.3.3 Transport

The picture with the concept transport is more complex. Here two main frames
are identified, Cause-Motion and Storing. Further related frames of Cause-
Motion are used to enrich the grammar with variations of this frame. Partic-
ularly the sub-frame Placing is of interest here and Bringing that uses cause-
motion. In the demo we will however only make use of Storing and Bringing.
The variations introduced by these variants of Cause-motion are both at lan-
guage level and semantic level since they have different out-looks on the event.

Cause-motion describes the event when an Agent causes a Theme to move from a
Source directly via Path to a certain Goal. Placing puts emphasis on the Goal of
the motion, because LUs of Placing such as inject.v, insert.v, insertion.n, place.v
and placement.n, has focus on the Agent that has control of the Theme all the
way to the Goal location. On the other side some cause-motion LUs only focus
on the motion caused from the Source without further control (cast.v, throw.v
etc.). With respect to other LUs (e.g. drag.v, push.v, force.v, etc.) the Agent
has control of the Theme throughout the motion; and implicit in the meaning
of these words is the resistant the Theme in motion must overcome due to some
force (e.g. friction) or some obstacle (e.g. cell-membran). Placing differs from
Bringing since LUs of the latter (bear.v, bring.v, carry.v, take.v etc.) describe
the movements where an Agent controls the Path of itself and the Carrier (the
agent itself can be the carrier) that bears the Theme. Basically Bringing differs
with respect to focus on Carrier that is used to move the Theme.

When we use Storing and Bringing here (in the demo) Theme is the item that
is transported; and the Goal is the location where Theme ends up at the end of
the transport

5.3.4 Non-ontological Frames

We have to add additional linguistic level frames to account for linguistic asser-
tion that can not directly be mapped to the ontological concepts. In order to
illustrate this consider the example of “lack of insulin increases protein degra-
dation”. We want to be able to semantically analyze and represent the event
where “lack of” or ‘‘deficiencies of” something is participating in an event in
any ways, like e.g. Cause of a change-position-on-scale event in this example.

For this purpose we extend our frame-base with the frame Lacking, which de-
scribes the event of lacking a Lacked.6 This frame contributes to semantic-

6Lacking is not a FrameNet frame. A frame from FrameNet that could do the job done

5.4 Frame-based Syn-Sem grammar 71

descriptors as well, since it is semantically significant.

5.4 Frame-based Syn-Sem grammar

Through out this paper we have considered frame-based grammatical rules, used
as examples etc. But the layers of syntax and semantics that are present in such
syn-sem grammar rules, have not been analyzed until now.

Basically the grammar can be viewed in two layers one syntax layer and one
semantics layer. While both are based on syntactical structures represented by
valence-patterns, the lowest level corresponds to pure syntax of these while the
upper level correspond to the semantic tagging of these structures.

Except the layers in the grammar, the role of the ontologies in semantic evalua-
tion of the recognized syntactic structure are studied. How the ontology is used
to dismiss or accept the semantic-type of the semantic-role fillers is studied, i.e.
sematic verification is studied as well.

5.4.1 Frame-based Grammatical Rules

Following Listing 5.1 will be the basis of the analysis here. The listing shows
the two basic components of the system. The attributed frame-based grammar,
and a taxonomy (for a graph on the taxonomy see Figure 5.2). We start the
analysis by first considering the syntax-layer and the semantic-layer afterwards.

5.4.1.1 Syntax Layer

Syntax layer corresponds to the normal English syntactical categories like 〈pp〉
and 〈np〉 etc. The syntax-layer categories are constituents of higher-level syn-
sem categories. The grammar rules here are based on valence patterns of LUs,
i.e. based on the syntax, they represent the acceptable structures that repre-
sent the linguistic realization of the corresponding frame and frame-elements.
E.g. a valence pattern for the verb force paired with causation frame, is at
the syntax level as 〈causation〉 → 〈np〉, 〈v(force)〉, 〈np〉. This essentially means

by our Lacking frame and more is the frame Possession that described the event where “an
Owner has (or lacks) a Possession”.[2]

72 Frame-Based Semantic Parsing

� �

1 p roce s s (TTerm)−−>t r a n s p o r t (TTerm) .
2 p roce s s (RTerm)−−>r e g u l a t i o n (RTerm) .
3 t r a n s p o r t (STTerm)−−>s t o r i n g (STTerm) .
4 r e g u l a t i o n (CSTerm)−−>cau sa t i on (CSTerm) .

6 s t a r t (PTerm)−−>p roce s s (PTerm) .
7 s t o r i n g ([THTerm, impor t t])−−>[s t o ra g e] , [o f] , theme (THTerm) , [in

] , g oa l .
8 s t o r i n g ([THTerm, impor t t])−−>[s t o ra g e] , [o f] , theme (THTerm) .
9 theme (N)−−>n(N) ,{ subsumed (N, sub s t ance) } .

10 goa l−−>n(N) ,{ subsumed (N, c e l l c omp) } .
11 cau sa t i on (CSTerm)−−>
12 agent , [f o r c e s] , e f f e c t (EFTerm) ,{ app ([r e gu l a t i on , o f] ,

EFTerm ,CSTerm) , ! } .
13 agent−−>n(N) ,{ subsumed (N, sub s t ance) } .
14 e f f e c t (PTerm)−−>p roce s s (PTerm) .
15 n(i n s u l i n)−−>[i n s u l i n] .
16 n(g l u c o s e)−−>[g l u c o s e] .
17 n(l i v e r c e l l s)−−>[l i v e r c e l l s] .

19 c l a s s (e n t i t y , none) .
20 c l a s s (process , e n t i t y) .
21 c l a s s (t r an spo r t , p ro c e s s) .
22 c l a s s (r e gu l a t i on , p ro c e s s) .
23 c l a s s (subs tance , e n t i t y) .
24 c l a s s (i n s u l i n , su b s t ance) .
25 c l a s s (g l ucose , su b s t ance) .
26 c l a s s (ce l l comp , e n t i t y) .
27 c l a s s (l i v e r c e l l s , c e l l c omp) .

29 subsumed (A,B) :− c l a s s (A,B) .
30 subsumed (A,B) :− c l a s s (A,C) , subsumed (C,B) .
31 subsumed (A,A) .

� �

Listing 5.1: Tiny Frame–based Grammar

5.5 Semantic Descriptors 73

that a sentence of this structure is syntactically an acceptable representant of
causation-event in English.

5.4.1.2 Semantic Layer

When the semantic layer that stipulates the acceptable syntactic structure in
term of categories that represent the frame-elements (FEs) the rules for e.g.
causation will be converted to the following set.

〈causation〉 → 〈agent〉〈v(force)〉〈effect〉 (5.1)

〈agent〉 → 〈np〉 (5.2)

〈effect〉 → 〈storing〉 (5.3)

5.1 stipulates one of the syntactic-semantic realization of the causation-frame in
term of syn-sem categories that represent the frame-elements. In return frame-
elements are realized by their syntactical constituents like 〈np〉 etc. If frame-
element categories and frame categories are attributed (like in Listing 5.1) we
can evaluate them to semantic definitions and ontology-terms as we do (see 6).

5.5 Semantic Descriptors

In the previous sections descriptors were mentioned, in terms of frame semantics
and how they were linked to formal ontologies in order to provide semantics. In
the following we will take a look at how these are represented in Prolog; and
what are the benefits of this representation and the corresponding operations
with regard to ontology driven information retrieval.

5.5.1 Descriptors as Feature Structure

Sematic descriptors are represented as feature structures (FS). E.g part of the
result of semantically parsing “insulin forces storage of glucose in lever cells”,
is the FS-based descriptor below.7

7The other part is the GO-term also generated by the attributed grammar.

74 Frame-Based Semantic Parsing

(a)

regulation

Agent insulin

Effect

transport
[

Theme glucose

Goal lever-cells

]

In the following we will benefit from what FS essentially are, and from some
operations applicable to FS. First consider the examples below that illustrates
what real ontology driven information retrieval is; and what this means in terms
of FS-based semantic descriptors of ours here.

Given the result from the example above (descriptor (a)) that could be queried
with the following FS-descriptor below (descriptor (b)), which could represent
the semantics of e.g. “insulin action” or “insulin responsive action”. Since the
information contained in the query (b) is contained in the text-descriptor (a)
the system must respond with the matching descriptor (a). In this case FS (a) is
subsumed (b) since (a) is a specialization of (b), which is more general. This is
of course as we will see a trivial form of specialization since (a) contains merely
more information (more feature-value pairs).

(b)

regulation
[

Agent insulin
]

We need a real subsumption operation based on the underlaying ontological
subsumption relations. Recall that a class A in a taxonomy subsumes a class B,
iff B is a A or if Asubsumes C and B is a C. Basically we want to extend the
the trivial subsumption from above with a typed subsumption, that incorporates
the type hierarchy of the underlying taxonomy. Based on this, querying the
system with the FS (c) below will yield the result (a) again because transport
is subsumed by process. Descriptor (c) could be the descriptor of the query
“insulin responsive processes” or “biological process caused by insulin”.

