
SECCO 2007

Detecting and Preventing Type flaws:
a Control Flow Analysis with tags 1

Chiara Bodei1 Pierpaolo Degano1 Han Gao2 Linda Brodo3

1 Dipartimento di Informatica, Università di Pisa, Via Pontecorvo, I-56127 Pisa - Italia -
{chiara,degano}@di.unipi.it

2 Informatics and Mathematical Modelling, Technical University of Denmark, Richard Petersens Plads
bldg 321, DK-2800 Kongens Lyngby - Denmark - hg@imm.dtu.dk

3 Dipartimento di Scienze dei Linguaggi, Università di Sassari, via Tempio,9, I-07100 Sassari - Italia -
brodo@uniss.it

Abstract

A type flaw attack on a security protocol is an attack where an honest principal is cheated on interpreting
a field in a message as the one with a type other than the intended one. In this paper, we shall present an
extension of the LySa calculus with tags attached to each field, indicating the intended types. We developed
a control flow analysis for analysing the extended LySa, which over-approximates all the possible behaviour
of a protocol and hence is able to capture any type confusion that may happen during the protocol execution.
The control flow analysis has been applied to a number of security protocols, either subject to type flaw
attacks or not. The results show that it is able to capture type flaw attacks on those security protocols.

Keywords: Security Protocol, Control Flow Analysis, Type Flaw Attacks

1 Introduction

A type flaw attack on a security protocol arises when a field, originally intended
to have one type, is instead interpreted as having another type. To prevent such
attacks, the current techniques [11,12] consist in systematically associating each
message field with a tag representing its intended type. Therefore fields with dif-
ferent types cannot be mixed up. Nevertheless, these may result in requiring extra
and somehow unnecessary computational power and network transmission band.
This is particularly heavy, when resources are limited such as in battery-powered
embedded systems like PDAs, cell phones, laptops, etc.

In this paper, we explore these issues and propose a static analysis technique,
based on Control Flow Analysis, for detecting potential type flaw attacks in the
presence of a Dolev-Yao attacker [7]. The proposed approach abstracts the fields of
protocol messages to a lower level, such that the misinterpretation can be formally

1 This work has been partially supported by the project SENSORIA.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bodei, Degano, Gao and Brodo

modeled. To this end, we extend the LySa calculus [2,3] with special tags, which
represent the type of terms. The Control Flow Analysis approximates the behaviour
of protocols in terms of the possibly exchanged messages and potential values of
variables. The analysis can be working in either a prescriptive way, such that
type flaws are avoided; or a descriptive way, such that type flaws are detected and
recorded as violations of the intended types. Furthermore, if no type violation is
found, we can prove that the protocol is free of type flaw attacks at run time. The
analysis is fully automated and always terminates. It has been successfully applied
to a number of protocols, such as Woo-Lam π1[19] and Andrew Secure RPC [17].

LYSA has been given different kinds of annotations for checking other security
properties, e.g. confidentiality [9] and freshness [8]. It is very easy to combine
tags with those techniques, thus giving a more comprehensive results of analysing
security protocols.

The paper is organised as follows. In Section 2, we present the LySa calculus with
tags for type flaw attacks, both the syntax and semantics are defined. We introduce
the Control Flow Analysis in Section 3, which captures any type-mismatching that
may happen. In Section 4, we show how the Control Flow Analysis works on two
example protocols that are subject to type flaw attacks. In Section 5, we conclude
with an assessment of our approach and a comparison with related work.

2 Calculus

The LySa calculus [2,3] is a process algebra, in the tradition of the π- [14] and
Spi- [1] calculi. It differs from these essentially in two aspects. The first is the
absence of channels: all processes have only access to a single global communication
channel, the ether. The second aspect concerns the inclusion of pattern matching
into the language constructs where values can become bound to values, i.e. into input
and into decryption. This is different from having a separate matching construct,
usually an if-then construct as in other process calculi and lead to more succinct
specifications of protocols. We use here a dialect of LySa, which presents a more
general pattern matching than the one in [2,3]. See also [5,16] for an alternative
treatment.

Syntax of Terms
The basic blocks of LySa are values, used to represent agent names, nonces, keys.

Syntactically, they are described by terms that may either be standard terms E or
matching terms M . Standard terms – that can be names or variables – are used for
modeling outputs and encryptions. Instead, for modeling inputs and decryptions we
use matching terms, that, in turn, can be standard terms, or variables. We distin-
guish between definition (or binding) occurrences and use (or applied) occurrences
of variables. A definition occurrence is when a variable gets its binding value, while
an use occurrence is an appearance of a variable where its binding value is used.

The distinction is obtained by means of syntax: the definition occurrence of
a variable x is denoted by \x, while in the scope of the declaration, the variable
appears as x. Furthermore, this notation distinguishes variables from occurrences
of standard terms in tuples of matching terms, by implicitly partitioning them into

2

Bodei, Degano, Gao and Brodo

standard terms or variables. In pattern matching, the first are checked for matching,
while the others are bound in case of successful matching (see below).

S ::= standard terms

n name (n ∈ N)

x use variable (x ∈ XS)

S ::= matching standard terms

S standard terms

\x definition variable (x ∈ XS)

Here N , XS , denote sets of names and of applied occurrences of variables, respec-
tively. The name n is used to represent keys, nonces and names of principals.
Type Tagging We extend the syntax of standard LySa to cope with types, by using
tags to represent the types of terms. Following [11], we assume to have a tag for each
base type, such as nonce, key, etc. Moreover, we assume that the attacker is able
to change only the types of terms that he can access. For malleability reasons, we
choose to tag only encryptions and decryptions. In fact, by making the assumption
of perfect cryptography, we have that only cleartext can be altered. Attackers can
only forge an encryption when possessing the key used to cipher it.

Tag 3 Tag ::= agent | nonce | key | . . .

There are type variables, that are to standard variables such as tags are to closed
terms (i.e. terms without variables). Similarly to the \-notation, we syntactically
distinguish the defining occurrences of type variables (in the form]t), from the
corresponding use occurrences (in the form t). Syntactically, we have the following
two new categories, where XT denote sets of applied occurrences of type variables.

