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dentifying vehicles and thereby estimating travel time on congested highways.
The essential part of the thesis is the vehicle reidentification, after which several
ways of travel time estimation are given.
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Chapter 1

Introduction

1.1 Problem Description

Travel time from one place to another under congested traffic is always an
interesting thing that people concern. Lots of efforts have been made to monitor
traffic and estimate travel time. Yet, an easy and economical way of estimating
travel time is still of great need nowadays.

Among all the methods for estimating travel time under congested traffic, vehicle
reidentification is a very smart way. Once a vehicle detected at one place is
reidentified at another place, the travel time of that vehicle is easily estimated
by the difference between the arrival times at those two places of detection.

Most highways are equipped with traffic detectors. Those detectors, which
are normally installed within every kilometer on the highway, can monitor and
record the velocity, time and length of vehicles when they pass by. However,
those detectors can only measure information at discrete points but can not
provide information of the link between detectors, which means that the ve-
hicles travel time can not be monitored directly. Vehicle reidentification is a
way to infer traffic conditions between detectors based on the discrete points
information.
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1.2 Thesis Achievements

This thesis presents an algorithm to reidentify vehicles and thereby estimate
travel time between consecutive detectors on a congested highway, using those
information obtained from the already-exist highway traffic detectors. There-
fore, there is no need to set up new hardware equipments on the highway, saving
a lot of costs.

The purpose of this algorithm is not reidentifying every vehicle on the highway.
Actually the algorithm will reidentify 5 out of every 20 vehicles, and this will
provide enough information for traffic surveillance.

The way of vehicle reidentification developed by this thesis is different from any
of those already-exist methods. It provides good results and it is very easy to
implement.

1.3 Thesis Outline

This thesis consists of four main parts, namely

• Data —Analysis of simulated traffic data;

• Methods —Algorithm of vehicle reidentification on highway;

• Results —Outcome of Applying the methods on simulated data. Compar-
ison of travel time estimation between the algorithms from this thesis and
the harmonic mean method is included;

• Conclusions



Chapter 2

The Data

Before introducing the methods of reidentifying vehicles and estimating travel
time that presented in this thesis, this chapter, will briefly discuss the data that
have been used for developing and testing those methods.

2.1 Data Description

The data that have been analyzed are the simulated information of traffic status
on a Danish highway. The simulation is done by the popular software VISSIM.
It is not the author of this thesis who simulated the data.

2.1.1 Available Information

The data contains the following useful information:

• Vehicle Length —Detector measures this with some error, which is nor-
mally distributed with mean 0 and standard deviation equal to 1% of the
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vehicle length1. Unit: meter;

• Vehicle ID —Only available in simulated data. This is a very important
information for testing the performance of the algorithm presented by this
thesis;

• Vehicle velocity —Velocity when detected. Unit: meter/second;

• Time of detection —Time that vehicle arrives at a detector. The first
detection starts at 0. Unit: second;

• Check Point —Detector at which the vehicle is detected.

All the data are registered as time passes by, containing about 7 continuous
hours of information. The data contains 22 detectors, in which 8 of them are
going to be used for analysis. Those 8 detectors are No. 15, 16, 19, 20, 8, 9,
21 and 22, forming 6 pairs of consecutive detectors, as is shown by Figure 2.1.
Distances between these 6 pairs of consecutive detectors are known.

2.1.2 Measurement Errors

It is unavoidable that data recorded at detectors contain measurement errors(noise).
The error of measuring vehicle length, as described in the previous section, is
normally distributed with mean 0 and standard deviation equal to 1% of the
vehicle length. Equivalently, the accuracy of measuring vehicle length is approx-
imately me = 3%, which means that

L(1−me) ≤ LM ≤ L(1 + me) (2.1)

where L is the true length of a vehicle and LM is the measured length. Equiv-
alently,

LM

1 + me
≤ L ≤ LM

1−me
(2.2)

Therefore, two detected vehicles i and j are said to be a Possible Match if
(2.3) and (2.4) are satisfied at the same time.

LMi

1 + me
≤ LMj

1−me
(2.3)

LMi

1−me
≥ LMj

1 + me
(2.4)

Since other measurement errors will not affect the vehicle reidentification algo-
rithm presented by this thesis, they are not going to be discussed here.

1More detail is described in Section 2.1.2.
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2.2 Data Analysis

To make the analysis easy to understand, some basic concepts on a highway are
going to be explained first.

For each pair of consecutive detectors, the detector which vehicles pass first
is called Upstream Detector(UD), the other one is called Downstream
Detector(DD). Vehicles pass the UD with some order. This vehicle sequence
order, however, could change when those vehicles arrive at DD, due to lane
or position shifts, or whatsoever. The purpose of this section is to investigate
the probability of maintaining the same vehicle sequence order between every
two consecutive detectors. Probabilities are calculated respectively both from
the whole data set, which contains about 7 hours of information, and when the
traffic is comparatively congested. The data and its analysis are programmed
and processed by the statistical software R.

2.2.1 Traffic Flow

The traffic flow status is reflected by the vehicle velocity on the highway. Simply
speaking, when the traffic is not heavy, vehicles can drive with high speed, which
of course is limited by the traffic regulations, and this is called free flow traffic.
On the contrary, when the traffic is very heavy, the driving speed is slower or
much slower than that of free flow condition, and this is called the congested
flow traffic.

The detected vehicle velocities at those 8 used detectors are plotted in Fig-
ures 2.2 to 2.5. And it can be seen that for most of the detectors, during the
time period 9000(seconds) to 13000(seconds), the average vehicle speed, which
is around 15 units, is lower than other time periods. This period of time is
treated as the congested period. Therefore, the aforementioned probability of
maintaining the sequence order under the congested traffic is calculated in this
period of time.

2.2.2 Large Vehicles

Vehicles have different lengths. Since the vehicle length could be a very impor-
tant information for vehicle reidentification, the vehicle length shall be analyzed.
In this section, the histogram of vehicle length is shown by Figure 2.6 and 2.7.
It can be seen that using 6 meters as a classification factor to distinguish small
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and large vehicles might be a good choice. The reason why the large vehicles
shall be distinguished out will be explained in Section 3.4.2.

2.2.3 Probability of Maintaining Sequence Order

For every pair of the aforementioned 6 pairs of consecutive detectors, the prob-
abilities of maintaining the vehicle sequence order are given by Table 2.1 to
2.6.

It is seen that vehicles are likely to change lanes and switch sequence order
from one detector to another during the whole simulation period. Even during
the period when the traffic is comparatively slow, between time 9000(s) and
13000(s), shifts occur very often, although there are less shifts than other pe-
riods. For most pairs of detectors, maintaining the same sequence order with
10 vehicles has a probability around 10% or lower(the probability is about 34%
between detectors 16 and 20). The more vehicles in a sequence, the smaller the
probability of maintaining the same sequence order will be.

Whole Period Congested Period
No. of vehicles 7092 1689

No. of vehicles in the sequence No. of matches Probability No. of matches Probability
1 6000 0.8460 1490 0.8822
2 2848 0.4016 827 0.4896
3 1575 0.2221 539 0.3191
4 961 0.1355 378 0.2238
5 624 0.0880 271 0.1605
6 415 0.0585 200 0.1184
7 281 0.0396 150 0.0888
8 201 0.0283 116 0.0687
9 145 0.0204 87 0.0515
10 103 0.0145 65 0.0385
11 71 0.0100 48 0.0284
12 49 0.0069 34 0.0201
13 33 0.0047 24 0.0142
14 21 0.0030 17 0.0101
15 11 0.0016 10 0.0059
16 5 0.0007 5 0.0030
17 3 0.0004 3 0.0018
18 2 0.0003 2 0.0012
19 1 0.0001 1 0.0006
20 0 0 0 0

Table 2.1: The matching probability from detector 15 to 19, with distance 367
meters.
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Figure 2.1: The map of the highway on which the simulated data are made.
The longest black line divides the highway into two lanes(outer and inner lane).
Traffic detectors are marked by blue numbers. Those 8 detectors used by this
thesis are marked with blue circles. Distances between them are given by the
red lines and letters.
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Figure 2.2: Vehicle speed at detectors 15 and 16.
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Figure 2.3: Vehicle speed at detectors 19 and 20.
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Figure 2.4: Vehicle speed at detectors 8 and 9.
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Figure 2.5: Vehicle speed at detectors 21 and 22.
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Figure 2.6: Histogram of vehicle length of all data.
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Figure 2.7: Histogram of vehicle length during congested period.



14 The Data

Whole Period Congested Period
No. of vehicles 8234 2010

No. of vehicles in the sequence No. of matches Probability No. of matches Probability
1 6144 0.7462 1903 0.9468
2 4617 0.5607 1677 0.8343
3 3699 0.4492 1492 0.7423
4 3046 0.3699 1336 0.6647
5 2552 0.3099 1199 0.5965
6 2170 0.2635 1072 0.5333
7 1861 0.2260 960 0.4776
8 1607 0.1952 859 0.4274
9 1405 0.1706 765 0.3806
10 1243 0.1510 680 0.3383
11 1112 0.1350 609 0.3030
12 1002 0.1217 550 0.2736
13 901 0.1094 496 0.2468
14 812 0.0986 447 0.2224
15 731 0.0888 400 0.1990
16 657 0.0798 357 0.1776
17 592 0.0719 319 0.1587
18 536 0.0651 287 0.1428
19 485 0.0589 259 0.1289
20 442 0.0537 236 0.1174
21 402 0.0488 215 0.1070
22 365 0.0443 197 0.0980
23 330 0.0401 179 0.0891
24 297 0.0361 163 0.0811
25 265 0.0322 147 0.0731
26 235 0.0285 132 0.0657
27 208 0.0253 117 0.0582
28 183 0.0222 103 0.0512
29 160 0.0194 90 0.0448
30 140 0.0170 78 0.0388
31 125 0.0152 68 0.0338
32 112 0.0136 60 0.0299
33 102 0.0124 54 0.0269
34 93 0.0113 48 0.0239
35 85 0.0103 43 0.0214
36 79 0.0096 39 0.0194
37 73 0.0089 35 0.0174
38 67 0.0081 31 0.0154
39 61 0.0074 27 0.0134
40 56 0.0068 24 0.0119
41 51 0.0062 21 0.0104
42 47 0.0057 19 0.0095
43 44 0.0053 18 0.0090
44 41 0.0050 17 0.0085
45 38 0.0046 16 0.0080
46 35 0.0043 15 0.0075
47 32 0.0039 14 0.0070
48 29 0.0035 13 0.0065
49 27 0.0033 12 0.0060
50 25 0.0030 11 0.0055
51 23 0.0028 10 0.0050
52 21 0.0026 9 0.0045
53 19 0.0023 8 0.0040
54 17 0.0021 7 0.0035
55 15 0.0018 6 0.0030
56 13 0.0016 5 0.0025
57 11 0.0013 4 0.0020
58 9 0.0011 3 0.0015
59 7 0.0009 2 0.0010
60 5 0.0006 1 0.0005
61 3 0.0004 0 0
62 2 0.0002 0 0
63 1 0.0001 0 0
64 0 0 0 0

Table 2.2: The matching probability from detector 16 to 20, with distance 367
meters.



