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Abstract

Cognitive component analysis(COCA) is defined as unsupervised grouping of
data leading to a group structure well aligned with that resulting from human
cognitive activity[16].

The thesis describes the Cognitive Components Analysis processes on the low-
level cognitive components(phonemes)[4]. We try to prove that an information
optimal statistical regularity resembles the human’s cognition activity.
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Chapter 1

Introduction

1.1 Cognitive Component Analysis

Cognitive component analysis(COCA) is defined as unsupervised grouping of
data leading to a group structure well aligned with that resulting from human
cognitive activity[16]. In this thesis, we focus on the COCA on phoneme which
is the smallest distinguishable unit in the speech perception.

Human beings need deal with huge amount of information from the surround-
ings. During the evolution process, the human perception and cognition system
may figure out a regulation or rule to efficiently represent and process the in-
formation from the outside world. We envision that this regulation may consist
of the sparse representation of the ”real world data” and statistical process
regularities.

MFCC(Mel Frequency Cepstral Coefficient) is a very successful feature for speech
modelling. There are very rich documents about the application of this fea-
ture. It is thought to be a very good representation of the outside acoustical
signal in the auditory system. An energy based sparsification on the MFCCs
was proposed as the sparse coding step for our COCA. PCA(Principal com-
ponent analysis) is commonly used as a dimension reduction technique for the
ICA(Independent Component Analysis). It also reveals a cognitive structure on
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the sparse MFCCs(section. 3.1).

So COCA is not limited to the ICA which is only one of the possible statis-
tical regularities for the human brain. But independence is a very optimal
information processing solution. More over, ICA has been found to be a more
appropriated model when it is used to group some abstract data[16],[6]. ICA
is also found to be a resemble representation in the perceptual system[2],[3].
In this thesis, ICA is used to identify the cognitive component and further
to prove that human’cognition activity may resemble an information optimal
mechanism(independence)[4].

Another unsupervised learning technique-Soft-Lost has been used in this thesis
as a comparison to the ICA. The Soft-Lost is based on the covariance structure of
the data set while ICA take the higher order statistics information into account.
By comparing the Soft-Lost and ICA in COCA, we can know if the cognition
activity need dealing with the high order statistics information, that is to say,
more approximated to an information optimal regularity-independence.

We also use some supervised learning method to better understand the data set
and provide some ideas for the unsupervised learning method in COCA

1.2 Thesis Outline

The chapter2 Introduction to the Algorithms, we give an introduction
about the main algorithms used in this project.

PCA is an unsupervised learning algorithm to transfer the data set to a new
coordinate system in which the projections of the data set on each new coor-
dinate are ordered in the sequence of variance. PCA on the sparsified MFCC
feature of speech reveals a linear cloud structure. The low level cognitive com-
ponents(phonemes) of speech are then found aligned with the rays.

ICA is a method for finding underlying factors or components from multivariate
(multidimensional) statistical data. It can estimate the independent components
from linear mixture data and identify these line vectors in the ray structure.

Kernel Principal Component Analysis is the principal component analysis used
on a feature space. It was proposed to extract the high-order statistics informa-
tion for the Independent Component Analysis.

Soft-Lost is another unsupervised learning technique to find the orientations of
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the ray structure. It is used in this project as a comparison to the ICA.

Fisher Linear Discriminant Analysis is a supervised learning method to provide
a linear separation solution for a classification task.It also provides us a technique
to know what the speaker difference and phoneme difference could be.

In the chapter 3 Experiments, we describe four experiments about the process
of the COCA on the low level speech signals and further discuss the generality
of the model on different speakers.

In section SOFA letter utterance experiment [4], we describe the process of the
Cognitive Component Analysis on the low level cognitive component by an ex-
ample on the ’SOFA’ which is short for the four letters ’s’,’o’,’f’ and ’a’. The
cognitive component(phoneme), /e/ in ’s’ and ’f’ is found aligned a ray structure
in a linear cloud of sparsified data.

In section Cognitive Analysis on the phoneme data sets, we extend the COCA
to serval speakers and analyze a series of figures.

In section Similarity measurement & Invariant Cue:, we hope the COCA can
be used to figure out the Invariant Cue phenomenon in speech perception.

In section Unsupervised Classification, we use the ICA on a two phonemes clas-
sification task.
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Chapter 2

Introduction to the
Algorithms

2.1 ICA(Independent component analysis)1

ICA is a method for finding underlying factors or components from multivariate
(multidimensional) statistical data. It can estimate the independent components
from linear mixture data (observation data). ICA is the technique to find a linear
non-orthogonal coordinate system in multivariate data. The directions of the
axes of this coordinate system are determined by the data’s second and higher-
order statistics. The goal of the ICA is to linearly transform the data such that
the transformed variables are statistically independent from each other.

Independent component analysis was originally developed to solve the cocktail-
party problem. It has been found that the ICA remarkably resembles the
mechanism in the perceptual system of multimedia data in both human and
animals[16].

The ICA algorithm decomposes a data set or observation data into a mixing
matrix and a source component matrix. It reveals that the observation data is
a linear mixture of some statistically independent components. We also neglect

1This chapter is based on the [1]
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any time delays that may occur in the mixing. So this model is often called the
instantaneous mixing model. A noise free ICA can be written as:

X = AS =
∑
i=n

aisi (2.1)

Some Restriction in ICA

1. The independent components are assumed statistically independent.

2. The independent components must have non Gaussian distribution

3. We assume the unknown mixing matrix is square

2.1.1 What is statistical independence?

Mathematically, statistical independence is defined in terms of probability den-
sities. The random variables x and y are said to be independent if and only if:

px,y(x, y) = pxpy (2.2)

In words, the joint density px,y(x, y) = pxpy could be factorized into product
of their marginal densities. Equivalently, independence could be defined by
replacing the probability density functions in the definition by the respective
cumulative distribution functions, which must also be factorizable

E{g(x)h(y)} = E{g(x)}E{h(x)} (2.3)

where g(x) and h(y) are any absolutely integrable function of x and y. This is
because:

E{g(x)h(y)} =
∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)px,ydydx =

∫ ∞

−∞
g(x)px(x)dx

∫ ∞

−∞
h(y)py(y)dy

= E{g(x)}E{h(x)} (2.4)

Eq. 2.4 shows that uncorrelatedness is only a special case of independence when
both h(y) and g(x) are linear functions, and will only calculate the second-order
statistics.
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2.1.2 ICA by Maximum Likelihood Estimation2

The ICA model :
X = AS

can be reformulated as:

px(x) = |detB|ps(s) = |detB|
∏

i

pi(si) (2.5)

whereB = A−1, and the pi denotes the densities of the independent compo-
nents.The si can be replaced by si = bT

i X. ( bi is a column vector in the matrix
B)

px(x) = |detB|ps(s) = |detB|
∏

i

pi(bT
i X) (2.6)

X is made up by T observations x(1), x(2), . . . , x(T ) then the likelihood can be
constructed as the product of the estimated density function at T points:

L(B) =
T∏

t=1

n∏
i=1

pi(bT
i x(t))|detB| (2.7)

The log-likelihood is given by:

log L(B) =
T∑

t=1

n∑
i=1

logpi(si(t)) + T log |detB| (2.8)

We can devide both sides by the observation number T and the average value
over the observations T can be replaced by the expection operator:

1
T

log L(B) = E{
n∑

i=1

log pi(bT
i x(t))}+ log |detB|

= E{
n∑

i=1

log pi(si)}+ log |detB| (2.9)

Then the objective is to maximize this log-likelihood function. The maximiza-
tion algorithm used is called UCMINF given in [8].

To maximize the objective function by a gradient method, we get:

gi(si) =
∂ log pi(si)

∂si
=

p′i(si)
pi(si)

(2.10)

2This section is based on the [1]
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The ML estimator Eq. 2.9 will be locally consistent, if the assumed densities pi

fulfill[1]:
E{sigi(si)− g′(si)} > 0 (2.11)

We can see from the above formulations, the densities of the independent com-
ponents are needed to be estimated. Because non-parametric estimation of the
densities are normally difficult. In some case, we can know the density of the
source components in advance. A second way, we can estimate the density of the
independent components by a family of densities that are specified by a limited
number of parameters[1].
In the COCA, the high level representation of the speech is a sparse coded data.
We can hypothesis the source components is the sparse response in the human
brain. We thus use the density estimation prior3:

p(si) = π−1/ cosh(si) (2.12)

and then
log p(si) = − log π − log cosh(si) (2.13)

p(si) is the density funciton of the ith source component. This density function
will give us a super Gaussian density (Fig. 2.1). This approximation will greatly
simplify the formulations and the Eq. 2.11 is fufilled.

gi(si) = tanh(si) = si −
1
3
s3

i +
2
15

s5
i − . . . (2.14)

Equation . 2.14 shows how the estimation prior bring the high-order statistics
information and non-linearity to the maximum likelihood function.

