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Summary

All authentication mechanisms have a failure probability that is usually left im-
plicit. Consider a password system that is presented with a valid password. The
system cannot know whether the password was entered by its rightful owner or
an impostor who has guessed the password, and despite that it is commonly
known that some passwords are easily guessed, the password authentication
system does not di�erentiate between weak passwords that are easily guessed
and stronger passwords. Ignoring the failure probability, we risk silent authen-
tication failures, e.g., an impostor is authenticated based on an easily guessed
password. We believe that ignoring these failures leads to false security assump-
tions. Therefore, we propose to make the failure probabilities in the authentica-
tion method explicit, similar to what is now done in some biometric veri�cation
systems.

In this thesis we propose a probabilistic model of authentication, called Co-
Authentication, which combines the results of one or more authentication sys-
tems in a probabilistic way. This model may, in some ways, be seen as a gen-
eralization of information fusion in biometrics, which has been shown to reduce
the failure rates of biometric veri�cation. We show that Co-Authentication in-
creases �exibility in system design and that it reduces authentication failures by
combining multiple authentication probabilities. The proposed model has been
implemented in a prototype Co-Authentication framework, called Jury.
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Preface

This thesis was prepared in the department of Informatics Mathematical Mod-
elling, at the Technical University of Denmark in partial ful�llment of the re-
quirements for acquiring the M.Sc. degree in Computer Systems Engineering.

The thesis deals with user authentication, and how authentication systems are
subject to failures that are generally ignored. The main focus is on how au-
thentication systems can be combined in a way that increases the reliability of
the authentication result, but also how existing authentication systems can be
adapted to the probabilistic scheme proposed in the thesis..

Lyngby, September 2007

Einar Jónsson
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Chapter 1

Introduction

Identi�cation and authentication comes naturally to human beings. Recent
research suggests that we learn to recognize our mothers voice even before we are
born [20]. We subconsciously use a combination of a persons physical attributes,
such as their voice, behavior and other characteristics to authenticate those we
know. and generally do not need elaborate authentication schemes when we
speak to our friends on the phone, since we simply recognize their voices.

Computer systems on the other hand, are devoid of this ability. The reason
we log into our systems in the morning is because our mere presence is insu�-
cient for these systems to be able to identify us. Systems require us to perform
some sequence of actions to identify ourselves and verify the claimed identity.
In order to provide computer systems with the ability of authentication we use
formal protocols, which typically require user interaction. We can generalize
the authentication scenarios involving a computer system into three scenarios,
namely human-computer, computer-computer and human-computer-human au-
thentication [44]. In this thesis we will limit the discussion to the �rst category,
which we refer to as user authentication.

User authentication can be de�ned as "the process of verifying the validity of a
claimed user" [44], and the methods used for veri�cation are typically divided
into three categories: something we know, something we have and something
we are. A password is an example of the �rst category, since we assume that
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it is a secret known only by the legitimate user. A smart card is an example
of something we have, namely a physical token which is assumed to be in the
possession of the legitimate user. Finally, biometrics are an example of the last
category. By allowing the system to scan our iris or �ngerprint we provide it
with data that is, at least for all practical purposes, unique to us.

The authentication process is commonly performed in two steps: identi�cation
and veri�cation. In the identi�cation mode, the system needs to establish our
identity, which typically involves the user providing a username. An example of
a more elaborate scheme, is a biometric face recognition system which identi�es
the person who is sitting in front of the terminal in an unobtrusive manner, and
relays the identity information to the authentication system. Once the system
has been provided with an identity, it needs to verify the authenticity of it. In
most cases this means that the users have to provide a password which has been
associated with their account. Other means of veri�cation include providing a
�ngerprint or a physical token, such as a smart card. All of these methods have
drawbacks that can seriously a�ect the security they provide. A password can
be shared, guessed or forgotten, a physical token can be stolen, and a �ngerprint
can be forged [35]. In other words, each authentication method is susceptible
to di�erent types of attacks.

The veri�cation can be based either on an exact match or a probabilistic match
of the veri�cation input. For an exact match, the input value is compared to
a stored value and rejected unless they are identical. An example of this are
password systems, where a hashed value of the password is stored on the system.
The password provided by the user is then hashed and compared to the stored
value and the authentication fails if there is any di�erence between the two
values. In other words, a password system will not distinguish between an input
of a correct password with a single typographic error and a string which has no
characters in common with the genuine password. Similarly, it will treat all
matching inputs the same way, even if they provide signi�cantly di�erent levels
of security. In this paper we will use the term binary authentication systems for
systems that employ an exact match veri�cation.

For a probabilistic match, the input value is typically compared to stored data
and is ranked based on the similarity between the input and the stored data. The
similarity score is then compared to a pre-con�gured threshold, and if it exceeds
the threshold the authentication is successful, but fails otherwise. Examples of
such threshold-based authentication systems are biometric authentication sys-
tems. In biometric systems, the user input is a sample of the user's speci�c
biometric traits, which is compared to a stored template that was registered
during the user's enrollment in the system.

Threshold based systems have two complementary error rates, namely a false
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accept rate (FAR) and a false reject rate (FRR). A false accept is when an
impostor is accepted as a genuine user, whereas a false reject is when a genuine
user is rejected as an impostor. The threshold value for such a system determines
the balance between FAR's and FRR's. A low threshold will increase FAR's
and decrease FRR's, and a high threshold will do the opposite. For example, a
�ngerprint scanner identi�es its input as belonging to John in accounting, with
a 0.52 match score. If the threshold is above 0.52, the authentication will be
rejected regardless of whether the sample input is authentic or not. Similarly,
it will be accepted if the threshold is below the match score, even if the sample
belongs to an impostor.

A considerable amount of work has been done in the �eld of biometrics to
decrease these error rates by combining multiple biometrics into so called multi-
biometric systems. The general idea is that the results of multiple biometric
systems are combined, into a single result, and such systems have been shown
to have lower error rates than any of the participating systems [28]. One method
of combining these systems is to use the individual match scores. By running a
score fusion algorithm, such an arithmetic mean function, on the match scores
we can compute an overall score, which serves as a probability of a genuine
authentication.

Binary authentication systems, such as password systems, are also subjects to
false accepts and false rejects. An impostor might guess the password of a le-
gitimate user and thereby cause a false accept. Similarly, long and complicated
passwords are likely to increase the frequency of input errors, causing false re-
jection of legitimate users. In this particular example, the password complexity
policy can be seen as a threshold, striking a balance between the FAR with
regard to guessing attacks and FRR. Unlike their biometric counterparts, bi-
nary authentication systems leave these error rates implicit and typically ignore
them. Normally all passwords are seen as equal, and entering the correct pass-
word is seen as su�cient proof that the presented identity is authentic. However,
not all passwords are equal. Publicly available password crackers [22, 41] will
crack some passwords in a matter of seconds, while it can take weeks, months
or even years to crack others [34]. This suggests that passwords can be assigned
a strength indicator, which can be seen as a probability of a genuine authen-
tication. While the password remains an exact match, the strength indicator
allows us to implement a threshold-based user authentication system, i.e., the
authentication of users with strong passwords is considered stronger than the
authentication of users with weaker passwords.

Similarly, we have di�erent levels of con�dence towards di�erent systems. For
instance, a credit card transaction made using a magnetic stripe is considered
less secure than if the transaction were made with a Chip & PIN technology. We
believe that it is a good idea to quantify these con�dence levels and take them
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into account when making authentication decisions. By combining these levels
with other authentication factors we can make better informed decisions about
whether or not to authenticate a particular principals, be it users, transactions
or something else.

In this thesis we propose Co-Authentication, which allows multiple authentica-
tion systems to combine their probabilistic results and reach a uni�ed threshold-
based decision. It allows us to combine static con�dence levels, biometric match
scores as well as any other authentication factors that can be expressed in prob-
abilistic terms, and compute an overall authentication score. We have developed
a generic Co-Authentication framework, called Jury, which allows us to combine
these scores using di�erent statistical methods. The Jury framework provides
a generic platform that allows organizations to gradually adapt existing secu-
rity infrastructure to the Co-Authentication scheme. Finally, we show that the
framework performs well enough to be applicable in real scenarios, and give
examples of how existing binary authentication systems can be adapted to a
threshold-based scheme, and how they can bene�t from Co-Authentication.

The rest of the thesis is organized as follows: We discuss the background and
current state of the art in Chapter 2 and motivate our work by showing where
these current approaches are lacking. The notion of Co-Authentication is in-
troduced and analyzed in Chapter 3. We present the requirements, design and
implementation of the Jury framework in Chapters 4, 5 and 6 respectively. Our
work is evaluated in Chapter 7 where we also show how existing authentica-
tion schemes can be adapted to Co-Authentication by integrating them with
the Jury framework. Finally we summarize our work and conclude the thesis in
Chapter 8.



Chapter 2

Background and Motivation

Systems are often described in terms of strength, i.e., a system is either strong
or weak. This is a relative and abstract scale, where a system is considered to
be strong if it is impractical to break it, i.e. it is not worth it, given the cost of
the attack. Similarly, a system is considered weak if it is either easy to break,
or if the cost required to break it is considered to be acceptable with regards
to the potential gains of having access to that system. The cost of attacking a
system can refer to money, time, overall e�ort and risk.

To put the above discussion in a concrete example, let us imagine that we are
evaluating data security solutions to protect industrial trade secrets that are to
be used in a product that will be released in two years time, and is expected
to give a pro�t of $100
000. Given that the time and revenue estimates are
accurate, we can automatically reject all data protection solutions which will
cost more than the expected pro�t. Similarly, solutions such as data encryption
mechanisms, which are expected to take more than two years to break are
acceptable since the protected data will become public knowledge in two years.

The discussion above is summarized in De�nition 2.1, and we will refer to it
throughout this thesis.

Definition 2.1 (System Strength) �A strong system is one in which
the cost of attack is greater than the potential gain to the attacker. Conversely,
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a weak system is one where the cost of attack is less than the potential gain.
Cost of attack should take into account not only money, but also time, potential
for criminal punishment, etc.� [44]

A system with a weak component is considered to be weak, even if it enforces
strong security in other areas. For instance, imagine a server which is stored in
a highly secure building, but which allows remote access using weak passwords.
We must assume that an attacker will target the most vulnerable point within
the system, e.g., the remote access in the example above. If a house has thick
concrete walls, reinforced steel doors and a few fragile and unprotected windows,
it is obvious that a smart burglar will enter through the windows, and the same
principle applies to computer systems. In other words the system is only as
strong as its weakest link. P�eeger and P�eeger summarize this well in their
principle of easiest penetration [46], which is shown in De�nition 2.2. We will
also refer to this de�nition in subsequent chapters.

Definition 2.2 (Principle of Easiest Penetration) �An intruder
must be expected to use any available means of penetration. The penetration
may not necessarily be by the most obvious means, nor is it necessarily the one
against which the most solid defense has been installed.� [46]

In the following sections we will present common authentication systems and
combinations thereof. It is helpful to keep the above two principles in mind when
we discuss the weaknesses of various authenticators, to determine whether the
weaknesses are of real concern in a particular context.

2.1 Authentication Systems

We will now give an overview of various commonly used authentication systems.
In particular we will provide a detailed analysis of password systems, since they
are the most commonly found systems.

2.1.1 Analysis of Password Security

A password is a secret sequence of characters, generally only known by a sin-
gle user, and it is the oldest authentication scheme used in computer systems.
Passwords are typically assigned to a user identi�er, also known as a username
in such a way that each user has her own password, that she inputs along with
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her username to authenticate herself to the system. The system then looks up
the stored password which is associated with username, and compares it to the
input password to determine whether they match. If they match the user is
successfully authenticated, but otherwise the authentication fails, i.e., the user
is not authenticated. A match means that every character in the input matches
the character in the same position in the stored password, and that the two
strings are of the same length.

Password systems typically do not store the password itself, but its hash value.
The hash is the result of performing a one-way cryptographic hashing function,
such as MD5 [50] or SHA-1 [13], on the password, which results in a password
storage that is hard to reverse. When a user logs in, the password is hashed
using the same hash function as was used when the password was set. If the
computed hash and the stored hash match, then the password was correct. In
some cases the password string is used as a key in a one-way hash function,
which then hashes a constant.

2.1.1.1 Keyspace and guessing probabilities

Passwords are an example of so-called Knowledge-based authenticators, which
means that users must keep their passwords secret, and in order for a password
to provide su�cient protection, it has to be hard to guess. We call the number
of possible password combinations a keyspace. A random password from a large
keyspace is theoretically harder to guess than a random password from a smaller
keyspace. A password of length n from a character set of size c, will have a
keyspace size of kp = cn [44]. Therefore we can either make a password longer,
or use more characters in order to increase the size of the keyspace.

As an example, suppose we have a 4 digit password which gives us a keyspace of
104 = 10000 possible passwords. By increasing the length of the password to 6
digits we obtain a keyspace of 106 = 1000000 whereas keeping the same length
but increasing the allowed input characters to include all lowercase alphabetic
characters and digits yields a keyspace of (26+10)4 = 16791616. Assuming that
passwords are evenly distributed over the keyspace, the probability of a random
guess matching a password � given that the guess is of the right length � is then:

P (correct guess) =
1
kp

.

The above examples all show the keyspace for a single password of length n.
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Plaintext Salt Salted Plaintext MD5 Hash
JohnyBGood ab abJohnyBGood 16bfd9df440f758cc93b87ba0016fc14
JohnyBGood JohnyBGood ef242b0321979b00330c4cc82177697a
JohnyCGood ab abJohnyCGood fec79a705eba0ae76cafe0967d6b1d1b

Table 2.1: This table shows how much e�ect changing a single letter or changing
the salt has on the outcome of the hash function. The �rst line is our baseline, a
simple password and a salt. The second line is the same password but without
the salt. Finally, the third line is the same as the �rst except a single character,
'B' has been changed by one value, to 'C'. Both of these small changes cause
signi�cant changes the output value of the hash function.

Normally however, a password systems does not enforce a �xed length, but
rather a minimum and a maximum length. The probability of a random guess
for a password being correct, where the minimum password length is n and the
maximum length is m, and the number of available characters is c is then:

P (correct guess) =
1

m∑
i=n

ci

For instance a password of a length between 6 and 8, consisting of randomly
chosen characters from a set of 95 printable characters yields a guessing prob-
ability of approximately (6.7 ∗ 1015)−1. To further increase the keyspace, pass-
word systems commonly use salts. The salt is a randomly chosen value which
is prepended to the password, after which we refer to it as a salted password.
Adding a salt of length s to a password of length n increases the keyspace to
c(s+n), assuming that the salt uses the same character set as the password.
This increase in keyspace makes o�ine guessing attacks, which we will describe
further in the next section, signi�cantly harder.

The use of salts generally changes the password storage such that instead of
storing just the hashed password, it now stores the hashed salted password,
along with the salt in plaintext. Similarly, the login procedure is slightly altered
such that when a user logs in, the salt is prepended to the password he enters,
and the result is hashed using the same hash function as was used when the
password was set. Again, the authentication depends on whether the two values
match. Table 2.1 shows examples of plaintext passwords, salts and their MD5
hash function outcome.
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2.1.1.2 O�ine Guessing Attacks

While the large keyspace of passwords o�ers good security in theory, experience
shows that this does not always hold true in practice. The problem is that users
typically choose passwords from a small and predictable subset of the keyspace
[44, 34, 49]. These passwords are often variations of the username, names of
pets, names of cartoon characters, common dictionary words [34], or names of
�ctional characters from literature or �lms. This allows a malicious attacker
to use more e�cient techniques to signi�cantly reduce the time it takes to �nd
passwords, since he can now focus on these categories of passwords rather than
the entire keyspace. Such focused attacks are known as dictionary attacks, since
the attacker often has dictionary �les which contain common passwords.

If the password is random, the attacker can still avoid exploring the entire
keyspace, for several reasons. First, if the attacker is trying to guess a pass-
word by brute force, i.e., trying every possible character combination, he will
succeed after exploring half the keyspace on average. Secondly, if the attacker
is only trying to �nd a single password, i.e., not a particular one, out of a list
of passwords, the probability shifts further to his favor. For a password list for
nu users, where the passwords are distributed evenly within the keyspace, the
attacker only has to explore the �rst kp

nu
segment of the keyspace, on average.

Finally, if the attacker knows many personal details of the user, he can often
�nd the password simply by guessing, e.g., if the password is the title of the
users' favorite movie.

Finding a single password is often all the attacker needs to compromise a system,
even if the compromised user account has few privileges on the system. Once
the attacker is logged into the machine she can utilize other attacks such as ex-
ploiting vulnerable software, to elevate her privileges. This combined approach
was for instance used in the infamous Morris worm [56].

A password guessing attack is typically performed o�ine, i.e., not on the ma-
chine which the attacker is trying to compromise. To perform an o�ine guessing
attack, the attacker obtains a copy of the �le, or the set of �les, which contain
the user information, hashed passwords and salt values. She can then run a so-
called password cracker program on these �les to obtain user passwords. There
are several popular password crackers which are publicly available, such as John
the Ripper [22] and Crack [41].

The above mentioned programs share common approaches. They generate a list
of words each of which is appended to the salt, and the result is hashed using
the same hashing function as the system which is being attacked. The word
lists are found by creating various permutations of the user information found
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in the password �les, such as the username, the full name, department name
or domain name of the host. Similar permutations are then run on each word
from one or more dictionary �les, such as an English dictionary or a dictionary
of commonly used passwords. Finally, the remaining passwords are guessed by
exhaustively trying all character combinations from the keyspace. Note that
this exhaustive search does not have to be in an alphabetic sequence. John the
Ripper for instance utilizes trigraph frequencies for each character position and
length of the password, in order to �nd as many passwords as it can in a limited
amount of time [22].

While the password keyspace can be quite large, password crackers can be very
e�cient at guessing passwords. For instance, Teracrack [45] used word lists gen-
erated from the Crack [41] utility, and managed to pre-compute hashes for over
50 million passwords in about 80 minutes. While they used a High Performance
Computing environment, these numbers are not completely dismissible. Guess-
ing passwords is a task that is very well suited for parallel computing, and many
average user PCs can be utilized to �nd passwords very quickly [45]. It is widely
known that many malicious attackers have access to so-called botnets [36], i.e., a
network of infected user PCs that are at the attackers disposal, usually without
the knowledge of the computers rightful owner. While these botnets are known
to be used for sending SPAM and perform distributed denial-of-service (DDos)
attacks, there is nothing that prevents these botnets to be used as a distributed
password cracking mechanism.

2.1.1.3 Mitigating Password Attacks

Several approaches have been suggested in the literature to address the attacks
described above and reduce the risk of compromised passwords. Most of them
focus on increasing the active keyspace of the passwords, i.e., preventing users
from using simple passwords such as dictionary words in favor of more random
character sequences. One such approach is to check passwords at the time they
are set by the user, and rejecting them if they do not ful�ll the complexity [56].
This approach was for instance used by Bishop and Klein [18] where they com-
bined it with messages which educated the user about password security by
explaining why their password was rejected. Another approach to increase the
complexity of passwords is to assign randomly generated passwords to users.
This ensures that the passwords are properly distributed across the keyspace.

While these methods succeed in increasing the active keyspace and making of-
�ine guessing attacks harder, they are not perfect solutions. Increasing password
complexity has the side-e�ect that users �nd it more di�cult to memorize them,
which in turn causes them to bypass the security measure, for instance by writ-
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ing the password down on a piece of paper and stick it on the monitor, or to
skip logging out of the system when they leave. This sort of behavior has for
instance been observed in environments where employees are highly mobile and
need frequent access to machines, i.e., frequently need to log in and out [16].

The use of passphrases has been suggested to address the problem of memorizing
strong passwords [47]. Passphrases are essentially normal sentences, and the idea
is to allow the users to create much longer passwords that are easy to remember
and yet hard to guess. For instance, "Mary had a little lamb" is a 22 character
passphrase that is easy to remember1. Recent research indicates however, that
these passphrases are as hard to commit to memory as traditional stringent
passwords and have a higher input error rate due to their length [31].

A completely di�erent approach which does not involve password complexity,
is to force users to change passwords periodically. In order for this method to
work, the password expiration time has to be shorter than the time it takes
for an attacker to guess the password. Similarly, the user cannot be allowed
to change his password back to a previously used password, since an attacker
may have obtained previous password �les, in which case she has had plenty
of time to crack them. This means that the password system has to include
a list of previous password hashes and salts, to compare to the new password.
This method has two obvious drawbacks. First, frequent changes cause similar
memory problem as the complexity solutions [54]. Second, unless it is combined
with complexity requirements, the time interval has to be too low to be practical
due to the short time it takes to guess weak passwords. A weak password can be
found in as little as a few seconds using a popular password guessing program,
which is far to short to be a reasonable expiration time for a password.

Finally, some solutions aim at making the guessing process slower. For in-
stance, Morris and Thompson replaced the encryption program used to create
the password hashes in UNIX, with a slower program [40]. The slower program
implemented the DES encryption algorithm, whereas the former had been an
emulation of an hardware cipher machine. If the algorithm itself is slower, as
opposed to just a particular implementation of it, this has the e�ect of slowing
down the guessing since it takes a longer time to compute each hash. If, on the
other hand, the lower performance is limited to a particular implementation of
the algorithm, the attacker can use his own optimized version to obtain faster
results. So for instance, inserting a delay into the encryption implementation on
the machine we want to protect o�ers no additional defense against o�ine at-
tacks. The idea of having faster hashing implementations in guessing programs
is already in use. As an example, John the Ripper �has its own highly optimized

1Although it is a bad candidate since it is very well known, and is therefore a likely

dictionary guess-phrase
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modules for di�erent hash types and processor architectures� [22]

2.1.1.4 Summary

In theory, passwords can provide great protection, given a large keyspace. Pass-
words that are easy to remember are also a comfortable authentication mech-
anism, at least for normal o�ce environments. However, we have identi�ed
various weaknesses of passwords. Essentially, password policies have to strike a
balance security and usability, i.e., between enforcing cryptic and secure pass-
words, and weaker passwords that its users can remember. Forcing strong pass-
words on users is likely to cause them to circumvent the security measures, which
may render the authentication mechanism as little more than a false sense of
security.

Further the weakness of password technology is not limited to guessing attacks,
since passwords can be forgotten or shared. In the former case, an administrator
has to reset the password and if this is a frequent event it can be quite costly.
In the latter case there is no way for the authentication system to know that
the password has been shared. The activity of sharing passwords is such a
common o�ce practice, that in a biometric user acceptance study, the subjects
complained about that they were unable to transfer biometric characteristics, as
they commonly do with passwords [14]. When a login system is presented with
a username and the correct corresponding password, it cannot treat an impostor
any di�erently than a legitimate user. Even worse is that the rightful owner of
a compromised password typically has no way of noticing that his password has
been compromised, and thus cannot report the breach and change his password.

O'Gorman states that �a fundamental property of good authenticators is that they
should not easily succumb to guessing attacks or exhaustive search attacks� [44].
Due to a potentially large keyspace, it is clear that passwords ful�ll this property
in theory. Given the way in which normal users treat passwords however, it is
clear that passwords do not ful�ll this property in practice. Despite decades of
research it is still unclear how we can provide secure passwords in a way that
will not cause users to circumvent the technology due to poor usability.