(c)

regulation

Agent insulin

Effect
[

process
]

5.5 Semantic Descriptors 75

The idea is as illustrated above to be able to go from a general query to a
specialized results that correspond to the hierarchical relation of values. By
representing our descriptors as FS and implementing FS-subsumption extended
whit taxonomies (type hierarchies) we have fulfilled the promise of ontology
driven information retrieval.

5.5.1.1 FS Implementation

Feature structures can essentially be represented as attribute value matrices.
We choose a matrix representation in the following that convert the descriptor
(1) given above to as follows.

regulation

Agent insulin

Effect

transport
[

Theme glucose

Goal lever-cells

]

Type regulation

Elements

Agent insulin

Effect

Type transport

Elements

[

Theme glucose

Goal lever-cells

]

This of course do not essentially change any thing (it hardly needs to be men-
tioned). The former form is preferred by linguist and is more concise, but the
latter form helps in terms of the implementation.8 There are to partial opera-
tions on FS, namely subsumption and unification, based on the ideas of combing
two FSs and comparing two FSs. 9 In the following subsumption will introduce,
and unification left out, as unification is introduced already (?? on page ??) and
will not be using it here.

First consider the intuitive definition of ordinary (not typed FS) FS subsump-
tion. Feature structures are sets of properties.Sets of properties are compared in
order to see if they convey compatible information. A feature-structure F1 sub-
sumes (v) another feature-structure F2, iff all the information that is contained

8We have adapted an even simpler (more matrix shaped) representation in the demo.
9This are partial operations since they are not defined for all pairs of FS-descriptors.

76 Frame-Based Semantic Parsing

in F1 is also contained in F2. This correspond to the first (trivial) example
shown above. Before a formal definition of subsumption for the typed feature
structures of ours here is considered, consider what FS really are and how this
helps to understand typed subsumption of FS.

FS are basically multidimensional matrices of feature-value pairs that can be
represented as lists of attribute-value pairs. FS can also be viewed as Directed
Acyclic Graphs (DAG), which they represent. The features correspond to la-
beled directed edges and the nodes the labeled edges lead, to are the values of
the features. Consider the following graph representations of FS-descriptors (a)
and (c) from above. We will say that the first graph is subsumed by the second
graph, and it is clear that the patterns out of the roots are the same; and further
that nodes in the matching subgraphs are either the same, or the nodes from
the second graph are generalizations (super-classes) of the corresponding nodes
in the first graph.

regulation transport

•

Type

Elements

•

Elements

Type

glucose

•

Agent

Effect

•

Goal

Theme

insulin liver-cell

regulation transport

•

Type

Elements

•

Type

•

Agent

Effect

insulin

A DAG is a recursive data structures and a recursive definition of subsumption
can easily be elaborated into the implementation of subsumption operation itself.
If each path in dag1 going out from the root leading to a node n1 leads to a n2
in dag2 that n1 subsumes (i.e. n1 v n2) then dag1 v dag2. So to paths are
the same if they contain the same sequence of edges, and as far subsumption
goes the nodes along a path in the subsumed dag must be either same as the
corresponding node in the subsuming dag, or be subsumed by the nodes of the
subsuming dag.

We have a typed feature structures since ground values are concepts from the
domain of the used ontologies and compound values are typed FS themselves.
In order to introduce the notion of typed FS consider the following definition of
a type hierarchy.

5.5 Semantic Descriptors 77

Definition 5.1 (Type Hierarchy) [15] A type hierarchy is a finite bounded
complete partial order 〈Type,v〉.

A taxonomy as (e.g. the one depicted in Figure 5.2) is a type hierarchy since
the finite set of classes, with the partial order is a and class entity that is the
supremum (any path in the tree lead to entity), is a complete partial order.
Hence a taxonomy combined with FS in the way suggested in Definition 5.2
provide us with a typed FS.

Definition 5.2 (typed feature structure) [15] A typed feature structure is
defined on a finite set of features Feat and a type hierarchy 〈Type,v〉. It is a
tuple 〈Q, r, δ, θ〉 where:

• Q is a finite set of nodes,

• r ∈ Q r is the root node

• θ : Q→ Type is a partial typing function

• δ : Q× Feat→ Q is a partial feature value function

A feature structure F ′ subsumes F (written F ′ v F) if each path from the root
π in F ′ leads to the same node in F as in F ′, or leads to q′ in F ′ and q in
F and q is a q′. This is the definition of subsumption corresponding to ground
nodes (leafs), if the nodes led to are FS themselves the node fs′ in F ′ and fs

in F ; fs′ should subsume fs (fs′ v fs). A general mathematical definition of
subsumption for DAG and non-DAG FS is given in [15] as follows:

Definition 5.3 (Subsumption) [15] F ′ subsumes F , written F ′ v F , if and
only if:

• π ≡ Fπ′ implies π ≡ F ′π′

• PF (π) = t implies PF0 PF ′(π) = t′ and t′ v t

π ≡ Fπ′ notates path equivalence for F with respect to the paths π and π′ (i.e.
the two paths lead to the same node from the root δ(r, π) = δ(r, π′)). PF (π) = σ

means that the type on the path π in F is σ, i.e. θ(δ(r, π)) = σ.[15]

Consider the following implementation of subsumption in accordance to the
definition considered above. We have a plain feature-value pair matrix repre-
sentation of our feature structures. With this simple representation we are able

78 Frame-Based Semantic Parsing

� �

1 subsumes (Dag , Dag) : − ! .
2 subsumes ([] ,) : − ! .
3 subsumes (Value1 , Value2) :−
4 c l a s s (Value1 ,) ,
5 c l a s s (Value2 ,) , ! ,
6 subsumed (Value2 , Value1) .
7 subsumes ([Feature : Value |Dag1] , Dag2) :−
8 subsume aux (Feature , Value , Dag2 , DagReast) ,
9 subsumes (Dag1 , DagReast) .

11 subsume aux (Feature , Value1 , [Feature : Value2 | DagReast] ,
DagReast) :− ! ,

12 subsumes (Value1 , Value2) .
13 subsume aux (Feature , Value , [FeatValue | Descendants] , [FeatValue

| DagReast]) :− ! ,
14 subsume aux (Feature , Value , Descendants , DagReast) .

� �

Listing 5.2: Feature Structure Subsumption

to implement a quite simple and efficient implementation of feature structure
subsumption.

If F ′ v F , each path in F ′ must subsume the corresponding path in F ; the clause
at line 7 in Listing 5.2 basically defines this. subsume aux predicate defined by
clauses at lines 11 13 check whether a path out from the root of F ′ initiated
by the a particular arrow labeled Feature subsumes any corresponding path in
F ; this is done by a depth-first tree-walk (tree-traversal). As indicated above a
ground value (left-nodes) q′ subsumes a ground value q (q′ v q) iff the qis aq′

this is expressed by the subsumes clause at line 3 where qis aq′ is tested by
subsumed(Value2,Value1)(at line 3). 10 Further note that the implementation is
for DAG restricted feature structures only.

An additional useful feature that should be provided by the implementation,
is to be able to determine whether a DAG subsumes any subgraph of another
DAG. This subgraph subsumption facility is useful when we look for a concept
in a descriptor that is an element of a bigger concept. E.g when we look for
a descriptor of a transport concept that might be an element of a regulation
concept. The fact that we look for subsumed subgraph implies that the system
must provide the descriptor of the concept import,which is and element of a
regulation concept, if we look for the subsuming concept transport.

10For efficiency reasons we constrain the the test subsumed(Value2,Value1) to ontology
concepts only(via lines 4 and 5).

5.5 Semantic Descriptors 79

� �

1 subsumes subdag (Dag1 , Dag2) :− subsumes (Dag1 , Dag2) , ! .
2 subsumes subdag (Dag1 , [: Value |]) :− subsumes subdag (Dag1 ,

Value) , ! .
3 subsumes subdag (Dag1 , [|Dag2]) :− subsumes subdag (Dag1 , Dag2)

, ! .
� �

Listing 5.3: Feature Structure Unification

(a)

regulation

Agent insulin

Effect

import
[

Theme glucose

Goal lever-cells

]

(b)

transport
[

Theme substance
]

(c)

import
[

Theme glucose

Goal lever-cells

]

The system facilitating subgraph-subsumption queried with descriptor (b) above
given descriptor (a) should provide us with the answer (c).

In Listing 5.3 included three definite clauses of subsumes−subdag that define
subgraph subsumption operation on our DAG feature structures. In the program
a very simple depth-first search is made to determine whether the firs argument
Dag1 subsumes any subgraph of second argument Dag2.11

11This program could easily be extended all subsumed subgraphs.

80 Frame-Based Semantic Parsing

Chapter 6

Implementation

In this chapter issues concerning the implementation of a small demo is con-
sidered. First an overview on the semantic representation, which is an account
on how the semantic descriptors and ontological terms are represented, is pro-
vided. Afterwards the DCG-based implementation is considered in details and
its functionality is demonstrated with few selected tests. This is divided in
sections corresponding to the main ontological terms and the corresponding
grammar in terms of the pertaining frames, and other utilities accompanying
the program. At the end a general discussion of the implementation will follow
that focuses on the strength and weaknesses of the implementation.