2.2 Data Analysis 15

Whole Period Congested Period
No. of vehicles 9888 2028

No. of vehicles in the sequence No. of matches Probability No. of matches Probability
1 6259 0.6330 1500 0.7396
2 2667 0.2697 1020 0.5030
3 1648 0.1667 748 0.3688
4 1130 0.1143 561 0.2766
5 792 0.0801 410 0.2022
6 567 0.0573 300 0.1479
7 405 0.0410 213 0.1050
8 291 0.0294 153 0.0754
9 210 0.0212 108 0.0533
10 151 0.0153 74 0.0365
11 108 0.0109 51 0.0251
12 76 0.0077 32 0.0158
13 51 0.0052 18 0.0089
14 38 0.0038 12 0.0059
15 27 0.0027 7 0.0035
16 17 0.0017 3 0.0015
17 12 0.0012 2 0.0010
18 7 0.0007 1 0.0005
19 4 0.0004 0 0
20 2 0.0002 0 0
21 1 0.0001 0 0
22 0 0 0 0

Table 2.3: The matching probability from detector 19 to 8, with distance 1150
meters.
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Whole Period Congested Period
No. of vehicles 7280 2110

No. of vehicles in the sequence No. of matches Probability No. of matches Probability
1 5960 0.8187 1838 0.8711
2 3674 0.5047 1374 0.6512
3 2533 0.3479 1066 0.5052
4 1834 0.2519 852 0.4038
5 1341 0.1842 674 0.3194
6 985 0.1353 525 0.2488
7 734 0.1008 400 0.1896
8 549 0.0754 304 0.1441
9 414 0.0569 229 0.1085
10 316 0.0434 174 0.0825
11 248 0.0341 138 0.0654
12 192 0.0264 105 0.0498
13 148 0.0203 77 0.0365
14 113 0.0155 56 0.0265
15 87 0.0120 41 0.0194
16 67 0.0092 31 0.0147
17 51 0.0070 24 0.0114
18 40 0.0055 20 0.0095
19 32 0.0044 17 0.0081
20 24 0.0033 14 0.0066
21 18 0.0025 11 0.0052
22 12 0.0016 8 0.0038
23 6 0.0008 5 0.0024
24 3 0.0004 3 0.0014
25 1 0.0001 1 0.0005
26 0 0 0 0

Table 2.4: The matching probability from detector 20 to 9, with distance 1150
meters.
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Whole Period Congested Period
No. of vehicles 7579 1769

No. of vehicles in the sequence No. of matches Probability No. of matches Probability
1 5646 0.7450 1397 0.7897
2 3336 0.4402 1047 0.5919
3 2358 0.3111 813 0.4596
4 1762 0.2325 647 0.3657
5 1354 0.1787 515 0.2911
6 1065 0.1405 415 0.2346
7 857 0.1131 335 0.1894
8 699 0.0922 272 0.1538
9 580 0.0765 225 0.1272
10 478 0.0631 184 0.1040
11 393 0.0519 151 0.0854
12 327 0.0431 127 0.0718
13 271 0.0358 108 0.0611
14 228 0.0301 91 0.0514
15 193 0.0255 78 0.0441
16 165 0.0218 70 0.0396
17 143 0.0189 62 0.0350
18 125 0.0165 55 0.0311
19 108 0.0142 49 0.0277
20 93 0.0123 44 0.0249
21 79 0.0104 40 0.0226
22 68 0.0090 36 0.0204
23 58 0.0077 32 0.0181
24 48 0.0063 28 0.0158
25 40 0.0053 25 0.0141
26 34 0.0045 22 0.0124
27 29 0.0038 19 0.0107
28 25 0.0033 16 0.0090
29 21 0.0028 13 0.0073
30 17 0.0022 10 0.0057
31 13 0.0017 7 0.0040
32 10 0.0013 5 0.0028
33 7 0.0009 3 0.0017
34 5 0.0007 2 0.0011
35 3 0.0004 1 0.0006
36 1 0.0001 0 0
37 0 0 0 0

Table 2.5: The matching probability from detector 8 to 21, with distance 889
meters.
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Whole Period Congested Period
No. of vehicles 9589 2394

No. of vehicles in the sequence No. of matches Probability No. of matches Probability
1 7539 0.7862 2006 0.8379
2 5098 0.5317 1505 0.6287
3 3785 0.3947 1174 0.4904
4 2904 0.3028 943 0.3939
5 2290 0.2388 774 0.3233
6 1834 0.1913 641 0.2678
7 1503 0.1567 536 0.2239
8 1248 0.1301 454 0.1896
9 1042 0.1087 385 0.1608
10 873 0.0910 323 0.1349
11 735 0.0767 270 0.1128
12 626 0.0653 226 0.0944
13 533 0.0556 190 0.0794
14 451 0.0470 159 0.0664
15 379 0.0395 131 0.0547
16 321 0.0335 109 0.0455
17 270 0.0282 91 0.0380
18 228 0.0238 76 0.0317
19 198 0.0206 63 0.0263
20 174 0.0181 54 0.0226
21 152 0.0159 46 0.0192
22 131 0.0137 38 0.0159
23 110 0.0115 30 0.0125
24 93 0.0097 24 0.0100
25 77 0.0080 19 0.0079
26 62 0.0065 14 0.0058
27 50 0.0052 10 0.0042
28 40 0.0042 7 0.0029
29 32 0.0033 5 0.0021
30 25 0.0026 4 0.0017
31 21 0.0022 3 0.0013
32 17 0.0018 2 0.0008
33 13 0.0014 1 0.0004
34 9 0.0009 0 0
35 6 0.0006 0 0
36 3 0.0003 0 0
37 1 0.0001 0 0
38 0 0 0 0

Table 2.6: The matching probability from detector 9 to 22, with distance 889
meters.



Chapter 3

Methods for Reidentifying
Vehicles on highway

In this chapter, a few already-exist methods and the algorithm provide by this
thesis for reidentifying vehicles on highways are going to be discussed.

3.1 Normal Existing Methods

Literatures on real time traffic, e.g. travel time estimation and prediction, are
very prolific. Among all different approaches of traffic surveillance, vehicle rei-
dentification is a very smart way. So far, the vehicle reidentification study using
existing highway detectors is mostly done by Benjamin Coifman and his team.
In this part, Coifman’s work and some other methods of vehicle reidentification
are going to be briefly introduced.

3.1.1 Coifman’s Methods

Benjamin Coifman has developed algorithms for reidentifying vehicles between
detector stations on highway[1, 2, 3, 4]. When the traffic is uncongested, his
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algorithm matches vehicles within a time window of reasonable free flow travel
times. This part of work is comparatively simple because under free flow traffic,
vehicles travels with nearly constant velocity between detector stations. There-
fore the point information obtained at each detector are assumed to be repre-
sentative of extended links spanning detectors. However, in case of congested
traffic, this assumption is usually not valid. The following part of this section
will mainly introduce his algorithm dealing with congested freeways.

In the congested traffic case, Coifman’s algorithm reidentifies measurements
from distinct vehicles using existing loop detector infrastructure. The distinct
vehicles he used are long vehicles, whose lengths are longer than a threshold
based on the 90th percentile length for all the vehicles passing the downstream
loop detector. Vehicles shorter than that threshold are not considered.

Coifman’s earlier work assumed that platoons of 5-10 vehicles regularly pass
both detectors in the same lane. However, that algorithm fails in the presence
of frequent lane change vehicles. His later work allows for reidentification even
when many vehicles pass only one of the detector stations without being ob-
served at the other one, meaning his new algorithm is more robust to vehicle
reordering and unmatchable vehicles that enter or leave a subject lane between
detector stations.

In his algorithm, each long vehicle at the downstream detector is considered as
primary vehicle with a set of candidate vehicles that are feasible matches at the
upstream detector. The upstream vehicle candidates include all vehicles(not
only the long ones) and are chosen using two rules: first, to ensure positive
travel time a candidate must arrive at the upstream station before the arrival of
the primary vehicle at the downstream detector, and second, the total number
of candidates shall not exceed the jam density of link, i.e., the storage capac-
ity, n, between the two detectors. Then the length range(due to measurement
uncertainty) of the primary vehicle is compared with candidate vehicles present
within the n most recent upstream detector arrivals. Possible matches are found
out if their length ranges intersect with each other. All possible matches are
stored in the so called Travel Time Matrix(TTM), indexed by travel time, where
the travel time for each matched pair is obtained by subtracting the arrival time
of the candidate match at the upstream detector from the arrival time of the
given primary vehicle at the downstream detector. The rows of this TTM cor-
respond to the primary vehicle number, which records the order of the arrivals
of the primary vehicles. The indices of the columns of the TTM represent the
possible travel times rounded to the nearest integer second. To avoid a very
large column size and thereby improve the computational efficiency, the width
of TTM is constrained to the travel time corresponding to link velocities falling
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between 2 mph1 and 90 mph. The TTM is populated with 0’s except for the
travel times for each of the given primary vehicle’s possible matches, which are
given values of 1’s. Any row of the TTM can have at most one true match. The
false matches are randomly distributed within each row, yielding a low den-
sity of possible matches throughout the entire matrix when considering several
rows. For the rows where true matches exist, the true matches from consecutive
vehicles fall in a small range of columns and increase the density of possible
matches above the background level of the false matches, as is shown by Figure
3.1(A). Then the TTM is transformed to the Maximum Density Matrix(MDM)
to identify the dense areas, as is shown by Figure 3.1(B). After that the Most
Probable Travel Time(MPTT) is figured out, as is shown by Figure 3.1(C).

3.1.2 Some Other Vehicle Reidentification Methods

There are some vehicle reidentification methods[5, 6, 7] that demanding hard-
ware equipments other than the already built highway detectors. Such methods
will definitely involves new costs, which could be very high. The purpose of this
thesis is to use the current highway detectors to reidentify vehicles, therefore
those methods that demanding new hardwares will not be described in details.

3.1.3 Some Other Statistical Measures for Comparing Length
of Vehicles

In this part, some existing statistical measures for comparing length of vehicles
are briefly introduced. When matching sequences of vehicles, the lengths of
vehicles are compared. To do this, four statistical measures could be used:
Relative Pattern Score(RPS), Average Pattern Score(APS), Correlation Pattern
Score(CPS), and Division Pattern Score(DPS), which are given by

RPS =
∑

i

2
xi − yi

xi + yi
(3.1)

APS =
∑

i

xi − yi

n
(3.2)

CPS =
cov(x, y)√

var(x) · var(y)
(3.3)

RPS =
∑

i

xi

yi
(3.4)

1”mph” stands for miles per hour.
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where x = {xi} and y = {yi} are the vehicle sequences to be matched, i ∈
{1, 2, ..., n}. If the sequences match exactly RPS and APS are 0, CPS is 1, and
DPS IS n. These scores may be weighted using e.g. a kernel, and then added
to get a single score with values ranging from 0 to 4. If this score is close to 4,
it means that the sequences match very well using all criteria.

3.2 Methods Provided in this Thesis

The objective of this thesis is to find a way, comparatively easier and faster
than those already existing ones, to reidentify vehicles and thereby estimate
travel time between consecutive detectors on congested highway. This section
will describe the algorithm developed by this thesis.

3.2.1 Basic Ideas

The basic idea of estimating travel time between consecutive detectors is to
reidentify vehicle. If a vehicle is detected at DD, and reidentified from the
records at UD, then its travel time between these two detectors is estimated by
the difference between the arrival times at the two detectors.

For the sake of saving costs, reidentification of vehicles should only use available
information from the detectors already built on the highway. Those information
consist of vehicle lengths, velocities when detected, time of detections, etc., all
with measurement errors, among which only the measurement error of vehicle
length will be considered, as already stated in Section 2.1.2.