2.1.2 Tokens

Authentication with a token is an example of something you have, also known
as Object-Based Authentication. A token is a physical object which typically has
some unique identifying properties, and ownership of such a token is normally
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seen as su�cient proof of authenticity. If the token is unique for each person it
can be used as a proof of identity, whereas if a token is unique for a group it can
be used as a proof of membership of that group, e.g., ID-cards and membership
cards.

Authentication tokens have been around for a long time, and have been actively
used since long before the invention of the computer. For instance, wearing a
sheri� star was commonly seen as su�cient proof of the wearers authority, i.e.,
the star was a well known group authenticator. Similarly, the practice of sealing
letters with a token is as old as writing itself. An example of a sealing token is
a signet ring, which is used to make an unique � and hard to forge � impression
on the seal. Since the impression is unique to the token owner, a recipient can
inspect the seal to determine if it is authentic, i.e., if it is truly from the claimed
sender and not a forger. To some degree, the signet rings are similar to the
private cryptographic keys we use for digital signatures today.

These tokens often have physical manifestations, but they can also be virtual
(digital), e.g., digital certi�cates. The possession of a certi�cate allows the holder
to perform operations which can be veri�ed by others. Digital signatures are an
example of this, where the sender can sign a message using a private key which
corresponds to the public key in the certi�cate. The message recipient can then
verify the signature using the certi�cate, given that she trusts the certi�cate
authority, i.e., the issuer. If the senders private key is truly held private, forging
his digital signature is as very hard.

Today we use physical keys to open doors and to start our cars. Similarly, we
often use swipe cards or smart cards to enter di�erent sections of our workplace.
Smart cards in particular have found their way into computing systems and are
sometimes used in authentication as a supplement to, or replacement of the
traditional login system. A smart card is a small plastic cards which include a
processor and memory. Such a card can be combined with password protection,
so that it cannot be used without the correct password, which is equivalent to
having a complete password protection system on the card itself. Once activated
� by entering the right password � it can provide either a static passcode or
generate a one-time passcode [44]. Since the user does not have to remember
the passcodes provided by the card, they can be made long and random2. As
a result the passcodes are more robust against guessing attacks since common
dictionaries are no longer of any real use. This forces the attacker to use brute-
force methods which are unlikely to produce a match within a practical time
frame, due to the large keyspace of these passcodes.

2We will use the word random a bit liberally, since these computers generally cannot

produce truly random numbers but merely pseudo-random
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The main disadvantage of tokens is that they can be lost or stolen, and conse-
quently found, or otherwise obtained, by an impostor. In that case, the impostor
can use it to gain the same level of access to all the same places and systems as
its rightful owner had, given that these systems solely rely on the token as an au-
thenticator. In other words, token based systems authenticate users if presented
with a correct token, regardless of whether it is carried by a rightful owner or
an impostor. Moreover, the theft of a token is often an easier task than gaining
access to the password �les of a system, since it can be obtained by traditional
pickpocketing. They do however have the advantage over passwords that if the
token is lost or stolen, the owner sees evidence of this, i.e., that she no longer
has the token, and can notify the appropriate administrators or authorities of
the breach.

This advantage does not apply however, if the impostor creates a replica of
the token. It is very possible that the attacker can acquire a token, forge it
and return it before the token-holder notices it. The time it takes to forge a
token naturally depends very much on the technology and design of the token.
Magnetic stripe cards for instance, can be cloned in a few seconds with cheap
consumer hardware. However, a smart card with well designed and properly
implemented encryption mechanisms, may be su�cient to make card cloning a
less attractive attack vector.

2.1.3 Biometrics

Human beings recognize other peoples faces, and we have used signatures for
authentication for a long time. In recent times, these types of authentication
methods have found their way into computer systems, and are called biometrics.

Biometrics is a set of methods to automatically identify a person based on
their physiological or behavioral traits [28], such as �ngerprints [27, 28], face
recognition [27, 28, 42, 33, 19], keystroke dynamics [42], voice recognition [33],
signature recognition, or speaker recognition [19]. This is normally done by
comparing an input to a database of stored templates, e.g., comparing an image
from a �ngerprint scanner to a database of �ngerprint images.

Biometric systems operate in either identi�cation mode or veri�cation mode
[30]. In identi�cation mode the goal is to identify the person, which is normally
done by comparing a given sample to the entire template database, i.e., it is a
one-to-many comparison. In veri�cation mode we know who the sample owner
claims to be, and need to verify that claim. In this case we only need to compare
the sample to the templates stored for the claimed identity, i.e. a one-to-one
comparison. The identity is typically claimed via a user name or a smart card
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[30]. In terms of processing time, the one-to-one comparisons are much faster.
In fact one-to-many comparison for large databases for some biometric traits
can result in unacceptable execution times [27].

Biometric authentication is not an exact science. The �nal decision is generally
based on a so called match score, which represent how well the input sample
matches the stored template. A system which uses the biometric authentication
system is con�gured with a certain match score threshold. A match score below
the threshold means that the user is not authenticated, whereas a score equal
to, or above it, means that the user is authenticated. In biometrics, a false
accept, also called a false match is when the system mistakenly believes two
samples from two di�erent persons to be from the same person [30]. Contrary, a
false reject, also called a false non-match is when the system mistakenly believes
two samples from the same person to be from two di�erent persons [30]. The
false accept rate (FAR) and false reject rate (FRR) are both functions of the
threshold and con�guring the threshold can be seen as a trade-o� between FAR
and FRR [30]. A low threshold means that the system is more tolerant of noise
and input variations, which increases FAR, while a high threshold means that
the system is less tolerant and more secure but increases the FRR.

While biometric systems are in some sense the latest and most advanced au-
thentication technology, they are not without �aws. Forging a biometric trait is
not always as di�cult as one might think. Matsumoto et al. [35] demonstrated
that they can easily create arti�cial �ngers with forged �ngerprints, which are
su�cient to fool �ngerprint recognition systems, and Sandström [53] repeated
the experiment in 2004, where she fooled several �ngerprint systems at the
CeBIT trade fair in Germany. For some systems, such an approach is unneces-
sarily complicated for the attacker. In the popular TV-show, Myth Busters [8],
the hosts demonstrated how they could bypass a �ngerprint system simply by
presenting it with a paper printout of a valid �ngerprint. That particular scan-
ner claimed not just to use the thumb-print pattern, but also pulse, sweat and
temperature, and was also claimed to have never been broken. Although this
particular scenario involved a bad scanner which was likely con�gured with a
very low match score threshold, it demonstrates that biometric systems cannot
be treated as a perfect authentication solution.

There are other problems with biometrics. While they are, for most practical
purposes, unique identi�ers, they are not secrets [55]. We leave �ngerprints
on things we touch, and our eyes, hands etc. can all be observed. This is
a real concern, especially with regards to �ngerprints, since attempts to forge
�ngers from lifted �ngerprints have generally been successful [35, 59]. Another
related problem is that biometrics cannot be revoked as easily as passwords,
and cryptographic keys. If a users thumbprint is compromised, it cannot be
considered to be secure, ever again. Moreover, while it is generally advocated
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that people use di�erent passwords and keys for di�erent applications, this does
not translate well to biometric applications. If the user needs access to multiple
applications which all require authentication via iris recognition, the user has
no choice but to re-use his iris. The more such applications the user is enrolled
in, the less secure the trait becomes, since only one of these systems needs to
be exploited to gain access to the biometric information.

Finally, introducing biometric solutions can be challenging in terms of user
acceptance. Users often consider them to be invasive, both in terms of e�ort, i.e.,
having to stare into a retina scanner, and in terms of privacy [14]. The privacy
concerns include questions about which data is registered, how it is protected
and who has access to it.

2.1.4 Attacks against Authentication Systems

We have discussed the advantages and shortcomings of various common authen-
tication technologies. From this discussion it is clear that each type of system is
susceptible to some attacks. Moreover, all of the above authentication systems
fail if the attacker manages to compromise the authentication system itself, as
opposed to just the authentication factor. For instance, if a biometric reader is
tampered with in such a way that all decisions are reversed, i.e., that authentic
users are not authenticated whereas others are, gives an attacker unrestricted
access using his own �ngerprint. If the device is not properly tamper resistant,
this attack can be as simple as switching two wires.

In addition, authentication systems and other technological security solutions
are generally of little use against Social Engineering attacks. These attacks
involve using psychological tricks to manipulate legitimate users of the system
to give the attacker access or con�dential information [39].

2.2 Combining Authentication Systems

Each type of authentication systems has its own strengths and weaknesses. For
instance, a password can be guessed while a physical token cannot, and similarly,
a token can be counterfeited while it is normally hard to forge biometrics3.
Since the strengths and weaknesses of these systems di�er, it makes sense to
try to combine multiple systems into a uni�ed authentication scheme in such a

3although in some cases, such as with �ngerprints, it can be really easy, as we have previ-

ously discussed
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way that the strengths of one system complement the weaknesses of another.
These schemes typically fall into one of two categories, namely multi-factor
authentication and multibiometric systems. We will now give short descriptions
of these.

2.2.1 Multi-factor Authentication Systems

In the beginning of this chapter we described the three factors of authentica-
tion, i.e., Something we know, Something we have and Something we are, also
known as Knowledge-based, Object-based and ID-based authenticators respec-
tively. Each of these factors is subject to di�erent attacks as shown in Table 2.2
on the following page.

Table 2.2 provides a good overview of di�erent authentication systems and com-
mon attacks against them. This allows us to take the weaknesses into account
when choosing an authentication method for a system, since some of the draw-
backs may be irrelevant or of little concern in a given application context or
environment. Second, by clearly stating the strengths and weaknesses of each
method we can combine methods in a complementary way that addresses known
weaknesses of the individual authenticators and thus strengthen the overall sys-
tem.

An example of this is a two-factor authentication where a smart card that con-
tains large keys and passwords, is protected using a single password. Such
system is considered to be more secure than either a smart card or a password
implemented separately. In order to break such system, the attacker can ei-
ther try to obtain the keys stored on the smart card, or the smart card itself.
Obtaining the keys should be very hard without access to the card, and ob-
taining the card is of little use unless the attacker can get the accompanying
password. Thus, to defeat the system the attacker has to steal the smart card,
guess its password and launch his attack, before the theft is discovered and the
system access restricted accordingly. Compared to a stand-alone password, the
attacker now has to access a physical token and break its password within a
short time frame, which is considerably more secure than just having to crack
the password o�ine without any signi�cant time constraints. Similarly, com-
pared to a stand-alone smart card, it is no longer su�cient to obtain the card,
since the attacker needs the password to be able to use it. In other words, the
combined system o�ers better security than its individual components, but not
better authentication.

The scenario described above is well recognized by many, since it has been used
in the banking world for a while. In order to withdraw money from an ATM,
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Attacks Auth. Examples Typical Defenses
Client
Attack

Password Guessing, exhaus-
tive search

Large entropy, limited attempts

Token Exhaustive search Large entropy; limited attempts; theft
of object requires presence

Biometric False match Large entropy; limited attempts
Host At-
tack

Password Plaintext theft, dic-
tionary/exhaustive
search

Hashing; large entropy; protection (by
administrator password or encryption)
of password database

Token Passcode theft 1-time passcode per session
Biometric Template theft Capture device authentication

Eaves-
Dropping,
Theft
and
Copy-
ing

Password "Shoulder sur�ng" User diligence to keep secret; adminis-
trator diligence to quickly revoke com-
promised passwords; multi-factor au-
thentication

Token Theft, counterfeit-
ing, hardware

Multi-factor authentication; tamper re-
sistant/evident hardware token

Biometric Copying (spoo�ng)
biometric

Copy-detection at capture device and
capture device authentication

Replay Password Replay stolen pass-
word response

Challenge-response protocol

Token Replay stolen pass-
code response

Challenge-response protocol; 1-time
passcode per session

Biometric Replay stolen bio-
metric template re-
sponse

Copy-detection at capture device and
capture device authentication via
challenge-response protocol

Trojan
Horse

Password,
token,
biometric

Installation of
rogue client or
capture device

Authentication of client or capture de-
vice; client or capture device within
trusted security perimeter

Denial of
Service

Password,
token,
biometric

Lockout by multi-
ple failed authenti-
cations

Multi-factor with token

Table 2.2: This table shows di�erent types of attacks, examples of how they are
executed against di�erent authentications (passwords,tokens and biometrics)
and lists common defenses against these attacks. Source: [44]

.
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we have to provide both our card and the accompanying PIN. However there
are other combinations of factors that can be used. We can combine tokens
and biometrics by storing our templates in a tamper resistant smart card. That
way, the biometric system knows that the sample belongs to the legitimate card
holder, given that the input sample matches the stored templates well enough.
A common use of a token combined with a biometric is found in identi�cation
cards which contain a photo of the card holder, e.g., a drivers license.

Knowledge-based authenticators can be combined with biometrics, such as when
a computer system requires the user to input both a password and a biometric
sample. Finally, all three methods can be combined, such as when a smart card
stores biometric samples that are encrypted using a key that is created from the
users password. In this case a biometric authentication system cannot read the
templates from the card unless the user enters the correct password.

It is worth mentioning that some multi-factor solutions introduce additional
time-constraints to further secure the system. For instance RSA SecurID [10]
provides a physical token that generates one-time passwords that are only valid
for 60 seconds. This reduces the chance of an attack where a previously gener-
ated key is used to gain access, i.e., when an attacker gains temporary access
to the token to generate a password, or a sequence of passwords, which she can
write down or memorize for later use.

While multi-factor systems can increase security, they also decrease user conve-
nience. All combinations that include a token factor require the user to carry
the token, and in a company which relies on tokens, forgetting the token at home
may prevent an employee from doing his job, until he has retrieved the token.
Similarly, systems with a knowledge-based factor require the user to memorize
a password, and if the password complexity policy is strict, it might increase
the number of password resets performed by the organizations technical sup-
port. Finally, biometric factors normally require the user to provide a biometric
sample which can be very inconvenient, e.g., staring into a retina scanner for
a few seconds. In other word, each factor comes with some inconvenience, and
combining factors also combines the inconveniences of each factor, e.g., a pass-
word protected token combines the inconvenience of having to carry the token
and having to remember the password. Therefore, multi-factor authentication
systems are typically less convenient than a single-factor authentication [44].

We must take this inconvenience and other usability factors into account when
we design security infrastructures, since a too inconvenient authentication mech-
anism provides poor usability, which can cause its users to revolt and �nd ways
to circumvent it. This type of user behavior has for instance been observed in
hospital environments, where the required logins are too frequent, take too long
and cause other inconveniences [16]. In the study, the hospital workers were ob-
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served bypassing the security of an electronic patient record (EPR) system, for
instance by creating universal account which was shared with all the workers,
and for which the username and password was written on monitors throughout
the ward. Clearly, the strict policies and access control mechanisms dictating
which employee can read which patient record, were scrapped in favor of an en-
vironment where people can carry out their work without constant interruptions
in the name of security. If the security mechanisms are designed such that they
are easy to use and do not hinder the users from doing their job, the users are
less likely to seek ways to bypass the security measures, and therefore we can
obtain a more secure system.

2.2.2 Multi-biometric systems

Multi-biometric systems, as the name suggests, are systems which combine mul-
tiple biometrics to make a uni�ed authentication decision. Ross et al. provide a
very good overview of the �eld in their book, Handbook of Multibiometrics [52].
This section is largely based on material found in that book, which we summa-
rize here for the sake of completeness.

The bene�ts of combining multiple biometric systems are numerous. The uni-
�ed decision can o�er a signi�cant improvement in accuracy and can achieve
reduced FAR and FRR simultaneously. Another bene�t is that the more bio-
metric traits we request the harder it is to spoof them, especially if we use
a challenge-response protocol where we request a random subset of the traits.
Multibiometrics also reduce the problem of noisy input data, such as from a
sweaty �nger or a drooping eyelids, since if one input is very noisy, the other
biometric systems might still have samples of su�cient quality to make a reli-
able decision. This can also be seen as fault tolerance, i.e., if one system breaks
down or is compromised, the others might su�ce to keep the authentication
system running and producing accurate results. There are many ways in which
biometrics systems can be combined, and we will now discuss some of them
brie�y.

A typical biometric system reads a biometric input sample from the user, ex-
tracts features that describe the sample and compares them to a set of templates
to produce a match score. The match score indicates how well the extracted
features from the sample match a given template, and it is compared to a thresh-
old to determine if the authentication succeeded. If the match score is below
the threshold the authentication fails, but succeeds otherwise. These processing
steps indicate that we combine biometric systems at di�erent levels of abstrac-
tion.
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The lowest level of abstraction is to combine the raw data from the sensors,
and is only possible for samples of the same biometric trait, e.g., it can be used
to combine multiple samples of the same �nger, but not to combine �ngerprint
and a retina recognition systems. The next level is to combine feature vectors
that are extracted from the input sample. A feature vector contains a simpli�ed
description of a biometric sample. If the samples are of the same type, e.g., two
samples of the right thumb, the features can be combined into a single more
reliable feature vector. If on the other hand the samples are of di�erent types,
e.g., �ngerprint and face recognition photo, the feature vectors can be concate-
nated into a more descriptive feature vector. The next level of abstraction is
combining at the match score level, where each system calculates their match
score independently, and the scores are then combined into a single score using
some mathematical algorithm. Another method at this level of abstraction, is
to match at the rank level, where biometric systems return a list of top n can-
didates, i.e., an ordered list of n elements that best match the input sample.
Rank level fusion is concerned with combining such lists from di�erent systems
to produce a reliable overall result, and is generally only applicable to identi�-
cations. Finally we have matching at the decision level, where each system has
its own threshold and delivers only their �nal decision. The fusion then consists
of merging these decisions into a single decision, such as by majority voting
or boolean AND/OR rules. Of these methods, match score fusion is the most
commonly used since match scores are generally easy to access and there are nu-
merous methods of combining them, some of which are very easy to implement.
Moreover, match scores o�er rich information about the input, second only to
feature vectors. They do however, su�er from the fact that some commercial
biometric systems only provide access to the �nal authentication decision.

To be able to combine biometric data we need to decide how to obtain it, i.e.,
what data sources to use. We will use the term biometric data for any level
of abstraction, i.e., it can mean a feature vector, a match score or a decision.
There are several methods for obtaining biometric data from multiple sources.
The �rst one is multi-sensor systems, which create multiple images of the same
biometric trait, where each image is obtained by a di�erent sensor. For instance,
face recognition images from a thermal infrared camera and a visible light cam-
era. Another method is to process the same data with multi-algorithm systems,
i.e., each algorithm produces independent results which are then used in the
uni�cation. Multi-instance systems are concerned with using multiple instances
of the same biometric trait, e.g., the left eye and the right eye. Multi-sample
systems read multiple samples of the same trait in order to either decrease the
e�ect of input variance, or to construct a better representation of the trait.
Multimodal systems combine biometric data from di�erent traits or systems,
e.g., the results from a �ngerprint recognition system and a speaker recognition
system, and combining uncorrelated traits, such as �ngerprints and voice, is ex-
pected to give better performance then correlated traits, e.g., voice and speaker
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recognition. Finally, we have hybrid systems which combine two or more of
the methods described above, e.g., a system which uses multi-sensor �ngerprint
system combined with a face recognition system, which e�ectively makes it a
multimodal system.

Once we have gathered the data from the various sources, we must decide in
what order we will process it. It can be bene�cial to process the data in a
sequence, for instance if we want one system to narrow down the choices to a
limited number of candidates, which a second system can then verify. If the
former system scales very well but has a high FAR, while the second system is
slow but with a low FAR, this approach can o�er high accuracy with acceptable
performance. If however, we just want to combine the match scores of several
di�erent systems, we should aim for a parallel input acquisition. Figures 2.1
and 2.2 show a parallel system and a sequential system respectively.

Biometric System 1

...
Fusion

result

Biometric System n

Biometric System 2

Figure 2.1: A parallel processing of biometric input.

Biometric System 1

Biometric System 2

result

match 2 ... match nmatch 1

Figure 2.2: A cascading processing of biometric input.

The combination of biometrics has been shown to increase reliability, i.e., where
the combined system provides more reliable results than the participating sys-
tems individually. For instance, Hong et al. [27] showed this with a cascading
system that uses a face recognition system to identify the top n users, which are
then further veri�ed by a �ngerprint scanner. They showed that the integrated
system provided lower false rejection rates, compared to the individual systems,
for several di�erent FAR values. For instance, for a false acceptance rate of 1%,
the face recognition system had a FRR of 15.8%, the �ngerprint scanner had a
FRR of 3.9%, while the integrated system only had a FRR of 1.8%.
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2.2.3 Attacks against combined systems

Multi-factor and multibiometric authentication systems o�er better protections
against some attacks. We must however remember the principle of easiest pene-
tration, which we mentioned from de�nition 2.2. In particular, the combination
of authentication mechanisms is of little use if the decision point is weak. For
instance, if we have a parallel multibiometric system such as the one shown in
Figure 2.1, then it certainly requires more e�ort to attack every participating
biometric system, than if there was only a single biometric system. If however,
the fusion system can be tampered with, it can be made to give a positive result
for the attacker, regardless of the individual results of the biometric systems.
In other words, the fusion system becomes a single-point of failure. Therefore
great care must be taken to secure the �nal decision points against tampering.
This is essentially the same problem as with traditional authentication systems,
as described in section 2.1.4.

In multibiometric systems there are other points of entry for the attacker, in
particular the connections between the biometric systems and the decision/fu-
sion system. Regardless of whether they run on the same machine or over a
network, an attacker can intercept the connections and send forged data to the
fusion point to make it look like the biometric systems identi�ed an authentic
user with high levels con�dence. If the systems use cryptographic techniques to
prevent this, their evaluation should pay close attention to traditional man-in-
the-middle attacks as well as replay attacks.

Finally, combining multiple systems does not protect against social engineering
attacks where an authentic user is manipulated into providing access to an
impostor.

2.3 Access Control

We have shown various aspects of authentication and how di�erent methods
can be used to produce authentication results. But so far we have left out all
discussion about why we authenticate users. The authentication results are use-
less unless some system relies on good authentication, such as a logging system
or an access control mechanism. The most common receiver of authentication
events and results are access control systems. As the name indicates, access
control systems control access to physical or logical resources, such as printers,
�les on a computer system, and rooms of a building. In terms of computer
security in particular, �its function is to control which principals (persons, pro-
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cesses, machines, . . . ) have access to which resources in the system�which �les
they can read, which programs they can execute, how they share data with other
principles, and so on� [15].

Access control systems normally use traditional authentication systems such as
passwords or Kerberos [6] and once a principal has been successfully authenti-
cated, the access control system will not question the principles identity further.
In other words, access control systems rely on binary authentication results, i.e.,
either the person is who he claims he is, or he is not. This is why probabilistic
systems�such as biometric systems�use thresholds to produce a binary result.

Introducing probabilities and thresholds into access control policies can however
increase their �exibility. Imagine for instance an Access Control List (ACL) for
a physical building where the CEO of the organization is about to enter a room.
If the room he is about to enter is the cafeteria, there is hardly a need for
high authentication accuracy. If on the other hand he is entering a �le storage
room, where the organization stores highly con�dential data, the need for high
accuracy is most likely much higher. In scenarios such as this one, it is bene�cial
for the access control system to receive probabilistic authentication events, and
specify resource thresholds in its policy.

Since this thesis focuses on authentication, we will not discuss access control in
further detail. It su�ces to emphasize that access control systems rely heavily on
the security of their respective authentication mechanisms. While the framework
we present in this thesis focuses on probabilistic authentication, it needs to allow
for the speci�cation of a threshold in the framework policy, to be compatible
with legacy access control systems.

