
Bachelor Thesis

A.I. in board games

Aron Lindberg, s042422

Technical University of Denmark
Informatics and Mathematical Modelling
Thesis tutored by Thomas Bolander

August 19, 2007

i

Abstract

In this thesis, a board game named Kolibrat is implemented in the
Objective-C programming language and Apple Computers Cocoa API.
Besides from documenting this work, the thesis focus on the development
of artificial players.

ii

Resumé

I denne afhandling bliver et brætspil Kolibrat implementeret i program-
merings sproget Objective-C og Apple Computers Cocoa API. Udover at
dokumenterer dette arbejde fokuserer denne afhandling p̊a arbejdet med
udviklingen af kunstigt intelligente spillere.

iii

Contents

1 Preface 1
1.1 Preconditions . 2
1.2 Aims and limitations . 3

1.2.1 Limitations . 3
1.3 Structure of thesis . 4

2 Game Development 5
2.1 Concept design . 5

2.1.1 Graphical user interface 6
2.1.2 Game Controller 6
2.1.3 Game Engine . 6
2.1.4 Players . 6

2.2 User Interface . 6
2.2.1 Flow control . 7
2.2.2 GUI implementation 8

2.3 Game Implementation . 9
2.3.1 Class details . 11
2.3.2 Kolibrat flow diagrams 16
2.3.3 C data structures 16

2.4 Testing . 18
2.4.1 Test summery . 19

3 Artificial intelligence 20
3.1 Game Analysis . 20

3.1.1 Game state space 20
3.1.2 Branching factor 23
3.1.3 Complete analysis of Kolibrat 25
3.1.4 Analyzing forced loops 27

iv

CONTENTS v

3.2 AI in Kolibrat games . 29
3.2.1 Mini-Max agent 29
3.2.2 Optimizing the Mini-Max agent 30

3.3 Implementing the Mini-Max agent 32
3.3.1 Additional possible Mini-Max enhancements . . . 33

3.4 Optimizing the Heuristic function 35
3.4.1 Neural network utility function 35
3.4.2 Weighted linear evaluation function 36
3.4.3 Choosing the heuristic parameters 37
3.4.4 Determining the parameters weight 38

3.5 Simulated annealing Implementation 39
3.5.1 Simulated annealing results 42

3.6 Heuristics Comparison . 44

4 Conclusions 48
4.1 Future prospects . 49

A Kolibrat Rulebook 50
A.1 Game Objectives . 51
A.2 Rules for movement . 51

B Tests Details 54

C Source Code 58
C.1 Kolibrat Source Code . 58

C.1.1 HumanPlayer.h . 58
C.1.2 HumanPlayer.m 59
C.1.3 Datastructures.h 61
C.1.4 Datastructures.m 64
C.1.5 GameLogic.h . 69
C.1.6 GameLogic.m . 70
C.1.7 GameEngine.h . 80
C.1.8 GameEngine.m . 81
C.1.9 GameController.h 88
C.1.10 GameController.m 89
C.1.11 GameBoard.h . 92
C.1.12 GameBoard.m . 93
C.1.13 NewGameSheetController.h 98
C.1.14 NewGameSheetController.m 99

vi CONTENTS

C.1.15 GUIProtocol.h . 104
C.1.16 PlayerProtocol.h 104
C.1.17 main.m . 105

C.2 Kolibrat Test Source Code 105
C.2.1 Kolibrat Test.m . 105

C.3 MiniMax Source Code . 125
C.3.1 AIDefinitions.h . 125
C.3.2 AIDefinitions.m . 127
C.3.3 AdvancedAI.h . 131
C.3.4 AdvancedAI.m . 132

C.4 Simulated Annealing Source Code 141
C.4.1 simAneling.h . 141
C.4.2 simAneling.m . 143

C.5 Forced Loops Source Code 149
C.5.1 FakeLogic.h . 149
C.5.2 FakeLogic.m . 150
C.5.3 Forced Loops.m . 154

Flow Diagrams 163

Bibliography 166

Chapter 1

Preface

The first thing to do when one is about to write a thesis about developing
artificial intelligence for a board game, it to choose the actual board game.
The choice is not critical, but the game should have certain properties.
The properties that I have looked for in the games, that I have considered
to use in this thesis, is basically two things. First the game must have no
clear strategy for winning, meaning that there should be no set of obvious
moves that ensure one of the players victory no matter what the other
player does.

The second property is that I want a game with simple rules and is easy
to learn. Still the game must be difficult to predict and master. Hopefully
the game also satisfy other properties like being entertaining, but these
properties is less important than the first two. After discussing the choice
of possible games, my tutor Thommas Bolander and I have decided to
use the rather unknown board game Kolibart as it seems to satisfy all the
properties given above. In addition it can be played on multiple board
sizes.

With the game chosen the only thing left to decide is the means of
implementation. The most logic choice here would be Java, as it has been
the programming language of choice in most classes. But since I believe
in variety, and that learning something new is always good, I have made
the choice to implement Kolibrat in the less known language Objective-C.
I choose this language because it seems to be a powerful and structured
language. The language is also the language of choice for programming

1

2 CHAPTER 1. PREFACE

on an Apple Macintosh as Apple supplies a powerful IDE and API that
uses Objective-C as its foundation.

1.1 Preconditions

In order to get most out of this thesis the reader is expected to be fa-
miliar with the rules of Kolibrat, if not they can be found on page 50 in
appendix A. Understanding Objective-C would be a great help in order to
understand the source code, but since Objective-C is a superset of ANSI
C most of the source code is readable to people with a good understand-
ing of C. Likewise the reader is also expected to know the UML notation.

Objective-C is however a unique programming language, and it uses some
terms that is unique to the language. To avoid misunderstandings words
that have a special meaning in Objective-C or could be misleading if
shortly explained below.

Protocol Is the same to Objective-C as interfaces is to Java. It specifies
a list of methods that the class must implement.

Delegate Certain Objective-C classes have delegate methods. If a dele-
gate for some object has been set, all method calls to its delegate
methods are forwarded to the delegate object, but only if the dele-
gate object implements a method by that name.

Notification server Cocoa implements a notification system that allows
all objects to send and receive event messages, even if they have no
idea about who the sender or receiver might be. This is used for
program wide signaling of events.

Sheet Is a special window that is attached to another window, and glides
in above that window. This is often used to display save dialogues,
warnings, or simple options, as it locks the window below from the
user.

NIB files A file format used to store the GUI interface in Cocoa. It
consist of an XML list and interface objects. (NeXT Interface
Builder)

1.2. AIMS AND LIMITATIONS 3

1.2 Aims and limitations

Since time is always a limit, not everything of interest can be tried out
and tested to its full extend. Therefor some topics, interesting though
they are, will not be touched in this thesis. To limit the thesis a set of
objectives and limitations has been made, they are specified below.

Implementing a working game

Implementing the game has the first priority, as a working game is
necessary in order to run and test artificial players. The game itself
should be simple, but look and feel elegant, while giving the user a way
to set the options he needs. The game should also be constructed with
flexibility in mind, meaning that it should not rely on constants, but
variables that can change at runtime. This ensures that almost all aspects
of the game can be easily altered either by the user or the programmer.

Implementing AI

Implementation of the artificial intelligence in Kolibrat is the main area
of focus in this thesis. As with the implementation of Kolibrat I want the
artificial players to be flexible. Hopefully the game can be implemented in
a way that allows it to load different AI’s as plug-ins at runtime. This will
allow the user to add or remove AI’s as he pleases. Writing the artificial
players as plug-ins also has the advantage, that other programmers can
develop their own AI’s without having the source code for Kolibrat.

The plan is to spend as much time on the development of artificial
intelligence as possible. As a minimum requirement, at least one AI using
the MiniMax algorithm, must be implemented and optimized as much
as possible.

1.2.1 Limitations

On the other hand technologies like Sound and 3D Graphics will not
be touched in this thesis. Even though they are interesting add-ons, they
are not essential for the game experience. In a small game like Kolibrat,
one could even argue that this is an advantage since the game can be
played while the user performs other activities.

4 CHAPTER 1. PREFACE

Adding Network game-play would be interesting, but is not essential
and therefor not a topic that will be touched further, in this thesis. The
same goes for the ability to undo moves and saving or loading games.

1.3 Structure of thesis

The main content of this thesis is structured into two chapters. Chapter
2 deals with the development, design and implementation of Kolibrat.
Afterwards chapter 3 deals with a mathematic analyze of the game Koli-
brat, along with the development and implementation choices made while
developing the artificial players.

Section 2.1 goes through the details of the basic design choices made while
developing Kolibrat. Section 2.2 deals with the development of the games
graphical user interface. Section 2.3 deals with the more detailed design of
Kolibrats internal objects and goes into details about the implementation
of Kolibrat. Finally section 2.4 concludes the first chapter by going into
details about the White-Box testing done on Kolibrat.

Chapter 3 starts off with a longer mathematical analyze of Kolibart in
section 3.1. Section 3.2 gives an introduction to the field of artificial
intelligence in two player games, it also gives a brief overview of the
available algorithms used in these situations. Section 3.3 deals with the
implementation of the MiniMax algorithm, and is followed by section 3.4
that deals with optimizing the heuristic function used by the MiniMax
algorithm. Finally section 3.6 compares the different artificial players
that has been developed for Kolibrat.

The thesis is finished with a chapter of conclusions, giving a summary of
the achievements in the thesis.

Appendix A contains the Kolibrat rule-book and appendix B gives
details on the the White Box tests performed on Kolibrat. The following
appendixes lists the source code for the entire Kolibrat game, and its
artificial player.

Chapter 2

Game Development

This chapter deals with all aspects of the development of Kolibrat. First
a conceptual design of Kolibrat is devised. After that there is a section
on user interface development. These sections are followed by a section
on game design and then by one detailing the game implementation.

2.1 Concept design

From the very beginning Kolibrat was developed with flexibility in mind,
thus making it easy to extend and change later on, it also follows the
model, view, control design pattern. This allow the game to run without a
GUI, or to run with different GUI’s without the need to change anything
in Kolibrats data structure. The initial concept of the game design is
shown on figure 2.1.

GUI

Game
Controller

Game
Engine Players

ModelControll

View

Figure 2.1: Concept Design

5

6 CHAPTER 2. GAME DEVELOPMENT

2.1.1 Graphical user interface

The GUI must allow the player to make certain choices at the beginning
of a game, the most important being the board size, the players type and
player names. In a game the GUI must show the score and the game
board, while at the same time give the user a chance to quit or restart
the game. Another important part of the GUI is to redirect all mouse
clicks to other parts of the program, like the player objects.

2.1.2 Game Controller

The game controller must be able to control the game window and the
new game options. In addition to that it should send the options chosen
in the beginning of a game to the Game Engine. It must also tell the GUI
to display game over information when one of the players wins.

2.1.3 Game Engine

The Game Engine will handle the game logic, like the game rules. It must
also send game information to the players, giving them a change to move,
and send these moves on to the GUI.

2.1.4 Players

The player classes must respond to move requests made by the Game
Engine and return moves to the Game Engine. In order to allow different
types of player classes to work with the Game Engine, the game engine
should be able to communicate with player objects that does not necessary
inherit from or subclass each other.

2.2 User Interface

The user interface is in many ways the most important part of a program
since it is the link between the user and the program. The goal with the de-
velopment of Kolibrats interface has been to create a simple, complete and
elegant GUI. One that gives the user the options he needs and nothing else.

The best way to make the GUI simple, would be to make the game a
single windowed application, that shows the game board and use a sheet
to change game settings. This approach has a number of advantages

2.2. USER INTERFACE 7

compared to having more than one window. First of all window control
becomes simpler and the final design takes up less space. Besides from
that is makes sense to use a sheet because it ensures that no information
on game settings is shown when it is not needed, and the sheet locks the
game window ensuring that the player can not move pieces around while
setting up a new game.

2.2.1 Flow control

In order to ensure a logical flow of events through the game a flow
diagram has been made, and can be seen on figure 2.2. The only option
available to the user at launch is the new game option, which sends him
on to the dialogue for choosing game settings for a new game. When the
user is done, the game will start with a red as the first player to move.
The states now alternate between the states where either black or red has
the turn until the game is over. When the game is over the user will be
able to start a new game, restart the game or quit, but this is not shown
in figure 2.2 in order to simplify it. As seen in figure 2.2 the user also have
the choice to begin a new game, restart or quit, at any time he wants.

New Game
Dialog

Choose
settings

Red player to
move

Black player
to move Quit

Restart

Game Over

Figure 2.2: UML Flow Control Diagram.

8 CHAPTER 2. GAME DEVELOPMENT

2.2.2 GUI implementation

The user interface has been made in the program Interface Builder
and is stored in an NIB file. Thus no actual code has been written to
produce the GUI. The GUI is linked to the source code by using identical
variable and class names in both the GUI and the source code.

The GUI itself is designed to follow Apples Human Interface Guidelines,
to produce a game that looks familiar to a mac user. A picture of the
user interface is shown in fugue 2.3.

Figure 2.3: Kolibrat settings and game board.

The new game window allow the player to choose the size of the game
board, the maximum amount of pieces each player can have on the board
and the number of goals a player must gain to win.

In this layout the users can only choose from predetermined board sizes.
This is not a technical limit, the game can at runtime begin a game on
any board size, but in order to save the user from choosing stupid board
sizes like 1x1 or 50x99 the choice of boards has been limited to some
predetermined board sizes.

The game window can also be resized by the user. The maximum size

2.3. GAME IMPLEMENTATION 9

of the window is when each square on the game board has a dimension
of 128x128 pixels. From that the window can be scaled down until each
square has a dimension of 64x64 pixels. The algorithms that handles the
resizing, takes care to ensure that the window keeps its proportions while
resizing. An example of this can be seen on figure 2.4.

Figure 2.4: Big and small game window.

2.3 Game Implementation

In this section, the design from figure 2.1 is refined into a more exact
model representing actual objects in the final game. The result is shown
in diagram 1.

The most notable differences in the new layout is that the control prat of
the game has been spilt into two controller objects. NewGameController
handles the window used to start new games. The GameController
is used to control the main game window. The GameController also
controls a customised NSView that draws the actual game board in the
GameWindow.

Another change is the addition of the GameLogic object. This functional-
ity has been moved from GameEngine into its own object. This will allow

10 CHAPTER 2. GAME DEVELOPMENT

- Updates the GameBoard and
the GameWindow.

- Delegate of NSApp and
GameWindow.

GameController

- The main window, shows the
game board and the score.

GameWindow

- Controls the NewGame-
Options window.

- Loads all player objects.

- Responds to user actions
from the menu (New Game and
Restart Game).

- Connects the players,
GameEngine and
GameController when a new
game is started.

- Delegate of MainMenu.

NewGameController

- The Window containing
options for new games.

NewGameOptionsWindow

- Receives moves from players,
and validates that they came
from the player with the turn.

- Sends update info to the
GameController.

- Tells the players when it is their
turn, and gives them methods to
see the game board.

GameEngine

- Handles all rules in the game.

- Can find legal moves on the
game board.

GameLogic - Can be many different types
of objects.

- Sends moves to the
GameEngine.

- Might use the GameLogic to
find legal moves.

Player Objects

1 1 1 2

0..1

1

- Draws the game board in the
GameWindow.

- Receives mouse clicks on the
game board

GameBoard

1

11

1

1

1

1

NSView

Diagram 1: Concept UML Diagram

other objects like artificial players to use the same object, for finding
moves and move around on the game board, as the GameEngine does.

A little less noticeable is it that GameBoard is in charge of all mouse clicks
that is received on the game board. This has the advantage that since
GameBoard draws the game board, it can easily transform mouse coor-
dinates into game board coordinates. The game board coordinates can
then be passed on the the rest of Kolibrat by using the Notification system.

The games menu bar is controlled by the NewGameController. This is
the only logic choice since the menu bars main features are restarting
or starting a new game. It is also the class responsible for loading the
plug-in player objects. Also a player object is now defined as a object

2.3. GAME IMPLEMENTATION 11

that implements and responds to a PlayerProtocol. The exact interface
in this protocol can be seen on page 104. A GUIProtocol has also been
defined and specifies the methods a GUI must implement, if one wants to
make a new GUI. This could be a terminal interface, or a GUI for the
web.

2.3.1 Class details

This section goes into details about the individual classes in Kolibrat,
and explain the workings of some selected methods. The individual
methods are not discussed sine most methods is self-explanatory and the
source code is well documented and have a small description of almost all
methods in the game.

GameLogic

The GameLogic class is the object that implements all the rules in Kolibrat.
When initialized the object receives information on the maximal number
of pieces that players can have on the board, the amount of goals needed
to win and the board size. With this information the class can return
legal moves and make moves on a GameState. Some of the methods have
been implemented in C to improve performance, since that became an
issue with the development of artificial players. In figure 2.5 the methods
whose return type is not enclosed in brackets is implemented in C.

- (void)changePlayerOn:(GameState *)gs
+ (id)initWithMaxPices:(int)max goalsToWin:(int)goals boardSize:(BoardSize)board
+ (GameState)CreateNewGameState
+ (void)resetGameState:(GameState *)gs
+ (BOOL)currentPlayerCanInsertPieceOnState:(GameState *)gs
+ (NSSet *)legalMovesForPiceInField:(BoardField)field withState:(GameState *)gs
+ (NSSet *)allLegalMoves:(GameState *)gs
+ (BOOL)makeMove:(BoardMove)playerMove withState:(GameState *)gs
+ (BOOL)playerMovingCanInsertPieceOnState:(GameState *)gs
+ SimpleList allLegalMoves(GameState *gs)
+ void legalMovesForPiceInField(BoardField *field, GameState *gs, SimpleList
 *superList, SimpleList *goodList, SimpleList *badList)
+ BOOL makeMoveOnState(BoardMove *playerMove, GameState *gs)
+ void freeGameState(GameState *state)
+ GameState copyGameState(GameState *state)
+ BOOL blackPlayerAdheadOf(int x, int y, GameState *gs)
+ BOOL redPlayerAdheadOf(int x, int y, GameState *gs)

- int maxGoals
- int maxPicesOnBoard
- BoardSize boardSize

GameLogic

Figure 2.5: The GameLogic class

12 CHAPTER 2. GAME DEVELOPMENT

GameEngine

The GameEngine class stores the games state. Is parses game information
on to the GUI, if one is connected. It also handles all communication
between the players and the rest of Kolibrat. In order to avoid having
to maintain two set of game rules the engine uses GameLogic to validate
the players moves, by searching for the players move in the set of legal
moves returned by GameLogic. The class also ensure that there is at least
0.5 second between two moves to make games between two fast artificial
players watchable. The methods in GameEngine can be seen on figure 2.6.

- (void)dealloc
+ (id)initWithPlayersRed:(id)red andBlack:(id)black goalsToWin:(int)goals
 GameBoardDim:(BoardSize)board MaxPices:(int)max connectToGUI:(id)gui
+ (void)nextPlayer:(NSNotification*)notification
+ (void)resetGame
+ (BOOL)playerMove:(BoardMove) playerMove fromPlayer:(id)player
+ (GameState)gameState
+ (void)SelectedPiece:(BoardField)bf fromPlayer:(id)player
+ (void)delayNextPlayer:(BOOL)response

- GameLogic *gl
- id redPlayer
- id blackPlayer
- id engineGUI
- int maxGoals
- BOOL connectedToGUI
- BoardSize boardSize
- GameState realGameState
- GameState* gameStatePointer
- NSNotificationQueue *queue
- BOOL delayNexPlayer;
- BOOL doCallNextPlayerWhenResume;
- NSDate *timeToNextTurn;
- NSDate * timeToStoptheGame;

GameEngine

Figure 2.6: The GameEngine class

The method SelectedPiece: can be called by the players on pieces
they want highlighted in the GUI. And the delayNextPlayer: method
is called by NewGameController to stop a game between two artificial
players when the user brings up the sheet with NewGameOptions.

Human Player

This class implements the human player. It works by receiving mouse click
notifications from the GameBoard. When appropriate the human player

2.3. GAME IMPLEMENTATION 13

object returns possible moves to the GameEngine. Besides form this, the
object only implement the methods required by the PlayerProtocol.

+ (void)dealloc
+ (id)initAsPlayer:(int)player withName:(NSString *)playerName
 boardSize:(BoardSize)bs picesOnboard:(int)maxPices
+ (void)mouseClickNotification:(NSNotification *)notification
+ (void)setGameEngine:(id)ge
+ (void)startNewTurn
+ (void)reset
+ (NSString *)playerName
+ (NSString *)playerType

- GameEngine *engine
- int playerID
- BOOL waitingForOtherPlayer
- BoardField firstClick
- BoardField secondClick
- NSString *name

Human Player

Player Protocol

Can be other
classes

Figure 2.7: The HumanPlayer class

GameController

This class is the link between the interface and the data model. It receives
information from the GameEngine and sends the appropriate information
on to the GameWindow. This class is initialized by the awakeFromNib:
method that is called by the GameWindow when its NIB file is loaded at
launch. The classes variables and methods can be seen on figure 2.8.
At compile time IBOutlet is converted to a pointer, and IBAction to
void. IBOutlet and IBAction us only used to inform the programmer
and the compiler that this is a variable or method that is linked to the
GUI through a NIB file.

The GameController is a delegate of NSApplication and implements the
delegate method applicationShouldTerminate...: that terminates the
application when the last window is closed. The gameOverWithWinner:
method is called by the GameEngine when a game is over, and when the
user responds to the game over dialog the gameDidend: method is called
to cope with the users response.

14 CHAPTER 2. GAME DEVELOPMENT

GUI Protocol NSWindowController GameWindow
(NIB File)

+ (NSSize)windowWillResize:(NSWindow *)sender toSize:(NSSize)proposedFrameSize
+ (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)app
+ (void)awakeFromNib
+ (void)gameOverWithWinner:(NSString *)playerName
+ (void)setScore:(GameScore)score
+ (void)highlightField:(BoardField)bf
+ (void)redrawOriginalState
+ (void)updateToState:(GameState)bs
+ (void)highlightPiceAt:(BoardField)bf
+ (void)drawOpaquePiceAt:(BoardField)bf forPlayer:(int)player
+ (void)gameDidEnd:(NSWindow *)sheet returnCode:(int)returnCode
 contextInfo:(void *)contextInfo
+ (void)setGameEngine:(GameEngine*)engine
+ (void)setHighlightState:(BOOL)highlight
+ (void)setBoardSize:(BoardSize)board

- IBOutlet NSTextField *blackScore
- IBOutlet NSTextField *redScore
- IBOutlet GameBoard *gb
- IBOutlet NSWindow *OptionsWindow
- IBOutlet NSMenuItem *restartMenu
- GameEngine *ge
- BOOL canRestartGame
- BOOL doHighlighting
- BoardSize boardSize
- float boardFieldDim

GameController

Figure 2.8: The GameController class

GameBoard

The GameBoard class handles drawing the game board in the main window.
It to is loaded by GameWindow at launch. Most of its methods is related to
drawing the board and its pieces. The mouseDown: method is the method
that receives mouse clicks, and transforms them into board coordinates.
All actual drawing is done in the drawRect: method, as it is automatically
called when the system want to redraw the window.

The GameWindow uses some quite advanced calculations to resize the game
window. The setSquareDim: and setDisplayOffset: is part of this
and ensures that the game board have the right size and is placed at the
correct distance from the edge of the window.

2.3. GAME IMPLEMENTATION 15

+ (void)awakeFromNib
+ (NSRect)RectForField:(BoardField)bf
+ (void)setColorForField:(BoardField)bf
+ (id)initWithFrame:(NSRect)frameRect
+ (void)drawRect:(NSRect)rect
+ (void)mouseDown:(NSEvent*)event
+ (void)highlightField:(BoardField)bf
+ (void)redrawOriginalState
+ (void)drawPicesFromBoard:(GameState)gs
+ (void)highlightPiceAt:(BoardField)bf
+ (void)drawOpaquePiceAt:(BoardField)bf
 forPlayer:(int)player
+ (void)setBoardSize:(BoardSize)board
+ (void)setSquareDim:(float)dim
+ (void)setDisplayOffset:(float)distance

- float squareDim
- int **HighlightArray
- int **PicesArray
- BoardSize boardSize
- float offset

GameBoard

NSView

Figure 2.9: The GameBoard class

NewGameController

The NewGameController class handles all aspects of new game creation.
At launch it checks the games plug-in folder for additional players and
loads these into an array of players. When the user choose to start a
new game the NewGameController displays the NewGameOptionsWindow
above the game window as a sheet. In the NewGameOptionsWindow the
user can choose the game settings, along with other options. The class
can be seen on figure 2.10.

The validateMenuItem: is used to enable or disable items in the menu
bar. This method is used to disable the Restart Game menu item until a
game has been started. The method is called on the NewGameController
because it is the delegate of the NSMenu class. The methods newGame:
and restartGame: is the classes that is executed when the user chooses
these options in the menu bar. The defaultsButton:, cancelButton:
and startGameButton: is the methods that is executed when the user
pushes these options in the NewGameOptionsWindow.

16 CHAPTER 2. GAME DEVELOPMENT

+ (void)awakeFromNib
+ (void)loadPlayers
+ (BOOL)validateMenuItem:(NSMenuItem *)item
+ (IBAction)defaultsButton:(id)sender
+ (IBAction)startGameButton:(id)sender
+ (IBAction)cancelButton:(id)sender;
+ (IBAction)newGame:(id)sender
+ (IBAction)restartGame:(id)sender

- IBOutlet NSTextField *blackName
- IBOutlet NSPopUpButton *blackType
- IBOutlet NSPopUpButton *boardpopUPMenu
- IBOutlet NSTextField *goals
- IBOutlet NSTextField *redName
- IBOutlet NSPopUpButton *redType
- IBOutlet GameController *gc
- IBOutlet NSWindow *newGameWindow
- IBOutlet NSWindow *gameWindow
- IBOutlet NSButton *highlightInGUI
- IBOutlet NSTextField *maxPices
- IBOutlet NSStepper *goalsStepper
- IBOutlet NSStepper *piecesStepper
- GameEngine *newEngine
- NSMutableArray *playersType
- NSMutableDictionary *playerIdentefiers

NewGameController

NewGameOptions
Window

(NIB File)

Figure 2.10: The NewGameController class

2.3.2 Kolibrat flow diagrams

In order to better understand the flow the events through Kolibrat, when
the game is running, some UML flow diagrams has been made to illustrate
this. Due to their size the actual flow diagrams is shown in the back of
the report, behind the appendix. Diagram 2 is shown on page 163 and
displays the program flow at game launch. Diagram 3 is shown on page
164 and details the flow while playing through one turn. Diagram 4 is
shown on page 165 and shows the flow of events when one of the players
win a game.

2.3.3 C data structures

This section describes the data structures used in Kolibrat. It gives a
superficial explanation on how the data structures is implemented and
focus on what the structures is used for. To see the actual implementation

2.3. GAME IMPLEMENTATION 17

and how the structures are made from primitive C variables see the
implementation on page 64.

GameStatus This data structure is used to store the game status. That
is whether or not the game is over, and in that case who the winner is.
This data structure is mostly used in the larger data structure GameState
that stores all data on a state in the game.

BoardField This structure is used to parse coordinates for pieces
around in the game. It is constructed of two short integers that re-
spectively gives the x and y coordinate of the piece in question.

BoardMove This structure is made up of two BoardField structures,
and denotes the field a piece moves from and the field it moves to. This
structure is used widely in the game, GameLogic uses it to store legal
moves and the player objects uses this structure to pass the moves they
want to make on to the GameEngine.

GameScore This structure stores the score for both players, in two
short integer variables. This structure is mostly used in the larger
gamestate structure.

BoardSize This structure stores the size of the game board. All objects
that works with pieces on the game board needs to know the size of the
game board in order to avoid array out of bounce errors, they uses this
structure to store that knowledge.

BoardFieldContent This is a small structure defining two boolean
variables. One to indicate that this BoardField is occupied by red and
one to indicate it is occupied by black. This is used by the GameStatus in
a two-dimensional array to store the location of the pieces of the board.

GameState This structure is used by the GameEngine to store all in-
formation on the game, and by the AI’s when they construct a game tree.
Aside form containing a two-dimensional array of BoardFieldContent
structures, a GameScore and GameStatus structure it also stores info on
the player moving, and the amount of pieces each player have on the board.

18 CHAPTER 2. GAME DEVELOPMENT

The GameState structure has been designed to save as much space as
possible. The score is stored in an unsigned short integer for both players,
as each unsigned short integer is 16 bits the total size of this is 32 bits.
The placement of pieces is stored in a two-dimensional array with the
size of the game board of booleans for both players, assuming the game
board have 3x4 fields this gives 3 · 4 · 2 = 24 bits of data to store the
location of both players pieces. The player who have the turn is stored
in a boolean variable and only takes up one bit. The number of pieces
that both player has on the board is also stored in an unsigned short
integer and thus takes up 2x16 = 32 bits, the same as the game scores.
The game status is stored in two Boolean variables one to tell whether
the game is over and one to tell the winner. This adds up to a total of
91 bits or a little less that 12 bytes. This value might vary, especially on
64 bit systems where some of the primitive C variables has changed size,
compared to their 32 bit equals.

2.4 Testing

This section contains a description of the testing done on the kolibrat
souse code. All classes has been severely black box tested, both by crash
testing the compiled application, and through heavy use of the debuggers
line by line execution provided by the IDE.

In addition to this the GameLogic part of the game has been put through
a white box test, to ensure that it contains no errors and that the rules
of the games is implemented as intended. All in all 20 test cases has been
carried out testing different aspects of the GameLogic.

A short description of the tests is shown below. Fore a more in-depth
description of the tests see appendix B for a detailed description of the
tests. Or take a look at the source code of the test at in appendix C.2.1.

Test 1 Insert pice for red in (1,0) on an empty board.

Test 2 Insert pice for black in (1,3) on an empty board.

Test 3 Trying to insert pice for red in (1,3) on an board with 4 red
pieces.

Test 4 Trying to insert pice for red in (2,2) while the board is empty.

2.4. TESTING 19

Test 5 Score point for red.

Test 6 Score point for black.

Test 7 Try to insert piece in occupied field.

Test 8 Gamestatus is changed when red wins.

Test 9 Ensure that no players can move when the game is over.

Test 10 Ensure that no players can move outside of the board.

Test 11-15 Tests of moves on a non empty board for red player.

Test 16-20 Tests of moves on a non empty board for black player.

2.4.1 Test summery

These tests combined tests all functions and all lines of code in GameLogic
to ensure that it responds as expected in all game situations. This means
that besides from testing all lines of code in GameLogic is also attempts
to find any errors there could be in the implementation of the Kolibrat
rule-book found in appendix A.

During the tests two errors, that in some situations allowed both players
to remove pieces from the game board, where found in test 11 and 16.
The problem has been fixed, so that GameLogic now passes all the tests.

Chapter 3

Artificial intelligence

This chapter focus on the development and implementation of artificial
intelligent players. The first section makes a longer analyses of the
mathematical properties that Kolibrat possess. While the flowing sections
describe AI in general and the implementation and optimizations done
on Kolibrats search techniques.

3.1 Game Analysis

To know what to expect from an artificial player, it is good to have an
idea of what one can expect from Kolibrat AI. Therefor some mathemat-
ical studies of Kolibrat has been made prior to the AI development to
determine properties like the branching factor and the size of the search
space, meaning the number of the unique GameStates. These properties
can tell if it is possible to solve the game completely, or how many moves
an agent can be expected to search before a move must be returned.

3.1.1 Game state space

The total number of different states in a Kolibrat game important, since
if this number is small enough the game can be solved in an attempt to
find a certain victory strategy for one of the players. To do this we
first of all need a formula that describes the number of ways, a piece can
be placed on the game board.