T ::= type terms

Tag type tags (Tag ∈ Tag)

t use type variable (t ∈ XT)

T ::= matching type terms

T type terms

]t defining type variable (t ∈ XT)

Furthermore, we can merge the above syntactic categories with the ones for standard
terms in order to obtain the two more general syntactic categories for terms E and
matching terms M . Encryptions are tuples of terms E1, · · · , Ek encrypted under a
term E0 representing a shared key.

E ::= terms

S standard terms

T type terms

{E1, · · · , Ek}E0 symmetric encryption

M ::= matching terms

S matching standard terms

T matching type terms

{M1, . . . ,Mk}E matching encryptions

We call V al the set of values, i.e. closed terms. Each value can have a type tag
associated with it. From here on, for readability, we usually associate standard
terms and type terms in encryptions and decryptions.

Syntax of Processes
In addition to the classical constructs for composing processes, our calculus

also contains an input construct with matching and a decryption operation with
matching. Furthermore, to keep track of the decryptions in which a violation occurs,

3

Bodei, Degano, Gao and Brodo

we decorate each decryption with a label l (from a numerable set C). Labels are
mechanically attached to program points in which decryptions occur (they are nodes
in the abstract syntax tree of processes). Finally, by overloading the symbol ν, we
use a new process construct to declare the expected type of a type variable.

P ::= processes

〈E1, . . . , Ek〉.P output

(M1, . . . ,Mk).P input

decrypt E as {M1, . . . ,Mk}lE0
in P decryption with matching

(ν n)P restriction

(ν]t : Tag)P type declaration

P1 | P2 parallel composition

!P replication

0 nil
The sets of free variables, resp. free names, and of bound variables and names, of a
term or a process are written fv(·), fn(·), bv(·), bn(·), respectively. they are defined
in the standard way. As usual, we omit the trailing 0 of processes.

Our patterns – in the form (M1, · · · ,Mk) – are matched against tuples of terms
(E1, · · · , Ek). Note that, at run time, each (E1, · · · , Ek) only includes closed terms,
i.e. each variable composing each one of the Ei has been bound in the previous
computations. Instead, matching terms Mi can be partitioned in closed terms and
variables to be bound. Intuitively, the matching succeeds when the closed terms,
say Mi, pairwise match to the corresponding terms Ei, and its effect is to bind
the remaining terms Ej to the remaining variables \xj . To exemplify, consider the
following two processes, where only standard terms are present.

P = decrypt {A,wn}K as Q = decrypt {A,NB}K as

{\xa, NB}lPK in P ′ {\xa, \yn}
lQ
K in Q′

The decryption in P succeeds only if wn = NB: in this case \xa will be bound to
A. Instead, the second decryption in Q always succeeds, and results in binding \xa
to A, and \yn to NB.

The roles played by tags and type variables in the pattern matching are the
same played by terms and variables. Suppose, e.g. to have the following processes:

R = (ν]tk : key)decrypt {(A, agent), (NB, nonce), (z, key)}K as

{(A, agent), (NB, nonce), (\zk,]tk)}lRK in R′

R̃ = (ν]tk : key)decrypt {(A, agent), (NB, nonce), (z, nonce)}K as

{(A, agent), (NB, nonce), (\zk,]tk)}lRK in R′

S = decrypt {(A, agent), (NB, nonce), (z, t)}K as

{(A, agent), (NB, nonce), (\zk, key)}lSK in S′

4

Bodei, Degano, Gao and Brodo

The decryptions in R and R̃ always succeed and result in binding \zk to (the values
assumed by) z, and]tk to key or to nonce. In particular, in R̃ the decryption
succeeds, even though the declared type for]tk is key. In the decryption in S only
if t successfully matches with key then \zk is bound to z.

Operational Semantics
Below we slightly modify the standard structural congruence ≡ on LySa pro-

cesses, also to take care of type declarations. It is the least congruence satisfying
the following clauses:

• P ≡ Q if P and Q are disciplined α-equivalent (as explained below);
• (P/≡, |, 0) is a commutative monoid;
• (νn)0 ≡ 0, (νn)(νn′)P ≡ (νn′)(νn)P , (νn)(P | Q) ≡ P | (νn)Q if n 6∈ fn(P),

(ν]t : Tag)0 ≡ 0, (ν]t : Tag)(ν]t′ : Tag)P ≡ (ν]t′ : Tag)(ν]t : Tag)P ,
(ν]t : Tag)(P | Q) ≡ P | (ν]t : Tag)Q if]t 6∈ bv(P);

• !P ≡ P | !P

To simplify the definition of our control flow analysis in Section 3, we discipline
the α-renaming of bound values and variables. To do it in a simple and “implicit”
way, we assume that values and variables are “stable”, i.e. that for each value
n ∈ N there is a canonical representative bnc for the set {n, n0, n1, · · ·} and simi-
larly, for each variable x ∈ XS ∪ XT there is a canonical representative bxc for the
set {x, x0, x1, · · ·}. Then, we discipline α-conversion as follows: two values (resp.
variables) are α-convertible only when they have the same canonical value (resp.
variable). In this way, we statically maintain the identity of values and variables
that may be lost by freely applying α-conversions. Hereafter, we shall simply write
n (resp. x) for bnc (resp. bxc).

Following the tradition of the π-calculus, we shall give LySa a reduction se-
mantics. The reduction relation →R is the least relation on closed processes that
satisfies the rules in Table 1. It uses structural congruence, as defined above, and
the disciplined treatment of α-conversion. We consider two variants of reduction
relation →R, graphically identified by a different instantiation of the relation R,
which decorates the transition relation. Both semantics use the type environment
Γ, which maps a type variable in a set of tags.

Γ : XT → ℘(Tag)

One variant (→RM) takes advantage of checks on type associations, while the other
one (→) discards them: essentially, the first semantics checks for type matching,
while the other one does not (see below):

• the reference monitor semantics Γ ` P →RM Q takes

R(E,M) =

 false if M =]t ∧ E 6∈ Γ(]t)

true otherwise

This function affects only type variables, i.e. only matching terms M in the form
]t. It checks whether the type (Γ(]t)) associated with the variable includes E.

5

Bodei, Degano, Gao and Brodo

• the standard semantics Γ ` P → Q takes, by construction, R to be universally
true (and therefore the index R is omitted).