Given those information, it might be better to reidentify a sequence of vehicles,
not a single one. Because

• Information of a single vehicle is very limited, therefore lots of vehicles
could have similar information, e.g. lots of vehicles have similar lengths,
which consequently make the reidentification difficult;

• A sequence of vehicles always contains more information than a single one
does, which will hopefully increase the rate of correct reidentification;

• According to the analysis in the previous chapter, the probability of main-
taining the same long vehicles sequence order between two consecutive
detectors on the highway is small, which means that if a long sequence of



3.2 Methods Provided in this Thesis 23

vehicles is reidentified, it may have a high probability to be a correct rei-
dentification - at least the probability is higher than that of reidentifying
a single vehicle.

The following two ways of vehicle reidentification come naturally, of which the
second one is used by this thesis.

3.2.1.1 Reidentifying Small Sequence of Vehicles First

Again, according to the previous analysis, probability of maintaining the same
short vehicle sequence between two consecutive detectors on the highway is com-
paratively big. So reidentification of vehicles could focus on small sequence of
vehicles. This idea is to first locate, for a small sequence of n vehicles(n = 4
for instance) at downstream detector(DD), a few possible corresponding se-
quences(candidates) at the upstream detector(UD). Then, the neighboring ve-
hicles information of those possible sequences are used to decide which one could
be the most likely match. This is, for short, called the small to big method,
standing for from small sequence to big sequence.

3.2.1.2 Reidentifying Large Sequence of Vehicles First

This idea is like the other way round. The risk of using the small to big method
is that it may turn out that there are no matches at UD for a lot of small
sequences from DD, which results in a huge waste of computation and lots of
wrong reidentifications.

To avoid this, big sequence of vehicles are reidentified first. The idea is to first
locate, for a big sequence of N vehicles(the primary sequence) at DD, the Most
Possible Corresponding Sequence(MPCS) at UD. It is not demanded that the
primary sequence and its MPCS are exactly the same, which in practice is not
likely to happen often. On the contrary, it only demands that there are a few
vehicles from the two big sequences are the same(their sequence order may have
changed though). The MPCS is the sequence that is likely to contain more
same vehicles of the primary sequence than other sequences do. Then within
the primary sequence and its MPCS, a small sequence of n(n < N) vehicles will
be reidentified. This is, for short, called the big to small method, standing for
from big sequence to small sequence.

For the same amount of vehicles to be reidentified, there are less big sequences
than small ones, meaning that there are less work to do in the big to small
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method than the other way round. Each big sequence has a MPCS, but not
every small sequence has a real match. So the big to small method does not
waste as much computation as the other one does.

The method presented by this thesis is based on this idea —from big to small.
The following of this thesis is going to discus this method in detail.

3.3 Some Concepts

Before explaining the method, several important concepts are going to be intro-
duced in this section.

3.3.1 Possible Match

The concept of a possible match for one vehicle has already been introduced in
Section 2.1.2 by equations (2.3) and (2.4).

Two sequences of vehicles are said to be a possible match if they possibly consist
of a few same vehicles. For instance, the MPCS defined in Section 3.2.1.2 is a
possible match for its primary sequence.

3.3.2 Maximum Correlation Method

The maximum correlation method is the core of the algorithm provided by this
thesis. It is comprehensible to believe that a possible match for a sequence of
vehicles shares some similar pattern with that sequence. Given those available
information from the simulated data, a pattern of a vehicles sequence is mainly
described by vehicle lengths in the sequence. Therefore, if two sequences of
vehicles are a pair of possible match, their sequence of vehicle lengths shall be
correlated. The more correlated, the more possible that the two sequences of
vehicles are a pair of match. Based on this reason, the maximum correlation
method is used to find the most possible match for vehicle sequences.

Basically speaking, the maximum correlation method is to select a sequence of
vehicles, from some sequences, whose vehicle lengths sequence has the largest
correlation coefficient with the sequence of vehicles to be matched. Here the
elements for calculating the correlation coefficient are the vehicle lengths. Under
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different situations, the way of using the maximum correlation method varies.
Details are explained in the following related sections.

3.3.3 Time Window

Simply speaking, a time window of one vehicle or a sequence of vehicles is the
possible time interval in which a true match should lie. A time window can be
determined by the maximum and minimum link speed2 on the highway. Assume
the maximum speed allowed on the highway is V max, and the minimum speed
is V min(this varies according to the real time traffic condition). Let A denote
the upstream detector, B denote the downstream one, v.tB denote the time of
detecting a vehicle at B, distA→B denote the distance between A and B, the
time window for this vehicle arriving at A is

[v.tB − distA→B/V min, v.tB − distA→B/V max] (3.5)

It is noticed that V min is a very important factor to control the size of the
time window. When it is too small, the time window becomes too big for
the maximum correlation method to work. Because the maximum correlation
method works on the vehicle lengths sequence, if the time window of a vehicles
sequence is too big, there will possibly be a lot of vehicles sequences in that time
window sharing similar pattern with the one to be matched with, and there is
no guarantee that the true match will be found by the maximum correlation
method. In this thesis, time windows are determined according to different
situations. It will be explained in detail in the following related sections.

3.4 How The Algorithm Works Under Congested
Traffic

In this section, the way of how the algorithm works under congested traffic is
explained.

A flowchart of the algorithm presented by this thesis is shown by Figure 3.2. The
following sections are going to explain details step by step. Concepts involved
will be introduced along the way.

2Link speed/velocity: the average speed/velocity of a vehicle travels from one detector to
another.
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3.4.1 Recording Vehicles At Downstream Detector

The goal of vehicle reidentification is to monitor traffic conditions on road and
use this information to make useful estimations. So this job should be done
in real time. When applying the method provide in this thesis, the traffic is
reidentified every 10 minutes.

For a pair of consecutive detectors on the highway, vehicles pass the downstream
detector(denoted by v.dd) are recorded from time t1 to time t2, with t2− t1 =
10mins. Figure 3.3 gives a visual expression of v.dd.

3.4.2 Finding Large Vehicles

This section is going to discuss the usage of large vehicles.

3.4.2.1 Reasons of Using Large Vehicles

The reason of finding large vehicles is that:

• Easy to find

• Useful information

Vehicles on the highway differs in their lengths. Most cars share similar lengths,
while there are a few large vehicles on the road which appear once in a while.
Their lengths are significantly different from small ones. Therefore reidentifi-
cation of a large vehicle is much easier than for a small one. It is done by
simply checking the vehicles length measurements(according to Equation (2.3)
and (2.4)) in the corresponding detectors within a suitable time window, in
which a true match could possibly be found. The time window of a large vehicle
is determined by equation (3.5). The parameter V min is set to be 4m/s and
V max is constrained by traffic regulation, setting to be 120km/h, i.e. 33m/s.

Similarly, it will be noted that many parameters used in this thesis are es-
tablished empirically. But they have proven being able to produce acceptable
results when the algorithm is implemented. Further, some of the parameters
can be adjusted dynamically to satisfy additional requirements, e.g. in Section
3.5.1 a way of adjusting parameter V min is given. This is a good characteristic
meaning that the algorithm is adjustable to various of situations.
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3.4.2.2 Special Situation

In case more than one possible matches is found for a single large vehicle, the
neighboring vehicles information are used to decide which match is more possible
to be a true match. For example, if in the time window of a large vehicle, more
than one possible matches are found according to Equation (2.3) and (2.4),
then for each of these possible matches, a vehicles sequence with 5 vehicles
before and 5 vehicles after that possible match is taken out. Similarly, the
sequence containing the large vehicle to be matched is also taken out. Then the
maximum correlation method is used to see which sequence of the possible match
has the largest correlation coefficient with the large vehicle’s sequence. Here,
when calculating the correlation coefficient, the sequences are sorted according
to vehicle lengths.

3.4.2.3 Using Large Vehicles Information

Once a most possible match for a large vehicle is found, the travel time of
this large vehicle is easily determined. The large vehicle information is used to
narrow the time window for other vehicles. When a large vehicle is reidentified,
it is high chance that this is a true reidentification. So the travel time of this
large vehicle is a very important information. All vehicles that near to that large
vehicle are likely to have similar travel times. In this paper, vehicles that enter
the same DD within 60 seconds before and after the large vehicle are narrowed
according to the large vehicle’s travel time, i.e. their travel time are assumed to
be less than 1.2 times of the large one’s. Details of how to use the large vehicles
information to calculate time windows are explained in Section 3.4.5.

3.4.2.4 Removing Possible Fake Matches of Large Vehicles

A wrong reidentification of a large vehicle, which does not often occurs, could
affect the whole reidentification badly. So before using the large vehicle’s in-
formation, wrong reidentification of large vehicles should be removed as many
as possible. In this paper, in every period of 10 minutes, those large vehicles
reidentified with a travel time larger than 1.4 times or smaller than 0.6 times of
the mean large vehicles travel time are removed. This way has proven being able
to remove some of the wrong reidentifications when implemented; however, this
will also remove some of the correct reidentifications. But after removing, there
are still some reidentified large vehicles left, and the information they provide
is adequate.
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3.4.2.5 The Length of Large Vehicles

As discussed in Section 2.2.2, using 6 meters as a classification factor to distin-
guish small and large vehicles might be a good choice for most of cases. And
this also has proven to be a good choice when the algorithm is implemented.
One thing need to be noticed is that for the pair of detectors from 16 to 20,
5 meters shall be used as the classification criteria, otherwise there will be no
large vehicles found. And there are not so many vehicles has length longer than
5 meters between these two detectors, so 5 meters is a sound choice for this
particular situation.

3.4.3 Locating Big Sequences One By One

As mentioned in Section 3.4.1, the traffic is reidentified every 10 minutes. For
a pair of consecutive detectors, at DD, during a 10-minute period, vehicles
are recored(denoted by v.dd). This step, however, is to divide v.dd into big
sequences, one next to each other, all with N vehicles. After division, vehicles
left(not enough N vehicles) are neglected. In this thesis, N = 20 is used. A big
sequence is denoted by v.ddN . For the convenience of understanding this step,
a visual expression is given by Figure 3.4.

3.4.4 Defining Types of Each Big Sequence

The purpose of defining types for v.ddN ’s is to calculate time windows accord-
ingly.

According to the large vehicles reidentified in a v.dd, different types may be
given to different v.ddN ’s. The idea is just an expansion of the one described in
Section 3.4.2.3, namely that vehicles that enter the same DD within 60 seconds
before and after3 the large vehicle are assumed to have travel time less than 1.2
times of the large one’s. Because it is reasonable to assume that vehicles near
to each other have similar travel times under congested traffic in most of the
cases. There can be 3 types for a v.ddN :

• Type 1: All vehicles in a v.ddN are covered by one or more large vehicle’s
interval(s), as is shown by Figure 3.5.

3For convenience, this is called the large vehicle’s interval.
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• Type 2: Only some of, not all, vehicles in a v.ddN are covered by one or
more large vehicle’s interval(s), as is shown by Figure 3.6.

• Type 3: None of the vehicles in a v.ddN are covered by large vehicle’s
interval.

