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Abstract. We use the popular active appearance models (AAM) for
extracting discriminative features from images of biological objects. The
relevant discriminative features are combined principal component (PCA)
vectors from the AAM and texture features from cooccurrence matrices.
Texture features are extracted by extending the AAM’s with a textural
warp guided by the AAM shape. Based on this, texture cooccurrence
features are calculated. We use the different features for classifying the
biological objects to species using standard classifiers, and we show that
even though the objects are highly variant, the AAM’s are well suited
for extracting relevant features, thus obtaining good classification results.
Classification is conducted on two real data sets, one containing various
vegetables and one containing different species of wood logs.

1 Introduction

Object recognition is one of the fundamental problems in computer visions, and
plays a vital role in constructing ’intelligent’ machines. Our initial motivation for
this work is the construction of an automated forestry system, which needs to
keep track of wood logs. Many of the objects in our daily environment in general,
and in our motivating problem in particular, are biological, and pose special
challenges to a computer vision system. The origin of these challenges are the
high degree of intraclass variation, which we as humans are very good at dealing
with, e.g. consider the multitudes of ways a face or a potato can look. To enable
biological variation to be handled in a classification system, we have to find
methods for extracting discriminative features, from the depicted objects. AAM’s
have proven very well suited for addressing the challenge of handling biological
variation in the case of image registration, cf. [4]. It is thus highly interesting
if this property of the AAM’s also proves well for classification of objects, and
how this should be implemented. Therefore, we have investigated AAM’s for
extracting discriminative features by conducting the following experiments:

1. Classification based on Multiple AAM’s, i.e. building an AAM for each
class and assigning images of unknown objects to the most probable AAM.



2. Classification based on a global AAM, i.e. building one single AAM and
using model parameters for assigning images of unknown objects to the most
probable class.

3. Identify relevant discriminative patches from the use of an AAM. The object
is identified by shape alignment from the AAM and texture is extracted
and used for second order texture analysis.

Two data sets have been investigated in this paper, one containing vegetables
and one containing wood logs. Experiment 1 and 2 have been conducted for both
data sets and experiment 3 has been conducted only for the wood log data set.

1.1 Related work

The environment plays a vital role in solving object recognition problems. In a
natural environment objects may be seen from many different angles, they may
be occluded, light may change etc. Efforts on solving this type of problem have
been put in identifying local object features invariant to the changing conditions,
cf. e.g. [16, 14, 13], and the way to match these features to a model, cf. e.g. [5,
6].

Controlling the environment in some way, gives the opportunity of easing the
flexibility constraints of the object recognition system. In some situation object
recognition on whole objects is a reasonable approach, giving the option of e.g.
extracting global PCA features. This is done for face recognition by e.g. Turk &
Pentland [20] with the eigenface, and Belhumeuer et al. [1] for their fisherface
based on Fishers Linear Discriminant Analysis. No shape information is included
with these methods. Edwards et al. [7] introduces the use of an AAM for face
recognition based on both shape and texture information. Fagertun et al. [9]
improves this method by the use of canonical discriminant analysis. AAM’s have
been used for related recognition problems, e.g. eye tracking by Stegmann [18]
and Hansen et al. [10].

Pure texture has also been used for object recognition. The second order
texture statistics based on cooccurrence matrices, was originally developed by
Haralick et al. [11] for pixel classification. This method has been extended
to object recognition by e.g. Chang & Krumm [3] using color cooccurrence
histograms. Palm [15] does classification of different textures, including wood
bark textures, using color cooccurrence matrices. He extends from gray level to
color images and improves the classification.

In this paper we focus on object recognition in an environment with some
degree of controlled conditions. We use a black background, controlled lighting,
and we make sure that the whole object is visible.

2 AAM and texture features

In the following we describe the methods for extracting the discriminative fea-
tures used in the three experiments.



2.1 AAM

The AAM model - in 2D as it will be used here - is a description of an object
in an image via it’s contour or shape and it’s texture. Each of these entities can
be represented as a vector, i.e. si and ti respectively, where the subscript, i,
denotes an instance (image). The parameters of the AAM is, however, a lower
dimensional vector, ci, and a specific AAM consists of an linear mapping for ci

to si and ti, i.e.

mi =
[
Ws
t

]

i

= Φci , (1)

where Φ is a matrix representing the linear map. The AAM or Φ is estimated
from an annotated training set. By optimizing the AAM to a new depicted
object, an image close to the original is synthesized, and the model parameters ci

is a vector of principal components describing the unknown object with regards
to the shape and texture of the object. The interested reader is referred to Cootes
and Taylor [4] for a more detailed description and Stegmann et al. [19] for a
detailed description of the model implementation.

Features from multiple AAM’s In this case an AAM, Φj , is fitted to each
class Cj , i.e. the training set is divided into its component classes, and one AAM
is fitted to each.