Moreover, we define two auxiliary functions that handle the difference between
closed terms and variables to be bound, by implicitly partitioning the tuples and
treating the respective elements differently. We use a slightly modified notion of
substitution applied to a process P , P [E/M], where M can be either \x or]t.

P [E/M] =

P [M 7→ E] if M ∈ {\x| x ∈ XS} ∪ {]t| t ∈ XT }

P otherwise

The pattern matching function comp(E,M) compares E against M only when M

is a closed term and not a variable.

comp(E,M) =

 false if E 6= M ∧ fv(M) ∪ bv(M) = ∅

true otherwise

The judgement Γ ` P →R P ′ means that the process P can evolve into P ′, given
the type environment Γ. The rule (Com) expresses that an output 〈E1, . . . , Ek〉.P

(Com)
∧ki=1comp(Ei,Mi)

Γ ` 〈E1, . . . , Ek〉.P | (M1, . . . ,Mk).Q→R P | Q[E1/M1, . . . , Ek/Mk]

(Dec)
∧ki=0comp(Ei,Mi) ∧ ∧ki=1 R(Ei,Mi)

Γ ` decrypt {E1, . . . , Ek}E0 as {M1, . . . ,Mk}lE0
in P →R P [E1/M1, . . . , Ek/Mk]

(Type Decl) (Res)
Γ[]t 7→ Tag] ` P →R P ′

Γ ` (ν]t : Tag)P →R (ν]t : Tag)P ′
Γ ` P →R P ′

Γ ` (ν n)P →R (ν n)P ′

(Par) (Congr)
Γ ` P1→R P ′

1

Γ ` P1 | P2→R P ′
1 | P2

P ≡ P ′ ∧ Γ ` P ′→R P ′′ ∧ P ′′ ≡ P ′′′

Γ ` P →R P ′′′

Table 1
Operational semantics, Γ ` P →R P ′, parameterised on R.

is matched by an input (M1, . . . ,Mk) by checking whether the closed terms Mi

are pairwise the same with the corresponding Ei (i.e. if comp(Ei,Mi)). When the
matchings are successful, the remaining Ej are bound to the corresponding Mj (that
are variables or type variables).

Similarly, the rule (Decr) expresses the result of matching an encryption
{E1, . . . , Ek}E0 with decrypt E as{M1, . . . ,Mk}lE′0 in P . As it was the case for com-
munication, the closed terms Mi must match with the corresponding Ei, and ad-

6

Bodei, Degano, Gao and Brodo

ditionally the keys must be the same. When the matching is successful the re-
maining terms Ej are bound to the corresponding Mi (that are definition vari-
ables or definition type variables). Recall that in the reference monitor seman-
tics we ensure that the components of the decrypted message have the types ex-
pected, by checking whether the]t are bound to a type tag that is included in
Γ(]t). In the standard semantics the condition R(E,M) is universally true and
thus can be ignored. Back to our example processes R, R̃, S, we have that in R,
comp(z, \zk) = comp(key,]t) = true and R(key,]t) = true (because key ∈ Γ(]t)),
while in R̃, comp(z, \zk) = comp(nonce,]t) = true, but R(nonce,]t) = false (be-
cause nonce 6∈ Γ(]t)). Note also that in S, comp(t, key) = true only if t = key, and,
in this case P [z/\zk] = P [\zk 7→ z].

The rule (Type Decl) records the new association between the type variable]t
and the type Tag in the type environment Γ. The updating of Γ is indicated as
Γ[]t 7→ Tag].

The rules (Repl), (Par) and (Congr) are standard.

Dynamic Property
As for the dynamic property of the process, we shall consider a process free

of type flaw attack, when in all computations, each type variable is bound to the
expected type. Consequently, the reference monitor will never stop any execution
step. Note that we only consider the type flaws occurring inside encryptions and
decrytpions.

Definition 2.1 A process P is free of type flaw attacks when for each step Γ `
P →∗ P ′ → P ′′, we always have Γ ` P →∗ P ′ →RM P ′′.

3 Static Analysis

We develop a control flow analysis for analysing tagged LYSA processes. The aim
of the analysis is to safely over-approximate all the possible protocol behaviour
which permits to safely approximate when the reference monitor may abort the
computation of a process P . The approximation is represented by a tuple (Γ, ρ, κ, ψ)
(resp. a pair (ρ, ϑ) when analysing a term E), called estimate for P (resp. for E), that
satisfies the judgements defined by the axioms and rules of Table 2. In particular,
the analysis records which value tuples may flow over the network and which values
may be bound to each definition variable (e.g. \x) and definition type variable (e.g.
]t). Moreover, at each decryption place, the analysis checks whether a type tag
(e.g. Tag) bound to each definition type variable is the intended one, or a violation
is reported. The analysis is defined in the flavor of Flow Logic [15].

Analysis of Terms
The judgement for analysing terms is ρ |= E : ϑ. The analysis keeps track of the

potential values of variables or type variables, e.g. x or t, by recording them into
the global abstract environment ρ:

• ρ : XS ∪XT → ℘(V al) maps variables and type variable to the sets of values that
they may be bound to.

7

Bodei, Degano, Gao and Brodo

The judgement is defined by the axioms and rules in the upper part of Table 2.
Basically, the rules amount to demanding that ϑ contains all the values associated
with the components of a term, e.g. a name n evaluates to the set ϑ, provided that
n belongs to ϑ; similarly for a variable x, provided that ϑ includes the set of values
ρ(x) to which x is associated with.

Analysis of Processes
In the analysis of processes, the information on the possible values, that may

flow over the network, is collected into the component κ:

• κ ⊆ ℘(V al∗): the abstract network environment that includes all the value-tuples
forming a message that may flow on the network.

The judgement for processes takes the form: ρ, κ,Γ |= P : ψ, where the com-
ponents ρ, κ, and Γ are as above (recall that Γ : XT → ℘(Tag)), while ψ ⊆ C,
is the (possibly empty) set of “error messages” of the form l, indicating that a
type-mismatching (or violation) may happen at the decryption, labelled l. The
judgement is defined by the axioms and rules in the lower part of Table 2 (where
X ⇒ Y means that Y is only evaluated when X is True) and are explained later.

Before commenting on the analysis rules, we introduce three auxiliary functions,
all of which generate some logic formulas to be used in the analysis rules. See some
examples below.