In Section 6.1 how semantic representations, which are the result of parsing is
explained. In Section 6.2 and Section 6.3 frames pertaining to the ontological
concepts of regulation and transport are considered. Necessary linguistic gram-
mar rules and frames included in the system are covered in Section 6.4. In sec-
tion 6.5 the go-grammar that maps ontological terms to descriptors is described
and demonstrated. Section 6.6 includes some tests on descriptor operations,
that was extensively explained in last chapter. Finally in the last section a brief
discussion of the weaknesses and strengths of the system is covered.

82 Implementation

� �

1 ?− s t a r t (Desc ,Term , [l ack , of , i n s u l i n , f o r c e s , i ncrease , of ,
p ro te in , d e g rada t i on] , []) .

3 Desc = [type : r e gu l a t i on , cause : [t ype : l ack , l a c k ed : i n s u l i n] ,
e f f e c t : [t ype : r e gu l a t i on , d i f f e r e n c e : p o s i t i v e , i tem : [pro te in
, d e g rada t i on]]]

4 Term = [i n s u l i n , [r e gu l a t i on , [pro te in , d e g rada t i on]]] ;

6 no
� �

Listing 6.1: Lack of insulin forces increase of protein degradation.

6.1 Semantic Representations

As mentioned in previous chapter, we conduct two simultaneous semantic eval-
uations of text; one in terms of the corresponding ontological term (GO-term in
particular), and one in terms of frame-based descriptors. In order to illustrate
this consider the following semantic evaluation of the sentence “lack of insulin
forces increase of protein degradation” in Listing 6.1. The resulting descriptor
from this example is represented below in the more reader friendly FS-notation.

Type regulation

Cause

[

Type lack

Lacked insulin

]

Effect

Type regulation

Difference positive

Item protein-degradation

This basically as expected describes the main event of regulation in terms of
its Cause, and Effect; forcing or causing some event/process is interpreted as
regulation, based on causation frame. The Cause is a lacking situation where
the Lacked item is insulin; the Effect is a regulation process too with positive
Difference, indicating increase in the Item that is being regulated.

The term representation is in the form of lists with in lists. In particular
[insulin ,[regulation ,[protein ,degradation]]] represents an specialization of the
term Regulation, namely Regulation of Protein-degradation with insulin as the
responsable substance.

6.2 Regulation Frames 83

In the following the formats of semantic representations (descriptors and terms)
corresponding to each frame are considered in detail, but first an overview is
provided.

6.1.1 Frame-based Semantic Descriptors

Descriptors have the general format given below.

Type go-term

Semantic-role-1 value-1

...

Semantic-role-k value-k

Each frame maps to a go-term which is the value of the feature Type in the
descriptor; each Semantic-role denotes a frame-element pertaining to the par-
ticular frame underlying the considered interpretation. E.g. in the example
above we had the semantic-roles (or relations) Cause and Effect, that are ele-
ments of the Causation frame which was evoked by the sentence, i.e. represented
the semantics of the sentence. More details on the actual format of descriptors,
with regard to what are the semantic-roles pertaining to each frame, will be
introduced when each of these frames are considered.

6.1.2 Ontological Terms

The way the go-terms are represented as lists within lists, is an implementation
issue that keeps the program simple and ensures generative capabilities of the
program. By generative capabilities we mean the ability to go from terms to
possible linguistic forms (text) and descriptors. Further information on how
these are built with regard to the each grammar rule pertaining to the frames
will be considered when the corresponding frame is considered.

6.2 Regulation Frames

In this implementation two semantic frames are associated with biological reg-
ulation (GO-term Regulation), namely change-position-on-scale and causation.

84 Implementation

� �

1 agent (agent :N,N)−−>
2 np (N) ,{ subsumed (N, sub s t ance) ,\+subsumed (N, g l u c o s e) } .

4 cause (cause : LDef , LTerm)−−>
5 l a c k i n g (LDef , LTerm) .
6 cause (cause : PCDef ,PCTerm)−−>
7 p o s i t i o n c h an g e s c a l e 1 (PCDef ,PCTerm) .

� �

Listing 6.2: Regulation Frame–elements Agent and Cause

When descriptors are built based on the linguistic models these two frames rep-
resent, the descriptors will have the following basic abstract structure that is
realized with different variations depending on the frames and the pertaining
valence-based rules.

Type regulation

Cause cause-value

Agent agent-value

...

First let us consider the similarities between the implementation of these two
frames in terms of the shared elements Cause and Agent.

The Agent can be any subsumed class of the class substance in the ontology,
but it can not be subsumed by the class glucose. 1 The Cause can be events
like “lack of some-substance” or “some-substance deficiency” (like e.g. insulin
deficiency); and “reduction of some-substance” or “increase of some-substance”
can be causes of regulation processes as well. These are respectively defined by
the two alternatives of cuase at lines 5 and 7 in Listing 6.2.

The semantic contributions of Agent and Cuase in terms of descriptors are
feature-value pairs (i.e. cause:LDef and agent:N). Cause-values are compound
values, i.e. FS-descriptors; and agent-values are atomic-values, i.e. ontological
terms. I terms of what they contribute to the ontological term evaluation; they
contribute with the agent (e.g. insulin) in both cases so terms of e.g. the
following form are built [agent−value,[regulation ,[some−process]].

1Glucose may in reality participate in the cause of some biological regulation process (i.e.
be the Agent), but right now it is not allowed for glucose to fill the role of Agent.

6.2 Regulation Frames 85

6.2.1 Change-Position-on-Scale Frame

In the following change-position-on-scale frame, as is called position change scale

in the implementation, is considered. Change-position-scale frame has two
semantic-roles in addition to Cause and Agent (introduced above), namely Dif-
ference and Item.

Regulation of biological processes can be changes of positions on scales with
different dimensions, e.g. magnitude, rate and frequency etc. On the linguistic
level change can be described generally with words like increase or decrease,
that are respectively translated to positive and negative here. When consid-
ering the dimension of the change with respect to a process in GO-ontology,
it is implicit in the ontology. The interpretations here (positive and negative)
relies on the way GO-terms/classes are defined e.g. like “positive regulation of
glucose import” and the corresponding “negative regulation of glucose import”
as sub-terms of “regulation of glucose import”. These terms are interpreted as
increase of the import-process, and decrease of the import-process respectively.2

Basically positive and negative are atomic values of the semantic-role Difference.
The additional semantic-role pertaining to the frame here is Item, which is the
item that changes position on a scale with some abstract/implicit dimension.

In order to have more control on what subsets of linguistic appearances, of this
frame can e.g. be the Cause and Effect of in regulation events (introduced
above in 6.2), we will distinguish between rules belonging to the lexical-units
of reduction.n and increase.n, and rules belonging to the lexical-units of de-
crease.v and increase.v. The first set of rules given in Listing 6.3 pertain to
position change scale1 and are based on valences of reduction.n and increase.n.
As we have seen (in Listing 6.2) position change scale1 can be the Cause of reg-
ulation processes along with lacking events.

Item (Listing 6.3 at lines 6-7) which is shared by position change scale (Listing 6.5)
and position change scale1 , either can be an ontological term, or it can be an
linguistic representation of an transport-process.

Listing 6.4 shows tests of position change scale1 used first (at line 1) for se-
mantic parsing, and second for generation of text based on the term “protein
degradation”(at line 8).

Since reduction or increase of some substance can be the Cause or Effect of
an causation event, or Cause of an position-change event; while the defini-

2Positive and negative might in situation be the inverse of what we understand by them
namely increase and decrease respectively. But this is considered to be a matter for ontologist
to precisely represent what the correct interpretation is.

86 Implementation

� �

1 p o s i t i o n c h a n g e s c a l e 1 ([d i f f e r e n c e : nega t i ve , type : r e gu l a t i on ,
IDef] , ITerm)−−>

2 [r e duc t i on] , [o f] , i tem (IDef , ITerm) .
3 p o s i t i o n c h a n g e s c a l e 1 ([d i f f e r e n c e : p o s i t i v e , type : r e gu l a t i on ,

IDef] , ITerm)−−>
4 [i n c r ea s e] , [o f] , i tem (IDef , ITerm) .

6 i tem (item :NP,NP)−−>np (NP) .
7 i tem (item : PDef ,Term)−−>t r a n s p o r t (PDef ,Term) .

� �

Listing 6.3: Change–Position–on–Scale Frame1

� �

1 ?− p o s i t i o n c h a n g e s c a l e 1 (Def ,TM, [increase , of , p ro te in ,
d e g rada t i on] , []) .

3 Def = [d i f f e r e n c e : p o s i t i v e , type : r e gu l a t i on , i tem : [
pro te in , d e g rada t i on]]

4 TM = [pro te in , d e g rada t i on] ;

6 no

8 ?− p o s i t i o n c h a n g e s c a l e 1 (Def , [p ro te in , d e g rada t i on] ,ST , []) .