2.4 The State of the Art

We discussed the technical problems of passwords in some detail in Chapter
2.1.1, concluding that there are many unresolved issues with the use of pass-
words. To make matters worse, an increasing number of websites are requiring
their users to register an account, in order to get full access to the services.
This means that a typical Internet user may be juggling as much as dozens
of user accounts, all of which require a password. Since it is hard enough to
remember a single password of any complexity, users tend to re-use usernames
and passwords on these websites, whenever possible. While this is acceptable
for some applications, i.e., those in which very limited harm will come to us if
the account is compromised, it is a more serious issue if the same password is
also used in more critical systems. For instance, it is certainly hazardous to use
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the same password at work and on publicly available social networking sites4,
since if any successful compromise of these sites puts the company data at risk.
In the case of social networking sites in particular, the risk can be even higher,
since users tend to share a lot of personal information on these websites, which
can include where they work. Not only will this give an attacker a password,
but a likely target where the password can be used.

One solution to this problem is to use so called password vaults, which are pro-
grams that store, and sometimes generate, passwords for di�erent applications.
The passwords are encrypted using a key that is based on a single master pass-
word. This allows us to create random passwords for each account we have to
register, and yet only have to remember one password, namely that of the vault.
One such application for the Microsoft Windows family of operating systems is
Password Safe [9]. Since the most common use of multiple accounts these days is
for websites, another alternative is to extend web browsers with a built-in pass-
word vault. Such extensions allow users to �recall� site-speci�c passwords in a
user-friendly way, without leaving their browser environments. An examples of
such extension is the Magic Password Generator [7] for the Mozilla Firefox [1]
browser. Password vaults allow us to have unique and strong passwords for each
of our accounts, while only requiring us to remember a single password. It is of
course strongly recommended to have a strong master password, since guessing
it gives an attacker access to all the other accounts.

For large-scale secure authentication frameworks, some companies are o�ering
solution suites that provide a centrally managed one-time password authentica-
tion systems which are used to secure PCs, wireless or virtual networks, speci�c
applications, and so forth. One such system we brie�y looked at5, is the RSA
SecurID [10] solution we mentioned in Chapter 2.1.2. It provides one-time pass-
word solutions, where the password is generated with either a special physical
token, or one can generate it with special software which can for instance run
on mobile phones and handheld PCs. Once the passcode is generated, it is only
valid for 60 seconds, which prevents the attacker from gaining temporary access
to the token to generate multiple passcodes and write them down. The solution
is interoperable with many of today's popular network management solutions,
applications, and operating systems including Microsoft Windows and Unix.
Moreover, it provides an API so that it can be integrated into custom applica-
tions. This solutions is currently being used by many banks, governments, and
other organizations.

Biometrics can be found in a variety of systems, ranging from physical security

4this is not a completely random example, social networking sites have a history of exposing

user accounts
5that is, we browsed through documents on their website, we did not have access to an

actual system to test it ourselves
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systems to consumer laptops. Many laptops ship with a �ngerprint scanner
that can be used as a replacement for a password when logging in to the ma-
chine. Biometrics are however, not just used to protect data, but are also in
other very di�erent applications such as border-control [2, 12] and general safety
applications. One such safety application is their implementation in smart-
guns [60]. Biometric smart-guns are �rearms that can only be �red by their
rightful owner, which prevents criminals from using weapons belonging to dis-
armed law-enforcement o�cers, and prevents children from accidentally �ring
their parents guns. Biometrics are also being used to reduce street violence by
requiring people to use a biometric system when entering night-clubs that serve
alcoholic beverages [38]. Known trouble makers are �agged by the system and
not allowed to enter, which seems to have contributed to a decrease in night-time
violence.

2.5 Summary

Authentication systems come in many di�erent types, all of which have some
advantages and disadvantages compared to the others, in terms of security,
robustness, ease-of-use and user acceptance. All these claims of security are
however based on a few assumptions:

First, the authentication systems must be properly implemented, e.g., a pass-
word solution which lets an impostor into our system simply by providing a
wrong username and password followed by a carriage return [15] o�ers little
protection.

Second, the decision point, i.e., the point which delivers the result to the access
control system, must be protected against attacks. If the attacker can manipu-
late the software process of the decision point, or tamper with its hardware, she
can bypass all the security provided by the authentication systems which the
decision point uses.

Third, none of the technology solutions described above help against a skilled
social engineering attack. We must authenticate our legitimate users, but an
authentication system cannot detect the users intent. So while authentication
systems play a very important role in the security infrastructure of computer
systems, they do have �aws which must be taken into account when creating a
security infrastructure. Moreover, they shall generally be complemented with
other means, such as policy enforcement, user education and monitoring.

There are multiple ways of combining authentication systems, and such com-
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binations generally o�er either better security, more reliable authentications or
both. We have discussed how multi-factor authentication, i.e., the combination
of knowledge-based, object-based, and ID-based authenticators, has been shown
to improve security. The example of a password protected smart card clearly
shows that it is harder to attack the system, compared to either guessing the
password, or obtaining the card. Moreover, we have discussed how multibio-
metric systems have been shown to have lower error rates than the system the
individual participating systems. Traditionally, the false acceptance rates and
false rejection rates are balanced by the threshold value, and decreasing one will
increase the other. When multiple biometric systems are combined however, it is
possible to decrease one rate without worsening the other, which is a signi�cant
improvement in authentication quality.

Both multi-factor systems and multibiometric systems however, are somewhat
in�exible. Multi-factor systems are normally limited to combining two or three
factors, i.e., they generally only contain one instance of each factor, such as a
�ngerprint recognition and a smart card, rather than say, the same components
combined with a second biometric and a password. Moreover, multi-factor so-
lutions generally require that all the factors be ful�lled, i.e., it is not su�cient
to have a smart card without the accompanying password, or vice versa. Sim-
ilarly, multibiometric systems are limited to biometric systems, i.e. passwords
and tokens do not �t into the multibiometric scheme. Further, multi-factor and
multibiometric solutions are generally custom written rather than being built
on a common foundation, such as an authentication framework. As a result, if
we want to add a new authentication system to the mix, we are often forced to
change the code of the combination system and protected system, or if the code
is not available, turn to proprietary vendors for support for the new system.
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Chapter 3

Co-Authentication

In the previous chapter we described some of the most common authenticators
and authentication systems that are in use today. We categorized them into
three factors, i.e., something we know, something we have, and something we
are and showed that each of these categories is subject to some attacks and
that combining multiple factors can increase the overall security of a system.
Moreover we discussed how previous work in multibiometrics has shown that
combining multiple biometric systems can increase the overall authentication
accuracy by reducing error rates. That is, with a single biometric system the
FAR's and FRR's are a function of the threshold, and decreasing one increases
the other. However by combining multiple system we can reduce the overall
error rates, e.g., reducing the FRR while FAR stays unchanged.

By reviewing the success of multibiometric systems, the question arises whether
this approach cannot be generalized to other traditional authenticators, i.e.,
knowledge-based and object-based authenticators. Although this is done to some
degree with multi-factor systems, such systems are usually limited to two or
three factors, where you must ful�ll every part completely, e.g., you must provide
the token and the correct password and failing to provide both of them results
in overall failure to authenticate. We want to extend this concept such that
multiple authentication systems of di�erent factors can be combined in a generic
way, where each ful�lled part of it adds to the strength of the authentication, and
that only ful�lling a subset of the participating authentication systems might
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be su�cient in some cases.

The method of combining biometric systems, is often called fusion, and as we
discussed in the previous chapter, the fusion can be performed on four levels, the
feature extraction level, the rank level, the match score level, and at the decision
level [51, 52]. The latter two can be generalized to all authentication systems.
Fusing at the decision level can be trivially generalized, since all traditional
authentication systems return their decision, i.e., whether the authentication
succeeded. We propose to extend this generalization to include fusion at the
match score level. While binary authentication systems typically lack match
scores, they have varying degrees of strength and error rates which we can in-
clude as a probability score, or a con�dence level. The score can either be static,
e.g., all smart cards will have a con�dence level of 0.72, or they can be dynamic,
such as having di�erent con�dence levels for password authentication depending
on the strength of the password. By employing varying con�dence levels, we
can generalize the fundamental principles of multibiometric veri�cation to the
general authentication problem.

We have de�ned Co-Authentication as the generalized fusion of authentication
factors, i.e., when multiple authentication systems contribute to a uni�ed au-
thentication decision. The uni�ed Co-Authentication decision can be reached
either with decision level fusion or score level fusion. In the �eld of biometrics,
score combination of multiple biometrics has been shown to increase accuracy,
i.e., decrease false negatives and false positives [28]. We show however, that
the bene�ts of information fusion can also provide added �exibility in the de-
sign of systems that include binary authenticators which can be adapted to a
threshold-based scheme.

3.1 Use Cases

In the following sections we present two examples of how two existing binary
authentication systems can be adapted to threshold-based systems and bene�t
from Co-Authentication.

3.1.1 Example: Credit card Payment Systems

Due to the rise of fraud, credit card issuers are moving away from magnetic
stripe technology towards smart cards [26] and many credit cards are equipped
with both an integrated chip and a magnetic stripe. While the chip is considered



3.1 Use Cases 31

to be more secure the magnetic stripe is included to give retailers more time
to implement Chip & PIN technology. This indicates that the chip and the
magnetic stripe have di�erent con�dence levels, yet they will be treated equally
during the implementation period, after which the retailers will face the liability
of frauds when the magnetic stripe is used [26].

The technology embedded in the physical card is only one of the security mea-
sures employed by the credit card companies. Another measure is to develop
a pro�le on its customers, so that each withdrawal is compared to the pro�le
to detect anomalies and possible fraud. For instance, if a customer frequently
makes purchases ranging from $25 to $300 within a small geographic area, a
$600 transaction from a location outside the normal area, is bound to raise
suspicions.

By de�ning dynamic con�dence levels for a transaction depending on how well
it �ts the cardholder's pro�le, the con�dence level can be combined with the
con�dence level of the card technology, i.e., magnetic stripe or chip, in a Co-
Authentication scheme which can decrease the risk of fraudulent transactions.
This can either be a single con�dence level for the overall �t of the pro�le, or
multiple scores, each for a subset of the transaction such as location, amount etc.
that are individually compared to the pro�le. By combining the con�dence level
of the chip or magnetic stripe and the con�dence level for the �t to the pro�le,
we obtain an authentication system that is more restrictive towards magnetic
stripe purchases, i.e., purchases made using the magnetic stripe have to �t the
pro�le better than purchases made using the chip. This can for instance allow
small corner-stores to avoid expensive technology upgrades, at the expense of
being limited to small amount transactions which �t the cardholders pro�le.

We will give a more detailed description on how this scheme can be implemented
using our framework in Chapter 7.2.1.

3.1.2 Ranking Passwords

Password authentication is the de-facto standard when it comes to user au-
thentication and it is a prime example of binary authentication systems with
implicit weaknesses. In Chapter 2.1.1 we showed how passwords vary in terms
of strength. Despite the di�erence in terms of how well they fare against guess-
ing attacks, a password system treats all passwords as equals, assuming that
they are accepted in the �rst place. In other words, systems typically do not
distinguish between weak and strong passwords except for some rudimentary
checks when the password is initially set, e.g., that it is longer than 4 characters
and contains at least one uppercase letter and one digit. Such checks are gen-
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erally insu�cient to provide strong password security, since they can be passed
using trivial passwords such as 'Abcd1'. Such trivial passwords will however
be treated the same way as other passwords on the same system, regardless of
whether or not the other passwords are signi�cantly harder to guess. We be-
lieve that keeping the varying degree of password strength implicit should be
discouraged, since it gives a false sense of security.

Passwords can be ranked by estimating how hard it is for common password
crackers to guess them. These estimates can be made when the password is set,
and stored as a strength score which can be used as a static con�dence level when
the password is entered correctly. This allows passwords to be combined with
other authentication mechanisms in a Co-Authentication scheme, where weaker
passwords will make stricter demands on the other participating systems than
a strong password does. For example, if such a password system is combined
with a �ngerprint reader, then a weak password requires a better �ngerprint
match score than a strong password does. We are currently working on such
an estimation program and our preliminary work in this area is presented in
Appendix A.

3.1.3 What is gained?

In the two examples above, traditional systems where transformed into threshold
based systems. In the case of password ranking, the adaption to con�dence
scores allows us to make more informed decisions, and provides added �exibility
when combined with other systems in a Co-Authentication infrastructure. That
is, we are moving away from binary absolutes to probabilistic estimates, which
allow us treat the same password di�erently depending on context.

The bene�t of Co-Authentication is even more clear in the credit card scenario.
The credit card issuers clearly indicate that they believe that the risk of fraud
is higher for magnetic stripe cards than for chip and PIN cards, and yet they
will treat them identically for the next few years. Co-Authentication provides
them with the �exibility to treat the two technologies di�erently. The better a
transaction �ts the cardholders pro�le, the less likely it is to be fraudulent. It is
therefore clearly a good idea, in our opinion, to enforce stricter pro�le matching
for magnetic stripe cards, rather than treat all transactions equally.

The two scenarios above show that using non-biometric threshold-based systems
in a Co-Authentication can provide �exibility that is unavailable when we use
traditional binary authentication mechanisms. Moreover, in both scenarios, the
adaption to a threshold based system adds no inconvenience for the user, neither
in enrollment, nor in daily use.
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3.2 Fusion

When designing a Co-Authentication system, we have to decide at which of the
four levels we fuse data from the participating systems. If all the participating
systems are biometric systems, it is possible to fuse at the feature extraction
level. However this method is cumbersome and tightly coupled with the partic-
ular systems that are being fused together. In addition, it cannot be extended
to include non-biometric systems at a later point. Therefore we should avoid
this level of fusion unless it provides signi�cant performance bene�ts, and if we
are certain that non-biometric systems or incompatible biometric systems will
not be added to the combination later on.

Fusing at the rank level is only an option in identi�cation scenarios, i.e., where
we are combining the input sample with the entire user database to �nd the best
matches. In that case, each system may return a list of the top n matches, i.e.,
an ordered list where the best matching candidate is on top. While this approach
allows for advanced algorithms to decide the correct identity, identi�cation can
also be performed with the two remaining options, i.e., fusing at the match score
level or at the decision level. To do this, only the single best ranking candidate
from each system is considered. If all the participating systems agree, i.e., they
all have the same individual as their highest rank candidate, the match score
can be computed in the same way as it is done in the veri�cation process. If they
disagree, however, we need some method of choosing the most likely candidate
and compute the corresponding match score.

Fusion at the score level involves combining the match scores from the individ-
ual authentication systems to obtain a single more reliable score, for instance
by producing a weighed average. This method can be generalized to all systems
which can produce a match score, i.e., all threshold based authentication sys-
tems. Finally, fusing at the decision levels means that each participating system
reaches an independent decision (i.e., authenticate or not authenticate), and the
decisions are then combined to reach an overall decision. A common approach
to decision level fusion is to combine all the individual decisions with boolean
OR or AND operators. That is, if we have the decisions from three systems
(S1, S2, S3) which yield the decisions (d1, d2, d3), the result of an OR fusion is
the result of (d1 ∨ d2 ∨ d3). Similarly we call it AND-fusion when the AND
operator is used for fusing the individual decisions, i.e., the decision is the result
of (d1 ∧ d2 ∧ d3).

We have chosen to use score level fusion rather than decision level fusion for
several reasons. First, decision level fusion is very in�exible. A majority voting
scheme with few participating systems is a good example of a target where the
attacker uses the principle of easiest penetration. For instance, if there are only
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three systems in a majority voting scheme, we can expect the attacker to focus
on the weakest two systems. If there are many participating systems however,
the majority voting scheme can be a viable option. It does however only give
binary results, and systems that rely on its services cannot distinguish between
a majority vote of 51% and a vote of 100%.

AND-fusion requires all the system to agree on that the principle is authentic,
whereas OR-fusion means that only one system has to believe in the principle's
authenticity. In biometric systems, this corresponds to choosing to increase the
false accept rate (FAR) or false reject rate (FRR) on the cost of the other, i.e.,
tipping the scale. Choosing OR-fusions will increase the FAR but lower the
FRR, and AND-fusion will increase the FRR and lower the FAR.

More formally we state that: let FA(S) denote the false accept rate of a system
S. We can then show that the FAR of an OR-fusion for a combined system will
always be higher than the FAR of any individual participating system. In the
case of combining two systems, S1 and S2 this can be formulated as:

Theorem 3.1 FA(S1 ∨ S2) ≥ max(FA(S1), FA(S2))

Proof. Assume that a single system, say S1, has a higher false acceptance rate
than the OR-fusion of S1 and S2:

FA(S1) > FA(S1 ∨ S2) (3.1)

We prove this by contradiction as follows:

By expanding the right hand side we obtain:

FA(S1) > FA(S1) + FA(S2)− (FA(S1) ∗ FA(S2)) (3.2)

which is equivalent to

0 > FA(S2)− (FA(S1) ∗ FA(S2)) (3.3)

which is further equivalent to

FA(S1) ∗ FA(S2) > FA(S2) (3.4)

By dividing each side by FA(S2) we obtain

FA(S1) > 1 (3.5)

For this to hold true the false acceptance rate of S1 has to be higher than
one, indicating that over 100% of its results are false accepts. This is clearly
impossible.
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The increased FRR of AND-fusion has a similar proof: let FR(S) denote the
false rejection rate of a system S. We can then show that the FRR of an AND-
fusion for such a system will always be higher than the FRR of any individual
participating system. In the case of combining two systems, S1 and S2 this can
be formulated as:

Theorem 3.2 FR(S1 ∧ S2) ≥ max(FR(S1), FR(S2))

Proof. Assume that a single system, say S1, has a higher false rejection rate
than the AND-fusion of S1 and S2:

FR(S1) > FR(S1 ∧ S2) (3.6)

We prove this by contradiction as follows:

By expanding the right hand side we obtain:

FR(S1) > FR(S1) + FR(S2)− (FR(S1) ∗ FR(S2)) (3.7)

which is equivalent to

0 > FR(S2)− (FR(S1) ∗ FR(S2)) (3.8)

which is further equivalent to

FR(S1) ∗ FR(S2) > FR(S2) (3.9)

By dividing each side by FR(S2) we obtain

FA(S1) > 1 (3.10)

Again, for this to hold true the false rejection rate of S1 has to be higher than
one, indicating that over 100% of its results are false accepts, which again, is
clearly impossible.

Theorems 3.1 and 3.2 and their proofs can be extended to any number of systems
according to the inclusion-exclusion principle. This suggests that the more sys-
tems we add to decision-fusion for AND or OR, the more we tip the FAR/FRR
scale. The reasons that the error rates of the combined system will be higher or
equal, rather than strictly equal, to the participant Pmax with the highest error
rate, is that the errors of the other participating systems are not necessarily a
subset of the error rates of Pmax. That is, Pmax might correctly authenticate
a legitimate user, whom another system fails to authenticate, and thus falsely
rejects.
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On the other hand, by combining scores into a single overall score, we can adjust
the balance between FAR's and FRR's by adjusting the threshold for the overall
score. Match score fusion also allows us to use many mathematical algorithms,
in particular from the �eld of statistics. Which algorithms are best suited in
given conditions is still an active research topic in the multimodal biometric �eld,
and will hopefully be extended to cover the more general Co-Authentication.

3.3 The Bene�ts of a Generic Framework

There are two types of systems which participate in an authentication scenario,
namely authentication systems (AS) and protected systems (PS). An authen-
tication system provides authentication services such as �ngerprint recognition
or smart card veri�cation. The protected systems on the other hand are typi-
cally access control systems, but can be any system which uses authentication
information.

Each PS utilizes one or more AS to get the con�rmed identity of the present
user, and an authentication system can serve more than one PS instance. For
example, a �ngerprint scanner used to control a door lock might report its
authentication events to the door lock, a logging system and a monitoring system
used by physical guards. This means that we have a many-to-many connections
between AS and PS instances, which are either run on a single machine or
distributed over a network.

Large security infrastructures are likely to consist of many heterogeneous AS and
PS instances, some of which may be proprietary. Moreover, they may be run on
di�erent operating systems, be written in di�erent programming languages, and
provide unique and proprietary APIs. To make Co-Authentication a realistic
option for such organizations, it has to be easy to integrate these systems.
Preferably, it should be done in a generic way such that each product only needs
to be integrated once, e.g., where the vendor supplies the integration code for its
product. Therefore we propose a generic framework which manages all the AS-
PS combinations and supports re-usable modules that integrate authentication
systems or protected systems with the framework. For instance, a module for
Kerberos [6] can be distributed and used by multiple organizations which have
Kerberos as a part of their infrastructure, i.e., there is no need for each of those
organization to write the integration code.
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3.4 Summary

Co-Authentication is the concept of combining multiple authentication systems
into a system which makes uni�ed decisions by combining the probabilistic scores
of the participating systems. Common binary authentication systems can be
adapted to this scheme, and combined with other threshold based systems. We
strongly believe that implicit weaknesses are bad for security, and by making
them explicit as probabilistic outcomes, we can achieve higher reliability and
gain greater con�dence in our authentication infrastructure. For the remainder
of this thesis we will present a Co-Authentication framework, called Jury, which
is a proof-of-concept demonstration of the bene�ts of Co-Authentication.
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Chapter 4

Requirement Analysis

The main objective of this thesis is to create a proof-of-concept of a generic
Co-Authentication framework, i.e., the framework is not tailored to the needs
of any speci�c organization or a particular situation. This means that we are
not constrained by any organization-speci�c or domain-speci�c requirements.
Nevertheless it is helpful to list the basic functional requirements of the system
and to create a set of goals which we want to achieve. Such documentation helps
clarifying what it is that we are doing, and set constraints on the project scope,
which in turn motivate design decisions and implementation choices. Without
these constraints, it is easy to expand the project in all conceivable directions,
loose track of time and miss the delivery deadline. In other words, we want
to avoid common pitfalls of software projects. In this chapter we outline the
design guidelines for our architecture, and the requirements we want address in
our framework, which we have dubbed Jury.

The role of the Jury framework is to provide an easy integration of arbitrar-
ily many threshold-based authentication systems. The main bene�t of Co-
Authentication is to be able to make better informed decisions based on prob-
abilistic estimates of each participating authentication system. Jury is respon-
sible for gathering these probabilities, combining them into a uni�ed score, and
inform protected systems about the result. Optionally, the framework can have
a threshold de�ned in its policy, so that it can provide binary authentication
results to legacy systems which do not support probabilistic authentication.
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There are several methods that can be used to obtain, and combine authenti-
cation scores. The �rst method is when an identi�cation mechanism provides
an identity which other authentication systems verify, resulting in an overall
score based on the combination of veri�cation scores. The second method is
when, given an identity, the framework requests other authentication system to
identify the present user. An algorithm then sorts out the identi�cation results
and computes the most probable identity along with its score. The third and
�nal method is when the identi�cation mechanism provides a list of the top n
most probable identities along with their scores. The score-combination algo-
rithm can then either use a combination of the previous two approaches, or a
speci�c algorithm that takes several ranked lists and computes the top ranking
candidate along with its score.
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Figure 4.1: An example scenario where an employee requests access to an o�ce
building. Steps with identical sequence number can happen in any internal
order. For instance, it does not matter whether the �ngerprint recognition
system sends its score to the Co-Authentication Framework Instance (CAFI),
before or after the face recognition system does so. For brevity, the 6th step
involves an access control mechanism that is not shown, i.e., the CAFI provides
an authenticated identity to the AC, which grants or denies access to the door.