The first one is the matching function, which takes care of pattern matching
a value v to a matching term M . Remember that pattern matching cannot be
performed on either \x or]t, requiring that M has to be some S or T . If this is the
case, matching succeeds when v is an evaluation of the value of S or T .

match(v,M, ρ) =

 false if M ∈ {S, T} ∧ v 6∈ ϑ where ϑ is s.t. (ρ |= M : ϑ)

true otherwise

The second one is a substitution function, which corresponds to the notion of variable
binding. Intuitively, it only makes sense to bind a value to either a definition variable
or a definition type variable. So the substitution function binds the value v to M
only when M is variable \x or a type variable]t.

sub(v,M) =

 false if v 6∈ ρ(M) with M ∈ {\x| x ∈ XS} ∪ {]t| t ∈ XT }

true otherwise

The last function is about type checking. Given a type environment Γ, it checks
whether v is the expected type of a definition type variable]t. If it is not the case,
the decryption labeled l, is recorded in the error component ψ. Note that in order
to let the type checking work, M has to be a definition type.

chk(v,M,Γ, l, ψ) =

 (v 6= Γ(]t) ⇒ l ∈ ψ) if M ∈ {]t| t ∈ XT }

true otherwise

8

Bodei, Degano, Gao and Brodo

match(m,n) = (ρ |= n : ϑ ∧ m ∈ ϑ) match(m, \x) = true

sub(m, \x) = (m ∈ ρ(x)) sub(m,n) = true

chk(m,]t,Γ, l) = (m 6= Γ(t) ⇒ l ∈ ψ) chk(m,n,Γ, l) = true

(Const)
N ∈ ϑ

ρ |= N : ϑ
(N = Tag or n) (V ar)

ρ(X) ⊆ ϑ

ρ |= X : ϑ
(X = x or t)

(Encr)

∧ki=0 ρ |= Ei : ϑi ∧
∀v0, . . . , vk : ∧ki=0 vi ∈ ϑi ⇒ {v1, . . . , vk}v0 ∈ ϑ

ρ |= {E1, . . . , Ek}E0 : ϑ

(Out)

∧ki=1 ρ |= Ei : ϑi ∧
∀v1, . . . , vk : ∧ki=1vi ∈ ϑi ⇒ 〈v1, . . . , vk〉 ∈ κ ∧

ρ, κ,Γ |= P : ψ

ρ, κ,Γ |= 〈E1, . . . , Ek〉.P : ψ

(In)

∀〈v1, . . . , vk〉 ∈ κ ∧ki=1 (match(vi,Mi) ⇒ sub(vi,Mi)) ∧
ρ, κ,Γ |= P : ψ

ρ, κ,Γ |= (M1, . . . ,Mk).P : ψ

(Dec)

ρ |= E : ϑ ∧ ρ |= E0 : ϑ0 ∧
∀{v1, . . . , vk}v0 ∈ ϑ : v0 ∈ ϑ0 ⇒

∧ki=1(match(vi,Mi) ⇒ (sub(vi,Mi) ∧ chk(vi,Mi,Γ, l))) ∧
ρ, κ,Γ |= P : ψ

ρ, κ,Γ |= decrypt E as {M1, . . . ,Mk}lE0
in P : ψ

(TNew)
(]t, Tag) ∈ Γ ∧ ρ, κ,Γ |= P : ψ
ρ, κ,Γ |= (ν]t : Tag)P : ψ

(Par)
ρ, κ,Γ |= P1 : ψ ∧ ρ, κ,Γ |= P2 : ψ

ρ, κ,Γ |= P1 | P2 : ψ

(Res)
ρ, κ,Γ |= P : ψ

ρ, κ,Γ |= (ν n)P : ψ
(Rep)

ρ, κ,Γ |= P : ψ
ρ, κ,Γ |=!P : ψ

(Nil) ρ, κ,Γ |= 0 : ψ

Table 2
Analysis of tagged Lysa Terms: ρ |= E : ϑ, and Processes: ρ, κ,Γ |= P : ψ

We now briefly comment on the rules for analysing processes. In the premises
of the rule for k-ary output (Out), we require that all the terms are abstractly
evaluated, and that all the combinations of these values are recorded in κ, since
they are the values that may be communicated. Finally, the continuation process
must be analysed.

The rule (In) describes the analysis of pattern matching input and uses both
the match function and substitution. The idea is to examine all the sequences of
〈v1, ..., vk〉 in the κ component and to point-wise compare it against the tuple of
matching terms (M1, ...,Mk). The matching function selects only the closed terms

9

Bodei, Degano, Gao and Brodo

and for each of them, say Mi, checks whether the corresponding vi is included in
ϑi, i.e. the result of the analysis for Mi. If the matching succeeds for all the closed
terms, then, the substitution function takes care of binding the remaining values vj
to the corresponding definition variables or definition type variables Mj . Moreover,
the continuation process must be analysed.

The rule for decryption (Dec) is quite similar to the rule for input : matching
and substitution are handled in the same way. The values to be matched are those
obtained by evaluating the term E and the matching ones are the terms inside the
decryption. If the matching succeeds for all closed terms, then the substitution is
applied to the remaining values that are bound to the corresponding definition vari-
ables or definition type variables. When processing the substitution, type checking
is also performed to capture violations. These occur when a definition type vari-
able is bound to an unexpected type. In this case, the label l of the decryption is
recorded in the error component ψ. Both in the case of input and decryption we
make sure only to analyse the continuation process P in those cases where the input
or decryption could indeed succeed.

The rule for type declaration (TNew) requires that the declared type is recorded
in the type environment Γ.

The rule for the inactive process (Nil) does not restrict the analysis result, while
the rules for parallel composition (Par), restriction (Res), and replication (Rep)
ensure that the analysis also holds for the immediate subprocesses.

Semantic properties
Our analysis is semantically correct regardless of the way the semantics of LySa

is parameterised. More precisely, we proved a subject reduction theorem for both
the standard and the reference monitor semantics: if (ρ, κ,Γ) |= P : ψ, then the
same tuple (ρ, κ, ψ,Γ) is a valid estimate for all the states passed through in a
computation of P , i.e. for all the derivatives of P .