2.1.3 ICA Ambiguities

In the ICA model in equation. 2.15, it is easy to see that the following ambiguities
will necessarily hold:

1. We can not determinate the variances of the independent components.

This can be easily found in the ICA formulation

X =
∑

i

(
1
a
Ai)(Sia) (2.15)

The formulation shows that scaling the S source component by any factora
could be compensated by multiplying the mixing matrix with that factor.5

3This estimation prior is used in the DTU ICA toolbox
5in the ML algorithm, only the final result the variance of the s was unified.
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Figure 2.1: The dash line is the Gaussian density, the solid line is the super
Gaussian density

In the consequence, we can constrain the result by unifying the variance
of the source component E(s2

i ) = 1 , then the magnitude of the A will
change accordingly. With this modification, in our experiment, the length
of the ray could represents the strength(energy) of that source component.
Another ambiguity is the sign of the A and S. We could multiply an inde-
pendent component by−1 without affecting the model. This ambiguity is
resolved by a step to look for the positive direction and component in the
source component and mixing matrix(section. 3.1.5).

2. We can not determinate the order of the independent component

This could also be found in the formulation of ICA:

X = A1S1 + . . . . . . + AnSn (2.16)

Since both S and A are being unknown, we can freely change the order of
the terms in polyminal in the equation above. There is some way to order
the components and the columns of the mixing matrix. An application of
the importance of the column vector has been discussed in[7].The L2norm
and the variance of the column vectors are calculated and ordered. The
L2norm of a vector X = (x1, x2, x3) is given by:

|x| =
√

x2
1 + x2

2 + x2
3 (2.17)

Fig. 2.2 shows that the L2norm is well aligned with the order of the
variance of the vectors. Thus we order the columns of the mixing matrix
in the order of the L2norm6

6In the ML of the DTU toolbox the mixing matrix are ordered according to the energy of
each princinpal component
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Figure 2.2: Energy based Sparsification revealing the ray structure

2.2 PCA(Principal Component Analysis)7

PCA is dimension reduction technique. With the dimension reduction, the ICA
computational cost is reduced and noise is also reduced by the PCA.

PCA is mathematically defined as an orthogonal linear transformation that
transforms the data to a new coordinate system such that the greatest variance
by any projection of the data comes to lie on the first coordinate (called the first
principal component), the second greatest variance on the second coordinate,
and so on[13].

PCA by covariance method:

In the dataset we can find the directions with the most variance, these direc-
tions are the eigenvectors of the covariance matrix and the variances are the
eigenvalues of the covariance matrix. A typical covariance method is performed
by SVD (Singular Value Decomposition)

7This section is based on the [9]
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we use SV D to perform PCA.We decompose X using SV D then

X = UΓUT (2.18)
The covariance matrix C can be written as∑

X = lim
T→∞

1
T

XXT = lim
T→∞

1
T

UΓ2UT (2.19)

In which, U is a (n × m) matrix. The SV D organizes the singular values
according to the size. If n < m, the first n columns in U corresponds to the
sorted eigenvalues of C and if m > n, the first m corresponds to the sorted
non-zero eigenvalues of C. Then the data in the tranfered coordinate system
can be written as:

Y = Ũ
T
X = Ũ

T
UΓV T (2.20)

Where Ũ
T
U is a simple n × m matrix which is one on the diagonal and zero

everywhere else.

2.2.1 Some information theory related property of the
PCA:

1. The firstq(q ∈ {1, . . . M} principal components, i.e. projection on Eigen-
vectors carry the more variance than the left components

2. The mean-squared approximation error in representing the observatios by
the first q principal is minimal.

3. The principal components are uncorrelated.

4. The first q principal components have the maximal mutual information
with the original dataset

2.2.2 PCA relation with ICA:

What distinguishes ICA from other methods is that it looks for components that
are both statistically independent and non Gaussian. ICA is different from the
PCA. Because the non Gaussian structure of the data is taken into account and
the higher order statistical information are considered in the ICA algorithms.
PCA removes correlations between some variables or signals, at the same time
finding directions with maximal variance. Thus, for gaussian data, PCA pro-
duces independence. For nongaussian data, PCA does not produce indepen-
dence.
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2.3 Kernel PCA9

According to the VC(Vapnik-chervonenkis) theory, a learning machine with
more free parameters are generally expected to model more complex decision
boundary and thus better achieve a result in the classification task. The input
space, in our classification task is MFCC. But in order to extract higher order
statistics information, we can map the input space (MFCC) into a feature space.

Φ : RN → F, x (2.21)

The feature space could have an arbitrarily large dimensionality.
The traditional PCA is a dimension reduction technique on the input space(MFCC).
In order to do a better classification, we can map the input space data to a fea-
ture space which most often is non-linear with the input variables. Then we
hope to generalize the PCA on the feature space.
The covariance of the input variables can be denoted as:

C̃ =
1
M

M∑
j=1

xix
T
j (2.22)

Where M is the number of observation data. Then for the feature space, we
have:

C =
1
M

M∑
j=1

Φ(xj)Φ(xj)T (2.23)

We define an M ×M matrix K by

Kij = (Φ(xi) · Φ(xj)) (2.24)

Compute the dot products (Φ(xi) ·Φ(xj)) could be extremly high cost if we map
the x to the higher dimension space Φ(x). For instance[9], if a vector x = (x1, x2)
to the vector which we extract the 2-th order of the products of the entries in
x, then the new vector is xnew = (x2

1, x
2
2, x1x2, x2x1). Generally, mapping a

N dimension input vector to the dth order products will have a feature space
with the dimension (N+p−1)!

p!(N−1)! . Then we use a technique called Kernel Trick to
compute the dot products.

9This section is based on the [9]A detailed introdution was given,here I only extract some
key steps
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2.3.1 Kernel Trick

With the kernel trick, explicitly computing the dot products (Φ(xi) · Φ(xj)) is
not needed, we use a function ,K(xi, xj).

K(xi, xj) = Φ(xi) · Φ(xj) (2.25)

Kernel Function has to satisfy two conditions:

1. The kernel function must be symmetric

2. It must satisfy Mercer’s Theorem[10]

Some kernel functions:

The polynomial kernel:

K(xi, xj) = (xi · xj + 1)d (2.26)

In which, if we replace the 1 with 0, it is a homogenous polynomial kernel.

Gaussian kernel:

K(xi, xj) = e−‖xi−xj‖2/2σ2
(2.27)

2.3.1.1 Kernel PCA relation with the ICA[9]

Linear PCA is an orthogonal transformation of the coordiinate of the system
where we can get the components with the maximal variance. ICA is also
a coordinate transformation in which we are looking for a directions(column
vectors in A) in the dataset so that the projections on the directions are max-
imally independent, i.e. ”non-Gaussian”. We use linear PCA as a preprocess
to reduct the dimenionality and in the mean while and hope to keep the most
of the information in terms of second-order statics information, i.e. variance.
In our ICA algorithem, (section. 2.1.2), the higher order-statistics information
was computed. Kernel PCA provide a way to extract these high-order statics
information: using polynomial kernels of degree d we are taking into the account
dth order statistics.
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2.4 Fisher Linear Discriminant Analysis11

The objective of the Fisher Linear Discriminant Analysis is to use the label
information of the data set to find a linear separation solution for the classifi-
cation task. This separation direction is different with the PCA in which the
separation is found by transforming the coordinate system.

