
Design Optimisation of
Fault-Tolerant Event-Triggered

Embedded Systems

Jarik Poplavski Kany

and

Sigurd Hilbert Madsen

Supervisor: Paul Pop

Kongens Lyngby 2007

IMM-M.Sc.-2007-72

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Abstract

Computers today are getting smaller and cheaper and are almost everywhere in
our daily lives: at our homes, in the cars, airplanes and industry – almost all
devices we use contains one or more embedded computers. With growing usage
of embedded devices the requirements are getting tighter. In this thesis we
address safety-critical embedded systems, where not only the correct result, but
also satisfying timing requirements of the system is vital even in the presence
of faults.

The increase in computational speed and circuit density has raised the probabil-
ity of having transient faults. Embedded systems that are used in safety-critical
applications must be able to tolerate the increasing number of transient faults.
If not, they might lead to failures that would have disastrous consequences and
potentially endanger human lives and the environment.

This thesis addresses design optimisation for fault-tolerant event-triggered em-
bedded systems. The hardware of these systems consists of distributed pro-
cessing elements connected with communication busses. The applications to be
run on the hardware are represented by directed acyclic graphs. Processes are
scheduled using a fixed-priority preemptive scheduling policy, while messages
are transmitted using the Controller Area Network bus protocol. Faults are
tolerated for each process through either reexecution or active replication.

In this thesis we describe a model for representing fault-tolerant applications,
called fault-tolerant process graphs (FTPG). We first propose schedulability
analysis techniques which can determine whether a fault-tolerant application
represented using an FTPG is schedulable. Three different approaches to the
schedulability analysis have been proposed: ignoring conditions (IC), condi-

tion separation (CS) and brute force analysis (BF). They differ in the quality
of the results and their runtime. Considering the response-time analysis, we
also present an optimisation heuristic that decides for each process which fault-
tolerance policy to use, and on which processing element to execute it, such that
the application is schedulable.

We have evaluated the proposed schedulability analysis and optimisation meth-
ods using randomly-generated synthetic applications and a cruise controller ap-
plication from the automotive industry.

Resumé

I dag er computere blevet s̊a hurtige, små og billige, at vi nu er begyndt at bruge
dem næsten alle steder i vores dagligdag: i hjemmet, i biler, i flyvemaskiner
og p̊a fabrikker – stort set alt elektronik indeholder en eller flere indlejrede
computere. I takt med den stigende brug af indlejrede systemer vokser ogs̊a
kravet til deres p̊alidelighed. I denne afhandling adresserer vi sikkerhedskritiske
indlejrede systemer, hvor ikke kun det rigtige resultat, men ogs̊a overholdelse af
tidsfristerne, er meget vigtigt, selv n̊ar der sker fejl.

Voksende klokfrekvenser og densiteten af digitale kredsløb har medført en øget
sandsynlighed for transiente fejl. Indlejrede systemer, som bliver brugt til sikker-
hedskritiske opgaver, skal være i stand til at modst̊a det stigende antal transiente
fejl. Alternativt kan det medføre fatale konsekvenser, hvor der vil være fare for
tab af menneskeliv eller miljøforurening.

Denne afhandling omhandler designoptimering af sikkerhedskritiske hændelses-
styrede indlejrede systemer. Hardwaren i disse systemer best̊ar af distribuerede
enheder, som kommunikerer over kommunikationsbusser. Softwaren, som skal
afvikles p̊a den givne hardware, er repræsenteret som orienterede acykliske
grafer. Processer bliver scheduleret ved brug af faste prioriteter og kan blive
preempted af andre processer i applikationen. Beskeder bliver overført ved hjælp
af Control Area Network protokol. Fejlene bliver tolereret for hver proces ved
hjælp af enten reeksekvering eller replikering.

Vi beskriver en model til at præsentere fejltolerante applikationer – fejltoler-
ante procesgrafer (FTPG). Vi foresl̊ar en responstidsanlyse, som kan afgøre,
om en fejltolerant applikation er schedulerbar. Tre forskellige tilgange bliver
præsenteret: at ignorere fejlbetingelser (IC), med separering af fejlbetingelser

(CS) og den s̊akaldte “brute force” analyse (BF). Disse tilgange producerer
resultater, som er forskellige b̊ade i kvaliteten og i den tid, der er nødvendig
for at beregne dem. Baseret p̊a responstidsanalysen, præsenterer vi ogs̊a en
optimerings-heuristik, der for hver process skal finde den optimale fejltolerance-
teknik og afgøre p̊a hvilken enhed, processen skal afvikles. Det skal sikre, at
applikationen er schedulerbar.

Vi har evalueret de foresl̊aede responstidsanalyser og optimeringsheuristikken
med tilfældigt genererede syntetiske applikationer og en fartpilot-applikation
fra bilindustrien.

Contents

Abstract i

Resumé iii

1 Introduction 1

1.1 Design Flow for Embedded Systems 3

1.2 Motivation . 5

1.3 Related Work . 6

1.4 Thesis Objective . 7

1.5 Thesis Overview . 9

2 Preliminaries 11

2.1 System Model . 11

2.2 Fault Model . 18

3 Response Time Analysis 23

3.1 Basic WCDOPS+ . 24

3.2 Allowing Several Predecessors . 33

3.3 Conditional Analysis . 45

3.4 Pessimism and Performance . 51

4 Fault-Tolerant Process Graphs 55

4.1 Definitions . 56

4.2 Data Structures . 59

4.3 Replication . 60

4.4 Reexecution . 64

4.5 Remapping . 74

4.6 Defining and Seperating Scenarios 74

4.7 Counting Processes and Scenarios 75

5 Fault-Tolerance Policy Assignment and Mapping 79

5.1 Choosing Priorities . 83

5.2 Choosing Processing Elements for Replicas 84

5.3 Optimizing Policy Mapping . 85

6 Implementation and Testing 95

6.1 Design Overview . 96

6.2 Implementation of WCDOPS++ 97

6.3 Implementation of the Heuristics 99

6.4 Tests . 100

7 Evaluation 105

7.1 Synthetic Applications . 106

7.2 A Real-Life Example with a Cruise Controller 114

8 Conclusions and Future Work 119

8.1 Future Work . 121

A List of Notations 123

B List of Abbreviations 127

C Pseudocode 129

D Cruise Controller Example 137

D.1 Input File for Adaptive Cruise Controller Example 137

D.2 Results from the Heuristics . 139

E Other Examples 141

E.1 Splitting FTPG into Scenarios 141

E.2 LFTA and LPFL . 144

E.3 Calculating Degree of Schedulability 147

E.4 Convergence of the Heuristic . 150

F Program 151

F.1 Class Diagrams . 151

F.2 Command Line Manual . 155

F.3 XML Schema for Input Files . 156

G Testing 159

G.1 Sanity Checks for Fault Tolerant Conditional Process Graphs . . 159

G.2 Input for TGFF . 160

Chapter 1

Introduction

In the mid 1940s, when the epoch of digital computing started, the first comput-
ers were very large and expensive, only available for universities and research
centres. Since then, the price and the size of computing systems have been
decreasing constantly, and computers become more and more common in our
lives. This includes digital watches, CD/DVD players, television, cameras, cell
phones, navigation systems, vehicles, aircrafts, and even washers. . . and many
other devices, which we never think of as computers. However, they all do con-
tain a small computer (or many), which is often built for a very specific purpose.
We call such computers embedded computer systems.

Comparing to personal computers that can be programmed to perform almost
any operation, embedded computers are single purpose devices, often restricted
by the needs of the application. The application specific implementation allows
embedded systems to be faster, more robust and smaller than general purpose
PC, but it also makes them more difficult to design. Not only the required
functionality has to be implemented, but also factors like production cost, device
size, power consumption, performance and fault-tolerance are to be considered
very carefully before starting production.

This project is related to a special class of embedded systems, which are called
fault-tolerant embedded systems. Fault-tolerant systems are used for safety-
critical applications, where a single fault might lead to catastrophic conse-

quences, like injuries or loss of human lives and damage to the environment.
Such system are typically responsible for critical function control in cars, air-
crafts and spacecrafts, nuclear plants, medical devices, etc. They must react
to events in the environment within precise time constraints and are therefore
called real-time systems. Fault-tolerance put very strict requirements on real-
time embedded systems, which includes resistance to faults while still meeting
any hard deadlines.

Looking at general fault persistence, all faults can be divided into two classes:
permanent and transient. Transient faults are induced in hardware, caused
by external factors, like radiation particles or lightning stroke that cannot be
shielded out. The presence of a transient fault may lead to an error in the
application, and this is where the fault-tolerance can be used to save the system
from the failure. In this thesis, we address only transient faults.

The situation becomes more complex when the system is large and consists of
several independent components. Each component is a small embedded com-
puter with CPU, memory and communication capabilities. All components are
distributed and interconnected, so they can exchange data in order to work to-
gether. We call this type of system a distributed embedded system. An example
of a distributed fault-tolerant embedded system can be found in a modern car
(see Figure 1.1), which contains a lot of safety-critical components: ABS, cruise
controller, airbag system, wheel anti-spin etc.

Figure 1.1: An example of a distributed embedded system [6] with several pro-
cessing elements and communication busses.

It is the job of the designer to ensure that the embedded system will meet its real-
time requirements and produce correct results. As the system can be either time-
triggered or event-triggered, the corresponding timing analysis, which checks the

timing requirements, will reflect this. When using a time-triggered model, the
schedule is determined at design time. For event-triggered systems a static
schedule cannot be produced, since the execution depends on external events
arriving during the runtime of the system. Recalling the car example the airbag
controller could be an event-triggered system, since it executes its programs in
reaction to a “collision” event. This thesis focuses on distributed embedded
systems with an event-triggered architecture using bus-based communications.

In the following section we will lay out the general design flow of embedded
systems, and show where our work is to be applied. Section 1.2 presents the
motivation for the thesis. In Section 1.3 we introduce the related work. In the
end of this chapter the reader will find a short overview of the structure of the
report. The summarised problem formulation is given in Chapter 1.4.

1.1 Design Flow for Embedded Systems

Figure 1.2 shows the system-level design flow for embedded systems. It is based
on two inputs, which are the model of the application (software) and the model
of the system platform (hardware).

Figure 1.2: The Design Flow for Embedded Systems [30]. This thesis addresses
the analysis and the system-level design tasks.

The application model contains processes, including their runtime character-
istics, such as deadlines and priorities. The system platform model describes
the hardware in the system, which is the embedded devices (computing ele-
ments) and the communication channels. The models are used in the stage

called system-level design tasks, and in this work the related tasks can be listed
as below:

• Application mapping, this task is about placing the application processes
on the different components of the system. For processes it means se-
lecting an appropriate computing element, and for messages it would be
selecting communication channels. Some of these mappings might already
be decided by the designer.

• Fault-tolerance policy assignment, this task is about selecting an appropri-
ate way of protecting the processes against transient faults. Depending on
the constraints, each process will be assigned a fault-tolerance technique,
such that the timing requirements are met even in case of faults. We
consider reexecution and active replication as the techniques to protect
against transient faults.

• Producing a fault-tolerant application is done when all processes have been
mapped and assigned a fault-tolerance policy. The result of this task would
be a model of system implementation, that describes the execution flow
in the system, when transient faults occur. If the produced application
satisfies the criteria given by the systems requirements, it can be brought
to the next stages.

The tasks above are performed and the results are evaluated in the analysis
phase. The analysis of the proposed solution consists of the following parts:

• Schedulability analysis verifies that the application can meet the speci-
fied timing constraints. In this thesis, we use a response time analysis,
which finds the worst case reponse time and then compares it with the
corresponding deadline for each process of the application.

• Performance evaluation measures the overall application performance,
which in our case only includes the response times of the processes. But
it may also include other factors, like power consumption, CPU/memory
utilisation and so on.

The system-level tasks and the analysis are typically done as an iterative pro-
cess, consisting of generation-evaluation sequences until a satisfactory solution
is found.

1.2 Motivation

With the improvement of manufactoring techniques, the permanent fault rate
of systems is decreasing (see Figure 1.3). On the other hand, the number of
transient faults is increasing [9]. Today the rate of transient faults is often very
large compared to the rate of permanent faults, the ratio varying from 1:4 to
1:1000 according to [2].

Figure 1.3: Permanent Failure Rates for CMOS Semiconductor Devices [9]

Figure 1.4: Transient Fault Rate Trends [1]

This is, among other things, a result of an increased density of embedded hard-
ware in order to pack more functionality and resources in smaller units. High
density leads to increasing electric interference and causes random bit flips. This
trend is captured by Figure 1.4. Even in properly designed systems, background
radiation and various external electronic magnetic interference will cause tran-
sient faults. This problem contradicts the increasing use and dependence on
embedded systems, where increasing reliability is a requirement.

Considering the automotive electronics, modern vehicles are integrating more
and more electronic devices for providing better control over the vehicle and im-
proved safety. All modern cars have many built-in embedded systems. Further-
more, automotive manufactures are now designing so-called “control-by-wire”
systems. Such systems allow more precise control and better performance. On
the other hand, they might loose the tangible safety of mechanical components
[10]. It has also been observed that car electronics are often affected by tran-
sient faults. The electronics in cars are safety-critical embedded systems, and a
proper protection against faults is required in order to avoid fatal consequences.

Traditionally, hardware duplication was used to protect critical components
against hardware faults. In case of a failure the correctly working components
would ensure the stability of the system. Unfortunately this solution is a very
costly way of treating transient faults that occur and disappear randomly. And
the manufactures need to look at the alternatives, like reexecution and software
replication. However, applying reexecution or replication may and probably will
introduce significant timing delays in the system, and the designer can possibly
end up with a solution that is not schedulable. Therefore, designers may need
an optimisation technique that can help them to introduce redundancy in the
most cost-efficient way.

1.3 Related Work

Hardware redundancy is a common way of tolerating single permanent faults,
and it has been used in a number of fault-tolerant arcitectures, such as MARS[27],
TTA[26] and XBW[7]. Hardware redundancy can also be used to protect the
components of a system against transient fault, but often such a solution is very
impractical due to high cost of the hardware.

There has been academical research that addresses modelling and scheduling of
processes on distributed multiprocessor systems [13, 31, 16]. However, many of
these assume that the processes are independent, which is not the case in the real
world. Processes in an application can have both data and control dependencies.
They might need to exchange intermediate results across different platforms and
communicate through a medium. The knowledge about process dependencies
can be used to improve the accuracy of the response time analysis (RTA). There
have been proposed algorithms that can take inter-process dependencies into
account [39, 41, 19, 8, 17]. They are all based on the concepts of offset, jitters
and phases, which are used to model the time intervals between releases of
processes.

Tindell introduced a technique in [39] to compute worst-case response time by
using static offsets, and his analysis was later extended and improved in [20] by
Palencia and Harbour. In the last paper they developed a better elimination of
precedence conflicts and introduced analysis of processes that belong to the same
sequence during the execution. The result was a reduced pessimism of the RTA.
Their algorithms were called WCDO1 [19] and WCDOPS2 [20]. More recently
work has been done by Redell, who developed a newer version of the response
time analysis with precedence constraints based on the WCDOPS algorithm.
Redells algorithm, called WCDOPS+, reuses and improves the concepts defined
in [20], which makes it applicable to systems with both preemptive and non-
preemptive schedulers. This algorithm has been chosen as the starting point for
the response time analysis in this thesis. We also propose several improvements
related to precedence and fault conditions.

Different ways of handling both transient and permanent faults have been pro-
posed. Xie et al. in [22] describe an allocation and scheduling algorithm to han-
dle transient faults with replication of critical processes. Very few researchers
[21, 29] consider the optimization of implementations to reduce the impact due
to fault-tolerance on performance and, even if optimization is considered, it is
very limited and does not include the concurrent usage of several redundancy
techniques. In [23], Izosimov presents several design optimisation strategies for
applying fault-tolerance in embedded systems. More recently Pop et al. pro-
pose in [14] a design optimisation approach for statically scheduled applications,
using active replication and reexecution as fault tolerance techniques.

1.4 Thesis Objective

The objective of this thesis is to develop and evaluate a design optimisation
technique for fault-tolerant embedded systems. We focus on the automatic
assignment of fault-tolerance and mapping that protect the system against a
fixed number of transient faults while obeying the real-time requirements.

An embedded system in this thesis is described by an application, a hardware
architecture and a fault model. The application is a set of processes with possible
control and data dependencies. Cyclic dependencies are not allowed. Data
dependencies are messages having a sending and a receiving process. A group
of processes with mutual dependencies is called a transaction with a period
representing the minimum interval between events triggering the transaction.

1Worst Case Dynamic Offsets
2Worst Case Dynamic Offsets with Priority Schemes

The hardware architecture is distributed and consists of one or more processing
elements and possible a number of communication busses. We assume that the
scheduling on the processing elements is event-driven, preemptive with fixed pri-
orities, while messages are non-preemptive with fixed priorities and transmitted
using a CAN bus. The application contains a mapping table that defines on
which processing elements each process can execute. If a process is allowed to
run a given processing element, the corresponding best and worst case execu-
tion time must be given. The designer must also assign a fixed priority to each
process as well as the initial mapping. Messages are statically allocated by the
designer to a communication bus. Best and worst case transmission time as well
as priority must also be given. Deadlines of processes and messages must be
given by the designer and they are always hard. It is assumed that all bounds
on execution and transmission time are known prior to the analysis.

The fault model describes how many transitient faults are allowed in every
period of the application. In order to tolerate faults, two different approaches
are used: reexecution and replication. The dilemma is that both techniques
increase the utilisation of computational resources and hence may break real-
time requirements to the system.

Therefore, the goals for this project can be stated as following:

• Provide a modelling framework that can represent the system and model
the faults.

• Provide a reliable response time analysis that can be used to validate
whether the system obeys the timing constraints when considering a fixed
number of transitient faults.

• Provide a heuristic algorithm for optimising fault-tolerance assignment
and mapping.

• Evaluate and elaborate the proposed methods with synthetically generated
systems.

• Evaluate an example from the real world, an adaptive cruise controller.

However, a number of assumptions has been done in the following analysis.
These assumptions are basically simplifications of the model:

• The communication system is assumed to be fault-tolerant that is to say
we do not protect the messages against transmission errors.

• The overheads related to the system environment are neglected. It means
that there are no other applications running on the processing elements
except for the one being analysed.

• The operating system is transparent in sense that all overheads are in-
cluded in the execution times of the processes

• Deadlines of processes must be shorter than the period of the transaction

• When doing reponse time analysis of fault-tolerant process graphs, only
one transaction is allowed

1.5 Thesis Overview

In the following we will briefly present the different parts of this thesis and
explain the relations between the corresponding chapters. We have divided the
thesis into a number of sub problems as shown Figure 1.5. The arrows in the
figure are used to illustrate the relations between the defined sub problems.

To begin with, all necessary basic theoretical concepts will be explained in Chap-
ter 2. This preliminary chapter contains an introduction to the hardware, ap-
plication and fault models used in the thesis, presents fault tolerance techniques
and the basics of scheduling.

Figure 1.5: Thesis Guideline Diagram

Chapter 3 addresses the response time analysis. It contains a description of the
existing WCDOP+ algorithm, including all necessary details to understand how

it works. Besides that, the chapter includes a complete description of the ex-
tensions proposed to the algorithm. Chapter 4 deals with fault-tolerant process
graphs and covers the basic notation and definition of elements. It describes the
data structures and necessary transformations applied when changing between
different fault-tolerance techniques and mappings.

Chapter 5 is entirely dedicated to the fault-tolerance assignment and optimi-
sation. It explains how to choose the most optimal policy assignment using
the response time analysis described before. With this theoretical foundation
in place, we give some details on our implementation in Chapter 6 including
data structures, relations between equations and methods, and the pseudocode
for some of the operations on our data structures. The optimisations we have
done to improve the performance of the program will also be discussed. In this
chapter we will also explain our approach to testing, which includes both unit
tests and functional tests.

In Chapter 7 an extensive evaluation of our algorithm will be performed and
discussed. These evaluations are done on numerous synthetic applications and
a cruise controller example from the automotive industry. We summarise and
make conclusions on the work in relation to the obtained results in Chapter 8.
Based on our work, suggestions for future work are listed and discussed in
Section 8.1.

Notice that Appendicies A and B contain lists of abbreviations and notations,
respectively, that will be used throughout the report.

Chapter 2

Preliminaries

In this chapter we will lay out the preliminaries for the thesis. This includes no-
tations, model description and an introduction to fault tolerance related to this
thesis. In Section 2.1 we give a comprehensive description of the system model,
which includes both description of the hardware and the software architectures.
Section 2.2 describes faults in the given context and presents several related
fault-tolerance techniques, including process replication and reexecution.

2.1 System Model

This section explains the system model, which includes the hardware platform
and application model, i.e. the software to be executed on the hardware plat-
form.

2.1.1 Hardware Architecture

The hardware architecture of the embedded system is composed of a set of
processing elements, which are distributed and interconnected by one or more
communication channels, see Figure 2.1. Each processing element consists of a

CPU, memory and a communication subsystem. The communication system is
responsible for low-level operations, such as communication protocols and error
correction during communication.

Figure 2.1: A View of the Hardware Architecture. The shown system contains
three processing elements connected by two communication channels.

In the thesis we handle all subsystems on the processing elements as a whole,
regardless of any overheads that may be introduced by interaction between
different hardware levels. The size of communication buffers and memory are,
for simplicity, not considered.

The messaging subsystem contains an arbitrary number of communication chan-
nels that are used to deliver messages between the processes. There exists a
number of busses and protocols for transferring data between the processes.
Some are general purpose while others are specific for a particular industry. As
we are only considering event-triggered systems and since the project relates to
the automotive industry, we have assumed that Controller Area Network (CAN)
is used for the communication. We make the simplification and assume that no
faults will happen during communication or they will be tolerated using existing
techniques. Figure 2.2 shows a CAN bus connecting different subsystems in a
modern car.

Messages being sent over the CAN are not preemptive. Once the transmission
of a given message has started, other processing elements cannot start a new
transfer before the transmission has finished. This also implies that only a single
message can be transmitted at any given time on a particular communication
channel. However, since CAN defines message content rather than message
destination, the same message will be received by all processing elements on
the bus. The messages do also have priorities that can be used to determine
what message to send, if more than one message are ready to be sent. This is
implemented by the arbitration field of the CAN frames.

Figure 2.2: An example of a Controller Area Network (CAN) in a car [11] where
different components are connected through the bus.

If two processes are mapped on the same processing element, then the trans-
mission time of a message is neglected. In this case the message will be placed
directly into the shared memory, when the sending process finishes. In a situ-
ation when the sending and receiving processes are not on the same processing
element the message will be sent through the communication channel.

2.1.2 Software Architecture

The software architecture used on the top of the hardware is a real-time oper-
ating system (RTOS), which can perform in such a way that all timing require-
ments are satisfied. As we are only interested in the real-time properties of the
RTOS, all other details are omitted being irrelevant.

The execution model is based on real-time preemptive scheduling with fixed
priorities. It means that the RTOS can switch between processes, and pro-
cesses having higher priorities will interrupt execution of lower priority pro-
cesses. When it happens, the lower priority process has to wait until the high
priority process finishes its execution. Priorities are related to the process im-
portance, and are given by the designer. Preemption can happen at any point
of time, as it depends on the priorities of the processes and even arrivals.

Figure 2.3: Scheduling States of a Process. The diagram shows how the RTOS
controls the execution of a process.

The scheduling states of a process follow the scheme proposed at [40] and is
shown in Figure 2.3. If several processes are active, i.e. ready to be run, the
schedule will always choose the one with the highest priority. If those processes
have the same priority, the choice will be non-deterministic.

Generalisation of the RTOS running on top of each processing element is done
with the assumption that the following overheads are included in the worst case
execution time of the processes:

• Context switch and process activation.

• Error detection.

• Recovering of process inputs.

• Interaction with the communication layer.

We also assume that some synchronisation takes place between the processing
elements achived through message transmissions. It is simply assumed that the
mechanism is given and does not introduce any overhead.

2.1.3 Application Model

The application model describes a set of processes that together form an appli-
cation, denoted Ai. An application is represented as a set of acyclic directed

graphs, Ai = Γa(V , E). An example is shown in Figure 2.4.

Figure 2.4: An Example of an Application Consisting of Two Transactions

A graph Γa is also called a transaction or process graph and has a period Ta.
Each vertex τa ∈ V in the graph Γa represents a process, and each edge eij ∈ E
from τi to τj represents a precedence constraint between two processes. By using
precedence constraints we can model the order of execution of the processes in
an application. It means that a process having precedence constraints from
other processes, cannot be executed before all of those processes have finished
even if it has a higher priority. A transaction therefore groups processes that
have precedence constraints. A process that have no precedence constraints is
called the root process.

Each precedence constraint between two processes may have an associated mes-
sage, mi, sent through one of the communication channels. In this case, the
precedence relation is called a data dependency. A message is only transferred
when the sending process has finished, and the receiving process cannot start
its execution before the message has been completely received.

Figure 2.5 shows a single transaction consisting of five processes (τ1, ..., τ5),
illustrating the graph representation of an application. In the figure, the prece-
dence constraints are drawn as edges without messages, whereas the messages
are drawn using boxes m1 and m2 on the edges.

Figure 2.5: An Example of a Process Graph. The arrows show the elements of
the graph.

A process is described by a set of temporal and execution properties, given in
Table 2.1.

Notation Short Description

Ca Worst Case Execution Time (WCET)

Cb
a Best Case Execution Time (BCET)

Pa Priority

Da Deadline

Ti Period

Table 2.1: Properties of a Process

The execution times are the lower and upper bounds of time required for a
process to complete. In the model, execution time depends on the chosen pro-
cessing element. Therefore the execution times are given as a table, where each
pair of process and processing element is represented by best and worst case
execution times. Such a table is called a mapping table and an example is given
in Table 2.2. If a mapping is not allowed, the corresponding entry in the table is
empty. In Table 2.2, process τ2 is not allowed to execute on processing element
N2.

N1 N2

τ1 (1,2) (2,3)

τ2 (7,7)

τ3 (6,9) (7,10)

Table 2.2: Example of a mapping table from a system model containing the
best- and worst case execution time for the processes on the different processing
elements.

The priority indicates the importance of the process – higher numbers mean
higher priority, so the execution of low priority processes may be preempted by
higher priority processes. The deadline is the latest point in time, at which the
process is supposed to have finished executing. In real-time systems with hard
deadlines all processes must successfully complete before their deadlines. In this
model, the deadlines are absolute, meaning that the time is counted from the
arrival of the event triggering the execution. The period of the transaction rep-
resents the minimum interval of time between any two events causing activation
of the transaction. Deadlines are not allowed to be longer than the period of
the transaction. Because of the precedence relations defined by the transaction,
the period for all processes in the given transaction must be equal to the period
of the transaction.

Similarly to processes, messages are characterised by the following properties:

Notation Short Description

Cm
i Worst Case Transmission Time (WCTT)

Cmb
i Best Case Transmission Time (BCTT)

Pm
i Priority

Dm
ij Deadline

Table 2.3: The properties of a message.

All messages are statically assigned to a communication channel, and this cannot
be changed during the design optimisation.

2.2 Fault Model

As mentioned in the previous sections, we do not look at the fault detection. We
assume that the RTOS contains a mechanism to detect the faults and notify the
scheduler. The time needed for the detection of an error is called error detection
overhead, and the time needed for the system to restore the initial state of the
process is called recovery overhead. We have assumed that these overheads are
included into process execution times, and state recovering takes no time. We
denote the maximum number of transient faults that might happen during one
period of the transaction as κ.

When a fault occurs, we always assume that it happens at the worst possible
instant in time. This is exactly when the process is about to finish, thereby
introducing the maximum delay for subsequent processes.

We are now going to present two fault-tolerance techniques, which are relevant
for our model. These are reexecution and replication, which are the most used
techniques for tolerating transient faults. Notice that a process can only be
protected by one of the two techniques.