Figure 4.1 illustrates an example scenario. John is an employee of Con�dential
Inc. and is just about to enter the main o�ce building of the company. When
he arrives at the front door he swipes his employee smart card. The smart card
reader identi�es the employee (step 1) and sends the identi�cation data to the
Co-Authentication system (step 2). The Co-Authentication Framework Instance
(CAFI), which is the central node of the framework, forwards this ID to a
�ngerprint recognition system and a face recognition system for veri�cation (step
3). The two biometric systems then proceed to prompt for samples by scanning
Johns thumb and taking his picture (step 4). They then individually compare
the received samples to their templates for John and produce a match score
which they forward to the CAFI system (step 5). Finally, the CAFI computes
an overall score and compares it to the con�gured threshold for the front door.
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If the combined score exceeds the threshold, John has been authenticated and
as a result he is allowed entrance to the building and can now open the door.
Otherwise he is not authenticated which results in him being denied entrance
to the building.

4.1 Overview

A Co-Authentication system can be divided into four parts. First there are the
protected systems, i.e. the systems which request services of the frameworks and
subscribe to certain authentication events. Second there are a number of au-
thentication systems, such as password protection, face recognition systems etc.
which provide authentication services on request from the framework, as well as
publish authentication events. Third is the Co-Authentication core system it-
self, and �nally there are the wrappers for authentication systems and protected
systems, which act as middleware between the Co-Authentication core system
and the remote authentication systems or protected systems.

Figure 4.2 shows a trivial setup of a Co-Authentication system, where we have
a system that we want to protect with our framework. The Co-Authentication
node (CAFI), is the main component of our system and is responsible for gath-
ering and processing data from other nodes, as well as producing a result for the
protected system. And �nally, we have authentication systems which authenti-
cate users and report their scores to the framework, which in turn informs the
protected system.

4.2 Terminology

For the remainder of this document we use some terminology which is speci�c
to this thesis. Therefore we provide a short list of these terms and abbreviations
here, along with their meaning.

• Authentication System (AS): A system which provides user authenti-
cation services to the framework, including identifying users, verifying an
identity, or both. Moreover, an AS can publish authentication events to
the framework. Examples of authentication systems are a face recognition
system and a smart card reader.

• Authentication Point: A location where an arbitrary number of au-
thentication systems authenticate a user in a Co-Authentication scheme,
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Figure 4.2: A simple Co-Authentication Network setup with one CAFI and two
authentication systems, e.g., face and voice recognition systems.

e.g., in front of a physical door which is protected by a face recognition
system, a �ngerprint recognition system, and a smart card reader, all of
which are connected via a CAFI.

• Co-Authentication Network: A network consisting multiple intercon-
nected instances of AS, PS and CAFI nodes.

• Co-Authentication Framework Instance (CAFI): An instance of
the Co-Authentication framework, i.e., the network node which runs the
core framework. All AS and PS nodes communicate with the CAFI node.
Moreover, the CAFI is responsible for combining scores, enforcing the Co-
Authentication policy, and managing subscription relationships between
AS and PS nodes.

• Protected System (PS): A system which uses the authentication ser-
vices provided by the CAFI, e.g., an electronic lock of a physical door
where the lock is connected to multiple biometric systems via a CAFI
node. Moreover, a PS may be the subscriber of authentication events
from certain AS nodes. All such subscriptions are handled by the CAFI.

• Username, UserID, UID:We will use the terms username, UserID and
UID interchangeably, to mean a globally unique identi�er for a particular
user.
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4.3 Design Guidelines

The following design guidelines function as soft requirements, i.e. they will
not be speci�ed directly in the form of functional requirements, but rather as
things to keep in mind when designing the system. As with most software
frameworks, we want our system to be secure, robust, �exible, scalable, reliable
and as platform independent as possible, both in terms of operating systems and
programming languages. Although we do not address all of these requirements
in the this prototype it is important to keep them in mind since they may need
to be taken into account in the framework design.

4.3.1 Scalability

Scalability is an important factor of the Co-Authentication system. We want
the framework to handle everything from protecting a single computer with
two authentication systems (e.g., login/password and a �ngerprint scan) and
a small user base, to an entire building with hundreds of users and multiple
authentication points (e.g., deny access to a computer since the principle has not
been seen entering the building). An authentication made with the framework
should �nish in a second at most, to ensure usability and avoid unnecessary user
frustration. Stress testing, experimentation with large user bases, and exact time
measurements are beyond the scope of this thesis. Nevertheless, scalability is
to be kept in mind during the design phase of the framework, with the aim of
making future scalability features easier to implement.

4.3.1.1 Horizontal Scaling

A common method for scaling, is horizontal scaling which is a divide and conquer
method. Horizontal Scaling means we can scale the system in di�erent direc-
tions, typically by adding more hardware and software systems to the existing
infrastructure.

The Co-Authentication could allow for horizontal scaling by being con�gurable
as a hierarchy of Co-Authentication Systems. Hierarchical deployment has sev-
eral advantages in terms of horizontal scaling, in particular when we want to
combine data from two otherwise independent authentication points which are
physically far apart. For instance, if we are authenticating a user at the en-
trance of the o�ce, we can consult with the CAFI at the front door entrance,
to see if this user has been seen entering the building. This is an example of
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history-based authentication which we will mention again in Chapter 4.4.3.

CAFI

Auth Sys Auth Sys

Protected System

CAFI

Auth SysAuth Sys

CAFI

Figure 4.3: The main CAFI delegates some of its task to two sub-nodes. The
only thing the main CAFI is concerned with is receiving data from the sub-
nodes and making a �nal authentication decision. The setup of each sub-node
is more or less identical to Figure 4.2

4.3.1.2 Code Optimization

The computational performance of the Co-Authentication system, needs to be
good enough to handle common deployment scenarios without unacceptable
delays. We will however not spend any time on performing code optimization
unless a given segment of code has been proven to have signi�cantly insu�cient
performance. Several reasons lie behind this decision. Tony Hoare and Donald
Knuth have both pointed out that �We should forget about small e�ciencies, say
about 97% of the time: premature optimization is the root of all evil� [37]. The
evil from the quote above means that premature optimization requires spending
time on micro-optimizing code, even if it has not been shown to have insu�cient
performance i.e., small e�ciencies.

In addition to the extra time spent on tweaking, code micro-optimization often
obscures the readability of the code which makes it harder to maintain. For
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these reasons we prefer to focus on larger performance issues, such identifying
bottlenecks and choosing appropriate algorithms etc., in case we �nd the perfor-
mance to be insu�cient. Moreover we want to be able to address performance
issues by scaling, i.e. add resources to the system and dividing tasks between
resources whenever possible. We will however keep performance in mind in the
design, with the aim to identifying and avoiding potential bottlenecks.

4.3.1.3 Multiple Protected Systems

In some circumstances there may be more than one system that wish to be
noti�ed of the Co-Authentication decisions. For instance one protected system
and one global logging system. An example of such con�guration is shown in
Figure 4.4. The framework shall be able to support this scenario, for an arbitrary
number of systems.

Protected System Logging System

CAFI

Auth SysAuth Sys

Figure 4.4: Multiple systems receiving data from the same CAFI

4.3.2 Platform Independence

In order for our framework to be applicable in as many di�erent organizations
and con�gurations as possible, it is important to support as many platforms as
possible, within reasonable limits. For our Co-Authentication framework we are
mainly concerned with two types of platform independence.
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The �rst one is independence from operating systems. We want our framework
to be easy to deploy and integrate with the existing architectures of organiza-
tions. The framework is likely to become a much more realistic and attractive
option for an organization, if they know that they do not have to invest much
in the surrounding hardware and software infrastructure. For instance, if an
organization is mostly run on UNIX systems they are likely to want the CAFI
system to run on UNIX.

Our second platform independence requirement is independence from program-
ming languages. Dependence on a particular programming languages causes
some severe limitations. First, existing authentication systems are written in a
wide array of programming languages, and it is often easier to integrate them
into a Co-Authentication system if they can be extended in their original lan-
guage. Second, many biometric systems ship with closed and proprietary APIs
that may only be compatible with speci�c languages. Having a language inde-
pendent framework allows organizations to integrate multiple proprietary sys-
tems, regardless of if these systems have language restrictions or not. It is also
highly unlikely that all the systems we want to protect are written in the same
language. In other words, a language independent framework is applicable and
feasible in many more situations than a language dependent solution. The other
bene�t of language independence is for organizations which want to write their
own code for integrating their protected systems with the framework, and im-
plement or integrate their own authentication solutions. If such an organization
has several experienced C-programmers, they will likely want to write their code
in C, rather than being forced to use, say, Java. Therefore, a language indepen-
dent solution is more �exible, and makes it a more attractive choice for many
organizations.

For these reasons independence from operating systems and programming lan-
guages are very important requirements which need to be addressed in both
design and implementation.

4.3.3 Simplicity

System simplicity is an ambiguous term. For our framework it means that we
will follow the KISS principle (Keep It Simple, Stupid!), to the best of our
capabilities. We want the system to be easy to maintain, extend, and inte-
grate into other solutions. To simplify the integration of the Co-Authentication
framework, it needs to provide a well de�ned API, both with regards to the
protected system and the authentication systems. We will try to achieve high
maintainability by following a set of best practices in software engineering, as
listed below.
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We want to keep our framework as simple as possible without sacri�cing �ex-
ibility or applicability. One motive for keeping it simple is that it makes it
much easier to deploy and in particular to write integration code for new au-
thentication systems. In addition, clearly de�ned and simple code makes the
framework much more maintainable. Our main method of achieving simplicity
is to have clearly de�ned programming interfaces for all input/output mecha-
nisms of the system, i.e., how the framework interacts with its authentication
nodes or the protected system. In particular we need to make abstractions
such that the framework does not need to know any details about particular
devices or authentication systems, e.g. it should not need to know whether it is
communicating with a login/password system or a face recognition system.

The inner workings of the Co-Authentication framework will also need to follow a
set of software engineering principles. We should strive to separate the code base
into independent and replaceable modules with well de�ned responsibilities, i.e.
good encapsulation. These modules should have well de�ned public interfaces
and be as loosely coupled to other modules as possible. The same independence
requirement applies to code units within each module, i.e., classes, where each
class should have a well de�ned purpose and a public interface which re�ects
that purpose. However, it is reasonable to expect classes to be tightly coupled
within a module. The public interfaces of modules and classes should provide
good information hiding, i.e., they should present what they do but hide their
method of doing so.

Finally, we will strive to follow the DRY principle (Don't Repeat Yourself) [29],
by eliminating duplicate code whenever possible.

4.3.4 Flexibility

Flexibility in software is the �extent to which you can modify a system for uses
or environments other than those for which it was speci�cally designed � [37]. In
order to provide maximum usability, we want our system to be easily adaptable
to the various requirements of di�erent organizations. We want the framework
to support any number of score combination algorithms, and we must be able
to change the policy to use a new algorithm, with minimum e�ort. Moreover
we want to be able to change various properties of the system by altering its
con�guration or policy, without having to alter any code. Such properties in-
clude con�gurations of authentication systems, decision thresholds, algorithms
used and robustness con�guration, such as how many, and which nodes can fail
before we lock the system for further access.
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4.3.5 Robustness

The system will be subject to a wide range of failures, including failing authenti-
cation systems or devices, networking problems, power outages, and deliberate
malicious attacks. We must strive to have our system robust and address as
many of these scenarios as possible. This includes failing gracefully and prop-
erly informing about problems whenever possible.

4.4 Requirements

In this Chapter we discuss the functional requirements of our framework imple-
mentation. In this thesis we are concerned with demonstrating the usefulness
of having a Co-Authentication framework, and we address this by creating a
proof-of-concept implementation of such a framework, which can demonstrate
its core abilities.

In order for the framework to be considered an option in real organizations it
needs to address certain functional requirements which are outside the scope
of this thesis. In this thesis we will simply assume that the framework and its
environment are secure. In particular, secure communication within the Co-
Authentication Network will be assumed. Moreover, we will not perform static
analysis on the code base or take other measures to secure the framework code
itself. We do however fully appreciate the importance of these aspects and list
them as future work.

We de�ne three categories of requirements. In Chapter 4.4.1 we list High Prior-
ity requirements which we intend to satisfy in this proof-of-concept implementa-
tion. Speci�cally, these are features which serve to demonstrate the advantages
of having a Co-Authentication framework. The features listed in Chapter 4.4.2
have Medium Priority. This means that we will address as many of them as
possible within the allowed time. Finally, in Chapter 4.4.3, we brie�y describe
some Low Priority requirements which we consider as ideas for future work.

4.4.1 High Priority Requirements

In this chapter we present the functional requirements that have the highest
priority, that is, the requirements we intend to ful�ll in our proof-of-concept
implementation. We list each requirement along with a unique identi�er and a
short description.
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A-1 Authentication systems

A-1.1 Add an authentication system: When a new authentication sys-
tem is added to the Co-Authentication Network, we need to register
its information (IP/host, port), its mode (see Requirement A-1 .4 ),
and assign it to one or more protected systems.

A-1.2 Update an authentication system: When an existing authentica-
tion system changes some of its properties (IP/host, port, mode) or
is assigned to other protected systems, we need to be able to change
this information easily.

A-1.3 Remove an authentication system: A remote authentication sys-
tem is not an essential part of the framework, and can therefore be
removed. Removing an authentication system should trigger a re-
evaluation of minimal conditions, see Requirements C-2.1 and C-2.2 .

A-1.4 Running Mode: An authentication system shall run in one of the
three following modes: Identi�cation, Veri�cation or Both. AS that
run in Identi�cation mode notify the CAFI of which user is trying
to get authenticated. AS in veri�cation mode wait until they are
requested to authenticate a speci�ed user. Finally, AS which runs
both behaves as it is running both modes simultaneously (i.e., it both
noti�es the CAFI of users to authenticate, and accepts veri�cation
requests).

A-2 Communications between the CAFI and an Authentication Sys-
tem

A-2.1 Connection Setup: Initialize a network connection between the
CAFI and each of its Authentication Systems. The connection should
remain in place at all times while the CAFI is actively running, unless
explicitly disconnected (see Requirement A-2 .2 . Refer to Require-
ment B-1.1 for how to deal with broken connections.

A-2.2 Connection Tear down: Gracefully terminate every connection
between the CAFI and each of its Authentication Systems.

A-2.3 Identi�cation: The CAFI shall be able to receive an identi�cation
event from one or more authentication systems running in identi�-
cation mode (see Requirement A-1 .4 , and proceed to request other
authentication systems to verify that identity.

A-2.4 Veri�cation: The CAFI requests authentication system running in
veri�cation mode (see Requirement A-1 .4 to verify the presence and
authenticity of a user, given his user ID. The authentication systems
performs the authentication and sends the result along with a match
score back to the CAFI.

A-3 Communications between the CAFI and a Protected System
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A-3.1 Connection Setup: Initiate a connection between the CAFI and a
Protected System according to con�guration. The connection should
remain in place at all times while the CAFI is actively running, unless
explicitly disconnected (see Requirement A-3 .2 ). Refer to Require-
ment B-1.2 for how to deal with broken connections.

A-3.2 Connection Tear down: Gracefully terminate all connections be-
tween the CAFI and each of its Protected Systems.

A-3.3 Authentication On Request: The Protected System requests the
CAFI to authenticate a speci�c user. The CAFI queries its authen-
tication systems for veri�cation and match scores (see Requirement
A-2 .4 . The CAFI then calculates an overall score (see Requirement
A-4 .3 and compares it to the threshold con�gured for the PS (see
Requirement A-4 .4 ) and returns a decision and the combined match
score.

A-3.4 Notify a Protected System about a triggered authentication:
This requirement addresses authentications which are not the result
of a request from the PS. These occur when one or more authenti-
cation system running in identi�cation mode triggers the CAFI to
authenticate a user. The CAFI performs its authentication just as
when it does so on request from the PS. The CAFI then sends in-
formation about the authentication to the PS, including information
about the claimed user ID, the overall match score, or the binary au-
thentication results if the PS does not support probabilistic results.

A-4 Score Combination:

A-4.1 Average Function: Calculate an overall score using the average
function on a given set of match scores.

A-4.2 Median Function: Calculate an overall score using the median
function on a given set of match scores.

A-4.3 Calculate Overall Authentication Score: The CAFI shall be
able to calculate an overall authentication score by feeding the match
scores from all the authentication systems to a score combination
function (see Requirements A-4 .1 , A-4 .2 and B-9). The overall score
is used to make authentication decisions (see Requirement A-4 .4 ).

A-4.4 Compare Score to Threshold: The CAFI should always com-
pare the score from the score combination function with a threshold,
whenever the protected system is con�gured to receive authentication
decisions (see Requirement A-5 .3 ). If the score is equal to, or above
the threshold, then the authentication is successful, but otherwise it
is not.

A-5 Con�guration and Policy:
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A-5.1 General Structure: The con�guration �le shall be easy to parse,
human readable and non-redundant, i.e., the same information shall
not be speci�ed in multiple places.

A-5.2 Score Combination: The CAFI policy environment must spec-
ify which score combination method is used to calculate the overall
match score, as a part of the authentication policy for each PS. The
con�guration must allow for change of the score combination method
without altering any code.

A-5.3 Decision Threshold: The decision threshold for each protected
system must be easily con�gured, and alterable without changing
any code.

A-5.4 Authentication Systems: Each Authentication System has to be
speci�ed in the con�guration, along with all the information that the
CAFI needs for it, i.e., its IP/host, port, mode, etc. Each AS also has
an identi�er which is unique within the con�guration. An AS which
is used by more than one protected system shall only be speci�ed
once, and then referred to in the con�guration for those PS.

A-5.5 Allowed Protected Systems: The CAFI has a con�gured list of
Protected Systems that are allowed to connect to it, in order to pre-
vent rogue systems from connecting and eavesdropping on events.

A-5.6 PS Scoped Policies: Each PS shall have an individual con�gura-
tion of its authentication policy within the Co-Authentication frame-
work.

A-5.7 Authentication Systems for each PS: Each Protected System
has a policy which states which authentication systems are used for
its authentication decisions.

4.4.2 Medium Priority Requirements

In this chapter we describe requirements with medium priority. These are mostly
features that are nice to have but are not critical to demonstrating the use of
our proof-of-concept framework. We will address as many of these requirements
as time allows for.

B-1 Reconnect Broken Connections

B-1.1 Automatic Reconnect (CAFI-AS): If a connection between the
CAFI and an authentication system is lost, the CAFI should repeat-
edly attempt to reconnect to the AS, where the number of attempts
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and time delay interval is de�ned in con�guration, see Requirement
B-1.3 .

B-1.2 Automatic Reconnect (CAFI-PS): If a connection between the
CAFI and a protected system is lost, the CAFI should repeatedly
attempt to reconnect to the PS, where the number of attempts and
time delay interval is de�ned in con�guration, see Requirement B-
1.3 .

B-1.3 Reconnect Con�guration: The Con�guration �le should include
information on how the CAFI should react when connections break.
This includes number of reconnect attempts and how long delay in-
terval should be between attempts.

B-2 Node Maintenance: It should be possible to disconnect and reconnect
a (PS or AS) node for maintenance. During the maintenance the Jury
node should not attempt to reconnect (as described in Requirements B-
1.1 and B-1.2 ). Similarly, should the CAFI need maintenance it should be
possible to disconnect the CAFI and reconnect it to all the authentication
systems and protection systems without any e�ort on the behalf of any
PS or AS.

B-3 Support for Multiple Protected Systems: The CAFI should support
an arbitrary number of protected systems simultaneously, i.e., more than
one system which will request and be noti�ed of authentications. For
instance this can be a physical door and a specialized intrusion detection
system. Each PS can have a di�erent statistical combination algorithm,
di�erent set of AS it uses, and a di�erent weighting of the AS.

B-4 PS Scoped Weights for Authentication Systems: As a part of its
authentication policy, each PS can have static weights for each of its au-
thentication systems. These weights can then be used with the score com-
bination functions for those PS. The motivation for assigning weights to
the AS is that di�erent authentication systems might be evaluated to be of
di�erent strengths, for instance an iris scan performed by tamper resistant
hardware can be evaluated as stronger than a �ngerprint recognizer with
cheap consumer hardware and known defects.

B-5 Dynamically Loadable Algorithms: It should be possible to change
the policy with respect to which statistical algorithms are used, without
having to restart the framework.

B-6 Support for external algorithms: It should be possible to specify algo-
rithms in the policy, which are not a part of our internal framework. That
is, our framework should support external score-combination algorithms,
as long as they ful�ll the interface speci�cation.
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B-7 Default Con�guration Settings: The CAFI con�guration should al-
low for default value de�nitions. If a default value is con�gured, then all
con�guration entries which want to override the default, must explicitly
state so. For instance one should be able to specify that protected sys-
tems should use the average statistical combination function by default.
This means that all protected systems that want to use another statisti-
cal function, will have to be explicitly con�gured to do so. The default
speci�cation supports the following �elds:

B-7.1 Score Combination Algorithm for PS: This speci�es which score
combination function the protected systems use by default. If this is
con�gured, a PS has to explicitly state if it wants to use a di�erent
function.

B-7.2 Reconnect Settings: This �eld includes default values for reconnect
attempts with disconnected nodes. These include how many times
should a reconnect be attempted, how long should the time interval
between attempts be, and what to do if all our attempts fail.

B-8 Limited Noti�cation: In some circumstances it can be favorable for
a protected system to receive noti�cations of particular types of events
only. For instance a protected system may only be interested in successful
authentications while another (e.g., a security log) might only want to be
noti�ed of failed authentications.

B-9 Score Combination Algorithms: Implement several advanced statis-
tical score-combination algorithms.

B-10 Administrative Console: An text-based console, which can be used to
manage the framework, e.g., change con�guration and policy, disconnect
nodes, etc.

4.4.3 Low Priority Requirements

In this chapter we describe low priority requirements. These are features which
we have no intention of implementing in the course of this thesis project, but
which we want to add to the framework at a later time. The low priority
requirements are described on a high-level, partly since we do not intend to
address them at this stage, and partly because some of them are large enough
to be projects of their own. The list presented below may be considered as an
repository of ideas for future work.

C-1 A Con�guration Checker Tool:
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C-1.1 Boundary Checks: Check the values of all con�gured parameters
for bounds sanity (e.g. no symbols in an alphanumeric �eld)

C-1.2 Consistency Checks: Check if all required �elds are speci�ed, that
all �eld dependencies are met, and that all referenced con�guration
�elds exist.

C-2 Minimal Running Conditions: It is possible that, at some point in
time, many parts of the Co-Authentication Network have failed. This can
either be caused by normal failures such as power outages, or by deliberate
malicious attacks. It is therefore important to be able to de�ne a lower
boundary on when to stop trusting the Co-Authentication Network and
deny all authentications. These requirements should be implemented as a
part of the PS-speci�c authentication policies.

C-2.1 Minimum Number of Authentication Systems: In the Co-
Authentication policy, we should be able to de�ne a minimum num-
ber of AS which need to be working in order for the CAFI to make
decisions.

C-2.2 Minimum Set of Authentication Systems: In some cases we
need rely more on some authentication systems than others. In this
case we want to be able to de�ne a set of authentication systems that
have to be running in order for the CAFI to make decisions, i.e., if
one of these fails, the CAFI will deny all authentication attempts.