3.4.5 Computing Time Window For Each Big Sequence

After the type has been decided for a v.ddN , its time window can be calculated.
First the boundaries of v.dd vehicles travel times are calculated: When large
vehicles are reidentified(denoted by v.dd.large), their travel times are estimated
easily. Then it is assumed that the travel time of all vehicles in this v.dd will
not be longer than 1.3 times of the maximum travel time of the large vehicles,
nor shorter than 0.8 times of the minimum, i.e.

tmin = 0.8min(v.dd.large.tt) (3.6)

tmax = 1.3max(v.dd.large.tt) (3.7)

where tmin and tmax denote the lower and upper bound of vehicles travel times
in v.dd respectively, v.dd.large.tt denotes the travel times of large vehicles in
that v.dd.

The way of calculating time window for different type of v.ddN is described in
the following enumerations:

1. For type 1: the time window for this type is calculated as:

[v.ddN.tenter(1)− 1.2cover.tt.max, v.ddN.tenter(N)− tmin] (3.8)

where v.ddN.tenter(1) and v.ddN.tenter(N) denote the time that the first
and the last vehicle of a v.ddN that enters the DD first and last respec-
tively, cover.tt.max denotes the maximum travel time of large vehicles
whose intervals have covered this v.ddN .

2. For type 2: the time window for this type is calculated as:

[v.ddN.tenter(1)− 1.3cover.tt.max, v.ddN.tenter(N)− tmin] (3.9)

The multiplier on cover.tt.max is bigger than that of a type 1 situation,
because some vehicles in a type 2 v.ddN are not covered by any large
vehicle intervals, and this makes the travel time of those vehicles more
uncertain.
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3. For type 3: the time window for this type is calculated as:

[v.ddN.tenter(1)− tmax, v.ddN.tenter(N)− tmin] (3.10)

This time window illustrates more uncertainty of travel time.

3.4.6 Finding Most Possible Corresponding Sequences

This section describes how the big sequences v.ddN are reidentified. As de-
scribed before, the length of the big sequence v.ddN is N = 20.

3.4.6.1 Purpose

The purpose of this step is to find one possible match for a v.ddN with as many
same vehicles of that v.ddN as possible. Results of this step will directly affect
the next step: the final reidentification of small sequences of vehicles, by which
the travel time will be estimated.

3.4.6.2 How to Find

The simplest way to find the MPCS is to use the maximum correlation method.
At DD, a big sequence v.ddN is recorded, then the sequence is sorted ac-
cording to the length of the vehicles detected. At UD, within its time win-
dow, all sequences with N vehicles will be tested: First take one sequence
v.udN at UD, sort by vehicle length, then calculate the correlation coefficient
cor(sort(v.ddN), sort(v.udN)). The pair that has the largest correlation will
be selected as the result. The reason why the sequence should be sorted is
explained in Section 3.4.7.

3.4.6.3 Special Situations

There are mainly two kinds of special situations:

• It is possible that there are more than one pair of sequences which have
the same largest correlation. But when the algorithm is implemented, it
turns out that this kind of situation rarely occurs, and even if it occurs,
those MPCS’s found for one v.ddN differ with each other in only one
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vehicle. And there are not many of them, usually at most two or three in
a time window. Therefore just taking any one of them as the MPCS is
acceptable.

• It is also possible that within the time window for a v.ddN there are
less than N vehicles. Under this situation, all those vehicles in the time
window are treated as the MPCS for that v.ddN . This kind of situation
also occurs rarely.

3.4.7 ”To Small”: Reidentifying Small Sequence of Vehi-
cles From the Big Sequence

This section explains the core idea of the big to small method. The small vehicle
sequence reidentified out of a big sequence v.ddN is denoted as v.ddn, in which
there are n vehicles. n = 5 is used in this thesis.

The way of reidentifying small sequence v.ddn is also based on the maximum
correlation method. When a MPCS for a v.ddN is found, all sequences with n
vehicles are taken out from that MPCS to compute the correlation coefficients
with all n-vehicle sequences from the v.ddN . The pair that has the maximum
correlation coefficient is selected out as a final match. Of course the elements
of correlation are the vehicle lengths. But in this step, when calculating the
correlation coefficient, the small sequences are not sorted according to the vehicle
lengths, which differs from the way when reidentifying big vehicles sequences.
The reasons for this difference are:

• The vehicles of a big sequence (primary sequence) and its possible match
(candidate sequence) are not necessary to be exactly the same, and even
if there are many vehicles are the same, the order of those vehicles may
be different in the primary sequence and its candidate;

• But when a small sequence of n vehicles are reidentified from the big
sequence of N vehicles, it is hoped that the small sequence v.ddn and its
best possible match share almost the same characteristics: same vehicles
and same vehicles order. Since there are only 5 vehicles in a v.ddn, this
hope is not a dream that never comes true.
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3.4.8 Estimation of Travel Time

In this section, different ways of estimating travel time after the vehicles being
reidentified are given.

3.4.8.1 Simple Way of Travel Time Estimation

Once a vehicle is reidentified, its travel time is easily estimated by the time
difference of entering the UD and DD.

For the purpose of monitoring the traffic on highways, it is not necessary to
estimate travel time of every vehicle on the road. Estimating travel time every
a few seconds, or even minutes, one or half minute for instance, is enough.

As mentioned in the previous section, for every big sequence v.ddN , one small
sequence v.ddn is reidentified. This will give enough information.

Based on this, some further work can be done to give travel time estimation in
different ways, i.e. Local Polynomial Regression Fitting(LPRF) and Exponen-
tially Weighted Moving Average Method(EWMA).

3.4.8.2 Local Polynomial Regression Fitting

The LPRF will fit a polynomial surface determined by one or more numerical
predictors, using local fitting. Since the reidentification algorithm presented
by this thesis will reidentify 5 vehicles out of every 20 vehicles, and the time
points of reidentifications are random and not continuous, therefore, if a travel
time needs to be estimated at some time point where no vehicle is reidentified,
a smooth function shall be fitted according to the vehicle reidentifications and
thereby provide travel time estimation at any time point.

Before doing LPRF, for every v.ddn, a mean arrival time and a mean travel
time estimation shall be calculated and used as one of the points to be fitted
by LPRF. The LPRF will be done by the R function loess, with parameter
span = 0.3 and degree = 2. Parameter span controls the degree of smoothing
with a default value 0.75. When its value gets smaller, the degree of smoothing
is reduced, but the trend of the travel time will be fitted better. In this thesis,
span = 0.3 is used. Parameter degree decides the degree of the polynomials to
be used. In this thesis, the default value degree = 2 is used.
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3.4.8.3 EWMA Method

Besides, the exponentially weighted moving average method can be used for
travel time estimation.

Inspired by the idea of time series analysis and exponential smoothing method,
it is reasonable to put different weights, for instance higher weights on a large
vehicle reidentification and reidentifications under a type 1 situation, and lower
weights for type 3, etc., on different estimations. To use this method, every
small sequence v.ddn needs to generate one arrival time and one travel time
estimation first, just as what is done before LPRF.

The basic idea of using EWMA is illustrated by

T̂i = (1− λi)T̂i−1 + λiTi (3.11)

where Ti denotes the estimated travel time of the i’th v.ddn; T̂i denotes the
modified estimation using EWMA method; λi denotes the weight put on the
estimation of the i’th v.ddn.

In this paper, λs are given by the following rules: λ = 0.9 if it is a large vehicle;
when a v.ddn is under type 1 situation, λ = 0.4 if the previous estimation is
from a large vehicle and the time point of the previous estimation is less than
15 seconds ago, otherwise λ = 0.7; λ = 0.6 if it is a type 2 situation; when a
v.ddn is under type 3 situation, λ = 0.5.

The initial value, T̂1, is determined by the following rule: T̂1 is equal to the
average of all Ti’s, if the first estimation is not a large vehicle nor a type 1
situation; otherwise T̂1 = T1.

By now the procedure of vehicle reidentification is fully described.

3.5 Estimation of Travel Time Between Several
Detectors

The method provided by this thesis, as described previously, is for estimating
travel time between two consecutive detectors on a highway. It might be inter-
esting to see if this method could be applied to estimate travel time between
several consecutive detectors in one lane.
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3.5.1 Two Ways of Estimation

The highway, given by the simulated data, has two lanes. For example, if the
travel time from detector 15→19→8→21(inner lane), or from 16→20→9→22(outer
lane), is going to be estimated, one could either (1) add the results from each
pair of consecutive detectors together, or (2) ignore the middle detectors and
use detectors at the start and end as the UD and DD respectively, then apply
the method suggested by this thesis.

The following part of this section will briefly describe these two approaches:

1. When the first approach is used, travel time estimations obtained by the
LPRF method shall be used. Take the outer lane for instance, first rei-
dentification takes place between detectors 9 and 22 and the travel time is
estimated by LPRF. At a time point t1, the travel time is estimated as tt1,
meaning that a vehicle arrived at detector 9 at time t1 − tt1 and arrived
at detector 22 at t1. Then at time point t1 − tt1 the travel time from
detector 20 to 9 is estimated the same way. This process goes on to the
first pair of detectors 16 and 20. Finally, the corresponding travel times
of the three parts are added together to obtain one travel time between
detector 16 and 22.

2. When the second approach is used, the parameter V min = 4 for decid-
ing time windows of large vehicles will not work. Actually, according to
the simulated data, even during the congested period, the minimum link
velocity is much larger than 4m/s, about 20m/s or larger. When the algo-
rithm of this thesis is applied on two consecutive detectors, whose distance
in between is not very big, the parameter V min = 4 can well reidentify
large vehicles. But when the algorithm is applied on two detectors whose
distance in between is nearly as big as tripled, as the way in the second
approach, using V min = 4 will hardly reidentify any large vehicles cor-
rectly, resulting in totally bad reidentifications. Under this circumstance,
V min is dynamically determined by the harmonic mean velocity of the
vehicles detected, i.e. V min = 0.6H(V.detect), where H(·) stands for
the harmonic mean4, V.detect stands for the velocities detected by the
downstream detector.

4Definition of harmonic mean is given in Section 4.2 by Equation (4.1).
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Figure 3.1: (A) Original TTM for a sample data set from two detectors almost
one mile apart, dots stands for 1’s in the TTM, blank area stands for 0’s in
TTM, (B) MDM superimposed on the TTM from A, (C) MPTT after finding
the unique matches superimposed on the same TTM.
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Figure 3.2: Flow chart of the algorithm.



3.5 Estimation of Travel Time Between Several Detectors 37

Figure 3.3: A visual expression of vehicles recorded at a DD. It means vehicles
v.dd are recorded from time t1 to t2. The big rectangular means there are a
sequence of vehicles.

Figure 3.4: A visual expression of dividing v.dd into a series of v.ddN ’s. The
black tail means that there are less than N vehicles left, and they are neglected.

Figure 3.5: A visual expression of a type 1 situation. Legends are denoted below
the dashed line.
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Figure 3.6: A visual expression of a type 2 situation. Legends are denoted below
the dashed line.



Chapter 4

Results

In this section, the results of implementing the algorithm on the simulated data
are displayed and discussed.

Before showing the results, some notations used by figures are given first:

• Black Circles: The real travel time of vehicles;

• Black Lines: Lines connecting the black circles;

• Green Dots: Vehicles reidentified in type 1 situation;

• Yellow Dots: Vehicles reidentified in type 2 situation

• Red Dots: Vehicles reidentified in type 3 situation;

• Blue Dots: The reidentified large vehicles;

• Pink Dots: The modified travel time estimation by the EWMA method;

• Pink Lines: Lines connecting the pink dots.

• Red Square With Cross Inside: The travel time estimated by the harmonic
mean1.