2.2.1 Process Reexecution

Reexecution provides fault-tolerance by running a process a second time on
the same processing element if it fails. Indeed the reexecution may be one of
the natural ways of dealing with faults - if something did not work, then try
one more time. The use of reexecution may be unsuitable in some situations,
because the successful completetion will be significantly delayed.

Figure 2.6: An Example of Reexecution. Process τ1/2 is only run, when process
τ1 fails.

Consider Figure 2.6 where process τ1 fails and is reexecuted. The jth execution
of a process is denoted by slash in subscript, so the first execution is written as
τ1/1 and the first reexecution is written as τ1/2. The set of processes protected
with reexecution is denoted Px. The reexecution approach has the advantage
that it is simple to implement. On the other hand the reexecution approach may

prolong the response time of the faulty process and thus may result in missed
deadlines.

2.2.2 Process Replication

Another way of protecting processes against faults is to use process replication.
Compared to the reexecution, which is based on time redundancy, the replica-
tion approach uses space redundancy. When using active replication, several
instances of the same process, called replicas, are executed in parallel on dif-
ferent processing elements independently of fault occurrences. With passive
replication, replicas will only start, if the primary process fails. Both methods
are illustrated in Figure 2.7. In our thesis we focus only on active replication.

(a) Active replication. (b) Passive replication.

Figure 2.7: Two Types of Process Replication.

We denote replication with round brackets in subscripts surrounding the replica
number, j. For the main process the replica number is always zero, and its
replicas will have consecutive numbers starting from one. In the figure above
the primary process is denoted as τ1(0), and its replica is τ1(1). The set of
processes that are protected with replication, is denoted Pr.

The main advantage of active replication is that a transient fault does not delay
the response time of the protected process as much as with reexecution in most
situations. On the other hand, the system will also have to execute the replicated
process if no faults occur at all, and therefore consume more resources.

2.2.3 Fault-Tolerant Process Graph

In order to model fault occurences in our system we use conditional process
graphs (CPG), denoted Ga. A conditional process graph is similar to a reg-
ular process graph, extended by adding guards on the edges to model fault

occurences. The guards are boolean conditions indicating the presence of a
fault.

(a) Original process
graph

(b) Fault-tolerant process graph

Figure 2.8: Producing Fault-Tolerant Process Graph with All Processes Being
Reexecuted.

Figure 2.8(a) demonstrates a process graph, that has been extended to a fault-
tolerant process graph in Figure 2.8(b). All processes are set to be reexecuted
in case of faults, and the maximum number of tolerated faults κ is 1. Depending
on the presence of fault for a process, the corresponding edge must be taken. If
a process finishes successfully, then all non-faulty edges must be taken. If the
process fails, then it must be reexecuted and therefore the execution path will
include the conditional edge, F, starting at the faulty process. The fault and
non-fault conditions are mutually exclusive for a given process, and only one
type can be taken during the execution.

Figure 2.9: Combining Reexecution and Replication. Processes τ2 and τ3 are
replicated, while processes τ1 and τ4 are reexecuted

Figure 2.9 shows how the reexecution and the replication can be combined when
κ = 1. The shown graph represents a fault-tolerance policy assignment by which
processes τ1 and τ4 are chosen to be reexecuted, and processes τ2 and τ3 are
protected with active replication. It should be noted, that if process τ1 fails and
is reexecuted as τ1/2, the succeeding processes will not experience any faults
(recall that κ = 1). It leads to removal of replicas τ2(2), τ3(2) and reexecution
τ4/2 from the fault-scenario started by the fault in τ1.

As mentioned earlier, we do not combine the reexecution and replication for the
same process. When using replication, we always assume no faults have occured
during the execution of the replicas. Therefore we need to protect succeeding
processes against the same number of faults as the process being replicated.
In contrast, reexecution captures the presence of a fault, and the succeeding
processes must be protected against κ − 1 faults.

A specific trace or execution path through an FTPG for a certain combination
of faults captured, is called a fault scenario and is denoted sis. Any FTPG will
always have at least one fault scenario - the situation with no faults. The set
of all fault scenarios for a given FTPG, Si = {∀sis ∈ Gi}, represents all possible
combinations of faults that can be captured. It includes also situations with less
than κ faults.

Chapter 3

Response Time Analysis

In this chapter we present the response time analysis algorithm for event-
triggered systems, WCDOPS+, which we use as a starting point for our schedu-
lability analysis. The original version was developed by Ola Redell and described
in his works [35, 34]. We have extended the WCDOPS+ in order to deal with
fault-tolerant scheduling. The basic idea of response time analysis (RTA) is
to determine the worst-case response times of all processes. By comparing the
worst case response times with the deadlines, we can test the schedulability of
the system.

The chapter is structured as follows. Section 3.1 explains the approach used in
WCDOPS+ and introduces the theoretical background required to understand
how the algorithm works. Then we will present our extensions to the algorithm
in Section 3.2, and explain how the algorithm can be applied on fault-tolerant
applications in Section 3.3.

Details on the implementation of the algorithm are described in Chapter 6.

3.1 Basic WCDOPS+

In this section we will describe the basic WCDOPS+ analysis as given in [34].
All equations, unless otherwise stated, are taken from [34].

The WCDOPS+ algorithm allows us to perform response time analysis on dis-
tributed event-triggered systems. The processes are grouped into transactions.
The execution of a transaction, Γi, is triggered by an external event. The events
arrive aperiodically with a minimum interval between the releases denoted by
Ti. Each transaction contains a set of processes having precedence, which form a
tree-shaped acyclic graph, as shown in Figure 3.1. An activation of the transac-
tion Γi is called a job, implying that all processes of the transaction will belong
to the same job for the arrival of a given event.

The processes are identified by two subscripts: an unique number among other
processes in the same transaction and the number of transaction, they belong to.
A transaction has only one root process, and in Figure 3.1 the root process is τ1.
The processes are mapped on different processing elements, and the mapping
is given by M(τij). The priority of a process is denoted by Pij . For the best
case response time of a process τi we use the notation Rb

i , and the worst case
response time is denoted by Rw

i .

Figure 3.1: An Example of a Tree-Shaped Transaction with Nine Processes

3.1.1 Modelling Precedence Relations

The precedence relations are expressed by offsets and jitters, which help to
model processes with precedence as they were independent. An offset, Φij , is
the minimum relative time after an event has arrived to the activation of process
τij . The offset is then the earliest possible instant at which a process can start

executing. The jitter, Jij , is the maximum delay that a process can experience
from its earliest possible arrival until it is released. Then, if the event arrives
at time t0, the latest point in time process τij can be released, is given by
t0+Φij+Jij . Figure 3.2 illustrates the relation between the arrival of the event
and the execution of process τij .

Figure 3.2: Offset and Jitter Relation

Offsets and jitters are dynamically updated between the iterations of the algo-
rithm as follows:

Φij = Rb
ip (3.1)

Jij = max(Rw
ip − Rb

ip, Jip) (3.2)

The equations show that the offset is found as the best case response time of
the preceding process τip, and the jitter is the difference between worst case and
best case response times of the preceding process.

The WCDOPS+ algorithm will find best case and worst case response times
for each process in the system. The particular process, which is currently being
analysed, is denoted as τab. The main idea behind the analysis is to find the
maximum possible interference from other processes in the system, that may
delay the execution of process τab either due to preemption or precedence rela-
tion. The maximum interference is found by analysing the busy period of τab.
The busy period is the period, when the processor on which τab is mapped, is
occupied by other processes having the same or higher priority as τab. This
implies that the execution of τab will be preempted by these processes. The set
of processes that run on the same processing element as τab and having equal
or higher priority is given by hpi(τab). Consequently lpi(τab) represents the set
of lower-priority processes. Formally hpi(τab) is defined as

hpi(τab) = {τik ∈ Γi | Pik ≥ Pab ∧M(τij) = M(τab)} (3.3)

and lpi(τab) is given by

lpi(τab) = {τik ∈ Γi | Pik < Pab ∧M(τij) = M(τab)} (3.4)

These are very important definitions and will be used extensively through the
analysis.

3.1.2 Process Phasing

The busy period of τab starts at some point of time, called the critical instant
tc. The worst case delay for τab will be created, when processes in hpi(τab)
are phased in such a way that they are released at tc. In this situation, the
execution of τab will be delayed the most due to these higher-priority processes.
The algorithm also takes into account the interference from other transactions
in the application, that might have different periods, than the transaction to
which τab belongs. The maximum contribution to τab busy period from a given
transaction Γi happens when a process τik in hpi(τab) originating from Γi starts
the busy period. However, in case when deadlines are larger than event periods,
the interference can also occur from previous jobs of the same transaction.

In order to find the maximum contribution from a particular transaction Γi, the
algorithm must identify all processes from all jobs of the transaction that are
ready to be executed in the busy period. To identify all pending instances of a
process τij a phase relation ϕijk between τij and τik is used to find the earliest
possible arrival of process τij after tc. The phase is defined as

ϕijk = Ti − Φij − (Φik + Jik) mod Ti (3.5)

and the total number of pending instances nijk of process τij at tc is

nijk =

⌊

Jij + ϕijk

Ti

⌋

(3.6)

The jobs and the corresponding instances of processes are assigned an index
p, based on the arrival time of the external event relative to tc. The positive
values are assigned to instances coming after tc, whereas 0th and negative indexes
indicates that the job arrives prior to tc. The phase relation and numbering of
pending jobs is illustrated in Figure 3.3.

Figure 3.3: Job Numbering and Phasing for Process τij relative to tc

The width of the busy period started by τik at tc is given by w, and the contribu-
tion from a process τij is only possible, if the processes are phased in such a way,
that τij is released during w. In Figure 3.3 the number of pending instances
nijk of τij is therefore 2, with indexes p = −1 and p = 0. The latest instance
has always index p = 0, and thus the index p of the first pending instance of τij

can be found as

p0,ijk = 1 − nijk = 1 −

⌊

Jij + ϕijk

Ti

⌋

(3.7)

which in our case is p = −1, that is triggered by the earliest event arrival.

3.1.3 Process Grouping

Another important concept, which is presented in the WCDOPS+ algorithm,
is grouping of processes in H-sections and H-segments. Sections and segments
consist of many processes, that due to their priorities and precedence relations
can be treated as a single large process. They are used in the analysis, since
they group processes that may belong to the same busy period of process τab.
Segments and sections are always determined relative to a given process, which
in our case is τab. The priority and mapping of τab is used to check whether two
processes are in the same segment or section. The definition of an H-segment is
given as follows:

Hseg
ij (τab) = {τij ∈ hpi(τab) | (¬∃τil ∈ Γij∆Γik | τil 6∈ hpi(τab))} (3.8)

Two processes that are in hpi(τab) belong to the same segment, if there is no
other processes τij 6∈ hpi(τab), that precedes one process but not the other
process. In other words, the processes in a segment may not contain any inter-
mediate processes that are not in hpi(τab). The main property of an H-segment
is that if one process from the segment belongs to the busy period, then all
processes in the segment will contribute to the busy period, and this is why a

segment may be considered as a single large process. In contrast to H-segments,
H-sections group processes, that may belong to the same busy period. An H-
section Hij(τab) is defined as follows:

Hij(τab) = {τij ∈ hpi(τab) | (¬∃τil ∈ Γij∆Γik | τil ∈ lpi(τab))} (3.9)

The equation is similar to equation (3.8), with the difference that two processes
in the same section must be preceded by the same process from lpi(τab). This
implies, that the processes in an H-section can be interconnected by some inter-
mediate processes, that run on other reprocessing elements. In the following, we
will always assume that the priority of segments and sections are given by τab.
Therefore we will use the shorter notations, Hseg

ij and Hij , where τab is implied.

(a) Segments

(b) Sections

Figure 3.4: Examples of Segments and Sections

The example shown in Figure 3.4 will explain how H-sections and H-segments
may look. Processes in Figure 3.4 are painted with fill color according to their
priorities. The dark nodes on the graph mark the processes that are in hpi(τab),
the white nodes are processes in lpi(τab), and the dashed node τ4 represents a
process, which runs on other processing element than τab. Using the definitions,
we find four segments and three sections. The segments are Hseg

i2 = Hseg
i5 =

{τ2,τ5}, Hseg
i3 = {τ3}, Hseg

i7 = {τ7}, Hseg
i8 = Hseg

i9 = {τ8,τ9}. The sections shown
on in the figure are Hi2 = Hi4 = Hi5 = Hi7= {τ2,τ5,τ7}, Hi3 = {τ3} and Hi8

= Hi9 = {τ8,τ9}.

An H-segment is preceded by a process, τip < Hseg
ij , when τab precedes all pro-

cesses in the segment. In the example above process τ1 precedes all segments in
Γi, τ6 < Hseg

8 and τ4 < Hseg
7 . A process is said to be an immediate predecessor

of a segment, if one of its immediate successors belong to the segment. Pro-
cesses, with an immediate predecessor in the segment, are called successors of
the segment. The precedence properties are mostly important for H-segments,
but they are defined in similar way for H-sections as well.

The analysis will study the contribution from all possible segments to the busy
period. Similarly to the process phasing, it defines phasing relations between
H-segments and the busy period, which are very close to equations (3.5) - (3.7).
The phasing of an H-segment is determined by its offset and jitter, which are
equal to the first process in the segment. The time from the start of the busy
period to the arrival of the segment is given by:

ϕseg
ijk (τab) = Ti − Φseg

ij (τab) − (Φij + Jij) mod Ti (3.10)

and the number of the first pending instance of the segment at tc is:

pseg
0,ijk(τab) = 1 −

⌊

Jseg
ij (τab) − ϕseg

ijk (τab)

Ti

⌋

(3.11)

The analysis can be further refined by the fact that some segments can block
execution of other segments. Such segments are called blocking segments. Only
one blocking segment among all blocking segments can execute within the busy
period of τab. An H-segment is blocking when it has predecessors that belong to
lpi(τab). In Figure 3.4 (a) the blocking segments are Hseg

i2 , Hseg
i3 and Hseg

i8 . We
return to the segments later, when we present our extensions. Now, the next
step is to explain how the worst-case response time is computed by WCDOPS+.

3.1.4 Identifying the Contributions From Other Processes

By using phasing it is possible to find all combinations of processes and segments,
that may contribute to τab busy period. The contribution is found from each
transaction, including the one, process τab belongs to. For each transaction two
kinds of contribution are computed - non-blocking interference Wi, and blocking
interference WBi. The non-blocking interference is the maximum contribution
from transaction Γi, when no blocking segments are allowed to execute within

the busy period, and the blocking interference is the maximum contribution from
Γi when one blocking segment is allowed to execute within the busy period. The
difference between blocking and non-blocking interference is called interference
increase ∆Wi=WBi-Wi, and the interference increase is maximised among all
transactions.

The transaction interference is found by using the function called Transaction-
Interference, that locates the contribution from process instances arriving prior
to tc (p ≤ 0). It considers all jobs of a transaction Γi that can possible interfere
with τab in order to locate the worst interference. For each job, it uses the func-
tion BranchInterference to locate the longest1 possible chain of higher priority
processes that might contribute to the busy period. As not all processes of a
given chain are able to actually contribute to the busy period, TaskInterference
will eliminate these processes during the analysis. This is done by using so-
called reduction rules, which are simple conditions applied in TaskInterference.
We refer to [34] and [35], where these rules are explained and formalised and
the pseudocode is given. A more detailed description of BranchInterference will
be given in Section 3.2.3, where we present our modifications to the algorithm.

As mentioned before, TransactionInterference finds two values for transaction
contribution to the busy period, the blocking and non-blocking interference.
However, we also need to find the contribution from instances, that might arrive
after tc (p > 0). Due to precedence order, only instances of those processes that
belong to the first H-section in the transaction can contribute to τab busy period.
This requires that the first H-segment is not blocking. Those processes are found
as follows:

MPi(ab) = {τil ∈ hpi(τab) | (¬∃τix ∈ lpi(τab) | τix < τil)} (3.12)

The contributions from jobs arriving after tc is then

Wik(τab, w) |p>0=
∑

τij∈MPi(ab)

⌈

w − ϕseg
ijk (τab)

Ti

⌉

(3.13)

Finally, the total contribution from a transaction Γi to the busy period of τab

when process τik is used to start the busy period is given by

[Wik(τab, w), WBik(τab, w)] = TransactionInterference(τab, τik, w)

+ Wik(τab, w) |p>0 (3.14)

But since there can be many processes that can start the busy period, all of
them must be considered in order to find the upper bound on the blocking and

1In terms of execution time

non-blocking interference and the largest interference increase:

Wi
∗(τab, w) = max

∀τab∈XPi(τab)
Wik(τab, w) (3.15)

WBi
∗(τab, w) = max

∀τab∈XPi(τab)
WBik(τab, w) (3.16)

∆Wi
∗(τab, w) = WBi

∗(τab, w) − Wi
∗(τab, w) (3.17)

The set XPi used in (3.15) and (3.16) contains all processes in the transaction
Γi, that come first in their H-segments. The contribution from the transaction
Γa, which process τab belongs to, is found separately, but in a similar way.

3.1.5 Deriving the Response Times

It is now possible to explain how the worst case response time of process τab

is computed. The analysis is done for all instances of process τab. For a single
instance the completion time consists of following parts: the maximum block-
ing from low priority processes Bab, (ignored in this thesis), the non-blocking
interference from transaction Γa, the sum of non-blocking interferences from all
other transactions and the maximum blocking interference increase ∆Wac

∗, due
to one blocking H-segment among all transactions. The completion time of pab

is given by this equation:

wabc(pab) = Bab + Wac(τab, w, pab)

+
∑

∀i6=a

Wi
∗(τab, w, τac)

+∆Wac
∗(τab, w, τac) (3.18)

The response time of instance pab is found by subtracting the arrival time of
the instance from the completion time, wabc, and adding the offset, Φab. The
subtraction will reduce the completion time to the amount that overlaps with
the busy period:

Rw
abc(pab) = (wabc(pab) − (ϕabc + (pab − 1)Ta)) + Φab (3.19)

Notice that the first part of the equation without adding the offset is called
local response time. The global response times include offsets, and they are
computed when local response times have been found for all processes. The
number of instances of τab can be found, when we know the maximum length
of the busy period of τab, as previously shown in Figure 3.3. The upper bound

for the length of the busy period of τab, Labc, is computed as follows:

Labc = Bab + Wac
′ +

∑

∀i6=a

Wi
∗(τab, L, τac)

+ max(WBac
′ − Wac

′, ∆Wi
∗(τab, L, τac)) (3.20)

The length of the busy period is used to find the latest instance of the H-segment
Hseg

ac (τab)

pseg
L,abc(τab) =

⌈

Labc − ϕseg
0,abc(τab)

Ta

⌉

0

(3.21)

so the possible instance numbers of τab are included in the interval from pseg
0,abc(τab)

to pseg
L,abc(τab). The final worst-case response time of process τab is the response

time of the instance having the largest response time, maximised over all possi-
ble combinations with processes that may start the busy period:

Rw
ab = max

∀τac∈XPa(τab)

[

max
pab=pseg

0,abc(τab)...p
seg
L,abc(τab)

Rw
abc(pab)

]

(3.22)

The equations above are solved by using fixed-point iteration, and by applying
equation (3.22) to all processes in the system, the local response times are found.
When response times have been found for all processes, the algorithm updates
the offsets and jitters by using formulas (3.1) and (3.2). A simple pseudocode
illustrating the outer loop of the algorithm is shown below:

Algorithm 1 Outer Loop of WCDOPS+

initLocalResponseTimes(A)
repeat

for all Γi ∈ A do

for all τab ∈ Γi do

findLocalResponseTimes(τab) {Equation (3.22)}
end for

end for

for all Γi ∈ A do

updateGlobalResponseTimes(Γi)
updateJitterAndOffset(Γi) {Equations (3.1) - (3.2)}

end for

until converged

When WCDOPS+ detects that there are no changes in the response times, it
stops, and the analysis is said to have converged.

3.1.6 Messages and Non-Preemptive Processes

The analysis also includes support for non-preemptive scheduling. It allows us
to do response time analysis of the communication on a CAN bus by treating
messages as non-preemtive processes. Each communication channel will be rep-
resented as a pseudo processing element. Consequently, equation (3.18) is used
to find the queuing time of a message mab. The queuing time corresponds to the
completeion time of a process, except that it does not include the transmission
time of the message itself. As the message cannot be preempted during the
transmission, queuing implies the time that it needs to wait before starting the
transmission. Therefore the idea is to find the worst case queuing time due to
other messages having equal or higher priorities.

The analysis is extended by adding extra conditions to the reduction rules Task-
Interference and modifying the contribution coming from instances arriving
when p > 0. Another adjustment is done by introducing the maximum blocking
time from lower priority messages, which is bounded by the maximum trans-
mission time of all lower priority messages allocated to the same communication
channel as mab

Bab = max
∀i,∀mij∈lpi(τab)

Cm
ij (3.23)

This maximum blocking time is used when finding the worst case queuing time,
qabc(mab), which is similar to equation (3.18), where the blocking time was
ignored. In the rest of the algorithm the messages are handled as they were
processes. We apply this approach direcly as defined by Redell.

3.2 Allowing Several Predecessors

The original analysis only supports one predecessor for each process, and in our
case it will cause problems when using replication as fault tolerance technique.
The reason being that when a process is replicated, its successors will have
several predecessors. An example can be seen in Figure 3.5, where τ2 and τ3

will each get two predecessors when replication is added to all processes.

(a) The original process graph. (b) The corresponding fault-tolerant process
graph where all processes are protected with
replication and κ = 1.

Figure 3.5: Example illustrating that replication will create several predecessors
to processes, τ2 and τ3

Instead of focusing on the consequences of replication, we consider the problem
more generally. We will therefore modify the algorithm, such that several pre-
decessors are allowed, and thereby also including the special case of replication.
In each of the following subsections we will start by describing the modifica-
tions strictly neccessary to allow several predecessors, and then try to reduce
any pessimism introduced by the modifications.

We use pred(τab) to denote the set of immediate predecessors to process τab,
and succ(τab) as immediate successors to τab. Starting from the very beginning,
we need to consider how jitters and offsets need to be updated, when a process
is preceded by several processes.

3.2.1 Offsets and Jitters

The offset represents the minimum delay for the arrival of process τab due to
the execution of preceding processes. It is given by the best case response time
of the preceding process τap, which implies that process τab cannot start before
its predecessor τap has been executed.

When we have several predecessors, we can no longer compute the offset as
defined in equation (3.1). However, we still want the offset to express the earliest
possible arrival of τab. And the offset then becomes the latest possible best case

response time among all predecessors of process τab

Φab
1 = max

∀τap∈pred(τab)
Rb

ap (3.24)

This way of updating the offsets is very simple, and it works correctly when
the predecessors run on different processing elements or when there is only one
predecessor. However, if some of the predecessors are mapped on the same
processing element, the value of the offset might be less correct. The reason
being that the best case response time is found by adding the offset and the
best case execution time Cb only. If some of the predecessors run on the same
processing elements, the best case response times of the predecessors will be
too optimistic (too low) since they will preempt each other and may force the
analysis to consider some phasings that are not possible.

Nevertheless, this problem will not lead to incorrect worst case reponse times,
because the preemption will be contained by jitters, as they depend on the worst
case response time, Rw, that includes the interference from other processes.
And since the phasing of processes and segments does depend on jitters, the
computation of release times is still valid.

We can improve equation (3.24) and thereby fine tune the values of the offsets.
It is possible, because we know that predecessors of τab running on the same
processing element may preempt each other. Therefore we propose a modifica-
tion to the algorithm that can find more exact values of the offsets in order to
speed up the convergence of the algorithm.

We start by grouping τab predecessors into sets by their respective processing
elements, as shown by equation (3.25) below

SPE(Ni, τab) = {τap ∈ pred(τab) | M(τap) = Ni} (3.25)

Each group is then considered to produce a total best case delay equal to the
sum of all best cases execution times Cb, and an initial offset, equal to the least
offset among all processes in the group. The sum of the initial offset and the
total best case delay is treated as possible offset candidate, and the largest offset
candidate is selected as the offset to process τab

Φab
2 = max

∀Ni∈N

 min
∀τap∈SPE(Ni,τab)

(Φap) +
∑

∀τap∈SPE(Ni,τab)

(

Cb
ap

)

 (3.26)

The offset found in equation (3.26) will be larger than (3.24) in some situations,
but not all. To ensure that the offset is always on the safe side, we take the
maximum of these two equations, such that the final version of the offset becomes

Φab = max(Φab
1, Φab

2) (3.27)

The jitters are found in a similar way to offsets. A jitter is used to express
the maximum delay, a process τab can expire after it has arrived at time Φab.
This maximum delay is therefore found as the difference between the earliest
possible arrival of the process τab and the latest time for release, i.e. when all
predecessors are completed. If we look at the predecessors, we can notice, that
the worst case response time of each predecessor contains interference from other
processes, including other predecessors of τab. Hence the predecessor having
largest response time can be used to find the jitter of process τab as follows:

Jab = max
∀τap∈pred(τab)

Rw
ap − max

∀τap∈pred(τab)
Rb

ap (3.28)

It is shown in Figure 3.6 how the offset and the jitter are found for τab. The
predecessors of τab are pred(τab)={τ1, τ2, τ3, τ4}. The white boxes represent
the best case response time, the light-blue boxes are offsets, and the pink boxes
add the part from the worst case response time.

(a) A process graph, where process τab has four predecessors.

(b) All processes run on dif-
ferent processing elements.

(c) Process τ1 runs on N1, all other pro-
cesses run on N2.

Figure 3.6: Illustrating the calculation of jitter and offset of process τab.

In the first case, Figure 3.6(b), all predecessors are mapped to different pro-
cessing elements, and the offset is found according to equation (3.24), i.e. the
maximum best case response time among all predecessors, which is τ4 in the ex-
ample above. In Figure 3.6(c) processes τ2, τ3 and τ4 run on the same processing
element, and the offset is computed as the sum of their best case execution times
plus the minimal offset among them.

After each iteration of the algorithm all local response times are re-computed.
The jitters, the offsets and the global response times are updated for each process
based on the newly found numbers. The offsets and the jitters of process τab are
computed with values retrieved from its predecessors. When considering just a
single predecessor, updating of the processes is done recursively in depth-first
way. In the cases with several predecessors, the changes must be propagated
in a breadth-first way, because all predecessors of τab must be updated before
updating process τab itself.

3.2.2 H-sections and H-segments

The next part of our modifications concerns changes in the definitions of H-
segments and H-sections. Recall, that all processes of a segment will belong to
the busy period of the process under analysis. In order to satisfy this property
with several predecessors, we must derive a new definition of H-segments and
H-sections.

The original requirement that all processes in a segment must be in hpi(τab)
is unchanged, but we need to redefine the condition whether two process from
hpi(τab) are in the same segment. Two processes having higher priority than τab

belong to the same segment, only if they have the same set of nearest ancestors
that are not in hpi(τab). When working on segments, this set of ancestors of
process τik is formally defined as:

SP seg(τab, τik) = {τif ∈ Γi | τif 6∈ hpi(τab) ∧ τif < τik∧

(¬∃τil 6∈ hpi(τab) | τif < τil ∧ τil < τik)} (3.29)

This requirement is also used for building H-sections, and two processes from
hpi(τab) are in the same H-section if they have identical ancestor sets, which are
defined below:

SP (τab, τik) = {τif ∈ lpi(τab) | (τif < τik∧

(¬∃τil ∈ lpi(τab) | τif < τil ∧ τil < τik))} (3.30)

All hp-processes in Figure 3.7 have different SP-sets, as they have different
ancestors SP seg(τab, τ4)={τ2}, SP seg(τab, τ5)={τ3} SP seg(τab, τ6)={τ2,τ3}.