The Fisher LDA is objected to find this separation by maximizing the objective:

J(w) =
wT SBw

wT Sww
(2.28)

SB =
∑

Nc(µc − x̄)(µc − x̄)T (2.29)

Sw =
∑

c

∑
i∈c

(xi − µc)(xi − µc)T (2.30)

In which, SB is the ”between classes scatter matrix” and Sw is the ”within
class scatter matrix”. Nc is the number of cases in the class c. µc is the
mean(center) of the class C. X is the overall mean of the dataset. This objective
means the classification is well done when the means of the classes are well
separated, measured relative to the sum of the variance of the data assigned to
one prarticular class. This measurement also provides us a technique to know
how much the classes can be separated in the data set by LDA. In the fellowing
experiments, we use this to know the separatability of speaker and phonemes
denoted as Js and Jp. The solution in our program w is constrained[11] by:

wT Sww = 1 (2.31)

2.4.1 Kernel Fisher Linear Discriminant Analysis

The general linear direction from the LDA are not sophisticated enough to
provide a good solution for a complex problem. We can find some non linear
directions by mapping the data (MFCC) non-linearly to a feature spaces. We
can use different kernel functions and compared the result. The kernel function
was introduced in the section. 2.3. We map the x to the new feature space Φ(x)
and then the objection fuction became:

J(α) =
αT SΦ

Bα

αT SΦ
wα

(2.32)

11This section is based on [11]
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In the new space,the scatter matrix became:

SΦ
B =

∑
c

[kck
T
c − kkT ] (2.33)

SΦ
w = K2 −

∑
c

Nckck
T
c (2.34)

kc =
1

Nc

∑
i∈c

Kij (2.35)

k =
1
N

∑
i

Kij (2.36)

2.5 Lost(Line Orientation Separation Technique)

The sparsified data set shows a linear cloud structure (ray structure) in the
scatter plot. The PCA algorithm is not able to find the orientation of the line,
that to say, to find the exact A. That is because the PCA algorithm is based on
the analysis of covariance of the dataset.

∑
X = lim

T→∞

1
T

XXT (2.37)

Clearly the information in AAT is not enough to uniquely identify A, since
if one solution A is found, any(row)rotated matrix Ã = AU,UUT = I is also
a solution, because Ã has the same outer product as A. ICA is performed to
find the mixing matrix A and independent sources with the independent source
component assumption.

Lost is another technique to locate the A and obtain the source components.
But it doesn’t assume the source component to be independent. The ICA is a
more information theoretical algorithm. It provides us a better answer that if
the human’s cognition process has the similar process as an information optimal
regularity like independence.

The LOST falls into two categories according to how the data is assigned to the
Line. One is called Soft Lost in which the data is ”softly” assigned to the M
classes, the another one is called hard lost in which the data ”hard” assigned
to the M classes. In the equation, we measure the data point dj , to each line
orientation vector vi and then soft assign the data to each line (M class) by a
soft-max like function.
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2.5.1 Soft-Lost13

The orientation of the linear cloud is responding to the principle eigenvector
of the covariance matrix . The soft lost is a Expectation Maximization (EM)
algorithm. The expectation step firstly soft assigns the data into M classes
(source component numbers). The covariance matrix is then calculated for the
data associated with each class and the principal eigenvector of the matrix is
used as the new line orientation vector estimate.
The algorithm summary: Soft data assignment:

zij = ||dj − (vi • dj)vi||2 (2.38)

z̃ij =
e− βzij∑
i′ e−βzi′j

(2.39)

In which β control the softness of the boundaries between the region atributed
to each line and z̃ij are the computed weights of data pointj for each linei.
Then determine the new line orientation estimated by calculating the principal
eigenvector of the covariance matrix. The covariance matrix expression(with
zero mean) and assignment weights are combined as fellows:

∑
i

=

∑
j zijdjd

T
j∑

j zij
(2.40)

where the
∑

i is the covariance of weighted data associated with line i. The
eigenvector decomposition of

∑
i is expressed as :∑

i
= UiΛiU

−1
i (2.41)

The matrix Ui contains the eigenvectors of
∑

i and the diagonal matrix Λi con-
tains its associated eigenvalues λi . . . . . . λN . The new line orientation vector
estimate is the principal eigenvector of

∑
i which is expressed as:-

vi = umax (2.42)

where umax is the largest principal eigenvector, the eigenvector whose eigenvalue
is the largest. These steps are repeated until the vi converged.

13This section is based on the [15]



Chapter 3

Experiments

3.1 SOFA letter utterance experiment

The four letters ’SOFA’ utterances are from the TIMIT database. These four
letters are separately pronounced.

In the ’SOFA’ demo, we want to indicate that generalizable cognitive com-
ponents corresponding to phonemes, e.g. /e/ from utterance ’s’ and ’f’, can
be identified using linear component analysis- ICA and Soft-Lost. We use
this experiment to describe the process of COCA on the low level cognitive
component(phoneme)[4].

3.1.1 Feature Extraction

MFCC (Mel Frequency Cepstral Coefficient)

MFCC has been the most successful feature for the speech recognition due to
its ability to represent the speech amplitude spectrum in a compact form. It
has shown the similar way that the human ears respond to the speech with a
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logarithmically higher response to lower frequency ranges. The evidence is that
the human cochlea is able to react to sound more accurately at lower frequencies.
In this experiment, the time scale of window is 40ms, 16 MFCCs are used and
95 % overlapping [4].

MFCC are commonly derived as follows [13]:

1. Take the Fourier transform of (a windowed excerpt of) a signal

2. Map the log amplitudes of the spectrum obtained above onto the Mel
scale, using triangular overlapping windows.

3. Take the Discrete Cosine Transform of the list of Mel log-amplitudes, as
if it was a signal.

4. The MFCCs are the amplitudes of the resulting spectrum.

The Mel scale is based on a mapping between actual frequency and perceived
pith. It is interesting to show the relation of the properties of the MFCC with
the motivation of our experiments.

The MFCC could be thought as an accurate model of the low level interpretation
of the speech information in the human auditory system. Unsupervised learning
algorithm, ICA can be derived to estimate the functionality of the higher level
cortex layer.

The use of the MFCC and the independent component analysis can potentially
produce an acceptable model of the upper levels of the human auditory system.

3.1.2 Dynamic speech feature—Delta MFCC

∆MFCCi = MFCCi+1 −MFCCi (3.1)
Fig. 3.2shows that the boundries between the different letters are located. Be-
cause delta-mfcc is dynamical features, it captures the change in the speech.

3.1.3 Data Normalization

These four letters are recorded in different conditions. In order to eliminate the
loudness difference. More importantly, in our ICA , the high order statistics in-
formation are extracted to find the independent component. Data normalization
consists of two steps:centering the variable and then unifying the variance.
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Figure 3.1: MFCCs of the ’sofa’ utterance show clear boundaries between dif-
ferent utterance

Figure 3.2: Delta MFCC of the ’sofa’ utterance
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Subtract the mean :
X

′

i = Xi − E{Xi} (3.2)

Then in the ICA:
E{Si} = A−1E{X

′

i} (3.3)

This equation shows the independent component have zero mean as well.

Unify The Variance :

X
′

i =
Xi

std(Xi)
(3.4)

Data Normalization combined with the PCA(section. 2.2) whitten the data set.
It can simplify the ICA problem and provides a fast convergence in our Maximal
likelihood ICA algorithm.

In Eq. 3.4 std is the standard deviation.

3.1.4 Data set sparsification

We sparsify the features based on the energy as a pre-process to reduce the
intrinsic noise[4]. The sparsification unveils the ”ray structure” in the dataset.
With the sparsification, the data become a sparse matrix, and we hypothesis
this sparse data is higher level cognition representation of the sound. We then
do a linear component analysis on that sparsified data set.

Sparsification is done by resetting the entries to be ”0” when the magnitudes
(MFCC coefficients) are lower than a certain threshold. The threshold is based
on the energy. 55 % of energy is retained in[4].

The following figures based on the SOFA dataset show the distribution gradually
changes with the degree of the sparsification:

3.1.5 How to relabel the samples

ICA is an unsupervised learning method. This generative model doesn’t come
with the label information. But each column of the component matrix obtained
through ICA. The source component matrix is a sparse matrix which means
many of the entries are around zero. The entries with a higher value contain
much of the information in the source matrix. Firstly, due to the ambiguity
of the ICA (see section. 2.1.3), we can not make sure the sign of the source
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(a) Without Sparsification (b) Weak Sparsification

Figure 3.3: With and without Sparsification

Figure 3.4: Energy based Sparsification revealing the ray structure
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component and the corresponding column vector. We use a technique to find
the positive direction and negative components1.