C-2.3 Combined Number and Set: If both a minimum number (see Re-
quirement C-2.1 ) and a minimum set (see Requirement C-2.2 ) of AS
is de�ned, then both conditions have to be ful�lled in order for the
CAFI to make successful authentications. If the minimum number is
de�ned to be higher than the number of elements in the minimum set,
then all the AS in the set need to work, in addition to a number of ar-
bitrary AS required to satisfy the minimum number of AS. Example:
If out of the set {A,B,C,D,E,F} the minimum number is four and the
minimum set is {A,B,C} then A,B,C and any one of {D,E,F} must
be running, e.g., {A,B,C,E} is an acceptable combination of running
authentication systems.

C-3 CAFI-CAFI communications:

C-3.1 Connection Setup: Initialize a network connection between two
Co-Authentication systems in a hierarchical way, i.e., that it is ob-
vious which of the two systems is the parent and which is the child
system. The connection should remain in place at all times while the
parent CAFI is actively running, unless it is explicitly disconnected.
Refer to Requirement C-3.3 for how to deal with broken connections.
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C-3.2 Connection Tear down: Gracefully terminate every connection
between the CAFI and each of its child systems, as well as the con-
nection to its parent CAFI (if any).

C-3.3 Automatic Reconnect: If a connection between two Co-Auth-
entication systems is lost, the parent system should repeatedly at-
tempt to reconnect to the child CAFI, according to con�guration
(see Requirement B-1.3 .

C-3.4 Request Authentication: One CAFI should be able to request
another CAFI to authenticate a user.

C-3.5 Variable Details of Authentication Response: When returning
the authentication result to the parent CAFI, the child CAFI should
be able to return either an overall match score, a decision, a 2-tuple
(decision, overall match score) or a vector of all the independent
match scores from each authentication system.

C-4 Identity Mapping: In some cases the authentication systems will come
with their own user databases, which may be incompatible in such a way
that a user cannot be registered in the authentication system with the same
user credentials as in the protected system. For instance, the protected
system may allow 16 character usernames in Unicode, while the authenti-
cation only allows for 8 character plain ASCII usernames. In these cases
we may not be able to use a globally unique user identi�ers and must
therefore resolve to mapping. Mapping is done on a per PS basis, such
that a username in a particular PS is mapped to IDs of those AS it uses.

C-4.1 Register an Identity Mapping: Register a four-tuple ( ID of the
PS, user ID within PS, ID of the AS, user ID within AS).

C-4.2 Update an Identity Mapping: Update any �eld of an identity
mapping

C-4.3 Delete an Identity Mapping: Delete a single entry from the iden-
tity mapping.

C-4.4 Delete all Identity Mappings for an AS: Delete all identity
mappings for a single authentication system.

C-4.5 Delete all Identity Mappings for a user,PS combo: Delete all
identity mappings for a single user ID from a single protected system,
i.e., all mappings with a user ID,PS-ID combination.

C-4.6 Look up an Identity Mapping: Look up a user ID for a given
authentication system, given a user ID within the protected system.

C-4.7 Con�guration for Identity Mapping: The following details have
to be con�gurable without having to change any program code: data-
base host, database port, database driver, database name, database
username, database password.
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C-5 Secure the framework:

C-5.1 Secure Communications: Communication between various Co-
Authentication nodes (PS, AS, CAFI) need to be secured in order to
prevent rogue nodes from joining the network, as well as to make it
harder to eavesdrop. This requires end-to-end security, since there
might be multiple untrusted network nodes and appliances en route
between two Co-Authentication Network nodes.

C-5.2 Node Authentication Scheme: In order to secure the Co-Auth-
entication Network, we must have a method of authenticating the
individual nodes. For instance, when we initialize the system, we
need to know that the front door face recognition system is indeed
the system we know and trust, and not a rogue system. This scheme
could for instance use cryptographic certi�cates to identify each node,
granted that the nodes can safely store their certi�cates.

C-5.3 Secure Framework Code base: A large part of system in�ltrations
are based on application vulnerabilities. Therefore the security of
the framework source code is very important. To reduce the risk of
severe vulnerabilities in our code base we need to take several steps
to harden the code. These include static code analysis, rigorous input
validation, and keeping the system access requirements to an absolute
minimum. For instance, the CAFI probably does not need to be able
to write anything except for its log �les. These steps should be easier
if we successfully follow our guidelines on system simplicity and low
module coupling.

C-5.4 Secure Con�guration: Since the con�guration will specify who
protects what, and what authentication systems we use, etc. it is
very important that we secure the integrity of the con�guration �le.
This can for instance be done by access control and/or encryption
schemes.

C-5.5 Access Control for Maintenance: While we need to be able to
disconnect and reconnect some nodes during maintenance, we must
prevent unauthorized parties from doing so. It is not obvious how
this can be done in the CAFI, since these measures are likely to
rely heavily on the logical and physical access control of the hosting
system (i.e., the machines and operating systems that run the Co-
Authentication nodes). It is however necessary to give this some
thought and possibly implement protection into the CAFI. At the
very least, we can provide thoroughly documented guidelines on how
to secure the running environment.

C-6 User Tracking: User movements are tracked within an environment
which entrances are secured with an Co-Authentication network. Subse-
quent authentications within the environment are a�ected by the tracking
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data, and possibly the score of the initial authentication. For instance, a
user who has been successfully authenticated at the entrance to an o�ce
building is about to enter his o�ce. If he has been successfully tracked
to his o�ce, and other users do not interfere (e.g., no unauthorized users
are in vicinity of the o�ce door), then he does not need to be authen-
ticated again. The match score of the initial front door authentication
might be used such that if it is beneath a certain threshold the user has
to authenticate himself at the o�ce door despite successful tracking.

C-7 Behavioral Anomaly Detection: This is related to user tracking (see
Requirement C-6. The system should include a module which detects
anomalies in the user behavior with respect to the environment. For in-
stance, access to an o�ce could be denied if the person has never been seen
(or authenticated) at the entrance to the building, or if he was last seen
entering the building the day before. This means that the CAFIs should
keep a history of authentications, and o�er a query interface. For instance,
the o�ce door CAFI should be able to query the front door CAFI, f.ex.
Have you successfully authenticated Dennis in the last 120 minutes?.

C-8 Peer/Adversary Detection: The System should be able to detect if
more than one person is at an authentication point. If two or more people
are at an authentication point, the system should attempt to authenticate
all of them. If one or more of them fails to authenticate, or if one or more
of them cannot be identi�ed, then all of them are denied authentication.

C-9 Guard Enforcement: This is a special case of peer detection. If guard
enforcement is enabled (in the con�guration), it is required that the CAFI
successfully detects and identi�es a person who is registered as a guard
in order to provide access. For instance, if the CAFI is protecting a front
door, no one can be authenticated unless a registered security guard is
present, and as a result, no one can open the door.

C-10 User Relations: We want to be able to constraint access to a boolean
condition for a given set of users. This includes AND and XOR. For
example, a digital lock could enforce an XOR policy such that either Alice
or Bob may be allowed to enter the room, but they may not be both
present simultaneously.

C-11 Decision Continuity: Usually an authentication decision is made only
once, e.g., a user can either open a �le or he cannot. We want our frame-
work to support decision continuity, i.e., we want to be able to trigger
a re-evaluation of the authentication decision. For instance, if John has
gained access to a logical �le and is reading it on his monitor when Dennis
enters the area, we want the environmental change to trigger the authenti-
cation of Dennis, and notify the PS of the result. The PS can then check if
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Dennis is allowed to read this document. This allows the protected system
to revoke access to the open document, if it so desires.

C-12 AS Driver Library: When adding a new type of authentication system
to the framework we need to implement a driver, i.e. a piece of software
that allows the authentication system to successfully communicate with
the framework. This can be seen as a wrapper, which translates between
Co-Authentication protocols and protocols understood by the authentica-
tion system. We want to create a driver library, a software library which
includes drivers for many popular authentication systems.

C-13 User Documentation: While this is not a requirement for the frame-
work itself, it is critical if the framework is to become a realistic option
for organizations. This step involves creating thorough documentation on
how to install, con�gure and use the system.



Chapter 5

Design

A software framework is likely to exist for a long time, so it is important to
design the framework, in a way that facilitates the evolution that is inevitable
in its lifetime. Further, since we want our framework to be �exible and generic,
we have to pay extra care to design the framework in a way that makes future
extensions as easy to incorporate as possible. Finally, we cannot expect future
developments to be limited to the initial authors, and thus must make the design
as clear to external contributors as possible.

For these reasons, the design has to be easy to understand and well structured
into logical building blocks, so that future improvements will be easier to make.
If this step is ignored, the code will be hard to understand by others, and
perhaps even to the program authors themselves, after some time of inactivity.
Further, the very nature of a framework is to act as a foundation which more
specialized functionality is built upon. That is, the framework itself is of little
use to an organization without further customizations, such as integration of
their authentication systems and protected systems. Therefore it is crucial to
design the framework such that it is easy to extend and integrate with other
systems. In particular, the design needs to be generic, i.e., not customized for
a particular scenario or an organization.

In this chapter we present our framework design and motivate the most impor-
tant design decisions. We describe the framework at di�erent levels of abstrac-
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tion, starting with the big picture and gradually introduce more details. We
have opted for an object oriented solution and our design is made with the Java
programming language in mind.

The diagrams presented here show how di�erent modules and layers interact.
They are however, not meant to form a complete model of the system. Our
implementation will have classes that are not shown in the diagrams below, and
some of the classes shown here are implemented slightly di�erently. Similarly, in
the class diagrams we only show the attributes, methods, and parameters that
we believe will help clarify the purpose of that class.

5.1 Overview

The Co-Authentication infrastructure of the Jury framework is organized as
a distributed system of authentication systems, protected systems and a Co-
Authentication Framework Instance (CAFI). We call this distributed system the
Jury Network, and it is designed as a combination of the client-server model and
the publish-subscribe model. In the former model, the client process connects to
the server, after which it can send requests to the server and receive responses
back from it. Figure 5.1 shows how the client-server model is setup in the Jury
Network. The connection between a PS and Jury is a traditional client-server
implementation as described above. The connection between Jury and a remote
AS is however, a bit fuzzy in the distinction between a client and a server.
In the �gure, we show Jury as the client, and the AS as a server, since Jury
sends requests to the AS and receives responses back from it. However, in terms
of connection handling, Jury acts as a server which the AS connects to. The
reason for this design is that we want to make it as easy as possible to adapt
authentication systems to our framework, and writing a client is considerably
easier than writing a server.

JuryPS AS
client client∗

server∗server

Figure 5.1: The Client-Server architecture, the connections between the Jury
framework and remote AS nodes are marked with a star because although they
act like a client-server, the AS is responsible for initiating the connection.

The publish-subscribe model is implemented such that a PS subscribes to a set
of authentication systems, but with Jury acting as a subscription agent. What
this means is that when an AS publishes an event, the Jury framework receives
it and carries out additional tasks to gather further information about the event,
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before sending it to the subscribing protected systems. For instance, if an AS
identi�es a user, Jury receives the published message and carries out further
veri�cation of the identity by requesting other authentication systems to verify
the user. When Jury has received veri�cations from the other authentications
systems, and combined the score, it generates a new authentication event which
it then publishes to the subscribing protected systems. Moreover, Jury manages
the subscription relationships between PS and AS nodes, i.e., which subscribes
to which, and how to handle incoming events for each subscription. We will use
the term noti�cations for published messages that do not require a response.
Figure 5.2 illustrates the publish-subscribe implementation at a high-level. For
the remainder of this thesis, we will use the short-hand of saying that a PS
subscribes to an AS, and that the AS may perform authentication services for
the PS, to avoid having to repeatedly state how the CAFI acts as a subscription
agent.

JuryPS AS
subscribersubscriber

publisherpublisher

Figure 5.2: The Publish-Subscribe architecture: Jury acts as a subscription
agent between AS and PS systems, i.e., it receives AS messages on behalf of
protected systems.

Each AS or PS system has a single persistent connection with the Jury frame-
work, i.e., a remote system does not connect to the CAFI for each request and
disconnect afterwards. Moreover, the published noti�cations are sent over the
same connections as requests and responses are. The persistent connections are
illustrated in Figure 5.3.

request respond

subscribe publish

request respond

subscribe publish
PS AS

persistent connection

CAFI

persistent connection

Figure 5.3: All messages between a remote system and the CAFI are sent using
the same persistent connection, regardless of whether they are request/response
messages or event noti�cations.

We have chosen to design our framework such that most interactions and func-
tionality are abstracted with public interfaces. Such abstractions give us �exibil-
ity by allowing us to make internal changes to method implementations without
having to alter any code of the calling methods. We use this technique ex-
tensively in our design, to separate the modules from each other. When the
PS-Module calls a service method in the kernel, it can only do so through the
public interfaces that de�ne the allowed interactions between the PS-Module
and the kernel. If we were to completely rewrite some of these services, such
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that only the signature remained intact, the PS-Module will not be a�ected,
since it does not rely on internal implementation details of the kernel.

Besides separating modules, we use interfaces to allow multiple implementations
of the same class. We frequently use this method to abstract functionality in our
framework, particularly in the score combination module as we will discuss in
Chapter 6. The bene�t of this approach is best described with a short example:
If a method needs to iterate a data collection, we will supply it with an instance
of the Iterator interface. The method can then iterate the collection without
knowing whether it is a linked list, an array or something completely di�erent.

Our Co-Authentication framework is separated into four modules and a kernel.
The Protected Systems Module (PS-Module) handles all services, networking
and other issues that have to do with protected systems. Similarly the Au-
thentication Systems Module (AS-Module) does the same for authentication
systems. The Score Combination Module provides abstracted access to the
score-fusion algorithms which are used to combine match scores and calculate
an overall score. The AS, PS and score combination modules are all isolated
from each other and can only communicate with each other via the Kernel. They
do however, along with the Kernel, have read-only access to the Con�guration
module, which contains all system con�guration and policy parameters. In ad-
dition to providing read-only access to con�guration and policy parameters, the
con�guration module is also responsible for reading and parsing con�guration
and policy �les, which, in the current implementation, are stored in the local
�le system of the CAFI. The Kernel is at the heart of the framework, and is
responsible for synchronizing operations that involve more than one module.

The interactions between remote AS and PS systems are de�ned in the Jury
policy �le, which is an external �le which is read by the Con�guration and Pol-
icy module. It includes details on what authentication systems are used by a
particular protected system, assigns PS-speci�c weights, or con�dence levels, on
each authentication system, and speci�es how a PS reacts to events. Since the
policy is the only place where the AS and PS interactions are de�ned, the actual
AS and PS nodes can be completely unaware of each other. Figure 5.5 shows
an example of how an authentication may be performed using four authentica-
tion systems and an average score combination algorithm. First, AS0 identi�es
a user and noti�es the Jury framework of this event. The framework checks
which protected systems are interested in events from AS0 and �nds a single
PS subscriber, simply called PS in the �gure. The PS is con�gured to react to
incoming identi�cations by verifying the claim using the other authentication
systems that it subscribes to, according to its policy (in this case: AS1, AS2,
and AS3 ). The Jury framework combines the scores from these three systems
and concludes the event sequence by sending the result to the PS.
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Score

Combination

Protected

Systems

Authentication

Systems

Jury Kernel

Con�guration and Policy

Figure 5.4: Module Overview. The four functional modules and the kernel.
The solid bi-directional lines indicate direct communication, while the one-way
dotted lines indicate read only communications.

AS0

PS

1. identi�ed "alice", 0.819

5. "alice", 0.735

4. verify "alice"

5. "alice", 0.393

4. verify "alice"

5. "alice", 0.843

Jury

2. who subscribes to AS0 ⇒ PS

4. verify "alice"

AS1

AS2

AS3

3. get veri�ers for PS ⇒ AS1,AS2,AS3

7. auth: ("alice", 0.657)

6. combine(0.735, 0.393, 0.843) ⇒ 0.657

Figure 5.5: An example authentication scenario, where one AS generates an
identi�cation event which is veri�ed by other authentication systems. Steps
with identical sequence numbers can be seen as happening in parallel.

The communications between Jury and the remote AS and PS nodes takes place
over a network, using a speci�c Jury Message Protocol (JMP). To integrate a
system that does not have built-in JMP support, we create a wrapper between
the remote system and the framework. We call these wrappers Jury Interpreter
Nodes or JINs, and each JIN has to support a subset of the JMP, depending on
which system it is wrapping. For instance, a JIN for a protected system must
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support the part of the protocol that deals with protected systems. Figure 5.6
shows how remote systems are connected to the AS-Module and PS-Module via
JINs. JINs allow organizations to gradually move towards a Co-Authentication
infrastructure, which is likely to be a more attractive option for them than to
replace their entire infrastructure at once.

PS-Module

Protected

System

Auth.

System

Auth.

System

AS-

JIN

AS-

JIN

Score Combination

AS-Module

The Jury Framework

PS-

JIN

Kernel Con�guration

and Policy

Figure 5.6: The interactions between the Jury framework and remote AS and
PS nodes.

The Jury Message Protocol is composed of three types of messages. A request is
a message that requires the receiver to reply back to the sender with a response
message. The third type is the noti�cation, which is simply a message which
the recipient does not reply to. In the PS module, all requests originate in the
remote PS which receives responses from the framework. The noti�cations of
the PS module however all originate in the framework. The AS-Module reverses
all of these directions. All AS-related requests are sent from the framework to a
remote AS, which replies. Similarly, all noti�cations in the AS-Module originate
in the remote AS nodes.
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5.2 The Protected Systems Module

The Protected Systems Module is responsible for everything regarding protected
systems and their relation to the rest of the Jury framework. This includes
managing network connections to the various protected systems, sending and
receiving protocol messages, listen for and process events from other framework
modules, and acting out service requests received from the protected systems.
The purpose of the Jury framework is to provide Co-Authentication services for
protected systems, which is why the PS-Module is purely a service consumer
and does not provide services to other modules.

The PS module is divided into two layers, namely a service layer and a network
layer. The layered design is due to separation of concern, i.e., each layer bun-
dles together related functionality, and is not to be confused with a protocol
stack. The Service Layer is responsible for all interaction with the other Jury
modules. When the kernel needs to deliver a noti�cation to a remote PS, it does
so via the Service layer. Similarly, when the PS-Module requests services from
other parts of the framework, such as when it wants verify an identity, it goes
through the Service Layer. The Network Layer handles all network communi-
cation with protected systems. This includes sending and receiving messages,
relaying messages to the right protected system and synchronizing activities.

In addition we have small sub-module consisting of Message Helpers, i.e. classes
that help with message handling. It consists of classes that parse incoming JMP
messages from the network layer, send messages to an output stream, and data
classes to represent message data that can then be used by the service layer.
The classes in the message sub-module do not know where the messages come
from or where they are going, nor do they know what the data they contain is
used for. The Service and Network layers can communicate directly with each
other, but only using primitive data types (e.g., integers and strings) and data
types from the message sub-module.

Figure 5.7 gives an overview of the PS module. Chapters 5.2.1�5.2.3 will give
a more detailed of the service layer, network layer and message helpers of the
PS-Module.

5.2.1 The PS Service Layer

The Service Layer handles all interactions between the PS-Module and the Jury
kernel. The kernel provides services that the PS-Module can access through its
Service Layer. Similarly, the kernel needs to be able to deliver noti�cations, i.e.,
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Network

Message

Helpers AS
Network Layer

Service Layer

Jury Kernel

PS-Module

An instance of the Jury framework (CAFI)

Figure 5.7: The layered PS-Module and its interactions with the Kernel and
the Jury Network. The Service Layer and Network layers both use the Message
Helpers.

subscription messages, to remote PS nodes, which is also done via the Service
Layer. In other words, the connection between the Service Layer and the Kernel
is bi-directional.

These interactions go through three public interfaces, two of which deal with
commands and noti�cations from the framework, while the remaining one de-
�nes PS related services provided by the kernel. The interaction paths are shown
in Figure 5.8, while the interface speci�cations are shown in Figure 5.9.

PS

Command

Handler

PS

Noti�cation

Handler

PS

Service

Layer

Jury

Kernel

Service Provider

Kernel PS

Figure 5.8: The interactions between the PS module and the Jury kernel via
public interfaces.

The PSNoti�cationHandler interface speci�es all noti�cations which the PS-
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Module should be able to receive from the kernel. For instance, when an AS
successfully identi�es or authenticates a user, the kernel noti�es the PS-Module
once for each protected system that subscribes to the AS in question. The
PS-Module then forwards the noti�cation to the respective protected systems.

The PSCommandHandler interface de�nes the command methods which the
kernel can call on the PS-Module. The implementation of this interface is re-
sponsible for carrying out the commands. For instance, an implementation of
disconnect is responsible for closing the connection to the speci�c PS. Option-
ally, it can �rst send out a message to that PS, notifying it of the pending
disconnection and the reason for it. This functionality is primarily meant to be
used with the administrative console, which is described in Requirement B-10.

Finally, the KernelPSServiceProvider interface will be discussed along with
other Kernel functionality in Chapter 5.5.«interface»KernelPSServiceProvider+verifyUser(psID:PSID,username:String):double+identifyUser(psID:PSID):IdentificationResult+handleIncomingIdentification(asID:ASID,psID:PSID,result:IdentificationResult)+handleIncomingAuthentication(asID:ASID,psID:PSID,result:AuthenticationResult)
«interface»PSCommandHandler+disconnect(psid:string,reason:string)+disconnectAll()
«interface»PSNotificationHandler+handleNotification(notification:PSNotification)

Figure 5.9: The public interfaces that de�ne and constraint interactions between
the PS module and the Jury kernel.

The implementation of the Service Layer consists of a facade [25] which imple-
ments the PSNoti�cationHandler and PSCommandHandler interfaces described
above. The facade is a singleton class which creates the appropriate message
data types from the Message Helper Sub-Module and passes them on to the
Network Layer. The facade and classes related to it are shown in Figure 5.10.
In addition we have the PSKernelRelay, which acts as a proxy whenever a PS-
Module class needs access to services provided by the kernel.
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«interface»PSNotification+send(os:OutputStream)+getPSID()

«interface»PSNotificationHandler+handleNotification(notification:PSNotification)
PSServiceFacade+getInstance():PSServiceFacade
PSKernelServiceRelay+verifyUser(request:PSVerificationRequest):PSVerificationResponse+identifyUser(request:PSIdentificationRequest):PSIdentificationResponse+getInstance():PSKernelServiceRelay

«interface»PSCommandHandler+disconnect(psid:string,reason:string)+disconnectAll()

Figure 5.10: Implementation of the PS Service Layer.

5.2.2 PS Network Layer

The Network Layer is responsible for managing connections, reading from, and
writing to, network connections to the protected systems, as well as to keep
track of which protected system is using each connection, so that responses and
noti�cations can be sent to the correct PS. Further, many of the network layer
responsibilities require concurrency, which means that the network layer has
to take great care in synchronizing events. For this reason, we can safely say
that the network layer is by far the most complicated of the three. The main
elements of the network layer are shown in Figure 5.11.