Figure 3.7: Since τ4, τ5 and τ6 each have different SP sets, they are in different
segments

Now, we can derive the updated definitions of H-segments

Hseg
ij (τab) = {τik ∈ hpi(τab) | SP seg(τab, τij) = SP seg(τab, τik)} (3.31)

and H-sections

Hij(τab) = {τik ∈ hpi(τab) | SP (τab, τij) = SP (τab, τik)} (3.32)

The new definitions for H-sections and H-segments are backward compatible
with the original ones, given by equations (3.9) and (3.8). The reason is because
intermediate processes in lp(τab) are still not allowed. A process is said to
precede an H-segment if it precedes all processes in the segment, τab < Hseg

ij (τab).
As each process can have more than one predecessor, the set of immediate
predecessors to an H-segment pred(Hseg

ab (τij)) has to be updated to reflect this:

pred(Hseg
ij (τab)) = {τip ∈ Γi|τip < Hseg

ij (τab) ∧
(

∃τik ∈ Hseg
ij (τab)|τip ∈ pred(τik)

)

} (3.33)

Similarly, the definition of succ(Hseg
ij (τab)) is updated in order to reflect that

pred(τik) is not longer a single process, but a set of processes instead:

succ(Hseg
ij (τab)) = {τik ∈ Γi|τik /∈ Hseg

ij (τab) ∧
(

∃τil ∈ pred(τik)|τil ∈ Hseg
ij (τab)

)

} (3.34)

In the original version, an H-segment was blocking, if its predecessor (it could
only have one) was in lp(τab). With more than one predecessor this no longer
applies directly, and the question is whether a segment is blocking, when all its
predecessors are in lp(τab). Looking at Figure 3.8(a), it can be seen that τ4 and
τ5 defines two different segments, each consisting only of the process itself. It is
also obvious that they are blocking, since τ4 will always execute before τ2 and
τ3, but τ2 and τ3 must always execute before τ5. As a result τ4 and τ5 can not
be in the same busy period and they will be blocking.

Considering Figure 3.8(b), processes τ5 and τ6 are non-blocking, since there
might be an execution path as follows: τ1, τ3, τ4, τ2, τ5, τ6. In that case, τ5

and τ6 will be in the same busy period of τab, and they are no longer mutually
blocking. We therefore notice, that all predecessors pred(Hseg

ij (τab)) must be in
lp(τab) for an H-segment to be blocking.

(a) Processes τ4 and τ5 each de-
fines two segment which are block-
ing

(b) The segment defined by process τ6 is
not blocking

Figure 3.8: Example of Blocking and Non-blocking Segments

However, in some cases this assumption is not strong enough, as shown in the
example in Figure 3.9. Neither segment Hseg

4 or Hseg
5 is blocking, even all

predecessors are in lpi(τab). They can both be in τab busy period when the
execution flow is τ1, τ3, τ2 and so on.

Figure 3.9: Example where segments Hseg
4 and Hseg

5 are not blocking according
to equation (3.35).

Therefore a stronger condition for defining whether an H-segment is blocking
or not is needed. Instead we say that not only the predecessors must be in

lpi(τab), but also all successors to the predecessors that are not in the same
H-section. More formally, the following must be satisfied for a given H-segment
to be blocking:

pred(Hseg
ij (τab)) ⊂ lpi(τab) ∧

(

∀τik ∈ pred(Hseg
ij (τab)) |

(

∀τil ∈ succ(τik) | τil ∈ Hseg
ij (τab) ∨ τil ∈ lpi(τab)

))

(3.35)

The new definition will ensure that any two blocking segments cannot contribute
to the same busy period of τab. An informal proof follows. A segment is ready to
run only when all its predecessors have finished executing. If there are no other
hp-processes, which are not in the segment, following the predecessors, then the
segment must be the only segment ready to run when all the predecessors have
finished. Since all predecessors are in lp, there can not be any other segment
ready to run at the same time.

Another definition that must be refined when considering several predecessors,
is when a segment precedes a process. Redell defines this, as when the process
does not belong to the segment and is preceded by pred(Hseg

ij (τab)). It will not
hold in the case with several predecessors, which is shown in Figure 3.10.

Figure 3.10: Example illustrating that a given process (τ4) does not necessarily
precede a segment (Hseg

τ3
= {τ3, τ5}) when it is preceded by the predecessor of

the segment (τ1)

According to our definitions, there are two segments, Hseg
τ3

= {τ3, τ5} and
Hseg

τ4
= {τ4, τ6}. It is clear that even though τ4 is preceded by the prede-

cessor of the segment Hseg
τ3

, τ1, it is not proceeded by τ5. Thereby it is not
preceded by the segment as it is not preceded by all elements in the segment.
Therefore we change the definition to be more concise

Hseg
ij (τab) < τik if and only if

(

τik /∈ Hseg
ij (τab)

)

∧
(

∀τil ∈ Hseg
ij (τab)|τil < τik

)

(3.36)

This definition is used only in some of the reduction rules of TaskInterference,
which were mentioned in Section 3.1.4. The reduction rules are used to eliminate
any processes that, even though they were part of a branch, could be eliminated
anyway. When introducing several predecessors, we must consider these reduc-
tion rules and make sure that no processes are wrongly eliminated. Looking
through each of these reductions rules, the only thing that must be changed
concerns the elimination of processes that cannot occur in the same busy period
because of the order they will be executed. This particular reduction is defined
as part of rules 1a, 4b and 5b. We keep the following part from reduction rules

Hseg
aj (τab) < τab (3.37)

but change

Hab(τab) 6= Haj(τab) (3.38)

such that we are still sure that τaj will not interfere with τab even with sev-
eral predecessors. This is for sure fulfilled when there is a low-priority process
between Hab(τab) and τaj . In that case, the low-priority process will always en-
sure that both processes cannot occur for a given job in the same busy period.
Therefore we change (3.38) to the following:

∃τil ∈ Γi | τil ∈ lpi(τab) ∧ Hseg
ik (τab) < τil ∧ τil < τij (3.39)

Now, we can continue explaining the changes to be applied in BranchInterference
that completes our modifications in the original algorithm to enable support for
multiple predecessors.

3.2.3 Computing Transaction Interference

We will now consider the transaction interference computed by function Branch-
Interference, which was introduced in Section 3.1.4. When allowing several pre-
decessors the function needs to be refined accordingly. In order to clarify the
reasons for the changes, we will explain how the original version works and
identify some possible pitfalls.

The function is a recursive function that traverses the process graph and finds
the maximum contribution. The transaction is divided into branches, which

are sub-parts of the transaction graph. Each branch starts at a process τiB /∈
hpi(τab), and includes all processes preceded by τiB , which is called the branch
root process. A branch may also contain other branches, also called sub branches,
SB.

If τiB is a predecessor of an H-segment, then processes in succ(Hseg
im (τab)) will

be the roots of the sub branches. Also those successors of τiB that are not in
Hseg

im (τab) will start new sub branches. In Figure 3.11 processes τ1, τ4 and τ5

define branches, with τ4 and τ5 being sub branches of the branch with root at
τ1.

Figure 3.11: Branches in a Transaction

BranchInterference goes through all branches and finds the maximum non-
blocking interference, branchI, achieved from each branch, if no blocking seg-
ment is allowed to execute. It also finds the maximum interference increase,
branchDelta, if the branch is allowed to contribute with one blocking H-segment.
The pseudocode of the original algorithm can be found in [33], Section 3.

A branch will contribute with section interference, sectionI, which is the total
interference of all processes in section Him(τab) preceded by branch root τiB

sectionI =
∑

τij∈Him(τab)

TaskInterference(. . . , τij , . . .) (3.40)

Please note that some parameters to TaskInterference in equation (3.40) were
left out for the sake of simplicity.

In Figure 3.11 the branch starting at τ1 may produce section interference with
processes τ2, τ3, τ5, τ8 and τ9. However, the interference of each particular

process is computed according to the reduction rules in TaskInterference, and
therefore some processes could be excluded from the section interference. Sim-
ilarly, sectionI for the branch at τ4 includes process τ7, and for the branch at
τ6 is the sum of τ8 and τ9.

Besides the section interference, a branch can contribute with interference from
its sub branches, subBranchesI, which is found as the sum of their individual
branch interferences

subBranchesI =
∑

τix∈SB

branchI(τiB) (3.41)

And the branch interference of the branch being analysed is found to be

branchI(τiB) = max(sectionI, subBranchesI) (3.42)

because the processes in Hseg
im are in precedence conflict with other H-sections

in the sub branches.

If we apply this approach directly on transactions with multiple predecessors,
the algorithm may produce very pessimistic results. The pessimism is largely
caused by the fact that some processes would be counted several times when
finding the section interference.

Figure 3.12: Pessimism in BranchInterference

Now we will consider the example in Figure 3.12. According to equations (3.40)
- (3.42), the branch interference for the branch starting at τ1, can either be the
section interference of Hab(τ2) or the interference of its sub branches. By the
original definition, there are two sub branches starting at τ3 and τ4, respectively.
Therefore, the interference from the sub branches is branchI(τ4)+ branchI(τ4).
As a result, processes τ5 and τ6 are added twice, once for each sub branch,
resulting in a total interference that is too large and pessimistic. The reason
is that it was originally assumed, that none of the sub branches would overlap.
Therefore, in order to reduce the pessimism we propose following improvements
to function BranchInterference.

Our solution to the problem is not to sum the process interferences directly, but
group the processes that might contribute into sets, which we call interference
sets. It means that we change equation (3.40) to a set

sectionIS = {τij ∈ AM(τiB) |

TaskInterference(. . . , τij , . . .) > 0} (3.43)

where AM is the set containing all processes from all sections in the branch that
have τiB as immediate predecessor

AM(τiB) = {τij ∈ Him(τab) | τiB ∈ pred(Him(τab))} (3.44)

The contribution of an interference set is computed as

C(IS) =
∑

τij∈IS

Cij (3.45)

which produces the same value as in the original version of sectionIS. Finally,
the branch interference is updated to reflect the changes

branchIS(τiB) =

sectionIS ,
if C(sectionIS) ≥ C(subBranchesIS)

subBranchesIS ,
if C(sectionIS) < C(subBranchesIS)

(3.46)

and the total sub branch interference is now the union of all sub branches
interference sets

subBranchesIS =
⋃

τiB∈SB

branchIS(τiB) (3.47)

In equation (3.46) the branch interference is now found as the interference set
that either represents the largest contribution among alls sub branches or the
section interference of the current branch. The result now does not include
duplicated process interference, as with the simple addition, and hereby the
pessimism of BranchInterference is reduced as desired.

Yet another effect of introducing multiple predecessors is that now H-segments
and H-sections may have immediate successors that are in hpi(τab) because
of different SP-sets. Therefore a sub branch root processes might also be in
hpi(τab) and therefore has to be included when computing section interfer-
ence. If the branch root τiB precedes several segments, then none of them
can be blocking according to (3.35) and the branch interference is found by
(3.46). If the segment is blocking, the maximum non-blocking interference is
C(subBranchesIS), while the maximum interference increase is obtained as
C(sectionIS) − C(subBranchesIS), that is in the same way as in the original
algorithm.

We have included the pseudocode of the modified function BranchInterference
in Appendix C. The parameters used in the pseudocode are written according
to the original pseudocode, which is given in [34].

3.3 Conditional Analysis

Now we will extend the algorithm further to provide conditional scheduling. As
previously noted, this thesis addresses fault-tolerant applications that can be
modelled as conditional process graphs, where conditions on edges serve as fault
guards. There are several ways of computing process response times on such
process graphs, depending on the requirements to the results. In the following we
will describe some of them as described in [31], which can be directly combined
with the response time analysis algorithm used in the thesis.

The first approach is called ignoring conditions (IC). It is a very simple and
naive solution, because the conditions are ignored completely. It means that
the application graph is treated as a large unconditional graph. In this case,
all processes are allowed to interfere with each other, even those that belong to
mutually exclusive fault scenarios. This is why the results obtained by this sim-
plified approximation will be very pessimistic. However, the IC-method might
be used in some situations, when the precision is less important. An example
could be if the designer only needs a fast, even if imprecise, estimate of the
worst-case response times.

The second method is called brute force (BF) approach. The response times
are computed by decomposing the original fault-tolerant process graph into the
set of corresponding non-conditional graphs, each representing a unique fault
scenario. The response time is therefore found for each scenario separately,
making the results much less pessimistic. However, this method might be very
time-consuming, as it requires a lot of computations to be repeated for each
scenario.

The third approach, called condition separation (CS), uses the fact that some
processes are mutually exclusive because they are in different fault scenarios.
Thereby we avoid the expected computational overhead by splitting into each
of the scenarios as described by BF. Simultaneously, we should get more precise
results than the IC-method. The remaining part of this section is dedicated to
our proposal to modifications to WCDOPS+ algorithm, that are necessary to
adopt it to CS-based response time analysis.

An example in Figure 3.13 shows why the pessimism of IC in some cases are not

acceptable and CS or BF must be used instead. Notice that the response time
found using IC for process τ2 in Figure 3.13(a) is 5, thereby not meeting the
deadline of 3. But as both faults cannot occur at the same time, it is shown in
Figures 3.13(b) and 3.13(c) that the actual worst case response time for process
τ2 is 3.

(a) A Fault-Tolerant Process
Graph. If ignoring conditions, then
the worst case response time for τ2
is 5 and the deadline is violated.

(b) The situation where
process τ1 fails. Worst
case response time for
for τ2 is 3

(c) The situation where
process τ2 fails. Worst
case response time for
for τ2 is 3

Figure 3.13: An example illustrating that Ignoring Conditions might falsely
report violated deadlines. P1 = 2, P2 = 1 and κ = 1. All execution times are 1
and deadline for process τ2 is 3.

The evaluations of the proposed methods can be found in Chapter 7, where the
three approaches are compared according to computation time and the precision
of the results.

3.3.1 Limitations of the Algorithm

Before we start explaining how the Condition Seperation (CS) method can be
used, it is important to clarify the assumptions that have been made when
applying this approach.

The first problem will occur if we allow deadlines to be larger than periods.
According to our fault model, the number of faults κ is the maximum number
of faults during one period. If the execution of a process is postponed over
several periods, the interferences from other instances become unpredictable.
The response time analysis is based on the assumption that the transaction
being executed is kept unchanged for every period. If two consecutive instances

experience different faults, the transactions will be different. This will lead to an
undetermined interference from instances that might be pending from previous
event arrivals. For this reason it has been assumed that the deadlines of the
processes can not be larger than the period the transaction.

Another limitation concerns the number of independent transactions. Assume
that the system consists of more than one transaction. First we consider the
situation where all process graphs have identical periods and are phased such
that all arrivals of events occur simultaneously. In that case, we must consider
all possible combinations of faults across all transactions. If we assume that
κ is the total number of faults for all transactions, the number of scenarios to
be considered is proportional to κ and the total number of processes. But if κ
defines the number of faults in each transaction, the problem grows significantly.
If we instead assume that each transaction defines its own period or the arrivals
of the events do not occur simultaneously, the transactions will be shifted in
some way. It causes a problem similar the one described above, because different
instances of the same transaction might have different interferences to the other
transactions. As a result the problem grows even more, and the previously
described solution will not be feasible in terms of computation time.

Another point to be made, is that if the application model contains several inde-
pendent transactions with different periods, there are several ways to interpret
the meaning of tolerating κ faults. The simple solution would be to let κ define
the maximal number of faults for each job of a transaction. Another solution is
to let the fault model define κ for each transaction.

However, in some cases the designer can achieve fairly accurate results by merg-
ing all transaction into one large hyper-transaction and carry out RTA on it as
it was a single transaction. An example is given in Figure 3.14. We assume
that the designer have combined all transactions into a single hyper-transaction
before using our analysis. The number of faults given in the fault model, will
therefore be the total number of faults in the combined hyper-transaction. It
should be acknowledged that this simplification does not take such things as
event arrivals, synchronisation and the software architecture in general into ac-
count.

(a) Γ1 (T = 100) (b) Γ2 (T = 50)

(c) Γc (T = 100)

Figure 3.14: An Example of Merging Two Transactions (Γ1, Γ2) Into One Hy-
pertransaction (Γc)

To summarise our limitations, the response time analysis presented in this the-
sis only works with applications containing a single transaction. Additionally,
deadlines of processes are not allowed to be larger than the period of the trans-
action.

3.3.2 Reducing Interference

In this section we will describe how we modify the response time analysis algo-
rithm to handle fault conditions. Since we use only two methods to provide fault
tolerance, replication and reexecution, we have to analyse the consequences of
each of the methods.

Considering replication no modifications are required as explained in the fol-
lowing. Recall that the definition of replication is that all replicas must be run
in order to tolerate the appropriate number of faults. As we always assume
the worst case situation, we must also always assume the worst case for the
replicas. When considering the scheduling, this is the case when all replicas
except one fails. In that case, the only to finish will be one with the longest
response time. Thereby the execution of the sucessors to the replicas are de-
layed as much as possible. As a result, all replicas are considered independent
processes that must be scheduled as any other processes. The general extension
with several predecessors explained in Section 3.2, is therefore fully applicable
in this situation.

If we use reexecution to protect a process against transient faults, the situation
becomes slightly different. In contrast to replication, a process is only reexe-
cuted, when a fault has happened. This information can be used to reduce the
interference between those instances of processes that are mutually exclusive.

As described in the earlier sections, the algorithm finds the worst-case response
time for each process. This is done by generating phasings of other processes
in the transaction such that completion time of the process being analysed is
delayed the most. A process can be delayed due to preemption by high priority
processes, but some of the high priority processes cannot affect the execution
of the process under analysis because of the precedence conflicts. Such conflicts
are resolved by the reduction rules, and the consideration of mutually exclusive
processes will be similar to that.

Two processes are said to be in condition conflict, if they belong to mutually
exclusive parts of the fault tolerant process graph and therefore their executions
will never overlap. By different scenarios we mean the conditional branches in
the graphs, as shown in Figure 3.15.

Figure 3.15: Condition Conflicts Example. Processes τ
[1]
1 , τ

[2]
2 and τ

[3]
3 are in

different scenarios and may not interfere.

The figure demonstrates a transaction with three processes, all being protected
with reexecution and κ = 1. If one of the processes fails, it will be reexecuted,
which is captured by the conditional edge marked with F. The execution of this
new branch created by the fault is incompatible with all other possible scenarios
in the non-faulty branch. More details on how we define and find all scenarios
are given in Chapter 4.

In this particular example κ is 1, and thus only one of three F-edges can be
chosen during the transaction period, which means that there are four possible
scenarios contained by the graph (including the one, when no faults occur).
This reveals the meaning of condition conflicts - the processes are allowed to
interfere within the same scenario only. For instance, if process τ1 fails, then

its reexecution will produce a new scenario with τ
[1]
1 and τ

[1]
2 . These processes

will contribute to the execution of other processes, nor they will be affected by

it. The same is applicable for processes τ
[2]
2 , τ

[2]
3 and τ

[3]
3 .

The solution is now to add an additional reduction rule to TaskInterference to
resolve conditional conflicts, which can be stated as

SL(τab) ∩ SL(τaj) = ∅ (3.48)

where the set SL(τab) represents all scenarios, process τab participates in. When
this is satisfied, τab and τaj will not interfere with each other. However, applying
this reduction in TaskInterference is not very efficient, because a lot of work
has to be done prior to TaskInterference. We can reduce the amount of time

spent on the computations by inserting this reduction rule at outer stages of
the response time analysis. Equation (3.22) corresponds to the outmost loop
of the RTA algorithm used to find the worst-case response time of process τab,
when the busy period is started by τac. If we include the reduction rule as a
part of the loop, we can prevent the algorithm from wasting its time on the
combinations of τab and τac, which are mutually exclusive. This is expressed as:

Rw
ab = max

{∀τac∈XPa(τab)|SL(τab)∩SL(τac) 6=∅}

[

max
pab=pseg

0,abc(τab)...p
seg
L,abc(τab)

Rw
abc(pab)

]

(3.49)
Recalling that XPac contains all processes, that come first in their respective
segments, we can improve the situation further by using (3.48) when building
H-segments and sections. This will bring down the number of processes in
segments and increase the speed of the algorithm further.

3.4 Pessimism and Performance

In the previous section we presented our approach of including condition sep-
aration in WCDOPS+. Processes that belong to different fault scenarios are
mutually exclusive and thereby may not interfere. Nevertheless, in some cases
this method is not capable of eliminating as much interference as when all scenar-
ios are analysed separately. For instance, the reduction rule will be less effective
if a transaction contains parallel chains of processes. If the chains are joined
in another process, the reexecution may produce many scenarios that include
all processes in the chains. This situation will be explained by the following
example, and the corresponding process graph is shown in Figure 3.16.

The process graph shows a transaction where only process τ3 is protected by
reexecution. In principle the other processes may be protected as well, but in
order to keep things simple they are not protected. Assume that all processes
are mapped on the same processing element. Let processes τ3 and τ5 have
higher priorities than process τ2. The reexecution of τ3 will produce new fault

scenario starting at τ
[3]
3 . Process τ2 will be included in this scenario, because

τ
[3]
6 joins the corresponding branches. As a result the algorithm is not able to

eliminate the condition conflict between τ
[]
5 and τ

[3]
3 and both processes will

influcence the response times of τ
[]
2 . Hence the response time of τ2 becomes

very pessimistic due to preemption by τ
[]
3 , τ

[3]
3 , τ

[]
5 and τ

[3]
5 even though some

of them are mutually exclusive. Of course, if we apply brute force analysis, this
problem never occurs. We can therefore expect that the results obtained by the
condition separation approach will have longer response times compared to the

brute force method.

Figure 3.16: An Example Illustrating Potential Pessimism of the Condition

Separation Approach. Processes τ
[3]
3 and τ

[]
5 will both interfere with process

τ
[]
2 even though they are mutually exclusive.

In addition we would like to discuss the execution time of the algorithm when it
used on the fault-tolerant process graphs. As it was described in the beginning
of this chapter, WCDOPS+ is able to compute upper bounds on the response
times even if the deadlines are larger than periods. For reasons discussed in
subsection 3.3.1, we only consider the case when the deadline is smaller than the
period. In practice, this is modelled by letting the period be much larger than
the deadline such that response times do not extend the period even when faults
happen. This might have a negative impact on the execution time, because the
algorithm will compute all possible phasing of all processes. As we only consider
the case where the deadline is less than the period, we know beforehand that
the phasing belonging to other periods of the transaction is not feasible. The
algorithm unfortunately needs to calculate these phasings before it is able to
realise that they are not able to interfere. We have not tried to evaluate how
significant the problem is, nor optimised this particular matter. The reason
is that it will not generally be the case that the period is smaller than the
deadline and that a transaction cannot be interfered from other, differently
phased, transactions.

We have now completed the theoretical foundation of the response time analysis

used in this thesis. In Chapter 6 we present major details on the implementation
of WCDOPS+ and the integration with the rest of our optimisation framework.
The evaluation results are presented in Chapter 7.

Chapter 4

Fault-Tolerant Process Graphs

Process graphs are widely used to describe interacting processes, and there
also exist several extensions that can model conditional flows in applications.
In Chapter 2 we presented the concept of fault-tolerant process graphs, also
abbreviated as FTPG. We have also described how we can analyse the response
time of an application modelled by a fault-tolerant process graph. In this chapter
we are going to give more details on how to build and manipulate such graphs.

As mentioned above, there exist several approaches to work with FTPGs [15, 24].
In [23] it is described how an FTPG with messages can be built. The proposed
method only addresses reexecution of processes and not replication. In [32] it is
shown how to build graphs that support both reexecution and replication but
without messages. Another issue is that both sources describe how to build
graphs but not how to update their structure during design transformations.
Such transformations are needed when doing optimisation of policy assignment
and mapping. Therefore, it will be much more efficient to do incremental up-
dates to the graph instead of rebuilding the graph from scratch every time we
change the configuration.

Due to these reasons we have proposed several graph transformation methods.
As a result, we start by analysing and defining the elements and their properties
in an FTPG in Section 4.1. After that, Section 4.2 explains the internal data
structures used to maintain the graph, including two hash tables that speed up

the operations on the graphs. In Section 4.3 we describe how to efficiently add
and remove replication for a given process, and the operations concerning the
reexecution are given in Section 4.4. For each of these two sections, we firstly
present the solution without messages and then extend it to the situation with
messages.

Notice that the algorithms proposed in this chapter are optimized for speed,
while memory consumption has been given a lower priority. The reason being
that most operations do not require much memory, whereas the traversing a
graph can take a considerably large amount of time. Since we want to achieve
fast performance when modifying the graph, we try to minimise the number of
traversals by storing some information in the memory. Thus we assume that
there is enough memory available.

The pseudocode listings of all algorithms proposed in this chapter can be found
in Appendix C. The pseudocode listings are purposely rather detailed, since
it should be possible to implement the algorithms without knowing too much
about the theoretical details. Additionally, some listings contain references to
the corresponding equations in this chapter or methods in the program source
code.

4.1 Definitions

A fault-tolerant process graph, denoted Gi, is a special version of a conditional
process graph, since there can be only one boolean condition for set of transitions
from a given process in the graph. Such a condition is called the fault condition.
A fault condition becomes true if and only if the process associated with the
condition fails. Likewise, no fault implies that the process did not fail.

Examples of FTPGs has been shown previously in Figures 2.8 and 2.9. The
transition corresponding to when the fault condition is true, is marked with
a red colour and possible tagged with an F. Black edges are taken when the
condition is false. For a given process, we assume that there can only be one
outgoing transition with a fault condition that is true.

A fault-tolerant process graph Gi is derived from the corresponding process
graph Γi. The difference is that the processes in Gi are protected against faults.
To protect a process against faults, we use the two fault-tolerance techniques
described in Section 2.2: reexecution and replication. The set of processes in the
Gi protected by reexecution is denoted Px. Correspondingly, the set of processes
protected by replication is denoted Pr.

If all processes are protected against faults, the process graph is said to be
fully protected. For the operations described in the following, an FTPG does
not have to be fully protected. In the real world there might be many reasons
to have only partial protection of an application consisting of many processes.
Therefore, we also allow to model applications, where only a subset of processes
have to tolerate faults. On the other hand, it is required that any protected
process in Gi must resist exactly κ faults.

In order to create and modify an FTPG, we must understand exactly how to
distinguish the elements (also called vertices) in such a graph. First of all, a
process τab might be represented several times in the graph, for instance when
we model reexecution. Looking at Figure 2.8 we can observe that process τ4

occurs five times in the graph. What separates these five elements, are the
conditions that model the faults happened prior to process τ4 and in the process
itself. These faults can be found by traversing the graph in Figure 2.8 upwards
starting from each instance1 of τ4, as shown in Table 4.1.

Instance of τ4 Faults happened Processes executed prior to τ4

τ4 τ2 τ1, τ2, τ3, τ2/2

τ4 τ1, τ2, τ3

τ4/2 τ4 τ1, τ2, τ3, τ4/2

τ4 τ3 τ1, τ2, τ3, τ3/2

τ4 τ1 τ1, τ1/2, τ2, τ3

Table 4.1: Representation of τ4 in Figure 2.8

The table shows for each of the five instances, which processes have executed
previously. It is noticeable that the number of occurred faults is not enough
to identify the different situations. For a given number of faults, the number
of processes executed previously is fixed, but the combinations of elements are
different. Since each process might have a different execution time, the influence
from previous processes might be different. As consequence we would need to
capture this difference by introducing a slack in order to hide, which process
failed previously. Given that the goal is to avoid any slack, this approach is
not feasible. Instead we use a list of faults that already have occured, as an
unique property of each process. The list of previous faults, called fault list, is a
multiset of the processes that have failed prior to that particular element in the
graph. If a process has not failed nor does it precede the given process, it will
not be included in the fault list. In case a process has failed more than once, it
will be included in the list several times corresponding to the number of times
it has failed previously.

1Notice that instance here means an occurrence of a process in the graph

However, in some cases the fault list would not be enough to uniquely describe
a process either. Looking at Figure 2.9 it is obvious that replication causes the
same process with identical fault lists to be represented several times in the
graph. To capture this we introduce another property called replica number.
Any replicas of a given process with a given fault list, are assigned consecutive
numbers starting from 1 in order to uniquely identify these elements. As a result,
each vertex in an FTPG is described by the properties shown in Table 4.2.