1The harmonic mean is used as a benchmark, which will be described in Section 4.2
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4.1 Results Under Congested Time Period

In this section travel time estimated during the congested traffic, i.e. from time
9000(s) to 13000(s), at every pair of consecutive detectors are presented. This
section consists of two parts: the first part will show some randomly selected
results of ten-minute reidentifications, whose plots are easier and clearer to read
than the other part; the second part will show all results during the whole
congested time period.

4.1.1 Some Results of Ten-Minute Reidentifications

As mentioned previously, the algorithm is designed for real time traffic surveil-
lance, and implemented every 10 minutes to reidentify vehicles. In this part,
one randomly selected ten-minute reidentification for each pair of consecutive
detectors is going to be displayed and discussed.

In the statistical tables, the item ”Total No. of vehicles downstream” is the total
number of vehicles that passed both the upstream and downstream detectors
in the corresponding time period; the item ”Match rate for sequences” shows
the rate of real matches of each big sequence(v.ddN) and each corresponding
small sequence(v.ddn). Correspondingly, visual results of statistical tables are
given by a series of figures. A point in the figures shows a travel time at a
time point, for instance, at a time point t1, the travel time is estimated as tt1,
meaning that a vehicle arrived at upstream detector at time t1− tt1 and arrived
at downstream detector at t1. Each table is corresponded to two figures: one
only shows the reidentification results; the other shows results of LPRF and
EWMA as well.

It can be seen from the following six statistical tables(4.1 to 4.6) and twelve
figures(4.1 to 4.12) that the algorithm for vehicle reidentification works pretty
well. The algorithm is designed to reidentify 5 out every 20 vehicles(about 25%),
and the outcome shows the correct reidentification rate is mostly above 70%.
Especially, the rate of correct large vehicle reidentifications are much higher,
mostly above 90%, which means the large vehicle information obtained by this
algorithm is very reliable. In the six statistical tables, match rates for most of
the big sequences(v.ddN) are already not low. And based on this, the algo-
rithm searched further to reidentify the corresponding small sequences(v.ddn),
resulting in a higher match rate.

Figures show that simple travel time estimation obtained directly from the ve-
hicle reidentification results is acceptable. Figures with travel time estimations
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obtained by LPRF and EWMA show that these two ways of travel time esti-
mations have their advantages as well as price. A quick summary of these three
ways of travel time estimations is given in Table 4.7.

Detector 15 to 19(367m)

Total No. of vehicles downstream 311
Total No. of sequences v.ddN/v.ddn 15

No. of large vehicles reidentified 16
No. of large vehicles reidentified correctly 15
% of correct large vehicle reidentifications 94

No. of vehicles to be reidentified 75
No. of correct reidentifications 59
% of correct reidentification 79

Match rate(%) for sequences(1 to 8) 1 2 3 4 5 6 7 8
v.ddN 85 50 55 50 75 75 90 65
v.ddn 100 100 100 100 60 80 80 80

Match rate(%) for sequences(9 to 15) 9 10 11 12 13 14 15
v.ddN 75 65 70 80 85 65 55
v.ddn 100 0 0 100 100 100 80

Table 4.1: Ten-minute Reidentification results: Detector 15 to 19(367m), from
time 10200(s) to time 10800(s). Corresponding visual results are given by Figure
4.1 and 4.2.
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Figure 4.1: Results of vehicle reidentification between detector 15 to 19, from
time 10200(s) to time 10800(s). Corresponding statistics are given by Table 4.1.
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Figure 4.2: Results of vehicle reidentification between detector 15 to 19,
from time 10200(s) to time 10800(s), with travel estimations obtained by
EWMA(pink curve) and LPRF(blue curve, with dashed red lines showing
plus/minus estimated standard errors). Corresponding statistics are given by
Table 4.1.
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Detector 16 to 20(367m)

Total No. of vehicles downstream 314
Total No. of sequences v.ddN/v.ddn 15

No. of large vehicles reidentified 3
No. of large vehicles reidentified correctly 3
% of correct large vehicle reidentifications 100

No. of vehicles to be reidentified 75
No. of correct reidentifications 56
% of correct reidentification 75

Match rate(%) for sequences(1 to 8) 1 2 3 4 5 6 7 8
v.ddN 70 75 55 80 100 70 55 45
v.ddn 100 100 100 100 100 100 100 40

Match rate(%) for sequences(9 to 15) 9 10 11 12 13 14 15
v.ddN 95 35 35 0 0 20 25
v.ddn 100 80 100 0 0 0 100

Table 4.2: Ten-minute Reidentification results: Detector 16 to 20(367m), from
time 10200(s) to time 10800(s). Corresponding visual results are given by Figure
4.3 and 4.4.

Detector 20 to 9(1150m)

Total No. of vehicles downstream 348
Total No. of sequences v.ddN/v.ddn 17

No. of large vehicles reidentified 3
No. of large vehicles reidentified correctly 3
% of correct large vehicle reidentifications 100

No. of vehicles to be reidentified 85
No. of correct reidentifications 66
% of correct reidentification 78

Match rate(%) for sequences(1 to 9) 1 2 3 4 5 6 7 8 9
v.ddN 50 0 95 45 75 80 50 35 55
v.ddn 100 0 100 100 40 100 60 40 100

Match rate(%) for sequences(10 to 17) 10 11 12 13 14 15 16 17
v.ddN 90 65 50 75 75 85 60 0
v.ddn 100 100 80 100 100 100 100 0

Table 4.3: Ten-minute Reidentification results: Detector 20 to 9(1150m), from
time 10800(s) to time 11400(s). Corresponding visual results are given by Figure
4.5 and 4.6.
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Figure 4.3: Results of vehicle reidentification between detector 16 to 20, from
time 10200(s) to time 10800(s). Corresponding statistics are given by Table 4.2.
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Figure 4.4: Results of vehicle reidentification between detector 16 to 20,
from time 10200(s) to time 10800(s), with travel estimations obtained by
EWMA(pink curve) and LPRF(blue curve, with dashed red lines showing
plus/minus estimated standard errors). Corresponding statistics are given by
Table 4.2.
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Figure 4.5: Results of vehicle reidentification between detector 20 to 9, from
time 10800(s) to time 11400(s). Corresponding statistics are given by Table 4.3.
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Figure 4.6: Results of vehicle reidentification between detector 20 to 9, from time
10800(s) to time 11400(s), with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve, with dashed red lines showing plus/minus esti-
mated standard errors). Corresponding statistics are given by Table 4.3.
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Detector 19 to 8(1150m)

Total No. of vehicles downstream 262
Total No. of sequences v.ddN/v.ddn 13

No. of large vehicles reidentified 18
No. of large vehicles reidentified correctly 16
% of correct large vehicle reidentifications 89

No. of vehicles to be reidentified 65
No. of correct reidentifications 47
% of correct reidentification 72

Match rate(%) for sequences(1 to 7) 1 2 3 4 5 6 7
v.ddN 80 70 80 85 75 0 0
v.ddn 100 80 100 100 80 0 0

Match rate(%) for sequences(8 to 13) 8 9 10 11 12 13
v.ddN 60 55 85 75 65 70
v.ddn 80 80 100 80 40 100

Table 4.4: Ten-minute Reidentification results: Detector 19 to 8(1150m), from
time 12000(s) to time 12600(s). Corresponding visual results are given by Figure
4.7 and 4.8.

Detector 9 to 22(889m)

Total No. of vehicles downstream 365
Total No. of sequences v.ddN/v.ddn 18

No. of large vehicles reidentified 2
No. of large vehicles reidentified correctly 2
% of correct large vehicle reidentifications 100

No. of vehicles to be reidentified 90
No. of correct reidentifications 67
% of correct reidentification 74

Match rate(%) for sequences(1 to 9) 1 2 3 4 5 6 7 8 9
v.ddN 55 85 0 70 75 80 55 85 90
v.ddn 100 100 0 100 80 100 0 0 100

Match rate(%) for sequences(10 to 17) 10 11 12 13 14 15 16 17 18
v.ddN 60 95 90 55 60 90 20 80 95
v.ddn 80 100 100 80 100 100 0 100 100

Table 4.5: Ten-minute Reidentification results: Detector 9 to 22(889m), from
time 9600(s) to time 10200(s). Corresponding visual results are given by Figure
4.9 and 4.10.
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Figure 4.7: Results of vehicle reidentification between detector 19 to 8, from
time 12000(s) to time 12600(s). Corresponding statistics are given by Table 4.4.
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Figure 4.8: Results of vehicle reidentification between detector 19 to 8, from time
12000(s) to time 12600(s), with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve, with dashed red lines showing plus/minus esti-
mated standard errors). Corresponding statistics are given by Table 4.4.
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Figure 4.9: Results of vehicle reidentification between detector 9 to 22, from
time 9600(s) to time 10200(s). Corresponding statistics are given by Table 4.5.
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Figure 4.10: Results of vehicle reidentification between detector 9 to 22, from
time 9600(s) to time 10200(s), with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve, with dashed red lines showing plus/minus esti-
mated standard errors). Corresponding statistics are given by Table 4.5.



54 Results

Detector 8 to 21(889m)

Total No. of vehicles downstream 277
Total No. of sequences v.ddN/v.ddn 13

No. of large vehicles reidentified 17
No. of large vehicles reidentified correctly 16
% of correct large vehicle reidentifications 94

No. of vehicles to be reidentified 65
No. of correct reidentifications 55
% of correct reidentification 85

Match rate(%) for sequences(1 to 7) 1 2 3 4 5 6 7
v.ddN 85 30 80 75 75 75 80
v.ddn 100 0 100 100 80 80 100

Match rate(%) for sequences(8 to 13) 8 9 10 11 12 13
v.ddN 45 35 100 65 90 70
v.ddn 60 100 100 80 100 100

Table 4.6: Ten-minute Reidentification results: Detector 8 to 21(889m), from
time 12000(s) to time 12600(s). Corresponding visual results are given by Figure
4.11 and 4.12.
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Figure 4.11: Results of vehicle reidentification between detector 8 to 21, from
time 12000(s) to time 12600(s). Corresponding statistics are given by Table 4.6.
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Figure 4.12: Results of vehicle reidentification between detector 8 to 21,
from time 12000(s) to time 12600(s), with travel estimations obtained by
EWMA(pink curve) and LPRF(blue curve, with dashed red lines showing
plus/minus estimated standard errors). Corresponding statistics are given by
Table 4.6.
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Method Advantages Disadvantages
Direct Simple and quick, Bad estimation when the

does not need further computations reidentification is incorrect
LPRF Provide travel time estimation Need further computations, and

in continuous time, and can sometimes gives estimation errors
reflect the travel time trend well even when the reidentification
most of the time. is correct.

EWMA Provide a way to put The results depend very much
different weights on different on the way of putting weights; and
types of situations, and sometimes it sometimes increases the
reduces estimation errors. estimation errors.

Table 4.7: A summary of different ways for travel time estimations.

4.1.2 Results For The Whole Congested Time Period

To avoid the randomness that the algorithm only works under those selected
time periods in the previous part, in this part, all important results for the whole
congested time period are collected in Table 4.8. The corresponding plots are
given by Figures 4.13 to 4.18. It can be seen, most of the reidentifications are
correct, and most of the wrong reidentifications give travel time estimations that
are very close to the real travel times. However, there are reidentifications that
give travel time estimations far from true. But the large vehicles reidentified
are almost correct. Even if there are wrong large vehicle reidentifications, they
lie very close to real travel times. So the large vehicles information obtained
by the algorithm is very reliable. Figures 4.19 to 4.24 show the reidentification
results together with travel time estimations obtained by EWMA and LPRF.