Ai = (−1)nAi; si = (−1)nsi;n =
{

1 if abs(si) > si

2 if abs(si) ≤ si

}
(3.5)

In words, these formulations find out in each source component if the maximum
absolute value is negative or positive. If it is negative, we change the both
the sign of the corresponding column in the mixing matrix and the sign of the
source component. Fig. 3.5(b)shows that the color of the source component1,2,4
have been changed and accordingly the directions of the line vectosr have been
reversed.
The next step, in each column of the source component matrix, we find out
the position with maximum value, that to say, to find out which source compo-
nent have the largest positive value in each column. We highlight this source
component.

S
′

ij =
{

0 else
1 if sij = max(sij)j = 1, . . . . . . n)

}
(3.6)

In Fig. 3.6,those highlighted vertical bar shows the source component is ac-
tive(large value). We can label the column of MFCC by the source component.

Fig. 3.8 and Fig. 3.7shows that the similar /e/ sound in S and F can be
reprensented by one component both in ICA and Soft-Lost. But the Soft-Lost
is initialized with some random vectors. We need run serveral times to get a
result more approximated to ICA. We replot the MFCCs in the time domain:

3.1.6 Test the generality of the Model

In this part, we use the mixing matrix A, which is m × m(m is the number of
source components ) square matrix obtained by the ICA and Soft-Lost on the
test data set which is another ’SOFA’ letter utterance from the same speaker.
We decompose the test data set with demixing matrix B = A−1 and get the
source components matrix by Stest = BXtest.
When we use the mixing matrix from the train set, we use a technique here to
preserve more information related to the dataset. This is the same procedure

1This method is found in the DTU toolbook demo for the text classification and in my
experiments it also helps to get a better result in classifications task, similarity measurement
and in the ’sofa’ demo
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(a) The original source component matrix

(b) The resigned source component matrix by eq. 3.5

Figure 3.5: Illustration about the Equation. 3.5
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Figure 3.6: Translate the Fig. 3.5(b) by the eq. 3.6

Figure 3.7: mfccs relabelled by the source matrix obtained by ICA
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Figure 3.8: mfccs relabelled by the source matrix obtained by Soft-Lost

(a) Source component from ICA

(b) Source component from Soft-Lost

Figure 3.9: The temporal positon of the component indicates that this compo-
nent is the phoneme /e/
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we use on another experiment. 3.3:

After we perform SV D on the training data set, X = UΓUT , we transfer the data
to the new coordinate system by Y = Ũ

T

trainingX (see details on section. 2.2)
and then we can transfer the A back to the MFCC domain:

A′ = ŨtrainingA (3.7)

When we perform SV D on the test data set Xtest = UtestΓUT
test.we transfer

theA′ to the new coordinate system by :

A′′ = UtestA′ (3.8)

A is data set dependent, but in this way we can use the A cross on different
data set.

We plot the same resulting figures as those in the train set:

Firsty, we plot the first two principal MFCCs labelled by the letters in Fig. 3.10.2:
Then we plot the figures labeled by the source componens: Fig. 3.11 shows that
those line vectors(Columns of A) from the training set are well aligned with the
ray structure of the test data set.Some source components(Second and Third
component in Fig. 3.11)have very few samples becasue the sparification is very
high here.
Similarly ,we give the temporal position of one component at the locations of
phoneme /e/:

From this experiment, we make some conclusions and interpretations about the
procedures:

1. The energy sparsification threshold reveals the ray structure. But we
find that some phonemes vanish faster as the sparsification threshold in-
creases.(Fig. 3.11)

2. The MFCC length and frame length play a critical role to find the cog-
nitive component. MFCC dimension higher than 16 can’t genearate an
accoutable result. The last step of MFCC-Discrete Cosine Transform is
an approximation of the Karhunen-Loeve transform. It decorrelates the
cofficients and reprensent them in a compact form. So from an informa-
tioin point of view, 6 princinpal components of a 16 demensional data
set will lose more information than that 6 princinpal components of 12
demensional data set.

2The fig. 3.10 and the fig. 3.12 are obtained with different sparsification threshold
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Figure 3.10: First two principal components of sparsified MFCCs on test set

3. The step to find the positive direction by Eq. 3.5 is very critical and helpful
step. By this method, the error rate(section. 3.4) is reduced and it helps
us to measure the distance in section. 3.3.

4. Transfering the mixing matrix Atraing from training data set to the new
coordinate of test data set by making use of the Ũ in Eq. 3.7 provides a
method to better use the data set information.

5. The Soft-Lost gives us a similar result in this experiment. But it is ini-
tialized by random line vectors and final results are different every time.

3.2 Cognitive Components Analysis on phonemes
data set

3.2.1 TIMIT Speech Corpus:[12]

This is a corpus of high-quality recordings of read continuous speech from North
American speakers. The entire corpus is reliably transcribed at the word and
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(a) MFCCs of test data set labelled by the source components decomposed by
the ICA without the step in Eq. 3.7 and Eq. 3.8

(b) MFCCs of test data set labelled by the source components decomposed by
the ICA with the step in Eq. 3.7 and Eq. 3.8

Figure 3.11: With the step in Eq. 3.7 and Eq. 3.8, the line vectors in mixing
matrix A of the training data set appear to be more aligned with the rays of
test data set
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surface phonetic levels. The TIMIT corpus contains the same 10 sentences from
630 speakers and these speakers fall into 8 different dialects. Those speakers
have different gender, height, age, and race and education level3 The TIMIT
database is a very large database. In this experiments, I use only 4 female
speakers falling into the first dialect.

With the help of the TIMIT database, we can label the MFCC feature by the
phonemes. In TIMIT database, these phonemes are already given. These fol-
lowing analysis are titled with the dataset composition. Data set are composed
by different number of speakers and thus display the analysis result of COCA
in different scenarios.

3.2.2 How the Dataset Composed:

Based on the feature selection, the original speech wave from format files are
extracted to feature files. The feature files are MFCCs and labelled by the
phonemes.

We selected three vowels in these experiments. They are ’ao’, ’ix’ and ’ay’. In or-

3I extract only the first four attributes. I use the speaker ID as the name of the mat file to
differ from each other. A sample of the filename looks like: dr1f23 (5.5) dml0.mat. Reversely,
we can know which speaker used in the TIMIT database)

(a) One source component of test data given by the ICA

(b) One source component of test data given by the Soft-Lost

Figure 3.12: The source component decomposed by the mixing matrix indicates
the same phoneme /e/ found in letter S and F
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der to know how they sound like, we give words which contain these phonemes4 :

ao bought bcl b AO tcl t
ix debit dcl d eh bcl b IX tcl t
ay bite bcl b AY tcl t

These phonemes are selected because they are vowels and show up more fre-
quently in the TIMIT data base. So we can get more samples. These three
phonemes are rarely adjected to each other in English. After we select the
phonemes and speakers, we align the data (MFCC) in a regular format. The
format of the data alignment5:

Figure 3.13: Dataset Format

3.2.3 Phonemes from one speaker

In the following experiment, we compose a dataset with those three phonemes
from one speaker. The scatter plot Fig. 3.14 shows the linear ray structure
of three phonemes. In this scatter plot, these phonemes are in different rays
and well separated from each other. The scatters outside of the rays can be
considered as noise.

Fig. 3.15 shows the scatter plot labelled by the source components.

Some comments and conclusions:

1. In the first figures. 3.14 we can see that the phonemes congnitive struc-
ture could be well aligned with the linear rays in the sparsified PCA
dataset. That means a column in the mixing matrix. The directions
of the ray structure means a cognitive stucture in COCA. But some
phonemes(’iy’and ’ay’) may have different directions and some phonemes(’ao’)
may have opposite direction.

4bcl and dcl are the closures of b and d,we can know how it sounds like by the words
5The sequence of the speakers and phonemes won’t affect the result at all.We just make a

short description here
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Figure 3.14: Mfccs of three phonemes from one speaker with sparsification

Figure 3.15: MFCCs relabelled by the source component matrix
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2. In the second figure. 3.15 and the zoom-in Fig. 3.16(b), we can see that the
ray structures can be well reprensented by the source components. But
if the rays are too close, they are easy to confuse. Two phonemes, ’ay’
and ’ao’, partially lie in about the same ray, and then may have the same
source component(fifth). It is a problem we have to solve.