10 Def = [d i f f e r e n c e : p o s i t i v e , type : r e gu l a t i on , i tem : [
pro te in , d e g rada t i on]]

11 ST = [increase , of , p ro te in , d e g rada t i on] ;

13 Def = [d i f f e r e n c e : nega t i ve , type : r e gu l a t i on , i tem : [
pro te in , d e g rada t i on]]

14 ST = [reduc t i on , of , p ro te in , d e g rada t i on] ;

16 no
� �

Listing 6.4: Test of position change scale1

6.2 Regulation Frames 87

� �

1 p o s i t i o n c h a n g e s c a l e ([d i f f e r e n c e : p o s i t i v e , type : r e gu l a t i on ,
IDef , CDef] ,

2 [CTerm , [r e gu l a t i on , ITerm]]) −−>
3 cause (CDef ,CTerm) , [i n c r e a s e s] , i tem (IDef , ITerm) .
4 p o s i t i o n c h a n g e s c a l e ([d i f f e r e n c e : p o s i t i v e , type : r e gu l a t i on ,

IDef , ADef] ,
5 [ATerm , [r e gu l a t i on , ITerm]])−−>
6 agent (ADef ,ATerm) , [i n c r e a s e s] , i tem (IDef , ITerm) .
7 p o s i t i o n c h a n g e s c a l e ([d i f f e r e n c e : nega t i ve , type : r e gu l a t i on ,

IDef , CDef] ,
8 [CTerm , [r e gu l a t i on , ITerm]])−−>
9 cause (CDef ,CTerm) , [d e c r ea s e s] , i tem (IDef , ITerm) .

10 p o s i t i o n c h a n g e s c a l e ([d i f f e r e n c e : p o s i t i v e , type : r e gu l a t i on ,
IDef , ADef] ,

11 [ATerm , [r e gu l a t i on , ITerm]])−−>
12 agent (ADef ,ATerm) , [d e c r ea s e s] , i tem (IDef , ITerm) .

� �

Listing 6.5: Change–Position–on–Scale Frame2

� �

1 ?− p o s i t i o n c h a n g e s c a l e (Def , Term , [l ack , of , i n s u l i n ,
i n c r ea s e s , pro te in , d e g rada t i on] , []) .

3 Def = [d i f f e r e n c e : p o s i t i v e , type : r e gu l a t i on , i tem : [
pro te in , d e g rada t i on] , cause : [t ype : l ack , l a c k ed :
i n s u l i n]]

4 Term = [i n s u l i n , [r e gu l a t i on , [pro te in , d e g rada t i on]]] ;

6 no
� �

Listing 6.6: position change scale Test1

tion(descriptor) describes the event in details, the term returned is merely the
Item-term. This is due to (as we saw above in 6.2) the fact Cause and Agent
both contribute with single terms, to the term build-up of regulation frames.
This is the same for when position change scale1 is the Effect of Causation. An
example illustrating the latter is given in Listing 6.10.

The second set of rules given in Listing 6.5 pertain to position change scale and
are based on valences of reduction.v and increase.v lexical-units.

Listing 6.6 shows a test of position change scale used for semantic parsing; and
Listing 6.7 shows a test for generation of text based on a go-terms. Among the
texts generated there are non-valid sentences, e.g. while the sentence lack of
insulin increases protein degradation is valid, the sentence reduction of insulin

88 Implementation

� �

1 ?− p o s i t i o n c h a n g e s c a l e (Def , [i n s u l i n , [r e gu l a t i on , [pro te in ,
d e g rada t i on]]] , ST , []) .

3 Def = [d i f f e r e n c e : p o s i t i v e , type : r e gu l a t i on , i tem : [
pro te in , d e g rada t i on] , cause : [t ype : l ack , l a c k ed :
i n s u l i n]]

4 Sentence = [l ack , of , i n s u l i n , i n c r ea s e s , pro te in , d e g rada t i on] ;

6 Def = [d i f f e r e n c e : nega t i ve , type : r e gu l a t i on , i tem : [
pro te in , d e g rada t i on] , cause : [d i f f e r e n c e : nega t i ve , type
: r e gu l a t i on , i tem : i n s u l i n]]

7 Sentence = [reduc t i on , of , i n s u l i n , decreases , pro te in ,
d e g rada t i on] ;

� �

Listing 6.7: position change scale Test2

� �

1 | ?− p o s i t i o n c h a n g e s c a l e ([d i f f e r e n c e : p o s i t i v e , type :
r e gu l a t i on , i tem : [pro te in , de

2 g rada t i on] , cause : [t ype : l ack , l a c k ed : i n s u l i n]] ,TM,ST , []) .

4 Term = [i n s u l i n , [r e gu l a t i on , [pro te in , d e g rada t i on]]]
5 Sentence = [i n s u l i n , d e f i c i e n c y , i n c r ea s e s , pro te in , d e g rada t i on

] ;

7 Term = [i n s u l i n , [r e gu l a t i on , [pro te in , d e g rada t i on]]]
8 Sentence = [l ack , of , i n s u l i n , i n c r ea s e s , pro te in , d e g rada t i on] ;

10 yes
� �

Listing 6.8: position change scale Test3

6.3 Transport Frames 89

� �

1 cau sa t i on ([type : r e gu l a t i on , ADef , EDef] , [ATerm , [r e gu l a t i on ,
EFTerm]])−−>

2 agent (ADef ,ATerm) , [f o r c e s] , e f f e c t (EDef ,EFTerm) .
3 cau sa t i on ([type : r e gu l a t i on , CDef , EDef] , [CTerm , [r e gu l a t i on ,

EFTerm]])−−>
4 cause (CDef ,CTerm) , [f o r c e s] , e f f e c t (EDef ,EFTerm) .

6 e f f e c t (e f f e c t : PDef ,PTerm)−−>t r a n s p o r t (PDef ,PTerm) .
7 e f f e c t (e f f e c t : PDef ,PTerm)−−>p o s i t i o n c h a n g e s c a l e 1 (PDef ,

PTerm) .
� �

Listing 6.9: Causation Frame

decreases protein degradation is not valid and contradictory to the first sentence.
The system is not geared to verify the sentences it builds based on go-terms at
these level. But mapping (generation) from descriptors to text as is tested in
the Listing 6.8 yields valid sentences only.

6.2.2 Causation

When natural language representations of Regulation can be modeled with Cau-
sation frame the Effect of the regulation process is in focus as well as Cause or
Agent. The Effect can be a transport or position-change event.

Listing 6.10 shows an example of semantically parsing the the sentence “insulin
forces reduction of protein degradation”. At a closer look on the result we see
that even the effect of the main regulation event is a regulation event itself, but
the term it translated to ([insulin ,[regulation ,[protein ,degradation]]]) denote
the single biological regulation event as it should. The nested regulation event
in the descriptor reflect the right linguistic perspective this event; while the term
is a mapping of the term to a node the ontological hierarchy.

6.3 Transport Frames

Transport descriptors have the following general form. And in certain cases the
Carrier and Goal sematic-roles with the corresponding fillers will be added to
the descriptors. Two frames pertaining to transport are included Bringing and
Storing. Listing 6.11 shows the rules pertaining to these two transport-frames.

90 Implementation

� �

1 | ?− cau sa t i on (Def ,TM, [i n s u l i n , f o r c e s , reduc t i on , of ,
p ro te in , d e g rada t i on] , []) .

3 Def = [type : r e gu l a t i on , agent : i n s u l i n , e f f e c t : [
d i f f e r e n c e : nega t i ve , type :

4 r e gu l a t i on , i tem : [pro te in , d e g rada t i on]]]
5 TM = [i n s u l i n , [r e gu l a t i on , [pro te in , d e g rada t i on]]] ;

7 no
� �

Listing 6.10: Test causation

Type transport

Theme theme-value

Goal goal-value

....

6.4 Linguistic-level Frames and the Ontology

The frame-based grammar here is assisted by some very simple natural language
phrasal rules defining some simple set of noun-phrases, and the linguistic-level
frame of lacking.

6.4.1 Lacking Frame

We have already seen the Lacking frame in action, which models linguistic ex-
pressions denoting the event of lacking. The underlying meaning of lacking,
though very important semantically is not covered by any ontological concept
since it pertains to propositional semantics of text. Lacking here is defined on
the two lexical-units of deficiency.n and lack.n as illustrated in Listing 6.12. It
has the single element Lacked and will have descriptors consisting of type : lack

and Lacked having a term as value. It contributes only lacked term to any term
build-up.

6.4 Linguistic-level Frames and the Ontology 91

� �

1 s t o r i n g ([type : t r an spo r t , TDef , GDef] , [THTerm, impor t t])−−>
2 [s t o ra g e] , [o f] , theme (TDef ,THTerm) , [in] , g oa l (GDef ,) .
3 s t o r i n g ([type : t r an spo r t , TDef] , [THTerm, impor t t])−−>
4 [s t o ra g e] , [o f] , theme (TDef ,THTerm) .

6 b r i n g i n g ([type : t r an spo r t , TDef] , [THTerm, t r a n s p o r t])−−>
7 [i n t a k e] , [o f] , theme (TDef ,THTerm) .
8 b r i n g i n g ([type : t r an spo r t , CRDef , TDef , GDef] , [THTerm, t r a n s p o r t

])−−>
9 c a r r i e r (CRDef ,) , [carry] , theme (TDef ,THTerm) , [in] ,

g oa l (GDef ,) .