Case 1 2 3 4 5 6
Detectors 15→ 19 16→ 20 19→ 8 20→ 9 8→ 21 9→ 22

Distance(meters) 367 367 1150 1150 889 889
Total No. of vehicles downstream 2028 2110 1769 2394 1784 2389

Total No. of sequences v.ddN/v.ddn 101 105 88 119 89 119
No. of large vehicles reidentified 67 42 91 29 87 25

No. of large vehicles reidentified correctly 66 39 86 28 86 24
% of correct large vehicle reidentifications 99 93 95 97 99 96

No. of vehicles to be reidentified 505 525 440 595 445 595
No. of correct reidentifications 284 454 303 434 349 448
% of correct reidentification 56 86 69 73 78 75

Table 4.8: Reidentification results during congested time period 9000(s) to
13000(s), about 67 minutes.
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Figure 4.13: Results of vehicle reidentification from detector 15 to 19 during the
whole congested period.
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Figure 4.14: Results of vehicle reidentification from detector 16 to 20 during the
whole congested period.
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Figure 4.15: Results of vehicle reidentification from detector 19 to 8 during the
whole congested period.
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Figure 4.16: Results of vehicle reidentification from detector 20 to 9 during the
whole congested period.



62 Results

Figure 4.17: Results of vehicle reidentification from detector 8 to 21 during the
whole congested period.



4.1 Results Under Congested Time Period 63

Figure 4.18: Results of vehicle reidentification from detector 9 to 22 during the
whole congested period.
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Figure 4.19: Results of vehicle reidentification from detector 15 to 19 during
the whole congested period, with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve).
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Figure 4.20: Results of vehicle reidentification from detector 16 to 20 during
the whole congested period, with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve).
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Figure 4.21: Results of vehicle reidentification from detector 19 to 8 during
the whole congested period, with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve).
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Figure 4.22: Results of vehicle reidentification from detector 20 to 9 during
the whole congested period, with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve).
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Figure 4.23: Results of vehicle reidentification from detector 8 to 21 during
the whole congested period, with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve).
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Figure 4.24: Results of vehicle reidentification from detector 9 to 22 during
the whole congested period, with travel estimations obtained by EWMA(pink
curve) and LPRF(blue curve).
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4.2 Results of Benchmark

The LPRF travel estimation provided by this thesis is compared with the
harmonic mean method, which is widely used.

4.2.1 Harmonic Mean Method

The harmonic mean for n numbers V1, V2, ..., Vn is denoted as:

H =
n

1
V1

+ 1
V2

+ ... + 1
Vn

(4.1)

The harmonic mean method of estimating travel time is to first calculate the
harmonic mean velocity of vehicles in a v.ddN , denoted by VH ; second calculate
the mean time of detection of those N vehicles as the arrival time of that v.ddN ,
denoted by v.ddN.te; then the travel time, denoted by TT , of that v.ddN at the
time v.ddN.te is estimated by

TT =
Dist

VH
(4.2)

where Dist is the distance between the two detectors.

4.2.2 Comparison Results

In this section, the LPRF travel time estimation results showed at Section 4.1.1
are compared with the harmonic mean method. Some notations used in figures
are explained first:

• Red Square with Cross inside: harmonic mean estimations;

• Red Curve: harmonic mean estimations fitted by LPRF;

• Blue Curve: travel time estimations obtained by the LPRF fitted vehicle
reidentifications.

The comparison results are given by Table 4.9 to 4.14 and their corresponding
Figures 4.25 to 4.30. The item ”Bias” in tables is defined by the mean of travel
time estimations minus the mean of real travel time.
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It can be seen that, travel time estimation obtained by the LPRF fitted vehicle
reidentifications has smaller bias, sum of squared errors and error variance than
the harmonic mean method. And from the figures visual results, it can be seen
that LPRF curve of the vehicle reidentifications reflects the real travel time
trend much better than the harmonic mean curve does.

Detector 15 to 19 Reidentification Harmonic Mean
Bias -3.695092 4.087084

Sum of Squared Errors 15821.26 63880.73
Variance of Errors 60.91046 284.5411

Table 4.9: Benchmark results: Detector 15 to 19(367m), from time 10200(s) to
time 10800(s). Corresponding visual results are given by Figure 4.25.

Detector 16 to 20 Reidentification Harmonic Mean
Bias 10.48342 -15.60565

Sum of Squared Errors 93114.39 177989.0
Variance of Errors 271.2638 484.9285

Table 4.10: Benchmark results: Detector 16 to 20(367m), from time 10200(s)
to time 10800(s). Corresponding visual results are given by Figure 4.26.

Detector 20 to 9 Reidentification Harmonic Mean
Bias 0.3733646 -3.823991

Sum of Squared Errors 14161.63 709471.7
Variance of Errors 55.83486 2789.555

Table 4.11: Benchmark results: Detector 20 to 9(1150m), from time 10800(s)
to time 11400(s). Corresponding visual results are given by Figure 4.27.
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Detector 19 to 8 Reidentification Harmonic Mean
Bias 0.4189383 -4.902548

Sum of Squared Errors 22931.58 72772.06
Variance of Errors 106.4822 314.3279

Table 4.12: Benchmark results: Detector 19 to 8(1150m), from time 12000(s)
to time 12600(s). Corresponding visual results are given by Figure 4.28.

Detector 9 to 22 Reidentification Harmonic Mean
Bias 2.071180 -5.737136

Sum of Squared Errors 20040.11 57815.32
Variance of Errors 65.52142 168.4177

Table 4.13: Benchmark results: Detector 9 to 22(889m), from time 9600(s) to
time 10200(s). Corresponding visual results are given by Figure 4.29.

Detector 8 to 21 Reidentification Harmonic Mean
Bias 3.170465 -8.72679

Sum of Squared Errors 7522.846 28653.28
Variance of Errors 28.4753 70.39248

Table 4.14: Benchmark results: Detector 8 to 21(889m), from time 12000(s) to
time 12600(s). Corresponding visual results are given by Figure 4.30.
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Figure 4.25: Benchmark Results of vehicle reidentification between detector 15
to 19, from time 10200(s) to time 10800(s). Corresponding statistics are given
by Table 4.9.
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Figure 4.26: Benchmark Results of vehicle reidentification between detector 16
to 20, from time 10200(s) to time 10800(s). Corresponding statistics are given
by Table 4.10.
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Figure 4.27: Benchmark Results of vehicle reidentification between detector 20
to 9, from time 10800(s) to time 11400(s). Corresponding statistics are given
by Table 4.11.
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Figure 4.28: Benchmark Results of vehicle reidentification between detector 19
to 8, from time 12000(s) to time 12600(s). Corresponding statistics are given
by Table 4.12.
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Figure 4.29: Benchmark Results of vehicle reidentification between detector 9
to 22, from time 9600(s) to time 10200(s). Corresponding statistics are given
by Table 4.13.
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Figure 4.30: Benchmark Results of vehicle reidentification between detector 8
to 21, from time 12000(s) to time 12600(s). Corresponding statistics are given
by Table 4.14.
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4.3 Results of Estimating Travel Time Between
Several Detectors

In this section, results of estimating travel time between several detectors are
given. As mentioned in Section 3.5.1, two ways of estimation are used in this
thesis.

4.3.1 Results of Approach 1

As mentioned in Section 3.5.1, approach 1 adds the results from each pair of
consecutive detectors together. For this approach, only the results fitted by
LPRF are given, as is shown by Figure 4.31 and 4.32. In the figures travel time
estimations are calculated in a 30 minutes period for both inner lane(detector
15 → 21) and outer lane(detector 16 → 22). The results mostly reflect the trend
of real travel times and therefore are acceptable.

4.3.2 Results of Approach 2

As mentioned in Section 3.5.1, approach 2 ignores the middle detectors and use
detectors at the start and end as the UD and DD respectively. Results of this
approach is given by Table 4.15 and Figure 4.33 and 4.34.

It can been seen that the correct reidentification rate is below 40%. Even though
the parameter V min is computed dynamically for the time window, as men-
tioned in Section 3.5.1, the result is still not very reliable. Therefore, it is not
recommended to use the algorithm for reidentifying vehicles between several
detectors. But the correct reidentification rate for large vehicles is above 80%,
which means the reidentification of large vehicles is more reliable.
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Case 1 2

Detectors 15→ 21 (inner lane) 16→ 22(outer lane)
Distance(meters) 2406 2406

Total No. of vehicles downstream 1784 2389
Total No. of sequences v.ddN/v.ddn 89 119

No. of large vehicles reidentified 86 19
No. of large vehicles reidentified correctly 69 18
% of correct large vehicle reidentifications 80 95

No. of vehicles to be reidentified 445 595
No. of correct reidentifications 139 232
% of correct reidentification 31 39

Table 4.15: Reidentification results between several consecutive detectors, dur-
ing congested time period 9000(s) to 13000(s), about 67 minutes. Corresponding
visual results are given by Figure 4.33 and 4.34.
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Figure 4.31: Results of approach 1: vehicle reidentification from detector 15
to 21 during time 12600(s) to 14400(s). Blue curve is the LPRF line with red
dashed lines showing plus/minus standard errors.
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Figure 4.32: Results of approach 1: vehicle reidentification from detector 16
to 22 during time 12600(s) to 14400(s). Blue curve is the LPRF line with red
dashed lines showing plus/minus standard errors.
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Figure 4.33: Results of approach 2: vehicle reidentification from detector 15 to
21 during time 9000(s) to 13000(s). Corresponding statistics are given by Table
4.15.
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Figure 4.34: Results of approach 2: vehicle reidentification from detector 16 to
22 during time 9000(s) to 13000(s). Corresponding statistics are given by Table
4.15.



Chapter 5

Conclusion

The goal of this thesis is to present an algorithm to reidentify vehicles and
thereby estimate travel time between consecutive detectors on a congested high-
way, using those information obtained from the already-exist highway traffic
detectors. Therefore, there is no need to set up new hardware equipments on
the highway, saving a lot of costs.

The result of implementing the algorithm has proven that the goal is achieved.
It shows the algorithm works well with detectors 367 meters to 1150 meters
away from each other. Yet, when the distance is longer than 2000 meters, e.g.
between four consecutive detectors, the result is not good. Therefore, it is not
recommend to apply the algorithm directly between several detectors on the
highway.

The algorithm does not reidentify every vehicle on the highway; actually the
algorithm reidentifies 5 out of every 20 vehicles, and this will provide enough
information for traffic surveillance.

The way of vehicle reidentification developed by this thesis is different from any
of those already-exist methods. It provides good results and it is very easy to
implement.

For further applications of the algorithm, those empirically established param-
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eters shall be modified according to different situations.

In the future, establishing parameters dynamically is of great interest to make
the algorithm adapted to more situations, e.g. uncongested traffic, longer de-
tector distances, etc..