Here there is a feature vector ci i specific for each model, and these features
are not comparable, because they belong to a specific model and can not be used
directly for classification.

Given an AAM for each class Cj , you would expect the optimization of an
image i to perform best for the class that the object belongs to. Therefore, a
goodness of fit would be a reasonable measure for classifying the object. For a
given unknown object image textural difference between the object texture giobj

and the model instance ḡmod is calculated:

E =
n∑

i=1

(giobj
− ḡmod)2 = ||giobj

− ḡmod||22, (2)

where E is the difference between the model image and the measured image
by the squared 2-norm.

Features from a global AAM In this case a single global AAM, Φ, is fitted
to instances of all classes. Following this, the ci are calculated for each instance
in the training set. The elements of ci, containing both shape and texture infor-
mation, are used in a linear classifier, see section 2.3.

Textural warp The basis for making a textural warp is knowledge of the log
localization in the image. This comes from the AAM shape alignment. The warp
is done by sampling pixels along elliptic curves on the surface of the logs using



bilinear interpolation, see Figure 1. The elliptic curves are calculated from the
shape of the end face of the wood log, and guided by the shape of the sides
of the log. A square image of the bark texture is the result of the warp, which
is illustrated in Figure 2. One end of the log is usually smaller than the other,
resulting in a difference in the sampling intensity in the warped bark image.
Other shape variations may result in the same kind of sampling variation. These
small variations have not been considered as a problem for the texture analysis.

Fig. 1. Illustration of bark texture warp. Left is an image of a Birch log shown with
a few of the elliptic sampling curves shown in red. Blue lines show the AAM shape
alignment. The right image is a close up of sampling points.

2.2 Color cooccurrence matrices

As mentioned above, the AAM clasification, is extended by texture clasification,
where the texture is obtained via texture warp as described in Section 2.1. This
classification is done via second order textural statistics in the form of cooc-
currence matrices (CM) cf. [2, 11, 15]. The fundamental element of calculating
CM’s is the probability of a certain change in pixel intensity classes (k, l) given a
certain pixel displacement h equivalent to Pr(k, l|h). The CM’s can be extended
to color, by calculating the displacements in each band and across bands. The
CM’s have proven useful for classification cf. [15]. Sample CM’s for the rele-
vant bark textures is shown in Figure 2. In this paper the textures have been
preprocessed by Gaussian histogram matching, in order to increase robustness
to lighting conditions, cf. [2]. In this paper we use the following CM classes:
contrast, dissimilarity, homogeneity, energy, entropy, maximum, correlation, di-
agonal moment, sum average, sum entropy, and sum variance.

2.3 Classifier

The classifiers used in experiments 1 to 3 are as follows:



Fig. 2. Illustration of cooccurrence matrix (top) of bark texture (bottom). Higher in-
tensity illustrates larger cooccurrence. From left to right: Birch, Spruce, and Pine. The
displacement is (1, 1) in a 64 level image.

1. Multiple AAM’s. The model minimizing (2) is chosen.
2. Global AAM. Here three different classifications schemes based on the

AAM feature vector are evaluated. These are: Bayes classifier, Canonical
discriminant analysis, and LARS-EN classifier cf. [8, 12, 21].

3. AAM and Texture. Here LARS-EN is applied to the texture, obtained
via the AAM based warp described in Section 2.1.

3 Data

Experiments were conducted for two groups of biological objects: vegetables,
cf. Figure 3 and wood logs cf. Figure 1. The vegetables are are apples, carrots
and potatoes and consist of 189 images totally where 27 are used for training
the models, i.e. 9 from each group. The wood log data consists of the three
species Scotch Pine, Norway Spruce and Birch. There was a total of 164 wood
log images, 18 from each group were used for training. Also a reduced wood log
data set, consisting of the 30 most characteristic logs from each group (90 in all)
was used.

4 Experiments

All three experiments are illustrated in Figure 4. The procedure is as follows.

Experiment 1 For each class there is built an AAM based on the training images.
All models are matched to each of the test images giving model textures for all
classes. The model texture is then compared to the original image by calculating
the texture difference, see section 2.1. Classification is done by assigning the test
image in question to the model giving the least texture difference.



Fig. 3. Illustration of AAM alignment. The light blue line illustrates the shape and
the blue crosses mark the annotated points.

Fig. 4. Schematic representation of the three experiments.

Experiment 2 In this experiment one AAM is built based on training images
from all classes. The parameters from matching the model to a test image are
used for classification. Based on these parameters the image is assigned to the
most probable class as described in section 2.3.

Experiment 3 As in experiment 2, one AAM is matched to a test image, but
here the alignment is used for extracting texture features. To enable a calculation
of cooccurrence features from the bark texture, a warp of the bark area of the
image is conducted.

4.1 Results and discussion

Results of our three experiments are presented in table 1 and 2.