Lemma 3.1 (Substitution result in Terms) ρ |= E : ϑ and E′ ∈ ρ(x) imply
ρ |= E[E′/x] : ϑ

Proof. The proof proceeds by structural induction over term by regarding each of
the rules in the analysis.

Case (Const). Assume that E = N and ρ |= N : ϑ. For arbitrary choices
of x and E′ it holds that N [E′/x] = N so it is immediate that also ρ |= N [E′/x] : ϑ.

Case (Var). Assume that E = X and ρ |= X : ϑ, i.e. that ρ(X) ⊆ ϑ.
Then there are two cases. Either X 6= x in which case X[E′/x] = X so clearly
ρ |= X[V/x] : ϑ. Alternatively, X = x in which case X[E′/x] = E′. Furthermore
assume that E′ ∈ ρ(x) and because ρ(x) ⊆ ϑ, it holds that ρ |= E′ : ϑ in which case
ρ |= X[E′/x] : ϑ by the analysis.

Case (Encr). Follow directly from the induction hypothesis 2

Lemma 3.2 (Substitution result in Processes) ρ, κ,Γ |= P : ψ and E ∈ ρ(x)
imply ρ, κ,Γ |= P [E/x] : ψ

10

Bodei, Degano, Gao and Brodo

Proof. The proof is done by straightforward induction applying the induction hy-
pothesis on any sub-process and lemma 3.1 on any sub-terms. 2

Lemma 3.3 (Predicates Equivalence 1) For any arbitrary v and M ,
match(v,M) ⇒ (v,M)

Lemma 3.4 (Predicates Equivalence 2) For any arbitrary v,M ,Γ and l,
chk(v,M) ⇒ R(v,M)

Lemma 3.5 (Invariance of Structural Congruence) If P ≡ Q and ρ, κ,Γ |=
P : ψ then ρ, κ,Γ |= Q : ψ

Proof. The proof amounts to a straightforward inspection of each of the clauses
defining P ≡ Q.
2

Theorem 3.6 (Subject reduction) If Γ ` P → Q and ρ, κ,Γ |= P : ψ then also
ρ, κ,Γ |= Q : ψ. Furthermore, if ψ = ∅ then P →RM Q

Proof. By induction on the inference of P → Q.
In case (Com) we assume
ρ, κ,Γ |= 〈E1, . . . , Ek〉.P | (M1, . . . ,Mk).Q : ψ which amounts to:

(a) ∧ki=1ρ |= Ei : ϑi

(b) ∀v1, . . . , vk : ∧ki=1vi ∈ ϑi ⇒ 〈v1, . . . , vk〉 ∈ κ

(c) ρ, κ,Γ |= P : ψ

(d) ∀〈v1, . . . , vk〉 ∈ κ : ∧ki=1match(vi,Mi) ⇒ ∧ki=1sub(vi,Mi) ∧ ρ, κ,Γ |= Q : ψ

Moreover we assume that ∧ki=1comp(Ei,Mi) because
〈E1, . . . , Ek〉.P | (M1, . . . ,Mk).Q→ P | Q[E1/M1, . . . , Ek/Mk] and we have to prove
ρ, κ,Γ |= P | Q[E1/M1, . . . , Ek/Mk] : ψ. From (a) we have ∧ki=1Ei ∈ ϑi since
∧ki=1fv(Ei) = ∅ and then (b) gives 〈E1, . . . , Ek〉 ∈ κ.

From the assumption ∧ki=1comp(Ei = Mi) we get ∧ki=1match(Ei,Mi). Now
(d) gives ∧ki=1sub(Ei,Mi) and ρ, κ,Γ |= Q : ψ. The substitution result then gives
ρ, κ,Γ |= Q[E1/M1, . . . , Ek/Mk] and together with (c) this gives the required result.
The second part is trivial: when ψ = ∅, obviously
〈E1, . . . , Ek〉.P | (M1, . . . ,Mk).Q→RM P | Q[E1/M1, . . . , Ek/Mk]

In case (Dec) we assume
ρ, κ,Γ |= decrypt {E1, . . . , Ek}E0 as {M1, . . . ,Mk}lE′0 in P : ψ
which amounts to:
(f) ∧ki=0 ρ |= Ei : ϑi

(g) ∀v0, . . . , vk : ∧ki=0vi ∈ ϑi ⇒ {v1, . . . , vk}v0 ∈ ϑ

(h) ρ |= E′
0 : ϑ′0

(i) ∀{v1, . . . , vk}v0 ∈ ϑ : v0 ∈ ϑ0

⇒ ∧ki=1match(vi,Mi) ⇒ (∧ki=1(sub(vi,Mi)∧

chk(vi,Mi,Γ, l) ∧ ρ, κ,Γ |= P : ψ)

11

Bodei, Degano, Gao and Brodo

Furthermore we assume that ∧ki=0comp(Ei,Mi) because
decrypt {E1, . . . , Ek}E0 as {M1, . . . ,Mk}lE′0 in P →
P [E1/M1, . . . , Ek/Mk] and we have to prove ρ, κ,Γ |= P [E1/M1, . . . , Ek/Mk] : ψ.
From (f) and ∧ki=0fv(Ei) = ∅, we get ∧ki=0Ei ∈ ϑi and then (g) gives
{E1, . . . , Ek}E0 ∈ ϑ. From (h) and the assumption ∧ki=0comp(Ei,Mi) we get
v0 ∈ ϑ0 and ∧ki=1match(vi,Mi). Now (i) gives ∧ki=1(sub(vi,Mi) ∧ chk(vi,Mi,Γ, l)
and ρ, κ,Γ |= P : ψ. Using Lemma 3.2 we get the required result
ρ, κ,Γ |= P [E1/M1, . . . , Ek/Mk]
For the second part of the result we observe that
∧ki=1chk(vi,Mi,Γ, l) follows from (i) and since ψ = ∅ it must be the case that ∧ki=1

if Mi ∈ {]t|t ∈ XT } then v = Γ(]t). Thus the condition of the rule (Dec) are
fulfilled for →RM.
In case (Tyep Decl) we assume
ρ, κ,Γ |= (ν]t : Tag)P : ψ, which amounts to:

(a) (]t, Tag) ∈ Γ

(b) ρ, κ,Γ |= P : ψ
Furthermore we assume that Γ[]t 7→ Tag] ` P → Q. By applying the induction
hypothesis on (b), we have ρ, κ,Γ |= Q : ψ, which together with (a) gives the
expected result that ρ, κ,Γ |= (ν]t : Tag)Q : ψ.
In cases (Par) and (Rep) follow directly from the induction hypothesis.
The case (Congr) also uses the congruence result.
2

In addition, when analysing a process P if the error component ψ is empty then
the reference monitor cannot stop the execution of P . This means that our analysis
correctly predicts when we can safely do without the reference monitor.
Theorem 3.7 (Static check for reference monitor) If ρ, κ,Γ |= P : ψ and
ψ = ∅ then RM cannot abort P .