If we define that b is the number of fields on the game board and that

20

3.1. GAME ANALYSIS 21

p is highest number of pieces, a player can have on the board. The first
piece can be placed in b different places, and the second in b− 1 ways. In
other words if we have x pieces on the board they can be placed on f(x)
different ways.

f(x) =
b!

(b− x)!

This formula works fine, but have the one flaw since it considers all pieces
to be different. So if red has placed his first piece in (1, 1) and his second
piece in (1, 2) this board state is considered different from a state where
red placed his first piece in (1,2) and the second in (1,1). To solve this the
result of the formula must be divided by the factorial number of pieces
on the board, and this must be done for each player individually. If p1 is
the number of pieces that the red player has on the board and p2 is the
number of pieces that black has on the board the formula becomes (3.1).

f(p1, p2) =
b!

p1! · p2! · (b− x)!
(3.1)

Formula (3.1) gives the total number of different ways to place pieces on
the board. To get the size of the total amount of states the result from
formula (3.1) must be multiplied by two, since for each board position
both players could have the turn, and all these states could each have any
possible combination of scores. If the number of goals that is required to
win is s then formula (3.1) must therefore be multiplied by (s + 1)2 − 1.
This gives the formula shown on equation (3.2).

f(p1, p2) =
b!

p1! · p2! · (b− x)!
· 2 · (s + 1)2 − 1 (3.2)

To get the total number of possible states the sum of all possible combi-
nations of pieces is taken. This is done in equation (3.3).

p∑
p1=0

p∑
p2=0

(
b!

p1! · p2! · (b− x)!
· 2 · (s + 1)2 − 1

)
(3.3)

With formula (3.3) it is now possible to calculate the total number of
states that a Kolibrat game has, based on the size of the board and the

22 CHAPTER 3. ARTIFICIAL INTELLIGENCE

highest number of pieces each player can insert. In table 3.1 calculations
for the total state space can be seen for some common board sizes. The
values is based on games that is won at 4 points.

Breadth Height Max Pieces Board positions Total States
2 2 2 63 3149
3 4 4 170019 8500949
3 4 5 343467 17173349
3 4 6 460815 23040749
4 5 5 123479901 6173995049
4 5 6 509103141 25455157049
5 6 6 1.58 · 1011 7.91 · 1012

9 9 15 4.20 · 1030 2.10 · 1032

9 9 30 2.66 · 1038 1.33 · 1040

Table 3.1: States based on board size, score and pieces on the board.

As seen in the table a standard Kolibrat game with a 3x4 game board and a
maximum of 4 pieces on the board for each player only has 8500949 states.
If each state takes up 12 bytes, this gives that all states will take up 102
MB of memory, plus some memory needed for bookkeeping. While this is
still a considerable amount of memory it is well within the limits of a mod-
ern computer to work with. Given the time a computer could calculate
and solve the complete game to find the best possible strategy for winning.

The memory needed for the bookkeeping is actually also quite a bit,
assuming the computer system solving the game is a 64 bit computer
like most modern computers today. A pointer takes up 64 bits of data or
8 bytes, if every state must have a pointer to all states accessible from
itself this means quite a bit of extra data. Assuming that every state has
about 4 possible moves, this means that every state must have four 64
bit pointers to other states, with 8500949 this gives an additional 272
MB data to be stored in order to connect the states to each other. This
adds up to a total of a little less that 400 MB for a complete solution to
a kolibrat game on a 3x4 board.

This number can be reduced be a factor of two by implementing an
algorithm that can invert the board so red becomes black, and black red.

3.1. GAME ANALYSIS 23

By also implementing an algorithm that can mirror the board along the
y-aksis the total amount of unique states can be divided by a factor close
to 2. The factor is only close to 2 because a state that is symmetric only
appears once in the complete set of states, where as all non symmetric
states appears twice. With these improvements to an algorithm it will
be possible to store the complete solution to the kolibrat game in a little
less that 100 MB file.

While it certainly is possible to solve the smaller Kolibrat boards com-
pletely, solving the larger is still not possible today. The game draughts
have 5 · 1020 unique states and have recently been solved proving that
both player have a draw strategy [1]. It took 16 years from the project
started to the proof were complete, demonstrating that solving the larger
Kolibrat games is impossible unless massive computer mainframes work
on the problem for yeas. For compairson chess have about 1050 unique
states [2], and have never been solved.

3.1.2 Branching factor

y-axis A games branching factor is the factor by witch its game tree
branches, in short the number of moves the player has to chose from when
he makes a move. The branching factor is important since is determines
the number of states an artificial player must look through to find the
best move by looking ahead in the game. If an agent has to look d moves
ahead in a game with a branching factor of b to find the best move, the
amount of states s the agent must look through is determined by formula
(3.4).

s =
d∑

i=0

bi =
bd+1 − 1

b− 1
(3.4)

In Kolibrat on a 3x4 board and with a maximum of four pieces, on the
board the average branching factor has been determined to be about
3.12 on average. This number also seems fairly constant, and different
playing styles has little to no effect on the factor. Even even if the average
branching factor seems quite constant based on several measurements with
different playing styles, the individual branching factors varies quite a lot
from turn to turn. The minimum branching factor is zero and although
this is a pretty rare situation it do appear, one example can be seen in

24 CHAPTER 3. ARTIFICIAL INTELLIGENCE

figure 3.1(a). The maximum branching factor has been determined to
be ten and is equally unlikely to appear in a game, as only a few board
positions gives a player this many choices in moving. One example of
such a position can be seen on figure 3.1(b).

(a) No Moves for red. (b) Ten moves for red.

Figure 3.1: Board positions.

On other board sizes the average branching factor also seems pretty
constant and independent of variations in the playing style. Table 3.2
displays measured branching factors for different board sizes and the
highest amount pieces.

Breadth Height Max Pieces Branching factor
2 2 2 1.6
3 4 4 3.2
3 4 5 3.2
3 4 6 3.2
4 5 5 4.5
4 5 6 5.0
5 6 6 6.0
9 9 15 12.3
9 9 30 12.3

Table 3.2: Average branching factor.

3.1. GAME ANALYSIS 25

Effective branching factor

While it is not possible to change the branching factor, as it is game
specific, it is possible to make changes to the algorithm that examines
the game tree. These changes could allow the algorithm to discard some
states before they have been examined. When this is done the effective
branching factor that identifies that branching factor of the states that
the algorithm has to expand to find the best move, becomes different
from the average branching factor. By sorting out states that can not
possible lead to the best possible move, the algorithm can use more time
to look at states that might turn out to be the best move, and in that
way decrease the efficient branching factor. A more detailed discussion on
how to decrease the efficient branching factor is described in section 3.2.2.

3.1.3 Complete analysis of Kolibrat

While games on larger boards will takes years to solve it is easy to solve
some of the games on smaller boards. In a game on a 2x2 board played
to 1 point and with a maximum of 2 pieces on the board for each player
black has a victory strategy, the proof is shown in figure 3.2.

Black Win

Black Win

Figure 3.2: Victory strategy for black on a 2x2 board.

26 CHAPTER 3. ARTIFICIAL INTELLIGENCE

Even though figure 3.2 is not complete with the moves that lead to a red
victory all possible moves that lead to a black victory is shown.

Victory strategy on a 3x3 board

As with the 2x2 board, it can also be proved that red has a victory
strategy on a 3x3 board, if the game is won after the first goal. The
incomplete game tree on figure 3.3 show only the moves that bring victory
to red, but all possible black moves are shown.

Red Win

Red Win
Red Win

Red Win

Red Win
Red Win

Red Win
Red Win

Red Win
Red Win

Red Win
Red Win

Red Win
Red Win

Red Win
Red Win

1

1

5

Red Win
Red Win

Red Win
Red Win

33
4

2
4

2

5

Red Win
Red Win

4

5

Red Win
Red Win

2

Red Win
Red Win

3

41

Figure 3.3: Victory strategy for red on a 3x3 board.

On this board size red has the advantage. Because red it is the first to
move, he is also the first payer that can reach the centre of the board,
which equals victory on a 3x3 board.

3.1. GAME ANALYSIS 27

Victory strategy on other boards

As there is no rules in Kolibrat that allow games to end in a draw all
kolibrat games must have a victory strategy for either red or black, unless
the game is played in a way that makes the game go on forever. It might
be that on some boards the players have the choice between playing
forever or breaking the cycle and loose, but there is no proof of that. On
a 3x4 game board played to one point red always wins. I have not proved
that black can not win, but I have not been able to find a game that ends
with a black victory when both players look more than a few moves ahead
in the game, but played to four points black seem to have the advantage.

3.1.4 Analyzing forced loops

The question is now whether or not one of the players can force the game
to go on forever. In order to do this there has to be a sequence of moves
that the player can choose and no matter what moves the opponent chose
the game must end in a state it has previously been in. A mathematical
proof of whether or not this is possible, is out of scope for this thesis. But
the solution can be found by a computer using brute force calculation.
The pseudo code for testing this property is not included since the pseudo
code for solving this problem exceeds 50 lines of code. The complete
source code for the ForcedLoop program is listed in appendix C.5.1.

The program begins with constructing a game graph from the empty
game board. All states that is found is added to a set of knownStates.
Lets assume that the program tests whether or not red player can enforce
a loop. When red is moving and one of the states that red can move to is
in knownStates then all the child states are discarded and red’s parent(s)
is told that one of their children has a loop. Else the children is added to
an activeStates array for further calculations.

When parent p, where red has the turn, is told one of its children has
a loop, all children of that parent(s) are told they are part of a loop
and they are discarded. Now p’s parent is told is has a child with a
loop and p marks itself as part of a loop. When a parent where black
has the turn is informed that a child has a loop it marks that child
as dead. When all its children are dead it calls its own parent to tell
that one of its children it is part of a loop, and marks itself as part of a loop.

28 CHAPTER 3. ARTIFICIAL INTELLIGENCE

When black have the turn and one of its children is in knownStates
then the states that are in knownStates is told they have another parent
(blacks state). All other child states that is not in knownStates are added
to activeStates for further calculations.

In order to rule out the possibility of infinite loops the program must
run the test for both red and black player. An interesting side effect
of the ForcedLoop program is that with only a few modifications the
program could be modified to search for victory strategies for one of the
players. Instead of calling the parent when a child had a loop the states
must call the parent when it knows that a child state is a victory node
for red or black. Unfortunately the programs data structures is not the

Red
Win

Black
Win

Black
Win

0

120

122

100

102

101
121

103

106

105108

104107

109

110
111

200

Figure 3.4: Artificial game tree from FakeLogic.

most memory efficient. The amount of ram the application uses quickly
exceed several gigabytes. Although only smaller boards up to 3x3 has
been tested with this program all tested boards have returned no forced
loops.

3.2. AI IN KOLIBRAT GAMES 29

To ensure that the ForcedLoop algorithm and its implementation works
as intended, a class FakeLogic has been implemented and generates a
game tree as the one on figure 3.4. When testing ForcedLoop on that
game tree the program returns that red, but not black can enforce in
infinite loop, which is the correct answer. This do not prove that there
are no errors, but the game tree in figure 3.4 has many, if not all of the
pitfalls, a real game tree will have. The numbers on figure 3.4 represent the
internal ID numbers used in the FakeLogic implementation to recognize
states, and the semi-dotted lines represents a backwards loop.

3.2 AI in Kolibrat games

If you define an agent as an artificial intelligent player that acts on behalf
of a user, that isn’t there. Then this agent must attempt to solve a given
problem for that user. In this case the problem of winning in a game of
Kolibrat. This problem is not exactly easy to solve, since the environment
the agent operates in has multiple agents (one more) that works against it.

The environment the agents is operating in is fully observable, the agents
have full access to all information in the current game state. The environ-
ment is also sequential and static since the players move one after another
and the kind of information that is stored in a state is consistent form
state to state.

When agents compete against each other in such an environment the
agent usually uses knowledge of the games rules to look ahead in the
game, trying to find a state that ensures it victory. The following sections
discuss the MiniMax agent which works that way.

3.2.1 Mini-Max agent

The max-min agent is a highly specified agent developed especially for
fully observable, static, sequential and multi agents environments. It is
an old and well tested approach to solving two-player game problems.

It works by constructing a full game tree down to some level. From that
level the game tree is evaluated from the bottom and up. The moving

30 CHAPTER 3. ARTIFICIAL INTELLIGENCE

player is defined as the max player, since it is his move we want to
maximize. The other player is the min player since he wants to minimize
the utility of the moving players final move.

When the game tree is evaluated all states on the bottom level of the
tree is given values by evaluation in an heuristic function, sometimes
also called a utility function. This returns the utility value of each state
on the bottom level. If the player one level above the bottom level is
min he will choose the lowest utility value among all his children and
take that value as his value. If it is max he will choose the highest
utility value among all his children and take that value as his value. This
continues level for level, until the top of the tree is reached, at that point
the child that contains the highest utility value is selected as the best move.

Assuming that the heuristic function is perfect the MiniMax agent will
play perfectly, making no mistakes at all. Unfortunately the function
is usually only a crude estimate of a states real utility value. Having a
good utility function is essential for the MiniMax agent, if the function
is bad or even wrong the agent will perform badly compared to other
agents with better utility functions, even if the agent with the bad utility
function is given more time to look further ahead in the game.

The heuristic function

The definition of a heuristic function is a function that estimates the cost
of the cheapest path from the current state to the a goal state [3, page
95]. Since guessing the distance to a goal state is highly dependent of the
opponents playing style a utility function is used instead in multi-agent
environments. The utility function basically does the same thing, but it
do not return the expected length from the current state to the goal, but
the states utility value. If the utility function is correct a state that is
close to winning will have i higher value, than states further away from
winning. However there is no guarantee of this, since most utility values
is only estimates, based on certain properties of the current state.

3.2.2 Optimizing the Mini-Max agent

Because of the popularity of the MiniMax agent, a lot of work has gone
into optimizing the original algorithm. Most of these improvements are

3.2. AI IN KOLIBRAT GAMES 31

trade-offs between memory usage and calculation time. Some possible
optimizations is listed below.

Alpha-beta pruning

A simple yet efficient way to optimize the performance of MiniMax is to
implement Alpha-beta pruning. Alpha-beta pruning works by adding
two variables to the each state, and only works if the MiniMax agent is
implemented to use deep-first search. The first represents the utility
value of the best state the red player could have reached by taking another
path in the game tree. The second the best utility value (the lowest) that
black player could have reached by taking another path in the game tree.

If at any point one of the players reaches a state s that is evaluated to
have a better utility value for that player, but is below a state where
the other player can force the game into another part of the game tree
that is preferable for him. If this happens the Alpha-beta enhancement
realizes that the opponent will never allow the play to reach this part of
the game tree and and that entire part of the tree is abandoned.

In order to get the optimum effect of Alpha-beta pruning all moves
must be sorted. The list of moves must be sorted so that states generated
from moves expected to be good, is explored first. This ensures a high
probability for finding the best move in the first try, and thus a bigger
chance of reaching a state where Alpha-beta realizes that this part of
the game tree can be cut-off.

An implementation of Alpha-beta pruning where the moves are sorted,
will on average decrease the efficient branching factor to the square-root
of the average branching factor [3, page 169].

Implementing a hash table

Another way to decrease the efficient branching factor is to ensure that
two identical states is never both explored. This puts some demands on
the MiniMax implementation. First of all if two identical game states is
discovered it must always be the one closest to the top of the tree, that is
explored. This is not necessary the case since the MiniMax agent uses
deep-first search. Also if two equal states is found on the same level

32 CHAPTER 3. ARTIFICIAL INTELLIGENCE

only one of them should be explored.

Implementing a hash table to avoid exploring equal states can lead to a
significant decrease of the efficient branching factor, but the trade-off is
highly increased memory usage. In MiniMax a state can be removed from
memory when it has been evaluated, now all states must be preserved in
memory until the best move has been found.

Multithreaded Programming

A completely different way of improving the performance of MiniMax
would be to give it more processing power. Since most new computers
today ship with multiple processors, a serious boost in performance
could be gained by taking advantage of all the processors. Implementing
MiniMax in a thread safe manner will complicate the implementation,
but this is also the only significant disadvantage.

3.3 Implementing the Mini-Max agent

The MiniMax agent is usually implemented as a deep first search, to
decrease the memory requirements. To ensure the agent returns a move
within reasonable time the search is normally cut-off at some predeter-
mined level.

In this implementation, the agent is given a specific amount of time
to find the best possible move. Since a best move can only be deter-
mined after a search to some level has been completed, the algorithm
must complete at least one search in this time interval. To do this the
agent uses iterative deepening search. This search continually per-
forms deep first searches, at first the search is cut-off at level 1, then the
cut-off level is increased by one until the time runs out. At that time
the best move from the last completed search is returned as the best move.

It may seem like a waste of calculation time to recalculate the entire game
tree for each level, but the advantages really surpass the disadvantages.
The calculation overhead is determined by equation (3.5), where b is the

3.3. IMPLEMENTING THE MINI-MAX AGENT 33

average branching factor, and d the search depth.

d−1∑
i=0

bi

d∑
i=0

bi

=
bd − 1

bd+1 − 1
≈ 1

b
(3.5)

As seen the overhead is on the whole equal to a fraction of the branching
factor. In a game on a 3x4 board this gives a overhead of 33%, which is
still a considerable overhead, but considering the advantages it is still the
best option if the calculation is time limited.

Since there is a rule in kolibrat that allows a player to move twice, some
minor modifications had to be made to the original pseudo code for the
Mini-Max agent work with Kolibrat, but essentially the implementation
is equal to the original pseudo code taken from [3, page 170], but with
an enhanced cut-off test and iterative deepening search. The HASH
table enhancement has also been included.

The running time of the algorithm is determined by the time it takes
to compute one state multiplied by the amount of states the algorithm
searches. The time it takes to compute one state is constant, and when
the algorithm has made a search down to level d it will have processed
bd+1

b−1 states. This gives a total running time of O(bd). Without any
enhancements b is the average branching factor, but if the agent uses
Alpha-beta pruning or other enhancements b represents the effective
branching factor.

3.3.1 Additional possible Mini-Max enhancements

Even though the MiniMax agent has been implemented with the enhance-
ments specified above, there is still aspects of the algorithm that could be
improved. For that reason some suggestions for additional enhancements
are discussed in the sections below.

Randomness

In some situations, especially when the MiniMax agent uses a simple
heuristic function to evaluate the board, some or all of the possible moves
end up with the same utility value. In this situation the agent always

34 CHAPTER 3. ARTIFICIAL INTELLIGENCE

chooses the first move among the moves with equal utility value. This
makes the agent deterministic and might lead to board situations where
the agent always makes the wrong move.

This behavior could be improved by choosing the moves at random, among
the moves with the highest utility value. To make the agent completely
non deterministic the agent could also use a probability function to choose
its move. The utility value could be used as an indicator of how likely
a move is to be chosen, meaning that the agent chooses a random move
among all the possible moves, but moves with a higher utility value has a
higher chance of being chosen.

Board specific agents

The heuristic function MiniMax uses now is independent of the board.
The heuristic will however not perform as well, on some boards since the
optimal heuristic function varies from board to board.

One way to improve the heuristic function would be to make it board
specific. This could for instance be telling the agent that standing in that
board field is really good, or if the agent can force the game into this state
it will win. The only problem is to find fields on the board that is good
to occupy or states that leads to victory, but this could be calculated in
the same way as the heuristic function is optimized in section 3.4.

Continuous search

Optimizing the search by improving the search algorithm in the MiniMax
agent is another way to increase the performance of the agent. This im-
provement would allow the agent to save the game tree in between moves,
and save calculation time by not having to recalculate the entire tree the
at every move, this could also be combined with iterative deepening
search to decrease the 30% overhead.

A search algorithm like this will require more memory, and some perfor-
mance will be lost to keeping track of the new advanced data structures
required to implement this. If implemented correctly this enhancement
will save time, but the decrease in calculation time is limited.

3.4. OPTIMIZING THE HEURISTIC FUNCTION 35

Assuming the game is played on a 3x4 board with an average branching
factor b of 3.2, and the agent have constructed a game tree. When the
agent has found his move 1

b of the tree can be neglected, and when the
opponent has made his move another 1

b of the tree can be neglected. this
gives that only 1

b2
of the entire tree is still useable when the agent regains

the turn. With b = 3.2 this gives that only 9.8% of the tree don’t have
to be recalculated at the start of next turn, and on bigger boards this
number is even smaller.

The real improvement is achieved by combining this search algorithm
with the iterative deepening search, which will reduce the calculation
overhead from a fraction of the branching factor to zero.

3.4 Optimizing the Heuristic function

The heuristic function is in many ways the most important component in
the MiniMax agent. If the heuristic is bad, or makes plain out wrong
assumptions about the game states utility the agent will perform bad
compared to agents with better heuristics, even if they have more time to
analyze the game board.

There is different approaches to optimizing the heuristic function. One
approach would be to use a neural network as the evaluation function,
another to use a weighted linear evaluation function. The advantages
and disadvantages of both approaches is described in the next section.

3.4.1 Neural network utility function

A neural network is a network of connected mathematical functions. The
network takes a set of input parameters and returns a set of output
parameters. The input could be a game state and the output could be
the states utility value.

The disadvantage of using neural networks as a utility function is that
after the neural network is implemented it must be trained to return a
correct utility value. There is more than one algorithm that can train a
neural network but they all have one thing in common. They take a neural

36 CHAPTER 3. ARTIFICIAL INTELLIGENCE

network, a set of states and their correct utility value as arguments. The
algorithm now manipulates the network to provide the correct output to
the input parameters. On problem with this approach is that generating
a set of input states and finding the correct output (the utility value) can
be difficult, since there are no simple way to determine the correct utility
value for a state.

The advantages of using neural networks to evaluate a state is that the
evaluation is based completely on computer generated information, about
how good and less good states look like. Almost all other approaches to
generating a heuristic function, involves some form of human reasoning
about what is important and what is not.

3.4.2 Weighted linear evaluation function

A weighted linear evaluation function takes a set of functions fi(s), that
each represent a property the evaluation function takes into account. If s
is the state and wi is the weight for fi(s) then a weighted linear evaluation
function can be defined as in (3.6), where n is the number of properties
from the state that the function takes into account.

Eval =
n∑

i=1

wifi(s) (3.6)

This approach is often used to construct evaluation functions since it is
simple and flexible. The only problem is to determine the functions and
their weight, but there are methods for that.

Kolibrat is a zero-sum game, meaning that the sum of the players scores
are always zero. When one player makes a move that increases his chance
of wining, his opponents chances of winning is decreased. This increases
the first players utility value, and decreases the opponents. The player
closest to winning will always have a positive score, and his opponent will
have a negative score, of the same value. This property makes is easy for
the agents using the function to analyze how they are doing compared to
their opponent.

3.4. OPTIMIZING THE HEURISTIC FUNCTION 37

3.4.3 Choosing the heuristic parameters

Choosing the best possible combination of parameters for the heuristic
function is not possible for humans, as they can only make educated
guesses about whether or not a parameter is important, and they might
overlook important parameters. The only way of generating parameters
for a heuristic function is by using algorithms that can transform problems
specified in logic languages into a set of heuristic parameters.

The best known program to de this is Armand E. Prieditis program
ABsovler. It takes a problem formulated in a logic language like 1.
order logic and returns a heuristic function for this problem.

Using the ABsovler to determine the best parameters for a evaluations
function for Kolibrat would be the optimal solution, but it have some
major drawbacks. In order to use the ABsovler it must first be imple-
mented and this seems like a task worthy of its own thesis, judging by
the available information about the ABsovler. Also according to [4]
ABsovler has only been used to solve simple problems in static, single
agent environments like the Eight Puzzle, Rubik’s cube or the eight queens
problem so hoping it can discover a heuristics for a game like Kolibrat
somehow seen optimistic.

Chosen parameters

given the circumstances the ABsovler seems like an unrealistic approach
to finding the parameters for the heuristic evaluation function. The
alternative approach is to lets humans choose the parameters for the
heuristics and then determine their importance by other means. The
most important property of the parameter for the heuristic is that they
somehow increases when the player is getting closer to winning, and
decreases when the player is getting closer to loosing. After analyzing the
game, I have come up with the following possible parameters to include
in a heuristic function.

1. Value of a piece on the line of insertion.

2. The value increment when a piece gets one field closer to the oppo-
nents home line.

3. The added value when a piece is in the middle of the board.

38 CHAPTER 3. ARTIFICIAL INTELLIGENCE

4. The penalty for having a piece standing in front of the opponent in
his turn.

5. The added value to have two pieces standing in a row.

6. An added value for the number of legal moves the player can make.

7. Value of a scored point.

8. The value of having the turn.

9. The value of being able to insert pieces on the board.

10. The value of having a piece standing on the opponents home line.

11. The value of being the player having most pieces on the board.

3.4.4 Determining the parameters weight

To use these parameters in an weighted linear evaluation function, the
weight of each parameter must first be determined. There are a few
different methods that is suitable for determining the value of the different
parameters. The most known of these are genetic algorithms and
simulated annealing, both of these will be described below.

Genetic algorithms

Genetic algorithms works by generating an initial population of heuris-
tic evaluation functions. The functions is now ranked from the most
fit to the least fit individual, by using the functions in actual game
play. The best heuristic functions are then chosen as parents for the
next generation of heuristic evaluation functions. This continues until
there hasn’t been considerable improvements over the last few generations.

To generate a new generation of heuristic evaluation functions the parents
are put through a mutation process, where some of its weight values are
changed at random. After that the parents are mated with each other
to produce a new generation. This works by randomly swapping weight
values from the parents onto a new heuristic evaluation functions that is
part of the next generation. The swapping are done in a way that ensures
that strongly related weight values values almost always come from the

3.5. SIMULATED ANNEALING IMPLEMENTATION 39

same parent.

While the genetic algorithm certainly will be able to find optimal values for
the different parameters weights, is might not be the best approach. The
genetic algorithms biggest strength comes from its intelligent crossings
between related and unrelated properties in the heuristic evaluation
function. But in Kolibrat there is no clear way to determine which
properties is strongly related, and which is not.

Simulated annealing

In many ways simulated annealing works in the same way as the genetic
algorithm, but when a new generation is made only the mutation process
is carried out. Also all the parameters is mutated at once, not just a
selected few.

This algorithm has the advantage compared to genetic algorithms that it
requires no knowledge about the internal relations between the evaluation
functions parameters and their weights. Aside from this both algorithms
should be able to reach the same result, but maybe not in the same
amount of time.

3.5 Simulated annealing Implementation

Due to its lack of pre-required knowledge of the internal relations between
the evaluation functions parameters and their weight, the algorithm for
simulated annealing will be used to determine the weights of the heuristic
functions parameters.

In the original pseudo code [3, page 116] the simulated annealing algorithm
only kept one heuristic function in its population until a new function
defeated it and took its place. In this implementation the algorithm has
been changed to keep 60 heuristic functions, then choose the 30 best,
mutate them and add both the mutants and the non-mutated 30 functions
to the next population. The altered pseudo code is shown in algorithm 1,
and the source code can be seen in appendix C.4.1.

The function RandomHeuristicValues generates random weights be-
tween 0 and 1000 for all the parameters the algorithm it is trying to

40 CHAPTER 3. ARTIFICIAL INTELLIGENCE

Algorithm 1 SimAnnealing

1: rand← 1.0
2: for i = 0 to 59 do
3: heuristicsArray[i]← RandomHeuristicValues()
4: end for
5: winners← 0
6: count← 59
7: while rand ≥ 0 do
8: i← Rand(0, count)
9: player1 ← heuristicsArray[i]

10: remove player1 from heuristicsArray
11: count−−
12: i← Rand(0, count)
13: player2 ← heuristicsArray[i]
14: remove player2 from heuristicsArray
15: victoryArray ← FindWinner(player1, player2)
16: winners ++
17: if winners = 30 then
18: for all h heuristics in victoryArray do
19: new ← NewHeuristicFrom(h, rand)
20: insert new somewhere in heuristicsArray[]
21: insert h somewhere in heuristicsArray[]
22: end for
23: remove all entries in victoryArray
24: rand← rand− 0.02
25: winners← 0
26: count← 59
27: end if
28: end while
29: return heuristicsArray

3.5. SIMULATED ANNEALING IMPLEMENTATION 41

optimize. The Rand function takes two numbers as arguments and
generates a random number in between these. FindWinner takes two
heuristics and loads these into two players. The two players then battle
each other to find the best heuristic. If the game is not over in four
minutes the FindWinner terminates the game, and chooses a random
winner. The NewHeuristicFrom function takes a heuristic h and the
current random factor rand as inputs and generates a new heuristic. The
pseudo code for the NewHeuristicFrom is showed in algorithm 2.

Algorithm 2 NewHeuristicFrom

1: input: h
2: input: rand
3: new ← copy of h
4: for all weights w in new do
5: w = w+Rand(−500, 500) · rand
6: end for
7: minval← 0
8: for all weights w in new do
9: minval← Min(w, minval)

10: end for
11: if minval < 0 then
12: for all weights w in new do
13: w = w + minval
14: end for
15: end if
16: maxval← 0
17: for all weights w in new do
18: maxval← Max(w, maxval)
19: end for
20: if maxval > 1000 then
21: for all weights w in new do
22: w = w · 1000/maxval
23: end for
24: end if
25: return new

Running the SimAnnealing algorithm on a fast computer takes about 24
hours, when the FindWinner function terminates after the first point is
scored on a 3x4 game board with a maximum of 3 pieces for each player.

42 CHAPTER 3. ARTIFICIAL INTELLIGENCE

3.5.1 Simulated annealing results

After running the SimAnnealing algorithm it turns out that optimizing
on many parameters at the same time, requires that some problematic
factors must be taken into account. The problem is that with many
parameters where some of them is more insignificant than others, the
chance of generating a great heuristic are smaller compared to running
the algorithm on only the 3 most significant parameters. Because of this
the values never stabilize and the algorithm returns random results. This
can be solved by lowering the rate by which the rand value is decreased,
since this gives the values more time to stabilize close to the optimal
weight values.

Another problem is that when two bad heuristics play each other, it can
happen that they both play so bad that none of them can win in the
given timeframe, and the winner is chosen at random. If this happens to
often it adds noise to the results. If the noise level is to high the good
heuristics is never discovered before rand reaches zero. This problem can
also be rescued by lowering the rate by which the rand value is decreased.

Yet another pitfall is that if the players is given to much time to think the
better heuristics never finishes the game, but play on until FindWinner
terminates the game. To avoid this the time each player have to move,
should lie in the interval from about 0.8 seconds to 1.3 seconds.

It also turns out that at some point the heuristics reaches a point where
they get so good that other factors like who is the starting player, becomes
more important. When this point is reached the winner is always the
same player. At this point it is no longer the best heuristic that that
wins, but the player that have the advantage or disadvantage of starting.
From then on the SimAnnealing algorithm can no longer improve the
heuristic functions since the FindWinner function now returns random
results. So there is no best heuristic only a set of heuristics that lie in
the best interval of weight values.

When the SimAnnealing algorithm is done all data is saved to a file.
After running the algorithm with the following properties, the properties
weights has been found and can be seen in table 3.3.

3.5. SIMULATED ANNEALING IMPLEMENTATION 43

prop-1 Value of a piece on the bottom line.

prop-2 Value increase for a pice per level.

prop-3 Bonus for standing in the middle of the board.

prop-4 Penalty for standing in front of the enemy, when he has the turn

prop-5 Bonus for having 2 pieces on a row.

prop-6 The value of a legal move.

prop-7 The value of a goal.

prop-8 The value of having the turn.

prop-9 The value of being able to insert pieces on the board.

prop-10 The value of having a piece standing on the opponents home
line.

prop-11 The value of being the player having most pieces on the board.