The network layer is essentially a multithreaded server [58]. The module listens
for incoming connections on a speci�c port, and when a connection arrives, it
will be accepted. Once a connection is accepted, the listener checks the Jury
policy to see if the remote address and source port of the connection match an
entry in the policy of the PS. The connection is terminated if they do not match,
but otherwise the listener fetches the unique PS identi�er from the policy and
creates a new thread to handle that connection. The listener daemon class that
accepts the connections and creates the threads is trivial, and has therefore
been omitted from Figure 5.11. The most interesting classes with regards to the
connections are PSConnectionHandler and PSConnectionManager.
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«interface»PSCommandHandler+disconnect(psid:string,reason:string)+disconnectAll()
«interface»PSNotificationHandler+handleNotification(notification:PSNotification)

PSConnectionHandler+disconnect()

PSMethodHandlerFactory+getHandler(method:string):PSMethodHandler

PSConnectionManager+addConnectionHandler()+getInstance():PSConnectionManagerDnotifyOfAuthentication(notification:PSAuthenticationNotification)DnotifyOfDisconnection(notification:PSDisconnectionNotification)

PSHandlerFactory+getNotificationHandler():PSNotificationHandler+getCommandHandler():PSCommandHandler

Figure 5.11: The PS Network Layer

Each instance of the PSConnectionHandler class is responsible for handling a
single network connection. In other words, it is the thread that is started by
the listener once the connection has been accepted. The connection handler
will parse the headers of incoming messages, �gure out what type of request
it is, and forward it to the appropriate method handler. The method handler,
implemented as an instance of PSMethodHandler then parses the body of the
message, calls the services required to process the request via the PSKernelSer-
viceRelay, and �nally sends a response, containing the results of the service call,
back to the protected system.

The complexity in managing these connections becomes clear once we have more
than one protected systems, and is the motivation for the unique PS identi�ers
mentioned above. We have to be able to assign a unique identi�er to each of
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PSMethodVerify+service(req:PSVerificationRequest):PSVerificationResponse

«interface»PSMethodHandler+service(request:PSRequest,inoutresponse:PSResponse)PSMethodIdentify+service(req:PSIdentificationRequest):PSIdentificationResponse

PSMethodHandlerFactory+getHandler(method:string):PSMethodHandler

Figure 5.12: The PS Network Layer Method Handlers

these systems such that we know how to handle their requests and noti�cations.
For instance, when a protected system needs to be informed of an authenti-
cation event, we must be able to look up which connection to use for sending
the noti�cation. This is the main responsibility of the PSConnectionManager
singleton class, which contains handles to each of the active PSConnectionHan-
dler objects, and maps them to the unique identi�er which it receives from the
con�guration module.

5.2.3 The PS Message Helpers

The Message Helpers are a collection of data types which we call messages and
classes that process them. A PS message is a set of data that we wish to send
to a protected system, or information we receive from a protected system, and
each helper or datatype corresponds to a message from the PS part of the Jury
Message Protocol, which we will describe further in Chapter 5.7.

Messages that we receive from a PS are called requests and are described by
the PSRequest interface, and each implementation of PSRequest encapsulates a
speci�c type of request. For instance, the PSVeri�cationRequest encapsulates
the PS request for the framework to authenticate a speci�c user, i.e., to verify
his presence. When the framework has processed the request, it replies by
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sending an instance of PSResponse back to the PS. Each response type has its
own implementation of PSResponse, and corresponds to an implementation of
PSRequest, e.g., PSVeri�cationResponse corresponds to PSVeri�cationRequest.
The notable exception to this rule is PSErrorResponse which is sent when a
request cannot be ful�lled, for whatever reason. Needless to say, no system
is expected to request an error. The PSRequest and PSResponse interfaces
along with sample implementations are shown in Figures 5.13 and 5.14. The
processing of the requests is a part of the Network Layer and will be described
in Chapter 5.2.2.

PSVerificationRequest�username:string�psid:string

«interface»PSRequest+parse()
PSIdentificationRequest�psid:string

Figure 5.13: PS Requests.

PSVerificationResponse�username:string�score:double�code:int+get()+set()
PSErrorResponse�code:int

«interface»PSResponse+send()
PSIdentificationResponse�username:string�score:double�code:int+get()()+set()

Figure 5.14: PS Responses.

On the other hand we have messages which originate in the kernel or other
modules within the framework. These are called noti�cations and are described
by the PSNoti�cation interface. A noti�cation sent to a PS does not trigger a
response, but is used to inform the PS that some event happened within the
framework, that this PS might need to know about. For instance, if a user
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is identi�ed and successfully authenticated without a PS having requested this
authentication, the framework will send the relevant authentication informa-
tion, in the form of a noti�cation, to those protected systems that subscribe to
the AS that triggered the event. The noti�cation interface along with sample
implementations are shown in Figure 5.15.

PSDisconnectionNotification+PSDisconnectionNotification(psid:PSID,reason:String)
«interface»PSNotification+send(os:OutputStream)+getPSID()

PSAuthenticationNotification+PSAuthenticationNotification(username:String,psid:PSID)+setScore(score:double)+setDecision(decision:boolean)

Figure 5.15: Noti�cations

Since the requests are constructed from data coming from the network connec-
tion, it will provide a parse() method which parses messages it reads from the
input of the network socket. That is, a generic class will parse the protocol
headers to determine the type of each incoming message, then it will forward
the stream to the corresponding request implementation which will parse it and
populate its attributes. As an example, a PSVeri�cationRequest will parse the
username of the incoming request and store it in a local attribute.

Similarly responses and noti�cations send information to the protected system,
which is why each response or noti�cation object contains all the information
required to construct a protocol message to be sent over the wire. The PSRe-
sponse and PSNoti�cation interfaces both have a send() method, which are
implemented such that they will construct protocol messages from their object
values, and write them to an output stream. The send methods will typically
be supplied with the output stream of the corresponding network socket.



5.3 The Authentication Systems Module 73

5.3 The Authentication Systems Module

The Authentication Systems Module handles all communications with the au-
thentication systems that are connected to the framework. The responsibilities
of this module include managing network connection to the various authenti-
cation systems, sending and receiving protocol messages, listen for and process
service requests from other framework modules and delivering noti�cations re-
ceived from the authentication systems.

Network

Message

Helpers AS
Network Layer

Service Layer

Jury Kernel

AS-Module

An instance of the Jury framework (CAFI)

Figure 5.16: The layered AS-Module and its interactions with other parts of the
system.

Just like the PS module, the AS module is divided into two layers, a Service
Layer and a Network Layer, as shown in Figure 5.16. While the responsibilities
of these layers are essentially identical to those of the PS module, we include
them here for the sake of completeness. The Service Layer is responsible for all
integration with other modules, while the Network Layer handles all network
communication with remote authentication systems. This includes sending and
receiving messages, relaying messages to the right authentication systems and
synchronizing activities. The Network Layer also contains Message Helpers,
similar to those of the PS-Module, which functions as the glue between the
Service Layer and the Network Layer. It consists mostly of message classes
that act as data types, in particular di�erent types of requests, responses and
noti�cations, but are also capable of parsing and sending messages. The Service
and Network layers can communicate directly with each other, but only using
primitive data types, e.g., integers and strings, and message helper data types.

Although the PS and AS modules are similar at a glance, they have some subtle
di�erences. While the PS-Module is a consumer of Jury services, the AS-Module
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is a service provider. It provides authentication services to the framework, and
does not request any services from the framework. This has the e�ect that
the direction of request, response and noti�cation messages is the exact reverse
of that from the PS-Module. The framework sends requests to a remote AS
node, which replies with a response message. Similarly, the remote nodes send
noti�cations of events to the framework, without expecting a reply. An example
of a service provided by the AS-Module is when the framework asks an AS node
to verify a speci�c identity.

Another notable di�erence between the AS and PS modules is that each AS
node is registered to run in a speci�c mode, namely identi�cation, veri�cation
or both. This means that some of the services o�ered by the AS-Module may
not be supported on a speci�c AS node. As an example, requesting the AS-
Module to verify an identity using an AS-node that is running in identi�cation
mode, will result in an error, since it does not run in veri�cation mode.

5.3.1 The AS Service Layer

The Service Layer handles all interactions of the AS module with other Jury
modules. The interactions with other modules take place over four public inter-
faces which encapsulate di�erent types of interaction. Three of them deal with
commands and service requests from the framework, while the remaining one
handles noti�cations originating in the AS-Module. The interaction paths are
shown in Figure 5.17.

AS Veri�cation

Service Provider

Service Provider

AS Identi�cation

AS

Service

Layer

Jury

Kernel

Kernel AS

Noti�cation

Handler

AS Command

Handler

Figure 5.17: The interactions between the AS-Module and the Jury kernel over
public interfaces.
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The speci�cations of these interfaces are shown in Figure 5.18. The ASCom-
mandHandler interface de�nes the commands that the framework can give to
the AS-module, e.g., when the kernel commands the AS-module to close all ac-
tive connections with remote AS nodes. The ASVeri�cationServiceProvider and
ASIdenti�cationServiceProvider interfaces provide mode speci�c services. The
ASVeri�cationServiceProvider interface is applicable only to those AS nodes
which are con�gured to run in veri�cation mode. All calls to this interface
targeted at a AS node running in identi�cation mode will result in an error
being returned to the caller. The opposite holds true for the ASIdenti�cation-
ServiceProvider interface, i.e., it only supports nodes running in identi�cation
mode and returns errors otherwise. If a remote AS node is con�gured to run in
both modes, it supports all methods de�ned in the two interfaces and does not
return errors caused by unsupported operations. Finally, the KernelASNoti�ca-
tionHandler receives noti�cations originating in remote AS nodes, and delivers
them via the PS-Module to the event subscribers. The noti�cation handling
will be described further when we discuss Kernel functionality in Chapter 5.5
on page 82.

«interface»ASCommandHandler+disconnect(asid:ASID)+disconnectAll()
«interface»ASIdentificationProvider+identifyUser(asID:ASID)«interface»ASVerificationProvider+verifyUser(asID:ASID,username:String):double

«interface»KernelASNotificationHandler+notifyOfIdentification(asID:ASID,result:IdentificationResult)+notifyOfAuthentication(asID:ASID,result:AuthenticationResult)

Figure 5.18: The public interfaces that de�ne and constraint interactions be-
tween the AS module and the Jury kernel.

The Service Layer, shown in Figure 5.19, acts as a gateway to the AS-module.
The kernel gains access to the services that are de�ned in the three interfaces
described above, by having the ASServiceFactory give it an implementation
instance of each interface. Each of the three implementation classes, i.e. those
which names end with Impl, is responsible for creating the appropriate message
helper objects from the parameters that are provided in the method call, and
send them to the Network Layer. The network layer will forward the service
request to the appropriate authentication systems, and return the result, which
is further returned back to the caller, i.e., the kernel.



76 DesignASServiceFactory+getCommandHandler():ASCommandHandler+getIdentificationProvider():ASIdentificationServiceProvider+getVerificationProvider():ASVerificationServiceProvider
«interface»ASCommandHandler+disconnect(asid:ASID)+disconnectAll() «interface»ASIdentificationProvider+identifyUser(asID:ASID)«interface»ASVerificationProvider+verifyUser(asID:ASID,username:String):doubleASKernelServiceRelay+getInstance():ASKernelServiceRelay+notifyOfIdentification(asID:ASID,result:IdentificationResult)+notifyOfAuthentication(asID:ASID,result:AuthenticationResult)

Figure 5.19: Classes that provide authentication services for the Jury Kernel,
and a relay that delivers noti�cations from remote AS nodes, to the kernel.

For the other direction, i.e., interactions that are started by the AS-module,
messages are sent via the ASKernelServiceRelay singleton class, which is almost
identical to the PSKernelServiceRelay class of the PS module. It is responsible
for forwarding noti�cations from the AS nodes, to the kernel. The methods for
the noti�cation handling are speci�ed by the ASNoti�cationHandler interface,
which is shown in Figure 5.20, along with its implementation, ASKernelSer-
viceRelay. «interface»ASNotificationHandler+handleNotification(notification:ASNotification)

ASKernelServiceRelay+getInstance():ASKernelServiceRelay+notifyOfIdentification(asID:ASID,result:IdentificationResult)+notifyOfAuthentication(asID:ASID,result:AuthenticationResult)
Figure 5.20: Request Processing.

5.3.2 AS Network Layer

The AS Network Layer is responsible for managing connections, as well as read-
ing from, and writing to, network connections to the remote authentication
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systems. Moreover, it keeps track of which authentication system is using each
connection, so that requests can be sent out to the correct AS. Since the frame-
work may use many authentication systems in parallel, the network layer re-
quires a good deal of concurrency, which we will try to limit to the boundaries
of the network layer. That is, the network layer synchronizes events in such
a way that its interaction with the rest of the framework is not concurrent.
Although this can cause the network layer to become a bottleneck, it greatly
simpli�es the project code and we have previously established in Chapter 4.3.1.2
on page 44 that optimization will not be performed until performance has been
shown to be insu�cient.

«interface»ASCommandHandler+disconnect(asid:ASID)+disconnectAll()
ASConnectionManager+getInstance():ASConnectionManager+addConnectionHandler(con:N26QTX3Pf028)

ASMethodHandlerFactory+getRequestHandler(method:string):ASRequestMethodHandler

«interface»ASIdentificationProvider+identifyUser(asID:ASID)
«interface»ASVerificationProvider+verifyUser(asID:ASID,username:String):double

ASConnectionHandler+disconnect()+processRequest(req:ASRequest):ASResponse+verifyUser(username:String):double+identifyUser():IdentificationResult

Figure 5.21: The AS Network Layer

As in the PS Network Layer described in Chapter 5.2.2, the AS Network Layer
runs as a multithreaded server [58]. The ASConnectionManager is responsible
for managing the group of active connections as well as their association with
locally unique identi�ers called authentication system IDs as assigned by the
framework. These identi�ers are widely used in the module, and can frequently
be seen in the class diagrams as an attribute or parameter named asID. The
ASConnectionManager is not directly managing network sockets, but instances
of the ASConnectionHandler class. The ASConnectionHandler is responsible
for managing a single connection, and carry out all operations for that connec-
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tion, such as sending and receive data, and terminating the connection. The
AS-module also checks incoming connection and matches it to the policy to as-
sign a unique identi�er to it, or to disconnect it if the address and source port
of the connection do not match the policy.ASMethodHandlerFactory+getRequestHandler(method:string):ASRequestMethodHandler

ASMethodIdentificationNotification+service(asID:ASID,is:InputStream)ASMethodAuthenticationNotification+service(asID:ASID,is:InputStream)
«interface»ASMethodHandler+service(asID:ASID,is:InputStream)

Figure 5.22: The AS Network Layer Method Handlers

Figure 5.21 shows the connection handling of the Network Layer. At the bottom
we have ASMethodHandlerFactory which returns the appropriate processing
class, depending on the message method. On top we have instances of ASVeri�-
cationHandler, ASIdenti�cationHandler and ASCommandHandler, all of which
are implemented by the ASConnectionManager class. For each of the method
calls described by the three interfaces, the ASConnectionManager retrieves the
target ID of the authentication system, looks up which ASConnectionHandler
is assigned to that ID, and forwards the call to that handler.

The method handler design shown in Figure 5.22, is similar to the method
handlers of the PS module, except that it handles noti�cations and not requests.
Requests are instead sent directly from the ASConnectionHandler, which also
receives the response and delivers them via the service layer back to the kernel.

5.3.3 The AS Message Helpers

The Message Helpers consist of data types which we call messages, and classes
that process them. An AS message consists of data that we wish to send to,
or receive from, an authentication system. Each message class corresponds to
a message type from the AS part of the Jury Message Protocol, which we will
describe further in Chapter 5.7.

The AS-Module uses three types of messages. The requests are messages that
are sent from the AS-Module to a remote AS node and the responses are the



5.3 The Authentication Systems Module 79

answers received for these requests. The requests and response messages are
encapsulated by the ASRequest and ASResponse interfaces respectively. The
requests and responses for the AS module are shown in �gures 5.23 and 5.24
respectively. The framework receives noti�cations from AS nodes running in
identi�cation mode. If the remote node is running in both modes, i.e., it supports
both identi�cations and veri�cations, it can complete an authentication and
send the result to the framework, as a noti�cation. The noti�cations in the
AS-module are handled by an ASMethodHandler object in the network layer,
which receives and forwards these noti�cations to the framework kernel via the
service layer. The Noti�cation interface and sample implementation are shown
in Figure 5.25, while the method handling is shown in context with other network
processing in Figure 5.21. «interface»ASRequest+send()ASVerificationRequest!asid:string!username:stringASIdentificationRequest!asid:string

Figure 5.23: AS Requests.

ASIdentificationResponse+getResult():IdentificationResult+parse(is:InputStream)ASVerificationResponse+getScore():double+getUsername():String+parse(is:InputStream)

«interface»ASResponse+parse(is:InputStream)

Figure 5.24: AS Responses.

Again, noti�cations are messages that are sent without requiring a response. In
the PS module these noti�cations originated in the framework and were sent to
the PS nodes. In the AS module this has been reversed.

Since the requests need to be sent out to their respective AS node, they provide
a send() method, which writes message to a speci�ed output stream in a for-
mat that complies with our network protocol. Our implementation will provide
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ASIdentificationNotificationusername:Stringscore:double+getResult():IdentificationResult+parse(is:InputStream)

«interface»ASNotification+parse(is:InputStream)
ASAuthenticationNotificationusername:StringidentificationScore:doubleverificationScore:double+getResult():AuthenticationResult+parse(is:InputStream)IdentificationResult+getUsername():String+getScore():double AuthenticationResult+getUsername():String+getIdentificationScore():double+getVerificationScore():double+getIdentificationResult():IdentificationResult

Figure 5.25: Noti�cations

the output stream associated with the network socket. The responses and no-
ti�cations on the other hand provide a parse() method which reads a protocol
message from the supplied input stream and constructs the respective message
data type from it. These method are essentially identical to those found in the
message helper sub-module of the PS module.

5.4 Score Combination Module

The Score Combination Module is both the simplest module of the framework
and a very important one, since the core functionality of the framework is to
provide more reliable authentication results by combining scores from multiple
systems. The purpose of the module is to provide score combination while
abstracting the details of which algorithm is being used.

The Module is organized into two layers, as shown in Figure 5.26. The service
layer, as with the other service layers of our architecture, provides services to
the rest of the framework. In particular, it abstracts the speci�c algorithms
being used to calculate scores.
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Service Layer

Algorithm Layer

Jury Kernel

Figure 5.26: The layered Statistical-module.

The algorithm layer consists of implementations of various score combination al-
gorithms. The separation between the service and algorithm layers abstracts the
implementation-speci�c details away from the service, by encapsulating them in
a Strategy Pattern [25]. When the kernel wants to combine a score for a PS,
it requests the Service Layer to produce a result, without knowing which algo-
rithm is being used in the process. The Service Layer will read the policy for
the PS to determine which algorithm to use.

The module classes are shown in Figure 5.27. The abstraction is provided by
the ScoreCombinationAlgorithm Strategy interface which all combination algo-
rithms must implement. To use the algorithm, the kernel gets an implementation
instance by calling the combineScoresForPS() method of the ScoreCombination-
Facade, along with a collection of scores and specifying for which PS the scores
are being combined for. Each PS can specify which algorithm they want to use
in their policy. The facade implements a Plugin pattern [24], which reads the
policy and dynamically loads the appropriate algorithm.

The most notable thing about the module structure is its simplicity. The Score
Combination Module is only concerned with providing one simple service with-
out using any services of other modules. The only foreseeable complications
of the module are that more algorithms will be added. But since the service
is completely unaware of which algorithms the module contains, it will main-
tain its simplicity for as long as the new algorithms can be abstracted with the
ScoreCombinationAlgorithm interface.
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AverageScoreCombinationMedianScoreCombination

ScoreCombinationFacade+combineScoresForPS(psid:string,scores:collection):double
«interface»ScoreCombinationAlgorithm+combineScores(scores:collection):double

Figure 5.27: The Score Combination Module with two implemented algorithms,
average and median.

5.5 The Jury Kernel

The Jury Kernel is, as the name suggests, at the core of the framework, and is
responsible for orchestrating all operations which involve more than one module.
Moreover it is responsible for administrative tasks, such as issuing commands
to the other modules on request. For instance, if we want to shutdown the
framework in a clean manner, the framework issues commands to the AS and
PS modules to disconnect all connections to external systems.

The kernel implements the two interfaces speci�ed for the PS and AS modules
in Sections 5.2 and 5.3. Access to the interface implementations is given via a
facade. This design is shown in Figure 5.28.

The KernelPSServiceProvider de�nes all services that are provided for the PS-
Module, on request. That is, it provides methods to verify a certain user, or
identify the present user. Both of which involve looking up which authentica-
tion system the PS subscribes to, request them to carry out the speci�c task,
collecting their results, combine the scores and �nally deliver a response back
to the PS-Module.

The kernel is also responsible for handling incoming events from an AS. The
handleIncomingAuthentication() and handleIncomingIdenti�cation() methods
of KernelPSServiceProvider receive an event from an AS, lookup up in the policy
how the PS wants to handle the event, and �nally, request services and combine
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results from the other authentication system that the PS subscribes to.

The KernelASNoti�cationHandler interface is responsible for processing incom-
ing events from remote AS nodes. Generally, this means looking up the sub-
scribers of that event, and call the methods on the KernelPSServiceProvider for
each of them.

KernelFacadeFactory+getPSServiceProvider():KernelPSServiceProvider+getASNotificationHandler():KernelASNotificationHandler«interface»KernelASNotificationHandler+notifyOfIdentification(asID:ASID,result:IdentificationResult)+notifyOfAuthentication(asID:ASID,result:AuthenticationResult)

«interface»KernelPSServiceProvider+verifyUser(psID:PSID,username:String):double+identifyUser(psID:PSID):IdentificationResult+handleIncomingIdentification(asID:ASID,psID:PSID,result:IdentificationResult)+handleIncomingAuthentication(asID:ASID,psID:PSID,result:AuthenticationResult)

Figure 5.28: The Jury Kernel.

5.6 The Con�guration and Policy Module

The Con�guration and Policy Module, or Con�g-Module for short, is responsible
for providing the rest of the framework with access to con�guration parameters
and policy speci�cation. The con�guration includes parameters such as on which
ports the Network Layers of the PS-Module and the AS-Module, listen to, and
where to store log �les. The policy speci�cation includes which protected sys-
tems and authentication systems are allowed to connect to the framework and
what unique identi�er to assign to these remote systems when they connect.
Further, the policy de�nes the subscriptions for each PS, i.e., which authenti-
cation systems that PS uses to carry out its Co-Authentication operations. For
each of the subscription entries, the policy speci�es a weight which indicates a
level of con�dence that the PS has with regards to the AS. Finally, the policy
speci�es score combination parameters for each PS, such as which algorithm
to use to combine scores, how to react to incoming authentication events, if it
wants to receive a score, a decision or both, and in the case when a decision is
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reported, a threshold to compare the Co-Authentication score to. The con�gu-
ration parameters and policy speci�cation are stored in a single �le, an example
of which is shown in Listing 6.4 on page 97.

The structure of the Con�g-Module is shown in Figure 5.29. The Data Access
Layer provides access for the other modules to various con�guration parameters.
It is a static module which only provides read access to the con�guration. By
static we mean that there is only one active instance of each object, which all
calling objects use. This means that if, say, the service and network layer of the
AS module are reading from the same part of the con�guration simultaneously,
they will read from the same object. This simpli�es synchronization, since only
this single instance has to be updated when the con�guration changes.