Proof. Suppose per absurdum that such Q and Q′ exist. A straightforward in-
duction extends the subject reduction result to P →∗ Q giving ρ, κ,Γ |= Q : ψ
and ψ = ∅. The part 2 of the subject reduction result applied to Q → Q′ gives
Q→RM Q′ which is a contradiction. 2

Example
Consider a scenario in which a principal A sends out an encrypted nonce onto the
network and another principal B is expecting an encrypted key receiving from the
network. Assume both encryptions use the same key K, obviously, B could be
cheated on accepting the nonce as the key.

A → : {N}K

→ B : {K ′}K
Our control flow analysis can work in two ways depending on how the protocol is
modelled: either detecting what B received is a wrong one or preventing B from
accepting it.
• In case the goal is to detect any type flaw attack may happen to the protocol,
we can model it as follows,

12

Bodei, Degano, Gao and Brodo

〈A, {(N,nonce)}K〉.0

| (ν]txn : key) (A, \xenc). decrypt xenc as {(\xn,]txn)}lK in 0

where the type of the encrypted message that B received, i.e.]txn, is declared to
be key. The analysis then gives rise to the analysis components ρ, κ,Γ and ψ with
the following entries:

〈A, {(N,nonce)}K〉 ∈ κ (]txn, key) ∈ Γ l ∈ ψ

{(N,nonce)}K ∈ ρ(xenc) N ∈ ρ(xn) nonce ∈ ρ(txn)

which show that the attack is captured by l ∈ ψ
• In case one wants to prevent such a type flaw attack from happening, the protocol
can be modelled as,

〈A, {(N,nonce)}K〉.0

| (A, \xenc). decrypt xenc as {(\xn, key)}lK in 0

It requires that the message inside the encryption that B got has to be a key. In
this case, the analysis result becomes:

〈A, {(N,nonce)}K〉 ∈ κ Γ = ∅ ψ = ∅

{(N,nonce)}K ∈ ρ(xenc) ρ(xn) = ∅

Now ρ(xn) = ∅ shows that no value binds to the variable xn, i.e. the type flaw
attack is successfully prevented.

Modelling the Attacker
In our work, the protocol and the attacker are formally modelled as two parallel

processes, Psys | P•, where Psys represents the protocol process and P• is some
arbitrary attacker. The attacker considered here is the Dolev-Yao attacker [7],
who is an active attacker and assumed to have the overall control of the network,
over which principals exchange messages. Therefore he has access to messages
transmitted over the network and is able to eavesdrop or replay messages sending
over the network but also to encrypt, decrypt or generate messages provided that
the necessary information is within his knowledge. Instead, secret messages and
keys, e.g. (νKAB), are restricted to their scope in Psys and thus not immediately
accessible to the attacker. To deal with types, we require that the attacker is able
to change types of terms that are accessible to him. Due to space limitations,
we shall not go further into details here, rather we refer to [3] for a description
about modelling the attacker in a similar setup, as well as for a similar treatment
of semantic correctness.

4 Validation

To verify the usefulness of our Control Flow Analysis, a number of experiments
have been performed on security protocols from the literature. In this section, we

13

Bodei, Degano, Gao and Brodo

shall show the analysis results of some example protocols, which are subject to
type flaw attacks, namely the Woo and Lam protocol, version π1 and the Andrew
Secure RPC protocol (both the original version and the BAN version with type flaw
corrected). The analysis results show that those type flaw attacks are successfully
captured. Furthermore, it proves that after BAN’s correction, the Andrew Secure
RPC protocol does not suffer from type flaw attacks any longer.

Woo and Lam Protocol π1

Woo and Lam [19] introduced a protocol that ensures one-way authentication
of the initiator of the protocol, A, to a responder, B. The protocol uses symmetric-
key cryptography and a trusted third-party server, S, with whom A and B share
long-term symmetric keys. The protocol uses a fresh nonce NB produced by B.
The protocol narration is listed in the left part of the figure below, where KAS and
KBS represent the long-term keys that A and B share with the trusted server S.

1. A→ B : A

2. B → A : NB

3. A→ B : {A,B,NB}KAS

4. B → S : {A,B, {A,B,NB}KAS
}KBS

5. S → B : {A,B,NB}KBS

the protocol narration

1. M(A) → B : A

2. B →M(A) : NB

3. M(A) → B : NB

4. B →M(S) : {A,B,NB}KBS

5. M(S) → B : {A,B,NB}KBS

the type flaw attack

The Woo-Lam protocol is prown to a type flaw attack, which is shown in the
right part of the figure. The attacker replays the nonce NB to B in step 3, which B
accepts as being of the form {A,B,NB}KAS

. B then encrypts whatever he received
and then sends it out in step 4. The attacker intercepts it and replays it to B in
step 5 and therefore fools B to believe that he has authenticated A, whereas A has
not even participated in the run.

In LYSA, the Woo-Lam protocol is modelled as three processes, A,
B and S, running in parallel within the scope of the shared keys, say
PWL = (ν KAS)(ν KBS)(A | B | S), each of which represents the sequence of
actions of one principal as listed below. For clarity, each message begins with the
pair of principals involved in the exchange.

Principal A : (ν]txnb : nonce)

/ ∗ 1 ∗ / 〈A,B,A〉.

/ ∗ 2 ∗ / (B,A, (\xnb,]txnb)).

/ ∗ 3 ∗ / 〈A,B, ({A,B, (xnb, txnb)}KAS
, {agent, agent, nonce}key)〉.0

14

Bodei, Degano, Gao and Brodo

Principal B : / ∗ 1 ∗ / (A,B,A).

/ ∗ 2 ∗ / (ν NB) 〈B,A, (NB, nonce)〉.