Property Notation

Original process τab

Fault list f

Replica number r

Table 4.2: Properties of a Process in an FTPG

We will therefore discard the notation used in Section 2.2. Instead, each vertex
of an FTPG will be denoted in the following way: τf

ab/r. Here ab identifies

the original process, f denotes the fault list and r is the replica number. We
apply the same notation to messages, such that a message mi, is now denoted
mf

ab/r. Notice that even though a message cannot be replicated, we still use the

term replica number. As it will be described in Section 4.3, additional messages
might be created when a process is replicated. We will, similarly to processes,
assign increasing consecutive numbers to these messages such that the replica
number of a given message corresponds to the replica number of the sender of
the message.

As an example of this notation, please again consider Table 4.1. The five occur-

rences of process τ4 will be now labelled as follows: τ
[2]
4/0 , τ

[]
4/0, τ

[4]
4/0 , τ

[3]
4/0 , and

τ
[1]
4/0 .

We denote the set containing all occurrences of a given process τab in Ga as
RS(τab):

RS(τab) = {τf
ac/r ∈ G|ab = ac} (4.1)

For the sake of simplicity the replica number can be left out, such that τf
ab/0

instead is written as τf
ab. In that case it is implied that r = 0. We will use the

term original process for a process, τf
ab/r, when f = ∅ and r = 0 that is the

process existing in the initial process graph. The same applies for messages, in
that case called an original message.

The fault list is a multiset of processes, such that a given process might exist
several times in a given fault list. We define the function m to indicate how

many occurrences of τab there are in the fault list f :

m(τab, f) = |{τac ∈ f |ab = ac}| (4.2)

Generally, a number of properties exists for a given FTPG. First, a fault list of
a given process must always be a superset of all fault lists of all predecessors in
the graph:

∀τfb

ab/rb
, τfc

ac/rc
∈ Ga|

(

τfb

ab/rb
< τfc

ac/rc
⇒ fb ⊂ fc

)

(4.3)

If a process is replicated, then other processes in the fault-tolerant graph cannot
have this process in their fault lists:

∀τab ∈ Pr |
(

¬∃τfc

ac/rc
∈ Ga|τab ∈ fc

)

(4.4)

Consequently, if a process is reexecuted, then there cannot be any occurrences
of that process with a replica number different from zero:

∀τab ∈ Px |
(

¬∃τfc

ac/rc
∈ Ga|rc 6= 0

)

(4.5)

4.2 Data Structures

The internal representation of an FTPG is very simple. All vertices are doubly-
linked, meaning that all processes know their immediate predecessors and suc-
cessors. It is important to note that messages are also modelled as vertices in
the graph. Hence, if a data dependency between processes τx and τy exists, such
that τx sends message mi to τy then mi is modelled as a vertex between τx and
τy.

There are several reasons for letting messages be vertices in the graph instead
of being a property of a dependency edge. First of all it resembles the idea of
a dependency: a process cannot start before the previous element, a process
or message, has finished. Secondly, in the response time analysis, a message is
modelled as a non-preemptive process. Therefore it makes sense to represent
the message the same way as a process. Additionally, in our model the CAN-bus
is used, so the messages are broadcasted and might have several recipients. In
that case, the same message would need to be a property of several arcs. If the
message is connected to all recipients, the model is much simpler. It implies
that a vertex representing a message can only have one predecessor.

However, the doubly-linked structures are not very efficient in situations, when
we need to search for elements. In order to improve the performance of op-
erations on an FTPG, we will use two lookup tables to minimise the need for

traversing the whole process graph. Notice, that the tables will not store any
information that cannot be found by traversing the FTPG using the relations
between the vertices. The lookup is done by using hash code of the keys, and
therefore assumed to perform in constant time2.

The first table is called LFTA. It provides lookup of processes in the graph via a
key consisting of process τab and a fault list f . The returned value will contain
a process with a given fault list including all replicas of the very process. In
Appendix E.2 an example of an FTPG is given in Figure E.7. The corresponding
contents of LFTA are given in Table E.1.

The other table, referred to as LPFL, is used to locate all instances of a process
τab that have the given number of faults in their fault list. In other words, we
can locate those instances of τab that would be executed, if the application had
experienced the given number of faults. The replicas are not stored in the table,
and only processes with replica number r = 0 can be located via LPFL. The
reason being that once τf

ab/0 has been found, table LFTA can be used to obtain

the corresponding replicas. Continuing the example from before, the contents
of LPFL of Figure E.7 is given in Table E.2.

In the following sections we will clarify with examples, when and why these
tables can be efficiently used.

4.3 Replication

4.3.1 Adding Replicas

In this section we will describe how to replicate process τab in Ga. Initially, τab

is not protected by any fault-tolerance at all, and after the replication it is fully
protected against exactly κ faults. The steps of this procedure are described
below.

We know that τab might exist as a number of instances, τf
ab/r, in the graph

because its predecessors could be protected by reexecution. Each occurrence of
τab will have r = 0 and a fault list f describing the faults of its predecessors.
Moreover, each occurrence of τab must be protected against a number of faults
that can be found as κ − |f |. In other words, the number of replicas for an
occurrence of τab will depend on the number of faults that already have been
modelled prior to that occurrence.

2Assuming that the hash value can be computed in constant time.

In order to locate the processes that need to be replicated, table LPFL is used.
Thereby we do not need to traverse the entire FTPG in order to locate all
instances of the given process, but can locate these elements in constant time.
We do a lookup LPFL(τab, i), i = 0 . . . κ, and for all returned occurrences of
process τabwe add the appropriate number of replicas. The pseudocode for
locating the vertices is given in Algorithm 10 found in Appendix C, and it
applies regardless of the presence of messages in the graph.

First we consider a Gi without messages and describe how to add replication to
a given specific process, τf

ab/0 ∈ Ga. This is done by inserting a new process,

τf
ab/r, into the graph connecting it to the same predecessors and successors as

the original process being replicated. Notice that the replica number, r will be
1 for the first replica, 2 for the second and so forth. All replicas must have
the same properties (execution time, period, mapping table etc) as the process

being replicated. All predecessors of τf
ab/0 must be connected to each τf

ab/r

pred(τf
ab/0) = pred(τf

ab/r) (4.6)

and likewise all replicas must be connected to the successors of τf
ab/0, such that

succ(τf
ab/0) = succ(τf

ab/r) (4.7)

An example of replicating a process is illustrated in Figure 4.1. The initial

FTPG is given in Figure 4.1(a) and the result of replicating τ
[]
4/0 is illustrated

in Figure 4.1(a).

(a) (b)

Figure 4.1: Replication of Process τ
[]
4/0

If Ga contains messages, the approach is a little different. Recall that the com-
munication bus used is CAN, and messages therefore are broadcasted. It means
that any message sent to process τf

ab/0, could also be received by any of its

replica, τf
ab/r. Therefore all incoming messages of the original process must be

connected to all replicas, as defined by equation (4.6). On the other hand, a

message can have only one sender, so any outgoing message mab(f)(0) from τf
ab/0

must be replicated and connected to the corresponding replicated process as its
predecessor. More formally it can be defined as follows:

∀mf
ac/0 ∈ succ(τf

ab/0) ⇒ mf
ac/r ∈ succ(τf

ab/r)

In Figure 4.2 it is illustrated how the replication is done, when messages are
involved. Figure 4.2(a) is the original FTPG including two messages, and in

Figure 4.2(b) process τ
[]
4/0 has been replicated. Notice that m1/0 is simply

connected to the new replica, τ1/1, while m2/0 is copied as m2/1 and connected
to the new replica, τ1/1.

(a) (b)

Figure 4.2: Replication of Process τ
[]
4/0. Notice the difference between messages

m
[]
1/0 and m

[]
2/0

An important detail is that a replicated process is not added to the fault list of its
successors. The reason being even though a process is protected by replication,
we do not know whether a fault will actually happen in the process or in any of
its replicas. Therefore, we always model the worst case, implying that no faults
have been tolerated. As a result, fault lists of the successors of the replicated
process will always be same as of its predecessors.

4.3.2 Removing Replicas

In order to disable replication of process τab we must locate all instances of τab

in the graph and remove all the replicas. More formally, the processes to be
removed are defined as follows:

{

τf
ac/r ∈ Ga| (ab = ac) ∧ (r > 0)

}

We utilise the lookup tables in order to locate the vertices in Ga that must be
removed. Using LPFL we locate all occurrences of τab, |f| < κ. We do not
consider |f| = κ since we know that this will not have any replicas. For each
of the found vertices, we find the corresponding list of processes in LFTA and
remove all elements except the first one, which is the 0th replica.

We return to process replication in Sections 5.1 and 5.2, where we discuss, how
to select an appropriate priority and mapping for replicated processes and mes-
sages. Furthermore, Algorithms 11 and 14 in Appendix C list the pseudocode
for adding and removing replicas of a given process.

4.4 Reexecution

4.4.1 Adding Reexecuting

In this section we will describe how to add reexecution for process τab, which is
not protected by any fault tolerance initially. As with replication we recognise
that τab can exist as several vertices in the graph due to faults from other preced-
ing processes. Notice that since we cannot combine reexecution and replication,
then r must be 0 for all occurrences of τab and f is unique for each of vertices.
We also assume that after having added reexecution the given process must be
fully protected against all κ possible faults.

We start by looking at the case, when there are no messages in the graph and
the reexecution takes place on the same processing element. First we locate all
vertices τf

ab/r ∈ Ga that represent all occurrences of process τab. Each of these

will have predecessors that might have experienced |f | faults, and for that reason
each occurrence needs to be protected against the remaining number of faults
κ − |f |, so the total number of tolerated faults becomes κ In the following we
will describe how add a single reexecution, but this process is simply repeated,
when adding more reexecutions,.

We model reexecution of process τf
ab/r by adding another process, τf⊎ab

ab/r as a

successor to τf
ab/r. In the following we will call τf

ab/r failing process and τf⊎ab
ab/r

is called reexecuting process. The edge between τf
ab/r to τf⊎ab

ab/r is guarded by

a fault-condition as explained previously in subsection 4.3.1. This transition
models the situation when τf

ab/r fails and for that case, no other transitions can

be taken. If the process does not fail, then all other transitions are taken, but
not the edge with the fault-condition. With f ⊎ ab in the faultlist of τf⊎ab

ab/r we

indicate that the process τab is added to the fault list f since we know that this
transition is taken if and only if τf

ab/r has failed. This part is illustrated in the

example below. The graph in Figure 4.3(a) is the original process graph, and
Figure 4.3(b) shows an itermediate graph after having created and connected

the reexecuting process τ
[1]
1/0 .

(a) Initial graph (b) Intermediate graph

Figure 4.3: Reexecution of Process τ1 in Progress, Part I. Process τ
[1]
1/0 models

the reexecution of τ
[]
1/0.

The next step is to create and connect the missing successors of τf⊎ab
ab/r . We can-

not let the successors of τf
ab/r be the successors of τf

ab/r directly, as we did with

replication. The reason being that they will have a fault list smaller than that
of τf⊎ab

ab/r , which, according to the assumption in equation (4.3), does not make

sense. Therefore we must, for each original successor of τab, τac ∈ succOrg(τab),

create a corresponding process τf⊎ab
ac as a successor of τf⊎ab

ab/r . Notice that the

new successors will have the same fault list as the reexecuting process, τf⊎ab
ab/r .

This procedure continues recursively meaning that we need to copy the succes-
sors of successors and so forth. The process graph from the previous example
can be seen in Figure 4.4, where the remaining processes are added.

In the following we will describe in detail how new process are created during
the recursion mentioned above. We assume that we start in τf

ab/r and would

like to create a successor of τf⊎ab
ab/r corresponding to process τac. We divide the

problem into two different situations:

• Process τac has one predecessor.

• Process τac has more than one predecessor.

(a) Intermediate graph

(b) Intermediate graph

(c) Resulting graph

Figure 4.4: Reexecution of Process τ1 In Progress, Part II. The missing processes
are being added.

If process τac has only one predecessor, we simply create a new process, τf
ac/r,

such that the fault list is equal to τf
ab/r. Then process τf

ab/r is connected with

τf
ac/r and the recursion continues for τf

ac/r. This is illustrated in Figures 4.4(a)

and 4.4(b), where successors τ1
2/0 and τ1

3/0 are added to the reexecuting process

τ1
1/0.

When process τac has several predecessors, the situation is more complex. The
predecessors of the new copy τac must correspond to the predecessors of the
original process τac. Returning to the example from before, please consider

Figure 4.4(b). We continue from τ
[1]
3/0 and want to create τ4 as a successor.

Process τ4 has two predecessors, τ2 and τ3, which implies that the new copy
of process τ4 must also have the corresponding τ2 and τ3 as its predecessors.
Additionally, we know that the fault list for the new process, must contain the

fault, τ1, from τ
[1]
2/0 . Therefore we create τ

[1]
4/0 and connect it to the only instances

of processes τ2 and τ3 that have τ1 in their fault lists, that is to say τ1
2/0 and

τ1
3/0. The result is shown in Figure 4.4(c).

Things become even more difficult when different faults must be combined.
More generally, we can consider τfb

ab/rb
with three original predecessors, τax, τay,

and τaz. As each of the three predecessors might exist several times in Ga with
different fault lists, we define all possible combinations, APC, of these as the
Cartesian product of their occurrences:

APC = RS(τax) × RS(τay) × RS(τaz)

Notice that an element, apci ∈ APC, is only valid if it fulfils all of the following
permutation requirements:

• The combined fault list must be superset of fb

• If the fault list of τ
fq

aq/rq
∈ apci, contains τw, τw ∈ fq, then all other

elements of apci that have τw as a predecessor must also have experienced
this fault:

{

∀τ
fq

aq/rq
∈ apci, ∀τfr

ar/rr
∈ apci/τ

fq

aq/rq
| (∀τs ∈ fq

| (τs ∈ pl(τar) ⇒ (m(τs, fq) = m(τs, fr))))}

• The size of the combined fault list does not exceed κ

Please consider the situation shown in Figure 4.4(a). We have added τ
[1]
2/0 and

would like to create the copy of τ4. Process τ4 has predecessors τ2 and τ3, so we
create the possible permutations:

APC = RS(τ2) × RS(τ3)

= {τ
[]
2/0, τ

[1]
2/0} × {τ

[]
3/0}

= {τ
[]
2/0, τ

[]
3/0}, {τ

[1]
2/0, τ

[]
3/0}

Combination
{

τ
[]
2/0, τ

[]
3/0

}

is not valid because the combined fault list, f = ∅,

is not a superset of the fault list of τ
[1]
2/0 , f = [1]. The second combination,

{

τ
[1]
2/0 , τ

[]
3/0

}

, does not satisfy the third condition since τ1 is in the fault list of

τ
[1]
2/0 then it must also be in the fault list of τ3/0. This is, however, not the

case. We take the next step shown in Figure 4.4(b), where process τ
[1]
3/0 has

been added. Now we can generate more combinations:

APC = RS(τ2) × RS(τ3)

= {τ
[]
2/0, τ

[1]
2/0} × {τ

[]
3/0, τ

[1]
3/0}

= {τ
[]
2/0, τ

[]
3/0}, {τ

[1]
2/0, τ

[]
3/0},

{τ
[]
2/0, τ

[1]
3/0}, {τ

[1]
2/0, τ

[1]
3/0}

Checking the permutation requirements, we see that only
{

τ
[1]
2/0 , τ

[1]
3/0

}

is valid.

Therefore when process τ
[1]
4/0 is created, it should have τ

[1]
2/0 and τ

[1]
3/0 as prede-

cessors. The resulting graph can be seen in Figure 4.4(c).

Finally, we consider another example with κ = 2, shown in Figure 4.5. The
graph already contains reexecution of process τ2, and we want to add reexecu-
tion of process τ3. When we add first reexecution of τ3, we need to add two
occurrences of τ4, as show in Figure 4.5(c), because we also need to model two
faults happening in τ2 and τ3. Then we add additional reexecution of τ3 in order
to model that all two faults take place in process τ3.

When having found one or more valid permutations, we do the following for
each permutation: First it is checked, whether the process already exists. If it
does, nothing is to be done, since we know that it must already be connected
appropriately. If it does not exist, we create a copy and insert into the graph
with the set of predecessors as the elements of the combination. For this new
element, we apply this method recursively.

(a) Initial graph (b) First reexecution of process τ3

(c) Second reexecution of process τ3

Figure 4.5: Adding Reexecution When κ = 2. The figure illustrates, how we
add reexecutions of process τ3, whereas τ2 is already reexecuted.

4.4.2 Termination of Recursion

The recursion described in the previous section terminates when either of the
following is fulfilled:

• It has reached an original process with no successors.

• There are no possible combinations.

The first reason is straightforward and will not be discussed further. In order to
understand the second reason, please consider the examples shown in Figures 4.3
and 4.4. In the situation shown in 4.4(a) there were no feasible combinations for

process τ4, and only process τ
[1]
3/0 was created. Therefore, the recursion stopped

at τ
[1]
2/0 and took next successor at τ

[1]
3/0 . Process τ

[1]
4/0 was firstly created, when

a valid combination of its predecessors became available that is after τ
[1]
3/0 was

created. We claim without proof that if there are missing permutations of
predecessors for given process, then these permutations will always be created
later in the recursion. It means that if a given permutation is not found, then
it must surely be caused by missing processes that always will be created by
another “branch” of the recursion. And subsequently we will be able to create
the given permutation when all necessary processes have been created.

4.4.3 Combining with Replication

Since reexecution of a process involves copying of its successors, we need to
consider situations, when some of them must be protected by replication or
reexecution. Therefore we have to ensure that we have the right number of
replicas for each replicated process that is preceded by the reexecuting process.
Also, if some of the successors are reexecuted, then the number of reexecutions
should be correct too.

When we add reexecution of a process, we do not copy any replicas while building
sub trees of its successors. During the recursion, we check for each new process
whether it needs any replicas or reexecutions. An example follows.

Assume that we are adding reexecution for process τab. The corresponding re-
executing process τf

ab/r has been created, and we are now copying the successors

of τab that will be preceded by τf
ab/r. If we meet a successor τac ∈ Px, the al-

gorithm will add the remaining number of reexecutions of τac before continuing
with the remaining successors of τab.

If process τac belongs to Pr, then we add it to the list of awaiting processes that
need replication. Only when adding the reexecution of τab is completely finished,
the algorithm will create the required number of replicas to each process in the
list of awaiting processes. At that point, when the recursion is completed, we are
certain that all successors of τf

ab/r have been created. Therefore we can simply

use the method explained in subsection 4.3.1 to add the remaining replicas.

4.4.4 Reexecution with Messages

In the following we explain how we model the communications, when the pro-
cess being reexecuted receives and sends messages. The first situation to be
considered is, when a process is reexecuted on the same processing element. As
defined by our hardware model, received messages are stored in the communica-
tion subsystem. It means that the reexecuting process can obtain the required
messages directly from the communication subsystem. This property eliminates
the need to resend the messages, when a process fails. So the incoming messages
received by process being reexecuted will not be copied. On the other hand any
messages that the original process will send should also be sent by any of its
reexecutions, if they do not fails. Therefore the outgoing messages must be
repeated for each reexecution, i.e. modelled as its successors.

When the reexecution of a process takes place on another processing element,
the messages must be treated in a different manner. This way of reexecution
is also called passive replication. Let process τf

ab/r be the failing process, τf⊎ab
ab/r

the reexecuting process and M(τf
ab/r) 6= M(τf⊎ab

ab/r). We divide the problem into

two different cases:

• One message.

• Several messages.

When there is a single message, we repeat that message between the failing pro-
cess and the reexecuting process. The message is placed on the same communi-
cation bus as the original message. A situation with one message is illustrated
in Figure 4.6.

The situation is somewhat different when there are several messages. We as-
sumed previously that a process can have only one fault-condition. To avoid

having several edges with a fault-condition, we introduce a dummy-process to
fork the messages being repeated. An example with two messages is shown in
Figure 4.7.

(a) Initial graph (b) Message is resent

Figure 4.6: Reexecution of process τ4 with one incoming message that must be
retransmitted, because the reexecution happens on another processing element..

(a) Initial graph (b) Dummy process is used

Figure 4.7: Reexecution of process τ4 with two incoming messages that must be
retransmitted, because the reexecution happens on another processing element.

The dummy process is represented as a black circle in the graph. Dummy
processes have no execution time so they will be transparent to the response
time analysis. The messages to be retransmitted are placed between a dummy
process and the following reexecuting process.

4.4.5 Removing Rexecution

Removal of the reexecution of process τab is done by several steps. First all
processes in Ga where |f | < κ are located via LPFL. From these we remove the
reexecuting process and then recursively remove all of its successors from Ga. At
the same time we wipe out any dependencies and messages from the remaining
part of the graph that may point to those successors. The pseudocode for
removal of reexecutions is listed in Algorithm 12 in Appendix C.

4.5 Remapping

So far, we have discussed how replication and reexecution are applied to a fault
tolerant process graph. Now we will discuss the effect on messages, when a
process in the FTPG is remapped. Assume that a given message, mfb

aj, is sent

from τfb

ab to τfc
ac . Processes τfb

ab and τfc
ac are assumed to be running on different

processing elements. If the mapping of either τfb

ab or τfc
ac is changed such that

both will execute on the same processing element, there is no longer need to
transmit message mfb

aj over the communication bus.

As a result, we set the transmission time of the message to zero, if the sending
and all receiving processes are on the same processing element. This can be
formulated generally as follows, where Cmob

i and Cmo
i is the transmission time

over the bus:

Cm
i =

Cm
i = 0, ∀τfs

as ∈ succ(mi)|M(τfs
as) = M(pred(mi))

Cm
i = Cmo

i , ∃τfs
as ∈ succ(mi)|M(τfs

as) 6= M(pred(mi))
(4.8)

and likewise for the best case transmission time:

Cmb
mi

=

Cmb
i = 0, ∀τfs

as ∈ succ(mi)|M(τfs
as) = M(pred(mi))

Cmb
i = Cmob

i , ∃τfs
as ∈ succ(mi)|M(τfs

as) 6= M(pred(mi))
(4.9)

4.6 Defining and Seperating Scenarios

The concept of fault scenario was shortly introduced in the preliminaries. In
this section we will define fault scenarios in a formal way, and explain, how
they are extracted from a fault-tolerant process graph. We will also give a few
examples to illustrate the concept.

A fault scenario sis is a specific trace or execution path through an FTPG for
a certain combination of faults. Therefore, each scenario is uniquely defined by
the faults experienced through the trace. This can also be formulated as the
fault lists of its sink nodes. Each of these unique fault lists contains up to κ
elements, hence a fault list with n elements always will be a subset of one or
more fault lists with n + 1 faults. An exception is a fault list with n = κ, where
no more faults can happen. Also notice that since replication hides any fault
occurrence from succeeding processes, only processes protected by reexecution
can be in these fault lists.

The set of all possible fault scenarios for a given FTPG represents all possible
combinations of faults experienced by processes protected by reexecution. It also
includes combinations with less than κ faults. A given process in the FTPG τf

ab/r

might participate in several scenarios. We define the function SL that returns
the set of scenarios in which the given process arise:

SL(τf
ab/r) =

{

si ∈ Sa|τ
f
ab/r ∈ si

}

(4.10)

In order to find all fault scenarios in an FTPG, we start by locating all unique
fault lists. Each list is assigned a unique number, and we locate and mark all
processes that have a fault list being subset of the given unique fault list. Each
of these sets of processes will in turn represent a fault scenario. A pseudocode
for this method, is given in Algorithm 2.

Algorithm 2 Pseudocode for Splitting FTPG into Scenarios

Require: Gi, the FTPG to be split
setUniqueFL ⇐ The set of unique fault lists of the FTPG
scenarioNumber ⇐ 1
for all uniqueFL ∈ setUniqueFL do

S ⇐initialise new scenario
Assign scenarioNumber to S
for all ∀τf

ab/r ∈ Ga do

if f ⊂ uniqueFL then

add τf
ab/r to S

end if

end for

scenarioNumber ⇐ scenarioNumber + 1
end for

We have included two examples in the Appendix E.1.2 showing how fault sce-
narios are found. Example 1 in Figure E.1.1 is a diamond-shaped transaction
with all processes protected by reexecution. It gives five scenarios as shown
in the Figures E.2-E.3. Example 2 in Figure E.1.2 shows the same transaction,
but now with two processes protected by replication instead of reexecution. The
derived faults scenarios can be seen too.

4.7 Counting Processes and Scenarios

In this section we would like to quantify, how many processes and scenarios an
FTPG can contain. We consider process τab in the computations below.

As explained previously, such a process might be presented several times in the
graph. If we assume that process τab is reexecuted, then each occurrence in of
the process the FTPG will be characterised by a unique fault list. The problem
is to find the number of different fault lists, in which process τab can participate.

We know that the processes in the fault list must precede τab, and we also
know that process τab itself can be includes in the list. Moreover, only processes
protected by reexecution can be in the fault list. We start by defining the
function PX(τab), which returns the processes in the graph that precede τab

and are protected by reexecution. These processes will therefore exactly define
the possible elements in the fault list of τab:

PX(τab) = {τac ∈ Γa|τac ∈ Px ∧ (τac < τab ∨ τab = τac)} (4.11)

From the combinatorics [25] we know that the number of ways that n different
elements can be combined in order to form a list of size k, is given by the
following binomial coefficient:

(

n + k − 1

n

)

=
(n + k − 1)!

k!((n + k − 1) − k)!
=

(n + k − 1)!

k!(n − 1)!
(4.12)

If we replace n with the size of PX(τab) it is possible to compute the number
of different fault lists with exactly k faults for process τab. As we must include
all values of κ, we must also include those fault lists with size less than κ.
Therefore, we sum equation (4.12) for k = 0..κ. As we know that process τab

can only exist once with the empty list, we end up with the following function
NO(τab, κ) that expresses the number of occurrences of process τab in Ga:

NO(τab, κ) = 1 +

κ
∑

i=1

(|PX(τab)| + i − 1)!

i!(|PX(τab)| − 1)!
(4.13)

Likewise we can find how many scenarios there are in an FTPG since the possible
elements are defined by the set of processes protected by reexecution:

|Sa| = 1 +
κ

∑

i=1

(|Px| + i − 1)!

i!(|Px| − 1)!
(4.14)

Here Px corresponds to the set of processes in the corresponding process graph
Γa than must be reexecuted.

In Figure 4.8 we have illustrated the number of scenarios for different numbers
of κ and processes being reexecuted. It can be seen that the number of scenarios
increase exponentially with the number of processes. When the number of faults
increase, the number of scenarios increases even faster.

10 20 30 40 50
0

20

40

60
κ=1

|S
a|

|P
x
|

10 20 30 40 50
0

500

1000

1500
κ=2

|S
a|

|P
x
|

10 20 30 40 50
0

1

2

x 10
4 κ=3

|S
a|

|P
x
|

10 20 30 40 50
0

2

4
x 10

5 κ=4

|S
a|

|P
x
|

Figure 4.8: The number of scenarios is increasing exponentially for an increasing
number of processes. When κ increases, the number of scenarios increases even
faster.

Figure 4.9 shows the number of processes in the fault-tolerant process graph
versus the number of process in the original graph for different values of κ. The
maximum number is obtained when the processes are connected one-by-one and
form a chain. The minimum number is obtained from transactions where all
processes are immediate successors of a root process. In order to show upper
bounds all processes are protected with reexecution only. We notice that for just
50 processes and 4 faults, we get a huge number of processes in the fault-tolerant
process graph: (3.5 · 106).

From Figure 4.8 and 4.9 we see that the number of processes increases much
faster than the number of scenarios on the average. Any response time analysis
should therefore preferably depend on the number of scenarios rather than the
number of processes.