11 theme (theme :N,N)−−>
12 np (N) ,{ subsumed (N, sub s t ance) } .
13 goa l (goa l :N,N)−−>
14 n(N) ,{ subsumed (N, c e l l c omp) } .
15 c a r r i e r (c a r r i e r :N,N)−−>
16 np (N) ,{ subsumed (N, sub s t ance) ,\ subsumed (N, g l u c o s e) } .

� �

Listing 6.11: Transport Frames

� �

1 l a c k i n g ([type : l ack , LDef] , LTerm)−−>
2 [l a c k] , [o f] , l a c k ed (LDef , LTerm) .
3 l a c k i n g ([type : l ack , LDef] , LTerm)−−>
4 l a c k ed (LDef , LTerm) , [d e f i c i e n c y] .
5 l a c k ed (l a c k ed :N,N)−−>np (N) ,{ subsumed (N, sub s t ance) } .

� �

Listing 6.12: Lacking Frames

92 Implementation

� �

1 n(N)−−>[N] ,{ c l a s s (N,) } .
2 np (N)−−>n(N) .
3 np ([N1 ,N2])−−>np (N1) , np (N2) .
4 ad j (p o s i t i v e)−−>[p o s i t i v e] .
5 ad j (n e g a t i v e)−−>[n e g a t i v e] .

� �

Listing 6.13: Phrase–grammar

6.4.2 Phrase Grammar and Ontology

A noun in our grammar is an atomic term from the underlying taxonomy. Com-
pound terms are the subset of noun-phrases that are conjunctions of terms, are
called np here. Additionally we have positive and negative adjectives. The very
simple phrase-grammar assisting our frames is included in 6.13

6.5 GO Grammar

When search is based on the ontological hierarchy we have to have a means of
determining corresponding semantic definitions (descriptor) of each node in the
hierarchy. For this purpose a grammar with precedence (see Listing 6.14) is
defined that can map terms to descriptors and vice versa.

Listing 6.15 show two test of GO-grammar; firs test where the term “insulin reg-
ulation of glucose import” is translated to its corresponding semantic descriptor;
and second test where a semantic descriptor is translated to the corresponding
GO-terms. Note that the answer at line 10 in Listing 6.15 subsumes the first
answer at line 8, this is due to the fact that import processes get the type
transport that is the super-term, in their semantic definitions (see Listing 6.14
line 21).

6.6 Descriptor Implementation

Descriptor querying facilities are already described in detail (in Section 5.5 on
page 73) therefor this part of the implementation will not be considered further.
Instead we will look at some tests.

Let us consider the two simple tests included in Listing 6.16 that test the oper-

6.6 Descriptor Implementation 93

� �

1 :− t a b l e go term /3 .
2 :− [on to l o gy] .
3 :− [phrase grammar] .
4 go term (TDef)−−>go term1 (TDef) .
5 go term1 ([d i f f e r e n c e :A | TDef])−−>
6 ad j (A) , go term2 (TDef) .
7 go term1 (TDef)−−>go term2 (TDef) .
8 go term1 (TDef2)−−>go term4 (TDef2) .
9 go term1 (TDef2)−−>go term5 (TDef2) .

11 go term2 ([agent : TDef1 | TDef2])−−>
12 go term5 (TDef1) , go term3 (TDef2) .
13 go term2 (TDef2)−−>go term3 (TDef2) .

15 go term3 ([type : r e g u l a t i o n])−−>[r e g u l a t i o n] .
16 go term3 ([type : r e gu l a t i on , e f f e c t : TDef])−−>
17 [r e g u l a t i o n] , go term4 (TDef) .

19 go term4 ([type : t r an spo r t , theme : TDef])−−>
20 go term5 (TDef) , [t r a n s p o r t] .
21 go term4 ([type : t r an spo r t , theme : TDef])−−>
22 go term5 (TDef) , [impor t t] .
23 go term4 ([type : t r a n s p o r t])−−>[t r a n s p o r t] .
24 go term4 ([type : impor t t])−−>[impor t t] .

26 go term5 (NP)−−>n(NP) .
� �

Listing 6.14: Go–grammar

� �

1 ?− go term (Def , [i n s u l i n , r e gu l a t i on , g l ucose , impor t t] , []) .

3 Def = [agent : i n s u l i n , type : r e gu l a t i on , e f f e c t : [t ype :
t r a n s p o r t , theme : g l u c o s e]] ;

5 no
6 | ?− go term ([d i f f e r e n c e : p o s i t i v e , agent : i n s u l i n , type :

r e gu l a t i on , e f f e c t : [t ype : t r an spo r t , theme : g l u c o s e]] ,X , []) .

8 X = [po s i t i v e , i n s u l i n , r e gu l a t i on , g l ucose , impor t t] ;

10 X = [po s i t i v e , i n s u l i n , r e gu l a t i on , g l ucose , t r a n s p o r t] ;

12 no
� �

Listing 6.15: Go–grammar Test

94 Implementation

� �

1 ?− subsumes ([type : r e gu l a t i on , agent : i n s u l i n , e f f e c t : [t ype :
p ro c e s s]] , [t ype : r e gu l a t i on , agent : i n s u l i n , e f f e c t : [t ype :
t r an spo r t , theme : g l ucose , g oa l : l i v e r c e l l s]]) .

3 yes
4 ?− subsumes subdag ([type : t r an spo r t , theme : su b s t ance] , [t ype :

r e gu l a t i on , agent : i n s u l i n , e f f e c t : [t ype : t r an spo r t , theme :
g l ucose , g oa l : l i v e r c e l l s]]) .

6 yes
� �

Listing 6.16: Descriptor Operations Test

ations, we defined on descriptors in Section 5.5. The first test (at line 1) that
tests the subsumption operation, is the same as querying the system with e.g.
‘‘insulin regulation”. The second test (at line 4) that tests subsumes-subdag
(explained in 5.5), corresponds to the case where we are looking for a “transport
of any substance” event, that is part of a compound event like e.g. “insulin
forces storage of glucose”.

6.7 Strength and Weaknesses

The strength of the system is first and foremost the accuracy of the semantic
interpretations it produces. Its weakness is that, it is case-based and not more
general in its nature.

One issue illustrated by examples above (in 6.2.1), is when text is generated
based on a term. Some of these generated text pieces (as we saw) are invalid
assertions in the considered domain. But on the other hand the GO-grammar
(see Section 6.5) translates go-terms to semantics descriptors quit accurately;
and in return these can be used to generate valid text, that can e.g. be used
to search the web with using traditional key-word based search. Searching
the web with a set of semantically related key-words must in principle result
in semantically relevant results, since traditional key-word search is based on
distances of appearances of the key-words in text. .

Chapter 7

Conclusion

In this chapter a brief comparison of the method suggested here and an alter-
native method, for semantic parsing is included. Further what the next step
would be, if a full-scale semantic parser based on frames were to be realized, is
considered. At the end the project is summarized, in terms of achievements and
lessons of the project, for a session of ending remarks.

7.1 Discussion

In this section we would have a brief discussion on an alternative method com-
pared with the method suggested in this document - and used in this project.
We take a look at weaknesses and advantages of frame-based semantic pars-
ing compared with the alternative, that is thematic-role labeling via generative
grammars.

Further we will see how linguistics based approaches like semantic frames - that
is the right and hard way of approaching semantics - can be combined with
generic methods that are more desirable for computer systems.

96 Conclusion

7.1.1 Frame-Based Grammar

One of the weaknesses of frame based grammar is that, it is case based. I.e. it is
based on syntactic-semantic properties of single words. This causes reputations
in terms of rules for syntactical structures that would be avoided if we had a
general CFG. But this will not be an issue if the syntactic-semantic properties
of words are represented in lexicons with well designed, well specified format,
and the grammar is a Head-driven Phrase Structure Grammar (HPSG)[10].
HPSG represent a generic model on natural languages, since it stipulates general
phrase-structures in terms of e.g. FS-descriptor defining linguistic properties of
the constituents.

The advantage of our frame-based approach to semantics, is essentially its ac-
curacy, which comes with the price of being costly to implement.

7.1.2 Generative Grammar

When general thematic-roles are used for analysis of semantics based on syntax
only, the probability for erroneous semantic interpretation is big. This is first
and foremost due to ambiguity of grammars, and deficiencies inherited in the
method of assigning roles based on syntax only. Syntactic and semantic proper-
ties of words must be considered in any consistent method for analysis of natural
language semantics. Further there is another issue with regard to thematic-role
labeling that concerns the nature of thematic-roles themselves. Thematic roles
are not context sensitive and in principle cannot easily be extended with mean-
ingful semantic constraints.

Though generative approaches based only on syntax, are not able to give a sound
analysis of semantics, they are more likely to be implemented since less efforts
are required for their implementations compared with our frame-based approach.
But frame-based approach is still preferred over the alternative since with even
limited numbers of frames and lexical-units, lots of semantically domain relevant
information can be processed and generated.

7.2 The way forward

We will look at different approaches each rooted in their own fields of work here,
that seem to be in contrast with each other but can be combined in order to
realize feasible NLP systems.

7.2 The way forward 97

7.2.1 Linguistics Approach vs Generative Approach

A linguistics based, case-sensitive lexicographical approach to semantics of nat-
ural languages is a must. By linguistics based approach, we mean methods
concerned with formalizations of natural language properties (syntax and se-
mantics) that are realistic and context-sensitive in their view on language.

