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Scientific objectives

B Obtain about the advantages of
deploying a combined approach

B Eliminate confounding factors through careful experimental
design and specific scientific hypotheses

B Test the general
between missed detections in successive runs of
the same or different methods

B To accept the hypothesis under varying detection/clearance
probability levels

B To lay the foundation for new practices for mine action, but it is
not within scope of the pilot project
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Are today’s methods not good enough?

B some operators believe that we already have
sufficient clearance efficiency

B no single method achieve more than 90% efficiency

B clearance efficiency is to be higher since

many mine suspected areas actually have very few
mines or a very uneven mine density

B today’s post clearance control requires an

unrealistically high number of sample to get
statistically reliable results
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Kre combined methods not already the common\
practice?

B today’s combined schemes are ad hoc practices with
limited scientific support and qualification

B we believe that the full advantage of combined
methods and procedures has not yet been exploited
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Goes the project require a lot of new R&D?\

B no detection system R&D is required

B start from today’s best practice and increase

knowledge about the optimal use of the existing
“toolbox”
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@it realistic to design optimal strategies under\
highly variable operational conditions?

M it is already very hard to adapt existing methods to
work with constantly high and proven efficiency
under variable operational conditions

B proposed combined framework sets lower demand
on clearance efficiency of the individual method and
hence less sensitivity to environmental changes

B the uncertainty about clearance efficiency will be
much less important when combining methods

B overall system will have an improved robustness to
changing operational conditions
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B DeFuse objectives
B Statistical modeling
B The design and evaluation of mine equipment

B Improving performance by statistical learning and
information fusion
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/Scientific approach \
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Why do we need statistical models?

B
B Mine action is influenced by many uncertain factors -

statistical modeling is the principled framework to
handle uncertainty

B The use of statistical modeling enables consistent
and robust decisions with associated risk estimates
from acquired empirical data and prior knowledge

B Pitfalls and misuse of statistical methods sometimes
wrongly leads to the conclusion that they are of little
practical use
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ﬁhe elements of statistical decision theom

Data
eSensor

: : 2
eCalibration — O
O
ePost clearance @)
-
eExternal factors _
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What are the requirements for mine action risk

B Tolerable risk for individuals comparable to other
natural risks

¥ Goal

©¢99.6% is not an unrealistic requirement

m °But... today’s methods achieve at most 90% and
are hard to eval

commercial etc.)
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B DeFuse objectives
B Statistical modeling
B The desigh and evaluation of mine equipment

B Improving performance by statistical learning and
information fusion
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Evaluation and testing

B How do we assess the performance/detection
probability?

B What is the confidence?

dey

operation phase

> &

system design phase

|

evaluation phase
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Detecting a mine - flipping a coin \
no of heads
Freqguency =
NOo of toSses

probability = freqguency when infinitely many tosses
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99,6% detection probability \
9960
Frequency = =-99H B0
S 100000

One more or less detection changes
the frequency a lot!
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Inferring the detection probability

B N independent mine areas
for evaluation

B y detections observed
B true detection probability @

P(y | 8) ~ Binom(8 | N) = (S]gygNy
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Incorporating prior knowledge via Bayes formula\

p(6)

P(&
( )
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Prior probability of &
B No prior

B Non-informative prior
p(€) = Uniform(é | 0, 1)

B Informative prior

p(f) = Beta(é | «, p)
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ﬂDrior distribution

\mean=0.6
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Posterior probability is also Beta \

P(@|y)=Beta(@ |y +o,f+n-y) ~ 9"/
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HPD credible sets — the Bayesian confidence \
interval ¢ _={g: P(6|y)>k(e)}, P(C|ly)>1-¢

—=32.9 p=18.6

N=50 y=32,0__=0.64
C,5=0.92665, C,,=0.47862

\

w—
ﬁ
—

Jan Larsen 21

I



Informatics and Mathematical Modelling / Intelligent Signal Processing ..H

- h

e required number of samples N

B We need to be confident about the estimated detection
probability

Prob(# > 99.6%) = C, _

Uniform prior Informative prior
K «=0.9, =0.6 /
DTU
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he required number of samples N \

B We need to be confident about the estimated detection
probability

Prob(€ > 70%) =C,_,

Uniform prior Informative prior
K «=0.9, =0.6 /
DTU
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Probability of seeing a sequence of only true \
detections
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Credible sets when detecting 100% \
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Consequences \

B It is unrealistic to check 99.6% detection rate is post
clearance tests

W It is realistic to certify individual method to e.g. 70%
detection rate

certify
individual

methods to .. provides
low levels OB RLTE 99.6%

use DeFuse go:‘:nbéll'led
results for S
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B DeFuse objectives
B Statistical modeling
B The design and evaluation of mine equipment

B Improving performance by statistical learning and
information fusion

- /

Jan Larsen 27

=
—
f—

I



Informatics and Mathematical Modelling / Intelligent Signal Processing i.

Confusion matrix captures inherent trade-off \

B Detection probability
(sensitivity):
a/(a+c)

B False alarm:

a
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Receiver operations curve (ROC)
detection probability %
A
100

0 »false alarm %

0 100
DTU
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Improving performance by fusion of methods

B Methods (sensors, mechanical etc.) supplement each other
by exploiting different aspect of physical environment

Late integration
Hierarchical integration
Early integration
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Late integration by decision fusion

Mechanicalsystem
-
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P/ros and cons \

© Combination leads to a possible exponential increase
in detection performance

© Combination leads to better robustness against
changes in environmental conditions

Combination leads to a possible linear increase in
false alarm rate
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Dependencies between methods

Contingency
tables
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{ptimal combination \

Method 1 —%%

0/1

0/1
~ Method K -

Optimal combiner depends on contingency tables
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Optimal combiner

ZZK_1 — 1 possible combiners
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OR rule is optimal for independenjgnethods

%

PG,(OR)zP()'i1 vy, =1
:1—P()71:O/\)72=0
=1-P(y, =0|y=1)-P(y,=0]y =1)
=1-1-P,)-1-P,,)
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False alarm follows a similar rule \
P.(OR) =
P(91V§/2 =1|y =0)
—1-P(y,=0AY,=0]y =0)
=1-P(y, =0|y =0)-P(y, =0|y =0)
— 1_(1_Pfa1)'(1_Pfa2)
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Example

Py1 = 081 Pry = 0.1 o 20-7, 2. =0.1

p, =1-(1-0.8)-(1-0.7) =0.94
pfa — 1_(1_01)(1—01) — 019

Exponential increase in detection rate
Linear increase in false alarm rate

voint discussions with: Bjarne Haugstad
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Artificial example

B N=23 mines

B Method 1: P(detection)=0.8,
P(false alarm)=0.1

m Method 2:
P(false alar

Resolution:

)=0.7,

\Confusion table for method 1

\
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Detection rates

Statistical test confirms [ISCUNEEE:7A<
Metal detector: 69.6

the increased Combined: 91.3
performance of the

combined approach

combination number
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False alarm rates

Flail :12.2
Metal detector: 7.3
Combined: 17.1

combination number

Jan Larsen



Informatics and Mathematical Modelling / Intelligent Signal Processing

>

Conclusions

|

B Statistical decision theory and modeling is essential

for optimal use of prior information and empirical
evidence

B It is very hard to assess the necessary high

performance which is required to have a tolerable
risk of casualty

B Combination of methods is a promising avenue to
overcome current problems

certify DeFuse bi
\ methods results MBI
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