As expected table 3.3 shows that the most important property is having
points. But the resulting distribution is interesting. Standing in front of
the enemy in his turn is almost as bad as loosing a point, and the value
of being able to insert a piece is the third most important property. The
value of having a piece on the opponents home line seems surprisingly
small, but this could be explained with the fact that the value of a piece
standing there already is worth prop1 + 3 · prop2 = 1370, so the total
value of a piece standing at the opponents home line is 1400.

As noted earlier the weight of the heuristics parameters is board specific.
This is confirmed in table 3.3 where the results of the 3x3 board with 4
pieces, and the 4x6 with 6 pieces is compared. Not surprisingly the value
of property 2 has decreased and so has property 3. the same goes for
property 9 that also seems to by less important on bigger boards.

Calculation deviations

The output from the SimAnnealing algorithm variates depending on
the time the players were given to calculate their move and depending on
the board size, but even when the algorithm is executed with the same

44 CHAPTER 3. ARTIFICIAL INTELLIGENCE

property weight on 3x4 weight on 4x6
1 500 580
2 260 170
3 520 730
4 750 960
5 520 410
6 330 160
7 1000 1000
8 90 240
9 530 220
10 30 220
11 170 0

Table 3.3: Heuristic weight values

settings there is still some variation.

Provided that the output of SimAnnealing is not random due to decreas-
ing the rand variable to fast, or by some other means, the final output of
the algorithm is usually within ±150 from the average output with the
same parameters.

3.6 Heuristics Comparison

After the development and implementation of the MiniMax algorithm,
and several heuristics to evaluate the game board, the time has come to
compare the efficiency of these heuristic functions. The following four
heuristics will be tested against each other.

Basic AI the first AI developed, it only looks on the location of the
pieces and the number of scored points to evaluate the board.

Simple AI A little more advanced than the Basic AI. It is improved
by also trying to avoid standing in front of the enemy, and add a
bonus for having pieces in a row.

Advanced AI This is the most advanced AI developed before the Simu-

3.6. HEURISTICS COMPARISON 45

lated Annealing AI. It uses almost all the same parameters, but the
weight function is simply chosen by trail and error, by humans.

SimAnnealing AI The AI using the weights returned by the SimAn-
nealing algorithm.

The exact heuristics for each AI can be seen in table 3.4.

Property Basic AI Simple AI Advanced AI SimAnnealing AI
1 0 1 1 50
2 1 2 2 26
3 0 1 1 52
4 0 2 2 57
5 0 1 1 52
6 0 0 0 33
7 4 10 10 100
8 0 0 2 9
9 0 0 2 53
10 0 0 1 3
11 0 0 1 17

Table 3.4: AI heuristic weight values

The results in table 3.5 shows that on equal themes the SimAnnealing
AI the the best, followed by the Advanced AI, Simple AI and finely
the Basic AI which lost all its matches.

The Advanced AI, Simple AI and Basic AI is close to each other in
strength, compared to the SimAnnealing AI as seen in table 3.5. The
Basic AI only needed 5 times as much time as its opponent to beat the
Simple AI, and 10 times as much to beat the Advanced AI. But even
with 60 times as much time as the SimAnnealing AI it still could not
win. None of the other AI’s have defeated the SimAnnealing AI, only
Basic AI and Advanced AI managed to avoid loosing by going into an
infinite loop.

While all of the AI’s play intelligent, and well beyond human beginner
level, there is a clear difference in their playing style. The Basic AI and
Simple AI both play well, but most of the time their moves are pre-
dictable. Advanced AI is superior to the first two and is less predictable

46 CHAPTER 3. ARTIFICIAL INTELLIGENCE

Red player Black player Time [s] Winner (Score)
Basic AI Basic AI Red: 2, Black: 2 Black (5, 3)
Basic AI Simple AI Red: 2, Black: 2 Black (5, 3)
Basic AI Advanced AI Red: 2, Black: 2 Black (5, 3)
Basic AI SimAnnealing AI Red: 2, Black: 2 Black (5, 2)
Basic AI Simple AI Red: 5, Black: 2 ∞
Basic AI Advanced AI Red: 5, Black: 2 ∞
Basic AI SimAnnealing AI Red: 5, Black: 2 Black (5, 4)
Basic AI Simple AI Red: 10, Black: 2 Red (5, 1)
Basic AI Advanced AI Red: 10, Black: 2 ∞
Basic AI Advanced AI Red: 10, Black: 1 Red (5, 2)
Basic AI SimAnnealing AI Red: 10, Black: 1 Black (5, 4)
Basic AI SimAnnealing AI Red: 20, Black: 1 Black (5, 3)
Basic AI SimAnnealing AI Red: 30, Black: 1 Black (5, 2)
Basic AI SimAnnealing AI Red: 30, Black: 0.5 ∞

Simple AI Advanced AI Red: 2, Black: 2 Black (5, 4)
Simple AI SimAnnealing AI Red: 2, Black: 2 Black(5, 1)
Simple AI Advanced AI Red: 5, Black: 2 Red (5, 4)
Simple AI SimAnnealing AI Red: 5, Black: 2 Black (5, 3)
Simple AI SimAnnealing AI Red: 20, Black: 2 Black (5, 2)
Simple AI SimAnnealing AI Red: 20, Black: 1 Black (5, 3)
Simple AI SimAnnealing AI Red: 20, Black: 0.5 Black (5, 2)

Advanced AI SimAnnealing AI Red: 2, Black: 2 Black (5, 1)
Advanced AI SimAnnealing AI Red: 5, Black: 2 Black (5, 2)
Advanced AI SimAnnealing AI Red: 20, Black: 2 Black (5, 2)
Advanced AI SimAnnealing AI Red: 20, Black: 1 Black (5, 3)
Advanced AI SimAnnealing AI Red: 20, Black: 0.5 ∞

SimAnnealing AI SimAnnealing AI Red: 2, Black: 20 Black (5, 2)
SimAnnealing AI SimAnnealing AI Red: 20, Black: 2 Red (5, 4)

Table 3.5: Victory table for different heuristics.

3.6. HEURISTICS COMPARISON 47

in its moves, it seems to have a deeper understanding of the game and
is capable of making moves, that at first glance is bad but then turns
out to be a trap for the other player. The SimAnnealing AI however
plays like it has thought the entire game through, from the beginning.
Without knowing it, it is capable of laying traps and sacrificing pieces,
only to gain an advantage later in the game.

Chapter 4

Conclusions

After having implemented Kolibrat in Objective-C the first thought that
springs into mind is that memory management in Java is a bliss. Besides
from this major drawback Objective-C i a pleasant language to work with.

In the development process the UML diagrams have been a great help.
Im am especially satisfied with the final structure of Kolibrat itself, its
structure is stable and even though I have made some last minute changes
to its core components, it only took short amount of time before the code
could compile again.

Kolibrat itself satisfies all the requirements mentioned in section 1.2 about
the aims of this thesis, and although there were a few difficulties getting
the SimAnnealing algorithm to work properly, the results are impressive
in my opinion.

If there had been any more time available it would have been interesting
to develop an agent that used another algorithm than MiniMax, but the
additional work on optimizing the heuristic function kind of makes up
for this. It would have been interesting though to solve Kolibrat on the
3x4 board and see how some of the other AI’s performs against it. Also
matching the SimAnnealing algorithm against a trained neural network
would have been interesting, but time didn’t allow it.

If I had a chance to redo some of the decisions made in the development,
there is a few thing that I would properly reconsider. First of all when

48

4.1. FUTURE PROSPECTS 49

running the SimAnnealing algorithm I would match the heuristics up
against another heuristic like the Advanced AI and then choose the 30
best heuristics, by looking at the number of moves that they needed to
beet their opponent, since I believe this would lead to better results than
the current implementation. Also after realizing the time it takes to run
the SimAnnealing algorithm, version 2.0 will definitely have a resume
calculation option.

Also the development of agents is difficult and error-prone, since it is hard
to determine if its algorithm actually returns the best move, or if there is
an implementation error. If any more agents were to be developed I would
therefore also implement another FakeLogic object to test it with.

4.1 Future prospects

One of the hardest things to do in this project has been to limit the focus
areas of this project. There have been many things that would have been
interesting to attempt or look into. Some of the things that could be
added to the Game in the future includes the following:

• Checks to ensure that the game can will not allow the user to start
a game on a board that will make the game window bigger than the
computers screen.

• Adding sound effects to the game.

• Adding the ability for the player to play against others over a
network. Eventually implemented as i special player class.

• Some mechanism to download new AI’s over the internet.

• Give players the possibility of saving the game.

• Add the ability to undo or redo an unlimited number of moves.

• Making a Unix or Linux version either with a text interface or a
new GUI made for linux.

• Adding a fullscreen 3D interface using openGL.

Appendix A

Kolibrat Rulebook

Kolibrat is a board game usually played on a 3x4 game board. The game
involves two players, a red and a black player. Each player have a home
line on the game board, red the button line and black the top line. The
board and the home lines is showed in figure A.1.

Black home line

Red home line

Figure A.1: Empty game board.

Each player can insert pieces on his home line and move them forward on
the board.

50

A.1. GAME OBJECTIVES 51

A.1 Game Objectives

A player wins the game by moving pieces form his home line forward and
onto the opponents home line. When a piece reaches the opponents home
line the piece is safe and cannot be taken. A piece on the opponents home
line can be removed from the board and exchanged with a point. When a
player reaches five points he has won the game.

The game has one other losing condition, if one of the players make a
move that bring the game into a state, where none of the players cane
move, the player making the last move has lost.

A.2 Rules for movement

The rules for movement is described below, if a player can make a move
he is forced to do so, he has no way to skip his turn.

Insetting a piece

When one of the players have the turn, and they got less than four pieces
on the game board, they can choose to insert a piece on the gameboard
anywhere on the row they owe, if the field is empty. This counts as a
move and the other player gets the turn.

Moving forward

When a piece has been insert into the board it can it can move forward
at an angle, but not strait forward. as seen in figure A.2.

Attacking the opponent

When two pieces stand in front of each other the player moving can move
forward at an angle as always, but now he can also choose to take the
other piece, to take its place and remove it from the board, or he can
jump over the piece and land behind it as seen in figure A.3.

52 APPENDIX A. KOLIBRAT RULEBOOK

Figure A.2: Pieces can’t move strait forward.

Figure A.3: Pieces can attack or jump over other pieces.

Jumping above multiple pieces

It is possible to jump above more than one of the opponents pieces at the
same time, meaning that if you stand in front of two of your opponents
pieces you can choose to attack to first or you can jump above both pieces.
It is not possible to attack the last piece. On larger boards it is possible
to jump over more than two of the opponents pieces, it is not possible to
jump off the board however, there must be an empty space behind the
opponents pieces for your piece to land on. See figure A.4 for details.

Gaining Points

When a piece reaches the row owned by the opponent if can not be
taken by the opponent, and the opponent can not insert a piece at that
coordinate. A piece standing at the opponents row can be removed and
exchanged for a point by the player owning the piece, this counts as a
move and the opponent is given the turn.

A.2. RULES FOR MOVEMENT 53

Figure A.4: Pieces can jump over multiple other pieces.

Multiple turns

In certain board positions one of the players cane come in a situation
where he can not make a move, in that case the player forfeits his turn
and the other player thus gains two turns in a row, if the opponent still
cant move he gains a third turn i a row and so on until the other player
can move again.

Appendix B

Tests Details

This section contains the details of the tests performed on the gameLogic
object to ensure is confirms to the Kolibrat rule-book. Unless anything
else is specified in the test the game is played on a 3x4 game board and,
the maximum of pieces is 4 and the game ends when the fifth point is
gained by one of the players.

Test 1

This test tries to insert a red piece in (1, 0) on an empty game board,
when red has the turn. In the test it check that the move is considered
legal, that red now has one piece on the board, that black is the next
player to move and finally that red actually now have a piece in (1, 0).

Test 2

This test tries to insert a black piece in (1, 3) on an empty game board,
when black has the turn. In this test it checks that the move is considered
legal, that black now has one piece on the board, that red is the next
player to move and finally that black actually now have a piece in (1, 3).

Test 3

This test tries to do an illegal move by attempting to inset a red piece on
the board in the empty field (1,3) on a board with 4 red pieces already on
it. The test checks that move is rejected by the game engine, that there
is still 4 red pieces and 0 black pieces on the board. It also checks if red
is still the moving player and checks that the field (1, 3) is still empty.

54

55

Test 4

This test tries to do an illegal move by attempting to inset a red piece in
(2, 2) on an empty board. The test ensures that the move is rejected, that
the number of pieces on the board has not changed and that red player
still is the player with the turn. Finely the board is checked to ensure
that (2, 2) is still empty.

Test 5

This test attempts to score a point for red. The board is empty except
for one red piece in (1, 3) and red has the turn. The piece in (1, 3) is
attempted removed from the board in order to score a point. The test
validates that the move is not rejected by the GameLogic, that red now
have zero pieces on the game board, that black player has the turn and
that red player now have one point.

Test 6

This test attempts to score a point for black. The board is empty except
for one black piece in (0, 1) and black has the turn. The piece in (0,1) is
attempted removed from the board in order to score a point. The test
validates that the move is not rejected by the GameLogic, that black now
have zero pieces on the game board, that red player has the turn and that
black player now have one point.

Test 7

This test attempts to insert a red piece on (1, 0), where (1, 0) is already
occupied by black, aside from that the board is empty, and red have the
turn. the test validates if the move is declared illegal, that black have 1
piece on the board and red 0. It also checks that black still got a piece in
(1,0) and that both players still got 0 points.

Test 8

This test validates that the game status is updated when red gains a
fifth point and thereby wins the game. The game-board is empty except
for one red piece in (1, 3). Red have the turn, and 4 points. The tests
validates that the removal of the piece is considered legal, that red and

56 APPENDIX B. TESTS DETAILS

black now both have zero pieces on the board, that (1,3) is now empty
that red now have five points, that the gamestatus is over and that red is
declared the winner.

Test 9

This test validates that no player can move when the game status is set
to game over. The test is performed on a gameboard where red has a
piece in (0,0) and black one in (2,3) red got 5 points and is the winner.
Red is the next player to move. The test ensures that the move from (0,0)
to (1,1) is rejected by GameLogic then is changes next player to black
and validates that black is rejected to move from (2,3) to (1,2).

Test 10

This test performs two moves that would have been legal if it would have
been possible to move outside of the board. The test validates that red
cant move from (0,0) to (-1,1) and that black cant move from (2,3) to
(1,4).

Test 11 to 20

This set of moves makes tests no non empty game boards. Test 11 to
15 tests for errors in the moving rules for red, and test 16 to 20 tests
the same rules for black. Each test ensures that GameLogic returns the
current amount of legal moves, and that all the moves returned match
the moves specified al legal in the Kolibrat rule book. The actual tests
can be seen on figure B.1.

57

(a) Test 11 (b) Test 12 (c) Test 13 (d) Test 14 (e) Test 15

(f) Test 16 (g) Test 17 (h) Test 18 (i) Test 19 (j) Test 20

Figure B.1: Boards for test 11 to 20

Appendix C

Source Code

C.1 Kolibrat Source Code

C.1.1 HumanPlayer.h

1 // Kolibrat

2 // HumanPlayer.h

3 //

4 // Created by Aron Lindberg.

5

6 #import <Cocoa/Cocoa.h >

7 #import "Datastructures.h"

8 #import "PlayerProtocol.h"

9 #import "GameEngine.h"

10

11 // Confirms to the Player Protocol.

12 @interface HumanPlayer : NSObject < Player_Protocol >

13 {

14 // Private instance variabels.

15 @private

16 GameEngine *engine;

17 int playerID;

18 BOOL waitingForOtherPlayer;

19 BoardField firstClick;

20 BoardField secondClick;

21 NSString *name;

22 }

23 // Class Methods.

24 + (NSString *) playerType;

25

26 // Public Instance Methods.

27 - (void)mouseClickNotification :(NSNotification *) notification;

28 - (id)initAsPlayer :(int)player withName :(NSString *) playerName

boardSize :(BoardSize)bs picesOnboard :(int)maxPices goalsToWin :(

int)maxGoals;

58

C.1. KOLIBRAT SOURCE CODE 59

29 - (void)setGameEngine :(id)ge;

30 - (void)reset;

31 - (NSString *) playerName;

32 - (void)startNewTurn;

33 @end

C.1.2 HumanPlayer.m

1 // Kolibrat

2 // HumanPlayer.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "HumanPlayer.h"

7

8 @implementation HumanPlayer

9

10 - (void)dealloc

11 {

12 [name release];

13 [[NSNotificationCenter defaultCenter] removeObserver:self];

14 [super dealloc];

15 }

16

17 - (id)initAsPlayer :(int)player withName :(NSString *) playerName

boardSize :(BoardSize)bs picesOnboard :(int)maxPices goalsToWin :(

int)maxGoals

18 {

19 self = [super init];

20 if (self != nil)

21 {

22 NSNotificationCenter *mainCenter = [NSNotificationCenter

defaultCenter];

23

24 [mainCenter addObserver:self

25 selector:@selector(changeOfTurnNotification

:)

26 name:@"ChangeOfTurn"

27 object:nil];

28

29 [mainCenter addObserver:self

30 selector:@selector(mouseClickNotification :)

31 name:@"MouseClick"

32 object:nil];

33 playerID = player;

34 waitingForOtherPlayer = TRUE;

35 firstClick = NIL_FIELD;

36 secondClick = NIL_FIELD;

37

38 name = [NSString stringWithString:playerName];

39 [name retain];

40 }

60 APPENDIX C. SOURCE CODE

41 return self;

42 }

43

44 // This method is called everytime the GUI sends a MouseClick

notifikation.

45 - (void)mouseClickNotification :(NSNotification *) notification

46 {

47 if(waitingForOtherPlayer == TRUE)

48 return;

49

50 if(BOARDFIELD_EQUALS_NIL(firstClick))

51 {

52 firstClick = [[notification object] retriveField];

53 [engine SelectedPiece:firstClick fromPlayer:self];

54 return;

55 }

56

57 secondClick = [[notification object] retriveField];

58

59 if([engine playerMove:makeMove(firstClick, secondClick)

fromPlayer:self])

60 { // The move was legal.

61 firstClick = NIL_FIELD;

62 secondClick = NIL_FIELD;

63 waitingForOtherPlayer = TRUE;

64 }

65 else

66 { // The move was not legal.

67 firstClick = secondClick;

68 [engine SelectedPiece:firstClick fromPlayer:self];

69 }

70

71 }

72

73 // sets the game engine to retrive data from.

74 - (void)setGameEngine :(id)ge

75 {

76 engine = ge;

77 }

78

79 // This method is called when a changeOfTurn Notification is sent.

80 - (void)startNewTurn

81 {

82 waitingForOtherPlayer = FALSE;

83 }

84

85 // Resets the player, called when the human chooses "reset game"

from the menu.

86 - (void)reset

87 {

88 firstClick = NIL_FIELD;

89 secondClick = NIL_FIELD;

90 }

91

92 // Returns the name of the player.

C.1. KOLIBRAT SOURCE CODE 61

93 - (NSString *) playerName

94 {

95 return name;

96 }

97

98 // Returns the name of the playerType.

99 + (NSString *) playerType

100 {

101 return @"Human Player";

102 }

103 @end

C.1.3 Datastructures.h

1 // Kolibrat

2 // Datastructures.h

3 //

4 // Created by Aron Lindberg.

5

6 #import <Cocoa/Cocoa.h >

7

8 #define NIL_MOVE makeMove(makeBoardField(-1, -1), makeBoardField

(-1, -1))

9 #define NIL_FIELD (makeBoardField(-1, -1))

10

11 #define BOARDFIELD_NOT_NIL(bf) (bf.x != -1 || bf.y != -1)

12 #define BOARDFIELD_EQUALS_NIL(bf) (bf.x == -1 && bf.y == -1)

13 #define BOARDFIELDS_IS_EQUAL(bf1, bf2) (bf1.x == bf2.x && bf1.y

== bf2.y)

14

15 #define GAME_RUNNING(gameStatus) (gameStatus.gameOver == FALSE)

16 #define GAME_NOT_RUNNING(gameStatus) (gameStatus.gameOver == TRUE

)

17

18 #define RUNNING makeGameStatus(FALSE, FALSE)

19 #define RED_WON makeGameStatus(TRUE, PLAYER_RED)

20 #define BLACK_WON makeGameStatus(TRUE, PLAYER_BLACK)

21

22 #define BOARD_CONVERTER(bfc) (bfc).occupiedByRed == TRUE && (bfc)

.occupiedByBlack == FALSE ? PLAYER_RED : ((bfc).occupiedByRed

== FALSE && (bfc).occupiedByBlack == TRUE ? PLAYER_BLACK :

EMPTY)

23 #define EMPTY_FIELD(bfc) (bfc).occupiedByRed == FALSE && (bfc)

.occupiedByBlack == FALSE

24 #define RED_FIELD(bfc) (bfc).occupiedByRed == TRUE && (bfc)

.occupiedByBlack == FALSE

25 #define BLACK_FIELD(bfc) (bfc).occupiedByRed == FALSE && (bfc)

.occupiedByBlack == TRUE

26 #define NOT_BLACK_FIELD(bfc) (bfc).occupiedByBlack == FALSE

27 #define NOT_RED_FIELD(bfc) (bfc).occupiedByRed == FALSE

28

29 #define PLAYER_RED TRUE

62 APPENDIX C. SOURCE CODE

30 #define PLAYER_BLACK FALSE

31

32 enum { // Constants related to drawing the game board.

33 BLACK = PLAYER_BLACK,

34 RED = PLAYER_RED,

35 EMPTY = 3 ,

36 HIGHLIGHTFIELD = 4 ,

37 BLACK_HIGHLIGHT = 5 ,

38 RED_HIGHLIGHT = 6 ,

39 BLACK_OPAQUE = 7 ,

40 RED_OPAQUE = 8 ,

41 };

42

43 // Some handy Typedefinitions.

44 typedef struct gameStatusStruct {

45 BOOL gameOver;

46 BOOL winner;

47 } GameStatus;

48

49 typedef struct boardFieldStruct {

50 short int x;

51 short int y;

52 } BoardField;

53

54 typedef struct boardMoveStruct {

55 BoardField from;

56 BoardField to;

57 } BoardMove;

58

59 typedef struct gameScoreStruct {

60 short int red;

61 short int black;

62 } GameScore;

63

64 typedef struct boardSizeStruct {

65 int height;

66 int width;

67 } BoardSize;

68

69 typedef struct boardFieldContentStruct {

70 bool occupiedByRed;

71 bool occupiedByBlack;

72 } BoardFieldContent;

73

74 typedef struct gameStateStruct {

75 BoardFieldContent ** board;

76 GameScore score;

77 BoardMove lastMove;

78 GameStatus gameStatus;

79 BOOL playerMoving;

80 unsigned short int redPicesOnBoard;

81 unsigned short int blackPicesOnBoard;

82 BoardSize boardSize;

83 } GameState;

84

C.1. KOLIBRAT SOURCE CODE 63

85 typedef struct simpleList {

86 int ellementsInList;

87 struct simpleListEllement* head;

88 struct simpleListEllement* tail;

89 } SimpleList;

90

91 typedef struct simpleListEllement {

92 struct boardMoveStruct moveData;

93 struct simpleListEllement* next;

94 } simpleListEllement;

95

96 // Some plain C methods to make instances of the custom

typedefinitions.

97 BoardField makeBoardField(int x, int y);

98 GameScore makeGameScore(int red, int black);

99 BoardSize makeBoardSize(int height, int width);

100 BoardMove makeMove(BoardField from, BoardField to);

101 BoardMove makeMoveFromInt(int fromx, int fromy, int tox, int toy)

;

102 GameState makeGameState(BoardSize boardSize);

103 GameStatus makeGameStatus(BOOL gameOver, BOOL winner);

104 SimpleList makeSimpleList ();

105

106 BoardFieldContent makeBoardFieldWithContent(bool takenByRed, bool

takenByBlack);

107 BoardFieldContent makeBlackField ();

108 BoardFieldContent makeRedField ();

109 BoardFieldContent makeEmptykField ();

110

111 // Some plain C methods to work with SimpleLists.

112 void concatSimpleLists(SimpleList *a, SimpleList *b);

113 void addEllementToSimpleList(SimpleList *list, BoardMove *data);

114 void removeHeadFromSimpleList(SimpleList *list);

115 void freeSimpleList(SimpleList *list);

116

117 // Header for BoardFieldObject, this is bacically an object wrapper

for the BoardField structure.

118 @interface BoardFieldObject : NSObject

119 {

120 @private

121 BoardField board;

122 }

123 + (id)boardfieldObjectWithField :(BoardField)bf;

124 - (id)initWithField :(BoardField)bf;

125 - (BoardField)retriveField;

126 @end

127

128 // Header for MoveObject, this is bacically an object wrapper for

the move structure.

129 @interface MoveObject : NSObject

130 {

131 @private

132 BoardMove m;

133 }

134 + (id)moveObjectWithMove :(BoardMove)theMove;

64 APPENDIX C. SOURCE CODE

135 - (id)initWithMove :(BoardMove)theMove;

136 - (BoardMove)retriveMove;

137 - (BOOL)isEqual :(id)anObject;

138 - (unsigned)hash;

139 @end

C.1.4 Datastructures.m

1 // Kolibrat

2 // Datastructures.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "Datastructures.h"

7

8 BoardFieldContent makeBoardFieldWithContent(bool takenByRed, bool

takenByBlack)

9 {

10 struct boardFieldContentStruct temp;

11 temp.occupiedByRed = takenByRed;

12 temp.occupiedByBlack = takenByBlack;

13 return temp;

14 }

15

16 BoardFieldContent makeBlackField ()

17 {

18 struct boardFieldContentStruct temp;

19 temp.occupiedByRed = FALSE;

20 temp.occupiedByBlack = TRUE;

21 return temp;

22 }

23

24 BoardFieldContent makeRedField ()

25 {

26 struct boardFieldContentStruct temp;

27 temp.occupiedByRed = TRUE;

28 temp.occupiedByBlack = FALSE;

29 return temp;

30 }

31

32 BoardFieldContent makeEmptykField ()

33 {

34 struct boardFieldContentStruct temp;

35 temp.occupiedByRed = FALSE;

36 temp.occupiedByBlack = FALSE;

37 return temp;

38 }

39

40 GameStatus makeGameStatus(BOOL gameOver, BOOL winner)

41 {

42 struct gameStatusStruct temp;

43 temp.gameOver = gameOver;

C.1. KOLIBRAT SOURCE CODE 65

44 temp.winner = winner;

45 return temp;

46 }

47

48 BoardField makeBoardField(int x, int y)

49 {

50 struct boardFieldStruct temp;

51 temp.x = x;

52 temp.y = y;

53 return temp;

54 }

55

56 GameScore makeGameScore(int red, int black)

57 {

58 struct gameScoreStruct temp;

59 temp.red = red;

60 temp.black = black;

61 return temp;

62 }

63

64 BoardMove makeMove(BoardField from, BoardField to)

65 {

66 struct boardMoveStruct temp;

67 temp.from.x = from.x;

68 temp.from.y = from.y;

69 temp.to.x = to.x;

70 temp.to.y = to.y;

71 return temp;

72 }

73

74 BoardMove makeMoveFromInt(int fromx, int fromy, int tox, int toy)

75 {

76 struct boardMoveStruct temp;

77 temp.from.x = fromx;

78 temp.from.y = fromy;

79 temp.to.x = tox;

80 temp.to.y = toy;

81 return temp;

82 }

83

84 BoardSize makeBoardSize(int height, int width)

85 {

86 struct boardSizeStruct temp;

87 temp.height = height;

88 temp.width = width;

89 return temp;

90 }

91

92 SimpleList makeSimpleList ()

93 {

94 struct simpleList temp;

95

96 temp.ellementsInList = 0 ;

97 temp.head = NULL;

98 temp.tail = NULL;

66 APPENDIX C. SOURCE CODE

99 return temp;

100 }

101

102 void concatSimpleLists(SimpleList *a, SimpleList *b)

103 {

104 if(b->ellementsInList == 0)

105 return;

106

107 if(a->ellementsInList > 0)

108 {

109 a->tail- >next = b->head;

110 a->tail = b->tail;

111 a->ellementsInList += b- >ellementsInList;

112 }

113

114 else

115 {

116 a->head = b->head;

117 a->tail = b->tail;

118 a->ellementsInList = b- >ellementsInList;

119 }

120 }

121

122 void addEllementToSimpleList(SimpleList *list, BoardMove *data)

123 {

124 if(list- >ellementsInList != 0)

125 {

126 list- >tail- >next = malloc(sizeof(simpleListEllement));

127 list- >tail = list- >tail- >next;

128 list- >tail- >moveData = *data;

129 list- >ellementsInList ++;

130 }

131 else if(list- >ellementsInList == 0)

132 {

133 list- >tail = malloc(sizeof(simpleListEllement));

134 list- >tail- >moveData = *data;

135 list- >head = list- >tail;

136 list- >ellementsInList ++;

137 }

138 }

139

140 void removeHeadFromSimpleList(SimpleList *list)

141 {

142 if(list- >ellementsInList > 1)

143 {

144 simpleListEllement *nextHead = list- >head- >next;

145

146 free(list- >head);

147 list- >head = nextHead;

148 list- >ellementsInList --;

149 }

150 else if(list- >ellementsInList == 1)

151 {

152 free(list- >head);

153

C.1. KOLIBRAT SOURCE CODE 67

154 list- >head = NULL;

155 list- >tail = NULL;

156

157 list- >ellementsInList --;

158 }

159 }

160

161 void freeSimpleList(SimpleList *list)

162 {

163

164 while (list- >ellementsInList > 0)

165 {

166 removeHeadFromSimpleList(list);

167 }

168 }

169

170 GameState makeGameState(BoardSize boardSize)

171 {

172 struct gameStateStruct temp;

173

174 temp.score.red = 0 ;

175 temp.score.black = 0 ;

176

177 temp.blackPicesOnBoard = 0 ;

178 temp.redPicesOnBoard = 0 ;

179

180 temp.boardSize = boardSize;

181

182 temp.playerMoving = PLAYER_RED;

183 temp.gameStatus = RUNNING;

184

185 temp.board = malloc(boardSize.width * sizeof(BoardFieldContent

*));

186

187 int i;

188 for(i = 0 ; i < boardSize.width; i++)

189 {

190 temp.board[i] = malloc(boardSize.height * sizeof(

BoardFieldContent));

191 }

192

193 int x, y;

194 for (x = 0 ; x < boardSize.width ; x++) {

195 for (y = 0 ; y < boardSize.height ; y++) {

196 temp.board[x][y] = makeBoardFieldWithContent(FALSE,

FALSE);

197 }

198 }

199 return temp;

200 }

201

202 // Implamentation for the BoardField object wrapper.

203 @implementation BoardFieldObject

204

205 - (BoardField)retriveField

68 APPENDIX C. SOURCE CODE

206 {

207 return board;

208 }

209

210 - (id)initWithField :(BoardField)bf

211 {

212 self = [super init];

213 if (self != nil) {

214 board.x = bf.x;

215 board.y = bf.y;

216 }

217 return self;

218 }

219

220 + (id)boardfieldObjectWithField :(BoardField)bf

221 {

222 return [[BoardFieldObject alloc] initWithField:bf];

223 }

224

225 @end

226

227 // Implamentation for the MoveObject object wrapper.