The I/O Layer is responsible for reading con�guration and policy �les from the
disk, parsing them and populating the Data Access Layer with the corresponding
parameters and values. Further, it periodically checks the �les to see if they have
been updated. If an update to a con�guration or policy �le is detected, the File
I/O Layer updates the Data Access Layer accordingly.

File I/O Layer

Data Access Layer

Other Jury Modules

File

System

Figure 5.29: The layered con�guration module and its interactions with other
parts of the system.

The module structure is shown in Figure 5.30. The Con�gurationFactory hands
out one read-only object for each of the other modules, and all con�guration
and policy speci�cation takes place outside of the framework. Therefore we have
designed the module in such a way that no part of the Jury system can write
to the con�guration or policy �les, but gain read-only access to con�guration
attributes and values via four di�erent Reader interfaces, i.e., one for each of the
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«interface»PSConfigurationReader

«interface»PSConfigurationWriter

«interface»ASConfigurationReader

«interface»ASConfigurationWriter

«interface»ScoreConfigurationReader

«interface»ScoreConfigurationWriter

«interface»KernelConfigurationReader

«interface»KernelConfigurationWriter
PSConfigurationImpl+getInstance() ASConfigurationImpl+getInstance() ScoreConfigurationImpl+getInstance() KernelConfigurationImpl+getInstance()

ConfigurationFileReader+parse()

ConfigurationFactory+getPSConfigurationReader():PSConfigurationReader+getASConfigurationReader():ASConfigurationReader+getScoreCombinationReader():ScoreConfigurationReader+getKernelConfigurationReader():KernelConfigurationReader

Figure 5.30: The Con�guration Module. The getInstance() methods indicate
that the implementations use a singleton pattern.

other modules. Each reader provides access to all the details that the particular
module needs, e.g., the PSCon�gurationReader provides the PS module with
all the con�guration and policy data it requires, which indicates that some
con�guration data can be accessible via more than one reader.

On the other end of the module we have the Con�gurationFileReader class. It
is responsible for reading the con�guration �les from disk, parsing them and
populating the readers via the four corresponding Writer interfaces. To achieve
this, each pair of the Reader and Writer interfaces is implemented by a singleton
class, which the Writer populates with data that the Reader then reads. The
Con�gurationFileReader is also responsible for monitoring changes made to the
con�guration and policy �les and update the readers accordingly.

In addition to preventing the framework to write to the policy �le, the layered
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design has an additional bene�t of abstracting where the policy comes from. In
the current implementation it is read from the �le system of the CAFI, but it
might not always be the most suitable approach. If we, at a later time, change
the I/O Layer so that it reads the policy from a network resource, e.g., a URL,
all other parts of the framework will be una�ected.

5.7 The Jury Message Protocol

The Jury Message Protocol, or JMP, is the protocol which all Jury Network
Nodes use when they communicate with the CAFI. It de�nes all messages sent
between the framework and the remote AS and PS nodes. For this proof-
of-concept implementation, we have chosen to use a simple plaintext protocol
similar to the traditional Internet protocols such as HTTP [23] and POP3 [43].

Each message of the protocol is split up into two parts, a block of headers the
headers and a body. The headers are separated with a new line, and the end
of the header blocked is marked with an additional line break. Similarly, each
parameter of the body ends with a newline, and the message is terminated with
an extra line break. Each parameter in the header block, or in the body, is
speci�ed by the name of the parameter followed by a semicolon and a space,
after which the value is speci�ed. For instance: 'method: PSVerifyUserRequest '.
Parameters within each part may appear in any order, i.e., the order within the
header block is not important, and neither is the parameter order within the
body.

5.7.1 The Headers

The headers are parameters that are common to all messages. In our current
implementation we limit the protocol to a single header, namely the method
header. It speci�es the type of the message, which indicates which �elds can
be found in the body and how the framework should treat the message. The
currently supported methods are described in Chapter 5.7.2.

5.7.2 The Methods

We will now describe all the message types that our framework supports. The
format is as follows: The bold text, in the top-level of the list, denotes the
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method name, it is followed by a short description of the message and its pur-
pose, and �nally we give a list of body parameters and describe how they are
used.

• PSVeri�cationRequest: This method is used when a protected system
wants the framework to verify a users presence. It is sent from the PS to
the framework node.

� username: The username for the user whose presence we wish to
verify.

• PSVeri�cationResponse: This method is used as a reply to a PSVer-
i�cationReqeust. It is sent from the framework back to the PS which sent
the original request.

� username: The username for the user which the framework has
authenticated.

� score: The combined score for the authentication.

� decision: Whether or not the authentication was successful.

� code: The response code, as described in Chapter 5.7.3.

• PSIdenti�cationRequest: This method is used when a protected sys-
tem wants the framework to identify the present user. It is sent from the
PS to the framework node, and does not contain any body parameters.

• PSVeri�cationResponse: This method is used as a reply to a PSVer-
i�cationReqeust. It is sent from the framework back to the PS which sent
the original request.

� username: The username for the user which the framework has
identi�ed.

� score: The combined score for the identi�cation.

� decision: Whether or not the identi�cation was successful, i.e.,
that the identi�cation score is above the threshold, as de�ned in the
policy..

� code: The response code, as described in Chapter 5.7.3.

• PSErrorResponse: This method is used when the framework was
unable to process a request.

� code: The username for the user whose presence we wish to verify.
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• PSAuthenticationNoti�cation: This method is used to notify a pro-
tected system about an authentication which was triggered within the
framework, i.e., not as a result of a request from that PS. It is sent from
the framework to a PS.

� username: The username for the user which the framework has
authenticated.

� score: The combined score for the authentication.

� decision: Whether or not the authentication was successful.

• PSDisconnectionNoti�cation: This method is used to notify a PS
that the framework is about to disconnect its connection, and why. It is
sent from the framework to the PS which is to be disconnected.

� reason: Text that describes why the connection is being termi-
nated. This parameter may be empty.

• ASVeri�cationRequest: This method is used to request a single AS
to authenticate a user. It is sent from the framework to an AS.

� username: The username for the user which the framework has
authenticated.

• ASVeri�cationResponse: This method is used as a reply to a ASVer-
i�cationReqeust. It is sent from the AS back to the framework.

� username: The username for the user which the framework has
authenticated.

� score: The combined score for the authentication.

� code: The response code, as described in Chapter 5.7.3.

• ASIdenti�cationRequest: This method is used to request a single AS
to identify a present user. It is sent from the framework to an AS. No
body parameters are sent with this request.

• ASIdenti�cationResponse: This method is used as a reply to a ASI-
denti�cationRequest. It is sent from the AS back to the framework.

� username: The username for the user which the AS has identi�ed.

� score: The match score of the identi�cation.

� code: The response code, as described in Chapter 5.7.3.

• ASIdenti�cationNoti�cation: This method is used when an AS has
identi�ed a user and wants to notify the framework about it.
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� username: The username for the user which the AS has authenti-
cated.

� score: The identi�cation score for the authentication.

• ASAuthenticationNoti�cation: This method is used when an AS has
identi�ed a user and wants to notify the framework about it.

� username: The username for the user which the AS has authenti-
cated.

� identi�cation-score: The identi�cation score for the authentica-
tion.

� veri�cation-score: The veri�cation score of for the authentication.

5.7.3 Response Codes

The response codes are used to show if the request was successfully ful�lled, or
if something odd came up. The codes are split up into blocks. Codes between
200-299 indicate successful operations, 400-499 indicate service errors and 500-
599 indicate internal framework errors. The currently implemented codes and
their meanings are as follows:

• 200 The request was successfully processed.

• 401 The username was not found.

• 402 Unrecognized header.

• 403 Method missing.

• 404 Unknown method.

• 405 Unknown method parameter.

• 406 Malformed message.

• 501 Service Unavailable.

5.7.4 Example messages

To further demonstrate how the JMP protocol is structured, we present a few
example messages.
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5.7.4.1 PSVeri�cationRequest

method: PSVerificationRequest

username: johndoe

5.7.4.2 PSVeri�cationResponse

method: PSVerificationResponse

username: johndoe

score: 0.56886

code: 200

5.7.4.3 PSDisconnectionNoti�cation

method: PSDisconnectionNotification

reason: We are shutting down our servers for maintenance.

5.8 Patterns and Reusable Elements

There is little to gain from re-inventing the wheel, which is why we have used
well established software design patterns where applicable. The aim of this
section is to indicate where these patterns can be found in our code. We do not
intend to fully describe the patterns here, but instead point to resources that
explain them in detail, at the end of this section.

The most commonly used pattern in our framework is the Singleton pattern,
which ensures that only one instance of an object is available at any given time.
That means that during the lifetime of the singleton object, all external objects
that call its methods are in fact using the same Object. Moreover, if no such
instance exists, it will be automatically created when needed. Listing 5.1 shows
a Java code snippet which demonstrates a singleton implementation.
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�
public class SingletonExample {

// Handle to the a c t i v e in s tance
private stat ic SingletonExample in s t ance = null ;

// Pr iva t e cons t ruc t o r
private SingletonExample ( ) {

}

// This method i s used to gain
// acces s to the s i n g l e t o n ins tance
public stat ic SingletonExample ge t In s tance ( ) {

i f ( i n s t ance == null ) {
in s t anc e = new SingletonExample ( ) ;

}

return i n s t anc e ;
}

}� �
Listing 5.1: A sample Java implementation of a Singleton Class

To minimize dependency between modules, we use the Facade pattern, which
provides a �uni�ed interface to a set of interfaces in a subsystem� [25]. To limit
redundant duplication of code, we make extensive use of the Factory Method
pattern, which are methods that instantiate and return objects. That is, it
manufactures objects, hence the name. A good example of this is the AS-
MethodHandlerFactory class in the AS-Module, which creates method handlers
based on the method. This allows us to keep all method-speci�c details in-
side the MethodHandler implementations, while the rest of the code base can
treat all method handlers the same way. An example factory method from the
ASMethodHandlerFactory class, is shown in Listing 5.2.

As we mentioned previously, the score combination module is implemented using
the Strategy Pattern, where the algorithms share a method signature but di�er
in implementation. Our Strategy implementation is a perfect match of the more
speci�c Plugin pattern [24]. This allows the framework to call the score combi-
nation algorithm, without having to know which particular implementation will
be used. The ASID and PSID classes are examples of where we implement the
simple Value Object pattern. Finally, we use some design patterns that have
been built into the Java API, such as the Iterator pattern.
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�
public stat ic ASMethodHandler getHandler ( S t r ing method )

throws UnknownMethodException {

i f ( "ASIdentificationNotification" . equa l s ( method ) ) {
return new ASMethod Ident i f i c a t i onNot i f i c a t i on ( ) ;

} else i f ("ASAuthenticationNotification" . equa l s (method ) ) {
return new ASMethodAuthent icat ionNot i f i cat ion ( ) ;

} else {
throw new UnknownMethodException ( method ) ;

}
}� �

Listing 5.2: A sample factory method from the Jury framework

For a detailed description of all the patterns mentioned above, we refer to the
Gang of Four [25] and Fowler [24].
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Implementation

In this chapter we describe parts of the Jury framework implementation that we
�nd worthy of a more detailed discussion, along with some software engineering
practices which we used to decide on how to implement these parts.

Although our work is a proof of concept, it is not to be confused with a throw-
away prototype, where a piece of software is quickly hacked together with the
sole aim of demonstrating what such a framework can do, after which the code is
simply thrown away, never to be used again. Instead we have opted to focus our
work on laying a solid foundation for future improvements and extensions. We
have taken care to keep the code base clean, avoid duplicate code and build the
framework in a well encapsulated, loosely coupled and modular manner, such
that future work can focus on extending the framework rather than rewriting it.
Further, we have extensively documented the code using standard Javadoc [4]
syntax, which provides a good overview of the code base. Moreover, we have
created a suite of unit tests to aid with the debugging process and to detect if
new code to introduces bugs into existing functionality. These unit tests also
serve as a demonstration on how many of the framework classes are to be used,
and can therefore be used as a part of the documentation for new developers.

A good design goes a long way towards a well-structured modular framework,
however, in the implementation phase, it is often very tempting to take a few
shortcuts which blur the lines of separation and increase coupling between other-
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wise independent units. One of our main objectives during the implementation
phase, was to resists such temptations, and we believe that our focus on that
objective resulted in a simpler and better implementation. In fact, when we im-
plemented some parts of our design we noticed that it contained duplication of
code. When this occurred we improved the design by removing the duplications,
and then continued with our implementation based on the improved design.

The framework is written in the Java [3] programming language, which au-
tomatically takes care of our design guideline of independence from operating
systems since it runs on a virtual machine which is available for most of the
operating systems used today, including Windows, Mac OS, Linux and other
UNIX variants.

6.1 Score Combination

The Score Combination Module uses Java Re�ection to implement the Plugin
pattern [24]. The re�ection allows us to load an algorithm dynamically, de-
pending on which PS we are performing the score combination for. Moreover,
it allows for easy integration of externally developed algorithms without any
modi�cations to the framework code, as long as they are implemented in the
Java programming language.

To get an algorithm class to work as a part of the Score Combination module
we have to do three things. First we need to make it implement the ScoreCom-
binationAlgorithm interface, which means that it has to implement a method
shown in Listing 6.1. Second, we need to store it within the systems Classpath,
which is a list of directories which the Java Virtual Machine will search for class
implementations in. Finally, we must specify the fully quali�ed name of it in
the policy for a PS as shown in Listing 6.2. When these conditions are ful�lled,
we can load the algorithm dynamically as shown in Listing 6.3.

6.2 Con�guration and Policy

The Con�guration and Policies are de�ned in a single XML �le, such as the one
shown in Listing 6.4. To parse the �le, the con�guration and policy module uses
the Apache Commons Digester [48] library, which is speci�cally designed to pop-
ulate Java objects from XML documents. We created data objects which match
the policy structure, and created Digester parsing rules to trigger the popula-
tion of these objects. Finally, when the parsing is �nished, the data from these



6.2 Con�guration and Policy 95

�
public interface ScoreCombinationAlgorithm {
/∗∗
∗ Combines the supp l i e d score s .
∗
∗ @param score s The score s to be combined .
∗
∗ @return the combined score .
∗/
double combineScores ( Co l l e c t i on<Double> s c o r e s ) ;

}� �
Listing 6.1: The Score Combination Algorithm Interface

�
<!−− Remote Protec ted Systems −−>
<protected−systems>

<ps id="ps0" address="127.0.0.1" port="2000">
<algor i thm>

mma. scorecombinat ion . AverageScoreCombination
</ algor i thm>
<!−− Other p o l i c y f i e l d s removed f o r b r e v i t y −−>

</ps>
</protected−systems>� �
Listing 6.2: A policy specifying the score combination algorithm to be used

�
Class combinatorClass = Class . forName ( strAlgor i thm ) ;
Class [ ] i f c s = combinatorClass . g e t I n t e r f a c e s ( ) ;
. . .
for ( int i = 0 ; i < i f c s . l ength ; i++ ) {

i f ( i f c s [ i ] . getCanonicalName ( ) . equa l s (
ScoreCombinationAlgorithm . class . getCanonicalName ( ) ) ) {
// A v a l i d a l gor i thm
a lgor i thm = ( ScoreCombinationAlgorithm )

combinatorClass . newInstance ( ) ;
break ;

}
}
. . .
return a lgor i thm . combineScores ( s c o r e s ) ;� �
Listing 6.3: The Re�ection code � strAlgorithm is the value from the policy
shown in Listing 6.2
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objects is sent into the Writers of the con�guration module. Thereafter, the
other modules can access the data using their respective Readers, as described
in Chapter 5.6 on page 83.

6.3 Exception Handling

Any software is subject to errors and exceptions, which are caused by errors
in the code, unexpected input, or conditions that are hard to predict, such as
hardware failures. In the Java programming language there are two types of
exceptions, namely checked and unchecked, that are used to handle errors and
unexpected program behavior.

Checked exceptions are those which we can react to in the code, by using com-
binations of try, catch, and throw statements. All methods which can throw
a checked exception, must explicitly state so in their method signature. The
bene�t of this approach is that the compiler can check whether all exceptions
are handled, which forces us to deal with all cases however unlikely. This is
best described with an example: If a method iCauseError() throws an Exam-
pleException, it must state so in its method signature. All methods that call
iCauseError() must then either surround the call with a try-catch block, or also
include it in their method signature. This is shown in Listing 6.5, where the
caller1 method deals with the error, while caller2 passes it up the call stack. In
Java, checked exceptions are always subclasses of the Exception class.

On the other end of the spectrum we have unchecked exceptions, which are
errors that are not explicitly dealt with. These are often errors that are hard
to foresee, and very di�cult to react to, e.g., if a method receives a null object
as a parameter, and then tries to call a method on that null object, the run-
time environment will return an unchecked NullPointerException. Unchecked
exceptions will normally move up the call stack, all the way up to the run-
time environment, which will crash the program and print the exception stack
trace to screen. In Java, unchecked exceptions are subclasses of either the
RuntimeException or the Error class.

While the di�erence between checked and unchecked exceptions seems straight
forward, it can present us with a dilemma. For instance, if we need to write to
a �le and get an exception about the disk being full, we can either throw an
exception and try to handle it di�erently, or we can throw a run-time exception
and crash the program. We have chosen to follow the exception handling guide-
lines from Sun Microsystems: �If a client can reasonably be expected to recover
from an exception, make it a checked exception. If a client cannot do anything
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�
<?xml version='1.0' encoding='utf -8'?>
<mma−c on f i gu r a t i on>

<de f a u l t s>
<algor i thm>

jury . scorecombinat ion . AverageScoreCombination
</ algor i thm>

</ de f a u l t s>

<logg ing>
<d i r>/var / log / jury /</ d i r>

</ logg ing>

<!−− CAS Config −−>
<as−module>

<l i s t e n i n gPo r t>3456</ l i s t e n i n gPo r t>
</as−module>

<ps−module>
<l i s t e n i n gPo r t>2345</ l i s t e n i n gPo r t>

</ps−module>

<!−− Remote Authen t i ca t i on Systems −−>
<authent i ca t i on−systems>

<as id="as0" address="127.0.0.1" port="4000"
mode="both" />

<as id="as1" address="127.0.0.1" port="4001"
mode="both" />

</ authent i ca t i on−systems>

<!−− Remote Protec ted Systems −−>
<protected−systems>

<ps id="ps0" address="127.0.0.1" port="2000">
<algor i thm>

mma. scorecombinat ion . AverageScoreCombination
</ algor i thm>
<eventHandlingMode>

comb ineVer i f i c a t i on s
</eventHandlingMode>
<thre sho ld>0.4367</ thre sho ld>
<repor tSco r e>true</ repor tSco r e>
<repo r tDec i s i on>true</ repo r tDec i s i on>

<ASList>
<as weight="1.0">as0</as>
<as weight="1.0">as1</as>

</ASList>
</ps>

</protected−systems>

</mma−c on f i gu r a t i on>� �
Listing 6.4: A sample con�guration and policy �le
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�
public void iCauseError throws ExampleException ( ) {

throw new ExampleException ( ) ;
}

public void c a l l e r 1 ( ) {
try {

iCauseError ( ) ;
} catch ( ExampleException e ) {

// Error hand l ing
}

}

public void c a l l e r 2 ( ) throws ExcampleException {
iCauseError ( ) ;

}� �
Listing 6.5: Examples of checked exceptions

to recover from the exception, make it an unchecked exception.� [57].

There are some places within the Jury implementation where we use unchecked
exceptions for statements that should be unreachable, but cannot be guaranteed
to be so. For instance the verifyUser method of the ASConnectionHandler class
in the AS-Module Network Layer, checks the mode of the AS, i.e., whether it is
identi�cation, veri�cation or both. If the AS mode does not match any of those
three values, then there is an error in the con�guration. Since the framework
cannot �x the con�guration, we choose to crash the program rather than run
it in an inconsistent state. By crashing we are also notifying the administrator
of the con�guration error. While it can seem a bad idea to crash the program
on purpose, it is often considerably better than the alternative of leaving the
program running in an inconsistent and unpredictable state.

6.4 Constants

Throughout our code, there are some constants that are used in multiple classes
and in some cases even multiple modules. One of our methods for achieving
maintainability and simplicity in our framework is to bundle together related
constants and store them in one place, where all the other classes can easily
access them. The protocol response codes are a good example of how we use this
method. Every single class that constructs a response message, sets its response
code as described in Chapter 5.7.3 on page 89. While it may be tempting to
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set these codes using their integer value, e.g., message.setCode(200), it causes
related numerical constants to be scattered throughout the code base. As a
result, should we want to change the code of OK to, say, 250, we would have
to �nd every occurrence in the code where the message code is set to 200, and
change it to 250. This is a clear violation of the DRY principle.

To solve this, we bundled related constants together, in one place. In the case
of response codes, we created a class which has the sole purpose of containing
response code constants, as shown in Listing 6.6. Now, all code which sets the
response code to 200, will use the ResponseCodes.OK constant instead of using
the integer directly. Consequently, if we want to change the OK code to a value
of 250, we now only have to modify the ResponseCodes class.

�
package ju ry . common . p ro to co l ;

/∗∗
∗ Contains a l l suppor ted response codes .
∗ Al l response codes o f messages shou ld be
∗ s e t us ing t h e s e cons tan t s .
∗/

public class ResponseCodes {

// 200 A l l i s Good
public stat ic f ina l int OK = 200 ;

// 400 Serv i c e and Messsage Errors
public stat ic f ina l int USER_NOT_FOUND = 401 ;

public stat ic f ina l int UNRECOGNIZED_HEADER = 402 ;

public stat ic f ina l int METHOD_MISSING = 403 ;

public stat ic f ina l int UNKNOWN_METHOD = 404 ;

public stat ic f ina l int UNKNOWN_METHOD_PARAMETER = 405 ;

public stat ic f ina l int MALFORMED_MESSAGE = 406 ;

// 500 Resource Errors
public stat ic f ina l int SERVICE_UNAVAILABLE = 501 ;

}� �
Listing 6.6: The response code constants
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6.5 Addressing Requirements

We have implemented all the high priority requirements, and a good part of the
medium requirements from Chapter 4.4 on page 48. Table 6.1 shows the high
priority requirements and the medium priority requirements which we imple-
mented, along with the modules which participate in satisfying them.

Requirements Modules involved
A-1 .1 � A-1 .3 Con�g
A-1 .4 Con�g, Kernel
A-2 .1 Con�g, AS
A-2 .2 AS
A-2 .3 � A-2 .4 AS, Kernel
A-3 .1 Con�g, PS
A-3 .2 PS
A-3 .3 PS, Kernel, Con�g, AS, Score Combination
A-3 .4 AS, Kernel, Con�g, PS
A-4 .1 � A-4 .3 Score Combination
A-4 .4 Kernel, Con�g
A-5 .1 � A-5 .7 Con�g
B-3 PS, Con�g, Kernel
B-4 Con�g, Kernel
B-5 Con�g, Score Combination
B-6 Con�g, Score Combination
B-7.1 Con�g, Score Combination

Table 6.1: High and Medium Priority Requirements and where they are ad-
dressed



Chapter 7

Evaluation

In this chapter we evaluate our work, both in terms of performance and in terms
of applicability. The performance evaluation is in the form of rough estimates
to see if the Jury framework performs su�ciently well to be applicable in real
scenarios. We evaluate the applicability of our work by describing how existing
systems can be adapted to Co-Authentication, and how some of these can be
integrated into the Jury implementation. Finally, we discuss which types of
attacks against the framework are most likely to occur, and suggest how to
mitigate these attacks.

