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Scientific objectives
Obtain general scientific knowledge about the advantages of 
deploying a combined approach
Eliminate confounding factors through careful experimental 
design and specific scientific hypotheses 
Test the general scientific hypothesis is that there is little 
dependence between missed detections in successive runs of 
the same or different methods
To accept the hypothesis under varying detection/clearance
probability levels
To lay the foundation for new practices for mine action, but it is 
not within scope of the pilot project
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Are today’s methods not good enough?

some operators believe that we already have 
sufficient clearance efficiency
no single method achieve more than 90% efficiency 
clearance efficiency is perceived to be higher since 
many mine suspected areas actually have very few 
mines or a very uneven mine density
today’s post clearance control requires an 
unrealistically high number of sample to get 
statistically reliable results 
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Are combined methods not already the common 
practice?

today’s combined schemes are ad hoc practices with 
limited scientific support and qualification
we believe that the full advantage of combined 
methods and procedures has not yet been exploited
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Does the project require a lot of new R&D?

no detection system R&D is required
start from today’s best practice and increase 
knowledge about the optimal use of the existing 
“toolbox”
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Is it realistic to design optimal strategies under 
highly variable operational conditions?

it is already very hard to adapt existing methods to 
work with constantly high and proven efficiency 
under variable operational conditions
proposed combined framework sets lower demand 
on clearance efficiency of the individual method and 
hence less sensitivity to environmental changes
the uncertainty about clearance efficiency will be 
much less important when combining methods
overall system will have an improved robustness to 
changing operational conditions 
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Outline
DeFuse objectives
Statistical modeling
The design and evaluation of mine equipment
Improving performance by statistical learning and 
information fusion



Jan Larsen 8

Informatics and Mathematical Modelling / Intelligent Signal Processing

Scientific approach

Scientist are born sceptical: they 
don’t believe facts unless they see 
them often enough
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Why do we need statistical models?

Mine action is influenced by many uncertain factors –
statistical modeling is the principled framework to 
handle uncertainty
The use of statistical modeling enables consistent 
and robust decisions with associated risk estimates 
from acquired empirical data and prior knowledge
Pitfalls and misuse of statistical methods sometimes 
wrongly leads to the conclusion that they are of little 
practical use
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The elements of statistical decision theory

Data
•Sensor

•Calibration

•Post clearance

•External factors

Prior knowledge
•Physical knowledge

•Experience

•Environment
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•Decision

•Risk 
assessment

Inference:

Assign probabilties
to hypotheses
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What are the requirements for mine action risk

Tolerable risk for individuals comparable to other 
natural risks
As high cost efficiency as possible requires detailed 
risk analysis – e.g. some areas might better be 
fenced than cleared
Need for professional risk analysis, management and 
control involving all partners (MAC, NGOs, 
commercial etc.)

Goal

•99.6% is not an unrealistic requirement
•But… today’s methods achieve at most 90% and 
are hard to evaluate!!!

GICHD and FFI are 
currently working on 
such methods [Håvard
Bach, Ove Dullum NDRF 
SC2006]
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Outline
DeFuse objectives
Statistical modeling
The design and evaluation of mine equipment
Improving performance by statistical learning and 
information fusion
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Evaluation and testing

How do we assess the performance/detection 
probability?
What is the confidence?

operation phase

evaluation phase

system design phase



Jan Larsen 14

Informatics and Mathematical Modelling / Intelligent Signal Processing

Detecting a mine – flipping a coin

no of heads
no of tosses

Frequency =

when infinitely many tossesprobability frequency=
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99,6% detection probability

996 99,6%
1000

Frequency = =

One more or less detection changes 
the frequency a lot!

9960 99,60%
10000

Frequency = =
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Inferring the detection probability
independent mine areas 

for evaluation
detections observed

true detection probability θ

θ θ θ θ −⎛ ⎞
= ⎜ ⎟
⎝ ⎠

( | ) ~ Binom( | ) y N yN
P y N

y

y

N
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Incorporating prior knowledge via Bayes formula

θ θθ = ( | ) ( )
( | )

( )
P y p

P y
P y

prior
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Prior probability of 

No prior
Non-informative prior

Informative prior

θ θ=( ) ( | 0,1)p Uniform

θ

θ θ α β=( ) ( | , )p Beta
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Prior distribution

mean=0.6
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Posterior probability is also Beta

α βθ θ α β θ θ+ − += + + − ∼( | ) ( | , ) y n yP y Beta y n y
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HPD credible sets – the Bayesian confidence 
interval { }ε θ θ ε ε≥ > −1-C = : P( | ) ( ) , P( | ) 1y k C y
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The required number of samples N
We need to be confident about the estimated detection 
probability

εθ −> = 1Prob( 99.6%) C

39952285

189949303θ = 99.7%est

θ = 99.8%est

99%C95%C

Uniform prior

34932147

183018317θ = 99.7%est

θ = 99.8%est

99%C95%C

Informative prior
α β=0.9, =0.6
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The required number of samples N
We need to be confident about the estimated detection 
probability