228 @implementation MoveObject

229

230 - (BoardMove)retriveMove

231 {

232 return m;

233 }

234 - (id)initWithMove :(BoardMove)theMove

235 {

236 self = [super init];

237 if (self != nil)

238 {

239 m.from.x = theMove.from.x;

240 m.from.y = theMove.from.y;

241 m.to.x = theMove.to.x;

242 m.to.y = theMove.to.y;

243 }

244 return self;

245 }

246

247 // This method is used by NSSet (and others) to determine if 2

objects is identical.

248 - (BOOL)isEqual :(id)anObject

249 {

250 if(![self isKindOfClass: [anObject class]])

251 return FALSE;

252

253 BoardMove otherMove = [anObject retriveMove];

254

255 if(otherMove.from.x == m.from.x &&

256 otherMove.from.y == m.from.y &&

257 otherMove.to.x == m.to.x &&

258 otherMove.to.y == m.to.y)

259 {

C.1. KOLIBRAT SOURCE CODE 69

260 return TRUE;

261 }

262 return false;

263 }

264

265 // This method is used by NSSet (and others) to determine if 2

objects is identical.

266 - (unsigned)hash

267 {

268 unsigned hashVal;

269 hashVal = m.from.x + m.from.y * 10 + m.to.x * 100 + m.to.y *

1000 ;

270 return hashVal;

271 }

272

273 // Method to initalise object.

274 + (id)moveObjectWithMove :(BoardMove)theMove

275 {

276 return [[MoveObject alloc] initWithMove:theMove];

277 }

278

279 @end

C.1.5 GameLogic.h

1 // Kolibrat

2 // GameLogic.h

3 //

4 // Created by Aron Lindberg.

5

6 #import "Datastructures.h"

7

8

9

10 @interface GameLogic : NSObject

11 {

12 // Private instance variabels.

13 @private

14 int maxGoals;

15 int maxPicesOnBoard;

16 BoardSize boardSize;

17 }

18

19 // Public instance methods.

20 - (id)initWithMaxPices :(int)max goalsToWin :(int)goals boardSize :(

BoardSize)board;

21

22 - (GameState)CreateNewGameState;

23 - (void)resetGameState :(GameState *)gs;

24

25 - (BOOL)playerMovingCanInsertPieceOnState :(GameState *)gs;

70 APPENDIX C. SOURCE CODE

26 - (NSSet *) legalMovesForPiceInField :(BoardField)field withState :(

GameState *)gs;

27 - (NSSet *) allLegalMoves :(GameState *)gs;

28

29 - (BOOL)makeMove :(BoardMove)playerMove withState :(GameState *)gs;

30

31 // Public C instance methods.

32 SimpleList allLegalMoves(GameState *gs);

33 void legalMovesForPiceInField(BoardField *field, GameState *gs,

SimpleList *superList, SimpleList *goodList, SimpleList *

badList);

34 BOOL makeMoveOnState(BoardMove *playerMove, GameState *gs);

35 void freeGameState(GameState *state);

36 GameState copyGameState(GameState *state);

37 BOOL blackPlayerAdheadOf(int x, int y, GameState *gs);

38 BOOL redPlayerAdheadOf(int x, int y, GameState *gs);

39 @end

C.1.6 GameLogic.m

1 // Kolibrat

2 // GameLogic.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "GameLogic.h"

7

8 @implementation GameLogic

9

10 // Global variabels, shared in al instances of GameLogic.

11 static int *maxGoalsPointer;

12 static int *maxPicesOnBoardPointer;

13 static BoardSize *boardSizePointer;

14

15 // Public methods.

16 - (id)initWithMaxPices :(int)max goalsToWin :(int)goals boardSize :(

BoardSize)board

17 {

18 self = [super init];

19 if (self != nil)

20 {

21 maxPicesOnBoard = max;

22 boardSize = board;

23 maxGoals = goals;

24

25 maxGoalsPointer = &maxGoals;

26 maxPicesOnBoardPointer = &maxPicesOnBoard;

27 boardSizePointer = &boardSize;

28 }

29 return self;

30 }

31

C.1. KOLIBRAT SOURCE CODE 71

32 - (GameState)CreateNewGameState

33 {

34 GameState gs = makeGameState(boardSize);

35 [self resetGameState: &gs];

36 return gs;

37 }

38

39 - (void)resetGameState :(GameState *)gs

40 {

41 int x, y;

42 for (x = 0 ; x < boardSize.width ; x++) {

43 for (y = 0 ; y < boardSize.height ; y++) {

44 gs- >board[x][y] = makeEmptykField ();

45 }

46 }

47 gs- >score = makeGameScore(0 , 0);

48 gs- >playerMoving = PLAYER_RED;

49 gs- >redPicesOnBoard = 0 ;

50 gs- >blackPicesOnBoard = 0 ;

51 gs- >gameStatus = RUNNING;

52 }

53

54 - (BOOL)playerMovingCanInsertPieceOnState :(GameState *)gs;

55 {

56 if(gs- >playerMoving == PLAYER_RED && gs- >redPicesOnBoard <

maxPicesOnBoard)

57 return TRUE;

58 if(gs- >playerMoving == PLAYER_BLACK && gs- >blackPicesOnBoard <

maxPicesOnBoard)

59 return TRUE;

60

61 return FALSE;

62 }

63

64 - (NSSet *) legalMovesForPiceInField :(BoardField)field withState :(

GameState *)gs

65 {

66 if(field.x < 0 || field.y < 0 || field.x > boardSize.width - 1

|| field.y > boardSize.height - 1)

67 {

68 NSException* e = [NSException exceptionWithName:@"Move

error." reason :[NSString stringWithFormat:@"The board

field (%i,%i) is outside of the board.", field.x,

field.y] userInfo:nil];

69 @throw e;

70 }

71

72 NSMutableSet *setOfLegalMoves = [NSMutableSet setWithCapacity:4

];

73

74 SimpleList superList = makeSimpleList ();

75 SimpleList goodList = makeSimpleList ();

76 SimpleList badList = makeSimpleList ();

77

72 APPENDIX C. SOURCE CODE

78 legalMovesForPiceInField(&field, gs, &superList, &goodList, &

badList);

79

80 concatSimpleLists(&superList, &goodList);

81 concatSimpleLists(&superList, &badList);

82

83 while(superList.ellementsInList > 0)

84 {

85 [setOfLegalMoves addObject: [MoveObject moveObjectWithMove:

superList.head- >moveData]];

86 removeHeadFromSimpleList(&superList);

87 }

88

89 return setOfLegalMoves;

90 }

91

92 - (NSSet *) allLegalMoves :(GameState *)gs

93 {

94 NSMutableSet *setOfLegalMoves = [NSMutableSet setWithCapacity:

10];

95

96 SimpleList list = allLegalMoves(gs);

97

98 while(list.ellementsInList > 0)

99 {

100 MoveObject *mo = [MoveObject moveObjectWithMove: list.head-

>moveData];

101

102 [setOfLegalMoves addObject: mo];

103 [mo release];

104 removeHeadFromSimpleList(&list);

105 }

106

107 freeSimpleList(&list);

108

109 return setOfLegalMoves;

110 }

111

112 SimpleList allLegalMoves(GameState *gs)

113 {

114 SimpleList superList = makeSimpleList ();

115 SimpleList goodList = makeSimpleList ();

116 SimpleList badList = makeSimpleList ();

117

118 int x, y;

119 for (x = 0 ; x < boardSizePointer- >width ; x++)

120 {

121 for (y = 0 ; y < boardSizePointer- >height ; y++)

122 {

123 BoardField boardField = makeBoardField(x, y);

124 legalMovesForPiceInField(&boardField , gs, &

superList, &goodList, &badList);

125 }

126 }

127

C.1. KOLIBRAT SOURCE CODE 73

128 concatSimpleLists(&superList, &goodList);

129 concatSimpleLists(&superList, &badList);

130

131 return superList;

132 }

133

134 - (BOOL)makeMove :(BoardMove)playerMove withState :(GameState *)gs

135 {

136 BoardField from = playerMove.from;

137 BoardField to = playerMove.to;

138

139 if(from.x < 0 || from.y < 0 || from.x > boardSize.width - 1 ||

from.y > boardSize.height - 1)

140 {

141 NSException* e = [NSException exceptionWithName:@"Move

error." reason :[NSString stringWithFormat:@"The board

field (%i,%i) is outside of the board.", from.x, from.y

] userInfo:nil];

142 @throw e;

143 }

144

145 if(to.x < 0 || to.y < 0 || to.x > boardSize.width - 1 || to.y >

boardSize.height - 1)

146 {

147 NSException* e = [NSException exceptionWithName:@"Move

error." reason :[NSString stringWithFormat:@"The board

field (%i,%i) is outside of the board.", to.x, to.y]

userInfo:nil];

148 @throw e;

149 }

150

151 NSSet *setOfLegalMoves = [self legalMovesForPiceInField:from

withState:gs];

152

153 if([setOfLegalMoves containsObject :[MoveObject

moveObjectWithMove:playerMove]])

154 { // The move is legal.

155 return makeMoveOnState(&playerMove, gs);

156 }

157 return FALSE;

158 }

159

160 BOOL makeMoveOnState(BoardMove *playerMove, GameState *gs)

161 {

162

163 if(gs- >gameStatus.gameOver == TRUE)

164 return FALSE;

165

166 BoardField from = playerMove- >from;

167 BoardField to = playerMove- >to;

168

169 gs- >lastMove.from = playerMove- >from;

170 gs- >lastMove.to = playerMove- >to;

171

74 APPENDIX C. SOURCE CODE

172 if(BOARDFIELDS_IS_EQUAL(from, to) && gs- >playerMoving ==

PLAYER_RED && to.y == 0)

173 { // Insert peice for red.

174 gs- >board[to.x][to.y] = makeRedField ();

175 gs- >redPicesOnBoard ++;

176 }

177

178 else if(BOARDFIELDS_IS_EQUAL(from, to) && gs- >playerMoving

== PLAYER_RED && to.y == (boardSizePointer- >height - 1))

179 { // Score point for red.

180 gs- >board[to.x][to.y] = makeEmptykField ();

181 gs- >score.red ++;

182 gs- >redPicesOnBoard --;

183 if(gs- >score.red == *maxGoalsPointer)

184 {

185 gs- >gameStatus = RED_WON;

186 }

187 }

188

189 else if(BOARDFIELDS_IS_EQUAL(from, to) && gs- >playerMoving

== PLAYER_BLACK && to.y == (boardSizePointer- >height - 1)

)

190 { // Insert peice for black.

191 gs- >board[to.x][to.y] = makeBlackField ();

192 gs- >blackPicesOnBoard ++;

193 }

194

195 else if(BOARDFIELDS_IS_EQUAL(from, to) && gs- >playerMoving

== PLAYER_BLACK && to.y == 0)

196 { // Score point for black.

197 gs- >board[to.x][to.y] = makeEmptykField ();

198 gs- >score.black ++;

199 gs- >blackPicesOnBoard --;

200 if(gs- >score.black == *maxGoalsPointer)

201 {

202 gs- >gameStatus = BLACK_WON;

203 }

204 }

205

206 else

207 { // If the move is an attack.

208 if(RED_FIELD(gs- >board[to.x][to.y]))

209 gs- >redPicesOnBoard-- ;

210 if(BLACK_FIELD(gs- >board[to.x][to.y]))

211 gs- >blackPicesOnBoard-- ;

212

213 // Move piece on the board.

214 gs- >board[from.x][from.y] = makeEmptykField ();

215 if(gs- >playerMoving == PLAYER_RED)

216 gs- >board[to.x][to.y] = makeRedField ();

217 else if(gs- >playerMoving == PLAYER_BLACK)

218 gs- >board[to.x][to.y] = makeBlackField ();

219 }

220

221 if(gs- >gameStatus.gameOver == TRUE)

C.1. KOLIBRAT SOURCE CODE 75

222 {

223 return TRUE;

224 }

225

226 // finds the next player.

227 BOOL nextPlayer;

228 BOOL otherPlayer;

229

230 if(gs- >playerMoving == PLAYER_RED)

231 {

232 nextPlayer = PLAYER_BLACK;

233 otherPlayer = PLAYER_RED;

234 }

235 else if(gs- >playerMoving == PLAYER_BLACK)

236 {

237 nextPlayer = PLAYER_RED;

238 otherPlayer = PLAYER_BLACK;

239 }

240

241 gs- >playerMoving = nextPlayer;

242

243 SimpleList allMoves = makeSimpleList ();

244 allMoves = allLegalMoves(gs);

245

246 if (allMoves.ellementsInList == 0)

247 {

248 gs- >playerMoving = otherPlayer;

249 allMoves = allLegalMoves(gs);

250

251 if(allMoves.ellementsInList == 0)

252 { // No player can move, playerMoving has lost.

253 if(gs- >playerMoving == PLAYER_RED)

254 gs- >gameStatus = BLACK_WON;

255 else

256 gs- >gameStatus = RED_WON;

257 }

258 }

259 freeSimpleList (& allMoves);

260

261 return TRUE;

262 }

263

264 GameState copyGameState(GameState *state)

265 {

266 struct gameStateStruct temp;

267

268 temp.blackPicesOnBoard = state- >blackPicesOnBoard;

269 temp.redPicesOnBoard = state- >redPicesOnBoard;

270 temp.playerMoving = state- >playerMoving;

271 temp.gameStatus = state- >gameStatus;

272 temp.score = state- >score;

273 temp.lastMove = state- >lastMove;

274

275 temp.boardSize = state- >boardSize;

276

76 APPENDIX C. SOURCE CODE

277 temp.board = malloc(boardSizePointer- >width * sizeof(

BoardFieldContent *));

278

279 int i;

280 for(i = 0 ; i < boardSizePointer- >width; i++)

281 {

282 temp.board[i] = malloc(boardSizePointer- >height * sizeof(

BoardFieldContent));

283 }

284

285 int x, y;

286 for (x = 0 ; x < boardSizePointer- >width ; x++) {

287 for (y = 0 ; y < boardSizePointer- >height ; y++) {

288 temp.board[x][y] = state- >board[x][y];

289 }

290 }

291 return temp;

292 }

293

294 void freeGameState(GameState *state)

295 {

296 int i;

297 for(i = 0 ; i < boardSizePointer- >width; i++)

298 {

299 free(state- >board[i]);

300 }

301

302 free(state- >board);

303 }

304

305 void legalMovesForPiceInField(BoardField *field, GameState *gs,

SimpleList *superList, SimpleList *goodList, SimpleList *

badList)

306 {

307

308 if(gs- >gameStatus.gameOver == TRUE)

309 return;

310

311 register int x = field- >x;

312 register int y = field- >y;

313

314 // All moving rules for the red player.

315 if(gs- >playerMoving == PLAYER_RED)

316 {

317 // Red wants to insert a piece on the board.

318 if(EMPTY_FIELD(gs -> board[x][y]) && y == 0 && gs- >

redPicesOnBoard < *maxPicesOnBoardPointer)

319 {

320 BoardMove move = makeMoveFromInt(x, y, x , y);

321

322 if(blackPlayerAdheadOf(x, y, gs))

323 addEllementToSimpleList(badList, &move);

324 else

325 addEllementToSimpleList(goodList, &move);

326 }

C.1. KOLIBRAT SOURCE CODE 77

327

328 // Red wants to move left and forward.

329 if(RED_FIELD(gs- >board[x][y]) && x > 0 && y < (

boardSizePointer- >height - 1)

330 && EMPTY_FIELD(gs- >board[x - 1][y + 1]))

331 {

332 BoardMove move = makeMoveFromInt(x, y, x - 1, y + 1);

333

334 if(blackPlayerAdheadOf(x, y, gs))

335 addEllementToSimpleList(badList, &move);

336 else

337 addEllementToSimpleList(goodList, &move);

338 }

339

340 // Red wants to move right and forward.

341 if(RED_FIELD(gs- >board[x][y]) && x < (boardSizePointer-

>width - 1) &&

342 y < (boardSizePointer- >height - 1) && EMPTY_FIELD(

gs- >board[x + 1][y + 1]))

343 {

344 BoardMove move =makeMoveFromInt(x, y, x + 1, y + 1);

345

346 if(blackPlayerAdheadOf(x, y, gs))

347 addEllementToSimpleList(badList, &move);

348 else

349 addEllementToSimpleList(goodList, &move);

350 }

351

352 // Red wants to attack black.

353 if(RED_FIELD(gs- >board[x][y]) && y < (boardSizePointer-

>height - 1) &&

354 BLACK_FIELD(gs- >board[x][y + 1]))

355 {

356 BoardMove move = makeMoveFromInt(x, y, x, y + 1);

357 addEllementToSimpleList(superList, &move);

358 }

359

360 // Red wants to jump over black.

361 if(RED_FIELD(gs- >board[x][y]) && y < (boardSizePointer-

>height - 2) &&

362 BLACK_FIELD(gs- >board[x][y + 1]))

363 {

364 int jumpDistance = 1 ;

365 while(y + jumpDistance < (boardSizePointer- >height - 2

) &&

366 BLACK_FIELD(gs- >board[x][y + 1 + jumpDistance]

))

367 {

368 jumpDistance ++;

369 }

370 if(EMPTY_FIELD(gs- >board[x][y + 1 + jumpDistance]))

371 {

372 BoardMove move = makeMoveFromInt(x, y, x, y + 1 +

jumpDistance);

373 addEllementToSimpleList(superList, &move);

78 APPENDIX C. SOURCE CODE

374 }

375 }

376

377 // Red wants to gain a point.

378 if(RED_FIELD(gs- >board[x][y]) && y == (

boardSizePointer- >height - 1))

379 {

380 BoardMove move =makeMoveFromInt(x, y, x , y);

381 addEllementToSimpleList(superList, &move);

382 }

383 }

384

385 // All moving rules for the black player.

386 if(gs- >playerMoving == PLAYER_BLACK)

387 {

388 // Black wants to insert a piece on the board.

389 if(EMPTY_FIELD(gs- >board[x][y]) && y == (

boardSizePointer- >height - 1)

390 && gs- >blackPicesOnBoard < *maxPicesOnBoardPointer)

391 {

392 BoardMove move = makeMoveFromInt(x, y, x , y);

393

394 if(redPlayerAdheadOf(x, y, gs))

395 addEllementToSimpleList(badList, &move);

396 else

397 addEllementToSimpleList(goodList, &move);

398 }

399

400 // Black wants to move left and forward.

401 if(BLACK_FIELD(gs- >board[x][y]) && x > 0 && y > 0 &&

402 EMPTY_FIELD(gs- >board[x - 1][y - 1]))

403 {

404 BoardMove move = makeMoveFromInt(x, y, x - 1, y - 1);

405

406 if(redPlayerAdheadOf(x, y, gs))

407 addEllementToSimpleList(badList, &move);

408 else

409 addEllementToSimpleList(goodList, &move);

410 }

411

412 // Black wants to move right and forward.

413 if(BLACK_FIELD(gs- >board[x][y]) && x < (

boardSizePointer- >width - 1)

414 && y > 0 && EMPTY_FIELD(gs- >board[x + 1][y - 1]))

415 {

416 BoardMove move = makeMoveFromInt(x, y, x + 1, y - 1);

417

418 if(redPlayerAdheadOf(x, y, gs))

419 addEllementToSimpleList(badList, &move);

420 else

421 addEllementToSimpleList(goodList, &move);

422 }

423

424 // Black wants to attack red.

425 if(BLACK_FIELD(gs- >board[x][y]) && y > 0 &&

C.1. KOLIBRAT SOURCE CODE 79

426 RED_FIELD(gs- >board[x][y - 1]))

427 {

428 BoardMove move = makeMoveFromInt(x, y, x, y - 1);

429 addEllementToSimpleList(superList, &move);

430 }

431

432 // Black wants to jump over red.

433 if(BLACK_FIELD(gs- >board[x][y]) && y > 1 &&

434 RED_FIELD(gs- >board[x][y - 1]))

435 {

436 int jumpDistance = 1 ;

437 while((y - 1) - jumpDistance > 0 &&

438 RED_FIELD(gs- >board[x][(y - 1) - jumpDistance

]))

439 {

440 jumpDistance ++;

441 }

442 if(EMPTY_FIELD(gs- >board[x][(y - 1) - jumpDistance]

))

443 {

444 BoardMove move = makeMoveFromInt(x, y, x, (y - 1

) - jumpDistance);

445 addEllementToSimpleList(superList, &move);

446 }

447 }

448

449 // Black wants to gain a point.

450 if(BLACK_FIELD(gs- >board[x][y]) && y == 0)

451 {

452 BoardMove move = makeMoveFromInt(x, y, x, y);

453 addEllementToSimpleList(superList, &move);

454 }

455 }

456 }

457

458 // Helper methods.

459 BOOL blackPlayerAdheadOf(int x, int y, GameState *gs)

460 {

461 if(BLACK_FIELD(gs- >board[x][y + 1]))

462 return TRUE;

463 else

464 return FALSE;

465 }

466

467 BOOL redPlayerAdheadOf(int x, int y, GameState *gs)

468 {

469 if(BLACK_FIELD(gs- >board[x][y - 1]))

470 return TRUE;

471 else

472 return FALSE;

473 }

474

475 @end

80 APPENDIX C. SOURCE CODE

C.1.7 GameEngine.h

1 // Kolibrat

2 // GameEngine.h

3 //

4 // Created by Aron Lindberg.

5

6 #import "Datastructures.h"

7 #import "GUIProtocol.h"

8 #import "PlayerProtocol.h"

9 #import "GameLogic.h"

10

11 //#define TIMEOUT [NSDate dateWithTimeIntervalSinceNow:400]

12 #define TIMEOUT [NSDate distantFuture]

13

14 @interface GameEngine : NSObject

15 {

16 // Private instance variabels.

17 @private

18 id redPlayer;

19 id blackPlayer;

20 id engineGUI;

21 int maxGoals;

22 BOOL delayNexPlayer;

23 BOOL doCallNextPlayerWhenResume;

24

25 BoardSize boardSize;

26 GameState realGameState;

27 GameState *gameStatePointer;

28

29 NSNotificationQueue *queue;

30 GameLogic *gl;

31

32 NSDate *timeToNextTurn;

33 NSDate * timeToStoptheGame;

34 }

35

36 // Public methods.

37 - (id)initWithPlayersRed :(id)red andBlack :(id)black goalsToWin :(int

)goals GameBoardDim :(BoardSize)board MaxPices :(int)max

connectToGUI :(id)gui;

38 - (void)resetGame;

39

40 // Methods used by the Player Objects.

41 - (BOOL)playerMove :(BoardMove)playerMove fromPlayer :(id)player;

42 - (GameState)gameState;

43 - (void)SelectedPiece :(BoardField)bf fromPlayer :(id)player;

44

45 // Methods used by the GUI.

46 - (void)delayNextPlayer :(BOOL)response;

47

48 @end

C.1. KOLIBRAT SOURCE CODE 81

C.1.8 GameEngine.m

1 // Kolibrat

2 // GameEngine.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "GameEngine.h"

7

8 @implementation GameEngine

9

10 // Called when the object instance is destroyed.

11 - (void)dealloc

12 {

13 // Release all child objects used by the GameEngine.

14 [gl release];

15 [redPlayer release];

16 [blackPlayer release];

17

18 [[NSNotificationCenter defaultCenter] removeObserver:self];

19

20 [super dealloc];

21 }

22

23 // invoked when the GameEngine is initialized.

24 - (id)initWithPlayersRed :(id)red andBlack :(id)black goalsToWin :(int

)goals GameBoardDim :(BoardSize)board MaxPices :(int)max

connectToGUI :(id)gui

25 {

26 if ((self = [super init]) != nil) {

27

28 doCallNextPlayerWhenResume = NO;

29 delayNexPlayer = NO;

30

31 gl = [[GameLogic alloc] initWithMaxPices:max goalsToWin:

goals boardSize:board];

32 realGameState = [gl CreateNewGameState];

33 gameStatePointer = &realGameState;

34

35 queue = [NSNotificationQueue defaultQueue];

36 NSNotificationCenter *mainCenter = [NSNotificationCenter

defaultCenter];

37

38 [mainCenter addObserver:self selector:@selector(nextPlayer

:)name:@"NextPlayer" object:nil];

39

40 boardSize.width = board.width;

41 boardSize.height = board.height;

42

43 redPlayer = red;

44 blackPlayer = black;

45 maxGoals = goals;

46

47 engineGUI = gui;

82 APPENDIX C. SOURCE CODE

48

49 timeToNextTurn = [NSDate date];

50 [timeToNextTurn retain];

51

52 [engineGUI updateToState: copyGameState(gameStatePointer

)];

53

54 if(![engineGUI conformsToProtocol:@protocol(GUI_Protocol)]

&& engineGUI != nil)

55 {

56 NSException* e = [NSException exceptionWithName:@"GUI

Error." reason:@"The GUI does not responds to

needed method calls." userInfo:nil];

57 @throw e;

58 }

59

60 // Ensure that red player responds to nesseary method cals.

61 if(![redPlayer conformsToProtocol:@protocol(

Player_Protocol)])

62 {

63 NSException* e = [NSException exceptionWithName:@"

Player Error" reason:@"The Player does not responds

to needed method calls." userInfo:nil];

64 @throw e;

65 }

66

67 // Ensure that black player responds to nesseary method

cals.

68 if(![blackPlayer conformsToProtocol:@protocol(

Player_Protocol)])

69 {

70 NSException* e = [NSException exceptionWithName:@"

Player Error" reason:@"The Player does not responds

to needed method calls." userInfo:nil];

71 @throw e;

72 }

73 }

74

75 // Send message that next player should be given the turn.

76 NSNotification *message = [NSNotification notificationWithName:

@"NextPlayer" object:nil];

77 [queue enqueueNotification:message postingStyle:NSPostWhenIdle

];

78

79 timeToStoptheGame = TIMEOUT;

80 [timeToStoptheGame retain];

81

82 return self;

83 }

84

85 // Givs turn to next player.

86 - (void)nextPlayer :(NSNotification *) notification

87 {

88 [NSThread sleepUntilDate: timeToNextTurn];

89 [timeToNextTurn release];

C.1. KOLIBRAT SOURCE CODE 83

90

91 // Delay to ensure that the game is watcheble when to AI’s play

each other.

92 timeToNextTurn = [NSDate dateWithTimeIntervalSinceNow:0.5];

93 [timeToNextTurn retain];

94

95 if(delayNexPlayer == NO)

96 {

97 if(realGameState.playerMoving == PLAYER_RED)

98 [redPlayer startNewTurn];

99 else if(realGameState.playerMoving == PLAYER_BLACK)

100 [blackPlayer startNewTurn];

101 }

102 else

103 {

104 doCallNextPlayerWhenResume = YES;

105 }

106 }

107

108 // Resets the games state.

109 - (void)resetGame

110 {

111 [gl resetGameState: gameStatePointer];

112

113 [redPlayer reset];

114 [blackPlayer reset];

115

116 if(engineGUI != nil)

117 {

118 [engineGUI updateToState: copyGameState(gameStatePointer

)];

119 }

120

121 // Send message that next player should be given the turn.

122 NSNotification *message = [NSNotification notificationWithName:

@"NextPlayer" object:nil];

123 [queue enqueueNotification:message postingStyle:NSPostWhenIdle

];

124

125 timeToStoptheGame = TIMEOUT;

126 [timeToStoptheGame retain];

127 }

128

129 // Called by the player objects when they wish to make a move.

130 - (BOOL)playerMove :(BoardMove)playerMove fromPlayer :(id)player

131 {

132 if(GAME_NOT_RUNNING(realGameState.gameStatus))// The game is

not in play.

133 return FALSE;

134

135 BOOL returnValue;

136

137 if(realGameState.playerMoving == PLAYER_RED && redPlayer ==

player)

84 APPENDIX C. SOURCE CODE

138 { // This method call came from red player, and red has the

turn.

139 returnValue = [gl makeMove:playerMove withState: &

realGameState];

140 }

141

142 else if(realGameState.playerMoving == PLAYER_BLACK &&

blackPlayer == player)

143 { // This method call came from black player, and black has

the turn.

144 returnValue = [gl makeMove:playerMove withState: &

realGameState];

145 }

146

147 else

148 { // The call is not legal, the player don’t have the turn.

149 return FALSE;

150 }

151

152 if(engineGUI != nil) // Update the GUI.

153 [engineGUI updateToState: copyGameState(gameStatePointer

)];

154

155 // Check if the game is over.

156 if(realGameState.gameStatus.gameOver == TRUE)

157 {

158 // Check if red won.

159 if(engineGUI != nil && realGameState.gameStatus.winner ==

PLAYER_RED)

160 [engineGUI gameOverWithWinner: [redPlayer playerName]];

161

162 // Check if black won

163 if(engineGUI != nil && realGameState.gameStatus.winner ==

PLAYER_BLACK)

164 [engineGUI gameOverWithWinner: [blackPlayer playerName

]];

165

166 NSNotification *message;

167 if(realGameState.gameStatus.winner == PLAYER_RED)

168 message = [NSNotification notificationWithName:@"

GameOver" object:redPlayer];

169 else

170 message = [NSNotification notificationWithName:@"

GameOver" object:blackPlayer];

171

172 [queue enqueueNotification:message postingStyle:

NSPostWhenIdle];

173

174 // Return now do not start a new turn.

175 return returnValue;

176 }

177

178 // This code stops the game if timeToStoptheGame is set. Used

by the Simulated Annealing program.

179 if([timeToStoptheGame timeIntervalSinceNow] <= 0)

C.1. KOLIBRAT SOURCE CODE 85

180 {

181 [timeToStoptheGame release];

182 NSNotification *message;

183 if(realGameState.score.red > realGameState.score.black)

184 {

185 message = [NSNotification notificationWithName:@"

GameOver" object:redPlayer];

186 [queue enqueueNotification:message postingStyle:

NSPostWhenIdle];

187 }

188 else if(realGameState.score.red <

realGameState.score.black)

189 {

190 message = [NSNotification notificationWithName:@"

GameOver" object:blackPlayer];

191 [queue enqueueNotification:message postingStyle:

NSPostWhenIdle];

192 }

193 else

194 {

195 NSNotification *message;

196

197 srandom ([[NSDate date] timeIntervalSince1970]);

198 if(random () % 100 > 49)

199 {

200 message = [NSNotification notificationWithName:@"

GameOver" object:redPlayer];

201 [queue enqueueNotification:message postingStyle:

NSPostWhenIdle];

202 }

203 else

204 {

205 message = [NSNotification notificationWithName:@"

GameOver" object:blackPlayer];

206 [queue enqueueNotification:message postingStyle:

NSPostWhenIdle];

207 }

208 }

209 return returnValue;

210 }

211 NSNotification *message = [NSNotification notificationWithName:

@"NextPlayer" object:nil];

212 [queue enqueueNotification:message postingStyle:NSPostWhenIdle

];

213

214 return returnValue;

215 }

216

217 // Returns the game state.

218 - (GameState)gameState

219 {

220 return copyGameState(gameStatePointer);

221 }

222

86 APPENDIX C. SOURCE CODE

223 // This method is called by the players. This tells the engine that

the player

224 // wants to highlight this piece in the GUI.

225 - (void)SelectedPiece :(BoardField)bf fromPlayer :(id)player

226 {

227 if(engineGUI == nil || GAME_NOT_RUNNING(

realGameState.gameStatus))

228 return;

229

230 if(bf.x < 0 || bf.y < 0 || bf.x > boardSize.width - 1 || bf.y >

boardSize.height - 1)

231 {

232 NSException* e = [NSException exceptionWithName:@"Move

error." reason :[NSString stringWithFormat:@"The board

field (%i,%i) is outside of the board.", bf.x, bf.y]

userInfo:nil];

233 @throw e;

234 }

235

236 GameState* gsp = gameStatePointer;

237

238 int x = bf.x;

239 int y = bf.y;

240

241 // Rules for Red Player.