3.2.3.1 Test the generality on another speaker

In this experiment, we extract four phonemes of two speakers from the TIMIT
database.One speaker is useed as the training data set, and another speaker is
used as the test data set. Both of them are female and from the first dialect.
These four phonemes are ’s’,’aa’,’iy’ and ’ae’.
We give the words containing these phonemes

aa bott bcl b AA tcl t
ae bat bcl b AE tcl t
s sea S iy
iy beet bcl b IY tcl t

we decompose the training set by ICA to obtain the mixing matrix A, and then
decompose the test set with A−1.We plot the source components in the time
domain to indicate which source component is associated with which phoneme
as the Fig. 3.12 and Fig. 3.9 in the SOFA experiment.

The pies in the Fig. 3.17 give us a percentage about contributions of source

(a) Zoom-in of the Fig. 3.14 (b) Zoom-in of the Fig. 3.15

Figure 3.16: A zoom-in comparison
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(a) The source components of the training set

(b) The source components of the test set

Figure 3.17: These four phonemes, ’s’,’iy’,’aa’ and ’ae’, in this experiment, only
hree phonemes ’s’,’iy’and ’aa’ in the training set can be repensented by source
components, but only one phoneme ’s’ can be indicated in the test source com-
ponents
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component to each phonemes. Sparsification threshold in this experiment is
very low which leave a lot of noise in the data set. The source component
are sorted by the Energy,so the last component(with the least Energy) is more
interfered by the noise.

Some conclusions:

1. The Cognitive components(phonemes)from one speaker can be well aligned
with ray structures in the sparsified data set and repesented by the inde-
pendent components given by the ICA.

2. Find the cognitive component with the model Atraining on another speaker
is not easy. Result of the test set given in this experiment is not comparable
with the result of training set.Only one of the four phoneme ’s’ can be
indicated in the souce components. That is one reason why we make a
classification task with only two phonemes in the section. 3.4.

3. The sparsification threshold is supposed to remove the instrinsic noise of
the phonemes. But we find out the phonemes vanlish in different speed as
the the threshold increases.

3.2.4 3 Phonemes from 4 speakers:

In this section, we extend our COCA to the phonemes samples from several
speakers. We want to show the how the ray structures differ among speakers.
Firstly, we give detailed plots of the principal MFCCs of different phonemes
from several speakers, and then we show how one phoneme varies in differnt
speakers in the sparsified MFCCs. Fig. 3.18 shows the ray structure still exists
in the dataset made up by 4 speakers. The ray structures in Fig. 3.19 are more
diverse and have more line vectors compared to the Fig. 3.18. It seems that the
speaker difference are more obvious in the less important principal components.

In this part, we extract only one phoneme ’ao’ and show how it varies in different
speakers.In the following graphs, we could see if we can find any independent
component to reprensent this phoneme.

We plot the source component in time domain in Fig. 3.24:

Some conclusions:
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Figure 3.18: The first two principal MFCC from 4 different speakers



36 Experiments

(a) The third and forth principal MFCCs

(b) The fifth and sixth principal MFCCs

Figure 3.19: The higher(less important) principal mfccs show more rays among
speakers
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Figure 3.20: The MFCCs labeled by the speaker

Figure 3.21: One phoneme ’ao’ from 4 different speakers.Notice that the other
two phonemes are removed compared with the Fig. 3.18
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Figure 3.22: The mfccs of ao labelled by the speaker

Figure 3.23: ’ao’ is reprensented by two independent source components
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1. Fig. 3.21 shows that the phoneme ’ao’ have different ray directions in the
sparsified data set.But Fig. 3.24 and Fig. 3.23 show the phoneme ’ao’ from
four speakers can be indentified by two source components.

2. The speaker1 in the Fig. 3.22 has very few samples left. Because of the
sparsifiatioin threshold, we lost some information from ”weak” speaker.
These samples removed by sparsification may from a ray structure. So the
two source components in the Fig. 3.23 may only partially reprensent the
Cognitive components from 4 speakers.

3.2.5 Fisher Linear Discriminant Analysis on two phonemes
from two speakers

This step is closly related to the section. 3.3. From the previous figures, we
have known the MFCCs of one phoneme from several speakers are very dif-
ferent. Phonemes from different speakers tend to lie in different rays in the
sparsified data set. If we have two phonemes and two speakers, we can do a
phoneme classification task and also a speaker classification task. With the la-
bel information given by the TIMIT database, we thought that we could use
a supervised leaning step to know what the speaker difference and phoneme
difference are. It might provide us some clues for the unsupervised learning.

The Fisher Linear Discriminant Analysis provides a technique to know a sep-
aratability of two classes(section. 2.4). This linear solution of the classfication
is different from the ICA. Becasue ICA was a transferation of the coordinate
system. Our idea is that we use this technique to know which kernel function
increase the separatability of phonemes more than the separatability of speak-
ers.Then we can use a kernel PCA before the ICA. But this idea is not succeful in
our experiment, the ratio of the separatability between the phoneme and speaker
does’t show an increase after we use a Kernel Fisher Linear Discriminant Anal-
ysis. Here we give a plot from the experiments we did on the phonemes ’ao’
and ’ix’ from 12 speakers. This analysis was done on the sparsified dataset after
PCA, which means it is already been decorelated. In this Fig. 3.25 shows the

Figure 3.24: ’ao’ from 4 speakers can be indicated by one source component
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separatability given by LDA. The phoneme separatabilities are slightly larger
than the speaker separatabilities among the 6 pairs of speakers. More over, these
two phonemes ’ao’ and ’ix’ have a low error rate in our unspervised classification
task.

Figure 3.25: Separatability in LDA on two phonemes and speakers

3.3 Similarity measurement & Invariant Cue:

6 ICA decomposes the MFCC dataset to a mixing matrix and source compo-
nent matrix. Source components are sparse matrix with few information. Figure
. 3.14 shows that the phoneme can be represented in a ray structure in the spar-
sified dataset. This ray direction corresponds one column vector in the mixing
matrix.
Invariant cue is a well known phenomenon in the human speech perception. It
describes that even the the accoustics of the phoneme are very different among
speakers(fig. 3.26). Human auditory can still perceive them as one phoneme.
The mixing matrix of ICA trained by the different phoneme samples and dif-
ferent speaker contains the phoneme and speaker information. If these rays in
our COCA can align with the cognition of phoneme. We believe that it should
be able to show these invariant cues of phoneme and reveal that how we can
perceive the utterance from different speaker as the same phoneme. The mean-

6In this experiment, the MFCC dimension is 8. MFCC Length of 12 can also show a similar
result. Other feature extraction parameters are the same as in the SOFA experiment.
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ings of the dimensions in the source component matrix are determined by the
new coordinate system. The data in the new coordiantes Y = Ũ

T
X need to be

transfered back to the MFCC domain. Then we reconstruct this mixing matrix
in the original MFCC domain by the equation:

A
′
= ŨA (3.9)

In Eq. 3.9, A is a m×m square matrix and the A
′
is a M ×m matrix. m is the

dimension number of the source components and M is the dimension number
of MFCC coefficients–the dimension number of the data set before dimension
reduction.

Experiment:

First, we extract one phoneme samples of one speaker in the TIMIT database.
Then we decompose the data set by the ICA and Soft-Lost to obtain the mixing
matrix. Then we transfer the matrix A back to the MFCC domain section. 3.9.

Our experiments are based on the first dialect set. There are eight dialects in
the TIMIT database. Each contains certain number of speakers of the TIMIT
database. There are 48 speakers and thus we get 48 mixing matrices for each
phoneme. We measure the similarities of the matrices two by two. The entire
combinations are (48 ∗ 47)/2 = 1128 for the speaker difference within phoneme
and (48 ∗ 48)/2 = 1152 for the phoneme difference between phonemes. Finally
we get the mean value and standard deviation of the difference.

(a) Mfccs of one ’ix’ from a consective speech (b) Mfccs of another ’ix’ from a consective
speech

Figure 3.26: ’ix’ mfccs in two different unterance could be very different
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3.3.1 Distance Measurements:

3.3.1.1 Euclidean distance

The distance measurements on these vectors:
The Euclidean Distance between two pointsP = (p1, p2, . . . . . . , pn) and Q =
(q1, q2, . . . . . . , qn) in Euclidean n-spaces, is defined as:

√
(p1 − q1)2 + (p2 − q2)2 + . . . . . . + (pn − qn)2 =

√√√√ n∑
i=1

(pi − qi)2 (3.10)

This euclidean distance in Eq. 3.10 can only measure the distance between two
vectors.So we sum up the column vectors in the A and then measure the dis-
tance between the sum-up vectors. Fig. 3.28 gives an example about how to
calculate the Euclidean distance of the sum-up vectors.