While in linguistics the objective is a comprehensive formalization, the com-
prehensiveness is not necessarily required for computer systems. Depending on
the applications, the systems may require more or less comprehensive formaliza-
tions. In computer science the trend is to look for generalizations that formalize
the domains of interest - here natural language syntax and semantics - in a
concise way. Without generative formalizations implementations of e.g. seman-
tic processors are not feasible. By generative we mean that not everything is
explicitly stated, but the underlying formalizations give room for generation of
required information. Examples of generative formalizations are e.g. ontological
grammars as well as ontologies themselves.

One might think that the the linguistics based approach is the opposite of the
computer-science algorithmic approach. But as the latest efforts in the com-
putational linguistics field shows, these two approaches are not necessarily in
conflict. With the emergence and evolvement of lexical resources like WordNet,
FrameNet etc. and generic linguistic formalizations (like the idea of HPSG),
it is possible to have the best of both worlds. It is crucial to drag on both
approaches in order to build the next generation of natural language processors,
that can cope with the demands of the information-age.

7.2.2 The Way Forward

The role played by domain ontologies as the basis for semantics - basis for
semantic analysis, representation and search - is the single most important issue
for systems like the one suggested here. Ontologies must be incorporated in
the grammars in oder to be able to impose semantic constraints and facilitate
real ontology-driven search. In order to fulfill this requirement DCG-notation
extended with semantic constraints in combination with logical representation
of the underlying ontologies were chosen. But a generic modular architecture
based on a concise formalizations is clearly preferred over the status quo.

FS-based HPSG in combination with well documented, reliable lexical resources
that give a comprehensive account of syntactic-semantic properties of words, is
the way forward. We have already considered how FS-based grammar rules

98 Conclusion

work e.g. with regard to valence etc. FS-notation were in fact used in order to
make the case for the use of semantic frames. The XML-based architecture of
FrameNet essentially represents its syntactic-semantic data in a format similar
to FS. But a generic architecture is not easily achieved without resolving some
design and implementation issues. First and foremost, frames from FrameNet
must be extended with domain specific semantic constraints, and semantic veri-
fication based on these constrains should be facilitated based on ontologies. The
project essentially consists of specification and elaboration of the right format
for lexical data that represent valence patterns along with semantic constrains,
and building systems on this format which do the semantic parsing an verifica-
tion.

Collecting and specifying the frames is likely to take much effort and time. But
that job can be done by ontologist and linguists. Efforts on specifying bio-
medical specific frames are in motion as I write now. With regard to this the
interested reader can read about the project BioFrameNet, which is ”domain-
specific FrameNet extension”.[17]

7.3 Final Remarks

The project documented here by this report has shown that semantic frame-
based analysis of natural languages, can provide a mapping from text to se-
mantics, that is reliable and significant. The method derives domain specific
semantic structures (frames) from ontological terms, that enables us to ana-
lyze, determine and represent domain specific semantics of text. The extend
of semantic depth provided with the suggested method is beyond what can be
expected from a generative natural language grammar based on thematic-role
labeling, even extended with controlled vocabularies. The semantic interpreta-
tions achieved by the suggested method are supported by semantic verifications
based on formal consistent domain specific taxonomies. Mappings from text to
semantics in terms of ontological terms and semantic descriptors are supported
by well documented, realistic linguistic patterns with evidence in large collection
of text. The semantic interpretation provided goes beyond mappings from text
to ontological terms only, they even provide propositional semantics that can
be used for reasoning.

The Prolog-based technique suggested for building the semantic parser facili-
tates several modes of use. The system can be used for semantic parsing and cor-
respondingly ontology driven information retrieval based on queries with text.
It also allows for querying the system with ontological terms that based on a
grammar are mapped into semantic descriptors. This feature of the system al-

7.3 Final Remarks 99

lows for navigational style, hierarchy based search of information, based on the
hierarchy of the ontology.

The amounts of work required for a realistic implementing based on the method
suggested here is the main obstinate. Though I have shown that even with
limited amount of syntactic-semantic lexical entries extended with ontological
types a vast amount of semantically significant pieces of information can be
gathered (parsed). But the implementation method should be replaced with
a more generic implementation, where the parsing and semantic verification is
separated from the grammar, which is structured in a formally specified format.

The main result here is the research that is documented by this paper. The
research has brought about a through analysis of semantics in natural language
based on the idea of frame semantics. Further how semantic frames are to be
extended and used, for ontology-driven deep semantic interpretation of domain
specific content is shown. Issues concerning implementation of formal ontology-
based semantic parsers, with frame-based grammars are analyzed and resolved
in this project. In particular methods for defining or identifying frames based on
formal domain ontologies are illustrated. Further how these frames are extended
with ontological type constraints are explained. A demo proving the concept
of frame-based domain specific semantic interpretation is implemented. This
demo shows how ontology driven information retrieval can be facilitated.

100 Conclusion

Appendix A

Appendix A

In this you will find the code of the Prolog-program I have work with. These
are divided in to Sections A.1 includes the implementations of the parsers work
on in association with Chapter 4. These are files with .pl extension, i.e. they
are SWI-Prolog files.

Sections A.2 includes the code for the demo created in this project. This files
are with .P extension, i.e. they are XSB-Prolog files.

A.1 Parsers

A.1.1 leftcorner recognizer.pl

Listing A.1: leftcorner recognizer.pl
� �

1 :− op (700 , xfx ,−−−>) .
2 l e f t c o r n e r r e c o g n i z e r (StartSymbol , Wordlist) :−
3 scan (StartSymbol , Wordlist , []) .

5 scan (Pred ict ion , [Word |Wordlist] , RmWordlist) :−
6 l ex (Word , LexCat) ,

102 Appendix A

7 complete (Pred ict ion , LexCat , Wordlist , RmWordlist) .

9 complete (Pred ict ion , Pred ict ion , Wordlist , Wordlist) .
10 complete (Pred ict ion , CompleteCat , Wordlist , RmWordlist) :−
11 LHS −−−> [CompleteCat | Pred i c t i on s] ,% the notat ion with

operator −−−> i s same as ru l e (LHS , [SubCat |
Pred i c t i on s]) .

12 p r ed i c t (Pred i c t ion s , Wordlist , RmWordlist1) ,
13 complete (Pred ict ion ,LHS, RmWordlist1 , RmWordlist) .

15 p r ed i c t ([] , Wordlist , Wordlist) .
16 p r ed i c t ([Pred i c t ion | Pred i c t i on s] , Wordlist , RmWordlist) :−
17 scan (Pred ict ion , Wordlist , RmWordlist1) ,
18 p r ed i c t (Pred i c t ion s , RmWordlist1 , RmWordlist) .

20 :− [frameGrammar] .
� �

Listing A.1: leftcorner recognizer.pl

A.1.2 bottom up acp.pl

Listing A.2: bottom up acp.pl
� �

1 :− op (700 , xfx , −−−>) .
2 :−dynamic arc /4 .
3 :−dynamic word /3 .
4 :− [frameGrammar] .

6 bot tom up act iv e char t (Start Symbol , Input S t r ing) :−
7 c l ean char t ,
8 i n i t c h a r t (Input St r ing , 0) ,
9 i n i t ag enda (Agenda) ,

10 proce s s agenda (Agenda) ,
11 l ength (Input St r ing , N) ,
12 arc (N,0 , [] , Start Symbol) .

14 p r ed i c t (arc (E, S , [] , Cat1) ,Agenda , Agenda1) :−
15 f i n d a l l (arc (E, S ,RHS, Cat2) , Cat2−−−>[Cat1 |RHS] , NewArcs) ,
16 append(NewArcs , Agenda , Agenda1) .
17 p r ed i c t (, Agenda , Agenda) .

19 complete (arc (E1 , S1 , [] , Cat1) ,Agenda , Agenda1) :−
20 f i n d a l l (arc (E1 , S2 ,RHS, Cat2) , arc (S1 , S2 , [Cat1 |RHS] , Cat2) ,

NewArcs) ,
21 append(NewArcs , Agenda , Agenda1) .
22 complete (, Agenda , Agenda) .

A.1 Parsers 103

24 scan (arc (E1 , S1 , [Cat2 |RHS] , Cat1) ,Agenda , Agenda1) :−
25 f i n d a l l (arc (E2 , S1 ,RHS, Cat1) , arc (E2 , E1 , [] , Cat2) ,NewArcs) ,
26 append (NewArcs , Agenda , Agenda1) .
27 scan (, Agenda , Agenda) .

29 in i t ag enda (Agenda) :−
30 f i n d a l l (arc (E, S , [] , Cat) ,
31 (word (Word , S ,E) , l e x (Word , Cat)) ,Agenda) .

33 i n i t c h a r t ([] ,) .
34 i n i t c h a r t ([Word | St r ing] , E) :−
35 NewE i s E + 1 ,
36 a s s e r t (word (Word ,E,NewE)) ,
37 i n i t c h a r t (Str ing , NewE) .

39 proce s s agenda ([]) .
40 p roce s s agenda ([Arc |Agenda]) :−
41 add to char t (Arc , Agenda , NewAgenda) ,
42 proce s s agenda (NewAgenda) .