242 if(realGameState.playerMoving == PLAYER_RED && redPlayer ==

player)

243 {

244 // The user is about to insert a peice.

245 if(y == 0 && EMPTY_FIELD(gsp- >board[x][y]) && [gl

playerMovingCanInsertPieceOnState: gsp])

246 [engineGUI drawOpaquePiceAt:bf forPlayer:PLAYER_RED];

247

248 // The user is about to gain a point.

249 if(y == (boardSize.height - 1) && RED_FIELD(gsp- >board[x

][y]))

250 [engineGUI drawOpaquePiceAt:bf forPlayer:PLAYER_RED];

251

252 // The user wants to highlight a piece.

253 if(y != (boardSize.height - 1) && RED_FIELD(gsp- >board[x

][y]))

254 {

255 [engineGUI highlightPiceAt:bf];

256

257 // Now highlighting possible moves for that piece.

258 NSSet *setOfMoves = [gl legalMovesForPiceInField:bf

withState: gameStatePointer];

259 NSEnumerator *e = [setOfMoves objectEnumerator];

260 MoveObject *thisMoveObject;

261

262 while (thisMoveObject = [e nextObject])

263 {

264 BoardMove thisMove = [thisMoveObject retriveMove];

265 [engineGUI highlightField: thisMove.to];

266 }

C.1. KOLIBRAT SOURCE CODE 87

267 }

268 }

269

270 // Rules for Black Player.

271 if(realGameState.playerMoving == PLAYER_BLACK && blackPlayer

== player)

272 {

273 // The user is about to insert a peice.

274 if(y == (boardSize.height - 1) && EMPTY_FIELD(gsp- >board

[x][y]) && [gl playerMovingCanInsertPieceOnState: gsp]

)

275 [engineGUI drawOpaquePiceAt:bf forPlayer:PLAYER_BLACK];

276

277 // The user is about to gain a point.

278 if(y == 0 && BLACK_FIELD(gsp- >board[x][y]))

279 [engineGUI drawOpaquePiceAt:bf forPlayer:PLAYER_BLACK];

280

281 // The user wants to highlight a piece.

282 if(y != 0 && BLACK_FIELD(gsp- >board[x][y]))

283 {

284 [engineGUI highlightPiceAt:bf];

285

286 // Now highlighting possible moves for that piece.

287 NSSet *setOfMoves = [gl legalMovesForPiceInField:bf

withState: gsp];

288 NSEnumerator *e = [setOfMoves objectEnumerator];

289 MoveObject *thisMoveObject;

290

291 while (thisMoveObject = [e nextObject])

292 {

293 BoardMove thisMove = [thisMoveObject retriveMove];

294 [engineGUI highlightField: thisMove.to];

295 }

296 }

297 }

298 }

299

300 // Called by the GUI when the new game sheet is shown.

301 - (void)delayNextPlayer :(BOOL)response

302 {

303 if(response == YES)

304 {

305 delayNexPlayer = YES;

306 }

307

308 else if(response == NO)

309 {

310 delayNexPlayer = NO;

311 if(doCallNextPlayerWhenResume == YES)

312 {

313 doCallNextPlayerWhenResume = NO;

314 NSNotification *message = [NSNotification

notificationWithName:@"NextPlayer" object:nil];

315 [queue enqueueNotification:message postingStyle:

NSPostWhenIdle];

88 APPENDIX C. SOURCE CODE

316 }

317 }

318 return;

319 }

320

321 @end

C.1.9 GameController.h

1 // Kolibrat

2 // GameController.h

3 //

4 // Created by Aron Lindberg.

5

6 #import "Datastructures.h"

7 #import "GUIProtocol.h"

8 #import "GameBoard.h"

9 #import "GameEngine.h"

10

11 // Confirms to the GUI Protocol.

12 @interface GameController : NSWindowController < GUI_Protocol >

13 {

14 // Private instance variabels.

15 @private

16 IBOutlet NSTextField *blackScore;

17 IBOutlet NSTextField *redScore;

18 IBOutlet GameBoard *gb;

19 IBOutlet NSWindow *OptionsWindow;

20 IBOutlet NSMenuItem *restartMenu;

21 GameEngine *ge;

22 BOOL canRestartGame;

23 BOOL doHighlighting;

24 BoardSize boardSize;

25 float boardFieldDim;

26 }

27

28 // Public methods.

29 - (NSSize)windowWillResize :(NSWindow *) sender toSize :(NSSize)

proposedFrameSize;

30 - (void)gameDidEnd :(NSWindow *) sheet returnCode :(int)returnCode

contextInfo :(void *) contextInfo;

31 - (void)gameOverWithWinner :(NSString *) playerName;

32 - (void)highlightField :(BoardField)bf;

33 - (void)redrawOriginalState;

34 - (void)highlightPiceAt :(BoardField)bf;

35 - (void)drawOpaquePiceAt :(BoardField)bf forPlayer :(int)player;

36 - (void)setGameEngine :(GameEngine *)ge;

37 - (void)setHighlightState :(BOOL)highlight;

38 - (void)setBoardSize :(BoardSize)board;

39 - (void)updateToState :(GameState)bs;

40

41 @end

C.1. KOLIBRAT SOURCE CODE 89

C.1.10 GameController.m

1 // Kolibrat

2 // GameController.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "GameController.h"

7

8 @implementation GameController

9

10 // this method is called because GameControler is the main game

windows delegate. It ensures that the window resizes propperly.

11 - (NSSize)windowWillResize :(NSWindow *) sender toSize :(NSSize)

proposedFrameSize

12 {

13 // Calculates the maximun size of the window.

14 float MaxWindowSize = 128 * boardSize.width + 2 * 20 ;

15

16 // Calculates the new size of the border arraound the game

board.

17 float border = proposedFrameSize.width / MaxWindowSize * 20 ;

18

19 // Calculates the new game board dimentions.

20 float gameboardWidth = proposedFrameSize.width - 2 * border;

21

22 //Sets the distance from the left window margain and the game

board.

23 [gb setDisplayOffset:border];

24

25 // Calculates that sets the boardField dimention of the new game

board.

26 boardFieldDim = gameboardWidth / boardSize.width;

27 [gb setSquareDim: boardFieldDim];

28

29 float newWindowWidth = 2 * border + boardFieldDim *

boardSize.width;

30 float newWindowHeight = border + boardFieldDim *

boardSize.height + 59 ;

31

32 // Returns the updated windowsize that the window will resize

to.

33 return NSMakeSize(newWindowWidth, newWindowHeight);

34 }

35

36 // This causes Kolibrat to terminate after last window is closed.

This works becouse GameController is the NSApp delegate.

37 - (BOOL)applicationShouldTerminateAfterLastWindowClosed :(

NSApplication *)app

38 {

39 return YES;

40 }

41

42 // This method is called once, when the game window is loaded.

90 APPENDIX C. SOURCE CODE

43 - (void)awakeFromNib

44 {

45 canRestartGame = NO;

46 [redScore setIntValue: 0];

47 [blackScore setIntValue: 0];

48

49 [[self window] useOptimizedDrawing:YES];

50 }

51

52 // This method is called by the GameEninge when the game is over.

53 - (void)gameOverWithWinner :(NSString *) playerName

54 {

55 NSString *title = @"Game Over";

56 NSString *defaultButton = @"OK";

57 NSString *alternateButton = @"Quit";

58 NSString *otherButton = @"Restart Game";

59 NSString *message;

60

61 if(playerName != nil)

62 message = [NSString stringWithFormat:@"The game is over. %@

won.", playerName];

63 else

64 message = @"The game is over, and ends in a draw since no

player can move.";

65

66

67 // Wait 0.8 secondt to dispay the GameOver dialog.

68 [NSThread sleepUntilDate: [NSDate dateWithTimeIntervalSinceNow: 0.8

]];

69

70 NSBeginAlertSheet(title,

71 defaultButton,

72 alternateButton,

73 otherButton,

74 [self window],

75 self,

76 @selector(gameDidEnd:returnCode:contextInfo

:),

77 nil,

78 nil,

79 message);

80 }

81

82 // Sets the score in the game window.

83 - (void)setScore :(GameScore)score

84 {

85 [redScore setIntValue:score.red];

86 [blackScore setIntValue:score.black];

87 }

88

89 // All these messages are sent to the game board, that handles the

aktual drawing.

90 - (void)highlightField :(BoardField)bf

91 {

92 if(doHighlighting == YES)

C.1. KOLIBRAT SOURCE CODE 91

93 [gb highlightField:bf];

94 }

95

96 - (void)redrawOriginalState

97 {

98 [gb redrawOriginalState];

99 }

100

101 - (void)updateToState :(GameState)bs

102 {

103 [self setScore:bs.score];

104 [gb redrawOriginalState];

105 [gb drawPicesFromBoard:bs];

106 }

107

108 - (void)highlightPiceAt :(BoardField)bf

109 {

110 if(bf.x < 0 || bf.y < 0 || bf.x > boardSize.width - 1 || bf.y >

boardSize.height - 1)

111 {

112 NSException* e = [NSException exceptionWithName:@"Move

error." reason :[NSString stringWithFormat:@"The board

field (%i,%i) is outside of the board.", bf.x, bf.y]

userInfo:nil];

113 @throw e;

114 }

115 [gb highlightPiceAt:bf];

116 }

117

118 - (void)drawOpaquePiceAt :(BoardField)bf forPlayer :(int)player

119 {

120 if(bf.x < 0 || bf.y < 0 || bf.x > boardSize.width - 1 || bf.y >

boardSize.height - 1)

121 {

122 NSException* e = [NSException exceptionWithName:@"Move

error." reason :[NSString stringWithFormat:@"The board

field (%i,%i) is outside of the board.", bf.x, bf.y]

userInfo:nil];

123 @throw e;

124 }

125 [gb drawOpaquePiceAt:bf forPlayer:player];

126 }

127

128 - (void)gameDidEnd :(NSWindow *) sheet returnCode :(int)returnCode

contextInfo :(void *) contextInfo // change name to

UserResponseToGameOverDialog

129 {

130 if(returnCode == NSAlertAlternateReturn)

131 [NSApp terminate:self];

132 if(returnCode == NSAlertOtherReturn)

133 [ge resetGame];

134 if(returnCode == NSAlertDefaultReturn)

135 // All is fine (do nothing), the Game Engine is disabled.

136 if(returnCode == NSAlertErrorReturn)

137 {

92 APPENDIX C. SOURCE CODE

138 NSException* e = [NSException exceptionWithName:@"Unknown

Error!" reason:@"Invalid return data from Game Did End

sheet." userInfo:nil];

139 @throw e;

140 }

141 }

142

143 - (void)setGameEngine :(GameEngine *) engine

144 {

145 ge = engine;

146 }

147

148 - (void)setHighlightState :(BOOL)highlight

149 {

150 doHighlighting = highlight;

151 }

152

153 - (void)setBoardSize :(BoardSize)board

154 {

155 boardSize.height = board.height;

156 boardSize.width = board.width;

157 [gb setBoardSize:board];

158

159 float WindowMaxWidth = 2 * 20 + 128 * boardSize.width;

160 float WindowMaxHeight = 20 + 128 * boardSize.height + 59 ;

161

162 float WindowMinWidth = 2 * 10 + 64 * boardSize.width;

163 float WindowMinHeight = 10 + 64 * boardSize.height + 59 ;

164

165 [[self window] setMaxSize: NSMakeSize(WindowMaxWidth,

WindowMaxHeight)];

166 [[self window] setMinSize: NSMakeSize(WindowMinWidth,

WindowMinHeight)];

167

168 NSRect gameWindowFrame = [[self window] frame];

169

170 [gb setDisplayOffset: 20];

171 [gb setSquareDim: 128];

172 [gb setNeedsDisplay: YES];

173

174 [[self window] setFrame: NSMakeRect(

gameWindowFrame.origin.x,gameWindowFrame.origin.y,

WindowMaxWidth, WindowMaxHeight) display:YES];

175 }

176

177 @end

C.1.11 GameBoard.h

1 // Kolibrat

2 // GameBoard.h

3 //

C.1. KOLIBRAT SOURCE CODE 93

4 // Created by Aron Lindberg.

5

6 #import <Cocoa/Cocoa.h >

7 #import "Datastructures.h"

8

9 @interface GameBoard : NSView

10 {

11

12 // Private instance variabels.

13 @private

14 float squareDim;

15 int ** HighlightArray;

16 int ** PicesArray;

17 BoardSize boardSize;

18 float offset;

19 }

20

21 // Public instance methods.

22 - (id)initWithFrame :(NSRect)frameRect;

23 - (void)drawRect :(NSRect)rect;

24 - (void)mouseDown :(NSEvent *) event;

25 - (void)highlightField :(BoardField)bf;

26 - (void)redrawOriginalState;

27 - (void)drawPicesFromBoard :(GameState)gs;

28 - (void)highlightPiceAt :(BoardField)bf;

29 - (void)drawOpaquePiceAt :(BoardField)bf forPlayer :(int)player;

30 - (void)setBoardSize :(BoardSize)board;

31 - (void)setSquareDim :(float)dim;

32 - (void)setDisplayOffset :(float)distance;

33

34 @end

C.1.12 GameBoard.m

1 // Kolibrat

2 // GameBoard.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "GameBoard.h"

7

8 // Class variabels

9 NSRect emptyRect;

10 NSImage *blackPice;

11 NSImage *redPice;

12 NSImage *blackPiceHL;

13 NSImage *redPiceHL;

14

15 @implementation GameBoard

16

17 // Internal method used to change the size of the game board.

18 - (void)changeSizeOfBoardArray

94 APPENDIX C. SOURCE CODE

19 {

20 int i;

21

22 HighlightArray = malloc(boardSize.width * sizeof(int *));

23 PicesArray = malloc(boardSize.width * sizeof(int *));

24

25 for(i = 0 ; i < boardSize.width; i++)

26 {

27 HighlightArray[i] = malloc(boardSize.height * sizeof(int));

28 PicesArray[i] = malloc(boardSize.height * sizeof(int));

29 }

30

31 int x, y;

32 for (x = 0 ; x < boardSize.width ; x++) {

33 for (y = 0 ; y < boardSize.height ; y++) {

34 HighlightArray[x][y] = EMPTY;

35 PicesArray[x][y] = EMPTY;

36 }

37 }

38 }

39

40 // Called when the GUI loads.

41 - (void)awakeFromNib

42 {

43 // temp boarder size until the player starts a new game.

44 boardSize.width = 3 ;

45 boardSize.height = 4 ;

46

47 [self changeSizeOfBoardArray];

48

49 squareDim = 128 ;

50 offset = 20 ;

51 }

52

53 // interneal method to get rectangels for BoardFields.

54 - (NSRect)RectForField :(BoardField)bf

55 {

56 NSRect field;

57 field.origin = NSMakePoint(bf.x * squareDim + offset, bf.y *

squareDim);

58 field.size = NSMakeSize(squareDim, squareDim);

59 return field;

60 }

61

62 // internal method to get color of a BoardField.

63 - (void)setColorForField :(BoardField)bf

64 {

65 if (HighlightArray[bf.x][bf.y] != HIGHLIGHTFIELD)

66 if(bf.x % 2 == bf.y % 2)

67 [[NSColor lightGrayColor] set];

68 else

69 [[NSColor darkGrayColor] set];

70

71 else if(HighlightArray[bf.x][bf.y] == HIGHLIGHTFIELD)

72 if(bf.x % 2 == bf.y % 2)

C.1. KOLIBRAT SOURCE CODE 95

73 [[NSColor colorWithCalibratedRed: 0.851 green: 0.569

blue: 0.310 alpha: 1.0] set];

74 else

75 [[NSColor colorWithCalibratedRed: 0.718 green: 0.435

blue: 0.173 alpha: 1.0] set];

76 }

77

78

79 - (id)initWithFrame :(NSRect)frameRect

80 {

81 if ((self = [super initWithFrame:frameRect]) != nil)

82 {

83 squareDim = ([self bounds].size.width / boardSize.width) ;

84 redPice = [NSImage imageNamed:@"red"];

85 redPiceHL = [NSImage imageNamed:@"redHL"];

86 blackPice = [NSImage imageNamed:@"black"];

87 blackPiceHL = [NSImage imageNamed:@"blackHL"];

88 }

89 return self;

90 }

91

92 // This method is called everythime Cocoa wants to redraw the GUI.

93 - (void)drawRect :(NSRect)rect

94 {

95 int x; int y;

96 for (x = 0 ; x < boardSize.width ; x++) {

97 for (y = 0 ; y < boardSize.height ; y++) {

98 BoardField bf = makeBoardField(x, y);

99 [self setColorForField: bf];

100 [NSBezierPath fillRect: [self RectForField: bf]];

101

102 if(PicesArray[x][y] == RED)

103 [redPice drawInRect :[self RectForField:

makeBoardField(x, y)]

104 fromRect:emptyRect

105 operation:NSCompositeSourceAtop fraction:

1];

106 if(PicesArray[x][y] == RED_HIGHLIGHT)

107 [redPiceHL drawInRect :[self RectForField:

makeBoardField(x, y)]

108 fromRect:emptyRect

109 operation:NSCompositeSourceAtop

fraction: 1];

110 if(PicesArray[x][y] == RED_OPAQUE)

111 [redPice drawInRect :[self RectForField:

makeBoardField(x, y)]

112 fromRect:emptyRect

113 operation:NSCompositeSourceAtop fraction:

0.35];

114

115 if(PicesArray[x][y] == BLACK)

116 [blackPice drawInRect :[self RectForField:

makeBoardField(x, y)]

117 fromRect:emptyRect

96 APPENDIX C. SOURCE CODE

118 operation:NSCompositeSourceAtop

fraction: 1];

119 if(PicesArray[x][y] == BLACK_HIGHLIGHT)

120 [blackPiceHL drawInRect :[self RectForField:

makeBoardField(x, y)]

121 fromRect:emptyRect

122 operation:NSCompositeSourceAtop

fraction: 1];

123 if(PicesArray[x][y] == BLACK_OPAQUE)

124 [blackPice drawInRect :[self RectForField:

makeBoardField(x, y)]

125 fromRect:emptyRect

126 operation:NSCompositeSourceAtop

fraction: 0.35];

127 }

128 }

129 }

130

131 // This method is called by NSApplication everytime the mouse is

clicked.

132 - (void)mouseDown :(NSEvent *) event

133 {

134 NSPoint mouse = [self convertPoint: [event locationInWindow]

fromView: nil];

135 int x = -1 ; int y = -1 ;

136 while (mouse.x - offset > 0) {

137 mouse.x -= squareDim;

138 x++;

139 }

140 while (mouse.y > 0) {

141 mouse.y -= squareDim;

142 y++;

143 }

144

145 if(x < 0 || y < 0 || x > boardSize.width -1 || y >

boardSize.height -1)

146 return; // The click was not on the board.

147

148 // Saves the click coordinates as an object.

149 BoardFieldObject *clickCordinate =

150 [BoardFieldObject boardfieldObjectWithField:

makeBoardField(x,y)];

151

152 // Sends a Notification informing other classes of the click.

153 [[NSNotificationCenter defaultCenter] postNotificationName:@"

MouseClick" object:clickCordinate];

154 }

155

156 // Method to highlight a field on the board.

157 - (void)highlightField :(BoardField)bf

158 {

159 HighlightArray[bf.x][bf.y] = HIGHLIGHTFIELD;

160 [self setNeedsDisplay:YES];

161 }

162

C.1. KOLIBRAT SOURCE CODE 97

163 // Method to restore (unhighlight) the board.

164 - (void)redrawOriginalState

165 {

166 int x; int y;

167 for (x = 0 ; x < boardSize.width ; x++) {

168 for (y = 0 ; y < boardSize.height ; y++) {

169 HighlightArray[x][y] = EMPTY;

170 if(PicesArray[x][y] == RED_HIGHLIGHT)

171 PicesArray[x][y] = RED;

172 if(PicesArray[x][y] == RED_OPAQUE)

173 PicesArray[x][y] = EMPTY;

174 if(PicesArray[x][y] == BLACK_HIGHLIGHT)

175 PicesArray[x][y] = BLACK;

176 if(PicesArray[x][y] == BLACK_OPAQUE)

177 PicesArray[x][y] = EMPTY;

178 }

179 }

180 [self setNeedsDisplay:YES];

181 }

182

183 - (void)drawPicesFromBoard :(GameState)gs

184 {

185 int x; int y;

186 for (x = 0 ; x < boardSize.width; x++) {

187 for (y = 0 ; y < boardSize.height ; y++)

188 {

189 PicesArray[x][y] = BOARD_CONVERTER(gs.board[x][y]);

190 }

191 }

192 [self setNeedsDisplay:YES];

193 }

194

195 - (void)highlightPiceAt :(BoardField)bf

196 {

197 if(PicesArray[bf.x][bf.y] == RED)

198 {

199 PicesArray[bf.x][bf.y] = RED_HIGHLIGHT;

200 [self setNeedsDisplay:YES];

201 }

202 else if(PicesArray[bf.x][bf.y] == BLACK)

203 {

204 PicesArray[bf.x][bf.y] = BLACK_HIGHLIGHT;

205 [self setNeedsDisplay:YES];

206 }

207

208 }

209

210 - (void)drawOpaquePiceAt :(BoardField)bf forPlayer :(int)player

211 {

212 if(player == RED)

213 PicesArray[bf.x][bf.y] = RED_OPAQUE;

214 else if(player == BLACK)

215 PicesArray[bf.x][bf.y] = BLACK_OPAQUE;

216 [self setNeedsDisplay:YES];

217 }

98 APPENDIX C. SOURCE CODE

218

219 - (void)setBoardSize :(BoardSize)board

220 {

221 int i;

222 for(i = 0 ; i < boardSize.width ; i++)

223 {

224 free(HighlightArray[i]);

225 free(PicesArray[i]);

226 }

227 free(HighlightArray);

228 free(PicesArray);

229

230 boardSize.height = board.height;

231 boardSize.width = board.width;

232

233 [self changeSizeOfBoardArray];

234 [self setNeedsDisplay:YES];

235 }

236

237 - (void)setSquareDim :(float)dim

238 {

239 squareDim = dim;

240 }

241

242 - (void)setDisplayOffset :(float)distance

243 {

244 offset = distance;

245 [self setNeedsDisplay:YES];

246 }

247

248 @end

C.1.13 NewGameSheetController.h

1 // Kolibrat

2 // NewGameSheetController.h

3 //

4 // Created by Aron Lindberg.

5

6 #import "GameController.h"

7 #import "Datastructures.h"

8 #import "HumanPlayer.h"

9 #import "GameEngine.h"

10 #import "BasicAI.h"

11 #import "AdvancedAI.h"

12

13 @interface NewGameSheetController : NSObject

14 {

15 @public

16 IBOutlet NSTextField *blackName;

17 IBOutlet NSPopUpButton *blackType;

18 IBOutlet NSPopUpButton *boardpopUPMenu;

C.1. KOLIBRAT SOURCE CODE 99

19 IBOutlet NSTextField *goals;

20 IBOutlet NSTextField *redName;

21 IBOutlet NSPopUpButton *redType;

22 IBOutlet GameController *gc;

23 IBOutlet NSWindow *newGameWindow;

24 IBOutlet NSWindow *gameWindow;

25 IBOutlet NSButton *highlightInGUI;

26 IBOutlet NSTextField *maxPices;

27 IBOutlet NSStepper *goalsStepper;

28 IBOutlet NSStepper *piecesStepper;

29

30 @private

31 GameEngine *newEngine;

32 NSMutableArray *playersType;

33 NSMutableDictionary *playerIdentefiers;

34 }

35 - (IBAction)defaultsButton :(id)sender;

36 - (IBAction)startGameButton :(id)sender;

37 - (IBAction)newGame :(id)sender;

38 - (IBAction)restartGame :(id)sender;

39 - (IBAction)cancelButton :(id)sender;

40 - (void)awakeFromNib;

41 - (void)loadPlayers;

42 - (BOOL)validateMenuItem :(NSMenuItem *)item;

43

44 @end

C.1.14 NewGameSheetController.m

1 // Kolibrat

2 // NewGameSheetController.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "NewGameSheetController.h"

7

8 @implementation NewGameSheetController

9

10 // This method is called when the NIB file is initialised. And is

used to load data into the NSPopUpButtons.

11 - (void)awakeFromNib

12 {

13 [self loadPlayers];

14

15 [boardpopUPMenu removeAllItems];

16

17 [boardpopUPMenu addItemWithTitle:@"2x2"];

18 [boardpopUPMenu addItemWithTitle:@"2x4"];

19 [boardpopUPMenu addItemWithTitle:@"3x3"];

20 [boardpopUPMenu addItemWithTitle:@"3x4"];

21 [boardpopUPMenu addItemWithTitle:@"4x5"];

22 [boardpopUPMenu addItemWithTitle:@"5x6"];

100 APPENDIX C. SOURCE CODE

23 [boardpopUPMenu addItemWithTitle:@"9x9"];

24

25 [boardpopUPMenu setTitle:@"3x4"];

26

27 [blackType removeAllItems];

28 [blackType addItemsWithTitles: playersType];

29

30 [redType removeAllItems];

31 [redType addItemsWithTitles: playersType];

32 }

33

34 // This method is called when the button "Default Options" is

clicked.

35 - (IBAction)defaultsButton :(id)sender

36 {

37 [boardpopUPMenu setTitle:@"3x4"];

38 [goals setIntValue: 5];

39 [highlightInGUI setState: 1];

40 [maxPices setIntValue: 4];

41 [goalsStepper setIntValue: 5];

42 [piecesStepper setIntValue: 4];

43 }

44

45 // This method is called when the "Start Game" button is clicked.

46 - (IBAction)startGameButton :(id)sender

47 {

48 // Initialises the red and black player.

49 NSDictionary *playerClassTypes = playerIdentefiers;

50

51 // Gets the types of both players as a string.

52 NSString *redTypeTitel = [[redType selectedItem]title];

53 NSString *blackTypeTitel = [[blackType selectedItem]title];

54

55 // Gets the class og both players.

56 Class redClass = [playerClassTypes objectForKey:redTypeTitel];

57 Class blackClass = [playerClassTypes objectForKey:

blackTypeTitel];

58

59 // Gets the name og both players.

60 NSString *nameOfRed = [redName stringValue];

61 NSString *nameOfBlack = [blackName stringValue];

62

63 // Array with the size of the game board.

64 NSArray *boardSizeArray = [[[boardpopUPMenu selectedItem] title

]

65 componentsSeparatedByString:@"x"];

66

67 // BoardSize instance that contains the size of the choosen

board.

68 BoardSize board = makeBoardSize([[boardSizeArray objectAtIndex

: 1] intValue], [[boardSizeArray objectAtIndex: 0]

intValue]);

69

70 // Initialises both players.

C.1. KOLIBRAT SOURCE CODE 101

71 id red = [[redClass alloc] initAsPlayer:PLAYER_RED withName:

nameOfRed boardSize:board picesOnboard :[maxPices intValue]

goalsToWin :[goals intValue]];

72 id black = [[blackClass alloc] initAsPlayer:PLAYER_BLACK

withName: nameOfBlack boardSize:board picesOnboard :[

maxPices intValue] goalsToWin :[goals intValue]];

73

74 if(newEngine != nil)

75 {// The engine is not nil, so there is a old engine we need to

release.

76 [newEngine release];

77 }

78

79 // Sends the Highlight Option and board size to the GUI.

80 [gc setHighlightState: [highlightInGUI state]];

81 [gc setBoardSize: board];

82

83 // Initialises the GameEngine with the red and black player.

84 newEngine = [[GameEngine alloc] initWithPlayersRed:red

85 andBlack:black

86 goalsToWin :[goals

intValue]

87 GameBoardDim:board

88 MaxPices :[maxPices

intValue]

89 connectToGUI:gc];

90

91 // Connects the players to the GameEngine.

92 [red setGameEngine:newEngine];

93 [black setGameEngine:newEngine];

94

95 // Connects the GUI to the GameEngine.

96 [gc setGameEngine:newEngine];

97

98 // Removes the newGame sheet so the game can begin.

99 [newGameWindow orderOut:self];

100 [NSApp endSheet:newGameWindow];

101 }

102

103 // Loads all players wirtten al plugins, and the human player.

104 - (void)loadPlayers

105 {

106 playersType = [[NSMutableArray alloc] init];

107 playerIdentefiers = [NSMutableDictionary dictionaryWithCapacity

: 20];

108

109 [playerIdentefiers retain];

110

111 [playersType retain];

112

113 if([[HumanPlayer class] conformsToProtocol:@protocol(

Player_Protocol)])

114 {

115 [playersType addObject: [HumanPlayer playerType]];

102 APPENDIX C. SOURCE CODE

116 [playerIdentefiers setObject: [HumanPlayer class] forKey

:[HumanPlayer playerType]];

117 }

118

119 if([[BasicAI class] conformsToProtocol:@protocol(

Player_Protocol)])

120 {

121 [playersType addObject: [BasicAI playerType]];

122 [playerIdentefiers setObject: [BasicAI class] forKey :[

BasicAI playerType]];

123 }

124

125 if([[AdvancedAI class] conformsToProtocol:@protocol(

Player_Protocol)])

126 {

127 [playersType addObject: [AdvancedAI playerType]];

128 [playerIdentefiers setObject: [AdvancedAI class] forKey :[

AdvancedAI playerType]];

129 }

130

131 // Temp varibales to store data for loading the players.

132 NSString *currPath;

133 NSBundle *currBundle;

134 Class currPrincipalClass;

135 NSMutableArray *bundlePaths = [NSMutableArray array];

136 NSEnumerator *searchPathEnum;

137 NSMutableArray *bundleSearchPaths = [NSMutableArray array];

138 NSMutableArray *allBundles = [NSMutableArray array];

139 NSArray *librarySearchPaths;

140

141 librarySearchPaths = NSSearchPathForDirectoriesInDomains(

NSLibraryDirectory, NSAllDomainsMask - NSSystemDomainMask,

YES);

142

143 searchPathEnum = [librarySearchPaths objectEnumerator];

144

145 while(currPath = [searchPathEnum nextObject])

146 {

147 [bundleSearchPaths addObject: [currPath

stringByAppendingPathComponent:@"Application Support/

Kolibrat/PlugIns"]];

148 }

149

150 [bundleSearchPaths addObject :[[NSBundle mainBundle]

builtInPlugInsPath]];

151

152 searchPathEnum = [bundleSearchPaths objectEnumerator];

153 while(currPath = [searchPathEnum nextObject])

154 {

155 NSDirectoryEnumerator *bundleEnum;

156 NSString *currBundlePath;

157 bundleEnum = [[NSFileManager defaultManager]

enumeratorAtPath:currPath];

158 if(bundleEnum)

159 {

C.1. KOLIBRAT SOURCE CODE 103

160 while(currBundlePath = [bundleEnum nextObject])

161 {

162 if([[currBundlePath pathExtension] isEqualToString:

@"bundle"])

163 {

164 [allBundles addObject :[currPath

stringByAppendingPathComponent:

currBundlePath]];

165 }

166 }

167 }

168 }

169

170 [bundlePaths addObjectsFromArray: allBundles];

171 NSEnumerator *pathEnum = [bundlePaths objectEnumerator];

172

173 while(currPath = [pathEnum nextObject])

174 {

175 currBundle = [NSBundle bundleWithPath:currPath];

176 if(currBundle)

177 {

178 currPrincipalClass = [currBundle principalClass];

179 if(currPrincipalClass)

180 {

181

182 if([currPrincipalClass conformsToProtocol:

@protocol(Player_Protocol)])

183 {

184 [playersType addObject: [currPrincipalClass

playerType]];

185 [playerIdentefiers setObject:

currPrincipalClass forKey :[

currPrincipalClass playerType]];

186 }

187 }

188 }

189 }

190 }

191

192 // This method controlls wheter or not the menu items are avaible

or not. Used to disable "Restart Game" until a game has been

started.