Figure 3.27: Decompose one phoneme data set to get mixing matrix to
reprensent the phoneme

Figure 3.28: Decompose one phoneme data set to get mixing matrix
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Hausdorff distance
Definition:

The Hausdorff distance, or Hausdorff metric, measures how far two compact
non-empty subsets of a metric space are from each other. It is widely used in
the pattern or shape matching in computer vision.

Motivation:

The motivation of using this new distance measure is because that the ray
structure in the sparsified data set can be considered as a pattern. The Euclidean
distance is very simple and can not take the pattern into consideration. This
pattern reveals the linear mixtures of some sparse source components which
represents high level cognition of sound in human brain.

The calculation steps of the Hausdorff distance are described as fellows:

Ifx ∈ χ the distance from x to B is d(x,B) = min b ∈ B{d(x, b)}The distance
from A to B is d(A,B) = maxx ∈ A{d(x,B)}.We can see from the figure
bellowed that this distance function is not symmetrical.

Figure 3.29: hausdorff distance
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The Hausdorff is definded as:

H(A,B) = max(min(||a− b|| ∀b ∈ B)∀a ∈ A) (3.11)

Modified Hausdorff Distance

For the extraction of descriptors which is invariant to translation, rotation and
scale, an upgraded Hausdorff distance comes out.
In cases of translation, all the nearest neighbor distances are increased by the
same amount:

˜H(A,B) = max(min(||a− b|| ∀b ∈ B)∀a ∈ A)−min(min(||a− b|| ∀b ∈ B)∀a ∈ A)
(3.12)

˜H(A,B) = 80th%(min(||a− b|| ∀b ∈ B)∀a ∈ A)−20th%(min(||a− b|| ∀b ∈ B)∀a ∈ A)
(3.13)

To make the distance symmetrical, we sum the distance from A to B and the
distance from B to A and then get the final one:

D(A,B) = H(A,B) + H(B,A) (3.14)

3.3.2 Result Analysis

In this experiment, the phonemes are still grouped in pair. There are six pairs:

{’ix’,’ao’},{’ay’,’ao’},{’ix’,’ay’},{’ao’,’iy’},{’iy’,’ih’},{’ih’,’ix’};

iy beet bcl b IY tcl

ih bit bcl b IH tcl

The first four pairs sound very unsimilar but the last two are very similar
phonemes.

In table. 3.1 , Ds denotes the distance between speakers. Dp denotes the distance
between two phonemes in each pair. The first and second means the order of
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Table 3.1: Euclidean distance measured within phonemes and between speakers

ix&ao ay &ao ix&ay
Ds within first phoneme|std 3.15|0.8 3.27|1 3.15|0.8
Ds within second phoneme |std 3.2|1 3.20|1 3.27|1
Dpbetween two phonemes |std 3.71|0.8 3.52|0.95 3.4|0.87

ao &iy iy &ih ih&ix
Ds within first phoneme|std 3.2|1 3.15|0.92 3.29|0.86
Ds within second phoneme |std 3.15|0.92 3.30|0.86197 3.15|0.84
Dpbetween two phonemes |std 4.16|0.87 3.4552|0.82 3.2|0.75

phoneme in the pairs. Std in the table is short for standard deviation. It is used
for the furthur analysis:

The table. 3.1 gives us a mean and the standard deviation of the Euclidean
distance. We suppose that both distance samplings are from a population of
Normal distribution, 7i.e.Ds ∼ N(µs, σ

2
s) andDp ∼ N(µp, σ

2
p). In this way, we

can get a distribution of their difference Ds − Dp ∼ N(µs − µp, σ
2
s + σ2

p). We
can get a probability of Ds > Dp by 1−Φ(0) . Then we get a new table about
the probability based on the table. 3.1:

Table 3.2: The probability of phoneme distance larger than the speaker differ-
ence within phonemes based on the Table. 3.1

ix&ao ay &ao ix&ay ao &iy iy &ih ih&ix
P (Dp > Ds)1 0.69 0.58 0.59 0.77 0.59 0.48
P (Dp > Ds)2 0.65 0.59 0.54 0.79 0.55 0.53

In the experiment. 3.2, we have found out in the less important principal com-
ponents(Fig. 3.19and Fig. 3.19(a)) the ray structure is more diverse. We have
sorted the column vectors in the A by the importance of the vectors in the
section. 2.1.3. We made an envision that the speaker difference is more obvi-
ous in the less important column vectors. The main vectors are desicive in the
Cognitive component. In the next part of the similarity measurement, we split
the square matrix A(8× 8) to two parts . Firstly we measure the first 4 column
vectors and then measure the following 4 column vectors. Then we translate
the table. 3.3and. 3.4 to the probability: In this experiment, the MFCC length
is chosen to be 8 and the dimension of source component matrix is also 8. In
the simulation, a result based on the 12 MFCC length and 6 components also
generate a similar result. We choose 8 MFCC length and 8 components, beca-

7By ploting the histgram of the result,they really look like a normal distribution
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Table 3.3: Euclidean distance measured within phonemes and between speakers
on the last 4 column vectors of the A

ix&ao ay &ao ix&ay
Ds within first phoneme|std 2.19|0.57 2.02|0.52 2.19|0.57
Ds within second phoneme |std 2.04|0.56 2.04|0.56 2.02|0.52
Dpbetween two phonemes |std 2.19|0.47 2.05|0.45 2.12|0.47

ao &iy iy &ih ih&ix
Ds within first phoneme|std 2.04|0.56 2.22|0.57 2.15|0.55
Ds within second phoneme |std 2.22|0.57 2.15|0.55 2.2|0.57
Dpbetween two phonemes |std 2.27|0.49 2.2|0.48 2.18|0.56

Table 3.4: Euclidean distance measured within phonemes and between speakers
on the first 4 column vectors of the A

ix&ao ay &ao ix&ay
Ds within first phoneme|std 2.34|0.63 2.53|0.78 2.35|0.63
Ds within second phoneme |std 2.60|0.78 2.60|0.78 2.53|0.78
Dpbetween two phonemes |std 2.86|0.60 2.87|0.70 2.60|0.66

ao &iy iy &ih ih&ix
Ds within first phoneme|std 2.60|0.78 2.52|0.73 2.52|0.69
Ds within second phoneme |std 2.52|0.73 2.52|0.69 2.35|0.63
Dpbetween two phonemes |std 3.22|0.65 2.69|0.65 2.47|0.57

Table 3.5: The probability of phoneme distance larger than the speaker differ-
ence within phonemes based on the Table. 3.3

ix&ao ay &ao ix&ay ao &iy iy &ih ih&ix
P (Dp > Ds)1 0.50 0.52 0.46 0.62 0.49 0.52
P (Dp > Ds)2 0.58 0.51 0.56 0.53 0.53 0.49

Table 3.6: The probability of phoneme distance larger than the speaker differ-
ence within phonemes based on the Table. 3.4

ix&ao ay &ao ix&ay ao &iy iy &ih ih&ix
P (Dp > Ds)1 0.72 0.63 0.61 0.73 0.57 0.48
P (Dp > Ds)2 0.61 0.60 0.53 0.77 0.57 0.56

sue in this way, we don’t lose information by the PCA reduction. We hope the
mixing matrix can reprensent a high level cognition of phonemes and help us to
find the Invariant cue. We believe the similarity measured by the two distance
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functions can explain the Invariant cue in our experiment. From the analysis
of the result, we can make fellowing conclusions:

1. The mean value of distance between phonemes are found larger than the
speaker distance within phonemes. A probability result was given in the
tabel.3.2. The result are aligned.

2. By sorting the importance of the column vectors section. 2.1.3, we find that
the more important column vectors is the desicive factor for the difference
between phonemes . In the less important vectors, the two distances have
no differences.

3. The Hausdorff metric don’t give us a difference as the Euclidean distance.
These Hausdorff distances is measuring the pattern shape.