44 add to char t (Arc , Agenda1 , Agenda4) :−
45 \+Arc , ! ,
46 a s s e r t z (Arc) ,
47 p r ed i c t (Arc , Agenda1 , Agenda2) ,
48 complete (Arc , Agenda2 , Agenda3) ,
49 scan (Arc , Agenda3 , Agenda4) .
50 add to char t (, Agenda , Agenda) .

53 c l e an cha r t :−
54 r e t r a c t a l l (arc (, , ,)) ,
55 r e t r a c t a l l (word (, ,)) .

� �

Listing A.2: bottom up acp.pl

A.1.3 Grammars

Listing A.3: frameGrammar.pl
� �

2 s t o r i n g −−−> [np , theme] .
3 theme −−−> [pp] .
4 np −−−> [noun] .
5 pp −−−> [prep , np] .
6 l e x (storage , noun) .

104 Appendix A

7 l ex (g lucose , noun) .
8 l e x (of , prep) .

10 % l i n k (np , s t o r i n g) .
11 % l i n k (pp , theme) .
12 % l i n k (noun , np) .
13 % l i n k (noun , s t o r i n g) .
14 % l i n k (prep , pp) .
15 % l i n k (prep , theme) .
16 % l i n k (X,X) .

� �

Listing A.3: frameGrammar.pl

Listing A.4: expGrammar.pl
� �

1 %% Author :
2 %% Date : 31−08−2007

4 e −−−> [t] .
5 e −−−> [e , pl , t] .
6 t −−−> [p] .
7 t −−−> [t , ml , p] .
8 l e x (a , p) .
9 l e x (+ , p l) .

10 l e x (∗ ,ml) .
� �

Listing A.4: expGrammar.pl

A.2 Demo

A.2.1 frame grammar.P

Listing A.5: frame grammar.P
� �

2 :− t ab l e p roce s s /4 .
3 :− t ab l e r e gu l a t i on /4 .

5 :− [onto logy] .
6 :− [u t i l i t y] .
7 :− [phrase grammar] .
8 :− [p o s i t i o n c h an g e s c a l e] .
9 :− [cau sat ion] .

10 :− [s t o r i n g] .

A.2 Demo 105

11 :− [b r ing ing] .
12 :− [l a ck in g] .

14 s t a r t (Def ,PTerm)−−>proce s s (Def ,PTerm) .
15 proce s s (Def ,TTerm)−−>t ran spor t (Def ,TTerm) .
16 proce s s (Def ,RTerm)−−>r e gu l a t i on (Def ,RTerm) .
17 proce s s (Def ,RTerm)−−>l a ck in g (Def ,RTerm) .
18 t ranspor t (Def , STTerm)−−>s t o r i n g (Def , STTerm) .
19 t ranspor t (Def , STTerm)−−>br ing ing (Def , STTerm) .
20 r e gu l a t i on (Def ,CSTerm)−−>causat ion (Def ,CSTerm) .
21 r e gu l a t i on (Def ,PSTerm)−−>p o s i t i o n c h an g e s c a l e (Def ,PSTerm) .
22 r e gu l a t i on (Def ,PSTerm)−−>p o s i t i o n c h an g e s c a l e 1 (Def ,PSTerm) .

� �

Listing A.5: frame grammar.P

A.2.2 ontology.P

Listing A.6: ontology.P
� �

1 :− t ab l e subsumed /2 .

3 c l a s s (en t i ty , none) .
4 c l a s s (process , en t i t y) .
5 c l a s s (t ransport , p roce s s) .
6 c l a s s (r egu lat ion , p roce s s) .
7 c l a s s (degradation , p roce s s) .
8 c l a s s (substance , en t i t y) .
9 c l a s s (hormone , substance) .

10 c l a s s (i n su l i n , hormone) .
11 c l a s s (g lucose , substance) .
12 c l a s s (ce l l comp , en t i t y) .
13 c l a s s (l i v e r c e l l s , c e l l comp) .
14 c l a s s (f a t c e l l s , c e l l comp) .
15 c l a s s (prote in , substance) .

17 subsumed (A,B) :− c l a s s (A,B) .
18 subsumed (A,B) :− c l a s s (A,C) , subsumed (C,B) .
19 subsumed (A,A) .

� �

Listing A.6: ontology.P

A.2.3 phrase grammar.P

106 Appendix A

Listing A.7: phrase grammar.P
� �

1 :− t ab l e np /3 .

3 n (N)−−>[N] ,{ c l a s s (N,) } .
4 np (N)−−>n(N) .
5 np ([N1 ,N2])−−>np(N1) ,np(N2) .
6 adj (p o s i t i v e)−−>[p o s i t i v e] .
7 adj (negat iv e)−−>[n egat iv e] .

� �

Listing A.7: phrase grammar.P

A.2.4 lacking.P

Listing A.8: lacking.P
� �

1 :− t ab l e l a ck in g /4 .

3 l a ck in g ([type : lack , LDef] , LTerm)−−>[l a ck] , [o f] , lacked (LDef ,
LTerm) .

4 l a ck in g ([type : lack , LDef] , LTerm)−−>lacked (LDef , LTerm) , [
d e f i c i e n c y] .

5 lacked (lacked :N,N)−−>np(N) ,{ subsumed (N, substance) } .
� �

Listing A.8: lacking.P

A.2.5 bringing.P

Listing A.9: bringing.P
� �

2 br ing ing ([type : t ransport , TDef] , [THTerm , t ranspor t])−−>
3 [in take] , [o f] , theme (TDef ,THTerm) .
4 b r ing ing ([type : t ransport , CRDef , TDef , GDef] , [THTerm , t ranspor t])

−−>
5 c a r r i e r (CRDef ,) , [ca r ry] , theme (TDef ,THTerm) , [

in] , goa l (GDef ,) .

7 c a r r i e r (c a r r i e r :N,N)−−>np(N) ,{ subsumed (N, substance) ,\ subsumed (
N, g lucose) } .

� �

Listing A.9: bringing.P

A.2 Demo 107

A.2.6 storing.P

Listing A.10: storing.P
� �

1 s t o r i n g ([type : t ransport , TDef , GDef] , [THTerm, importt])−−>
2 [s torage] , [o f] , theme (TDef ,THTerm) , [in] , goa l (GDef ,) .
3 s t o r i n g ([type : t ransport , TDef] , [THTerm , importt])−−>
4 [s torage] , [o f] , theme (TDef ,THTerm) .

6 theme (theme :N,N)−−>n(N) ,{ subsumed (N, substance) } .
7 goa l (goa l :N,N)−−>n(N) ,{ subsumed (N, ce l l comp) } .

� �

Listing A.10: storing.P

A.2.7 position change scale.P

Listing A.11: position change scale.P
� �

1 :− t ab l e p o s i t i o n c h an g e s c a l e /4 .
2 :− t ab l e p o s i t i o n c h an g e s c a l e 1 /4 .

4 p o s i t i o n c h an g e s c a l e 1 ([d i f f e r e n c e : negat ive , type : r egu lat ion ,
IDef] , ITerm)−−>

5 [r educt ion] , [o f] , item (IDef , ITerm) .
6 p o s i t i o n c h an g e s c a l e 1 ([d i f f e r e n c e : p o s i t i v e , type : r egu lat ion ,

IDef] , ITerm)−−>
7 [i n c r e a s e] , [o f] , item (IDef , ITerm) .

9 p o s i t i o n c h an g e s c a l e ([d i f f e r e n c e : p o s i t i v e , type : r egu lat ion ,
IDef , CDef] , [CTerm , [r egu lat ion , ITerm]])−−>

10 cause (CDef ,CTerm) , [i n c r e a s e s] , item (
IDef , ITerm) .

11 p o s i t i o n c h an g e s c a l e ([d i f f e r e n c e : p o s i t i v e , type : r egu lat ion ,
IDef , ADef] , [ATerm , [r egu lat ion , ITerm]])−−>

12 agent (ADef ,ATerm) , [i n c r e a s e s] , item (
IDef , ITerm) .

13 p o s i t i o n c h an g e s c a l e ([d i f f e r e n c e : negat ive , type : r egu lat ion ,
IDef , CDef] , [CTerm , [r egu lat ion , ITerm]])−−>

14 cause (CDef ,CTerm) , [d e c r e a s e s] , item (
IDef , ITerm) .

15 p o s i t i o n c h an g e s c a l e ([d i f f e r e n c e : p o s i t i v e , type : r egu lat ion ,
IDef , ADef] , [ATerm , [r egu lat ion , ITerm]])−−>

16 agent (ADef ,ATerm) , [d e c r e a s e s] , item (
IDef , ITerm) .

18 item (item :NP,NP)−−>np(NP) .

108 Appendix A

19 item (item : PDef , Term)−−>t ran spor t (PDef , Term) .
� �

Listing A.11: position change scale.P

A.2.8 causation.P

Listing A.12: causation.P
� �

2 :− t ab l e causat ion /4 .
3 :− t ab l e cause /4 .