10 20 30 40 50
0

500

1000

1500
κ=1

NOP

N
O

A

Max
Min

10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4 κ=2

NOP

N
O

A

Max
Min

10 20 30 40 50
0

1

2

3

4
x 10

5 κ=3

NOP

N
O

A

Max
Min

10 20 30 40 50
0

1

2

3

4
x 10

6 κ=4

NOP

N
O

A

Max
Min

Figure 4.9: Number of processes in the fault-tolerant process graph (NOA)
versus the number of processes in the original process graph (NOP) for different
values of κ. The asymptotic best and worst cases have been illustrated. All
processes are protected by reexecution. It can be seen that both cases are
increasing exponentially.

In this chapter we have shown how replication and reexecution are applied to a
process graph including messages. The algorithms also support configurations
where only some of the processes are protected against faults. The operations
described are optimised by using two hash tables to sort and group the vertices
of the graph for faster lookups.

It would be relatively simple to extend the algorithms, such that different pro-
cesses would be able to tolerate different numbers of faults. This would, among
other things, require a discussion on how faults should be interpreted. If each
process needs to tolerate a given number of faults, does this number include
faults from preceding processes, or is it the maximum number of faults that the
process can experience itself?

Chapter 5

Fault-Tolerance Policy

Assignment and Mapping

In the previous chapters we have explained how to do response time analy-
sis (RTA) for event-driven fault-tolerant systems. Furthermore, it has been
explained how to create and transform fault-tolerant process graphs that repre-
sent the application. This chapter will describe how we can help the designer in
deciding the best combination of policy assignment and mappings to optimise
the solution and satisfy the timing requirements.

In Figure 5.1 an example of an application is given. We would like to protect
the application against one transitient fault and all processes have a deadline
of 16. In Figure 5.2 all processes are protected with replication, but we can see
that the deadlines are not met. Correspondingly, protecting all processes with
reexecution in Figure 5.3 also violates the deadlines. Only by combing replica-
tion and reexection as shown in Figure 5.4 the deadlines are met. Therefore the
designer needs a technique to automatically find such a schedulable solution.

Given an application, an architecture and a fault model, a designer could man-
ually find a feasible solution that satisfies all the imposed requirements. Our
schedulability analysis would then be used to check the timing properties of each
design alternative derived manually. Unfortunately, the solution space is often
very large, so such an entirely manual approach is not feasible in most situations.

Instead, we will propose an optimisation heuristic in order to automatically find
the best possible solution within the solution space.

(a) Process graph (b) Priorities and the map-
ping table for the processes

Figure 5.1: An example application

(a) All processes are protected by
replication.

(b) Deadline is not met by process τ5.

Figure 5.2: Illustrating that only using replication in the process graph in Fig-
ure 5.1 will violate the deadline.

(a) All processes are protected by reexecution. Deadline is not met by

neither τ
[1]
5/0

nor τ
[5]
5/0

(b) Deadline is not met when either pro-
cess τ1 or process τ5 fail.

Figure 5.3: Illustrating that only using reexecution in the process graph in
Figure 5.1 will violate the deadline.

(a) Processes τ1 and τ5 are protected by repli-
cation, while processes τ2, τ3, and τ4 are pro-
tected with reexecution.

(b) The deadline is met in all fault
scenarios.

Figure 5.4: Illustrating that when combining reexecution and replication for
application in Figure 5.1 the deadline is met.

The optimisation problem that we would like to solve can be defined as follows:

• Which fault-tolerance technique to use for each process:

τj ∈ {REPLICATION, REEXECUTION}

• The mapping of each process in the fault-tolerant process graph:

M(τf
i/r)

The primary objective of the optimisation is to ensure that the system is schedu-
lable for all possible scenarios. Once schedulable, the heuristics should minimise
the response times using the given hardware resources.

In Sections 5.1 and 5.2 it will be discussed how priorities and mappings should
be chosen initially, when processes are reexecuted or replicated. In Section 5.3
the optimisation problem itself will be defined. In the following subsections, we

will discuss more technical matters, such as defining the neighbourhood to a
given solution, the cost function to evaluate different solutions and also choose
an appropriate heuristic. Finally, we will comment on the convergence of the
heuristic in subsection 7.1.3.

5.1 Choosing Priorities

When creating replicas and reexecutions, the question is what priority they
should be assigned. A straightforward solution would be to assign the same
priority as the original processes. The second solution would to be to assign
a different priority. This leads to a more fundamental discussion about what
the purpose of priorities is. Recall that in the introduction, we stated that we
would only be considering fixed priority scheduling. But this is only related to
fact that the priority of each process does not change during execution. The
question is whether it makes sense to change the priorities of the processes given
by the designer.

The main purpose of the priorities is to tell the scheduler in which order the
processes should be executed. In that way, the designer can control the schedul-
ing and in what order processes finish execution, if it is not explicit defined by
any dependencies. A more abstract interpretation of the priorities given by the
designer could be how important the processes are. In that case, it would make
sense to prioritise more important process higher than lower priority processes
in the evaluation of a given configuration.

Considering the aspect of schedulability, the initial priority given by the designer
no longer makes sense when fault-tolerance is applied to the system. The reason
being the initial scheduling will be changed completely, and therefore it should
be possible to change the priorities of the processes after having added fault-
tolerance. This should apply to both replicated and reexecuted processes, and
the same process with different fault lists. It should be possible, since the
priorities will still be fixed during runtime even though the same original process
might have different priorities during execution.

For the issue of importance of processes, the initial priority might still be used
for this purpose even though the priorities are changed when applying fault
tolerance. In that case, one must distinguish between the two types of priorities:
a fixed importance priority for every process, τab, and the schedulability priority
of each process in the FTPG.

In [18] a specialised heuristic for selecting the optimal priority assignment for a

distributed system is given. This article also explains that selecting a priority
is not trivial.

To keep things simple, we have chosen to let the priorities always be fixed and
not to integrate the ideas from [18]. As a result, the initial priorities given by
the designer will be used as the priorities for any new processes introduced as a
result of applying the fault tolerance.

5.2 Choosing Processing Elements for Replicas

When introducing replication, there are several approaches for deciding the
initial mapping of the replicas. Even though the heuristic will optimise this
choice later, a better initial choice will reduce the number of iterations required
by the heuristics to converge. First of all, there might be limitations on the
possible mappings defined in the mapping table. Among the allowed processing
elements, there are several approaches for the mapping:

• A random processing element.

• The processing element on which the process has the lowest execution
time.

• The processing element with the lowest utilisation, considering only ele-
ments which are not mutually exclusive to the replica.

Each approach has drawbacks. The first approach is completely naive, since it
does not consider other processes and the utilisation of processing elements. The
second approach picks the fastest processing element, but does not consider the
fact that all other processes might already be assigned to this particular process-
ing element. In that case, the response time will not reflect that the execution
time is low. The latter approach uses a simple guess of picking the processing
element on which it creates the least interference, but does not consider any
dependencies. Being the most qualified guess, we will pick the third approach.

The utilisation of a processing element Ni is a measure of how much it is used by
different processes. It can more formally be defined as the sum of the execution
times of the processes currently mapped on the PE divided by the period of
the processes. Since we only need the utilisation to compare between processing
elements and the period is equal for all processes, we do not divide by the period.
Notice, that only processes, which have at least one scenario common with τf

ab,

will be able to influence the utilisation of Ni. The utilisation for Ni in the
scenarios defined by τf

ab/r is therefore given by:

ρ(Nn, τf
ab/r) =

∑

τfc
ac/rc

∈SU(Nn,τf
ab/r

)

Cw
ac(fc)(rc)

SU defines the set of processes that are not mutually exclusive to τf
ab/r and are

mapped onto the given processing element Ni:

SU(Nn, τf
ab/r) =

{

τfc

ac/rc
∈ Ga |

(

SL(τf
ab/r) ∩ SL(τfc

ac/rc
) 6= ∅

)

∧ Nn = M(τfc

ac/rc
)
}

So when creating a replica, τf
ab/r, the initial mapping is decided as follows:

M(τf
ab/r) = min

Ni∈MA(τab)
ρ(Ni, τ

f
ab/r)

When additional messages are introduced due to the replication of a process,
then all these messages are assigned to the same communication bus as the
original message. The reason is that we in the problem definition assumed that
all messages are statically mapped.

5.3 Optimizing Policy Mapping

In this section, we will motivate and discuss how meta-heuristics can be used
to find a policy assignment and mapping that leads to a schedulable, optimal
solution. In subsection 5.3.1 we will explain the neighbourhood in terms of what
moves are possible from a given solution. Implementing the objective as a cost
function is explained and discussed in subsection 5.3.2, such that we will be able
to compare different solutions. In subsection 5.3.3 the choice of initial solution
is explained. Subsection 5.3.4 will be a discussion on possible different heuristics
to use and details on the one chosen to be implemented. The convergence and
results will finally be discussed in subsection 7.1.3.

5.3.1 Neighbourhood and Moves

In this section we will define the neighbourhood to a given solution. The neigh-
bourhood is given by the set of design transformations that are possible. We
also call such a design transformation a move. Based on the problem formulated
in the previous section, we define two possible moves:

• FaultToleranceMove, change the fault tolerance technique for a given
original process, τab, to either replication or reexecution.

• RemapMove, change the mapping of a given process, τf
ab/r.

A number of restrictions apply to the two moves. For the FaultToleranceMove,
only processes, which can be mapped to at least κ different processing elements,
can be replicated. Recall, that the number of possible mappings is defined by
the mapping table given by the designer. The set of possible FaultTolerance-
Moves is therefore restricted to the changing all processes currently protected by
replication to reexecution and changing processes currently under reexecution
fulfilling the previous requirement, to replication.

For each process τf
ab/r ∈ Ga we define a RemapMove for all possible mappings

different from the current mapping. It requires that τf
ab/r can be mapped to more

than a single processing element. Considering an example, then if M(τf
ab/r) =

Nn for the current solution, and MA(τab) = {Nn, No, Np}, then it would be

possible to remap τf
ab/r to No and Np, respectively. An exception is when

a process is replicated. In that case, any two replicas by definition cannot
be mapped to the same processing element. Therefore a RemapMove cannot
include processing elements that another replica is already assigned to. The
processing elements that are allowed for τf

ab/r are defined by the following set:

PPE(τf
ab/r) = MA(τab) \ {Ni ∈ MA(τab)|

(

¬∃τfc

ac/rc
∈ Ga|ab = ac ∧ f = fc ∧M(τfc

ac/rc
) = Ni

)}

For each replica we create a move for each element in the set given above. It
implies that if the number replicas including the process being replicated is equal
to the number of possible mappings, then there are no possible moves.

Notice that the size of the neighbourhood depends very much on the problem
and on the current solution. While the number of FaultToleranceMoves will
depend on the number of original processes, the number of RemapMoves will be
related to the number of elements in the FTPG and the contents of the mapping
table.

5.3.2 Objective Function

In order to quantify how good a given solution is, we define an objective function,
also called a cost function. Buttazzo defines in [5] a number of different possible

cost functions such as Maximum lateness and Maximum number of late tasks.
The problem with the cost functions in [5], especially when used for comparing
two different solutions, is that either they do not include the deadline of the
processes or they are a maximum over something. In the latter case, information
about the processes not covered by the maximum is disregarded. As a result,
the cost function does not fully represent, how good a solution is. Therefore we
will use the degree of schedulability (DOS) as introduced in [31]:

DOS(Γa) =

{

c1 =
∑n

i=1 max (0, Rw
i − Di) , if c1 > 0

c2 =
∑n

i=1 (Rw
i − Di) , if c1 = 0

(5.1)

This equation has two objectives. First, if some deadlines are not met (case c1),
then it will report the total lateness. So the first objective is to eliminate any
violations of deadlines. Only when the first objective is fulfilled and all deadlines
are met, then the response time of all processes are minimised. But the formula
is defined for regular process graphs, and therefore cannot be applied directly
to fault-tolerant process graphs. Whereas a given original process only exists
once in a regular process graph, the same process might exist several times in
the fault-tolerant process graph.

As a result, two different solutions might have different number of processes.
An example is shown in Figures 5.5 and 5.6 with 12 processes and 9 processes,
respectively. The problem is that the DOS for a graph is found by adding
degrees of schedulability of each process in the graph. However, in our case the
value of the cost function should not depend on the number of processes in a
graph. So which processes in an FTPG should be included when calculating the
degree of schedulability?

Figure 5.5: Process τ2 is replicated, processes τ1, τ3 and τ4 are reexecuted.
There are a total of 12 processes and 4 scenarios.

Figure 5.6: Processes τ1, τ2 are replicated, processes τ3 and τ4 are reexecuted.
There are 9 processes and 3 scenarios.

A given process in the fault-tolerant process graph might have a different re-
sponse time in each fault scenario. Considering equation (5.1) again, it does not
allow a given process to have different response times and therefore cannot be
used directly.

We will instead formulate a new equation based on (5.1), that accounts for the
fault-tolerance. First we sum up the degree of schedulability as defined in (5.1)
from each of the scenarios and divide by the number of scenarios:

DOS(Ga) =

∑

si∈Sa

DOS(si)

|Sa|

Here Sa is the set of scenarios for the given solution. Notice that we divide by
the number of scenarios, since two solutions might not have the same number
of scenarios. An example is shown in Figures 5.5 and 5.6, where the number of
scenarios is 4 and 3, respectively.

Some scenarios are more likely to occur than others. Since we assume that
faults are independent, experiencing i faults are more likely than i + 1 faults.
We therefore introduce a weight, wi, to the different fault scenarios:

DOS(Ga) =

∑

si∈Sa

wi · DOS(si)

|Sa|

Here the weight is given by

wi =
1

1 + NFsi

(5.2)

NFsi defines the number of faults occurring in scenario si. The weights will
ensure that scenarios with fewer faults have more influence on the DOS than
scenarios with more faults. Even though we have decided the approach above,
these weights should in principle be chosen by the designer, because he has
more knowledge about the components of the system. Another possibility could
be to include the probability of faults occurring on the different processing ele-
ments. Different processing elements will most likely have different probabilities
of faults, because of the different quality of components, exposure to external
radiation, size, and so forth. This could be combined with the response time of
the processes, since a process that runs for a longer time, has a higher proba-
bility of failing than another running for a shorter period of time. Generally,
the more concrete information is included in the model, the more accurate the
estimate becomes. It should be emphasised, that our implementation is based
on the simple model with the weight given by equation (5.2).

Now we need to define which elements should be included in the degree of
schedulability as defined in equation (5.1). At first we recall that a process might

exist in several instances in a given scenario. What is really interesting for each
process is when we are completely sure that a process has successfully completed
its execution. It includes any possible reexecutions or replicas if failures happen.
Hence, if a process is reexecuted several times, it has only finished successfully
when the last process in the chain of reexecutions has finished. Therefore only
this process is included in the calculation of the degree of schedulability. For
replication, we are only sure that the process has finished successfully when the
slowest replica has finished. It is so, because we always assume the worst case
which implies that the fastest replicas will fail. As a result, we take the process
with the largest response time among the replicas. We therefore define the set
of the processes to include in the degree of schedulability as DP :

DP (si) =
{

τfb

ab/rb
∈ si|

(

¬∃τfc

ac/rc
∈ si|

(ab = ac) ∧ ((fc = fb ⊎ ab) ∨
(

(fb = fc) ∧
(

Rw
ab(fb)(rb)

< Rw
ac(fc)(rc)

))

∨
(

(fb = fc) ∧ (rc < rb) ∧ (Rw
ab(fb)(rb)

= Rw
ac(fc)(rc)

)
)}

(5.3)

and the final degree of schedulability becomes:

DOS(Gi) =

c1 =

∑

sj∈Si

wj

∑

τf
ab/r

∈DP (sj)

max
(

0, Rw
ab(f)(r)(j) − Dab

)

|Sj |
, if c1 > 0

c2 =

∑

sj∈Si

wj

∑

τf
ab/r

∈DP (sj)

(

Rw
ab(f)(r)(j) − Dab

)

|Sj|
, if c1 = 0

(5.4)
where wj is given by equation (5.2). Please notice that Rw

ab(f)(r)(j) is the response

time of process τf
ab/r in scenario sj. Some processes that belong to several

different scenarios might be counted several times. This is not a problem, but
emphasises that a process belonging to several scenarios has a higher influence.

We will analyse the cost function for each of the two situations, c1 and c2. In the
first situation, one or more processes do not reach their deadlines in at least one
scenario. If this is the case, then we ignore all processes that meet their dead-
lines. The only objective is therefore to minimise the total lateness, meaning the
total time that these processes violate their deadlines. While minimising these
violations, some of the processes that satisfy their deadlines might see an in-
crease in their response time. Once the configuration is schedulable, i.e. c1 = 0,

we will try to minimise the response times for all processes. In other words, the
cost function will try to utilise the given resources in the best possible way in
order to reduce the response times as much as possible.

In the following we will give two examples of calculating the cost function for
two different policy assignments of the same application. The corresponding
fault-tolerant process graphs are shown in Figure E.1 (Example 1) and Figure
E.4 (Example 2) in Appendix E.1.2.

The calculations are shown in Table E.3 and Table E.4 in Appendix E.3. For
both examples, the priorities, deadlines and the worst case execution times used
by the response time analysis are included in the tables. Notice that elements
defined by DP and therefore included in the summation, are given in bold.

From the results, we can see that since the degree of schedulability of both
solutions is negative; it implies that all processes in all scenarios are schedulable.
This can also be confirmed by looking at the response times found for each
scenario and comparing these with the deadlines given. Since Example 2 has
a lower cost value (-49) than example 1 (-43.3), then it is a better solution
according to our definition.

Notice that our cost function is not the only possible approach. First of all,
one could argue that when all deadlines are satisfied, we no longer need to
minimise the response times. But having found a schedulable solution, it seems
relevant to try to optimise the solution even further. One approach could be
to reduce the power consumption. In that case, reexecution will be preferred
over replication. Other approaches include minimising the communication or
reducing the utilisation of the processing elements. Which approach should be
chosen, depends on the requirements and therefore there is no general solution
as such.

5.3.3 Choosing an Initial Solution

Before starting the optimisation, we must define an initial solution. The initial
solution should be as close to the optimal solution as possible. The better
an initial guess we make, the fewer iterations are needed for the optimisation
to converge and the result is obtained faster. There are two approaches for
creating such an initial solution. First approach is a general initial guess that is
independent of the problem being solved. The second approach creates an initial
guess only by looking at some of the parameters in the problem being analysed,
but without actually evaluating the objective function. For our optimisation
problem, it could for example be considering the ratio between processes and

processing elements. If there is a relative high number of processing elements,
then replication might be a good initial guess. A more advanced solution, as
proposed in [23] could be to balance the utilisation between the processing
elements.

Choosing an solution guess that depends on the problem and works well in most
situations is not trivial and requires a lot of knowledge about the average system
being analysed. Therefore, we choose the simpler initial solution approach.
Thus, we assume that reexecution in most optimal solutions will be the most
dominant policy assignment. Replication is rather expensive, as replicating
a process will incur a fixed cost no matter whether the process fails or not.
As a result, we will be able to tolerate more faults than necessary. Only the
situations with enough hardware and relative short deadlines, replication will
be most effective in order to satisfy the timing constraints.

On this background, we will choose reexecution as the initial policy assignment
for all processes. Priorities will be the same as the original processes as defined
in Section 5.1.

5.3.4 Choosing a Heuristic

Having defined the optimisation problem, the objective function and an initial
solution, we need to choose which heuristic to use. There exists a number of
different algorithms, among others:

• Hill Climber;

• Simulated Annealing;

• Tabu Search;

• Genetic Algorithms.

Each of these comes in different variants. Previously, different algorithms have
been used in similar optimisation problems. In [14] and [23] Tabu Search was
used, whereas [4] used Simulated Annealing. In some cases, even specialised
meta-heuristics have been developed, such as the HOPA algorithm proposed in
[18] used to find the optimal priority assignment. In that article, Garcia et al.
showed that such a specialised meta-heuristic can outperform a more generic
algorithm.

In order to keep our solution as simple as possible, we will use the Hill Climber
algorithm. It has the advantage that it is very easy to understand and imple-
ment. In most situations the algorithm will also perform well.

The idea is that from the current solution the cost function is evaluated for
all solutions in the neighbourhood. The best solution in the neighbourhood,
as evaluated by the objective function, is chosen to be the new solution. The
iteration continues from the new solution until there is no better solution in the
neighbourhood. This approach is also called steepest descent, since we always
take the solution from the neighbourhood that results in the largest change in
the objective function. Another approach is to let the new solution be the first
element in the neighbourhood that is better than the current solution. This
implies that we do not have to evaluate the entire neighbourhood. If we know
beforehand that only a few elements in the neighbourhood will be better than
the current, it would be a better approach even though it might result in more
iterations.

A drawback of the Hill Climber is that it might get caught at a local optimum
as illustrated in Figure 5.7. Both Tabu Search and Simulated Annealing contain
methods for avoiding being trapped at local optima. We accept this deficit as
part of our solution, as we prefer a simple algorithm rather than a maybe better
but more complex algorithm.

Figure 5.7: Illustrating that a Hill Climber can get stuck in a local optima [3].

The pseudocode for our implementation based on [36] can be seen in Algo-
rithm 3.

Algorithm 3 Steepest Descent (Hill Climber Heuristic)

Require: bench should be a valid process graph
for all τab ∈ bench do

apply reexecution to τab {Add reexecution to all processes as the initial
guess}

end for

repeat

S0cost = DOS(bench)
Scost = S0cost
for all currentMove ∈ getNeighbourhood(bench) do

performMove(currentMove)
currentCost = calculateDOS(bench)
if currentCost < Scost then

bestMove = currentMove
Scost = currentCost

end if

undoMove(currentMove)
end for

if Scost < S0cost then

performMove(bestMove)
end if

until Scost = S0cost

Chapter 6

Implementation and Testing

We have through the preceding chapters presented the theoretical background
for doing design optimisation of fault-tolerant applications. In this chapter we
will outline our implementation of the presented theory and how the implemen-
tation has been tested. The implementation is used to evaluate the behaviour
of the proposed algorithms.

Java has been chosen as the programming language for our implementation. The
primary reason for this choice is that Java provides a wide range of features to
do a rapid development of software, such as support for object-oriented data
model, automated memory management, a large library of functions to work
with different data structures and portability across many platforms.

Section 6.1 gives details on the implementation of our program. It contains a
description of our data model, which is used to represents a distributed embed-
ded system with fault-tolerant applications. The description is supplied with
UML class diagrams showing the relations between the data structures as well
as the most important methods.

The implementation of the proposed response time analysis algorithm is ex-
plained in Section 6.2. In this section, the theory is linked with the actual
methods. The chapter also contains some information about several optimisa-
tion strategies that were used to increase the speed of the implementation.

In Section 6.3 we describe the heuristics briefly with a primary focus on the
extensibility of the implementation. We will present the approach used for
testing our program in Section 6.4.

Finally, we provide a simple manual to the program in Appendix F.2 showing
how the program can be used by a designer of embedded systems.

6.1 Design Overview

The implementation of the data structures is very similar to the concepts pre-
sented in the preliminaries. All entities in the model are represented as classes,
for instance Message or CommunicationChannel . We have drawn several UML
class diagrams for the main classes, which include the most important methods
and attributes. The diagrams can be found in Appendix F.1.

We generalise processes and messages as Activity. This class groups their shared
properties and methods. Classes Process and Message are derived from Activity,
but each of them have some specific attributes. All activities contain infor-
mation about their successors and predecessors. This is how we can model
process graphs, which are represented by Transaction class. The attributes
of Transaction include a list of activities that belong to that transaction, the
period of transaction and other relevant data. Transactions are grouped into
an Application , which is a part of Bench . A bench is top-level entity in our
model. Besides the application, it encapsulates the hardware model given by
the Platform class and the fault model given by the FaultModel class.

In addition to the data structures, we have a number of utility classes used to
implement our algorithms as well as other auxiliary functionality such as a small
GUI and a configuration parser. Notice that the GUI was created for displaying
the FTPGs created by the program and has been extensively used throughout
the implementation of the algorithms. All classes are grouped in the packages
shown in Table 6.1.

SUN Java contains several very efficient implementations of sets and lists, which
we extensively use to maintain collections of activities, fault-lists, fault-scenarios
and so on. The utilised implementations include HashSet , HashMap and Vector
to represent the collections of entities in the application.

The description of a system used as input to our program is done in XML. An
example can be found in Appendix D.1, while the XML schema in Appendix F.3
formally defines the input file.

Package Description

structures Model classes

scheduling WCDOPS+ algorithm and tools

heuristics Hill-Climber algorithm and moves

launcher Program launcher and GUI

config Configuration reader (XML parser)

test Experiments and unit tests

Table 6.1: The main Java packages in our implementation.

6.2 Implementation of WCDOPS++

The implementation of the response time analysis algorithm is inspired by an
existing program called aidalyze [33], which is an RTA tool created by Redell. It
supports several methods of doing response time analysis, where WCDOPS+ is
one of them. However, due to our requirements and extensions we have decided
to write our own code in Java based on fragments taken from [33]. It has also
helped us to understand some of the inner workings of WCDOPS+.

Besides adding the necessary code to enable support for analysis of applica-
tions with multiple predecessors and conditional process graphs, we have also
studied possible performance issues. We have found that the speed of the algo-
rithm could be greatly improved compared to the implementation by Redell by
introducing buffering of some of the data structures.

The purpose of the buffering is to cache data that requires much computational
time to obtain, but once found, it will stay unchanged until the end of the
analysis. An example of such data is an H-segment. A segment is a cluster of
processes that have been grouped with respect to their priorities and mapping
compared to the process under analysis. Since the segment is built using static
information, we can store it in the memory and reuse next time we need it.
This implies that the first iteration of the RTA will take about the same time
as without buffering, but all subsequent iterations will be relative faster. As the
number of iterations increase, the relative speedup will be increased even more.

The procedure of building segments (and sections) is based on recursive traversal
of process graphs, which means that its execution time will depend on the
number of process in the graph. For large graphs this operation will be very

time demanding, and by using data buffering we reduce the required time to
the minimum. This time can be reduced further, as follows. A segment is found
by combination of two processes, τab and τij . Process τij can be in the segment
along with some other processes. But once we have such a segment, it can be
cached for with all its processes, and not only τij .

Here follows an example. Assume for τij we find the H-segment Hseg
ab (τij) =

{τik, τij , τil} and save it in the cache. The segment now can also be stored
for processes τik and τil. When the algorithm needs segment Hseg

ab (τik), the
data buffer returns the previously found segment Hseg

ab (τij), because they are
the same. This approach works also for H-sections, since they are built in the
same way as segments. We have data buffering for other data structures as
well, including priority and precedence relations, fault-scenarios and MP sets.
We analyze the performance of the buffered RTA compared with non-buffered
in Chapter 7.

The implementation of the algorithm consists of several parts, which are the
algorithm itself (WCDOPSPlusAnalyzer), a class used to represent segments
(HSegSec), and an additional class providing utility methods and the data buffer
(WCDOPSPlusToolsCached). There are also other a couple of classes used to
encapsulate intermediate results, such as branch interference (BranchInterfer-
enceResult). They are only used as data containers and do not have any inter-
esting functionality. The relations between the classes are shown in Diagram F.4
in Appendix F.1.

We have implemented the equations presented in Chapter 3 as methods in class
WCDOPSPlusToolsCached . The relations between the main equations and the
methods are given in Table 6.2.