Table 3.7: The Hausdorff distance doesn’t show a difference

ix&ao ay &ao ix&ay ao &iy iy &ih ih&ix
H(Ds1) 1.91 1.91 1.82 2.02 1.88 2.02
H(Ds2) 2.02 1.82 2.02 1.91 2.02 1.88
H(Dp) 2.01 1.94 1.94 2.05 1.98 1.98

3.4 Unsupervised Classification

3.4.1 The experiment setup8

We construct two categories of phonemes both of which are made up of 6 groups
of two phonemes.
In the first category, two phonemes in each group are similar from the percep-
tion point of view.

{’ih’,’ix’},{’s’,’sh’},{’f’,’v’},{’ae’,’eh’},{’n’,’l’},{’iy’,’ih’}

The second category consists of six groups with distinguishable pronouncing
phonemes:

8In this experiment, the MFCC length is 12.Other feature extraction settings are the same
as the ’sofa’ experiment
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{’ix’,’ao’},{’ay’,’ao’},{’ix’,’ay’},{’oy’,’ix’},{’ao’,’iy’},{’d’,’k’}

Before we start out the classificatioin task, we have to make sure the phonemes
have the same number of samples. When one phoneme has samples more than
other phonemes, due to our error rate calculation procedure(see eq. 3.15), the
outnumbered phonemes will dominate in the source component assignment. So
we have to make the phoneme even9 by picking off some samples from the
outnumbered phoneme. If the shortest phoneme has N samples, we randomly
select N samples for other longer phonemes, in this way, we can keep the speaker
information in the dataset shown in the Fig. 3.30.

Figure 3.30: Randomly select the samples to make the phonemes even

Our task is to use unsupervised learning method to classify the phonemes under
different conditions or settings(In Fig. 3.31). In the previous chapters, we have
introduced two unsupervised learning methods, ICA (noiseless) and Soft-Lost.
All of them have the same model:

X = AS S = A−1X

3.4.2 Some Instructions about the experiment

We use the unsupervised learning on one data set training set and use the ob-
tained mixing matrix A to decompose another data set test set. In this way, we
can test the generality of the unsupervised learning method like in the SOFA
experiment.

Based on the composition(section. 3.2.2) of the data set. The classification could
be implemented in different conditions and with different settings.

9The side effect of the random selection is that it contributes a variation to the error rate.
The randomly selected data can not represent the original dataset completely, that is to say, we
may miss the some important information in the phoneme. But We may be able to eliminate
this random variation by a mean value



3.4 Unsupervised Classification 49

These conditions and settings included in our experiment are speaker dialect;
speaker gender of the training and test data set; speaker number of the trainging
and test data set; component numbers (Model dimension) and sparsification
threshold. We give an example of these settings in Fig. 3.31:

In this experiment, we choose sparsification threshold to be 0.8. Sparsifica-
tion is supposed to remove the intrinsic noise[4]of speech. This sparsification
threshold is two times lower than the previsous SOFA experiment and Similar-
ity experiment. Becasue the dataset contains different phonemes from different
speaker. Keeping the sparsification lower helps better keep the ”weak” phoneme
or speaker information in the data set. Since we already found out in the SOFA
experiment that some phonemes are easier to be removed by the sparsification
threshold. The dialect and sex of the training speakers are fixed to be ”dialect
one” and ”Female”. The dialects and sex of the test data set are chosen between
”dialect one” and ”dialect two” , ”male” and ”female” from TIMIT database.
The model dimension(source component number) is constantly 6. 6 is choosen
based on the simulation results. We sweep the source component from 2 to 8
and the error rate was lowest around 6.

we randomly select the speakers and run the experiment 10 times in each condi-
tioins, therefore the error rate in the fellowing tables are an average of 10 trials.

Figure 3.31: One example of the parameter setting of the experiments
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3.4.3 How to evaluate the result

3.4.3.1 Error Rate:

Based on the Eq. 3.6, we get the new source matrix S
′

ij , This new matrix
indicates which phoneme one source component responses most to. We can
assign the souce components to phonemes by counting the S

′

ij in the range of
each phoneme. This process can be described by the fellowing equation:

Errori = N −max(
∑
j∈C

S
′

ij)

Errorrate =

∑
i=m

Errori

M ×N
% (3.15)

In which, the N is the length of the samples, M is the number of the components
which is 6 in our experiment. The ”C” is the class number, in our experiment,
it is 2.

3.4.3.2 Result Analysis on the Error Rate:10

1. In this part, we have four experiments, i.e table. 3.8, table. 3.9, table. 3.10
and table. 3.11. We get the mixing matrix A from 1 speaker and 3 speakers
and then use this model on the test set with 1 and 3 speakers.

(a) First, we find out that the results are aligned with the similarities of
the phonemes. The similar phonemes(group one) have higher error
Rate than the unsimilar group.

(b) Secondly, with the increase of the speaker numbers, the error rates
raise in both train set and test set, but the difference is lower than
0.1 in most cases.

(c) When we use a model from training set with 3 speakers on a test
set with 1 speakers. It neither improves or deteriorates the result.
Vice visa, when we use a model from 1 speaker on a test set with 3
speakers.

(d) There are some random factors in these experiments but their influ-
ences are lower than 0.05 in most cases.

10These Error rate are the average of 10 trials
20Means the number of the speaker in the training data set
21Means the the number of speaker in the test set and the corresponding training set is

right above
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Table 3.8: Error Rate

ih&ix s &sh f&v ae &eh n &l iy&ih
Train set with 1 speaker20 0.3581 0.2739 0.2757 0.3008 0.2559 0.3194
Test set with 1 speaker21 0.3611 0.248 0.2893 0.3465 0.2598 0.348

ix&ao ay &ao ix&ay oy &ix ao &iy d&k
Train set with 1 speaker 0.1831 0.1974 0.2819 0.2158 0.2113 0.2928
Test set with 1 speaker 0.2005 0.2517 0.3067 0.2925 0.1866 0.2898

Table 3.9: Error Rate

ih&ix s &sh f&v ae &eh n &l iy&ih
Train set with 1 speaker 0.3671 0.243 0.2549 0.3311 0.2597 0.2947
Test set with 3 speaker 0.4077 0.2782 0.3061 0.3849 0.2549 0.3479

ix&ao ay &ao ix&ay oy &ix ao &iy d&k
Train set with 1 speaker 0.1379 0.2103 0.2642 0.2423 0.1842 0.2998
Test set with 3 speaker 0.2151 0.3354 0.3062 0.2991 0.244 0.34

Table 3.10: Error Rate

ih&ix s &sh f&v ae &eh n &l iy&ih
Train set with 3 speaker 0.3821 0.2937 0.3234 0.3726 0.3079 0.3464
Test set with 3 speaker 0.4036 0.2842 0.3341 0.3977 0.303 0.317

ix&ao ay &ao ix&ay oy &ix ao &iy d&k
Train set with 3 speaker 0.2146 0.2702 0.2942 0.2565 0.1698 0.3548
Test set with 3 speaker 0.2234 0.2933 0.2937 0.2819 0.2422 0.3514

Table 3.11: Error Rate

ih&ix s &sh f&v ae &eh n &l iy&ih
Train set with 3 speaker 0.3891 0.2974 0.3254 0.3568 0.2515 0.342
Test set with 1 speaker 0.3564 0.2571 0.2737 0.3508 0.2204 0.33

ix&ao ay &ao ix&ay oy &ix ao &iy d&k
Train set with 3 speaker 0.2575 0.2859 0.2848 0.3065 0.284 0.32
Test set with 1 speaker 0.2111 0.2408 0.2794 0.2892 0.239 0.2745

2. In this part, we switch the test data set to ”dialect two” and ”male”
which are contrat to the trainning set.By comparing the result in table
. 3.12 with table. 3.8 and table . 3.13 with table. 3.10., we can conclue
that the high-level cognitive differences(dialect and sex differences) does’t

22Due to the sparsification reason, some phonemes sample is empty
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contribute more difference in the low-level phoneme cognition.