Experiment 1 This experiment gave rather stable and good results. In the veg-
etable data only one image of a potato was misclassified as an apple, giving an
average classification rate of 99.3%. The wood log data set gave stable classifica-
tions around 83% except for the whole log model, where many Spruce logs were
misclassified as Pine logs and visa versa.

Experiment 1 2

Model Texture difference Bayes Canonical LARS-EN

Vegetable 99.3% 100.0% 93.7% 100.0%
Log end 82.8% 70.2% 71.0% 75.5%
Large images 83.5% 64.1% 48.3% 82.1%
Whole log 67.8% 72.8% 71.1% 72.8%
Log end, reduced 82.5% 71.4% 38.1% 85.7%

Table 1. Classification rates of experiment 1 and 2 using the different classifiers. In
the Vegetable and Whole log experiments, the shape covers the entire object, whereas
in the rest, only the end part of the object is covered. Large images refer to the use of
higher resolution images. Reduced refers to the reduced data set.

Experiment 2 For this experiment three different classifiers have been tried. The
vegetable experiment obtains 100% correct classification with the Bayes classifier
and LARS-EN but the canonical discriminant analysis gives only a classification
rate of 93.7%. The canonical discriminant analysis is also very unstable for the
wood log data set. The Bayes classifier gives around 70% correct classification
and LARS-EN around 80%.

AAM results in a relatively large number of features, and therefore, it is
necessary to have many observations for training a classifier. A limited number
of observations could be one reason for the relatively poor performance of the
classifiers.

LARS-EN gives a good indication of the importance of the features in a lin-
ear model. For both data sets, the first two principal components are the most
discriminative features. But there is large difference in the discriminative capa-
bilities of the parameters from the two data sets, which also would be expected
when the features are plotted, see Figure 5. The rest of the principal components
are selected somewhat randomly, showing that feature reduction using PCA is
not necessarily in accordance with classification criterions.

A problem encountered using canonical discriminant analysis, is a good sep-
aration of the training data, but a poor performance of assigning the unknown
objects to the right classes. For the vegetable data, where we have a very good
separation, this becomes very clear. We would expect to retain the separation,
but that is not the case because of variation in training data. This sensitivity
towards variation is a clear limitation to the canonical discriminant analysis.



Fig. 5. Plot of the first two principal components from the AAM in the vegetable
experiment (left) and wood log experiment (right).

The AAM’s in the reduced data set is based on only 9 images of each class.
This is probably too few to get good estimates of Φ, and could be a cause of the
poor AAM classification performance.

Experiment 3 The best performance for the wood logs is achieved by the texture
analysis in experiment 3, reaching close to 90% correct classification rates for
the whole data set, and 96.8% correct classification in the best experiment of
the reduced data set. This shows an accordance between what we see as humans
and the predictions of the model.

Model LARS-EN

Data set whole reduced
Gray level 78.4% 93.7%
Gray level directional 89.9% 96.8%
Color 89.5% 90.5%

Table 2. Classification rates of experiment 3 using LARS-EN for classification based
on texture features.

A varying number of features are calculated, because of differences in dis-
tances, directions, and across color bands in the three models. In the first model
we have 33 features (only different distances), in the second 132 features (differ-
ent distance and direction), and 528 features in the third (varying all three).

Looking at which features are selected by the LARS-EN classifier, we can
see a pattern in the features selected for classification. The sum average and the
diagonal moment, are the most frequently used features, even though, there is
not a clear pattern in which features works best for classifying the wood logs.
In contrast to Palms [15] investigations, the performance in our experiments is
not improved by extending the analysis to include color images.



A hard task using the LARS-EN algorithm is to find the right stopping
criterion [21]. The results presented here is the number of features giving the
best classification rates. Therefore, the LARS-EN algorithm will be problematic
to implement in a real world application.

In these experiments we have used logs of young trees where some important
biological characteristics have not yet developed, e.g. the colored core of Scotch
Pine, which could improve the hard distinguishing of Pine and Spruce.

5 Conclusion

We have investigated the use of active appearance models (AAM’s, cf. [4]) for
classification of biological objects, and shown that this approach is well suited
for different objects. Two data set, one of vegetables and one of wood logs have
been investigated.

In experiment 1 an AAM is built for each class, and we obtain results close to
100% correct classification for the vegetable data, and around 80% classification
rates for wood logs.

In experiment 2 one AAM for all classes is built, and model parameters for
test images are used for classification. Most models gave 100% correct classifi-
cation for the vegetables. On average the classification for the wood logs was
not as good as experiment 1, and especially canonical discriminant analysis gave
very poor results.

In experiment 3 LARS-EN has been used for classifying texture features,
where only the wood log data is investigated. This experiment gave the best
results classifying about 90% of the test set correct in the best cases of the
whole data set, and up to 96.7% correct classification using a reduced data set.

It is hard to find a good stopping criterion for the LARS-EN model, which
is problematic for classification. Therefore, we conclude that the most promising
classification model is the texture difference used in experiment 1.
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