Appendix A

List of Symbols and
Abbreviations

Abbreviation Description Definition
UD Upstream Detector 5
DD Downstream Detector 5

TTM Travel Time Matrix 20
MDM Maximum Density Matrix 21
MPTT Most Probable Travel Time 21
RPS Relative Pattern Score 21
APS Average Pattern Score 21
CPS Correlation Pattern Score 21
DPS Division Pattern Score 21

MPCS Most Possible Corresponding Sequence 23
LPRF Local Polynomial Regression Fitting 32

EWMA Exponentially Weighted Moving Average 32
v.dd Vehicles recorded at DD during a period of time 26

v.ddN A big sequence of N vehicles at DD 28
v.ddn A small sequence of n vehicles reidentified from a v.ddN 31
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Appendix D

Codes of the Algorithm

The algorithm is coded with S language and implemented in software R.

The main code of the algorithm together with its benchmark is listed below.

# The following code is for vehicle reidentification,
# using the big to small method.

# The LARGE vehicle information is used to narrow the
# possible time window

# The codes are going to find matches during the
# congested period, i.e. 9000~15000, between detector ud1 and dd1

# the counting time unit is 10 mins, which means the travel time
# is estimated every 10 mins

########## functions ##########

## function for taking 2n vehicles around some vehicle
around <- function(v, n, ...){
tf.cp <- tf[tf$CP == v$CP & tf$tenter>0,] # select vehicles at that CP
pos <- which(tf.cp$tenter == v$tenter) # locate position
v.around <- tf.cp[(pos-n):(pos+n),]
return(v.around)
}
##

## function for deciding weights ##
lambda <- function(v, prev.type, t.diff, ...){
if(v$type == 0){
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lambda = 0.9
return(lambda)
}else{
if(v$type == 1){
if(prev.type == 0 & t.diff < 15){
lambda = 0.4
return(lambda)
}else{
lambda = 0.7
return(lambda)
}
}else{
if(v$type == 2){
lambda = 0.6
return(lambda)
}else{# type 3
lambda = 0.5
return(lambda)
}
}
}
}

### function for calculating harmonic means
harmonic <- function(vec,...){
d <- length(vec)
har <- d/sum(1/vec)
return(har)
}
##

###############################

########## parameters #########

# uncomment those detectors when used

# ud1 <- 16 # upstream detector
# dd1 <- 20 # downstream detector
# distance <- 367

# ud1 <- 15 # upstream detector
# dd1 <- 19 # downstream detector
# distance <- 367

# ud1 <- 20 # upstream detector
# dd1 <- 9 # downstream detector
# distance <- 1150

# ud1 <- 19 # upstream detector
# dd1 <- 8 # downstream detector
# distance <- 1150

# ud1 <- 9 # upstream detector
# dd1 <- 22 # downstream detector
# distance <- 889

ud1 <- 8 # upstream detector
dd1 <- 21 # downstream detector
distance <- 889

# print in screen:
cat("\nFrom detector", ud1, "to", dd1, ", Distance:", distance)

# vehicles will be treated as large ones if length is larger than this
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large <- 6

cat("\nLARGE:",large)

vmax <- 120/3.6 # the velocity limit on the freeway(m/s)
# in the time window, for large vehicles
tmin <- distance/vmax
tmax <- distance/4

tx = 15 # tx’th part of time. Change this to obtain other time period.
t1 <- 9000+600*tx
t2 <- t1+600
cat("\nFrom time",t1,"(s) to time",t2,"(s)")
cat("\ntx=",tx)

me <- 0.03 # measurement error proportional to vehicle length

tw.around <- 60 # time interval around a large vehicle,
# in which vehicles are assumed to have similar travel time
cat("\ntw.around large(s):",tw.around)

# use N vehicles as a computing unit
N = 20
n <- c(5,5,5) # small sequence length for type 1,2 and 3
cat("\nn:",n,"\n")

cat("\nN vehicles as a computing unit:",N)

# use this to multiply the travel time used by a large vehicle
multiplier = 1.2
cat("\nMultiplier:",multiplier)
add2 = 0.1
add3 = 0.2
cat("\nUse add2 to give bigger multiplier when type 2:",add2)
cat("\nUse add3 to give bigger multiplier when type 3:",add3)
###############################

#### main matter ####

# at dd1, from time t1 to t2, record the vehicles
v.dd <- tf[tf$tenter>=t1 & tf$tenter<=t2 & tf$CP==dd1 ,
c("CP","tenter","tleave","VehNo","Type","velocity","VehLength","LengthMeasure")]
cat("\nThere are ",dim(v.dd)[1],"vehicles at downstream detector")

v.dd.large <- v.dd[v.dd$LengthMeasure > large,] # large vehicles
v.dd.large.length <- dim(v.dd.large)[1]
cat("\nThere are ",v.dd.large.length,"large vehicles detected at downstream.\n")

v.dd.large.tt <- NULL # travel time for the large vehicle

# LARGE vehicles reidentification
no.match <- NULL # records which large vehicle has no match in upstream
for (l in 1:v.dd.large.length){
v.ud.window <- tf[tf$tenter <= v.dd.large$tenter[l]-tmin &
tf$tenter >= v.dd.large$tenter[l]-tmax & tf$CP == ud1, ]
lmd <- v.dd.large$LengthMeasure[l] # length measured at downstream
pm <- data.frame() # possible match
for (w in 1:dim(v.ud.window)[1]){
lmu <- v.ud.window$LengthMeasure[w] # length measured at upstream
if (lmu/(1+me) <= lmd/(1-me) & lmu/(1-me) >= lmd/(1+me)){
pm <- rbind(pm, v.ud.window[w,])
}
}

howmany <- dim(pm)[1] # how many possible matches
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if (howmany > 1){
# use cor.maxN method to decide which one is better

cor.maxN = 0
cor.unsort = 0
where = 0

# take 10 vehicles around the downstream large
v.dd.large.around <- around(v.dd.large[l,],5)

# find the max cor
v.dd.large.around.length <- sort(v.dd.large.around$LengthMeasure)
for (i in 1:howmany){
v.pm.around <- around(pm[i,],5)
v.pm.around.length <- sort(v.pm.around$LengthMeasure)
temp <- cor(v.dd.large.around.length, v.pm.around.length)
if (temp > cor.maxN){
cor.maxN <- temp
where <- i

}
}
# then give new single pm
pm <- pm[where,]
howmany = 1
}
if (howmany == 1){
v.dd.large.tt[l] <- v.dd.large$tenter[l]-pm$tenter
}else{# no match
no.match <- c(no.match,l)
}
}
v.dd.large.tt <- subset(v.dd.large.tt, is.na(v.dd.large.tt)==F)
if(length(no.match)>0){
v.dd.large <- v.dd.large[-no.match,]
}

# remove those large v’s whose tt is
# longer than 1.4times of the mean large tt
# or shorter than 0.6times of the mean large ttw
out <- which(v.dd.large.tt > 1.4*mean(v.dd.large.tt)
| v.dd.large.tt < 0.6*mean(v.dd.large.tt))

if(length(out)>0){
v.dd.large <- v.dd.large[-out,]
v.dd.large.tt <- v.dd.large.tt[-out]
}

# in the time window, dynamic
tmin <- min(v.dd.large.tt)*0.8
tmax <- max(v.dd.large.tt)*1.3

v.dd.large.length <- dim(v.dd.large)[1]
cat(v.dd.large.length,"of them found possible match.\n")
# print(v.dd.large.tt)

v.dd.large.window <- cbind(v.dd.large$tenter-tw.around, v.dd.large$tenter+tw.around)

# match work: reidentify big sequences v.ddN
jth = 1 # the jth N vehicles in v.dd
match.rateN <- 0 # stores the match rate for v.ddN
match.raten <- 0 # stores the match rate for v.ddn

cor.maxn <- 0 # stores the max correlation

where <- 0 # stores where the max correlation is found
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type = 0 # stores the type of v.ddN
tt.estN = 0 # stores the travel time estimation of a v.ddN
te.estN = 0 # stores the arrival time estimation of a v.ddN
te.ud.estN = 0 # stores the arrival time estimation at UD

tt.estn <- NULL # stores the travel time estimation of a v.ddn
te.estn <- NULL # stores the arrival time estimation of a v.ddn

tt.est.bench <- NULL # stores the travel time estimation of benchmark
te.est.bench <- NULL # stores the arrival time estimation of benchmark

finds <- data.frame() # store the final match found
finds.exp <- data.frame() # store the EWMA results

while (jth*N <= dim(v.dd)[1]){
v.ddN <- v.dd[((jth-1)*N+1):(jth*N),]

wd.tt <- 0 # records the large vehicle’s travel time in its window

flag = 0
for (j in 1:N){
# within denotes to which large v’s window does this vehicle belong
within <- which(v.ddN$tenter[j]>=v.dd.large.window[,1] &
v.ddN$tenter[j]<=v.dd.large.window[,2])
if (length(within)>0){
# use the biggest window
wd.tt[j] <- max(v.dd.large.tt[within])
}else{
wd.tt[j] = 0
flag = 1
}
}

wd.tt.max <- max(wd.tt)

# # # maxT is for type 3 time window
# # maxT = max(v.dd.large.tt)

# if there exists(not all) vehicle (in the N v’s)
# that is not in any of the large v’s windows, use bigger multiplier
if (wd.tt.max > 0 & flag == 1){
v.ud.window <- tf[tf$tenter<=v.ddN$tenter[N]-tmin
& tf$tenter>=v.ddN$tenter[1]-(multiplier+add2)*wd.tt.max & tf$CP==ud1,
c("CP","tenter","tleave","VehNo","Type","velocity",
"VehLength","LengthMeasure")]
v.ud.window.length <- dim(v.ud.window)[1]
type[jth] = 2
}else{
# if all are within the large v’s windows
if(wd.tt.max > 0 & flag == 0) {
v.ud.window <- tf[tf$tenter<=v.ddN$tenter[N]-tmin
& tf$tenter>=v.ddN$tenter[1]-multiplier*wd.tt.max & tf$CP==ud1,
c("CP","tenter","tleave","VehNo","Type","velocity","VehLength","LengthMeasure")]
v.ud.window.length <- dim(v.ud.window)[1]
type[jth] = 1
}else{ # none is in the large v’s windows
v.ud.window <- tf[tf$tenter<=v.ddN$tenter[N]-tmin
& tf$tenter>=v.ddN$tenter[1]-tmax & tf$CP==ud1,
c("CP","tenter","tleave","VehNo","Type","velocity","VehLength","LengthMeasure")]
v.ud.window.length <- dim(v.ud.window)[1]
type[jth] = 3
}
}



106 Codes of the Algorithm

cor.maxN[jth] = 0

# maximum correlation method
v.ddN.vehLength <- v.ddN$LengthMeasure
if(v.ud.window.length > N){
i = 1
while (i+N-1<=v.ud.window.length){
v.ud.vehLength <- v.ud.window$LengthMeasure[i:(i+N-1)]
temp <- cor(sort(v.ud.vehLength),sort(v.ddN.vehLength))
if (temp > cor.maxN[jth]){
cor.maxN[jth] <- temp
where[jth] <- i

}

i = i+1
}

MPCS <- v.ud.window[where[jth]:(where[jth]+N-1),]

match.tableN <- table(is.element(MPCS$VehNo, v.ddN$VehNo))
match.rateN[jth] <- match.tableN["TRUE"]/N

# travel time
te.estN[jth] = mean(v.ddN$tenter)
te.ud.estN[jth] = mean(MPCS$tenter)
tt.estN[jth] = te.estN[jth]-te.ud.estN[jth]

# to small
kth = 1 # the kth n vehicles in v.ddN
cor.maxn[jth] = 0
pair <- NULL # store which is the best match

while(kth+n[type[jth]]-1<=N){
v.ddn <- v.ddN[kth:(kth+n[type[jth]]-1),] # the kth n v’s in v.ddN