193 - (BOOL)validateMenuItem :(NSMenuItem *)item

194 {

195 NSString *name = @"Restart Game";

196

197 if([name isEqualToString: [item title]] && newEngine != nil)

198 return TRUE;

199 else if([name isEqualToString: [item title]])

200 return FALSE;

201

202 return TRUE;

203 }

204

104 APPENDIX C. SOURCE CODE

205 // This method is called when the user chooses "New Game" from the

menu.

206 - (IBAction)newGame :(id)sender;

207 {

208 [gameWindow setIsVisible:YES]; // Shows the game window.

209

210 [newEngine delayNextPlayer:TRUE];

211

212 [NSApp beginSheet:newGameWindow // shows the new game options

sheet.

213 modalForWindow:gameWindow

214 modalDelegate:nil

215 didEndSelector:nil

216 contextInfo:nil];

217 }

218

219 // This method is called when the user chooses "Restart Game" from

the menu.

220 - (IBAction)restartGame :(id)sender

221 {

222 [newEngine resetGame];

223 }

224

225 - (IBAction)cancelButton :(id)sender

226 {

227 [newGameWindow orderOut:self];

228 [NSApp endSheet:newGameWindow];

229 [newEngine delayNextPlayer:FALSE];

230 }

231

232 @end

C.1.15 GUIProtocol.h

1 // Kolibrat

2 // GUI_Protocol.h

3 //

4 // Created by Aron Lindberg.

5

6 @protocol GUI_Protocol

7 - (void)gameOverWithWinner :(NSString *) playerName;

8 - (void)highlightField :(BoardField)boardField;

9 - (void)redrawOriginalState;

10 - (void)updateToState :(GameState)gameState;

11 - (void)highlightPiceAt :(BoardField)boardField;

12 - (void)drawOpaquePiceAt :(BoardField)boardField forPlayer :(int)

player;

13 @end

C.1.16 PlayerProtocol.h

C.2. KOLIBRAT TEST SOURCE CODE 105

1 // Kolibrat

2 // Player_Protocol.h

3 //

4 // Created by Aron Lindberg.

5

6 @protocol Player_Protocol

7 - (id)initAsPlayer :(int)player withName :(NSString *) playerName

boardSize :(BoardSize)bs picesOnboard :(int)maxPices goalsToWin :(

int)maxGoals;

8 - (void)startNewTurn;

9 - (void)setGameEngine :(id)ge;

10 - (void)reset;

11 - (NSString *) playerName;

12 + (NSString *) playerType;

13 @end

C.1.17 main.m

1 // Kolibrat

2 // main.m

3 //

4 // Created by Aron Lindberg.

5

6 #import <Cocoa/Cocoa.h >

7

8 int main(int argc, char *argv [])

9 {

10 return NSApplicationMain(argc, (const char **) argv);

11 }

C.2 Kolibrat Test Source Code

C.2.1 Kolibrat Test.m

1 // Kolibrat Test

2 // Kolibrat Test.m

3 //

4 // Created by Aron Lindberg.

5

6 #import <Foundation/Foundation.h >

7 #import "Datastructures.h"

8 #import "GameLogic.h"

9

10 int main (int argc, const char * argv [])

11 {

12 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

13

106 APPENDIX C. SOURCE CODE

14 int maxPices = 4 ;

15 int goalsToWin = 5 ;

16 BoardSize size = makeBoardSize(4 , 3);

17

18 BOOL testPassed = TRUE;

19

20 GameLogic *logic = [[GameLogic alloc] initWithMaxPices:maxPices

goalsToWin:goalsToWin boardSize:size];

21

22 NSLog(@"GameLogic instance created.");

23 NSLog(@"Max pixes on baord is: %i.", maxPices);

24 NSLog(@"Number of goals to win is: %i.", goalsToWin);

25 NSLog(@"Board dimentions (%i,%i).",size.height, size.width);

26

27 NSLog(@"Starting test 1: Insert pice for red in (1,0) on an

empty board.");

28

29 GameState state1 = [logic CreateNewGameState];

30

31 if([logic makeMove:makeMoveFromInt(1 , 0 , 1 , 0) withState

:& state1] != TRUE)

32 {

33 NSLog(@"Error the GameLogic rejected the move.");

34 testPassed = FALSE;

35 }

36 if(state1.redPicesOnBoard != 1 || state1.blackPicesOnBoard !=

0)

37 {

38 NSLog(@"Error in number of pices on the board.");

39 testPassed = FALSE;

40 }

41 if(state1.playerMoving != PLAYER_BLACK)

42 {

43 NSLog(@"Error black player don’t is not the new moving

player.");

44 testPassed = FALSE;

45 }

46 if(state1.board[1][0].occupiedByRed != TRUE ||

state1.board[1][0].occupiedByBlack != FALSE)

47 {

48 NSLog(@"Error red don’t have a piece in (1,0).");

49 testPassed = FALSE;

50 }

51

52 if(testPassed == TRUE)

53 NSLog(@"Test 1 passed.");

54

55 NSLog(@"Starting test 2: Insert pice for black in (1,3) on an

empty board.");

56

57 GameState state2 = [logic CreateNewGameState];

58 state2.playerMoving = PLAYER_BLACK;

59 testPassed = TRUE;

60

C.2. KOLIBRAT TEST SOURCE CODE 107

61 if([logic makeMove:makeMoveFromInt(1 , 3 , 1 , 3) withState

:& state2] != TRUE)

62 {

63 NSLog(@"Error the GameLogic rejected the move.");

64 testPassed = FALSE;

65 }

66

67 if(state2.redPicesOnBoard != 0 || state2.blackPicesOnBoard !=

1)

68 {

69 NSLog(@"Error in number of pices on the board.");

70 testPassed = FALSE;

71 }

72 if(state2.playerMoving != PLAYER_RED)

73 {

74 NSLog(@"Error red player don’t is not the new moving

player.");

75 testPassed = FALSE;

76 }

77 if(state2.board[1][3].occupiedByRed != FALSE ||

state2.board[1][3].occupiedByBlack != TRUE)

78 {

79 NSLog(@"Error black don’t have a piece in (1,3).");

80 testPassed = FALSE;

81 }

82

83 if(testPassed == TRUE)

84 NSLog(@"Test 2 passed.");

85

86 NSLog(@"Starting test 3: try to insert pice for red in (1,3) on

an board with 4 red pices.");

87

88 GameState state3 = [logic CreateNewGameState];

89 state3.redPicesOnBoard = 4 ;

90 testPassed = TRUE;

91

92 if([logic makeMove:makeMoveFromInt(1 , 0 , 1 , 0) withState

:& state3] != FALSE)

93 {

94 NSLog(@"Error the illegal move was not rejected by

GameLogic.");

95 testPassed = FALSE;

96 }

97 if(state3.redPicesOnBoard != 4 || state3.blackPicesOnBoard !=

0)

98 {

99 NSLog(@"Error in number of pices on the board.");

100 testPassed = FALSE;

101 }

102 if(state3.playerMoving != PLAYER_RED)

103 {

104 NSLog(@"Error black player is the new moving player, it

shuld be red.");

105 testPassed = FALSE;

106 }

108 APPENDIX C. SOURCE CODE

107 if(state3.board[1][0].occupiedByRed != FALSE ||

state3.board[1][0].occupiedByBlack != FALSE)

108 {

109 NSLog(@"Error red have a piece in (1,0).");

110 testPassed = FALSE;

111 }

112 if(testPassed == TRUE)

113 NSLog(@"Test 3 passed, another piece was not added to the

board.");

114

115 NSLog(@"Starting test 4: try to insert pice for red in (2,2),

an illegal move. The board is empty.");

116

117 GameState state4 = [logic CreateNewGameState];

118

119 testPassed = TRUE;

120

121 if([logic makeMove:makeMoveFromInt(2 , 2 , 2 , 2) withState

:& state4])

122 {

123 NSLog(@"Error the illegal move was not rejected by

GameLogic.");

124 testPassed = FALSE;

125 }

126 if(state4.redPicesOnBoard != 0 || state4.blackPicesOnBoard !=

0)

127 {

128 NSLog(@"Error in number of pices on the board.");

129 testPassed = FALSE;

130 }

131 if(state4.playerMoving != PLAYER_RED)

132 {

133 NSLog(@"Error black player is the new moving player, it

shuld be red.");

134 testPassed = FALSE;

135 }

136 if(state4.board[2][2].occupiedByRed != FALSE ||

state4.board[2][2].occupiedByBlack != FALSE)

137 {

138 NSLog(@"Error red have a piece in (2,2).");

139 testPassed = FALSE;

140 }

141 if(testPassed == TRUE)

142 NSLog(@"Test 4 passed, the piece was not added to the

board.");

143

144 NSLog(@"Starting test 5: Score point for red.");

145

146 GameState state5 = [logic CreateNewGameState];

147

148 testPassed = TRUE;

149

150 state5.redPicesOnBoard = 1;

151 state5.board[1][3].occupiedByRed = TRUE;

152

C.2. KOLIBRAT TEST SOURCE CODE 109

153

154 if([logic makeMove:makeMoveFromInt(1 , 3 , 1 , 3) withState

:& state5] != TRUE)

155 {

156 NSLog(@"Error the move was rejected by GameLogic.");

157 testPassed = FALSE;

158 }

159 if(state5.redPicesOnBoard != 0 || state5.blackPicesOnBoard !=

0)

160 {

161 NSLog(@"Error in number of pices on the board.");

162 testPassed = FALSE;

163 }

164 if(state5.playerMoving != PLAYER_BLACK)

165 {

166 NSLog(@"Error black player not is the new moving player.");

167 testPassed = FALSE;

168 }

169 if(state5.board[1][3].occupiedByRed != FALSE ||

state5.board[1][3].occupiedByBlack != FALSE)

170 {

171 NSLog(@"Error red have a piece in (1,3), it shuld be gone."

);

172 testPassed = FALSE;

173 }

174

175 if(state5.score.red != 1 || state5.score.black != 0)

176 {

177 NSLog(@"Error in game score.");

178 testPassed = FALSE;

179 }

180

181 if(testPassed == TRUE)

182 NSLog(@"Test 5 passed.");

183

184 NSLog(@"Starting test 6: Score point for black.");

185

186 GameState state6 = [logic CreateNewGameState];

187

188 testPassed = TRUE;

189

190 state6.blackPicesOnBoard = 1 ;

191 state6.board[1][0].occupiedByBlack = TRUE;

192 state6.playerMoving = PLAYER_BLACK;

193

194 if([logic makeMove:makeMoveFromInt(1 , 0 , 1 , 0) withState

:& state6] != TRUE)

195 {

196 NSLog(@"Error the move was rejected by GameLogic.");

197 testPassed = FALSE;

198 }

199 if(state6.redPicesOnBoard != 0 || state6.blackPicesOnBoard !=

0)

200 {

201 NSLog(@"Error in number of pices on the board.");

110 APPENDIX C. SOURCE CODE

202 testPassed = FALSE;

203 }

204 if(state6.playerMoving != PLAYER_RED)

205 {

206 NSLog(@"Error red player not is the new moving player.");

207 testPassed = FALSE;

208 }

209 if(state6.board[1][0].occupiedByRed != FALSE ||

state6.board[1][0].occupiedByBlack != FALSE)

210 {

211 NSLog(@"Error black have a piece in (1,0), it shuld be

gone.");

212 testPassed = FALSE;

213 }

214

215 if(state6.score.red != 0 || state6.score.black != 1)

216 {

217 NSLog(@"Error in game score.");

218 testPassed = FALSE;

219 }

220

221 if(testPassed == TRUE)

222 NSLog(@"Test 6 passed.");

223

224 NSLog(@"Starting test 7: Try to insert piece in ocupied field."

);

225

226 GameState state7 = [logic CreateNewGameState];

227

228 testPassed = TRUE;

229

230 state7.blackPicesOnBoard = 1 ;

231 state7.board[1][0].occupiedByBlack = TRUE;

232

233 if([logic makeMove:makeMoveFromInt(1 , 0 , 1 , 0) withState

:& state7] != FALSE)

234 {

235 NSLog(@"Error the illegal move was not rejected by

GameLogic.");

236 testPassed = FALSE;

237 }

238 if(state7.redPicesOnBoard != 0 || state7.blackPicesOnBoard !=

1)

239 {

240 NSLog(@"Error in number of pices on the board.");

241 testPassed = FALSE;

242 }

243 if(state7.playerMoving != PLAYER_RED)

244 {

245 NSLog(@"Error in the next player to move.");

246 testPassed = FALSE;

247 }

248 if(state7.board[1][0].occupiedByRed != FALSE ||

state7.board[1][0].occupiedByBlack != TRUE)

249 {

C.2. KOLIBRAT TEST SOURCE CODE 111

250 NSLog(@"Error don’t black have a piece in (1,0).");

251 testPassed = FALSE;

252 }

253

254 if(state7.score.red != 0 || state7.score.black != 0)

255 {

256 NSLog(@"Error in game score.");

257 testPassed = FALSE;

258 }

259

260 if(testPassed == TRUE)

261 NSLog(@"Test 7 passed.");

262

263 NSLog(@"Starting test 8: Gamestatus is changed when red wins.")

;

264

265 GameState state8 = [logic CreateNewGameState];

266

267 testPassed = TRUE;

268

269 state8.redPicesOnBoard = 1 ;

270 state8.board[1][3].occupiedByRed = TRUE;

271 state8.score.red = 4 ;

272

273 if([logic makeMove:makeMoveFromInt(1 , 3 , 1 , 3) withState

:& state8] != TRUE)

274 {

275 NSLog(@"Error the move was rejected by GameLogic.");

276 testPassed = FALSE;

277 }

278 if(state8.redPicesOnBoard != 0 || state8.blackPicesOnBoard !=

0)

279 {

280 NSLog(@"Error in number of pices on the board.");

281 testPassed = FALSE;

282 }

283

284 if(state8.board[1][3].occupiedByRed != FALSE ||

state8.board[1][3].occupiedByBlack != FALSE)

285 {

286 NSLog(@"Error the field (1,3) is not empty.");

287 testPassed = FALSE;

288 }

289

290 if(state8.score.red != 5 || state8.score.black != 0)

291 {

292 NSLog(@"Error in game score.");

293 testPassed = FALSE;

294 }

295

296 if(state8.gameStatus.gameOver != TRUE ||

state8.gameStatus.winner != PLAYER_RED)

297 {

298 NSLog(@"Error in game status, red is not the winner.");

299 testPassed = FALSE;

112 APPENDIX C. SOURCE CODE

300 }

301 if(testPassed == TRUE)

302 NSLog(@"Test 8 passed.");

303

304 NSLog(@"Starting test 9: Ensure that no players can move when

the game is over.");

305

306 testPassed = TRUE;

307

308 state8.redPicesOnBoard = 1 ;

309 state8.board[0][0].occupiedByRed = TRUE;

310

311 state8.blackPicesOnBoard = 1 ;

312 state8.board[2][3].occupiedByBlack = TRUE;

313

314 state8.playerMoving = PLAYER_RED;

315

316 if([logic makeMove:makeMoveFromInt(0 , 0 , 1 , 1) withState

:& state8] != FALSE)

317 {

318 NSLog(@"Error the illegal move by red was not rejected by

GameLogic.");

319 testPassed = FALSE;

320 }

321

322 state8.playerMoving = PLAYER_BLACK;

323

324 if([logic makeMove:makeMoveFromInt(2 , 3 , 1 , 2) withState

:& state8] != FALSE)

325 {

326 NSLog(@"Error the illegal move by black was not rejected by

GameLogic.");

327 testPassed = FALSE;

328 }

329

330 if(testPassed == TRUE)

331 NSLog(@"Test 9 passed.");

332

333 NSLog(@"Starting test 10: Ensure that no players can move

outside of the board.");

334

335 testPassed = TRUE;

336 GameState state10 = [logic CreateNewGameState];

337

338 state10.redPicesOnBoard = 1 ;

339 state10.board[0][0].occupiedByRed = TRUE;

340

341 state10.blackPicesOnBoard = 1 ;

342 state10.board[2][3].occupiedByBlack = TRUE;

343

344 @try {

345

346

347 if([logic makeMove:makeMoveFromInt(0 , 0 , -1 , 1)

withState :& state10] != FALSE)

C.2. KOLIBRAT TEST SOURCE CODE 113

348 {

349 NSLog(@"Error the illegal move by red was not rejected

by GameLogic.");

350 testPassed = FALSE;

351 }

352 }

353 @catch (NSException *e) {

354

355 NSLog(@"GameLogic threw an exception, this is ok.");

356 }

357

358 state10.playerMoving = PLAYER_BLACK;

359

360 @try {

361 if([logic makeMove:makeMoveFromInt(2 , 3 , 1 , 4)

withState :& state10] != FALSE)

362 {

363 NSLog(@"Error the illegal move by black was not

rejected by GameLogic.");

364 testPassed = FALSE;

365 }

366 }

367 @catch (NSException *e) {

368

369 NSLog(@"GameLogic threw an exception, this is ok.");

370 }

371

372 if(testPassed == TRUE)

373 NSLog(@"Test 10 passed.");

374

375 NSLog(@"Starting test 11: Test of moves on a non empty board 1.

");

376

377 testPassed = TRUE;

378 GameState state11 = [logic CreateNewGameState];

379

380 state11.redPicesOnBoard = 1 ;

381 state11.blackPicesOnBoard = 3 ;

382

383 state11.board[1][0].occupiedByRed = TRUE;

384

385 state11.board[1][1].occupiedByBlack = TRUE;

386

387 state11.board[1][2].occupiedByBlack = TRUE;

388 state11.board[1][3].occupiedByBlack = TRUE;

389

390 NSSet *allmoves = [logic allLegalMoves :& state11];

391

392 if([allmoves count] != 5)

393 {

394 NSLog(@"Error in the number of allowed moves.");

395 testPassed = FALSE;

396 }

397

114 APPENDIX C. SOURCE CODE

398 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0 , 0 , 0 , 0)]] != TRUE)

399 {

400 NSLog(@"Error the move to insert a piece in (0,0) was not

allowed.");

401 testPassed = FALSE;

402 }

403

404 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(2 , 0 , 2 , 0)]] != TRUE)

405 {

406 NSLog(@"Error the move to insert a piece in (2,0) was not

allowed.");

407 testPassed = FALSE;

408 }

409

410 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1 , 0 , 0 , 1)]] != TRUE)

411 {

412 NSLog(@"Error the move from (1,0) to (0,1) was not allowed.

");

413 testPassed = FALSE;

414 }

415

416 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1 , 0 , 2 , 1)]] != TRUE)

417 {

418 NSLog(@"Error the move from (1,0) to (2,1) was not allowed.

");

419 testPassed = FALSE;

420 }

421

422 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1 , 0 , 1 , 1)]] != TRUE)

423 {

424 NSLog(@"Error the move from (1,0) to (1,1) was not allowed.

");

425 testPassed = FALSE;

426 }

427 if(testPassed == TRUE)

428 NSLog(@"Test 11 passed.");

429

430 NSLog(@"Starting test 12: Test of moves on a non empty board 2.

");

431

432 testPassed = TRUE;

433 GameState state12 = [logic CreateNewGameState];

434

435 state12.redPicesOnBoard = 1 ;

436 state12.blackPicesOnBoard = 2 ;

437

438 state12.board[2][0].occupiedByRed = TRUE;

439

440 state12.board[2][1].occupiedByBlack = TRUE;

441

C.2. KOLIBRAT TEST SOURCE CODE 115

442 state12.board[2][2].occupiedByBlack = TRUE;

443

444 allmoves = [logic allLegalMoves :& state12];

445

446 if([allmoves count] != 5)

447 {

448 NSLog(@"Error in the number of allowed moves.");

449 testPassed = FALSE;

450 }

451

452 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0 , 0 , 0 , 0)]] != TRUE)

453 {

454 NSLog(@"Error the move to insert a piece in (0,0) was not

allowed.");

455 testPassed = FALSE;

456 }

457

458 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1 , 0 , 1 , 0)]] != TRUE)

459 {

460 NSLog(@"Error the move to insert a piece in (1,0) was not

allowed.");

461 testPassed = FALSE;

462 }

463

464 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(2 , 0 , 1 , 1)]] != TRUE)

465 {

466 NSLog(@"Error the move from (2,0) to (1,1) was not allowed.

");

467 testPassed = FALSE;

468 }

469

470 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(2 , 0 , 2 , 1)]] != TRUE)

471 {

472 NSLog(@"Error the move from (2,0) to (2,1) was not allowed.

");

473 testPassed = FALSE;

474 }

475

476 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(2 , 0 , 2 , 3)]] != TRUE)

477 {

478 NSLog(@"Error the move from (2,0) to (2,3) was not allowed.

");

479 testPassed = FALSE;

480 }

481

482 if(testPassed == TRUE)

483 NSLog(@"Test 12 passed.");

484

485 NSLog(@"Starting test 13: Test of moves on a non empty board 3.

");

116 APPENDIX C. SOURCE CODE

486

487 testPassed = TRUE;

488 GameState state13 = [logic CreateNewGameState];

489

490 state13.redPicesOnBoard = 3 ;

491 state13.blackPicesOnBoard = 1 ;

492

493 state13.board[0][0].occupiedByRed = TRUE;

494

495 state13.board[1][0].occupiedByRed = TRUE;

496

497 state13.board[2][0].occupiedByRed = TRUE;

498

499 state13.board[1][1].occupiedByBlack = TRUE;

500

501 allmoves = [logic allLegalMoves :& state13];

502

503 if([allmoves count] != 4)

504 {

505 NSLog(@"Error in the number of allowed moves.");

506 testPassed = FALSE;

507 }

508

509 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1 , 0 , 2 , 1)]] != TRUE)

510 {

511 NSLog(@"Error the move from (1,0) to (2,1) was not allowed.

");

512 testPassed = FALSE;

513 }

514

515 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1 , 0 , 0 , 1)]] != TRUE)

516 {

517 NSLog(@"Error the move from (1,0) to (0,1) was not allowed.

");

518 testPassed = FALSE;

519 }

520

521 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1 , 0 , 1 , 1)]] != TRUE)

522 {

523 NSLog(@"Error the move from (1,0) to (1,1) was not allowed.

");

524 testPassed = FALSE;

525 }

526

527 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1 , 0 , 1 , 2)]] != TRUE)

528 {

529 NSLog(@"Error the move from (1,0) to (1,2) was not allowed.

");

530 testPassed = FALSE;

531 }

532

C.2. KOLIBRAT TEST SOURCE CODE 117

533 if(testPassed == TRUE)

534 NSLog(@"Test 13 passed.");

535

536 NSLog(@"Starting test 14: Test of moves on a non empty board 4.

");

537

538 testPassed = TRUE;

539 GameState state14 = [logic CreateNewGameState];

540

541 state14.redPicesOnBoard = 4;

542 state14.blackPicesOnBoard = 1;

543

544 state14.board[0][1].occupiedByRed = TRUE;

545

546 state14.board[1][1].occupiedByRed = TRUE;

547

548 state14.board[2][1].occupiedByRed = TRUE;

549

550 state14.board[1][2].occupiedByRed = TRUE;

551

552 state14.board[1][3].occupiedByBlack = TRUE;

553

554 allmoves = [logic allLegalMoves :& state14];

555

556 if([allmoves count] != 5)

557 {

558 NSLog(@"Error in the number of allowed moves.");

559 testPassed = FALSE;

560 }

561

562 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,1,2,2)]] != TRUE)

563 {

564 NSLog(@"Error the move from (1,1) to (2,2) was not allowed.

");

565 testPassed = FALSE;

566 }

567

568 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,1,0,2)]] != TRUE)

569 {

570 NSLog(@"Error the move from (1,1) to (0,2) was not allowed.

");

571 testPassed = FALSE;

572 }

573

574 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,2,0,3)]] != TRUE)

575 {

576 NSLog(@"Error the move from (1,2) to (0,3) was not allowed.

");

577 testPassed = FALSE;

578 }

579

118 APPENDIX C. SOURCE CODE

580 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,2,2,3)]] != TRUE)

581 {

582 NSLog(@"Error the move from (1,2) to (2,3) was not allowed.

");

583 testPassed = FALSE;

584 }

585

586 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,2,1,3)]] != TRUE)

587 {

588 NSLog(@"Error the move from (1,2) to (1,3) was not allowed.

");

589 testPassed = FALSE;

590 }

591 if(testPassed == TRUE)

592 NSLog(@"Test 14 passed.");

593

594 NSLog(@"Starting test 15: Test of moves on a non empty board 5.

");

595

596 testPassed = TRUE;

597 GameState state15 = [logic CreateNewGameState];

598

599 state15.redPicesOnBoard = 3;

600 state15.blackPicesOnBoard = 2;

601

602 state15.board[0][0].occupiedByRed = TRUE;

603

604 state15.board[1][0].occupiedByRed = TRUE;

605

606 state15.board[0][1].occupiedByRed = TRUE;

607

608 state15.board[0][2].occupiedByBlack = TRUE;

609 state15.board[0][3].occupiedByBlack = TRUE;

610

611 allmoves = [logic allLegalMoves :& state15];

612

613 if([allmoves count] != 5)

614 {

615 NSLog(@"Error in the number of allowed moves.");

616 testPassed = FALSE;

617 }

618

619 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(2,0,2,0)]] != TRUE)

620 {

621 NSLog(@"Error the move to insert a piece in (2,0) was not

allowed.");

622 testPassed = FALSE;

623 }

624

625 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,0,2,1)]] != TRUE)

626 {

C.2. KOLIBRAT TEST SOURCE CODE 119

627 NSLog(@"Error the move from (1,0) to (2,1) was not allowed.

");

628 testPassed = FALSE;

629 }

630

631 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,0,1,1)]] != TRUE)

632 {

633 NSLog(@"Error the move from (0,0) to (1,1) was not allowed.

");

634 testPassed = FALSE;

635 }

636

637 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,1,1,2)]] != TRUE)

638 {

639 NSLog(@"Error the move from (0,1) to (1,2) was not allowed.

");

640 testPassed = FALSE;

641 }

642

643 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,1,0,2)]] != TRUE)

644 {

645 NSLog(@"Error the move from (0,1) to (0,2) was not allowed.

");

646 testPassed = FALSE;

647 }

648 if(testPassed == TRUE)

649 NSLog(@"Test 15 passed.");

650

651 NSLog(@"Starting test 16: Test of moves on a non empty board 6.

");

652

653 testPassed = TRUE;

654 GameState state16 = [logic CreateNewGameState];

655

656 state16.redPicesOnBoard = 3;

657 state16.blackPicesOnBoard = 1;

658

659 state16.board[1][0].occupiedByRed = TRUE;

660

661 state16.board[1][1].occupiedByRed = TRUE;

662

663 state16.board[1][2].occupiedByRed = TRUE;

664

665 state16.board[1][3].occupiedByBlack = TRUE;

666

667 state16.playerMoving = PLAYER_BLACK;

668

669 allmoves = [logic allLegalMoves :& state16];

670

671 if([allmoves count] != 5)

672 {

673 NSLog(@"Error in the number of allowed moves.");

120 APPENDIX C. SOURCE CODE

674 testPassed = FALSE;

675 }

676

677 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,3,0,3)]] != TRUE)

678 {

679 NSLog(@"Error the move to insert a piece in (0,3) was not

allowed.");

680 testPassed = FALSE;

681 }

682

683 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(2,3,2,3)]] != TRUE)

684 {

685 NSLog(@"Error the move to insert a piece in (2,3) was not

allowed.");

686 testPassed = FALSE;

687 }

688

689 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,0,2)]] != TRUE)

690 {

691 NSLog(@"Error the move from (1,3) to (0,2) was not allowed.

");

692 testPassed = FALSE;

693 }

694

695 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,2,2)]] != TRUE)

696 {

697 NSLog(@"Error the move from (1,3) to (2,2) was not allowed.

");

698 testPassed = FALSE;

699 }

700

701 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,1,2)]] != TRUE)

702 {

703 NSLog(@"Error the move from (1,3) to (1,2) was not allowed.

");

704 testPassed = FALSE;

705 }

706

707 if(testPassed == TRUE)

708 NSLog(@"Test 16 passed.");

709

710 NSLog(@"Starting test 17: Test of moves on a non empty board 7.

");

711

712 testPassed = TRUE;

713 GameState state17 = [logic CreateNewGameState];

714

715 state17.redPicesOnBoard = 2;

716 state17.blackPicesOnBoard = 1;

717

C.2. KOLIBRAT TEST SOURCE CODE 121

718 state17.board[0][1].occupiedByRed = TRUE;

719

720 state17.board[0][2].occupiedByRed = TRUE;

721

722

723 state17.board[0][3].occupiedByBlack = TRUE;

724

725 state17.playerMoving = PLAYER_BLACK;

726

727 allmoves = [logic allLegalMoves :& state17];

728

729 if([allmoves count] != 5)

730 {

731 NSLog(@"Error in the number of allowed moves.");

732 testPassed = FALSE;

733 }

734

735 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,1,3)]] != TRUE)

736 {

737 NSLog(@"Error the move to insert a piece in (1,3) was not

allowed.");

738 testPassed = FALSE;

739 }

740

741 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(2,3,2,3)]] != TRUE)

742 {

743 NSLog(@"Error the move to insert a piece in (2,3) was not

allowed.");

744 testPassed = FALSE;

745 }

746

747 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,3,0,2)]] != TRUE)

748 {

749 NSLog(@"Error the move from (0,3) to (0,2) was not allowed.

");

750 testPassed = FALSE;

751 }

752

753 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,3,1,2)]] != TRUE)

754 {

755 NSLog(@"Error the move from (0,3) to (1,2) was not allowed.

");

756 testPassed = FALSE;

757 }

758

759 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,3,0,0)]] != TRUE)

760 {

761 NSLog(@"Error the move from (0,3) to (0,0) was not allowed.

");

762 testPassed = FALSE;

122 APPENDIX C. SOURCE CODE

763 }

764

765 if(testPassed == TRUE)

766 NSLog(@"Test 17 passed.");

767

768 NSLog(@"Starting test 18: Test of moves on a non empty board 8.

");

769

770 testPassed = TRUE;

771 GameState state18 = [logic CreateNewGameState];

772

773 state18.redPicesOnBoard = 1;

774 state18.blackPicesOnBoard = 3;

775

776 state18.board[1][2].occupiedByRed = TRUE;

777

778 state18.board[0][3].occupiedByBlack = TRUE;

779 state18.board[1][3].occupiedByBlack = TRUE;

780 state18.board[2][3].occupiedByBlack = TRUE;

781

782 state18.playerMoving = PLAYER_BLACK;

783

784 allmoves = [logic allLegalMoves :& state18];

785

786 if([allmoves count] != 4)

787 {

788 NSLog(@"Error in the number of allowed moves.");

789 testPassed = FALSE;

790 }

791

792 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,0,2)]] != TRUE)

793 {

794 NSLog(@"Error the move from (1,3) to (0,2) was not allowed.

");

795 testPassed = FALSE;

796 }

797

798 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,2,2)]] != TRUE)

799 {

800 NSLog(@"Error the move from (1,3) to (2,2) was not allowed.

");

801 testPassed = FALSE;

802 }

803

804 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,1,2)]] != TRUE)

805 {

806 NSLog(@"Error the move from (1,3) to (1,2) was not allowed.

");

807 testPassed = FALSE;

808 }

809

C.2. KOLIBRAT TEST SOURCE CODE 123

810 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,1,1)]] != TRUE)

811 {

812 NSLog(@"Error the move from (1,3) to (1,1) was not allowed.

");

813 testPassed = FALSE;

814 }

815

816 if(testPassed == TRUE)

817 NSLog(@"Test 18 passed.");

818

819 NSLog(@"Starting test 19: Test of moves on a non empty board 9.

");

820

821 testPassed = TRUE;

822 GameState state19 = [logic CreateNewGameState];

823

824 state19.redPicesOnBoard = 1;

825 state19.blackPicesOnBoard = 4;

826

827 state19.board[1][0].occupiedByRed = TRUE;

828

829 state19.board[0][2].occupiedByBlack = TRUE;

830 state19.board[1][2].occupiedByBlack = TRUE;

831 state19.board[2][2].occupiedByBlack = TRUE;

832

833 state19.board[1][1].occupiedByBlack = TRUE;

834

835 state19.playerMoving = PLAYER_BLACK;

836

837 allmoves = [logic allLegalMoves :& state19];

838

839 if([allmoves count] != 5)

840 {

841 NSLog(@"Error in the number of allowed moves.");

842 testPassed = FALSE;

843 }

844

845 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,1,0,0)]] != TRUE)

846 {

847 NSLog(@"Error the move from (1,1) to (0,0) was not allowed.

");

848 testPassed = FALSE;

849 }

850

851 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,1,1,0)]] != TRUE)

852 {

853 NSLog(@"Error the move from (1,1) to (1,0) was not allowed.

");

854 testPassed = FALSE;

855 }

856

124 APPENDIX C. SOURCE CODE

857 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,1,2,0)]] != TRUE)

858 {

859 NSLog(@"Error the move from (1,1) to (2,0) was not allowed.

");

860 testPassed = FALSE;

861 }

862

863 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,2,0,1)]] != TRUE)

864 {

865 NSLog(@"Error the move from (1,2) to (0,1) was not allowed.

");

866 testPassed = FALSE;

867 }

868

869 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,2,2,1)]] != TRUE)

870 {

871 NSLog(@"Error the move from (1,2) to (2,1) was not allowed.

");

872 testPassed = FALSE;

873 }

874

875 if(testPassed == TRUE)

876 NSLog(@"Test 19 passed.");

877

878 NSLog(@"Starting test 20: Test of moves on a non empty board

10.");

879

880 testPassed = TRUE;

881 GameState state20 = [logic CreateNewGameState];

882

883 state20.redPicesOnBoard = 2;

884 state20.blackPicesOnBoard = 3;

885

886 state20.board[0][0].occupiedByRed = TRUE;

887 state20.board[0][1].occupiedByRed = TRUE;

888

889 state20.board[0][2].occupiedByBlack = TRUE;

890 state20.board[0][3].occupiedByBlack = TRUE;

891 state20.board[1][3].occupiedByBlack = TRUE;

892

893 state20.playerMoving = PLAYER_BLACK;

894

895 allmoves = [logic allLegalMoves :& state20];

896

897 if([allmoves count] != 5)

898 {

899 NSLog(@"Error in the number of allowed moves.");

900 testPassed = FALSE;

901 }

902

903 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(2,3,2,3)]] != TRUE)

C.3. MINIMAX SOURCE CODE 125

904 {

905 NSLog(@"Error the move to insert a piece in (2,3) was not

allowed.");

906 testPassed = FALSE;

907 }

908

909 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(1,3,2,2)]] != TRUE)

910 {

911 NSLog(@"Error the move from (1,3) to (2,2) was not allowed.

");

912 testPassed = FALSE;

913 }

914

915 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,3,1,2)]] != TRUE)

916 {

917 NSLog(@"Error the move from (0,3) to (1,2) was not allowed.

");

918 testPassed = FALSE;

919 }

920

921 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,2,1,1)]] != TRUE)

922 {

923 NSLog(@"Error the move from (0,2) to (1,1) was not allowed.

");

924 testPassed = FALSE;

925 }

926

927

928 if([allmoves containsObject :[MoveObject moveObjectWithMove:

makeMoveFromInt(0,2,0,1)]] != TRUE)

929 {

930 NSLog(@"Error the move from (0,2) to (0,1) was not allowed.

");

931 testPassed = FALSE;

932 }

933

934 if(testPassed == TRUE)

935 NSLog(@"Test 20 passed.");

936

937 [pool release];

938 return 0;

939 }

C.3 MiniMax Source Code

C.3.1 AIDefinitions.h

1 // Kolibrat AI

126 APPENDIX C. SOURCE CODE

2 // AIDefinitions.h

3 //

4 // Created by Aron Lindberg.