Equation Method

(3.5) int phase(Activity ij , Activity ik)

(3.7) int p0ijk(Activity ij , Activity ik)

(3.24)-(3.28) int updateJitterAndOffset(Activity ab, int updateFlag)

(3.43)-(3.47), BranchInterferenceResult BranchInterference is(

Pseudocode 4 Activity ab, Activity ac, Activity ik , Activity ir ,

int p, int w)

(3.13) int [] Wik(Activity ik, Activity ab, Activity ac, int w)

(3.15) int [] WstarI(Transaction i, Activity ab, Activity ac,

int w)

(3.15)-(3.17) int [] Wstar(Activity ab, Activity ac, int w)

(3.18) int Wabc(Activity ab, Activity ac, int pab, int w)

(3.20) int Labc(Activity ab, Activity ac)

(3.21) int pLabc(Activity ab, Activity ac)

(3.22),(3.49) int Rabc(Activity ab, Activity ac)

(3.22),(3.49) int Rwab(Activity ab)

(3.48) boolean canCoExists(Activity ab, Activity ij)

Table 6.2: Relations between the main equations of the response time analysis
as defined in Chapter 3 and the implementation.

6.3 Implementation of the Heuristics

In this section, we will briefly explain the implementation of the heuristics. In
Figure F.3 in Appendix F.1 the class structure of the heuristics is shown.

The implementation is held as extensible and modular as possible. This way, it
will be easy to replace either the chosen heuristic, the definition of the neigh-
bourhood, the objective function or add additional moves. As a result, a number
of interfaces have been defined in Table 6.3.

The MoveInterface is implemented by the two moves described in Section 5.3.1,
FaultToleranceMove and RemapMove. The interface defines two primary meth-
ods, performMove which executes the move while undoMove reverses to the
state before the move. This enables the heuristic to evaluate each move in

Interface Methods

Move void performMove()
void undoMove()

CostFunctionInterface CostValue calculateCostValue(Bench bench)

HeuristicsInterface HeuristicResult optimize(Bench bench,
int maxIterations)

Table 6.3: Interfaces in the part of the implementation covering heuristics. No-
tice that the classes CostValue and HeuristicResult are just datacontainers.

the neighbourhood seperately. For each move defined by the neighbourhood,
perfomMove is called, the costfunction is evaluated with the new configuration
and compared with the previous results, and finally the undoMove method is
called to reverse the move.

The two other interface, CostFunctionInterface and HeuristicsInterface should
be self explanatory.

The neighbourhood locates, for the current configuration, all possible moves as
defined above. It is implemented as an iterator in Java, making it rather flexible
while the generation and iteration itself can be expressed very compact:

for (Move move : new Neighbourhood (bench)) {
. . .

}

6.4 Tests

In this section we will present the approach used for testing our program. In
this context, testing is about verifying that the implementation is correct and
for all possible inputs it produces the correct results as defined by the theory.
Notice that testing is not about performance evaluation such as speed or memory
consumption, but only the correctness of the program. Nor does it test, whether
the theory is correct, only that the program implements the theory correctly.

The tests, which all have been scripted as automated tests, are based on two
different strategies. The first strategy it to use constructed tests that verify very
specific situations. These tests has been used extensively when testing our ex-
tensions to the existing response time analysis. By first calculating the expected
result by hand, we are able to verify the result obtained by our implementation.
The same approach has also been used when testing the graph as well as the
heuristics.

The second approach is sanity testing for random applications. For a large
number of randomly generated applications, we verify with a number of sanity
requirements that the implementation produces correct results. This strategy
has been used for the response time analysis as well as the graph algorithms.
The sanity checks for the FTPGs are shown in Appendix G.1. The generation
of the random application will be explained in subsection 6.4.3. Furthermore we
will in subsection 6.4.2 explain how Redells existing implementation have been
used with the same purpose.

We have covered only a limited number of tests cases, and therefore the im-
plementation cannot be considered fully tested. More comprehensive testing is
always desireable, but was not feasible due to the timing limitations. We have
however tested all critical functions used across different parts of the program.

The implementation of the tests is located in the packages test .∗ as part of the
enclosed source.

6.4.1 Component Tests

The goal of component testing (also called unit tests) is to evaluate each compo-
nent or unit of the program independently from other components, which allows
to start testing at very earlier stages of the development. The tests have been
performed using JUnit [28].

Following components of the program have been tested using unit tests:

• Primary data structures such as Application , Activity , Transaction
and others.

• Operations on FTPG are both tested on simple test cases and by doing
some stress tests. This approach is described below.

• RTA Algorithm black-box tested to produce correct results with a num-
ber of composed manually applications. These tests were constructed such

a way that they should expose errors related to our extensions.

• Utility methods used in RTA such as producing different grouping of
processes (XP, MP, HEP etc) and the buffering of data structures.

• Operations on segments and sections used for locating segments and
sections both in regular and fault-tolerant applications, computing prece-
dence and blocking relations between segments.

• Optimisation Heuristic including the cost function and the neighbour-
hood generator.

6.4.2 RTA Comparisons

Yet another testing technique was used to ensure that our implementation of
the response time analysis is correct. As the problems that we are solving are
NP-complete, we are not able to find an exact solution to WCRT. Therefore
it is practically impossible to test against the exact solution that our solution
indeed is correct.

Another approach would be to compare our results against other algorithms
or even approaches to response time analysis, but the results might not be
trustworthy. If our response time analysis finds a lower worst case response
time than another algorithm, then we would not know whether the result is less
pessimistic or actually wrong. Only if our solution returns a higher worst case
response time, we would know that our algorithm is correct1. But this would
unfortunately also imply that our solution in that case is more pessimistic.

We have chosen to compare our version with the original implementation of
WCDOPS+, aidalyze, made by Redell [33]. It is done by generating random
graphs as explained in subsection 6.4.3 and performing the analysis with both
implementations. The upper bounds for response time are than compared for
each process.

We are not able to compare the results for graphs with multiple predecessors,
because aidalyze is not capable of this feature. It means that we have only done
automatic testing of our algorithm with applications having single predecessors.

1If assuming that the other algorithm is correct

6.4.3 Producing Synthetic Applications

The synthetic applications used in our tests were generated by the tool called
Task Graphs for Free (TGFF v3.0) [12]. We have only used the new algorithm
in TGFF called “Series-parallel”. The basic configuration that we have used for
both tests and the evaluations can be seen in Appendix G.2.

In Table 6.5 we have shown and explained the primary parameters which are
used in the configuration file.

Variable Description

seed An arbitrary number to initialise the pseudo-
random number generator. Should be different
for each run in order to ensure that the gener-
ated graphs are different. We java.util.Random
of Java to generate a random number

tg_cnt Number of task graphs to create. Always set to
1

task_cnt The number of processes in the generated appli-
cation. Please also see the discussion below.

series_must_rejoin True or false. If true, then graphs with multiple
predecessors are created.

Table 6.5: Explaining the important variables in the configuration file for Task
Graph For Free.

In order to obtain stable results with our evaluation experiments, we need to
generate a number of random process graphs with the same number of processes
for every case and take an average of that. Unfortunately, it cannot be done in a
simple way with TGFF. The program accepts a minimum number of processes
per process graph only, so the actual number of processes may be close to the
minimum, but not exactly the same. Therefore a workaround has been used to
bypass this limitation.

The idea, which is also given as pseudocode in Algorithm 15 in Appendix C, is to
continue generating graphs until the required amount with the exact number of
processes is collected. Assume that we want a graph with 10 processes (rP = 10)
and 5 graphs (nP = 5). We start by requesting a graph, G, from TGFF with 10
processes, and we get a graph with 12 processes instead. Then we set aP = 12
and G is added to the set of final graphs (sG).

We continue requesting graphs with 10 processes, but only adding the ones that
have the same number of processes as the first (12 processes), until we have the
desired number of graphs. sG will therefore only contain graphs with the exact
same number of processes.

Chapter 7

Evaluation

In this chapter we present and elaborate on the results obtained through exper-
imental evaluation, including a realistic case study taken from the automotive
industry. The results from this evaluation can be found in Section 7.2.

The idea of the evaluation is generally to analyse the performance of the dif-
ferent algorithms. In contrast with the tests, where only the correctness of the
results was important, the evaluation aims at determining other properties of
our algorithms. This includes the speed, memory consumption and the quality
of the results obtained by the algorithms.

Two major components of our system are to be evaluated. The first one is
the response time analysis algorithm. We will compare different approaches
of response time analysis on fault-tolerant process graphs and evaluate, how
fast and precise they are. The reason for this separated evaluation is that the
response time analysis also can be used in other perspectives than fault-tolerance
policy assignment. Therefore it is interesting to have an independent assessment
of the RTA algorithm.

The second component is the heuristic algorithm used for the optimisation of the
fault-tolerance policy assignment. It will be evaluated using different randomly-
generated synthetic applications in order to determine the quality of the selected
approach and its suitability for the policy assignment and mapping problem.

The experiments have been done on a cluster consisting of machines running
Linux and equipped with “Dual Core AMD Opteron Processor 175” (2200 MHz)
and 2 GB of memory. The job distribution among the nodes is controlled by
an internal job dispatcher. Since the machines are dual-core, the job dispatcher
allows two parallel jobs to be running simultaniously on each machine. This
has two side-effects. First that the 2 GB of memory are shared between the
two experiments, leaving only 1 GB for each job. Secondly, we notice that the
response time algorithm is more memory intensive than CPU intensive. Since
the memory and the memory access are shared between the two processes, the
memory access might be a bottleneck. This might result in a performance
penalty. This has, however, not been investigated further.

7.1 Synthetic Applications

In the first part of the evaluation, we will test our algorithms with a number of
synthetic applications. The reason for using synthetic applications is the lack of
real-life examples to run the tests on. The synthetic applications should repre-
sent realistic applications and enable us to study the behaviour when changing
different parameters of the experiments.

In all cases when synthetic applications have been used, the result is an average
over ten different experiments. In a few cases we have not been able to obtain
results from all ten experiments, and have instead averaged the results avail-
able. In Figure 4.9 and 4.8 we have shown that the number of processes and
scenarios, respectively, depends very much on the topology of the graph. As the
evaluations depend very much on these numbers, we average to ensure that we
get a representative spectrum of different topologies. Another issue is related to
the Java VM. As running a program requires the virtual machine to warm up,
i.e. allocating memory and compiling into native code, before the performance
is stabilised, we reduce this effect by running a number of consecutive exper-
iments. One should also notice that the timing for the different experiments
is not precise, primarily due to the non-deterministic behaviour of the memory
management in Java controlled by the garbage collector.

The syntetic applications have been created as discussed in Section 6.4.3. We
have used four processing elements, and the best case execution time is selected
randomly between 10 and 20, while worst case execution time is between 15
and 25. The BCET is always chosen such that it always is equal or less than
the WCET. The period is constant and large (1000000) and the deadlines are
equal to the period. To simulate that some mappings are not allowed, we set a
probability of 10% for a given mapping not to be allowed. The priority is chosen

randomly between 10 and 20.

Notice that all plots unless otherwise stated are logarithmic. The reason being
that most of our results grow exponentially with the size of the problem, is more
easy to interpret the results with a logaritmic plot.

7.1.1 Buffering Versus no Buffering

We start by evaluating the effects of introducing buffering as described in Sec-
tion 6.2. Recall, that the basic idea was to avoid performing identical com-
putations more than once. It includes, for example, locating H-segments and
H-sections, which are static information that does not change across iterations.
We would therefore like to evaluate how much the execution time is decreased
when using this buffering compared to the naive solution. The result is shown
in Figure 7.1.

10 15 20 25
10

−2

10
0

10
2

10
4

Number of original processes

E
xe

cu
tio

n
tim

e
[s

]

κ=1

Buffered

Non−Buffered

Figure 7.1: Execution times for the RTA with and without buffering for different
number of processes and κ = 1.

The diagram above shows the behaviour of the algorithm for the growing number
of processes (the x-axis), when κ is kept constant. The y-axis represents the
execution time of the RTA. We can see that the execution time of the analysis
depends on the amount of the processes. Both with and without buffering the
execution time grow exponentially with the number of processes. It can also be

seen that the buffering drasticly reduces the execution time of the algorithm with
a factor between 10 and 100. It could also seem as the relative difference between
the two approaches increases with a higher number of processes, although the
tendency might not be certain.

Since the buffering approach is clearly faster than without the buffering, it has
been used in all further experiments.

7.1.2 Evaluation of Response Time Analysis Approaches

In this section, we will evaluate the three different approaches of doing con-
ditional response time analysis as introduced in Section 3.3: IC, CS and BF.
We will analyse the different approaches for different number of processes and
different number of faults, and try to capture any trends in the experiments.

First we will consider the execution times of the three approaches. In Figure 7.2
the execution times are illustrated for each approach for κ = 0 and κ = 1. As
expected, the execution time are more or less identical for κ = 0, since the
amount of calculations are the same. Any divergence is explained by differences
in the random topologies of the graphs that are not completely balanced out
by taking the average of 10 experiments. The execution time is exponentially
increasing for all three approaches as the number of processes increases. Looking
at κ = 1, we see that for all three approaches the execution time also increases
exponentially with the number of processes. It can also be seen that IC takes
considerable longer than CS and BF with a factor between 10 and 100. CS and
BF is on the hand comparable, but with CS slightly slower than BF.

In Figure 7.3 we have plotted the execution time for a fixed number of processes
(10) for the different approaches and an increasing number of faults. Here we
can see that the execution time of all three methods increase exponentially with
the number of faults, but IC increases faster than the others. It also seems that
the relative difference between CS and BF increases as the number of faults
increases.

In Figure 7.4 we show the execution time for CS and BF versus the number
of processes in the fault tolerant process graph. Since these will have different
numbers it is not possible to average these values. Notice that the x-axis is
logarithmic. It can be seen that CS and BF are relative close to each other, but
again with CS being slightly slower than BF. IC again increases much faster
than CS and BF.

10 20 30

10
0

Number of original processes

E
xe

cu
tio

n
tim

e
[s

]

κ=0

IC
CS
BF

10 20 30
10

0

10
1

10
2

10
3

10
4

Number of original processes

E
xe

cu
tio

n
tim

e
[s

]

κ=1

Figure 7.2: Execution time for the three different approaches for RTA: IC, CS,
and BF. Notice that execution times for κ = 0 are more or less identical while
IC is much slower than CS and BF for κ = 1

0 1 2 3 4
10

−2

10
0

10
2

10
4

10
6

κ

E
xe

cu
tio

n
tim

e
[s

]

Number of processes:10

IC
CS
BF

Figure 7.3: The execution time for the three different approaches for RTA with
an increasing κ. Number of processes is 10.

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Number of all processes

E
xe

cu
tio

n
tim

e
[s

]

IC
CS
BF

Figure 7.4: Execution time for the three different approaches for doing versus
the number of processes in the fault-tolerant process graph.

The behaviour of IC in these figures was expected. Recalling that the response
time is computed by considering all cases of possible process interferences, it
is trivial to realise that for IC, the interference analysis includes all process in
the conditional process graph regardless of their scenarios. Therefore it is not
practical to use our RTA algorithm for doing analysis with IC, even in cases
when just pessimistic bounds on response times are enough.

The other two methods look very similar, which contradicts our original hy-
pothesis that the CS approach to be less precise than BF, but faster. However,
the results demonstrate a contrary situation. By looking at the execution time
plots, we can conclude that BF analysis is actually faster than CS. The cause
for this behaviour is most likely found in the nature of the algorithm. When
doing conditional analysis in the CS approach, a great amount of time will be
spent on computing interference for processes that belong to all scenarios, for
instance the root process.

Another example was illustrated in subsection 3.3.2, where a given process was
affected by mutually exclusive processes. Even though the situation is not real-
istic, the algorithm must include all these processes in its consideration. When
the number of processes or faults increases, the number of mutually exclusive
processes increases too thereby prolonging the execution time. It also con-
firms our discussion about the size of fault-tolerant graphs in Section 4.7, since
WCDOPS+ depends very much on the total number of the processes in appli-
cations rather than fault scenarios.

That might also explain why the relative difference to the execution time of BF
increases with an increasing number of faults. Of course, the overall speed is
still much higher than IC, since most processes are eliminated in the outer loop.
In order to optimise the speed of CS, the algorithm must be analysed further
such that the situations above, if possible, can be avoided.

In the second part our evaluations of the response time analysis approaches,
we look at the degree of schedulability (DOS) in order to consider how precise
the three approaches are. Please notice what is shown in the following plots,
is not exactly DOS as defined by equation (5.4), since the deadline has been
left out when doing the calculation. The reason is that we, as described in
subsection 3.3.1, are not able to create realistic deadlines and assume that the
deadline is equal to the period for all processes. Since the deadlines therefore
are much larger than the response times, any differences in the response times
for the different approaches would be more or less concealed by the deadlines.
As a result, we have chosen to leave out the deadlines, such that the DOS
shown resembles a weighted sum of the response times. This will not affect the
comparison between the approaches, since the processes share the same deadline.

We consider BF as being the exact solution1 because it considers each scenario
seperately. Any DOS higher than the DOS found by BF, is a result of increased
pessimism. In Figure 7.5 the plots show for κ = 0 and κ = 1, how the DOS varies
for the number of processes in the application. Please notice that the number
of processes comes from the initial application, not the fault-tolerant process
graphs and that the figure is not in a logarithmic scale. For κ = 0 the DOS is
more less identical for all three methods. This is, as with the execution time,
expected since the calculations are identical for all three approaches. For κ = 1
the situation is somewhat different. It can be seen that while BF only increases
slowly, IC increases almost exponentially. It means that the more processes,
the more inaccurate IC is. The reason is that the FTPG simply contains more
processes that all are able to interference with each other, and the response
time will increase exponentially with the number of processes. CS increases also

1When keeping in mind that the RTA is not exact. A more precise result can only be
obtained by improving the precision of the RTA.

faster than BF, but is relatively much closer to BF than IC. From this we can see
that CS is more accurate than IC, and provides a relative acceptable estimate
of the DOS. The reasons for the difference in the DOS between BF and CS was
explained in subsection 3.4.

In Figure 7.6 the DOS is shown for a fixed number of processes (10) and an
increasing number of faults. As expected, we see that the DOS for IC increases
exponentially, whereas the DOS for CS and BF decreases slowly. At first this
might seem surprising that they decrease, but it is due to the fact that with
an increasing number of faults, the number of scenarios also increases. Recall
that the DOS is calculated as an average since we divide it by the number
of scenarios. For each scenario, the DOS is a sum over the processes times a
weight, which is inversely proportional to the number faults. It implies that the
additional scenarios added when introducing more fault, actually decrease the
total DOS.

10 20 30
0

1000

2000

3000

4000

5000

6000

7000

Number of original processes

D
eg

re
e

of
 s

ch
ed

ul
ab

ili
ty

κ=0

IC
CS
BF

10 20 30
0

1

2

3

4
x 10

4

Number of original processes

D
eg

re
e

of
 s

ch
ed

ul
ab

ili
ty

κ=1

IC
CS
BF

Figure 7.5: The degree of schedulability for the three different approaches for
RTA.

Based on the presented results, we have decided to use the BF approach in the
fault-tolerance policy optimisation heuristics. This approach finds the least pes-
simistic boundaries on the response time and has the best performance among
all others.

0 1 2 3 4
10

2

10
3

10
4

10
5

κ

D
eg

re
e

of
 s

ch
ed

ul
ab

ili
ty

Number of processes:10

IC
CS
BF

Figure 7.6: The degree of schedulability for the three different approaches for
RTA with an increasing κ. Number of processes is 10. Notice that IC has not
been calculated for κ > 2, but we strongly assume that the trend will continue.

7.1.3 Convergence and Evaluation of Heuristic

In order to test our algorithm, we consider the example given in Figure 7.7 and
Table 7.1 where κ = 1. We apply reexecution and replication to all processes as
the initial guess to test that it converges to the same solution.

Figure 7.7: A Diamond Shaped Application

In Appendix E.4 the convergence is shown for each of the two initial guesses.
It can be seen that the two situations, as expected, end up with the same

τi Pi Di M(τi) N0 N1 N2

1 4 9 N0 5 6 6
2 2 20 N2 2
3 3 15 N0 3 12 2
4 1 20 N0 4 15 3

Table 7.1: Properties of the Processes in Figure 7.7. Best case execution times
are equal to worst case times.

cost value. The final configurations are, however, not exactly the same. The
policy assignments are identical, but the mappings are not same. It illustrates
that there might be more than one solution with the same value of objective
function, such that they will be considered equally good. The found solution
depends much on the direction in the solution space which the heuristic arrives
from. This is partly controlled by the initial guess, but also by the choice of
heuristic.

Please also notice that for both initial guesses the initial solution is not schedu-
lable. This is indicated with the positive initial cost. In both situations the
resulting configuration is schedulable which can be seen from the final cost,
−22.

7.2 A Real-Life Example with a Cruise Con-

troller

In order to evaluate our results on a real-world example, we test our technique on
a model of cruise controller taken from [38]. We assume that the system should
be protected against two faults, κ = 2. However, due to missing information
about several system constraints, a number of assumptions have been made to
this model.

In Figure 7.8 the process graph has been shown, and the properties of the
processes can be found in Table 7.2. Furthermore, the initial mappings as given
by [38] are shown in Figure 7.9. Please notice that since our response time
analysis requires that the process graph has a single root, we have added a
dummy proces, τ0.

Figure 7.8: Process graph of the Adoptive Cruise Controller.

Figure 7.9: Initial mapping of the processes for the Adaptive Cruise Controller.

The problem is now, that we are missing information about the priorities of the
processes as well as the worst- and best case execution times on other nodes
than the ones initially assigned. The WCET and BCET given in Table 7.2
are only for the initial mappings. In order to make a qualified guess of the
different mappings, we consider the purpose of the different processes, which is
described in Table 7.3. Processes τ1 and τ2 reads values from some sensors while
τ6 controls an actuator. We therefore assume node 1 is the only node physically

connected to the sensors, while node 6 is the only connected to the actuator. As
a result, processes τ1, τ2 and τ6 cannot be remapped which is reflected in the
mapping table (Table 7.4). Since the purpose of remaining processes are just
calculations, we assume that these can be remapped to all other nodes. Since
the computational processes, τ3, τ4 and τ5 are initially assigned to node 2 and
3, we assume that these are twice as fast as node 1 and 4. We model this by
multiplying the BCET and WCET of the processes accordingly in the mapping
table. We let all priorities be 1. The choice of priorities is not important, since
there is almost no parallelism in the system. It will therefore, except for τ1

and τ2, be the precedence constraints that determine which in which order the
processes are run.

Process BCET WCET Deadline Period Node

[ms] [ms] [ms] [ms]

τ0 0 0 20 20 1

τ1 2 2 20 20 1

τ2 2 2 20 20 1

τ3 2 6 20 20 2

τ4 2 2 20 20 2

τ5 2 6 20 20 3

τ6 2 2 20 20 4

Table 7.2: Properties of the processes in the Adoptive Cruise Controller.

Process Purpose

τ0 Dummy root process

τ1 Measures the velocity of the vehicle

τ2 Measures the distance to the closest vehicle in front

τ3 Calculates the relative speed to the vehicle in front

τ4 Calculates the desired velocity

τ5 Given the desired velocity and with information about

the engine, it calculates the absolute value of the throttle

τ6 Controls the physical changing of the throttle

Table 7.3: Purpose of the different processes in the Adaptive Cruise Controller.

Since we add fault tolerance, we are also able to accept that the period and

deadline, both given as 20 in [38], is increased to 30 for all processes.

Process N1 N2 N3 N4

τ0 (0, 0) (0, 0) (0, 0) (0, 0)

τ1 (2, 2)

τ2 (2, 2)

τ3 (4, 12) (2, 6) (4, 12) (4, 12)

τ4 (4, 4) (2, 2) (4, 4) (4, 4)

τ5 (4, 12) (4, 12) (2, 6) (4, 12)

τ6 (2, 2)

Table 7.4: Mapping table of the Adaptive Cruise Controller where execution
time is given as BCET/WCET in [ms].

The XML-file describing the system is given in Appendix D.1. Running our pro-
gram gives the result shown in Appendix D.2. From the results, we can observe
a number of things. The initial degree of schedulability after having added reex-
ecution to all processes, is negative (-2328) and therefore the system is already
schedulable in its initial configuration with reexecution. After 4 iterations the
degree of schedulability it improved to -2800. The result says that τ1, τ2 and τ6

should be reexecuted while the other processes should be replicated.

Notice that the model is not completely realistic for at least two reasons. First
of all, all processes except τ6 should pass on their result on to the succeeding
process. This implies that some messages must be included in the model to
simulate the time when transfering the messages on the bus. Even though
messages are included, it is not very clear in [38] how these are modelled and
there are not given any transmission times for these messages. As a result, we
have chosen not to include the messages. The second deficit of the example, is
that the cruise controller will most likely be implemented on a system together
with other components. As a result there will be other processes, possible
with a higher priority, mapped to the same nodes, as well as other messages
on the bus. This would create preemptions on the processing elements, and
the response times of the processes and messages might therefore be prolonged.
We have, however, not tried to include this in the system, since we would risk
creating completely unrealistic situations. Secondly, this would for the current
solution imply creating the hypertransaction with the accompanying deficies as
described in subsection 3.3.1.

Chapter 8

Conclusions and Future Work

In this thesis we have presented an approach to design optimisation of safety-
critical fault-tolerant embedded systems. We have considered hard real-time
systems with event-triggered scheduling and a distributed architecture. The ap-
plications are modelled as processes with control and data dependencies grouped
into process graphs. In order to protect processes against a fixed number of tran-
sient faults, we have used two fault-tolerance techniques – active replication and
reexecution.

Fault-tolerant process graphs. In order to represent fault occurences in an
application we have used fault-tolerant process graphs. It has been shown that
existing approaches to work with process graphs are not completely suitable
to our problem. Therefore we have proposed a new notation and algorithms
that can be used to build and modify such graphs for any number of faults. In
addition we have derived equations to compute the bounds for the number of
processes and scenarios in the graphs.

We have only considered applications where all processes are protected against
the same number of faults, but the developed algorithms can also be extended
to include different numbers of faults for each process.

Response time analysis. We have based our response time analysis on the
existing WCDOPS+ algorithm. This algorithm has been chosen as being state-
of-the-art in the area of response time analysis for event-driven distributed sys-
tems with data dependencies. It also includes support for messages modelled as
non-preemtive processes.

One contribution of this thesis is the extension of the algorithm in order to
support applications where processes can have several predecessors. It has been
shown what parts of the algorithm must be updated to reduce the pessimism
and obtain more correct results. The major contribution has been an exten-
sion to support conditional analysis on an fault-tolerant process graph. Only
applications with a single transaction have been considered.

The algorithm has been used to evaluate the system while doing fault-tolerance
policy assignment. During the evaluations we have concluded that the perfor-
mance of the algorithm is better when applications are analysed using a brute
force approach. Therefore the brute force approach has been selected as the
response time analysis for the policy assignment and mapping.

Mapping and fault-tolerance policy assignment. The purpose of fault-
tolerance policy assignment is to determine which fault-tolerance technique
should be assigned to the processes in a safety-critical application. The selected
assignment should guarantee that for any combination of faults the application
can obey its timing constraints.

We have applied the Hill Climber algorithm to derive the policy assignment
and mapping. The heuristic is driven by the results provided by the response
time analysis. In order to utilise these results in the most optimal way we have
defined an objective function based on the timing constraints of the application.
The objective function also depends on the likelihood of each fault scenario. We
have assumed that scenarios having many faults are less possible than scenarios
with fewer faults, but this weighing can be improved if the designer knows more
details about the system.

The objective function is defined in such a way that it will direct the heuristic
to a schedulable solution as the primary goal. When it finds a policy assignment
that is schedulable, the objective function will help to reduce the response times
and thereby choose the least costly configuration.

Evaluations. The results of the evaluation have demonstrated the perfor-
mance of our methods. It has been shown that the pessimism of the response

time analysis is significantly reduced compared to the approach where the fault
conditions are ignored. However, the execution time of the algorithm with con-
dition separation has been reported to be larger than for the brute force version.
It means that the approach producing the most exact results is also the fastest
one. The conclusion is that there are still parts of the algorithm that can be
optimised in order to reduce the execution time of the version with condition
separation.