εθ −> = 1Prob( 70%) C

9944

3913θ = 85%est

θ = 80%est

99%C95%C

Uniform prior

8939

3312θ = 85%est

θ = 80%est

99%C95%C

Informative prior
α β=0.9, =0.6
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Probability of seeing a sequence of only true 
detections
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Credible sets when detecting 100%

4602114820

299474713

θ >Prob( 80%) θ >Prob( 99.6%) θ >Prob( 99.9%)

95%C

99%C

Minimum number of samples N
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Consequences

It is unrealistic to check 99.6% detection rate is post 
clearance tests
It is realistic to certify individual method to e.g. 70% 
detection rate

certify 
individual 

methods to 
low levels

use DeFuse
results for 
combining

combined 
detection 
provides 
99.6%
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Outline
DeFuse objectives
Statistical modeling
The design and evaluation of mine equipment
Improving performance by statistical learning and 
information fusion
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Confusion matrix captures inherent trade-off

True

yes no

yes a b

no c d

Detection probability 
(sensitivity):             
a/(a+c)
False alarm:                 
b/(a+b)
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Receiver operations curve (ROC)

false alarm %

detection probability %

0 100
0

100
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Improving performance by fusion of methods

Methods (sensors, mechanical etc.) supplement each other 
by exploiting different aspect of physical environment

Early integration

Hierarchical integration

Late integration



Jan Larsen 31

Informatics and Mathematical Modelling / Intelligent Signal Processing

Late integration by decision fusion

Sensor Signal processing

Mechanical system

Decision 
fusion

D
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Pros and cons

☺ Combination leads to a possible exponential increase 
in detection performance

☺ Combination leads to better robustness against 
changes in environmental conditions
Combination leads to a possible linear increase in 
false alarm rate
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Dependencies between methods

Method j

Mine 
present

Method i

yes no

yes c11 c10

no c01 c00

Contingency
tables
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Optimal combination

Method 1

Method K

Combiner

0/1

0/1

0/1

Optimal combiner depends on contingency tables
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Optimal combiner

101010111

110011001

111100010

000000000

765432121

CombinerMethod

122 1
K −

− possible combiners

OR rule is optimal for 
independent methods
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OR rule is optimal for independent methods

Method 1:  1 0 0 1 0 0 1 0 1 0
Method 2:  0 1 0 0 1 0 1 1 1 0
Combined: 1 1 0 1 1 0 1 1 1 0

1 2

1 2

1 2

1 2

ˆ ˆ( ) ( y 1| 1)

ˆ ˆ1 ( 0 0 | 1)

ˆ ˆ1 ( 0 | 1) ( 0 | 1)

1 (1 ) (1 )

d

d d

P OR P y y

P y y y

P y y P y y

P P

= ∨ = =

= − = ∧ = =

= − = = ⋅ = =
= − − ⋅ −
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False alarm follows a similar rule

1 2

1 2

1 2

1 2

( )

ˆ ˆ( y 1| 0)

ˆ ˆ1 ( 0 0 | 0)

ˆ ˆ1 ( 0 | 0) ( 0 | 0)

1 (1 ) (1 )

fa

fa fa

P OR

P y y

P y y y

P y y P y y

P P

=

∨ = =

= − = ∧ = =

= − = = ⋅ = =
= − − ⋅ −
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Example

1 10.8, 0.1d fap p= = = =2 20.7, 0.1d fap p

= − − ⋅ − =
= − − ⋅ − =
1 (1 0.8) (1 0.7) 0.94

1 (1 0.1) (1 0.1) 0.19
d

fa

p

p

Exponential increase in detection rate
Linear increase in false alarm rate

Joint discussions with: Bjarne Haugstad
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Artificial example
N=23 mines
Method 1: P(detection)=0.8, 
P(false alarm)=0.1
Method 2: P(detection)=0.7, 
P(false alarm)=0.1
Resolution: 64 cells

● ● ●

● ●

● ●

● ● ● ●

● ● ●

● ● ●

● ● ●

● ● ●

True

364no

519yes

noyes
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Confusion table for method 1
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2 4 6 1 3 5 7
0

10

20

30

40

50

60

70

80

90

100

Combined

Flail         
Metal detector

combination number

%

Detection rates

Flail         : 82.6
Metal detector: 69.6
Combined: 91.3

Statistical test confirms 
the increased 

performance of the 
combined approach
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2 4 6 1 3 5 7
0

5

10

15

20

25

30

35

40

Combined
Flail         

Metal detector

combination number

%

False alarm rates

Flail         : 12.2
Metal detector: 7.3
Combined: 17.1
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Conclusions

Statistical decision theory and modeling is essential 
for optimal use of prior information and empirical 
evidence
It is very hard to assess the necessary high 
performance which is required to have a tolerable 
risk of casualty
Combination of methods is a promising avenue to 
overcome current problems

certify 
methods

DeFuse
results

combine
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