Table 3.12: Error Rate

ih&ix s &sh f&v ae &eh n &l iy&ih
Train set with 1 speaker 0.3629 0.2844 0.2651 0.2818 0.2621 0.3056
Test set with 1 speaker 0.38 0.2475 0.296 0.3421 0.2605 0.3353

ix&ao ay &ao ix&ay oy &ix ao &iy d&k
Train set with 1 speaker 0.1507 0.2505 0.29 0.2611 0.22 0.282
Test set with 1 speaker 0.2242 0.2631 0.3305 NaN20 0.2077 0.3033

Table 3.13: Error Rate

ih&ix s &sh f&v ae &eh n &l iy&ih
Train set with 3 speaker 0.3899 0.2955 0.3191 0.3765 0.2771 0.3674
Test set with 3 speaker 0.4245 0.2917 0.2971 0.3979 0.2762 0.3382

ix&ao ay &ao ix&ay oy &ix ao &iy d&k
Train set with 3 speaker 0.2344 0.2406 0.2926 0.2818 0.2129 0.3639
Test set with 3 speaker 0.2196 0.2957 0.3717 0.3002 0.1958 0.3659

3. The Soft-Lost perform very poorly in this task. For one reason, the spar-
sification threshold is two times lower than the ’SOFA’ experiment. A
lot of noise will interfere the performance of the Soft-Lost. Soft-Lost only
considers the covariance structure, but the ICA take the high order statis-
tics into account. We give an example of the error rate result from the
Soft-Lost method.

Table 3.14: Error Rate from Soft-Lost Decomposition

ih&ix s &sh f&v ae &eh n &l iy&ih
Train set with 1 speaker 0.3991 0.3829 0.3894 0.3859 0.3912 0.3952
Test set with 1 speaker 0.3897 0.3113 0.3223 0.3519 0.3886 0.3716

ix&ao ay &ao ix&ay oy &ix ao &iy d&k
Train set with 1 speaker 0.3882 0.3656 0.3523 0.3595 0.4022 0.3320
Test set with 1 speaker 0.3132 0.3267 0.3606 0.3061 0.2750 0.3200
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Conclusion and Future work

4.1 Conclusion

1. This thesis describes the process of the COCA on the speech signals. The
phoneme Cognitive Component can be identified by Independent Compo-
nent Analysis and Soft-Lost in the ’SOFA’ experiment.

2. Soft-Lost is used as another unsupervised technique for our COCA. It
provides a similar result as the ICA in the ’SOFA’ experiment. But it
works well only in a very linear cloud of data when the sparsification is
enough.

3. Because some information was lost by the sparsification, we can only claim
that phonemes from several speakers can also be partially identified by the
ICA from the experiments in section. 3.2.4.

4. Testing the generality of the model cross different speakers is not successful
in the experiment(section. 3.2.3.1). Only one of the four phonemes in the
test set can be identified by a mixing matrix decomposed by ICA. By
comparing the result in the error rate result(section. 3.4.3.2), we may
conclude that our model obtained by ICA so far can only work well with
two phonemes cross different speakers. The Soft-Lost is not successful in
this experiment.
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5. For the COCA on the Invariant Cue problem, the result is promising.
The differences between phonemes are found larger than the speaker dif-
ferences within phonemes. The result also are aligned with the perceptual
similarities. The phonemes are from continuous speech. We think if we
can deal with clearly pronounced phonemes. The result could be better.

6. We use the Fisher Linear Discriminant Analysis to analyze the speaker
difference and phoneme difference. The kernel method to map the data to
the feature space is not successful in increasing the ratio of the separata-
bility between the phoneme and speaker.

7. In the two phoneme classification task, the ICA outperforms than the
Soft-Lost. From this result, we can envision that higher order statistics
and independence may resemble the cognition activity of the brain.

4.2 Future work

1. Better sparsification mechanism. When we work with phonemes from
several speakers. We need a sparsification method which can remove the
intrinsic noise equally.

2. ICA mixture method[14] could be used in an advanced analysis.

3. Better data base. A data base with clearly pronounced phonemes from
different speakers could be more helpful in identifying the phonemes from
different speakers.

4. New error rate result analysis method (Confusion Matrix) can be used for
the unsupervised classification task.



Chapter 5

Appendix A

5.1 Confusion Matrix

1A confusion matrix (Kohavi and Provost, 1998) contains information about
actual and predicted classifications made by a machine learning classifier. Per-
formance of this classifier is commonly evaluated using the data in the matrix.It
is another technique to evaluate the result of our unsupervised classification.
The accuracy (AC) is the proportion of the total number of predictions that

Table 5.1: A typical the confusion matrix

Predicted
Negative Positive

actual Negative a b
actual Positive c d

were correct. It is determined using the equation [17]:

AC =
a + d

a + b + c + d
(5.1)

1This section is based on the [17]
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In our unsupervised classification, we have M source components,each source
component is active according to one phoneme.we can make our confusion ma-
trix :

Table 5.2: A Modified confusion matrix

Phoneme1 Phoneme2
Componentith Negative Positive Negative Positive



Bibliography

[1] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis,
John Wiley Sons, 2001.

[2] M.S. Lewicki,”Efficient coding of natural sounds,” Nature Neuroscience, vol.
5, no. 4, pp. 356–363, 2002.

[3] Anthony J. Bell and Terrence J. Sejnowski, ”The ’independent components
of natural scenes are edge filters,” Vision Research, vol. 37, no. 23, pp. 3327–
3338, 1997.

[4] L. Feng and L. K. Hansen, ”On low level cognitive components of speech”
accepted in CIMCA’05 -International Conference on Computational Intelli-
gence for Modelling, Nov 2005.

[5] L. K. Hansen, J. Larsen, and T. Kolenda, ”On independent component
analysis for multimedia signals,” in Multimedia Image and Video Processing,
pp. 175–199. CRC Press, Sep 2000

[6] T. Kolenda, L.K. Hansen, J. Larsen and O. Winther Independent Com-
ponent Analysis for Understanding Multimedia Content in H. Bourlard, T.
Adali, S. Bengio, J. Larsen, and S. Douglas (eds.) Proceedings of IEEE Work-
shop on Neural Networks for Signal Processing XII Matigny, Valais, Switzer-
land, Sept. 4–6, 2002, pp. 757–766.

[7] Logan, B. Mel Frequency Cepstral Coefficients for music modeling. Read at
the first International Symposium on Music Information Retrieval..

[8] H.B. Nielsen,UCMINF - an Algorithm for Unconstrained, Nonlinear Opti-
mization, IMM, Technical University of Denmark,IMM-TEC-0019,2001



58 BIBLIOGRAPHY

[9] B. Scholkopf, A.J. Smola, and K.-R. Muller. Nonlinear component analysis
as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[10] C.J.C. Burges. A tutorial on support vector machines for pattern recogni-
tion. Data Mining and Knowledge Discovery, 2(2):955–974, 1998.

[11] Max Welling,Fisher Linear Discriminant Analysis.

[12] J. S. Garofolo et al., DARPA TIMIT Acoustic Phonetic Continuous Speech
Corpus CDROM, NIST, 1993.

[13] www.wikipedia.com

[14] Lee, T.-W., Lewicki, M. S., and Sejnowski, T. J. (1999c). ICA mixture
models for unsupervised classification and automatic context switching. In
International Workshop

[15] Paul D. O’Grady and Barak A. Pearlmutter.Soft-LOST: EM on a Mixture
of Oriented Lines

[16] L. K. Hansen, P. Ahrendt, and J. Larsen, ”Towards cognitive compo-
nent analysis,”in AKRR’05 -International and Interdisciplinary Conference
on Adaptive Knowledge Representation and Reasoning. Jun 2005, Pattern
Recognition Society of Finland, Finnish Artificial Intelligence Society, Finnish
Cognitive Linguistics Society

[17] www2.cs.uregina.ca


	Abstract
	Preface
	Acknowledgements
	1 Introduction
	1.1 Cognitive Component Analysis
	1.2 Thesis Outline

	2 Introduction to the Algorithms
	2.1 ICA(Independent component analysis)This chapter is based on the ica
	2.2 PCA(Principal Component Analysis)This section is based on the kpca
	2.3 Kernel PCAThis section is based on the kpcaA detailed introdution was given,here I only extract some key steps
	2.4 Fisher Linear Discriminant AnalysisThis section is based on lda
	2.5 Lost(Line Orientation Separation Technique)

	3 Experiments
	3.1 SOFA letter utterance experiment
	3.2 Cognitive Components Analysis on phonemes data set
	3.3 Similarity measurement & Invariant Cue:
	3.4 Unsupervised Classification

	4 Conclusion and Future work
	4.1 Conclusion
	4.2 Future work

	5 Appendix A
	5.1 Confusion Matrix