7.1 Performance Evaluation

There are many things that can in�uence the performance of a Jury network,
some of which are outside our control, such as network performance, and the
performance of participating authentication systems. A slow network can have
a signi�cant in�uence on how long it takes to gather authentication data from
various systems and sending authentication information to protected systems.
Similarly, if an authentication system takes a long time to authenticate a user
it has an e�ect on the overall performance of the Jury network. For instance, if
a �ngerprint recognition system is asked to verify a users presence, it will have
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to prompt the user for his �ngerprint, wait for the user to comply, scan the
�ngerprint, compute a score for it, and �nally send the result back to the CAFI.

We have conducted an experiment to evaluate whether the performance of the
Jury framework is acceptable, i.e., that is fast enough to be applicable in real
authentication scenarios. The aim of the experiment is to see how long it takes
the framework to process a veri�cation request, and our interpretations of the
results should inform us of whether the overall framework performance is accept-
able for the expected use of the framework. The experiment was conducted on
a Dell Latitude D610 laptop with a 2.0 GHz Pentium M processor and 1 Giga-
byte of memory, running Ubuntu Linux 7.04 with a typical desktop installation.
Since the operating system is running many other services, our measurements
may be in�uenced by these unrelated processes, but this is acceptable for the
purpose of producing rough estimates. In particular, these processes can only
make the measurements worse, so if our results are positive, we can safely ignore
their interference.

To estimate the time it takes the framework to process a request from a PS,
communicate with remote authentication systems, combine the results and reply
to the PS, we created a simulation of a protected system that sends out requests
and measures the time it takes for the framework to reply. To process the
request, we use two simulated authentication systems, that receive a veri�cation
request, and immediately create a response with the username from the request
and a random score, which they then send back to the CAFI. Each measurement
is recorded using the System.currentTimeMillis( ) method of the Java language,
which has a resolution of 1 millisecond on the system we measured on.

Figure 7.1 shows the results of running the above measurement setup with
100.000 requests. The bold lines between 0 and 3 milliseconds are not actual
lines, but clusters of points since most requests are processed in less than 3
milliseconds.

Figure 7.2 shows the most commonly observed times from the same measure-
ment, and how many requests were measured with these values. The the most
common processing time by far, is 1 millisecond, with 0 milliseconds a close sec-
ond. Of course, it took over 0 milliseconds to process these requests, but since
the granularity of our measurements is limited to a 1 millisecond resolution, the
0 ms measurements indicate that it took less than one millisecond.

The total distribution is shown in Table 7.1 on page 104. The arithmetic mean
of the measurements is 0.94 milliseconds, with a standard deviation of 0.59
milliseconds. These results indicate that the performance of the Jury framework
is su�ciently good to be used in real authentication scenarios.
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Time (ms) No. of requests Percentage
0 15348 15.348%
1 79082 79.082%
2 2587 2.587%
3 2702 2.702%
4 231 0.231%
5 11 0.011%
6 9 0.009%
7 2 0.002%
8 4 0.004%
9 2 0.002%
10 12 0.012%
11 8 0.008%
20 1 0.001%
45 1 0.001%

Table 7.1: Summary of total processing times for all the requests

7.2 Adapting Other Authentication Systems

Throughout the thesis we have argued that existing authentication systems can
be adapted to a Co-Authentication scheme. We will now give a short description
of how to integrate an anti-fraud credit card system into Jury, as well as a more
general description on how to move password mechanisms from binary scheme
and into to a probabilistic scheme.

7.2.1 Credit Card Payments Revisited

In Chapter 3.1.1 we introduced a scenario where Co-Authentication was used for
more �exible fraud auditing, by allowing weaker technologies, i.e., a magnetic
stripe card, to be used for smaller transactions which �t the customers pro�le.
We will now describe that scenario in further detail and show how it can be
implemented in Jury. Note that the probabilities, amounts, match scores and
pro�le information presented here are only for demonstration purposes and may
not re�ect the numbers and pro�le data as used by the credit card issuers. The
reason for this is that we do not have access to authentic data from credit card
issuers.

The scenario is as follows. Charles is the cardholder of a credit card issued by the
Example Credit Card Company (ECCC). At the points-of-sale, each transaction
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made with an ECCC card is authenticated by an electronic transaction manager,
which accepts or denies the transaction based on the card technology used and
how well the purchase �ts the cardholders pro�le. We consider an example
where the transaction manager is processing a $600 transaction from Charles's
card, originating in Austria.

The following information represents ECCC's pro�le of Charles. He makes pur-
chases which typically range from $25 to $300. The rate of these purchases
averages around one purchase a day, and the card is always present at the point-
of-sale, i.e., Charles does not use his credit card for online or phone orders. His
purchases mainly take place in Scandinavian countries, but he occasionally uses
his credit card in Germany and the UK.

ECCC divides the pro�le validation into three separate segments, namely amount,
location and purchase rate. The amount segment compares the amount in the
transaction request to the amounts that are normally charged to the card. The
location segment compares the transaction origin to the geographical location
where transactions are normally made. Finally, the purchase rate checks for
signi�cant increases in the rate of purchases, which could indicate a stolen card.

We can integrate these components with Jury by creating three JINs, one for
each pro�le segment. Each of the JINs takes transaction data as input, and
compares it to the pro�le segment and returns a match score in the [0, 1] range,
indicating how well the transaction �ts the pro�le segment. A score of zero
means that it did not �t at all where as a score of one indicates a perfect match.

They add a fourth JIN, which checks the card type and returns a con�dence
score. ECCC only provides two card types, namely magnetic stripe cards and
smart cards which are also known as Chip & PIN cards. They have assigned
static con�dence values to the two types, where magnetic stripe cards have a
value of 0.7 due to the high rate of fraud, but smart cards have a value of
0.95, since they are assumed to be much more resilient against fraud. Note that
since these scores are static, they can be implemented directly into the JIN, i.e.,
the JIN does not have to be connected to any other ECCC system to perform
these checks. Finally, the ECCC has decided to combine the scores using an
arithmetic average function and have set the acceptance threshold to 0.8. The
Jury setup is shown in Figure 7.3.

The pro�le checker for the amount segment scores low, or 0.65 since it is consid-
ered a small anomaly. Since Austria is a neighbor of Germany, where Charles
regularly uses his card, this is considered a better �t than more remote coun-
tries, so the score is 0.7. The usage rate of the card is well within normal use,
so the rate pro�le check scores a high 0.93. Since ECCC uses an arithmetic
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Figure 7.3: Integration the ECCC Transaction Manager and Pro�les with the
Jury framework

average score combination, the formula for the �nal score is:

amount score+ location score+ rate score+ con�dence of card
4

Putting in the values described above we get the following result for a magnetic
stripe purchase: (0.65+0.7+0.93+0.7)/4 = 0.745 where as if the transaction is
made using a smart card the score will be: (0.65+0.7+0.93+0.95)/4 = 0.8075.
If the acceptance threshold is 0.8, the transaction will be accepted if it is done
with a smart card, but not if it is made using the magnetic stripe.

7.2.2 Adapting Passwords to Co-Authentication

There are at least two ways of converting password protection mechanism to
threshold based systems. The �rst one, is to assign password a static score at
the time it is set, based on estimates of how hard it is for common password
crackers to break it. We have mentioned this approach previously in the thesis
and the work we have done so far in this area is presented in Appendix A.

The other approach is to allow passwords input by users, to contain typographic
errors. We mentioned previously that one of the problems with pass-phrases is
that, due to their length, people experience a higher input error rate compared
to shorter password. By allowing typos, we can compute a score based on the
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errors that the input contains. For instance, if the password 'For fun and Pro�t'
is entered as 'For fun and pro�t', it di�ers only by the capitalization of a single
letter, and therefore should compute to a high, but not perfect, score.

This is easy to do if the passwords are stored in plaintext, but that is a very
unfeasible design. Therefore we need a method that can compute similarity
scores, and yet store passwords as hashes. One way to achieve this, is to change
the matching mechanisms such that if the password that the user enters is
incorrect, we try to guess the correct password by generating multiple variations
on it, based on keyboard layout and common typographic errors. For each
variation we compute a hash, compare it to the stored hash value, and if we
obtain a match we assign it a score based on how much the input password and
the stored password di�er.

The method we have described here is in many ways similar to the methods
used by password crackers in o�ine guessing attacks, and we plan to implement
such a similarity score system as a part of our future work on password ranking
and further study of common password crackers.

7.3 Attacks against Jury

The Jury framework is, like any other computer system, a possible target for
malicious attacks, and in this section we will consider likely categories of such
attacks. Our reason for including this discussion here is twofold. First, we ac-
knowledge the possibilities of these attacks and that further work needs to be
done with regards to hardening the framework, and second, we identify likely
attack methods, so that we obtain an overview of where the most likely vulner-
abilities are, and where the hardening process should focus.

7.3.1 Attacks against the central Jury framework

Throughout this thesis we have emphasized that a Co-Authentication frame-
work can provide more reliable authentication services, by combining multi-
ple authentication systems. This means however, that the framework instance
(CAFI), which computes and delivers the overall score, becomes a single point
of failure. If an attacker is able to tamper with this node, he may be able to
override all authentications and provide the scores he likes. For instance, if an
attacker who has gained control of a CAFI, is logging in to a system, which
via the CAFI uses ranked passwords, a face recognition system and a signature
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recognition system, he can bypass all of these authentication systems by making
the CAFI return a high overall score. This risk however, applies to computer
systems in general, i.e., if an attacker can gain control of a critical system, he
can, more or less do whatever he wants. Therefore we will note provide further
discussion of attacks where the attacker has full control of the CAFI.

7.3.2 Attacks against Authentication Systems and the Jury

Network

If an attacker gains control of a single authentication system, or its JIN wrapper,
he can send bogus messages and results from that system. The e�ect of such
an attack depends on the overall Co-Authentication infrastructure and the Jury
Policy. For instance, if the policy speci�es that all incoming events should be
veri�ed by a number of other authentication systems, then the attacker is much
less likely to cause real harm, given that he only controls this single system.
Moreover, if the attack is discovered, the authentication system can quickly be
either removed from the Jury policy, or its in�uence can be scaled down by
decreasing its weight.

If however, the attacker is able to inject messages anywhere in the Jury net-
work, he is able to forge messages from all the authentication systems, and can
therefore manipulate any authentication scenario. For instance, if he starts by
sending out an authentication event from one AS, which the CAFI reacts to by
sending out veri�cation requests to other authentication systems, the attacker
can intercept those requests and send back fake responses. An even easier attack
is to fake an authentication event from the framework, and send it to the PS
which the attacker wants to gain access to.

These types of attacks can be mitigated by introducing device authentication,
and by adding cryptographic protection into the JMP messages to reduce the
risk of spoofed messages. Moreover, nonces can be added to the message pro-
tocol, to prevent reply attacks. Optionally, we can implement solutions that
are independent of the framework, such as encrypting all the network tra�c
between the nodes of the Jury network, for instance by using IPSec [32].

7.3.3 Attacks using Rogue systems

An attacker might try to introduce a rogue authentication system and connect
it to the Jury network. The framework currently includes very basic protection
against these attacks, by only allowing remote systems that are speci�ed in the
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Jury Policy, and to reject all connections that do not match the IP address and
source port as speci�ed in the policy. If however, the attacker can bind to such an
address and source port, his system will be treated as a legitimate authentication
system. This attack can also be mitigated by device authentication and other
mechanisms as described in the previous section.

7.3.4 Attacks using the Jury Message Protocol

In addition to faking messages, or replaying previous messages, an attacker
might try to craft a message with a malicious payload, i.e., one that causes the
protocol handler in the CAFI to execute malicious commands. While the above
mentioned steps to secure the message protocol itself make this harder for an
outside attacker, it is still possible to launch this type of attack from a legitimate
remote system, i.e., one that is de�ned in the Jury policy. It is not granted
that all nodes in the Jury network are managed by the same principals, and
therefore an administrator of a remote AS might have insu�cient access to alter
the con�guration or policy of Jury. He will however, have su�cient access to be
able to send messages to the CAFI, with or without cryptographic protection.
The main method of mitigating the risk of malicious protocol messages, is to
carefully analyze and evaluate the part of the framework that deals with parsing
and processing JMP messages.
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Chapter 8

Conclusion

The process of authentication is not entirely black and white, but nevertheless,
the output of authentication systems is generally treated in such binary terms.
We believe that by explicitly quantifying the weaknesses and error rates, we
can take them into account and produce more reliable results. By evaluating
authentication results as di�erent shades of grey, we can paint a more accurate
picture of the authentication process.

We have proposed the concept of Co-Authentication and illustrated some of
the bene�ts of evaluating authentications by taking the explicit uncertainties of
individual authentication systems into account. Moreover, we have presented
Jury, a generic Co-Authentication framework which can be integrated with es-
sentially any authentication system or protected systems. The Jury framework
is �exible enough to support system speci�c policies on how to perform authen-
tication and how to react to incoming authentication events. Moreover, Jury
allows easy integration of custom score combination algorithms, which can be
plugged into the framework without having to alter the Jury code base.

We have shown that traditional binary authentication systems can be adapted to
this probabilistic scheme and that by introducing intermediate wrapper nodes,
this adaption can be made without modifying existing legacy systems. We be-
lieve that this fact is critical to the usability of our framework, since it allows
organizations to slowly migrate to the Co-Authentication scheme, without hav-
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ing to introduce major changes into their infrastructure.

8.1 Future Work

There are several topics which we wish to explore further as future work. We
have previously mentioned several of these in Chapter 4.4.3, most of which
require considerable work and extensions to the framework. There are however
a few things which we wanted to do, but did not �nd time for during the course
of this thesis project. In particular this work includes further evaluation and
testing of the framework.

We plan on integrating several authentication systems into a Jury infrastruc-
ture to control physical access to an o�ce, via an electronic lock. These systems
should preferably include biometric systems, binary authentication systems and
non-intrusive authentication systems which do fall outside the category of bio-
metrics, e.g., proximity-based user authentication using a token [17]. This work
will mostly consist of �nding and installing suitable authentication systems,
adapting binary authentication systems to a threshold-based scheme, and writ-
ing JIN wrappers for them. By creating such an infrastructure we can evaluate
our work in more detail, in terms of performance, reliability and usability.

Further we want to experiment with di�erent score combination algorithms and
evaluate how their performances compare in di�erent circumstances. Finally,
we are interested in integrating Jury with traditional access control frameworks
for further evaluation.
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Ranking Passwords

This appendix includes our initial study on assigning ranks to passwords. These
ranks can then be used as a part of a Co-Authentication. This report was written
in the �rst weeks of our thesis work, and is included here as a work in progress.

A.1 Abstract

Passwords can be assigned a level-of-con�dence based on how well they with-
stand attacks of common password crackers. We present an implementation of
a password ranking program and discuss the value of such a tool.

A.2 Introduction and Motivation

Passwords are generally a weak authentication method. They can be shared,
guessed and stolen. In many cases they are also easily broken by password
crackers, which use available information such as the users login name and full
name to attempt to recompute the password hash. For the purpose of autho-
rization, most password authentication mechanisms produce a binary result, i.e.,
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the claimed identity is either accepted or it is not. In contrast, other authenti-
cation mechanisms, such as biometrics, give a result along with a match score.
For example: The scanned �ngerprint gave a 78% match when compared to the
stored �ngerprints of the claimed identity. Biometric systems typically have a
match score threshold which determines how good the match has to be in order
for the sample to be accepted. The match score indicates how well the produced
sample matches the templates stored in the system.

A biometric match score for a genuine sample, e.g. a sample which truly belongs
to the claimed identity, is related to the sample quality. With all other things
being equal, a very high quality image from a �ngerprint scan is expected to re-
turn a result with a higher match score than a low quality image. This approach
can be applied to passwords by substituting the sample quality with password
strength. This requires a method to quantify password strength.

The strength of passwords can vary greatly. One method of assessing the
strength of a password is to measure it against a good password cracker. A
password cracker guesses password based on login names, real names, wordlists
(dictionaries) and �nally by brute-force character combinations. The time it
takes a cracker to �nd a password given its hash and related information ranges
from under one second to what can, for all practical purposes, be considered as
in�nity. If we can quantify the strength of a password, we can use it as a static
match score for the given password.

There are various applications which can bene�t from quanti�ed password strength,
e.g., an access control system can grant a user di�erent degrees of access, based
on the strength of his password. We can also combine the strength of the pass-
word with match scores obtained from other systems, such as biometrics. If
we have multiple match scores for the same authentication instance, we can
apply statistical methods to decide whether or not to authenticate the claimed
identity.

In this report I outline my analysis on password crackers and describe how
such an analysis can be used to implement a password ranking mechanism. In
addition I shortly describe a ranking implementation written in Ruby [11] which
given a password and a set of user data, such as username and real name, assigns
a strength value based on estimates of how long it takes a password cracker to
crack that password.
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A.3 Analysis

A password cracker generates a sequence of guesses and computes a hash for
each of those guesses. The generated hash is then compared to the hash from
the password �le. John the ripper (JtR) [22] is a popular password cracker
that supports various di�erent hash functions and password �le formats. It is
tweaked for speed and has been in active development for over 10 years. A run
of JtR typically consists of one or more of its three built-in modes. Single mode
checks for variants of information, such as the login name, full name and home
directory, the weakest passwords are typically found in this mode.

The basic guess-mechanism of JtR's single-mode is as follows: For a list of words
from the users login name, real name and home directory, JtR runs a series of
methods on each of these words, computes the hash for the result and compares
it to the hash from the password �le. These methods include (but are not limited
to):

• Substrings and truncations

• Case conversions: uppercase lowercase and capitalization

• Duplication: "asdf"->"asdfasdf"

• Reversal: "asdf"->"fdsa"

• Grammatical mangling: pluralization etc.

• Popular character substitutions such as a->4

• Pre- and su�xes

• Word pair rules

• Rotations: "asfd"->"dasf" etc.

• Case toggles: "asdf"->"asDf" or "AsDf" etc.

• Keyboard shiftings, f.ex. shift all letters one step to the right on the
keyboard

Wordlist mode checks for variants of words from a supplied wordlist. The
strength of passwords found in this mode is typically stronger then those found
in single mode, but weaker than those found by incremental mode. Incremental
mode is JtR's �nal and most thorough mode. It can try all possible character
combinations and is not guaranteed to terminate unless con�gured to limit the
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range of passwords [5]. The incremental mode can be described as a frequency
driven brute-force. This mode uses trigraph frequencies to increase the chance
of �nding a password within feasible time limits.

By evaluating the strength of a password at the time it is set, we gain the ad-
vantage of having the plaintext, without having to store it permanently. Having
the plaintext allows us to skip hashing and focus on comparing the plaintext to
strings that a password cracker is likely to guess.

The design of the password checker is based on my analysis of the default con-
�guration for JtR's single- and wordlist modes. While my implementation is
not a one-to-one mapping of JtR's checks, the di�erence is only marginal.

A.4 Implementation

We have implemented a simple checker which corresponds to JtR's single- and
wordlist modes. Given a username and a real name, it tries various word man-
gling methods and checks if they match the password. The implementation is
split into three classes as well as several additions to Ruby's standard String
implementation.

Two of the classes correspond to JtR's single-mode and wordlist mode respec-
tively. Each of these compares the plaintext password with the default rewriting
rules for the given mode. Our additions to the String class consist mainly of
comparison methods and rewritings. One example of an added string com-
parison method is equals_ignore_case?, which as the name suggests compares
two strings in a case-insensitive manner. Another example is equals_numeric?
which tries di�erent numeric rewritings, such as substituting all 'A's with '4's,
etc.

Finally we have a separate PasswordRanker class which given a mode-con�guration,
a username, a plaintext password and the contents of the GECOS �eld (typ-
ically full name), runs a series of tests on the password, using the Single-
Mode and Wordlist classes. Based on the result it calculates a rank, where
0.0 ≤ rank ≤ 1.0. This rank corresponds to the match score of biometrics.

The ranking is con�gured as a chain of modes. Each mode is assigned a range
and an o�set. The range expresses the relative range of ranks the mode will
produce. If the score is above zero, we add the o�set to the rank and return the
result. Otherwise we continue to the next iteration.An example of a con�gura-
tion is shown in Table A.1.



A.5 Summary and Future Work 117

Iteration Min Max Range Offset
Single Mode 0 0.2 0.2 0
Wordlist Mode (password.lst) 0.3 0.5 0.2 0.3
Wordlist Mode (all.lst) 0.5 0.7 0.2 0.5
Other (incremental) 1.0 1 1 0

Table A.1: This table shows a con�guration where the single mode gives ranking
ranging from 0-0.2, a wordlist analysis of the password.lst wordlist ranks from
0.3-0.5 and a wordlist analysis of all.lst rank between 0.5-0.7. All passwords
which are not ranked by these three modes are assigned the value of 1.0. The
Min and Max �elds are shown for demonstration purposes only, they are not a
part of the actual con�guration. Note that there are no values between 0.2-0.3
or 0.7-1.0.

When a mode returns a rank which is above zero, the rank is treated as relative
to that mode. That is, the single mode can return 0.0 ≤ relative_rank ≤ 1.0.
The overall rank is then calculated withe following formula: (relative_rank ∗
range) + offset. As an example, if the wordlist mode for password.lst returns
a relative score of 0.7 then we apply the formula: (0.7 ∗ 0.2) + 0.3 = 0.44 which
is the overall rank.

A.5 Summary and Future Work

In this report we have described a short analysis of the workings of John the
Ripper, a popular password cracking tool. We have implemented a password
ranking mechanism, which given a plaintext password and related user data,
performs analysis on the password and returns an estimated strength based on
the con�guration described above. The ranking implementation is currently
merely a proof of concept. In its current state it is not clear how the ranking
relates to other password crackers.

While incomplete, this proof of concept is important for the topic of this thesis.
We have shown that match scores can be applied to other authentication meth-
ods than biometrics. Additionally the ranking software is a good testing tool for
our authentication framework. Since the authentication framework is the main
focus of this thesis, we have chosen to postpone further improvements of the
password ranking for the time being. We believe that the tool and its method-
ology can be an important contribution to the security community. However it
needs to be developed further in order to be a feasible option for use in common
software products.
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The planned improvements are both theoretical and practical. Our analysis
of password strength is far from complete. A further study of the password
literature is required, along with an in-depth analysis of other password crackers.
This should result in a more sound theoretical basis for the ranking of passwords.

In order for the software to be used with wordlists of any signi�cant size, its
wordlist processing speed needs to be greatly improved. Currently it takes a
very long time to do a wordlist analysis on the all.lst wordlist, which is only
42 MBs. There are various di�erent ways of speeding up the process, such
as sorting the wordlists alphabetically, or even dividing it up into alphabetical
sublists. Other methods include using a relational database for the wordlists,
or even all the rewritings of the wordlists.

Our implementation does currently not account for an iterative mode, i.e. statis-
tically guided brute-force methods. Based on more detailed analysis of password
literature and other crackers, we intend to implement an iterative mode which
assigns a ranking based on the estimated time it takes to crack the password
in iterative mode. This rank can be based on statistical data, such as trigraph
frequencies, or the entropy of the password.

Finally, in order for the software to be a feasible option for the industry, it
should allow for external con�guration. The con�guration shown in Table A.1
is currently hard coded into the application.
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