5

6 #import "Datastructures.h"

7 #import "GameLogic.h"

8

9 #define HASHSIZE 20000

10

11 static struct hashList *hashtable[HASHSIZE];

12

13 typedef struct hashList {

14 GameState state;

15 BOOL foundNow;

16 struct hashList *next;

17 short int level;

18 int score;

19 } HASHList;

20

21

22

23 typedef struct treeState {

24 BoardMove lastMove;

25 unsigned short int numberOfChildren;

26 unsigned short int level;

27 int boardScore;

28 GameState gs;

29 int a;

30 int b;

31 } TreeState;

32

33 typedef struct treeListElement {

34 struct treeState *state;

35 void *nextEllement;

36 } TreeListElement;

37

38

39 typedef struct treeStateList {

40

41 struct treeListElement *firstElement;

42 struct treeListElement *lastElement;

43 double numberElements;

44

45 } TreeStateList;

46

47 // Some plain C methods to make instances of the custom

typedefinitions.

48 void addTreeStateTo(TreeState* state, TreeStateList* list);

49 void removeFirstElement(TreeStateList *list);

50 TreeStateList makeTreeStateList(TreeState* state);

51 TreeState makeTreeState(GameState* gs, TreeState* anceter);

52 TreeState makeTreeStateChild(TreeState* anceter);

53 void freeTreeState(TreeState* ts);

54

55 void addTreeStateTo(TreeState* state, TreeStateList* list);

C.3. MINIMAX SOURCE CODE 127

56 void removeFirstElement(TreeStateList *list);

57 TreeStateList makeTreeStateList(TreeState* state);

58

59 unsigned hashValue(GameState *gs);

60 BOOL equalGameStates(GameState *gs1, GameState *gs2);

61 HASHList* findInHashTable(GameState *gs);

62 BOOL insertIntoHashTable(GameState *gs, int level , int badscore);

63 void freeHashTable ();

64 void NewCalcHashTable ();

C.3.2 AIDefinitions.m

1 // Kolibrat AI

2 // AIDefinitions.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "AIDefinitions.h"

7

8 TreeStateList makeTreeStateList(TreeState* state)

9 {

10 struct treeStateList temp;

11 temp.numberElements = 1;

12 return temp;

13 }

14

15 void addTreeStateTo(TreeState* state, TreeStateList* list)

16 {

17 (*(* list).lastElement).nextEllement = state;

18 (*list).numberElements ++;

19 }

20

21 void removeFirstElement(TreeStateList *list)

22 {

23 TreeListElement *seconodElement = (*(* list).firstElement)

.nextEllement;

24 (*list).firstElement = seconodElement;

25 (*list).numberElements --;

26 }

27

28

29 TreeState makeTreeState(GameState *gs, TreeState* anceter)

30 {

31 struct treeState temp;

32 temp.level = 0;

33 temp.boardScore = 0;

34 temp.a = INT_MIN;

35 temp.b = INT_MAX;

36 temp.gs = copyGameState(gs);

37

38 return temp;

39 }

128 APPENDIX C. SOURCE CODE

40

41 TreeState makeTreeStateChild(TreeState* anceter)

42 {

43 struct treeState temp;

44

45 temp.level = anceter- >level;

46 temp.boardScore = anceter- >boardScore;

47 temp.a = anceter- >a;

48 temp.b = anceter- >b;

49

50 temp.gs = copyGameState(&anceter- >gs);

51

52 return temp;

53 }

54

55 void freeTreeState(TreeState* ts)

56 {

57 freeGameState(&ts- >gs);

58 }

59

60 unsigned hashValue(GameState *gs)

61 {

62 unsigned value;

63 value = gs- >playerMoving * 1325879543;

64 value += gs- >blackPicesOnBoard *59448612;

65 value += gs- >redPicesOnBoard *65939875;

66 value += gs- >redPicesOnBoard *65934321;

67 value += gs- >score.red * 765423104;

68 value += gs- >score.black * 126423265;

69 value += gs- >gameStatus.gameOver * 99842321;

70

71 int x, y;

72 for (x = 0 ; x < gs- >boardSize.width ; x++) {

73 for (y = 0 ; y < gs- >boardSize.height ; y++) {

74 value += gs- >board[x][y].occupiedByRed * 1236549875 * (

x + 1);

75 value += gs- >board[x][y].occupiedByBlack * 978642321 *

(y + 1);

76 }

77 }

78 return value % HASHSIZE;

79 }

80

81

82 BOOL equalGameStates(GameState *gs1, GameState *gs2)

83 {

84 if(gs1- >blackPicesOnBoard != gs2- >blackPicesOnBoard)

85 return FALSE;

86

87 if(gs1- >redPicesOnBoard != gs2- >redPicesOnBoard)

88 return FALSE;

89

90 if(gs1- >playerMoving != gs2- >playerMoving)

91 return FALSE;

92

C.3. MINIMAX SOURCE CODE 129

93 if(gs1- >gameStatus.gameOver != gs2- >gameStatus.gameOver)

94 return FALSE;

95

96 if(gs1- >gameStatus.winner != gs2- >gameStatus.winner)

97 return FALSE;

98

99 if(gs1- >score.red != gs2- >score.red)

100 return FALSE;

101

102 if(gs1- >score.black != gs2- >score.black)

103 return FALSE;

104

105 int x, y;

106 for (x = 0 ; x < gs1- >boardSize.width ; x++) {

107 for (y = 0 ; y < gs1- >boardSize.height ; y++) {

108 if(gs1- >board[x][y].occupiedByBlack != gs2- >board[x][y

].occupiedByBlack)

109 {

110 return FALSE;

111 }

112 if(gs1- >board[x][y].occupiedByRed != gs2- >board[x][y]

.occupiedByRed)

113 {

114 return FALSE;

115 }

116 }

117 }

118 return TRUE;

119 }

120

121 HASHList* findInHashTable(GameState *gs)//, HASHList hashtable []

)

122 {

123 HASHList *test;

124

125 if(&(hashtable[hashValue(gs)]) == NULL)

126 return NULL;

127

128 for(test = hashtable[hashValue(gs)] ; test != NULL ; test =

test- >next)

129 {

130 if (equalGameStates(gs, &(test- >state)))

131 return test;

132 }

133 return NULL;

134 }

135

136 BOOL insertIntoHashTable(GameState *gs, int level , int badscore)

137 {

138 struct hashList *test;

139 unsigned hashvalue;

140

141 if((findInHashTable(gs)) == NULL)

142 {

143 test = malloc(sizeof(HASHList));

130 APPENDIX C. SOURCE CODE

144

145 hashvalue = hashValue(gs);

146

147 test- >foundNow = TRUE;

148 test- >level = level;

149

150 test- >score = badscore;

151

152 test- >state.blackPicesOnBoard = gs- >blackPicesOnBoard;

153 test- >state.redPicesOnBoard = gs- >redPicesOnBoard;

154

155 test- >state.playerMoving = gs- >playerMoving;

156 test- >state.gameStatus = gs- >gameStatus;

157

158 test- >state.score = gs- >score;

159

160 test- >state.board = malloc(gs- >boardSize.width * sizeof(

BoardFieldContent *));

161

162 int i;

163 for(i = 0; i < gs- >boardSize.width; i++)

164 {

165 test- >state.board[i] = malloc(gs- >boardSize.height *

sizeof(BoardFieldContent));

166 }

167

168 int x, y;

169 for (x = 0 ; x < gs- >boardSize.width ; x++) {

170 for (y = 0 ; y < gs- >boardSize.height ; y++) {

171 test- >state.board[x][y] = gs- >board[x][y];

172 }

173 }

174

175 test- >next = hashtable[hashvalue];

176 hashtable[hashvalue] = test;

177

178 return TRUE;

179 }

180 return FALSE;

181

182 }

183

184 void freeHashTable ()

185 {

186 int i;

187 for(i = 0 ; i < HASHSIZE ; i ++)

188 {

189 struct hashList *nextstate = hashtable[i];

190

191 while(nextstate != NULL)

192 {

193 struct hashList *ok = nextstate- >next;

194 free(nextstate);

195 nextstate = ok;

196 }

C.3. MINIMAX SOURCE CODE 131

197 hashtable[i] = NULL ;

198 }

199 }

200

201 void NewCalcHashTable ()

202 {

203 int i;

204 for(i = 0 ; i < HASHSIZE ; i ++)

205 {

206 struct hashList *nextstate = hashtable[i];

207

208 while(nextstate != NULL)

209 {

210 struct hashList *ok = nextstate- >next;

211 nextstate- >foundNow = FALSE;

212 nextstate = ok;

213 }

214

215 if(hashtable[i] != NULL)

216 hashtable[i]->foundNow = FALSE;

217 }

218 }

C.3.3 AdvancedAI.h

1 // Kolibrat AI

2 // AdvancedAI.h

3 //

4 // Created by Aron Lindberg.

5

6 #import "Datastructures.h"

7 #import "PlayerProtocol.h"

8 #import "AIDefinitions.h"

9 #import "GameEngine.h"

10 #import "GameLogic.h"

11

12 @interface AdvancedAI : NSObject < Player_Protocol >

13 {

14 // Private instance variabels.

15 @private

16 NSString *name;

17 id engine;

18 id gl;

19

20 BOOL playerID;

21 BOOL enemyID;

22

23 int otherPlayer;

24 BOOL waitingForOtherPlayer;

25

26 NSDate *timeToReturnMove;

27

132 APPENDIX C. SOURCE CODE

28 struct hashList *hashtable[HASHSIZE];

29

30 int val1, val2, val3, val4, val5, val6, val7, val8, val9,

val10, val11;

31

32 }

33 // Instane methods.

34 -(int)minValue :(TreeState *) treeState scorePointer :(int*) bestScore

boardMovePointer :(BoardMove *) bestMove searchDepth :(int)maxLevel

;

35 -(int)maxValue :(TreeState *) treeState scorePointer :(int*) bestScore

boardMovePointer :(BoardMove *) bestMove searchDepth :(int)maxLevel

;

36 - (BoardMove)searchForMove :(GameState)gs;

37 - (id)initAsPlayer :(int)player withName :(NSString *) playerName

boardSize :(BoardSize)bs picesOnboard :(int)maxPices goalsToWin :(

int)maxGoals;

38 - (void)reset;

39 - (void)setGameEngine :(id)ge;

40 - (int)eval:(TreeState *)ts;

41 - (NSString *) playerName;

42

43 // Class methods.

44 + (NSString *) playerType;

45

46 @end

C.3.4 AdvancedAI.m

1 // Kolibrat AI

2 // AdvancedAI.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "AdvancedAI.h"

7

8 #define TIME_TO_THINK 2.0

9

10 @implementation AdvancedAI

11

12 - (void) dealloc

13 {

14 [name release];

15 [gl release];

16 [super dealloc];

17 }

18

19 // Called when the player gets the turn.

20 - (void)startNewTurn

21 {

22 if([engine playerMove: [self searchForMove: [engine gameState

]] fromPlayer:self] == FALSE)

C.3. MINIMAX SOURCE CODE 133

23 NSLog(@"SOS the engine denied movement.");

24 }

25

26 // The method that begins the MiniMax Search.

27 - (BoardMove)searchForMove :(GameState)gs

28 {

29 int bestScore = INT_MIN;

30 BoardMove bestMove = allLegalMoves(&gs).head- >moveData;

31

32 timeToReturnMove = [NSDate dateWithTimeIntervalSinceNow:

TIME_TO_THINK];

33

34 int depth = 1 ;

35 BoardMove lastbestMove;

36

37 while ([timeToReturnMove timeIntervalSinceNow] > 0)

38 {

39 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init

];

40

41 TreeState searchTree = makeTreeState (&gs , NULL);

42 bestScore = INT_MIN;

43 lastbestMove = bestMove;

44

45 [self maxValue :& searchTree scorePointer :& bestScore

boardMovePointer :& bestMove searchDepth:depth];

46 depth ++;

47 freeTreeState (& searchTree);

48

49 NewCalcHashTable ();

50

51 [pool release];

52 }

53

54 freeHashTable ();

55 return lastbestMove;

56 }

57

58 -(int)maxValue :(TreeState *) treeState scorePointer :(int*) bestScore

boardMovePointer :(BoardMove *) bestMove searchDepth :(int)maxLevel

59 {

60

61 BOOL updateScore = FALSE;

62 insertIntoHashTable(&treeState- >gs , treeState- >level, INT_MIN

);

63

64 if(treeState- >level == maxLevel || treeState- >

gs.gameStatus.gameOver == TRUE || [timeToReturnMove

timeIntervalSinceNow] < 0)

65 {

66

67 if(treeState- >level == 1 && treeState- >boardScore > *

bestScore)

68 {

69 *bestMove = treeState- >gs.lastMove;

134 APPENDIX C. SOURCE CODE

70 *bestScore = treeState- >boardScore;

71 }

72

73 if (treeState- >level == 1 && treeState- >

gs.gameStatus.winner == playerID && treeState- >

gs.gameStatus.gameOver == TRUE)

74 {

75 *bestMove = treeState- >gs.lastMove;

76 *bestScore = INT_MAX;

77 if(updateScore == TRUE)

78 findInHashTable (& treeState- >gs)->score = treeState-

>boardScore;

79 return INT_MAX;

80 }

81 if(updateScore == TRUE)

82 findInHashTable (& treeState- >gs)->score = treeState- >

boardScore;

83 return [self eval:treeState];

84 }

85

86 treeState- >boardScore = INT_MIN;

87

88 SimpleList allMoves = makeSimpleList ();

89 allMoves = allLegalMoves (&treeState- >gs);

90

91 while (allMoves.head != NULL)

92 {

93 TreeState new = makeTreeStateChild(treeState);

94 new.level = treeState- >level + 1 ;

95 makeMoveOnState(&allMoves.head- >moveData ,&new.gs);

96

97 if(findInHashTable(&new.gs) == NULL || (findInHashTable

(&new.gs)->level == new.level && findInHashTable(&

new.gs)->foundNow == FALSE))

98 {

99 if(findInHashTable(&new.gs) != NULL)

100 {

101 findInHashTable(&new.gs)->foundNow = TRUE;

102 }

103 if(new.gs.playerMoving == enemyID)

104 treeState- >boardScore = MAX(treeState- >

boardScore, [self minValue :&new scorePointer

:bestScore boardMovePointer:bestMove

searchDepth:maxLevel]);

105 else

106 {

107 treeState- >boardScore = MAX(treeState- >

boardScore, [self maxValue :&new scorePointer:

bestScore boardMovePointer:bestMove searchDepth

:maxLevel]);

108 }

109 }

110

111 if(treeState- >boardScore >= treeState- >b)

112 {

C.3. MINIMAX SOURCE CODE 135

113 freeTreeState (&new);

114 freeSimpleList (& allMoves);

115

116 if(treeState- >level == 1 && treeState- >boardScore > *

bestScore)

117 {

118 *bestMove = treeState- >gs.lastMove;

119 *bestScore = treeState- >boardScore;

120 }

121 findInHashTable (&(treeState- >gs))->score = treeState- >

boardScore;

122 return treeState- >boardScore;

123 }

124

125 if(treeState- >boardScore > treeState- >a)

126 {

127 treeState- >a = MAX(treeState- >a, treeState- >boardScore

);

128 }

129

130 removeHeadFromSimpleList (& allMoves);

131 freeTreeState (&new);

132 }

133

134 freeSimpleList (& allMoves);

135

136 if(treeState- >level == 1 && treeState- >boardScore > *bestScore

)

137 {

138 *bestMove = treeState- >gs.lastMove;

139 *bestScore = treeState- >boardScore;

140 }

141 if(updateScore == TRUE)

142 findInHashTable (& treeState- >gs)->score = treeState- >

boardScore;

143 return treeState- >boardScore;

144 }

145

146 -(int)minValue :(TreeState *) treeState scorePointer :(int*) bestScore

boardMovePointer :(BoardMove *) bestMove searchDepth :(int)maxLevel

147 {

148 BOOL updateScore = FALSE;

149 insertIntoHashTable(&treeState- >gs , treeState- >level, INT_MAX

);

150

151 if(treeState- >level == maxLevel || treeState- >

gs.gameStatus.gameOver == TRUE || [timeToReturnMove

timeIntervalSinceNow] < 0)

152 {

153 if(treeState- >level == 1 && treeState- >boardScore > *

bestScore)

154 {

155 *bestMove = treeState- >gs.lastMove;

156 *bestScore = treeState- >boardScore;

157 }

136 APPENDIX C. SOURCE CODE

158

159 if (treeState- >level == 1 && treeState- >

gs.gameStatus.winner == playerID && treeState- >

gs.gameStatus.gameOver == TRUE)

160 {

161 *bestMove = treeState- >gs.lastMove;

162 *bestScore = INT_MAX;

163 if(updateScore == TRUE)

164 findInHashTable (& treeState- >gs)->score = treeState-

>boardScore;

165 return INT_MAX;

166 }

167

168 if(updateScore == TRUE)

169 findInHashTable (& treeState- >gs)->score = treeState- >

boardScore;

170 return [self eval:treeState];

171 }

172

173 treeState- >boardScore = INT_MAX;

174

175 SimpleList allMoves = makeSimpleList ();

176 allMoves = allLegalMoves (&treeState- >gs);

177

178 while (allMoves.head != NULL)

179 {

180 TreeState new = makeTreeStateChild(treeState);

181 new.level = treeState- >level + 1;

182 makeMoveOnState(&allMoves.head- >moveData ,&new.gs);

183

184 if(findInHashTable(&new.gs) == NULL || (findInHashTable(

&new.gs)->level == new.level && findInHashTable(&

new.gs)->foundNow == FALSE))

185 {

186 if(findInHashTable(&new.gs) != NULL)

187 findInHashTable(&new.gs)->foundNow = TRUE;

188

189 if(new.gs.playerMoving == playerID)

190 treeState- >boardScore = MIN(treeState- >

boardScore, [self maxValue :&new scorePointer:

bestScore boardMovePointer:bestMove searchDepth

:maxLevel]);

191 else

192 treeState- >boardScore = MIN(treeState- >

boardScore, [self minValue :&new scorePointer:

bestScore boardMovePointer:bestMove searchDepth

:maxLevel]);

193 }

194

195 if(treeState- >boardScore <= treeState- >a)

196 {

197 freeTreeState (&new);

198 freeSimpleList (& allMoves);

199

C.3. MINIMAX SOURCE CODE 137

200 if(treeState- >level == 1 && treeState- >boardScore > *

bestScore)

201 {

202 *bestMove = treeState- >gs.lastMove;

203 *bestScore = treeState- >boardScore;

204 }

205 if(updateScore == TRUE)

206 findInHashTable (& treeState- >gs)->score = treeState-

>boardScore;

207 return treeState- >boardScore;

208 }

209

210 if(treeState- >boardScore < treeState- >b)

211 treeState- >b = MIN(treeState- >b , treeState- >

boardScore);

212

213 removeHeadFromSimpleList(&allMoves);

214 freeTreeState (&new);

215 }

216

217 freeSimpleList (& allMoves);

218

219 if(treeState- >level == 1 && treeState- >boardScore > *bestScore

)

220 {

221 *bestMove = treeState- >gs.lastMove;

222 *bestScore = treeState- >boardScore;

223 }

224

225 if(updateScore == TRUE)

226 findInHashTable (& treeState- >gs)->score = treeState- >

boardScore;

227 return treeState- >boardScore;

228 }

229

230 - (int)eval:(TreeState *)ts

231 {

232 // val1: Value of a piece on the buttom line.

233 // val2: Value increce for a pice per leve.

234 // val3: Bonus for standing in the middel of the board.

235 // val4: Penalty for standing in front of the enemy, when they have

the turn.

236 // val5: Bonus for having 2 pieces on a row.

237 // val6: The value of a legal move.

238 // val7: The value of a goal.

239 // val8: the value of having the turn.

240 // val9: the value of beeing able to insert pieces on the board.

241 // val10: The value of having a piece standing on the opponents

home line.

242 // val11: The value of being the player having most pieces on the

board.

243

244 int redScore = 0 ;

245 int blackScore = 0 ;

246

138 APPENDIX C. SOURCE CODE

247 if(GAME_NOT_RUNNING(ts- >gs.gameStatus))

248 {

249 if(ts- >gs.gameStatus.winner == PLAYER_RED)

250 {

251 redScore = (INT_MAX - 100) - ts- >level ;

252 blackScore = 0 ;

253 }

254 if(ts- >gs.gameStatus.winner == PLAYER_BLACK)

255 {

256 blackScore = (INT_MAX - 100) - ts- >level ;

257 redScore = 0 ;

258 }

259 return playerID == PLAYER_RED ? redScore - blackScore :

blackScore - redScore;

260 }

261

262 BOOL realPlayerMovin = ts- >gs.playerMoving;

263

264 // Calculate score for red:

265 int x, y;

266 for (x = 0 ; x < ts- >gs.boardSize.width ; x++) {

267 for (y = 0 ; y < ts- >gs.boardSize.height ; y++) {

268 if(RED_FIELD(ts- >gs.board[x][y]))

269 {

270 redScore += val1 + val2 * y;

271

272 if(x > 0 && x < ts- >gs.boardSize.width - 1)

273 redScore += val3;

274

275 if(y < (ts- >gs.boardSize.height - 1) &&

BLACK_FIELD(ts- >gs.board[x][y + 1]) &&

ts- >gs.playerMoving == PLAYER_BLACK)

276 {

277 redScore -= val4;

278 }

279

280 if(y < (ts- >gs.boardSize.height - 1) &&

RED_FIELD(ts- >gs.board[x][y + 1]))

281 {

282 redScore += val5;

283 }

284 }

285 }

286 }

287

288 for (x = 0 ; x < ts- >gs.boardSize.width ; x++)

289 {

290 if(RED_FIELD(ts- >gs.board[x][ts- >gs.boardSize.height]))

291 {

292 redScore += val10;

293 }

294 }

295

296 if(ts- >gs.redPicesOnBoard > ts- >gs.blackPicesOnBoard)

297 {

C.3. MINIMAX SOURCE CODE 139

298 redScore += val11;

299 }

300

301 if(realPlayerMovin == PLAYER_RED)

302 {

303 redScore += val8;

304 }

305

306 ts- >gs.playerMoving = PLAYER_RED;

307

308 if([gl playerMovingCanInsertPieceOnState: &ts- >gs])

309 {

310 redScore += val9;

311 }

312

313 NSSet *redMoves = [gl allLegalMoves: &ts- >gs];

314 redScore += [redMoves count] * val6;

315 redScore += ts- >gs.score.red * val7;

316

317 // Calculate score for black:

318 for (x = 0 ; x < ts- >gs.boardSize.width ; x++) {

319 for (y = 0 ; y < ts- >gs.boardSize.height ; y++) {

320 if(BLACK_FIELD(ts- >gs.board[x][y]))

321 {

322 blackScore += val1 + val2 * y;

323

324 if(x > 0 && x < ts- >gs.boardSize.width - 1)

325 blackScore += val3;

326

327 if(y > 0 && RED_FIELD(ts- >gs.board[x][y - 1]

) && ts- >gs.playerMoving == PLAYER_RED)

328 {

329 blackScore -= val4;

330 }

331

332 if(y > 0 && RED_FIELD(ts- >gs.board[x][y - 1]

))

333 {

334 blackScore += val5;

335 }

336 }

337 }

338 }

339

340 for (x = 0 ; x < ts- >gs.boardSize.width ; x++)

341 {

342 if(BLACK_FIELD(ts- >gs.board[x][ts- >gs.boardSize.height])

)

343 {

344 blackScore += val10;

345 }

346 }

347

348 if(realPlayerMovin == PLAYER_BLACK)

349 {

140 APPENDIX C. SOURCE CODE

350 blackScore += val8;

351 }

352

353 ts- >gs.playerMoving = PLAYER_BLACK;

354

355 if([gl playerMovingCanInsertPieceOnState: &ts- >gs])

356 {

357 blackScore += val9;

358 }

359

360 NSSet *blackMoves = [gl allLegalMoves: &ts- >gs];

361 blackScore += [blackMoves count] * val6;

362

363 if(ts- >gs.blackPicesOnBoard > ts- >gs.redPicesOnBoard)

364 {

365 blackScore += val11;

366 }

367

368 blackScore += ts- >gs.score.black * val7;

369

370 if(GAME_NOT_RUNNING(ts- >gs.gameStatus))

371 {

372 if(ts- >gs.gameStatus.winner == PLAYER_RED)

373 {

374 redScore = (INT_MAX - 100) - ts- >level ;

375 blackScore = 0 ;

376 }

377 if(ts- >gs.gameStatus.winner == PLAYER_BLACK)

378 {

379 blackScore = (INT_MAX - 100) - ts- >level ;

380 redScore = 0 ;

381 }

382 }

383

384 ts- >gs.playerMoving = realPlayerMovin;

385 return playerID == PLAYER_RED ? redScore - blackScore :

blackScore - redScore;

386 }

387

388 - (id)initAsPlayer :(int)player withName :(NSString *) playerName

boardSize :(BoardSize)bs picesOnboard :(int)maxPices goalsToWin :(

int)maxGoals

389 {

390 self = [super init];

391 if (self != nil)

392 {

393 playerID = player;

394 enemyID = !playerID;

395

396 if(playerID == PLAYER_RED)

397 otherPlayer = PLAYER_BLACK;

398 else

399 otherPlayer = PLAYER_RED;

400

C.4. SIMULATED ANNEALING SOURCE CODE 141

401 gl = [[GameLogic alloc] initWithMaxPices:maxPices

goalsToWin:maxGoals boardSize:bs];

402

403 name = [NSString stringWithString:playerName];

404 [name retain];

405

406 val1 = 50;

407 val2 = 26;

408 val3 = 52;

409 val4 = 57;

410 val5 = 52;

411 val6 = 33;

412 val7 = 100;

413 val8 = 9;

414 val9 = 53;

415 val10 = 3;

416 val11 = 17;

417 }

418 return self;

419 }

420

421 - (void)setGameEngine :(id)ge

422 {

423 engine = ge;

424 }

425

426 - (void)reset

427 {

428 // Nothing to reset.

429 }

430

431 // The name of this instance of player.

432 - (NSString *) playerName

433 {

434 return name;

435 }

436

437 // Defines the name of this type of player.

438 + (NSString *) playerType

439 {

440 return [NSString stringWithFormat:@"Advanced AI@%1.1f",

TIME_TO_THINK];

441 }

442

443 @end

C.4 Simulated Annealing Source Code

C.4.1 simAneling.h

1 // simAnnealing

142 APPENDIX C. SOURCE CODE

2 // simAnnealing.h

3 //

4 // Created by Aron Lindberg.