The evaluation of the proposed approaches has been done with numerous syn-
thetics applications. We have also used our method to optimise policy assign-
ment for a real-life example from automotive industry, a model of a cruise con-
troller. The experiment showed that the optimisation heuristic is able to create
and improve the schedulability while tolerating a fixed number of faults.

The design optimisation techniques presented in this thesis are all based on sev-
eral assumptions about the system architecture and application model. These
assumptions were necessary to reduce the complexity of the problem, but on the
other hand they brought the model to an abstraction level that is not directly
applicable in a practical context. Therefore this thesis can be used as a foun-
dation for further research on the topic, and we offer a number of important
improvements in the following section.

8.1 Future Work

The last part of this thesis considers several suggestions for future research. In
order to put our work into perspective we will also discuss how to make our
methods more valuable from the point of view of a designer.

Applications with several transactions. The presented approach will only
be useful for applications with a single transaction, which is very unlikely in the
real world. Therefore it would be obvious to extend the presented methods to
support applications with several transactions. Such modifications will require
that both the fault model and the response time analysis are extended.

Performance optimisation. It has been shown that the response time anal-
ysis with condition separation produces results that are very close to the brute
force solution. However, the last approach requires additional work to be done
such as splitting graphs into scenarios. An improvement of the RTA algorithm
would be to find and eliminate the bottlenecks thereby reducing the time needed

to find the response times using condition separation. This might bring the ex-
ecution time below the BF approach, while still obtaining rather precise results.

Policy assignment optimisation. The policy assignment is done by a Hill
Climber based heuristic, which is very simple and has several weaknesses. As a
part of future work, one can try to combine other, possible specialised, heuristics
that are more tuneable and can escape from local minima. Another approach
would be to introduce delta evaluations into the heuristics. With delta eval-
uations one only calculates the parts that are different between neighbouring
solutions. The reason being that the the response time analysis for two solutions
in a given neighbourhood, will be very close to each other. Therefore it should
be possible to reuse at least some of the results across the different solutions.

Other optimisations might also involve that the fault model is extended with
additional information such as different probability of having fault on different
processing elements. This information could be used to adjust the weights used
in the cost function and in this manner model more realistic behaviour.

Usability of the method. With the presented approach it is possible to find
an optimal policy assignment if there exists one. However, the method will not
be able to help the designer, if the system is not schedulable or the desired
level of fault tolerance can not be obtained with the given system configuration.
For such situations an improvement could be to reuse the available information
about the system in order to figure out what parts of the hardware and possible
of the application that should be changed in order to meet the requirements.

Another interesting option for future work would be to integrate the proposed
implementation into an existing tool for design analysis and optimisation.

Appendix A

List of Notations

Application Architecture

A Application. The set of transactions
Γi Transaction. A set of processes that are related through

control or data dependencies
Ti Period of transaction Γi

pred(τij) Set of predecessors to process τij . Can be either processes
and/or messages

succ(τij) Set of successors to process τij . Can be either processes
and/or messages

Dij Deadline of process τij

Process

τij Process τj in transaction Γi

M(τij) The processing element on which process τij is mapped
Cb

ij Best case execution time of process τij

Cij Worst case execution time of process τij

Pij Priority of process τij

Message

mij Message mi in transaction Γi

M(mij) The communication channel on which message mij is
mapped

Cmo
i Worst case transmission time (WCTT) of message mi

Cmo
i Best case transmission time (BCTT) of message mi

Cm
i Worst case transmission time (WCTT) of message mi when

considering mapping of sending and receiving processes in
current configuration

Cm
i Best case transmission time (BCTT) of message mi when

considering mapping of sending and receiving processes in
current configuration

Pm
i Priority of message mi

Hardware Architecture

Ni A processing element (PE) in the hardware architecture

Scheduling

Φij Dynamic offset of process τij

ϕij Phase of process τij

Jij Dynamic jitter of process τij

Jseg
ij (τab) Dynamic jitter of H-segment Hseg

ij (τab)

hpi(τab) Set of processes from transaction Γi with a priority higher
or equal to process τab and on the same PE as process τab

lpi(τab) Set of processes from transaction Γi with a priority lower
than process τab and on the same PE as process τab

Bij Blocking time of process τij due to non-preemptible lower
priority processes (messages)

Rb
ij Best case response time of process τij

Rw
ij Worst case response time of process τij

tc Critical instant
nijk Number of pending instances of process τij at critical in-

stant tc
Hseg

ij (τab) H-Segment

Hij(τab) H-Section
wij Length of the busy period for process τij

Fault-Tolerant Process Graph

Gi Fault Tolerant Process Graph
sis A scenario: a trace through graph Gi for a certain combi-

nation of conditions
Si The set of scenarios for graph Gi

τf
ij/r An element of the FTPG; process τij with faultlist f and

replica number r

τf
ij Equivalent to process τf

ij/0

mf
ij/r An element of the FTPG; message mij with faultlist f and

replica number r

mf
ij Equivalent to message mf

ij/0

succOrg(τf
ij/r) The set of processes corresponding to succ(τij)

predOrg(τf
ij/r) The set of processes corresponding to pred(τij)

Px The set of processes with reexecution as fault tolerance
Pr The set of processes with replication as fault tolerance
RS(τab) The set of occurences of process τab in graph Ga

m(τab, f) The number of occurences of process τab in the faultlist, f

pl(τf
ij/r) The set of processes in graph Gi which preceeds process

τf
ij/r

NFis Number of faults occured in scenario sis

MA(τab) Set of nodes on which process τab can be mapped
DOS(Gi) Degree of schedulability for graph Gi

DOS(sis) Degree of schedulability for scenario sis

DP (si) The processes in scenario sis that included in the calculation
of the degree of schedulability

SL(τf
ab/r) The set of scenarios which process τf

ab/r is a part of

PX(τab) The set of processes in the process graph that precedes
process τab and is protected by reexecution

NO(τab, κ) Number of occurences of process τab in graph Ga for κ

ρ(Nn, τf
ab/r)

Utilisation of processing element Nn for the scenarios that
process τf

ab/r is in

SU(Nn, τf
ab/r)

The set of processes that are mapped on processing element
Nn and has at least one scenario sis in common with process
τf
ab/r

SPSi(τ
f
ab/r)

The set of processes from a given graph Gi that process
τf
ab/r can co-exist with

ISS(τf1

ab/r1
, τf2

ij/r2
)

Whether two processes can occur together. They must have
at least one scenario in common

Rw
ab(f)(r) Worst case response time of process τf

ab/r

Cb
ab(f)(r) Best case response time of process τf

ab/r

M(τf
ab/r) The mapping of process τf

ab/r

Pab/r
f Priority of process τf

ab/r

Pab/r
m,f Priority of process τf

ab/r

NOPΓi Number of processes in transaction Γi

NOAGi Number of processes and messages in graph Gi

Data Structures

LPFL Given a process and number of faults it returns the corre-
sponding list of processes

LFTA Given a process and a faultlist, it returns the corresponding
process and its replicas

Appendix B

List of Abbreviations

BCET Best Case Execution Time
BCRT Best Case Response Time
BCTT Best Case Transmission Time
CAN Controller Area Network
DOS Degree of Schedulability
FTPG Fault-Tolerant Process Graph
ISS In Same Scenario
PE Processing Element
PG Process Graph
RTA Response Time Analysis
WCET Worst Case Execution Time
WCRT Worst Case Response Time
WCTT Worst Case Transmission Time

Appendix C

Pseudocode

This appendix contains the pseudocode of the algorithms describe in this thesis.

Notice that when using the function copy() to copy a process or a message, only
the properties of the message is copied, such as mapping table, current mapping
and priority. Any graph related information is not copied.

The function connect(τa, τb) connects processes mutually such that process τb

becomes a successor to τa and process τa becomes a predecessor of τb.

In the pseudocode, we will use the notation Aab, which can be either a process
(τab) or a message (mab). For the FTPG Af

ab/r is likewise either a process (τabfr)

or a message (mab(f)(r)).

Algorithm 4 Modified BranchInterference(τab, τik, τiB , w, p)

SB=succ(τiB)
if τiB ∈ hpi(τab) then

SB = SB ∪ τiB

end if

for τim ∈ SB such that τim ∈ hpi(τab) do

S = {τil ∈ Him(τab) | τiB < τil}
sectionIS = ∅
for τij ∈ S such that TaskInterference(τab, τik, τij , w, t) > 0 do

sectionIS = sectionIS ∪ τij

end for

SB = SB ∪ succ(Hseg
im (τab)) − Hseg

im (τab)
end for

for all τis ∈ SB do

[bIS, bD] = BranchInterference(τab, τik, τis, w, p)
subBranchesIS = subBranchesIS ∪ bIS
subBDelta = max(subBDelta, bD)

end for

if (τiB ∈ pred(Hseg
im (τab)) and Hseg

im (τab) is blocking {see Eq. (3.35)}) then

branchIS = subBranchesIS
branchDelta = max(C(sectionIS) − C(subBranchesIS), subBDelta)

else

branchIS = maxC(sectionIS, subBranchesIS)
branchDelta = max(C(subBranchesIS) + subBDelta− C(branchIS), 0)

end if

return [branchIS,branchDelta]

Algorithm 5 splitIntoScenarios(Ga)

Require: Ga must be a valid Fault-Tolerant Process Graph
Require: The Γa corresponding to Ga can only have one sink node
Gb ⇐ Initialize new empty transaction
mapOldWithNew ⇐ Initialize new hashmap
for all τf

ab/r ∈ Ga do

if succ(τf
ab/r) = ∅ then

τf
bb/r ⇐ copy(τf

ab/r)

add τf
bb/r to Gb

add (τf
ab/r, τf

bb/r) to mapOldWithNew

for all τf
ap/r ∈ pred(τf

ab/r) do

splitRecursively(τf
bb/r, τf

ap/r, Gb, mapOldWithNew)

end for

end if

end for

Algorithm 6 splitRecursively(Af
bb/r, Af

ac/r, Gb, mapOldWithNew)

if Af
ac/r 6∈ mapOldWithNew then

Af
bc/r ⇐ copy(Af

ac/r)

add (Af
ac/r, Af

bc/r) to mapOldWithNew

connect(Af
bc/r, Af

bb/r)

for all Af
ap/r ∈ pred(Af

ab/r) do

splitRecursively(Af
bc/r, Af

ap/r, Gb, mapOldWithNew)

end for

else

Af
bc/r ⇐ lookup Af

ac/r in mapOldWithNew

connect(Af
bb/r, Af

bc/r)

end if

Algorithm 7 addReexecution(τab)

Require: τab: the original process to add reexecution
for i = 0 . . . κ − 1 do

res ⇐ LPFL.lookup(τab, i)

for all τf
ab/r ∈ res do

τf2

ab/r ⇐ copy(τf
ab/r)

let f2 = fb

⊎

τab

connect(τf
ab/r, τf2

ab/r)

mark transition from τf
ab/r to τf2

ab/r with fault condition

listToAddReplication ⇐ Initialize new empty list
buildReexecutionRecursively(τf

ab/r, τab, listToAddReplication)

for all τf
ar/r ∈ listT oAddReplication do

addReplicationAux(τf
ar/r)

end for

end for

end for

Algorithm 8 buildReexecutionRecursively(Af
ab/r, Aab, listToAddReplication)

if Aab ∈ Px and |f| < κ then

Af2

ab/r ⇐ copy(Af
ab/r)

let f2 = fb

⊎

τb

LFTA.put(Af2

ab), LPFL[Aab, |f2|].insert(Af2

ab/r)

connect(Af
ab/r, Af2

ab/r)

mark transition from Af
ab/r to Af2

ab/r with fault condition

buildReexecutionRecursively(Af2

ab/r, Aab, listToAddReplication)

end if

for Aac ∈ succOrg(Aab) do

if |predOrg(Aac)| = 1 then

Afc

ac/rc
⇐ copy(Aac)

let fc = f, rs = 0
LFTA.put(Afc

ac), LPFL[Aac, |f2|].insert(Afc

ac/rc
)

if (τac is process) then

if τac ∈ Pr and |fs| < κ then

add Afc

ac/rc
to listToAddReplication

end if

for all A
fp

ap/rp
∈ LFTA.lookup(Af

ab/r) do

connect(A
fp

ap/rp
, Afc

ac/rc
)

end for

else

connect(Af
ab/r, Afs

as/rs
)

end if

buildReexecutionRecursively(Af2

ab/r, Aab, listToAddReplication)

else

permutations ⇐ createAllAllowedPermutations(Aac, f)
for all permutation ∈ permutations do

if (LFTA.lookup(permutation) = ∅) then

A
fp

ac/rp
⇐ copy(Aac)

fp = faultlist from permutation

LFTA.put(A
fp
ac), LPFL[Aac, |fp|].insert(A

fp

ac/rp
)

for all Afo

ao/ro
∈ permutation do

connect(Afo

ao/ro
, A

fp

ac/rp
)

end for

end if

end for

end if

end for

Algorithm 9 createAllAllowedPermutations(τab, f)

Require: τab : process of which predecessors are to be permutated
Require: f : The minimum faultlist of the process to be permutated

pL ⇐ Initialise empty list
init ⇐ true

for all pred ∈ predOrg(τab) do

if init then

for i = 0 . . . κ do

curList = LPFL[Aab, i]
for all cur ∈ curList do

add cur to pL
end for

end for

init ⇐ false
else

for i = 0 . . . κ do

curList = LPFL[Aab, i]
for all cur ∈ curList do

for all cand ∈ pL do

remove cand from pL
if cur ∪ cand is allowed permutation {acc. to subsection 4.4.1}
then

add cur ∪ cand to pL
end if

end for

end for

end for

end if

end for

return pL

Algorithm 10 addReplication(τab)

for i = 0 . . . κ − 1 do

res ⇐ LPFL[τab, i]

for all τf
ab ∈ res do

addReplicationAux(τf
ab)

end for

end for

Algorithm 11 addReplicationAux(τf
ab)

Require: τf
ab: Process to add replication

for i = 1 . . . (k − |f |) do

τf
ab/i ⇐ copy(τf

ab)

LFTA(τf
ab).put(τf

ab/i)

for all A
fp

ap/rp
∈ pred(τf

ab) do

connect A
fp

ap/rp
, τf

ab/i

end for

for all Afs

as/rs
∈ succ(τf

ab/0) do

if Afs

as/rs
is message then

mfs

as/i ⇐ copy(mfs

as/rs
)

LFTA(mfs
as).put(mfs

as/i)

connect τf
ab/i, mfs

as/i

for Aft

at/rt
in succ(Afs

as/rs
) do

connect mfs

as/i, Aft

at/rt

end for

else

connect τf
ab/i, Afs

as/rs

end if

end for

add to tables
end for

Algorithm 12 removeRexecution(τab)

for i = 0 . . . k − 1 do

for all τf
ab ∈ LPFL.lookup(τab, i) do

if τab ∈ f then

removeSuccAux(τf
ab)

end if

end for

end for

Algorithm 13 removeSuccAux(τf
ab)

Require: τf
ab/r : to be removed

remove τf
ab from graph

remove τf
ab from LFTA

remove τf
ab from LPFL[τab,|f |]

for all τfc

ac/rc
∈ succ(τf

ab/r) do

removeSuccAux(τfc

ac/rc
)

end for

Algorithm 14 removeReplication(τab)

Require: τab: The process to have replication removed
for i = 0 . . . k − 1 do

for all τf
ab ∈ LPFL[τab, i] do

pList = LFTA(τf
ab)

for j = 1 . . . |pList| − 1 do

remove all references to pList[i] among its successors and predecessors

remove pList[i] from LFTA(τf
ab)

end for

end for

end for

Algorithm 15 Generate Random Graphs With The Same Number Of Processes

Require: rP: requested number of procs
Require: aP: actual number of procs
Require: nG: number of graphs to generate
Require: sG: set of generated graphs

Γa = generateGraph(rP)
sG ⇐Initialize empty set
sG.add(Γa)
aP = size(Γa)
while size(sG) ¡ nG do

Γb = generateGraph using TGFF with rP processes
if size(Γb) == aP then

sG.add(Γb)
end if

end while

return sG

Appendix D

Cruise Controller Example

This appendix contains the results of the design optimisation used with the
model of adaptive cruise controller. We have included the XML file describing
the model and the result produced by the program.

D.1 Input File for Adaptive Cruise Controller

Example

<?xml version=” 1.0 ” encoding=”UTF−8”?>

<bench>

5<fau l tmodel numberOfFaults=”2”/>

<platform>

<nodes>
10<node number=”1”/>

<node number=”2”/>
<node number=”3”/>
<node number=”4”/>

</nodes>
15

<communicationchannels>
<channel number=”0”/>

</ communicationchannels>

20</platform>

<app l i c a t io n>
<t r an s ac t i on s>

<t r an sac t ion number=”0” per iod=”1000”>
25< !−− Dummy r o o t p r o c e s s −−>

<proce s s number=”0” node=”1” p r i o r i t y=”1”>
<mappingtable>

<mapping node=”1” wcet=”0”/>
<mapping node=”2” wcet=”0”/>

30<mapping node=”3” wcet=”0”/>
<mapping node=”4” wcet=”0”/>

</mappingtable>
</ p roce s s>
< !−−Mea s u r e s t h e v e l o c i t y o f t h e v e h i c l e −−>

35<proce s s number=”1” node=”1” p r i o r i t y=”1”>
<mappingtable>

<mapping node=”1” bcet=”2” wcet=”2”/>
</mappingtable>
<dependenc i es>

40<dependency from=”0”/>
</dependenc i es>

</ p roce s s>
< !−− Mea s u r e s t h e d i s t a n c e t o t h e c l o s e s t v e h i c l e i n f r o n t −−>
<proce s s number=”2” node=”1” p r i o r i t y=”2”>

45<mappingtable>
<mapping node=”1” bcet=”2” wcet=”2”/>

</mappingtable>
<dependenc i es>

<dependency from=”0”/>
50</dependenc i es>

</ p roce s s>
< !−− C a l c u l a t e s t h e r e l a t i v e s p e e d t o t h e v e h i c l e i n f r o n t −−>
<proce s s number=”3” node=”2” p r i o r i t y=”1”>

<mappingtable>
55<mapping node=”1” bcet=”2” wcet=”6”/>

<mapping node=”2” bcet=”2” wcet=”6”/>
<mapping node=”3” bcet=”2” wcet=”6”/>
<mapping node=”4” bcet=”2” wcet=”6”/>

</mappingtable>
60<dependenc i es>

<dependency from=”1”/>
<dependency from=”2”/>

</dependenc i es>
</ p roce s s>

65< !−−C a l c u l a t e s t h e d e s i r e d v e l o c i t y −−>
<proce s s number=”4” node=”2” p r i o r i t y=”1”>

<mappingtable>
<mapping node=”1” bcet=”2” wcet=”2”/>
<mapping node=”2” bcet=”2” wcet=”2”/>

70<mapping node=”3” bcet=”2” wcet=”2”/>
<mapping node=”4” bcet=”2” wcet=”2”/>

</mappingtable>
<dependenc i es>

<dependency from=”3”/>
75</dependenc i es>

</ p roce s s>
< !−−C o n t r o l s t h e v e l o c i t y o f t h e v e h i c l e , i n d i r e c t l y , b y c h a n g i n g t h e

t h r o t t l e −−>
<proce s s number=”5” node=”3” p r i o r i t y=”1”>

<mappingtable>
80<mapping node=”1” bcet=”2” wcet=”6”/>

<mapping node=”2” bcet=”2” wcet=”6”/>
<mapping node=”3” bcet=”2” wcet=”6”/>
<mapping node=”4” bcet=”2” wcet=”6”/>

</mappingtable>
85<dependenc i es>

<dependency from=”4”/>
</dependenc i es>

</ p roce s s>
< !−−C o n t r o l s t h e p h y s i c a l c h a n g i n g o f t h e t h r o t t l e −−>

90<proce s s number=”6” node=”4” p r i o r i t y=”1”>
<mappingtable>

<mapping node=”4” bcet=”2” wcet=”2”/>
</mappingtable>
<dependenc i es>

95<dependency from=”5”/>
</dependenc i es>

</ p roce s s>
</ t r an sac t ion>

</ t r an s ac t i on s>
100</ app l i c a t io n>

</bench>

D.2 Results from the Heuristics

The adaptive cruise controller is optimised using our implementation as follows:

$ doftes.sh -mode optimize -optimizationMaxIterations 20

tests/acc.xml

And the output is as follows:

Optimal con f i g u ra t i on found a f t e r 4 i t e r a t i o n s
I n i t i a l degree o f s c hedu l a b i l i t y : −2658
Fina l degree o f s c hedu l a b i l i t y : −3115
The s o lu t i o n i s s chedu lab l e !

Pol i cy Assignment :
Reexecution : P1 , P2 , P6
Repl i ca t ion : P0 , P3 , P4 , P5

Pr i o r i ty and mappings :

Proces s F au l t l i s t ReplicaNb P r i o r i t y Proce s s ing
Element

−−

P0 [] 0 1 N1
P0 [] 1 1 N3
P0 [] 2 1 N2
P1 [P1] 0 1 N1
P1 [P1 , P1] 0 1 N1
P1 [] 0 1 N1
P2 [P2] 0 2 N1
P2 [] 0 2 N1
P2 [P2 , P2] 0 2 N1
P3 [P1] 0 1 N2
P3 [] 2 1 N3
P3 [] 1 1 N1
P3 [P2] 1 1 N4
P3 [] 0 1 N2
P3 [P2 , P2] 0 1 N2
P3 [P1] 1 1 N1
P3 [P2] 0 1 N2
P3 [P1 , P2] 0 1 N2
P3 [P1 , P1] 0 1 N2
P4 [P1 , P2] 0 1 N2
P4 [P1] 1 1 N1
P4 [P2 , P2] 0 1 N2
P4 [P2] 1 1 N4
P4 [P1 , P1] 0 1 N2
P4 [] 0 1 N2
P4 [] 1 1 N1
P4 [P1] 0 1 N2
P4 [P2] 0 1 N2
P4 [] 2 1 N4
P5 [P2 , P2] 0 1 N3
P5 [P1 , P2] 0 1 N3
P5 [] 2 1 N4
P5 [] 0 1 N3
P5 [] 1 1 N1
P5 [P1 , P1] 0 1 N3
P5 [P2] 0 1 N3
P5 [P2] 1 1 N4
P5 [P1] 1 1 N1
P5 [P1] 0 1 N3
P6 [P6] 0 1 N4
P6 [P2] 0 1 N4
P6 [P2 , P6] 0 1 N4
P6 [P1 , P2] 0 1 N4
P6 [] 0 1 N4
P6 [P1 , P6] 0 1 N4
P6 [P1] 0 1 N4
P6 [P1 , P1] 0 1 N4
P6 [P6 , P6] 0 1 N4
P6 [P2 , P2] 0 1 N4

Appendix E

Other Examples

E.1 Splitting FTPG into Scenarios

This section contains two examples illustrating how faults scenarios are ex-
tracted from complete fault-tolerant process graphs. They all are created by
our program, which uses Graphviz[37] as backend renderer. Due to charset
limitations the generated graphs have different notations. The processes are
represented as ovals with a signature inside. The first line of the signature con-
tains process number denoted with P and processing element in parentheses.
The second line contains the fault list and the replica number. The third line
is the scenario list, i.e. alls scenarios a process belongs to. Notice that scenario
list is empty when the scenarios are splitted. The fault conditions are drawn
with red arrows.

E.1.1 Example 1: Reexecution Only

P3 (N0)
([P2-1], 0)

[3]

P2 (N0)
([P2-1], 0)

[3]

P2 (N0)
([P0-1], 0)

[5]

P3 (N0)
([P0-1], 0)

[5]

P2 (N0)
([], 0)

[1, 2, 3, 4]

P3 (N0)
([], 0)
[2, 4]

P3 (N0)
([P1-1], 0)

[1]

P3 (N0)
([P3-1], 0)

[2]

P1 (N0)
([P1-1], 0)

[1]

P1 (N0)
([P0-1], 0)

[5]

P0 (N0)
([P0-1], 0)

[5]

P0 (N0)
([], 0)

[1, 2, 3, 4, 5]

P1 (N0)
([], 0)

[1, 2, 3, 4]

Figure E.1: A example of a diamond-shaped fault-tolerant process graph. All
processes are protected by reexecution and κ = 1

P2 (N0)
([], 0)

[]

P3 (N0)
([], 0)

[]

P1 (N0)
([], 0)

[]

P0 (N0)
([], 0)

[]

(a) Scenario 1,
no faults

P1 (N0)
([P0-1], 0)

[]

P3 (N0)
([P0-1], 0)

[]

P2 (N0)
([P0-1], 0)

[]

P0 (N0)
([P0-1], 0)

[]

P0 (N0)
([], 0)

[]

(b) Scenario 2,
process τ0 fails

P0 (N0)
([], 0)

[]

P1 (N0)
([], 0)

[]

P2 (N0)
([], 0)

[]

P1 (N0)
([P1-1], 0)

[]

P3 (N0)
([P1-1], 0)

[]

(c) Scenario 3,
process τ1 fails

Figure E.2: Scenarios derived from the graph in Figure E.1

P2 (N0)
([], 0)

[]

P2 (N0)
([P2-1], 0)

[]

P3 (N0)
([P2-1], 0)

[]

P1 (N0)
([], 0)

[]

P0 (N0)
([], 0)

[]

(a) Scenario 4,
process τ2 fails

P3 (N0)
([P3-1], 0)

[]

P2 (N0)
([], 0)

[]

P3 (N0)
([], 0)

[]

P0 (N0)
([], 0)

[]

P1 (N0)
([], 0)

[]

(b) Scenario 5,
process τ3 fails

Figure E.3: Scenarios derived from the graph in Figure E.1(continued)

E.1.2 Example 2: Reexecution Combined With Replica-

tion

P3 (N2)
([], 1)

[]

P3 (N0)
([P2-1], 0)

[3]

P2 (N0)
([P2-1], 0)

[3]

P2 (N0)
([P0-1], 0)

[5]

P3 (N0)
([P0-1], 0)

[5]

P1 (N2)
([], 1)

[]

P3 (N0)
([], 0)
[2, 4]

P2 (N0)
([], 0)

[1, 2, 3, 4]

P1 (N0)
([P0-1], 0)

[5]

P0 (N0)
([P0-1], 0)

[5]

P0 (N0)
([], 0)

[1, 2, 3, 4, 5]

P1 (N0)
([], 0)

[1, 2, 3, 4]

Figure E.4: A example of a diamond-shaped fault-tolerant process graph. Pro-
cesses τ0 and τ2 are protected with reexecution, whereas τ1 and τ3 are replicated,
κ = 1

P3 (N2)
([], 1)

[]

P1 (N2)
([], 1)

[]

P3 (N0)
([], 0)

[]

P0 (N0)
([], 0)

[]

P1 (N0)
([], 0)

[]

P2 (N0)
([], 0)

[]

(a) Scenario 1, no faults

P3 (N0)
([P0-1], 0)

[]

P0 (N0)
([P0-1], 0)

[]

P2 (N0)
([P0-1], 0)

[]

P1 (N0)
([P0-1], 0)

[]

P0 (N0)
([], 0)

[]

(b) Scenario 2,
process τ0 fails

P2 (N0)
([], 0)

[]

P2 (N0)
([P2-1], 0)

[]

P3 (N0)
([P2-1], 0)

[]

P1 (N0)
([], 0)

[]

P1 (N2)
([], 1)

[]

P0 (N0)
([], 0)

[]

(c) Scenario 3, pro-
cess τ2 fails

Figure E.5: Scenarios derived from the graph in Figure E.4

E.2 LFTA and LPFL

This section contains illustrations explaining the meaning of the data structures
(lookup tables LFTA and LPFL) used in the operations on fault-tolerant process
graphs. Then shown tables hold the information about the processes in the
graph from Figure E.7.