# maximum correlation method
mth = 1 # the mth n v’s in MPCS

while(mth+n[type[jth]]-1<=N){
MPCS.m <- MPCS[mth:(mth+n[type[jth]]-1),]
temp <- cor(MPCS.m$LengthMeasure,v.ddn$LengthMeasure)
if (temp > cor.maxn[jth]){
cor.maxn[jth] <- temp
pair <- c(kth,mth)

}
mth = mth+1

}

kth = kth+1
}

v.ddn <- v.ddN[pair[1]:(pair[1]+n[type[jth]]-1),]
MPCS.m <- MPCS[pair[2]:(pair[2]+n[type[jth]]-1),]
v.ddn$type <- type[jth]
v.ddn$tt.est <- v.ddn$tenter - MPCS.m$tenter

finds <- rbind(finds,v.ddn)
te.estn <- c(te.estn,mean(v.ddn$tenter))
tt.estn <- c(tt.estn,mean(v.ddn$tt.est))

match.tablen <- table(is.element(MPCS.m$VehNo, v.ddn$VehNo))
match.raten[jth] <- match.tablen["TRUE"]/n[type[jth]]
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}else{ # not enough v’s in the window!!!
where[jth] = NA

MPCS <- v.ud.window

match.tableN <- table(is.element(MPCS$VehNo,v.ddN$VehNo))
match.rateN[jth] <- match.tableN["TRUE"]/N

# travel time
te.estN[jth] = mean(v.ddN$tenter)
te.ud.estN[jth] = mean(MPCS$tenter)
tt.estN[jth] = te.estN[jth]-te.ud.estN[jth]

# to small
n.min <- min(n[type[jth]],v.ud.window.length)
kth = 1 # the kth n vehicles in v.ddN
cor.maxn[jth] = 0
pair <- NULL # store which is the best match

while(kth+n.min-1<=N){
v.ddn <- v.ddN[kth:(kth+n.min-1),] # the kth n v’s in v.ddN

# maximum correlation method
mth = 1 # the mth n v’s in MPCS

while(mth+n.min-1<=v.ud.window.length){
MPCS.m <- MPCS[mth:(mth+n.min-1),]
temp <- cor(MPCS.m$LengthMeasure,v.ddn$LengthMeasure)
if (temp > cor.maxn[jth]){
cor.maxn[jth] <- temp
pair <- c(kth,mth)

}
mth = mth+1

}

kth = kth+1
}

v.ddn <- v.ddN[pair[1]:(pair[1]+n.min-1),]
MPCS.m <- MPCS[pair[2]:(pair[2]+n.min-1),]
v.ddn$type <- type[jth]
v.ddn$tt.est <- v.ddn$tenter - MPCS.m$tenter

finds <- rbind(finds,v.ddn)
te.estn <- c(te.estn,mean(v.ddn$tenter))
tt.estn <- c(tt.estn,mean(v.ddn$tt.est))

match.tablen <- table(is.element(MPCS.m$VehNo, v.ddn$VehNo))
match.raten[jth] <- match.tablen["TRUE"]/n[type[jth]]
}

# benchmark
velocity <- v.ddN$velocity
har.mean <- harmonic(velocity)
te.est.bench <- c(te.est.bench, mean(v.ddN$tenter))
tt.est.bench <- c(tt.est.bench, distance/har.mean)

jth = jth+1

}

t.dd <- NULL
tt.dd <- NULL
tf.temp <- tf[tf$CP == ud1 & tf$tenter>0,]
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for (i in 1:dim(v.dd)[1]){
temp <- tf.temp[tf.temp$VehNo == v.dd$VehNo[i],]
if(dim(temp)[1] == 1){
t.dd <- c(t.dd,v.dd$tenter[i])
tt.dd <- c(tt.dd,v.dd$tenter[i]-temp$tenter)
}
}

# EWMA smoothing

finds.exp <- data.frame(cbind(match.rateN,match.raten,type,te.estn,tt.estn))

v.dd.large$match.rateN=0
v.dd.large$match.raten=0
v.dd.large$type=0
v.dd.large$te.estn = v.dd.large$tenter
v.dd.large$tt.estn = v.dd.large.tt

finds.exp <- rbind(finds.exp,v.dd.large[,c(’match.rateN’,’match.raten’,
’type’,’te.estn’,’tt.estn’)])

finds.exp <- finds.exp[order(finds.exp$te.estn),]

finds.exp$tt.exp <- 0

l = 0 # store lambda
# the first one:
if(finds.exp$type[1] == 0 | finds.exp$type[1] == 1 | finds.exp$type[1] == 2){
finds.exp$tt.exp[1] = finds.exp$tt.estn[1]
}else{
finds.exp$tt.exp[1] = mean(finds.exp$tt.estn)
}

# the others
for (i in 2:dim(finds.exp)[1]){
prev.type = finds.exp$type[i-1]
t.diff = finds.exp$te.estn[i]-finds.exp$te.estn[i-1]
l[i] <- lambda(finds.exp[i,], prev.type, t.diff)
finds.exp$tt.exp[i] <- (1-l[i])*finds.exp$tt.exp[i-1]+l[i]*finds.exp$tt.estn[i]
}
tt.exp <- finds.exp$tt.exp

# print(finds.exp)

tt.loess <- loess(finds.exp$tt.estn~finds.exp$te.estn, span=0.3)
tt.predict <- predict(tt.loess,data.frame(te.estn = seq(t1+10,t2-10,10)),se=T)

# some important results to print out
amount <- jth-1 # how many v.ddN or v.ddn
cat("There are ",amount,"groups of v.ddN,",amount*n[1],
"vehicles to be reidentified. \n")

# change values of NA to 0 in match.rateN and match.raten
for (a in 1:amount){
if(is.na(match.rateN[a])){
match.rateN[a] = 0
}
if(is.na(match.raten[a])){
match.raten[a] = 0
}
}

# no. of vehicles got final real matches
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final.match <- sum(n[1]*match.raten)
# overall match rate among all v.ddn
final.match.rate <- final.match/(n[1]*amount)
cat(final.match,"vehicles got correct match. \n")
cat("The overall match rate among all v.ddn is",final.match.rate,". \n")
cat("The overall match rate among all vehicles is",
final.match/dim(v.dd)[1],". \n")
cat("match.rateN:\n")
print(match.rateN*100)
cat("match.raten:\n")
print(match.raten*100)

#### plots ####
graphics.off()
plot(t.dd,tt.dd, col="black", xlab="Time", ylab="Travel time",
ylim=range(finds$tt.est, tt.dd),
main=bquote("Travel time from detector"~.(ud1)~"to"~.(dd1)))
mtext(bquote("during the time"~.(t1)~"(s) to"~.(t2)~"(s)"))
lines(loess(tt.dd~t.dd),col="black")
points(v.dd.large$tenter,v.dd.large.tt, pch=15, col="blue",cex=1.5)

points(finds[finds$type==1,]$tenter,finds[finds$type==1,]$tt.est,
col="green",pch=19,cex=1)
points(finds[finds$type==2,]$tenter,finds[finds$type==2,]$tt.est,
col="yellow",pch=19,cex=1)
points(finds[finds$type==3,]$tenter,finds[finds$type==3,]$tt.est,
col="red",pch=19,cex=1)

# with EWMA and loess
windows()
plot(t.dd,tt.dd, col="black", xlab="Time", ylab="Travel time",
ylim=range(finds$tt.est,tt.dd),
main=bquote("Travel time from detector"~.(ud1)~"to"~.(dd1)))
mtext(bquote("during the time"~.(t1)~"(s) to"~.(t2)~"(s)"))
lines(loess(tt.dd~t.dd),col="black", lwd=2)
points(v.dd.large$tenter,v.dd.large.tt, pch=15, col="blue",cex=1.5)

points(finds[finds$type==1,]$tenter,finds[finds$type==1,]$tt.est,
col="green",pch=19,cex=1.5)
points(finds[finds$type==2,]$tenter,finds[finds$type==2,]$tt.est,
col="yellow",pch=19,cex=1.5)
points(finds[finds$type==3,]$tenter,finds[finds$type==3,]$tt.est,
col="red",pch=19,cex=1.5)

points(finds.exp$te.estn,finds.exp$tt.exp,col=6,pch=18,cex=1.5)

lines(seq(t1+10,t2-10,10),tt.predict$fit, col = ’blue’, lwd = 2)
lines(seq(t1+10,t2-10,10),tt.predict$fit+tt.predict$se.fit, col = ’red’, lty=2)
lines(seq(t1+10,t2-10,10),tt.predict$fit-tt.predict$se.fit, col = ’red’, lty=2)

lines(loess(finds.exp$tt.exp~finds.exp$te.estn),lty=1,col=6,lwd=2)

### benchmark ###
tt.est.bench <- NULL
te.est.bench <- NULL

jth = 1
while (jth*N <= dim(v.dd)[1]){
v.ddN <- v.dd[((jth-1)*N+1):(jth*N),]
velocity <- v.ddN$velocity
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har.mean <- harmonic(velocity)
te.est.bench <- c(te.est.bench, mean(v.ddN$tenter))
tt.est.bench <- c(tt.est.bench, distance/har.mean)

jth = jth + 1
}

# loess predictions
reid.loess <- loess(finds.exp$tt.estn~finds.exp$te.estn, span=0.3)
harm.loess <- loess(tt.est.bench~te.est.bench, span=0.3)

real.te <- t.dd

reid.predict <- predict(reid.loess,data.frame(te.estn = real.te))
harm.predict <- predict(harm.loess, data.frame(te.est.bench = real.te))

# find the index where both reid and harm are not NA
index = which((is.na(harm.predict)+is.na(reid.predict))==0)

real.te <- real.te[index]
# real.predict <- real.predict[index]
real.tt <- tt.dd[index]
reid.predict <- reid.predict[index]
harm.predict <- harm.predict[index]

real.mean <- mean(real.tt)
reid.mean <- mean(reid.predict)
harm.mean <- mean(harm.predict)

reid.bias <- reid.mean-real.mean
harm.bias <- harm.mean-real.mean
cat("bias reid:",reid.bias,"\n")
cat("bias harm:",harm.bias,"\n")

reid.sse <- sum(I(reid.predict-real.tt)^2)
harm.sse <- sum(I(harm.predict-real.tt)^2)
cat("SSE reid:",reid.sse,"\n")
cat("SSE harm:",harm.sse,"\n")

reid.var <- var(reid.predict-real.tt)
harm.var <- var(harm.predict-real.tt)
cat("Var reid:",reid.var,"\n")
cat("Var harm:",harm.var,"\n")

windows()
plot(t.dd,tt.dd, col="black", xlab="Time", ylab="Travel time",
ylim=range(real.tt,reid.predict,harm.predict),
main=bquote("Travel time from detector"~.(ud1)~"to"~.(dd1)))
mtext(bquote("during the time"~.(t1)~"(s) to"~.(t2)~"(s)"))
lines(loess(real.tt~real.te),col="black")

# lines(seq(t1+10,t2-10,1), real.predict, lwd=1)
lines(real.te, reid.predict, col="blue", lwd=2, lty=1)
lines(real.te, harm.predict, col="red", lwd=2, lty=1)

points(te.est.bench,tt.est.bench, pch = 12, col=2)
# lines(te.est.bench,tt.est.bench, lty=3, col=4)
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