5 causat ion ([type : r egu lat ion , ADef , EDef] , [ATerm , [r egu lat ion ,
EFTerm]])−−>

6 agent (ADef ,ATerm) , [f o r c e s] , e f f e c t (EDef ,EFTerm) .
7 causat ion ([type : r egu lat ion , CDef , EDef] , [CTerm , [r egu lat ion ,

EFTerm]])−−>
8 cause (CDef ,CTerm) , [f o r c e s] , e f f e c t (EDef ,EFTerm) .

10 agent (agent :N,N)−−>np(N) ,{ subsumed (N, substance) ,\+subsumed (N,
g lucose) } .

11 cause (cause : LDef , LTerm)−−>l a ck in g (LDef , LTerm) .
12 cause (cause : PCDef ,PCTerm)−−>p o s i t i o n c h an g e s c a l e 1 (PCDef ,

PCTerm) .

14 e f f e c t (e f f e c t : PDef ,PTerm)−−>t ran spor t (PDef ,PTerm) .
15 e f f e c t (e f f e c t : PDef ,PTerm)−−>p o s i t i o n c h an g e s c a l e 1 (PDef ,PTerm)

.
� �

Listing A.12: causation.P

A.2.9 go grammar.P

Listing A.13: go grammar.P
� �

1 :− t ab l e go term /3 .
2 :− [onto logy] .
3 :− [phrase grammar] .
4 go term (TDef)−−>go term1 (TDef) .
5 go term1 ([d i f f e r e n c e :A |TDef])−−>
6 adj (A) , go term2 (TDef) .
7 go term1 (TDef)−−>go term2 (TDef) .
8 go term1 (TDef2)−−>go term4 (TDef2) .
9 go term1 (TDef2)−−>go term5 (TDef2) .

A.2 Demo 109

11 go term2 ([agent : TDef1 |TDef2])−−>
12 go term5 (TDef1) , go term3 (TDef2) .
13 go term2 (TDef2)−−>go term3 (TDef2) .

15 go term3 ([type : r e gu l a t i on])−−>[r e gu l a t i on] .
16 go term3 ([type : r egu lat ion , e f f e c t : TDef])−−>
17 [r e gu l a t i on] , go term4 (TDef) .

19 go term4 ([type : t ransport , theme : TDef])−−>
20 go term5 (TDef) , [t ran spor t] .
21 go term4 ([type : importt , theme : TDef])−−>
22 go term5 (TDef) , [importt] .
23 go term4 ([type : t ran spor t])−−>[t r an spor t] .
24 go term4 ([type : importt])−−>[importt] .

26 go term5 (NP)−−>n(NP) .
� �

Listing A.13: go grammar.P

A.2.10 subsumption.P

Listing A.14: subsumption.P
� �

1 :− t ab l e subsumed /2 .
2 :− t ab l e subsumes subdag /2 .
3 :− [onto logy] .

5 subsumes (Dag ,Dag) : − ! .
6 subsumes ([] ,) : − ! .
7 subsumes (Value1 , Value2) :−
8 c l a s s (Value1 ,) ,
9 c l a s s (Value2 ,) , ! ,

10 subsumed (Value2 , Value1) .
11 subsumes ([Feature : Value |Dag1] , Dag2) :−
12 subsume aux (Feature , Value , Dag2 , DagReast) ,
13 subsumes (Dag1 , DagReast) .

15 subsume aux (Feature , Value1 , [Feature : Value2 |DagReast] , DagReast)
:− ! ,

16 subsumes (Value1 , Value2) .
17 subsume aux (Feature , Value , [FeatValue | Descendants] , [FeatValue |

DagReast]) :− ! ,
18 subsume aux (Feature , Value , Descendants , DagReast) .

20 subsumes subdag (Dag1 , Dag2) :−subsumes (Dag1 , Dag2) , ! .

110 Appendix A

21 subsumes subdag (Dag1 , [: Value |]) :− subsumes subdag (Dag1 , Value
) , ! .

22 subsumes subdag (Dag1 , [|Dag2]) :− subsumes subdag (Dag1 , Dag2) .
� �

Listing A.14: subsumption.P

Bibliography

[1] Fillmore C.J., Johnson C.R., Petruck M.R.L. (2003). Background to
Framenet. International Journal of Lexicography, Vol 16.3: 235-250. DTV
Article Database Service. Oxford University Press. (25 June 2007).

[2] Baker C.F., Fillmore C.J., Cronin B. (2003). The Structure of the Framenet
Database. International Journal of Lexicography, vol. 16.3: 281-296. DTV
Article Database Service. Oxford University Press. (25 June 2007).

[3] Ruppenhofer J., Ellsworth M., Petruck M.R., Johnson C.R.
(2005). FrameNet: Theory and Practice. ICSI Berkeley.
http://framenet.icsi.berkeley.edu. (15 March 2007)

[4] FrameNet Project ICSI Berkeley. (2007). http://framenet.icsi.berkeley.edu.
(15 July 2007)

[5] Gene Ontology. (2007). http://www.geneontology.org/ (15 July 2007)

[6] Wikipedia, the free encyclopedia. (2007). Insulin.
http://en.wikipedia.org/wiki/Insulin. (15 April 2007)

[7] Temperley D., Sleator D., Lafferty J. (2007). Link Grammar.
http://www.link.cs.cmu.edu/link/index.html. (15 April 2007)

[8] Smith B., Ceuster W., Klagges B., Köhler J., Kumar A., Lomax J., Mungall
C., Neuhaus F., Rector A.L., Rosse C.(2005). Relations in biomedical on-
tologies. Genome Biology 2005. http://bmc.ub.uni-potsdam.de/gb-2005-6-5-
r46/gb-2005-6-5-r46.pdf. (20 July 2007)

112 BIBLIOGRAPHY

[9] Mungall C.J. (2004). Obol: integrating language and meaning
in bio-ontologies. Comparative and Functional Genomics Com-
parative and Functional Genomics. vol. 5, no. 6-7, pp. 509-520.
http://www.fruitfly.org/∼cjm/obol/doc/Mungall CFG 2004.pdf. (20 July
2007)

[10] Sag I.A., Wasow T. (1999). Syntatic Theory A Formal Introduction. CSLI
Lecture Notes. http://www.cs.um.edu.mt/ mros/ftp/download/sw99.pdf (15
June 2007)

[11] Hopcroft J.E., Motwani R., Ullman J.D. (2003). Intoduction to Au-
tomata Theory, Languages, and Computation. Pearson Addison Wesley.
ISBN: 0321210298.

[12] Blackburn P., Striegnitz K. (2002). Natural Language Process-
ing Techniques in Prolog. http://www.coli.uni-saarland.de/ kris/nlp-with-
prolog/html/ (15 June 2007)

[13] Voss M.(2004). Improving Upon Earley’s Parsing Algorithm in Prolog.
http://www.ai.uga.edu/mc/ProNTo/Voss.pdf (15 June 2007)

[14] Warren D.S.(1999). Programming in Tabled Prolog.
http://www.cs.sunysb.edu/ warren/xsbbook/book.html (15 July 2007)

[15] Copestake A. (2001). Appendix: definitions of typed
feature structures. Natural Language Engineering. cite-
seer.ist.psu.edu/copestake01appendix.html (15 August 2007)

[16] Guarino N., Welty C.A., Staab S., Studer R.(2004) An Overview of On-
toClean. Handbook on Ontologies. International Handbooks on Information
Systems. Springer. ISBN 3-540-40834-7, 151-172

[17] Dolbey A., Ellsworth M., Scheffczyk J.(2006) BioFrameNet:A Domain-
specific FrameNet Extension with Links to Biomedical Ontologies. KR-
MED 2006: Biomedical Ontology in Action. http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-222/krmed2006-p10.pdf (15 May
2007)

	Summary
	Resumé
	Preface
	1 Introduction
	1.1 Semantic-interpretation and Semantic Frames
	1.2 Formal Ontologies
	1.3 Ontology-driven Information Retrieval
	1.4 Structuring of the Material

	2 Linguistic Theory and Formal Grammars
	2.1 Formal Grammar
	2.2 Linguistic Properties and Notions
	2.3 Co-occurrence Restrictions

	3 Frame Semantics
	3.1 Linguistic Semantics
	3.2 The Concept of Frame Semantics
	3.3 Frame Networks and Relations
	3.4 FrameNet

	4 Parsing
	4.1 Parsing Strategies
	4.2 Bottom-up Parsing
	4.3 Top-down Depth-first Parsing
	4.4 Left-Corner Parsing
	4.5 Active Chart Parsing
	4.6 Earley's Parsing Algorithm
	4.7 NLP using Tabled DCG

	5 Frame-Based Semantic Parsing
	5.1 The System
	5.2 Underlying Ontology
	5.3 Ontology-Driven Frames
	5.4 Frame-based Syn-Sem grammar
	5.5 Semantic Descriptors

	6 Implementation
	6.1 Semantic Representations
	6.2 Regulation Frames
	6.3 Transport Frames
	6.4 Linguistic-level Frames and the Ontology
	6.5 GO Grammar
	6.6 Descriptor Implementation
	6.7 Strength and Weaknesses

	7 Conclusion
	7.1 Discussion
	7.2 The way forward
	7.3 Final Remarks

	A Appendix A
	A.1 Parsers
	A.2 Demo