Figure E.6: Initial Process Graph Shaped as a Diamond

Figure E.7: The figure shows the fault-tolerant application derived from the
graph in Figure E.6, where κ = 2, (τ1, τ4) ∈ Px, (τ2, τ3) ∈ Pr

h(τf
ab/0) The corresponding elements

h(τ
[]
1) τ

[]
1/0

h(τ
[]
2) τ

[]
2/0, τ

[]
2/1, τ

[]
2/2

h(τ
[]
3) τ

[]
3/0, τ

[]
3/1, τ

[]
3/2

h(τ
[]
4) τ

[]
4/0

h(τ
[4]
4) τ

[4]
4/0

h(τ
[4,4]
4) τ

[4,4]
4/0

h(τ
[1]
1) τ

[1]
1/0

h(τ
[1]
2) τ

[1]
2/0 , τ

[1]
2/1

h(τ
[1]
3) τ

[1]
3/0 , τ

[1]
3/1

h(τ
[1]
4) τ

[1]
4/0

h(τ
[1,4]
4) τ

[1,4]
4/0

h(τ
[1,1]
1) τ

[1,1]
1/0

h(τ
[1,1]
2) τ

[1,1]
2/0

h(τ
[1,1]
3) τ

[1,1]
3/0

h(τ
[1,1]
4) τ

[1,1]
4/0

Table E.1: Contents of LFTA for Figure E.7

|fab|

0 1 2

τ1 τ
[]
1 τ

[1]
1 τ

[1,1]
1

τ2 τ
[]
2 τ

[1]
2 τ

[1,1]
2

τ3 τ
[]
3 τ

[1]
3 τ

[1,1]
3

τ4 τ
[]
4 τ

[1]
4 , τ

[4]
4 τ

[1,1]
4 , τ

[1,4]
4

Table E.2: Contents of LPFL for Figure E.7

E.3 Calculating Degree of Schedulability

The tables shown in this section illustrate how the degree of schedulability is
computed for the exaple from Section E.1.1.

sl

τ
f
ij/r

Pij Cij Dij 1 2 3 4 5

NFsl 0 1 1 1 1

τ
[]
0/0

7 2 10 2 2 2 2 2

τ
[]
1/0

5 4 30 6 6 6 6

τ
[]
2/0

3 5 30 7 7 7 7

τ
[]
3/0

5 10 40 17 17

τ
[0]
0/0

4

τ
[0]
1/0

8

τ
[0]
2/0

9

τ
[0]
3/0

19

τ
[1]
1/0

10

τ
[2]
2/0

12

τ
[3]
3/0

27

τ
[1]
3/0

20

τ
[2]
3/0

22

P

τab∈DP (si)
max(0, Rw

i − Di) 0 0 0 0 0

P

τab∈DP (si)

`

Rw
i − Di

´

-78 -70 -71 -68 -68

wij 1 1/2 1/2 1/2 1/2

DOS(i) -78 -35 -35.5 -34 -34

Total cost -216.5

|Sj| 5

Total cost / |Sj | -43.3

Table E.3: Calculation of the degree of schedulability for the example 1 in
Section E.1.1.

sl

τ
f
ij/r

Pij Cij Dij 1 2 3

NFsl 0 1 1

τ
[]
0/0

7 2 10 2 2 2

τ
[]
1/0

5 4 30 7 6

τ
[]
1/1

5 4 30 6 6

τ
[]
2/0

3 5 30 7 7

τ
[]
3/0

5 10 40 17

τ
[]
3/1

5 10 40 17

τ
[0]
0/0

4

τ
[0]
1/0

8

τ
[0]
2/0

9

τ
[0]
3/0

19

τ
[2]
2/0

12

τ
[2]
3/0

22

P

τab∈DP (si)
max(0, Rw

i − Di) 0 0 0

P

τab∈DP (si)

`

Rw
i − Di

´

-78 -70 -71

wij 1 1/2 1/2

DOS(i) -77 -35 -34

Total cost -147

|Sj | 3

Total cost / |Sj | -49

Table E.4: Calculation of the degree of schedulability for the example 2 in
Section E.1.2.

E.4 Convergence of the Heuristic

This section contains the output from the program illustrating the iteration of
the optimisation heuristics.

Listing E.1: Start guess: All processes are protected with reexecution
I n i t i a l cos t : 1

1 . I t e r a t i o n
BEST move : FaultToleranceMove : P0 , REEXECUTION −> REPLICATION (Cost : −19)

2 . I t e r a t i o n
BEST move : FaultToleranceMove : P3 , REEXECUTION −> REPLICATION (Cost : −21)

3 . I t e r a t i o n
BEST move : FaultToleranceMove : P4 , REEXECUTION −> REPLICATION (Cost : −22)

Number of i t e r a t i o n s : 3
F ina l co s t : −22
Fina l c s on f i gu ra t i on :
P0 : REPLICATION
(P0 , [FTA: 0 ; []] , RN=1) P = 4 PE = N2

P1 : REEXECUTION
P2 : REEXECUTION
P3 : REPLICATION
(P3 , [FTA: 3 ; []] , RN=1) P = 1 PE = N1

P4 : REPLICATION
(P4 , [FTA: 4 ; []] , RN=1) P = 6 PE = N2

Listing E.2: Start guess: All processes are protected with replication
I n i t i a l cos t : 4

1 . I t e r a t i o n
BEST move : FaultToleranceMove : P2 , REPLICATION −> REEXECUTION (Cost : −22)

Number of i t e r a t i o n s : 1
F ina l co s t : −22
Fina l co n f i gu r a t i on :
P0 : REPLICATION
(P0 , [FTA: 0 ; []] , RN=1) P = 4 PE = N1

P1 : REEXECUTION
P2 : REEXECUTION
P3 : REPLICATION
(P3 , [FTA: 3 ; []] , RN=1) P = 1 PE = N2

P4 : REPLICATION
(P4 , [FTA: 4 ; []] , RN=1) P = 6 PE = N1

Appendix F

Program

F.1 Class Diagrams

This section contains four UML class diagrams that illustrate the most im-
portant classes and relations, which are necessary to get an overview of how
the program is implemented. For this reason the methods are shown without
parameters and some secondary attributes are omitted.

Figure F.1 explains the relations between the data structures related to our
software model. The hardware model shown in Figure F.2. The implementation
of the heuristics can be seen in Figure F.3, and the response time analysis
algorithm is composed as shown in Figure F.4.

Figure F.1: Class Diagram of the Application Model

Figure F.2: Class Diagram of the Hardware Model

Figure F.3: Class Diagram of the Heuristics

Figure F.4: Class Diagram of the Response Time Analysis

F.2 Command Line Manual

The program can be started either from the Eclipse IDE, when the thesis project
is opened. However, we have pre-build the newest version of code, located
in folder doftes.build. Together with the code, we have placed all necessary
libraries and a couple of examples to demonstrate how the program can be
used. To simplify the start of the program, we have written a very simple bash
script that will start the program. With this script the program can be lauched
from the command line as follows:

$ doftes.sh [options...] benchfile

The benchfile given as an argument is the path to the file containing the bench
description of the system. It must always be given, when the user starts the
program. The options are listed below:

- mode STR: selects the behaviour of the program, can have one of the
following values: show, rta, optimize (default). The example will show the
application graph from the bench file:
$ doftes.sh -mode show tests/diamond1.xml

- rtaMaxIterations INT : maximum number of iterations, when working
in rta mode. If the analysis has not converged after the given number
of iterations, the program stops. Default value is 20. Example with 5
iterations:
$ doftes.sh -mode rta -rtaMaxIterations 5 tests/diamond1.xml

- rtaDebugLevel INT : debug output granularity, when working in rta
mode. Default value is 0 (no debug output). In the example changed
to 10:
$ doftes.sh -mode rta -rtaDebugLevel 10 tests/diamond1.xml

- rtaDebugFile STR: set the file to which debug output should redirected,
in rta mode. If the not given, the output is printed to the console stdout.
Print debug output to file out.txt with granularity of 15:
$ doftes.sh -mode rta -rtaDebugLevel 15 -rtaDebugFile out.txt

tests/diamond1.xml

- rtaDebugMeasureTime: if present, the debug output will include time
measurements for all functions calls. To be used in rta mode, when testing
and profiling the program:
$ doftes.sh -mode rta -rtaDebugMeasureTime tests/diamond1.xml

- rtaNaiveOffset: if present, the smart offset will be disable during the
analysis in rta mode, for testing purposes:
$ doftes.sh -mode rta -rtaNaiveOffset tests/diamond1.xml

- rtaDisableBuffer: if present, disables buffering of segment and sections
in rta mode, for performance evaluations:
$ doftes.sh -mode rta -rtaDisableBuffer tests/diamond1.xml

- optimizeMaxIterations INT : maximum number of iterations, when
working in optimize mode. If the optimisation has not converged after
the given number of iterations, the program stops. Default value is 20.
Example with 5 iterations:
$ doftes.sh -mode optimize -optimizeMaxIterations 5 tests/diamond1.xml

F.3 XML Schema for Input Files

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<xs:schema xmlns:xs=” ht tp : //www.w3 . org /2001/XMLSchema”

targetNamespace=” do f t e s ”
4xmlns=” do f t e s ”

elementFormDefault=” q u a l i f i e d ”>

<xs : e l ement name=”bench ” type=”BenchType”/>

9<xs:complexType name=”BenchType”>
<xs : s equence>

<xs : e l ement name=” fau l tmodel ” type=”FaultModelType ”/>
<xs : e l ement name=”platform ” type=”PlatformType”/>
<xs : e l ement name=” app l i c a t i on ” type=”Appl icationType”/>

14</ xs : s equence>
</xs:complexType>

<xs:complexType name=”FaultModelType ”>
<x s : a t t r i b u t e name=”numberOfFaults” type=” x s : i n t ”/>

19</xs:complexType>

<xs:complexType name=”PlatformType”>
<x s : a l l>

<xs : e l ement name=”nodes ” type=”NodesType”/>
24<xs : e l ement name=”communicationchannels” type=”CommunicationChannelsType”/>

</ x s : a l l>
</ xs:complexType>

<xs:complexType name=”NodesType”>
29<xs : s equence>

<xs : e l ement name=”node” type=”NodeType”/>
</ xs : s equence>

</xs:complexType>

34<xs:complexType name=”NodeType”>
<x s : a t t r i b u t e name=”number” type=” x s : i n t ”/>

</xs:complexType>

<xs:complexType name=”CommunicationChannelsType”>
39<xs : s equence>

<xs : e l ement name=” channel ” type=”ChannelType”/>
</ xs : s equence>

</xs:complexType>

44<xs:complexType name=”ChannelType”>
<x s : a t t r i b u t e name=”number” type=” x s : i n t ”/>

</xs:complexType>

49<xs:complexType name=”Appl icationType”>
<x s : a l l>

<xs : e l ement name=” t r an s ac t i on s ” type=”TransactionsType”/>
</ x s : a l l>

</xs:complexType>
54

<xs:complexType name=”TransactionsType”>
<xs : s equence>

<xs : e l ement name=” t ran s ac t i on ” type=”TransactionType ”/>
</ xs : s equence>

59</xs:complexType>

<xs:complexType name=”TransactionType ”>
<xs : s equence>

<xs : e l ement name=” proce s s ” type=”ProcessType ”/>
64</ xs : s equence>

<x s : a t t r i b u t e name=”number” type=” x s : i n t ”/>
<x s : a t t r i b u t e name=” per iod ” type=” x s : i n t ”/>

</xs:complexType>

69<xs:complexType name=”ProcessType ”>
<x s : a l l>

<xs : e l ement name=”mappingtable ” type=”MappingtableType”/>
<xs : e l ement name=”dependenc i es” type=”DependenciesType”/>

</ x s : a l l>
74<x s : a t t r i b u t e name=”number” type=” x s : i n t ”/>

<x s : a t t r i b u t e name=”node” type=” x s : i n t ”/>
<x s : a t t r i b u t e name=” deadl ine ” type=” x s : i n t ”/>
<x s : a t t r i b u t e name=” p r i o r i t y ” type=” x s : i n t ”/>

</xs:complexType>
79

<xs:complexType name=”MappingtableType”>
<xs : s equence>

<xs : e l ement name=”mapping” type=”MappingType”/>
</ xs : s equence>

84</xs:complexType>

<xs:complexType name=”MappingType”>
<x s : a t t r i b u t e name=”node” type=” x s : i n t ”/>
<x s : a t t r i b u t e name=”bcet ” type=” x s : i n t ”/>

89<x s : a t t r i b u t e name=”wcet” type=” x s : i n t ”/>
</xs:complexType>

<xs:complexType name=”DependenciesType”>
<xs : s equence>

94<xs : e l ement name=”dependency” type=”DependencyType ”/>
</ xs : s equence>

</xs:complexType>

<xs:complexType name=”DependencyType ”>
99<x s : a l l>

<xs : e l ement name=”message” type=”MessageType”/>
</ x s : a l l>
<x s : a t t r i b u t e name=”from” type=” x s : i n t ”/>

</xs:complexType>
104

<xs:complexType name=”MessageType”>
<x s : a t t r i b u t e name=” channel ” type=” x s : i n t ”/>
<x s : a t t r i b u t e name=” p r i o r i t y ” type=” x s : i n t ”/>
<x s : a t t r i b u t e name=” deadl ine ” type=” x s : i n t ”/>

109<x s : a t t r i b u t e name=” bctt ” type=” x s : i n t ”/>
<x s : a t t r i b u t e name=”wctt ” type=” x s : i n t ”/>

</xs:complexType>

</ xs:schema>

Appendix G

Testing

G.1 Sanity Checks for Fault Tolerant Conditional

Process Graphs

Another type of unit tests conducted on the graph operations is done by generat-
ing random graphs and applying a series of random modifications to the graphs.
For all elements in the graph the following sanity requirements are tested:

• Predecessor Check ensures that all each process has the correct prede-
cessors, test-case checkCorrectPredessors.

• Fault List Check tests, whether a process is connected to through the
correct combination of fault conditions, test-case checkCorrectFTA.

• Message Sender Check is used to test that all messages have only one
sending process, test-case checkOnlyOneSenderPerMessage.

• Graph Connectivity Check verifies that all links between nodes are
bidirectional, test-case checkSuccessorEqualsPredecessor.

• Fault Scenario Check to figure out, whether all expected permuta-
tions (the occurrences in fault scenarios) of a given process exist, test-case
checkPermutations.

• Message Mapping Check tests, whether all instances of a given message
are mapped on the same communication channel as the original message,
test-case checkMessagesSameCommunicationChannel.

• Process Replica Check guarantees that all replicas of a given process is
mapped on different processing elements, test-case checkReplicaOnDifferentPEs.

All of the checks above are implemented in structures.app.Transaction .

G.2 Input for TGFF

Uses ” Ser i es −p a r a l l e l commands (new algor i thm)”
2g e n s e r i e s p a r a l l e l true

seed 1

Sets the width of s e r i e s cha ins (average , mu l t i p l i e r) . This i s the number of
p a r a l l e l cha ins generated f o r each node that i s the head of a s e t o f cha ins

7s e r i e s w i d 2 1

Sets the l ength of s e r i e s cha ins (average , mu l t i p l i e r) .
s e r i e s l e n 2 1

12# This a l l ows chains to not r e j o i n with p r obab i l i t y .7
s e r i e s s ub g ra ph f o r k ou t .0
s e r i e s l o c a l x o v e r 2

How many graphs to generate
17tg cn t 1 ;

Sets the minimum number of tasks per task graph (average , mu l t i p l i e r)
ta sk cn t 10 1
Sets the p r obab i l i ty that a graph has more than one s t a r t node (de f au l t 0 . 0)
p r ob mu l t i s t a r t node s 0 .0

22# Sets the l a x i t y of pe r iods r e l a t i v e to dead l in e s (de f au l t 1) . I nd i c a t e s whether
task graphs deadl in e s are g r ea t e r than , l e s s than , or equal to the pe r iod s

p e r i o d l a x i t y 1
Sets the mu l t i p l i e r s f o r pe r i od s in mu l t i r at e systems . Allows the user to s pe c i f y

the pe r iods r e l a t i v e to each other . The mu l t i p l i e r s are randomly s e l e c t e d from
th i s l i s t

period mul 1 , 1 , 1
I f set , f o r c e subgraphs formed in s e r i e s cha ins to r e j o i n in to the main graph

27s e r i e s mu s t r e j o i n true
#Sets the p r obab i l i ty that a dead l ine w i l l be hard (vs . s o f t)
prob hard dead l ine 1 .0
Sets the average time per task in c l ud i ng communication . This value i s used in

s e t t i n g dead l i ne s
t a s k t r an s t ime 100

32# I f true , then pe r iod s va lue s are fo r c ed to be g rea t e r than dead l in e s (de f au l t true
) .

p e r i od g de ad l i n e true
I f true , ta sks types are f o r c ed to be unique (f a l s e by de f au l t) .
t ask unique true
t a s k a t t r i b wcet 100 25 1 .0 , bcet 50 10 1 .0 , p r i o r i t y 50 50 1 .0 , d eadl in e 100 25 1 .0

37# Write the task graphs [to . t g f f f i l e] .
t g w r i t e
pe wr i t e
t r a n s wr i t e
Sets the l a b e l used f o r the cur rent tab l e .

42t a b l e l a b e l COMMUN
Sets the number of t ab l e s (o f cur rent tab l e type) generated
ta b l e c n t 1
Att r ibute on the tab l e (one in s tance f o r each tab l e)
t ab l e a t t r i b p r i c e 80 20

47# Att r ibe on the type (one i ns tance f o r each type / l i n e)
t ype a t t r i b bctt 50 20 0 .5 1 . 0 , wctt 100 20 0 .5 1 . 0 , p r i o r i t y 50 50 0 .5 1 .0 ,

dead l ine 600 600 0 .5 1 .0
Write t ran smis s i on event in format ion [to . t g f f f i l e] .
t r a n s wr i t e

Bibliography

[1] A. Appel, D. August, D. Clark, D. Walker, and M. Martonosi. Project
zap, nsf cyber trust meeting poster. http://www.cs.princeton.edu/sip/
projects/zap/cybertrust-poster.pdf.

[2] A. Bondavalli, F. Di Giandomenico, M. Pizza, and L. Strigini. Optimal
discrimination between transient and permanent faults. Proceedings Third
IEEE International High-Assurance Systems Engineering Symposium (Cat.
No.98EX231), pages 214–23, 1998.

[3] E. K. Burke and G. Kendall. Search Science+Business Media, Inc.
Springer, 2005.

[4] A. Burns, K. Tindell, and A. Wellings. Allocating hard real time tasks (an
np-hard problem made easy). RTSYSTS: Real-Time Systems, 1992.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems. Springer, second
edition edition, 2004.

[6] L. Carley. Brake-By-Wire. http://www.aa1car.com/library/2004/

bf110412.htm, 2004.

[7] V. Claesson, S. Poledna, and J. Soderberg. The xbw model for dependable
real-time systems. Parallel and Distributed Systems, 1998. Proceedings.,
1998 International Conference on, pages 130–138, 1998.

[8] J. Clark and K. Tindell. Holistic schedulability analysis for distributed hard
real-time systems. Microprocessing and Microprogramming, 40(2-3):117–
134, 1994.

http://www.cs.princeton.edu/sip/projects/zap/cybertrust-poster.pdf
http://www.cs.princeton.edu/sip/projects/zap/cybertrust-poster.pdf
http://www.aa1car.com/library/2004/bf110412.htm
http://www.aa1car.com/library/2004/bf110412.htm

[9] C. Constantinescu. Trends and challenges in VLSI circuit reliability. IEEE
Micro, 23(4):14–19, 2003.

[10] F. Corno, F. Esposito, M. S. Reorda, and S. Tosato. Evaluating the ef-
fects of transient faults on vehicle dynamic performance in automotive
systems. Proceedings. International Test Conference 2004 (IEEE Cat.
No.04CH37586), pages 1332–9, 2004.

[11] J. Cosgrove and B. Donnelly. Intelligent automotive networks for dis-
tributed real-time control. http://www.irishscientist.ie/2003/

contents.asp?contentxml=03p80a.xml&contentxsl=is03pages.xsl,
2003.

[12] R. Dick, D. Rhodes, and K. Vallerio. Task Graphs For Free (TGFF), v.
3.3. http://ziyang.ece.northwestern.edu/tgff/.

[13] A. Doboli, P. Eles, K. Kuchcinski, Z. Peng, and P. Pop. Scheduling of
conditional process graphs for the synthesis of embedded systems. Design,
Automation and Test in Europe, 1998., Proceedings, pages 132–138, 1998.

[14] P. Eles, V. Izosimov, Z. Peng, and P. Pop. Design optimization of time-
and cost-constrained fault-tolerant distributed embedded systems. Design,
Automation and Test in Europe, 2005. Proceedings, pages 864–869, 2005.

[15] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop. Scheduling of
conditional process graphs for the synthesis of embedded systems. Design,
Automation and Test in Europe, 1998., Proceedings, pages 132–138, 1998.

[16] G. Fohler. Joint scheduling of distributed complex periodic and hard aperi-
odic tasks in statically scheduled systems. Real-Time Systems Symposium,
1995. Proceedings., 16th IEEE, pages 152–161, 1995.

[17] J. J. G. Garcia, J. C. P. Gutierrez, and M. G. Harbour. Schedulability
analysis of distributed hard real-time systems with multiple-event synchro-
nization. Real-Time Systems, 2000. Euromicro RTS 2000. 12th Euromicro
Conference on, pages 15–24, 2000.

[18] J. J. G. Garcia and M. G. Harbour. Optimized priority assignment for
tasks and messages in distributed hard real-time systems. Parallel and
Distributed Real-Time Systems, 1995. Proceedings of the Third Workshop
on, pages 124–132, 1995.

[19] M. G. Harbour and J. C. Palencia. Schedulability analysis for tasks with
static and dynamic offsets. Real-Time Systems Symposium, 1998. Proceed-
ings., The 19th IEEE, pages 26–37, 1998.

[20] M. G. Harbour and J. C. Palencia. Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. Real-Time Systems
Symposium, 1999. Proceedings. The 20th IEEE, pages 328–339, 1999.

http://www.irishscientist.ie/2003/contents.asp?contentxml=03p80a.xml&contentxsl=is03pages.xsl
http://www.irishscientist.ie/2003/contents.asp?contentxml=03p80a.xml&contentxsl=is03pages.xsl
http://ziyang.ece.northwestern.edu/tgff/

[21] J. P. Hayes, N. Kandasamy, and B. T. Murray. Transparent recovery from
intermittent faults in time-triggered distributed systems. IEEE Transac-
tions on Computers, 52(2):113–125, 2003.

[22] M. J. Irwin, M. Kandemir, L. Li, N. Vijaykrishnan, and Y. Xie. Reliability-
aware co-synthesis for embedded systems. Application-Specific Systems,
Architectures and Processors, 2004. Proceedings. 15th IEEE International
Conference on, pages 41–50, 2004.

[23] V. Izosimov. Scheduling and Optimization of Fault-Tolerant Embedded Sys-
tems. PhD thesis, Linköping Studies in Science and Technology, 2006.

[24] S. Klaus and S.A. Huss. Interrelation of specification method and schedul-
ing results in embedded system design, 2001.

[25] V. Koltun. Discrete structures, lecture notes. http://www.stanford.edu/
class/cs103x/cs103x-notes.pdf, 2007.

[26] H Kopetz. Real-time systems: design principles for distributed embedded
applications. Kluwer Academic Publishers, 1997.

[27] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft,
and R. Zainlinger. Distributed fault-tolerant real-time systems: the mars
approach. IEEE Micro, 9(1):25–40, 1989.

[28] Incorporated Object Mentor. JUnit. http://junit.org.

[29] C. Pinello, L.P. Carloni, and A.L. Sangiovanni-Vincentelli. Fault-tolerant
deployment of embedded software for cost-sensitive real-time feedback-
control applications. Design, Automation and Test in Europe Conference
and Exhibition, 2004. Proceedings, 2:1164–1169, 2004.

[30] P. Pop. Slides, DTU course “02229 Safety-Critical Embedded Systems”.

[31] P. Pop. Analysis and Synthesis of Communication-Intensive Heterogeneous
Real-Time Systems. PhD thesis, Linköping Studies in Science and Tech-
nology, 581 83 Linköping, Sweden, 2003.

[32] K. H. Poulsen. Reliability-aware energy optimization for fault-tolerant em-
bedded MP-SoCs. Master’s thesis, Technical University of Denmark, March
2007.

[33] O. Redell. Implementation of ”Accounting for precedence constraints in
the analysis of tree-shaped transactions in distributed real time systems”.
http://www.md.kth.se/~ola/aida/aidalyze1_0.zip.

[34] O. Redell. Accounting for precedence constraints in the analysis of tree-
shaped transactions in distributed real time systems. Technical report
TRITA-MMK 2003:4, Department of Machine Design, The Royal Institute
of Technology (KTH), 2003. ISRN: KTH/MMK/R–03/4–SE.

http://www.stanford.edu/class/cs103x/cs103x-notes.pdf
http://www.stanford.edu/class/cs103x/cs103x-notes.pdf
http://junit.org
http://www.md.kth.se/~ola/aida/aidalyze1_0.zip

[35] O. Redell. Analysis of tree-shaped transactions in distributed real time
systems. Real-Time Systems, 2004. ECRTS 2004. Proceedings. 16th Eu-
romicro Conference on, pages 239–248, 2004.

[36] C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Prob-
lems. Blackwell Scientific Publications, 1993.

[37] AT&T Research. Graphviz. http://graphviz.org.

[38] P. Riis. Simulation of a distributed implementation of an adaptive cruise
controller. Master’s thesis, Linköping University, June 2007.

[39] K. Tindell. Adding time-offsets to schedulability analysis. Technical Report
YCS 221, Dept. of Computer Science, University of York, England, 1994.

[40] W. Wolf. Computers as Components: Principles of Embedded Computing
System Design. Morgan Kaufmann Publishers Inc, US, 2005.

[41] T. Yen and W. Wolf. Performance estimation for real-time distributed em-
bedded systems. IEEE Transactions on Parallel and Distributed Systems,
9(11):1125–1136, 1998.

http://graphviz.org

	Abstract
	Resumé
	1 Introduction
	1.1 Design Flow for Embedded Systems
	1.2 Motivation
	1.3 Related Work
	1.4 Thesis Objective
	1.5 Thesis Overview

	2 Preliminaries
	2.1 System Model
	2.2 Fault Model

	3 Response Time Analysis
	3.1 Basic WCDOPS+
	3.2 Allowing Several Predecessors
	3.3 Conditional Analysis
	3.4 Pessimism and Performance

	4 Fault-Tolerant Process Graphs
	4.1 Definitions
	4.2 Data Structures
	4.3 Replication
	4.4 Reexecution
	4.5 Remapping
	4.6 Defining and Seperating Scenarios
	4.7 Counting Processes and Scenarios

	5 Fault-Tolerance Policy Assignment and Mapping
	5.1 Choosing Priorities
	5.2 Choosing Processing Elements for Replicas
	5.3 Optimizing Policy Mapping

	6 Implementation and Testing
	6.1 Design Overview
	6.2 Implementation of WCDOPS++
	6.3 Implementation of the Heuristics
	6.4 Tests

	7 Evaluation
	7.1 Synthetic Applications
	7.2 A Real-Life Example with a Cruise Controller

	8 Conclusions and Future Work
	8.1 Future Work

	A List of Notations
	B List of Abbreviations
	C Pseudocode
	D Cruise Controller Example
	D.1 Input File for Adaptive Cruise Controller Example
	D.2 Results from the Heuristics

	E Other Examples
	E.1 Splitting FTPG into Scenarios
	E.2 LFTA and LPFL
	E.3 Calculating Degree of Schedulability
	E.4 Convergence of the Heuristic

	F Program
	F.1 Class Diagrams
	F.2 Command Line Manual
	F.3 XML Schema for Input Files

	G Testing
	G.1 Sanity Checks for Fault Tolerant Conditional Process Graphs
	G.2 Input for TGFF