/ ∗ 3 ∗ / (A,B, (\yaenc,]tyaenc)).

/ ∗ 4 ∗ / 〈B,S, {A,B, (yaenc, tyaenc)}KBS
〉.

/ ∗ 5 ∗ / (S,B, (\ysenc,]tysenc)).

decrypt ysenc as {A,B, (NB, nonce)}l1KBS
in 0

Server S : (ν]tzaenc : enc) (ν]tznb : nonce)
/ ∗ 4 ∗ / (B,S, (\zyenc,]tzyenc)).

decrypt zyenc as {A,B, (\zaenc,]tzaenc)}l2KBS
in

decrypt zaenc as {A,B, (\znb,]tznb)}l3KAS
in

/ ∗ 5 ∗ / 〈S,B, {A,B, (znb, tznb)}KBS
〉.0

For the Woo and Lam protocol, we have (ρ, κ,Γ) |= PWL : ψ, where ρ, κ and Γ have
the following non-empty entries (we only list here the interesting ones):

ρ(zaenc) = {{A,B, (NB, nonce)}KAS
, NB} (]tzaenc, enc) ∈ Γ

ρ(tzaend) = {{agent, agent, nonce}key, nonce} {l2} ∈ ψ
The error component has a non-empty set, ψ = {l2}, showing that a violation may
happen in the decryption marked with label l2 (the second line of step 4 in S). This
is the place where S is trying to decrypt and bind values to the variable zaenc and its
type variable tzaenc, which, as indicated by Γ, can only be {A,B, (NB, nonce)}KAS

.
However, ρ(zaenc) and ρ(tzaenc) suggest that zaenc may also have the value NB

and tzaenc may have the value nonce. This violates the type assertion and amounts
to the fact that, in step 4, S receives the message {A,B,NB}KBS

instead of the
expected one {A,B, {A,B,NB}KAS

}KBS
. This exactly corresponds to the type flaw

shown before.

Andrew Secure RPC protocol
The goal of the Andrew Secure RPC protocol is to exchange a fresh, authenti-

cated, secret key between two principals sharing a symmetric key K. In the first
message, the initiator A sends a nonce NA, the responder B increments and returns
it as the second message together with his nonce NB. A accepts the value and
returns the NB + 1, B receives and checks the third message and if it contains the
nonce incremented, then he sends a new session key, K ′ to A together with a new
value N ′

B to be used in subsequent communications.

1. A→ B : A, {NA}K

2. B → A : {NA + 1, NB}K

3. A→ B : {NB + 1}K

4. B → A : {K ′, N ′
B}K

the protocol narration

1. A→ B : A, {NA}K

2. B → A : {NA + 1, NB}K

3. A→M(B) : {NB + 1}K

4. M(B) → A : {NA + 1, NB}K

the type flaw attack
15

Bodei, Degano, Gao and Brodo

Also, the Andrew Secure RPC protocol [17] is subject to type flaw attack as
shown above in the right part of the figure: by replaying the message from step 2
to B in step 4, the attacker can successfully force A to accept NA + 1 as the new
session key. The protocol makes use of an operation to increment NA, in step 2,
and NB, in the third step (see [3] for the possible model of SUCC)).

The protocol can be modelled as PAndrew = (ν K)(A | B), where K is the
shared key and A and B are defined as follows (we only list the relevant steps).

Principal A : (ν NA) (ν]txk : key) (ν]txnb′ : nonce)
/ ∗ 1 ∗ / 〈A,B,A, {(NA, nonce)}K〉. . . .

/ ∗ 4 ∗ / (B,A, \xenc).

decrypt xenc as {(\xk,]txk), (\xnb′ ,]txnb′)}lx1
K in 0

Principal B : (ν NB)(ν N ′
B)(ν K ′)(ν]tyna : nonce)

/ ∗ 1 ∗ / (A,B,A, \yenc).

decrypt yenc as {(\yna,]tyna)}
ly1

K in

/ ∗ 2 ∗ / 〈B,A, {(yna + 1, tyna), (NB, nonce)}K〉. . . .

For the Andrew Secure RPC protocol, we have (ρ, κ,Γ) |= PAndrew : ψ, where ρ, κ
and Γ have the following non-empty entries (we only list here the interesting ones):

〈B,A, {(NA + 1, nonce), (NB, nonce)}K〉 ∈ κ

ρ(xk) = {K ′, Na + 1} ρ(txk) = {key, nonce}

(]txk, key) ∈ Γ (lx1) ∈ ψ

The component κ collects all the messages potentially flowing over the network, in-
cluding the one sent by B in step 2, namely 〈B,A, {(NA+1, nonce), (NB, nonce)}K〉.
This message could be received by A in his fourth step (e.g. replayed by an attacker)
and consequently binding NA + 1 to \xk and nonce to]txk, which can be verified
by examining the content of ρ (i.e. NA + 1 ∈ ρ(xk) and nonce ∈ ρ(txk)). How-
ever, as suggested by Γ, the expected type of the type variable txk can only be key
(by Γ(txk) = {key}) but not nonce. This violation is captured by the analysis by
recording the label lx1 in the error component ψ (by lx1 ∈ ψ).

Andrew Secure RPC protocol with type flaw corrected
An improved version of Andrew Secure RPC protocol is suggested in [6] in order

to prevent the above mentioned type flaw attack. The fixing amounts to inserting
another component NA into the encryption in the fourth message, as shown below,

4′. B → A : {K ′, N ′
B, NA}K

Now the encryption in step 2 has two fields and in step 4′, A is expecting an
encryption of 3 fields, therefore the attacker is no longer able to replay the message
from step 2 and consequently make A accept nonce as a fresh key. This claim is
verified by applying our analysis, which gives an empty error component, i.e. ψ = ∅.

16

Bodei, Degano, Gao and Brodo

5 Conclusion and Related Work

A type flaw attack happens when a field in a message is interpreted as having a type
other than the originally intended one. In this paper, we extended the syntax of
the process calculus, LYSA, with tags, which represent the intended types of terms.
The semantics of the tagged LYSA makes use of a reference monitor to capture
type-mismatching at run time.

On the static side, we developed a control flow analysis for the tagged LYSA pro-
cesses to check at each decryption place that whether the received, secret data has
the right type. The static analysis ensures that, if each component of an encryption
received by a principal is of the intended type, then the process is not subject to
a type flaw attack at execution time. Actually, for malleability reasons, we only
consider type flaws attacks occurring inside encryptions and decryptions. As far as
the attacker is concerned, we adopted the notion from Dolev-Yao threat model and
extended it with tags in order to fit it into our setting. The control flow analysis
has been applied to a number of protocols, e.g. Woo-Lam π1 and Andrew Secure
RPC as shown in Section 4, and has confirmed that we can successfully detect type
flaw attacks on the protocols.

Type flaw attacks on security protocols have been studied for some years, e.g. [11]
also adopted the technique of tagging each message field with intended type, and
later on, [12] simplified the tag structure for encryption. However these works
aim at preventing type flaw attacks in the protocol execution stage by attaching
some extra bits, representing types, to the messages transmitted over the network,
and consequently the size of each message is increased, which results in raising
unnecessary burden to the underlying network. Other works on type flaw attacks
include applying type and effect system to security protocols, e.g. [10], such that a
protocol is free of type flaw attacks if it is type checked. Type Systems are normally
prescriptive(i.e. they infer types and impose the well-formedness conditions at the
same time), while Control Flow Analysis is normally descriptive (i.e. it merely infers
the information and then leave it to a separate step to actually impose demands on
when programs are well-formed). Our approach offers a mix of both ways. Indeed,
it can be either descriptive, i.e. it describes when the protocol does not respect the
typing (via binding of type variables) or prescriptive, i.e. some flaws are avoided
(via matching of tag terms). Under this regard, launching the tool implementing
our analysis can then correspond to a sort of approximate type checking. More
specifically, our control flow analysis can be used to 1) detect type flaw attacks:
it can be applied in the protocol design stage: once a tagged protocol process is
analyzed to be free of type flaw attacks, it can be used untagged while still ensures
security; or 2) prevent type flaw attacks: the tags work in a way such that fields
with different types cannot be mixed up. Therefore, it offers flexibility in satisfying
different needs.

LYSA has been developed to be decorated by several kinds of annotations and
successfully applied for checking different security properties, e.g. confidentiality [9]
and freshness [8]. It is very easy to combine tags with those techniques, thus ob-
taining a more general form of analysis. The core analysis can remain the same:
different inspections of a solution permit to check different security properties of a

17

Bodei, Degano, Gao and Brodo

protocol, with no need of re-analysing it several times.
The control flow analysis presented here is designed to capture simple type flaw

attacks, i.e. one field is confused with another single field. Future work will extends
the analysis to deal with more complex ones [18], as considered in [13], e.g. when
a single field in a message is confused with a concatenation of fields. Furthermore,
we can think about more complex kinds of tags.

Acknowledgments. We are grateful to Hanne Riis Nielson and Terkel K.
Tolstrup for their helpful discussions and comments.

References

[1] M. Abadi and A.D. Gordon. A Calculus for Cryptographic Protocols: The Spi Calculus. Information
and Computation, 148(1), pp.1-70, 1999.

[2] C. Bodei, M. Buchholtz, P. Degano, F. Nielson and H.R. Nielson. Automatic Valication of Protocol
Narration. In Proc. of CSFW’03, IEEE Press.

[3] C. Bodei, M. Buchholtz, P. Degano, F. Nielson and H.R. Nielson. Static Validation of Security Protocols.
Journal of Computer Security, 13(3), pp.347 - 390, 2005.

[4] C. Bodei, P. Degano, H. Gao, L. Brodo. Detecting and Preventing Type flaws: a Control Flow Analysis
with tags. TR-07-16, Dipartimento di Informatica, Università di Pisa, 2007.

[5] M. Buchholtz, F. Nielson and H.R. Nielson. A Calculus for Control Flow Analysis of Security Protocols.
International Journal of Information Security, 2(3-4), pp.145-167, 2004.

[6] M. Burrows and M. Abadi and R. Needham. A Logic of Authentication. ACM. Transactions in
Computer Systems, 8(1), pp. 18-36, 1990.

[7] D. Dolev and A.C. Yao. On the Security of Public Key Protocols. IEEE TIT, IT-29(12):198-208, 1983.

[8] H. Gao, P. Degano, C. Bodei and H.R. Nielson. Detecting Replay Attacks by Freshness Annotations.
In Proc. of International Workshop on Issues in the Theory of Security (WITS 2007).

[9] H. Gao and H.R. Nielson. Analysis of LySa-calculus with explicit confidentiality annotations. In Proc.
of Advanced Information Networking and Applications (AINA 2006), IEEE Computer Society.

[10] A.D. Gordon and A. Jeffrey. Types and Effects for Asymmetric Cryptographic Protocols. In Proc. of
15th Computer Security Foundations Workshop, pp. 77-91, IEEE Computer Society, 2002.

[11] J. Heather, G. Lowe and S. Schneider. How to prevent type flaw attacks on security protocols. In Proc.
of the 13th Computer Security Foundations Workshop, IEEE Computer Society Press, 2000.

[12] Y. Li, W. Yang and J. Huang. Journal of Information Science and Engineering, 21:59-84, 2005.

[13] C. Meadows. Identifying potential type confusion in authenticated messages. In. Proc. of Workshop
on Foundation of Computer Security, pp. 75-84, 2002.

[14] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge University Press, 1999.

[15] H.R. Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach to static analysis. The Essence
of Computation: Complexity, Analysis, Transformation LNCS 2566: 223-244, Springer Verlag, 2002.

[16] C.R. Nielsen, F. Nielson, H.R. Nielson. Cryptographic Pattern Matching. ENTCS 168, pp. 91-107, 2007.

[17] M. Satyanarayanan. Integrating security in a large distributed system. ACM Transactions on Computer
Systems, 7(3):247–280, 1989.

[18] E. Snekkenes. Roles in cryptographic protocols. In Proc. of the 1992 IEEE Computer Security
Symposium on Research in Security and Privacy, pp.105-119. IEEE Computer Society Press, 1992.

[19] T.Y.C. Woo and S.S. Lam. A lesson on authentication protocol design. Operating Systems Review,
28(3):24-37, 1994.

18

	Introduction
	Calculus
	Static Analysis
	Validation
	Conclusion and Related Work
	References