5

6 #import <Cocoa/Cocoa.h >

7 #import <Foundation/Foundation.h >

8 #import "Datastructures.h"

9 #import "GameLogic.h"

10 #import "AIPlayer2.h"

11 #import "PlayerProtocol.h"

12 #import "AIDefinitions.h"

13 #import "GameEngine.h"

14

15 typedef struct eval {

16 int val1;

17 int val2;

18 int val3;

19 int val4;

20 int val5;

21 int val6;

22 int val7;

23 int val8;

24 int val9;

25 int val10;

26 int val11;

27 } EVAL_VARS;

28

29 @interface simAneling : NSObject {

30

31 @private

32 GameEngine *newEngine;

33 AIPlayer *red;

34 AIPlayer *black;

35

36 EVAL_VARS currentRed, currentBlack;

37

38 int nextAi;

39 int aiInWinner;

40 int aiInLoser;

41

42 EVAL_VARS AI_stuff[60];

43 EVAL_VARS AI_winners[30];

44 EVAL_VARS AI_losers[30];

45

46 int generation;

47 float randfactor;

48

49 NSFileHandle *fh;

50 EVAL_VARS nextplayer1, nextplayer2;

51 }

52

53 - (void)awakeFromNib;

54 - (EVAL_VARS) randomise :(EVAL_VARS)this;

55

56 @end

C.4. SIMULATED ANNEALING SOURCE CODE 143

C.4.2 simAneling.m

1 // simAnnealing

2 // simAnnealing.h

3 //

4 // Created by Aron Lindberg.

5

6 #import "simAneling.h"

7

8 #define GOALS_TO_WIN 1

9 #define PICES_ON_BOARD 6

10 #define BOARD makeBoardSize(4, 6)

11

12 @implementation simAneling

13

14 - (void)awakeFromNib

15 {

16 randfactor = 1.0;

17

18 fh = [NSFileHandle fileHandleForWritingAtPath:@"/Users/

Output.txt"];

19 [fh retain];

20 [fh writeData :[@"Start of new Calculation.\n" dataUsingEncoding

:NSASCIIStringEncoding]];

21

22 srandom ([[NSDate date] timeIntervalSince1970]);

23

24 int i;

25 for (i = 0 ; i < 60 ; i++)

26 {

27 AI_stuff[i].val1 = 600 + random () % 200 - 100;

28 AI_stuff[i].val2 = 50 + random () % 200 - 100;

29 AI_stuff[i].val3 = 730 + random () % 200 - 100;

30 AI_stuff[i].val4 = 760 + random () % 200 - 100;

31 AI_stuff[i].val5 = 500 + random () % 200 - 100;

32 AI_stuff[i].val6 = 70 + random () % 200 - 100;

33 AI_stuff[i].val7 = 1000 + random () % 200 - 100;

34 AI_stuff[i].val8 = 50 + random () % 200 - 100;

35 AI_stuff[i].val9 = 50 + random () % 200 - 100;

36 AI_stuff[i].val10 = 50 + random () % 200 - 100;

37 AI_stuff[i].val11 = 50 + random () % 200 - 100;

38

39 [fh writeData :[[NSString stringWithFormat:@"AI_stuff [%i]: %

i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i\n", i ,

AI_stuff[i].val1,AI_stuff[i].val2 , AI_stuff[i].val3,

AI_stuff[i].val4, AI_stuff[i].val5, AI_stuff[i].val6,

AI_stuff[i].val7, AI_stuff[i].val8, AI_stuff[i].val9,

AI_stuff[i].val10, AI_stuff[i].val11]

dataUsingEncoding:NSASCIIStringEncoding]];

40 NSLog(@"AI_stuff [%i]: %i, %i, %i, %i, %i, %i, %i, %i, %i, %

i, %i\n", i , AI_stuff[i].val1,AI_stuff[i].val2 ,

AI_stuff[i].val3, AI_stuff[i].val4, AI_stuff[i].val5,

AI_stuff[i].val6, AI_stuff[i].val7, AI_stuff[i].val8,

AI_stuff[i].val9, AI_stuff[i].val10, AI_stuff[i].val11)

144 APPENDIX C. SOURCE CODE

;

41 }

42

43 generation = 0;

44 nextAi = 0;

45

46 NSNotificationCenter *mainCenter = [NSNotificationCenter

defaultCenter];

47

48 [mainCenter addObserver:self selector:@selector(RestartGame :)

name:@"GameOver" object:nil];

49

50 red = [[AIPlayer alloc] initAsPlayer:PLAYER_RED withName: @"RED

" boardSize:BOARD picesOnboard:PICES_ON_BOARD goalsToWin:

INT_MAX];

51 black = [[AIPlayer alloc] initAsPlayer:PLAYER_BLACK withName: @

"BLACK" boardSize:BOARD picesOnboard:PICES_ON_BOARD

goalsToWin: INT_MAX];

52

53 currentRed = AI_stuff[nextAi];

54 nextAi ++;

55 currentBlack = AI_stuff[nextAi];

56

57 nextAi ++;

58

59 [red setEvaluationValues:AI_stuff[0]];

60 [black setEvaluationValues:AI_stuff[1]];

61

62 newEngine = [[GameEngine alloc] initWithPlayersRed:red

63 andBlack:black

64 goalsToWin:GOALS_TO_WIN

65 GameBoardDim:BOARD

66 MaxPices:

PICES_ON_BOARD

67 connectToGUI:nil];

68 [newEngine retain];

69

70 [red retain];

71 [black retain];

72

73 [red setGameEngine:newEngine];

74 [black setGameEngine:newEngine];

75

76 aiInWinner = 0;

77 aiInLoser = 0;

78 }

79

80

81 - (void)RestartGame :(NSNotification *) notification

82 {

83 [fh writeData :[[NSString stringWithFormat:@"\n---- > Game %i is

over <----\n", aiInWinner + 1] dataUsingEncoding:

NSASCIIStringEncoding]];

84

85 if([notification object] == red)

C.4. SIMULATED ANNEALING SOURCE CODE 145

86 {

87 AI_winners[aiInWinner] = currentRed;

88 aiInWinner ++;

89

90 [fh writeData: [[NSString stringWithFormat:@"the red

winner had: %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i

\n" , currentRed.val1 ,

91 currentRed.val2 , currentRed.val3 , currentRed.val4

,currentRed.val5 , currentRed.val6 ,

currentRed.val7, currentRed.val8 ,

currentRed.val9, currentRed.val10, currentRed.val11

] dataUsingEncoding:NSASCIIStringEncoding]] ;

92

93 [fh writeData: [[NSString stringWithFormat: @"the black

loser had: %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i \

n",currentBlack.val1,currentBlack.val2 ,

currentBlack.val3, currentBlack.val4,

94 currentBlack.val5, currentBlack.val6,

currentBlack.val7, currentBlack.val8,

currentBlack.val9, currentBlack.val10,

currentBlack.val11] dataUsingEncoding:

NSASCIIStringEncoding]];

95

96 }

97

98 else if([notification object] == black)

99 {

100 AI_winners[aiInWinner] = currentBlack;

101 aiInWinner ++;

102 [fh writeData: [[NSString stringWithFormat: @"the black

winner had: %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i

\n",currentBlack.val1,currentBlack.val2 ,

currentBlack.val3, currentBlack.val4,

currentBlack.val5, currentBlack.val6,

currentBlack.val7, currentBlack.val8,

currentBlack.val9, currentBlack.val10,

currentBlack.val11] dataUsingEncoding:

NSASCIIStringEncoding]];

103 [fh writeData :[[NSString stringWithFormat: @"the red loser

had: %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i \n"

,currentRed.val1,currentRed.val2 , currentRed.val3,

currentRed.val4, currentRed.val5, currentRed.val6,

currentRed.val7, currentRed.val8, currentRed.val9,

currentRed.val10, currentRed.val11] dataUsingEncoding:

NSASCIIStringEncoding]];

104 }

105

106 if(nextAi != 60)

107 {

108 nextplayer1 = AI_stuff[nextAi];

109 nextAi ++;

110 nextplayer2 = AI_stuff[nextAi];

111 nextAi ++;

112

113 [red setEvaluationValues:nextplayer1];

146 APPENDIX C. SOURCE CODE

114

115 [black setEvaluationValues:nextplayer2];

116

117 currentRed = nextplayer1;

118 currentBlack = nextplayer2;

119 [newEngine resetGame];

120 return;

121 }

122

123 if(nextAi == 60)

124 {

125 generation ++;

126

127 [fh writeData :[[NSString stringWithFormat:@"\n\n\n ----- >

Generating generation %i. Randomfactor is: %1.3f <-----

\n", generation, randfactor] dataUsingEncoding:

NSASCIIStringEncoding]];

128

129 BOOL spotfree[60];

130

131 int i;

132 for(i = 0 ; i < 60 ; i++)

133 {

134 spotfree[i] = TRUE;

135 }

136

137 nextAi = 0;

138 aiInWinner = 0;

139 aiInLoser = 0;

140

141 int somevar1 = 0;

142

143 for(i=0; i < 30 ; i++)

144 {

145 int temp = random () % 60;

146 while(spotfree[temp] != TRUE)

147 {

148 temp = random () % 60;

149 }

150

151 spotfree[temp] = false;

152

153 AI_stuff[temp] = [self randomise: AI_winners[i]] ;

154 somevar1 ++;

155

156 temp = random () % 60;

157 while(spotfree[temp] != TRUE)

158 {

159 temp = random () % 60;

160 }

161

162 spotfree[temp] = false;

163

164 AI_stuff[temp] = AI_winners[i];

165 somevar1 ++;

C.4. SIMULATED ANNEALING SOURCE CODE 147

166 }

167

168 for (i= 0 ; i < 60 ; i++)

169 {

170 [fh writeData :[[NSString stringWithFormat:@"AI_stuff [%i

]: %i, %i, %i, %i, %i, %i, %i, %i, %i, %i, %i\n", i

, AI_stuff[i].val1,AI_stuff[i].val2 , AI_stuff[i]

.val3, AI_stuff[i].val4, AI_stuff[i].val5, AI_stuff

[i].val6, AI_stuff[i].val7, AI_stuff[i].val8,

AI_stuff[i].val9, AI_stuff[i].val10, AI_stuff[i]

.val11] dataUsingEncoding:NSASCIIStringEncoding]];

171 }

172

173 if(randfactor > 0.05)

174 randfactor = randfactor - 0.02 ;

175 else

176 randfactor = randfactor - 0.002 ;

177

178 nextplayer1 = AI_stuff[nextAi];

179 nextAi ++;

180 nextplayer2 = AI_stuff[nextAi];

181 nextAi ++;

182

183 currentRed = nextplayer1;

184 currentBlack = nextplayer2;

185

186 if(randfactor > 0)

187 [newEngine resetGame];

188 }

189 }

190

191 -(EVAL_VARS) randomise :(EVAL_VARS)this

192 {

193 int v1 = (random () % 1001) - 500 ;

194 int v2 = (random () % 1001) - 500 ;

195 int v3 = (random () % 1001) - 500 ;

196 int v4 = (random () % 1001) - 500 ;

197 int v5 = (random () % 1001) - 500 ;

198 int v6 = (random () % 1001) - 500 ;

199 int v7 = (random () % 1001) - 500 ;

200 int v8 = (random () % 1001) - 500 ;

201 int v9 = (random () % 1001) - 500 ;

202 int v10 = (random () % 1001) - 500 ;

203 int v11 = (random () % 1001) - 500 ;

204

205 v1 = (int) v1 * randfactor;

206 v2 = (int) v2 * randfactor;

207 v3 = (int) v3 * randfactor;

208 v4 = (int) v4 * randfactor;

209 v5 = (int) v5 * randfactor;

210 v6 = (int) v6 * randfactor;

211 v7 = (int) v7 * randfactor;

212 v8 = (int) v7 * randfactor;

213 v9 = (int) v7 * randfactor;

214 v10 = (int) v7 * randfactor;

148 APPENDIX C. SOURCE CODE

215 v11 = (int) v7 * randfactor;

216

217 this.val1 += v1;

218 this.val2 += v2;

219 this.val3 += v3;

220 this.val4 += v4;

221 this.val5 += v5;

222 this.val6 += v6;

223 this.val7 += v7;

224 this.val8 += v8;

225 this.val9 += v9;

226 this.val10 += v10;

227 this.val11 += v11;

228

229 int t1 = MIN(this.val1 , this.val2);

230 int t2 = MIN(this.val3 , this.val4);

231 int t3 = MIN(this.val5 , this.val6);

232 int t4 = MIN(this.val7 , this.val8);

233 int t5 = MIN(this.val9 , this.val10);

234 int t6 = MIN(this.val11 , t1);

235 int t7 = MIN (t2, t3);

236 int t8 = MIN (t4, t5);

237 int t9 = MIN (t6, t7);

238 int totalmin = MIN(t8,t9);

239

240 if (totalmin < 0)

241 {

242 this.val1 += abs(totalmin);

243 this.val2 += abs(totalmin);

244 this.val3 += abs(totalmin);

245 this.val4 += abs(totalmin);

246 this.val5 += abs(totalmin);

247 this.val6 += abs(totalmin);

248 this.val7 += abs(totalmin);

249 this.val8 += abs(totalmin);

250 this.val9 += abs(totalmin);

251 this.val10 += abs(totalmin);

252 this.val11 += abs(totalmin);

253 }

254

255 t1 = MAX(this.val1 , this.val2);

256 t2 = MAX(this.val3 , this.val4);

257 t3 = MAX(this.val5 , this.val6);

258 t4 = MAX(this.val7 , this.val8);

259 t5 = MAX(this.val9 , this.val10);

260 t6 = MAX(this.val11 , t1);

261 t7 = MAX (t2, t3);

262 t8 = MAX (t4, t5);

263 t9 = MAX (t6, t7);

264 int totalmax = MAX(t8 , t9);

265

266 if (totalmax > 1000)

267 {

268 this.val1 = (int)(((float)this.val1 * 1000) / (totalmax)

) ;

C.5. FORCED LOOPS SOURCE CODE 149

269 this.val2 = (int)(((float)this.val2 * 1000) / (totalmax)

) ;

270 this.val3 = (int)(((float)this.val3 * 1000) / (totalmax)

) ;

271 this.val4 = (int)(((float)this.val4 * 1000) / (totalmax)

) ;

272 this.val5 = (int)(((float)this.val5 * 1000) / (totalmax)

) ;

273 this.val6 = (int)(((float)this.val6 * 1000) / (totalmax)

) ;

274 this.val7 = (int)(((float)this.val7 * 1000) / (totalmax)

) ;

275 this.val8 = (int)(((float)this.val8 * 1000) / (totalmax)

) ;

276 this.val9 = (int)(((float)this.val9 * 1000) / (totalmax)

) ;

277 this.val10 = (int)(((float)this.val10 * 1000) / (totalmax)

) ;

278 this.val11 = (int)(((float)this.val11 * 1000) / (totalmax)

) ;

279 }

280 return this;

281 }

282

283 @end

C.5 Forced Loops Source Code

C.5.1 FakeLogic.h

1 // Forced Loops

2 // Fake Logic.h

3 //

4 // Created by Aron Lindberg.

5

6 #import <Cocoa/Cocoa.h >

7

8 @interface FakeLogic : NSObject {

9

10 // Private instance variabels.

11 @private

12 int maxGoals;

13 int maxPicesOnBoard;

14 BoardSize boardSize;

15 int lastState;

16 }

17

18 // Public instance methods.

19 - (id)initWithMaxPices :(int)max goalsToWin :(int)goals boardSize :(

BoardSize)board;

20 - (GameState)CreateNewGameState;

150 APPENDIX C. SOURCE CODE

21 - (void)resetGameState :(GameState *)gs;

22 - (NSSet *) allLegalMoves :(GameState *)gs;

23 - (BOOL)makeMove :(BoardMove)playerMove withState :(GameState *)gs;

24

25 @end

C.5.2 FakeLogic.m

1 // Forced Loops

2 // Fake Logic.m

3 //

4 // Created by Aron Lindberg.

5

6 #import "FakeLogic.h"

7

8 @implementation FakeLogic

9

10 static int *maxGoalsPointer;

11 static int *maxPicesOnBoardPointer;

12 static BoardSize *boardSizePointer;

13

14 - (id)initWithMaxPices :(int)max goalsToWin :(int)goals boardSize :(

BoardSize)board

15 {

16 self = [super init];

17 if (self != nil)

18 {

19 maxPicesOnBoard = max;

20 boardSize = board;

21 maxGoals = goals;

22 maxGoalsPointer = &maxGoals;

23 maxPicesOnBoardPointer = &maxPicesOnBoard;

24 boardSizePointer = &boardSize;

25 }

26 return self;

27 }

28

29 - (GameState)CreateNewGameState

30 {

31 GameState gs = makeGameState(boardSize);

32 [self resetGameState: &gs];

33 return gs;

34 }

35

36 - (void)resetGameState :(GameState *)gs

37 {

38 int x, y;

39 for (x = 0 ; x < boardSize.width ; x++) {

40 for (y = 0 ; y < boardSize.height ; y++) {

41 gs- >board[x][y] = makeEmptykField ();

42 }

43 }

C.5. FORCED LOOPS SOURCE CODE 151

44 gs- >score = makeGameScore(0,0);

45 gs- >lastMove = NIL_MOVE;

46 gs- >playerMoving = PLAYER_RED;

47 gs- >redPicesOnBoard = 0;

48 gs- >blackPicesOnBoard = 0;

49 gs- >boardSize = boardSize; // TODO

50 gs- >gameStatus = RUNNING;

51 }

52

53 - (NSSet *) allLegalMoves :(GameState *)gs

54 {

55 NSMutableSet *setOfLegalMoves = [NSMutableSet setWithCapacity:

10];

56

57 if(gs- >score.red == 0)

58 {

59 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,100)

,makeBoardField(0,0))]];

60 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,120)

,makeBoardField(0,0))]];

61 }

62 else if(gs- >score.red == 100)

63 {

64 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,101)

,makeBoardField(0,0))]];

65 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,103)

,makeBoardField(0,0))]];

66 }

67 else if(gs- >score.red == 101)

68 {

69 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-1,-10)

,makeBoardField(0,0))]];

70 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,102)

,makeBoardField(0,0))]];

71 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,200)

,makeBoardField(0,0))]];

72 }

73 else if(gs- >score.red == 102)

74 {

75 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-1,-11)

,makeBoardField(0,0))]];

76 }

77 else if(gs- >score.red == 103)

78 {

79 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,107)

,makeBoardField(0,0))]];

152 APPENDIX C. SOURCE CODE

80 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,104)

,makeBoardField(0,0))]];

81 }

82 else if(gs- >score.red == 104)

83 {

84 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,105)

,makeBoardField(0,0))]];

85

86 }

87 else if(gs- >score.red == 105)

88 {

89 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,106)

,makeBoardField(0,0))]];

90 }

91 else if(gs- >score.red == 106)

92 {

93 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-1,-11)

,makeBoardField(0,0))]];

94 }

95 else if(gs- >score.red == 107)

96 {

97 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,108)

,makeBoardField(0,0))]];

98 }

99 else if(gs- >score.red == 108)

100 {

101 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,109)

,makeBoardField(0,0))]];

102 }

103 else if(gs- >score.red == 109)

104 {

105 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,110)

,makeBoardField(0,0))]];

106 }

107 else if(gs- >score.red == 110)

108 {

109 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,111)

,makeBoardField(0,0))]];

110 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-1,10)

,makeBoardField(0,0))]];

111 }

112 else if(gs- >score.red == 111)

113 {

114 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,121)

,makeBoardField(0,0))]]; //121

C.5. FORCED LOOPS SOURCE CODE 153

115 }

116 else if(gs- >score.red == 120)

117 {

118 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,121)

,makeBoardField(0,0))]];

119 }

120 else if(gs- >score.red == 121)

121 {

122 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,122)

,makeBoardField(0,0))]];

123 }

124 else if(gs- >score.red == 122)

125 {

126 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,103)

,makeBoardField(0,0))]];

127 }

128 else if(gs- >score.red == 200)

129 {

130 [setOfLegalMoves addObject: [[MoveObject alloc]

initWithMove:makeMove(makeBoardField(-2,0)

,makeBoardField(0,0))]];

131 }

132 else

133 {

134 NSLog(@"Warning, states out of scroop.");

135 }

136 [setOfLegalMoves retain];

137 return setOfLegalMoves;

138 }

139

140 - (BOOL)makeMove :(BoardMove)playerMove withState :(GameState *)gs

141 {

142 lastState = gs- >score.red;

143 if(playerMove.from.x == -1 && playerMove.from.y == -10)

144 {

145 gs- >gameStatus.gameOver = TRUE;

146 gs- >gameStatus.winner = PLAYER_RED;

147 gs- >score.red = -10;

148 }

149 else if(playerMove.from.x == -1 && playerMove.from.y == -11)

150 {

151 gs- >gameStatus.gameOver = TRUE;

152 gs- >gameStatus.winner = PLAYER_BLACK;

153 gs- >score.red = -11;

154 }

155 else if(playerMove.from.x == -2)

156 {

157 gs- >score.red = playerMove.from.y;

158 gs- >playerMoving = !gs- >playerMoving;

159 }

160 return TRUE;

161 }

154 APPENDIX C. SOURCE CODE

162

163 @end

C.5.3 Forced Loops.m

1 // Kolibrat

2 // GameLogic.h

3 //

4 // Created by Aron Lindberg.

5

6 #import <Foundation/Foundation.h >

7 #import "Datastructures.h"

8 #import "GameLogic.h"

9

10 @implementation gameStateObject

11

12 - (BOOL)hasLoop

13 {

14 return thisPathHasLoop;

15 }

16

17 - (NSMutableSet *) parrents

18 {

19 return parrents;

20 }

21

22 - (int) numberOfChildren

23 {

24 return [childs count];

25 }

26

27 - (GameState) returnState

28 {

29 return copyGameState(&state);

30 }

31

32 - (void) addParrent :(gameStateObject *) newParrent

33 {

34 [parrents addObject:newParrent];

35 }

36

37 -(void) releaseAllChildren

38 {

39 [childs removeAllObjects];

40 [childs release];

41 }

42

43 - (id) initWithGameState :(GameState)newState parrent :(

gameStateObject *) motherObject makeChildren :(BOOL)makeChildren

44 {

45 self = [super init];

46 if (self != nil) {

C.5. FORCED LOOPS SOURCE CODE 155

47

48 childs = [[NSMutableSet alloc] initWithCapacity:10];

49 state = copyGameState(&newState);

50

51 parrents = [[NSMutableSet alloc] initWithCapacity:3];

52 if(motherObject != nil)

53 [self addParrent:motherObject];

54

55 thisPathHasLoop = NO;

56 ChildrenIsFound = NO;

57 }

58 return self;

59 }

60

61 - (void) dealloc

62 {

63 if([childs count] != 0)

64 {

65 [childs removeAllObjects];

66 [childs release];

67 }

68 [super dealloc];

69 }

70

71 - (NSArray *) findMyChildren

72 {

73 [childs removeAllObjects];

74

75 BoardSize board = makeBoardSize(BOARDHEIGHT, BOARDWIDTH);

76 GameLogic *logic = [[GameLogic alloc] initWithMaxPices:

MAX_PIECES goalsToWin:GOALS_TO_WIN boardSize:board];

77

78 NSSet * moves = [NSSet setWithSet: [logic allLegalMoves: &state

]];

79 activechildren = [moves count];

80 NSEnumerator * enumerator = [moves objectEnumerator];

81 MoveObject *currentMove;

82 gameStateObject * childObject;

83

84 while (currentMove = [enumerator nextObject])

85 {

86 GameState child = copyGameState(&state);

87 [logic makeMove :[currentMove retriveMove] withState: &child

];

88

89 childObject = [[gameStateObject alloc] initWithGameState:

child parrent:self makeChildren:NO];

90

91 [childs addObject:childObject];

92 }

93 ChildrenIsFound = TRUE;

94 return [childs allObjects];

95 }

96

156 APPENDIX C. SOURCE CODE

97 - (void) childHasLoop :(gameStateObject *) loopChild withStates :(

NSMutableArray *) states andKnownStates :(NSMutableSet *)

knownStates testPlayer :(BOOL)plr

98 {

99 if(thisPathHasLoop == TRUE)

100 return;

101

102 if(state.playerMoving == plr)

103 {

104 NSEnumerator * enumerator = [childs objectEnumerator]; //

for all children

105 gameStateObject *currentChildState;

106

107 while (currentChildState = [enumerator nextObject])

108 {

109 [currentChildState isSubpathOfLoop:states

andKnownStates:knownStates];

110 }

111

112 thisPathHasLoop = TRUE;

113

114 NSEnumerator *e = [parrents objectEnumerator];

115 id obj;

116 while(obj = [e nextObject])

117 {

118 [obj childHasLoop:self withStates:states andKnownStates

:knownStates testPlayer: plr];

119 }

120 }

121

122 else

123 {

124 [loopChild isSubpathOfLoop:states andKnownStates:

knownStates];

125

126 activechildren--;

127

128 if(activechildren == 0)

129 {

130 thisPathHasLoop = TRUE;

131

132 NSEnumerator *e = [parrents objectEnumerator];

133 id obj;

134 while(obj = [e nextObject])

135 {

136 [obj childHasLoop:self withStates:states

andKnownStates:knownStates testPlayer: plr];

137 }

138 }

139 }

140 }

141

142 - (void) isSubpathOfLoop :(NSMutableArray *) states andKnownStates :(

NSMutableSet *) knownStates

143 {

C.5. FORCED LOOPS SOURCE CODE 157

144 if(thisPathHasLoop == TRUE)

145 return;

146

147 NSEnumerator * enumerator = [childs objectEnumerator];

148

149 gameStateObject *currentChildState;

150

151 while (currentChildState = [enumerator nextObject])

152 {

153 [currentChildState isSubpathOfLoop:states andKnownStates:

knownStates];

154 }

155

156 [states removeObject:self];

157 [knownStates removeObject:self];

158

159 thisPathHasLoop = TRUE;

160 }

161

162 - (BOOL)isEqual :(id)anObject

163 {

164 if(![self isKindOfClass: [anObject class]])

165 return FALSE;

166

167 BOOL returnVal = FALSE;

168

169 GameState newState = [anObject returnState];

170

171 if(newState.blackPicesOnBoard == state.blackPicesOnBoard

&&

172 newState.redPicesOnBoard == state.redPicesOnBoard

&&

173 newState.playerMoving == state.playerMoving

&&

174 newState.gameStatus.gameOver == state.gameStatus.gameOver

&&

175 newState.gameStatus.winner == state.gameStatus.winner

&&

176 newState.score.red == state.score.red

&&

177 newState.score.black == state.score.black)

178

179 {

180 returnVal = TRUE;

181

182 int x, y;

183 for (x = 0 ; x < BOARDWIDTH ; x++)

184 {

185 for (y = 0 ; y < BOARDHEIGHT ; y++)

186 {

187 if(newState.board[x][y].occupiedByRed !=

state.board[x][y].occupiedByRed ||

188 newState.board[x][y].occupiedByBlack !=

state.board[x][y].occupiedByBlack)

189 {

158 APPENDIX C. SOURCE CODE

190 returnVal = FALSE;

191 }

192 }

193 }

194 }

195

196 return returnVal;

197 }

198

199 - (unsigned)hash

200 {

201 unsigned hashVal;

202

203 int x, y;

204 for (x = 0 ; x < BOARDWIDTH ; x++) {

205 for (y = 0 ; y < BOARDHEIGHT ; y++) {

206 if(RED_FIELD(state.board[x][y]))

207 {

208 hashVal += y;

209 }

210 }

211 }

212

213 hashVal += state.redPicesOnBoard;

214

215 if(state.playerMoving == PLAYER_RED)

216 {

217 hashVal = hashVal * 7;

218 }

219

220 hashVal += state.score.red * 3;

221 hashVal += state.score.black * 11;

222

223 return hashVal;

224 }

225

226 @end

227

228 GameState copyGameState(GameState *state)

229 {

230 struct gameStateStruct temp;

231

232 temp.blackPicesOnBoard = state- >blackPicesOnBoard;

233 temp.redPicesOnBoard = state- >redPicesOnBoard;

234

235 temp.boardSize = state- >boardSize;

236

237 temp.playerMoving = state- >playerMoving;

238 temp.gameStatus = state- >gameStatus;

239

240 temp.lastMove = state- >lastMove;

241 temp.score = state- >score;

242

243 temp.board = malloc(BOARDWIDTH * sizeof(BoardFieldContent *));

244

C.5. FORCED LOOPS SOURCE CODE 159

245 int i;

246 for(i = 0; i < BOARDWIDTH; i++)

247 {

248 temp.board[i] = malloc(BOARDHEIGHT * sizeof(

BoardFieldContent));

249 }

250

251 int x, y;

252 for (x = 0 ; x < BOARDWIDTH ; x++) {

253 for (y = 0 ; y < BOARDHEIGHT ; y++) {

254 temp.board[x][y] = state- >board[x][y];

255 }

256 }

257 return temp;

258 }

259

260 int main (int argc, const char * argv [])

261 {

262 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

263

264 int player;

265 for(player = 1 ; player >= 0 ; player--)

266 { // Do the test both for the red and black player.

267

268 gameStateObject * rootgameState;

269

270 BoardSize board = makeBoardSize(BOARDHEIGHT, BOARDWIDTH);

271 GameLogic *logic = [[GameLogic alloc] initWithMaxPices:

MAX_PIECES goalsToWin:GOALS_TO_WIN boardSize:board];

272 [logic retain];

273

274 NSMutableArray * states = [[NSMutableArray alloc]

initWithCapacity:50000];

275 GameState emptyBoard = [logic CreateNewGameState];

276

277 gameStateObject * emptyBoardObject = [[gameStateObject

alloc] initWithGameState:emptyBoard parrent: nil

makeChildren: YES];

278

279 rootgameState = emptyBoardObject;

280

281 [states addObject:emptyBoardObject];

282

283 gameStateObject * nextGameObject;

284 GameState next;

285 NSMutableSet * childStates = [[NSMutableSet alloc]

initWithCapacity:50000];

286 NSMutableSet * knownStates = [[NSMutableSet alloc]

initWithCapacity:50000];

287

288 [knownStates retain];

289

290 int lastActive = 0;

291 int val;

292 while ([states count] > 0)

160 APPENDIX C. SOURCE CODE

293 {

294 NSAutoreleasePool * pool = [[NSAutoreleasePool alloc]

init];

295 val ++;

296 if(val % 10000 == 999)

297 if(lastActive > [states count])

298

299 lastActive = [states count];

300

301 nextGameObject = [states objectAtIndex:0];

302 next = [nextGameObject returnState];

303

304 [knownStates addObject:nextGameObject];

305 [nextGameObject retain];

306 [states removeObjectAtIndex:0];

307

308 if(next.gameStatus.gameOver == TRUE && player ==

PLAYER_RED)

309 {

310 //NSLog(@"red win somwhere. ");

311 }

312 else if(next.gameStatus.gameOver == TRUE && player ==

PLAYER_BLACK)

313 {

314 //NSLog(@"black win somwhere. ");

315 }

316 else if(next.playerMoving == player)

317 {

318 NSMutableSet * tempset2 = [[NSMutableSet alloc]

initWithArray :[nextGameObject findMyChildren]]

;

319

320 [tempset2 retain];

321 [tempset2 minusSet:knownStates];

322 if([tempset2 count] == [[nextGameObject

findMyChildren] count])

323 {

324 [states addObjectsFromArray :[nextGameObject

findMyChildren]];

325 }

326 else

327 {

328 NSEnumerator *e = [[nextGameObject parrents]

objectEnumerator];

329 id obj;

330 while(obj = [e nextObject])

331 {

332 [obj childHasLoop: nextGameObject

withStates:states andKnownStates:

knownStates testPlayer:player];

333 }

334 }

335

336

337 }

C.5. FORCED LOOPS SOURCE CODE 161

338 else

339 {

340 NSMutableSet * tempset = [[NSMutableSet alloc]

initWithArray :[nextGameObject findMyChildren]]

;

341 [tempset minusSet:knownStates];

342

343 if([tempset count] == [[nextGameObject

findMyChildren] count])

344 [states addObjectsFromArray: [nextGameObject

findMyChildren]];

345 else

346 {

347 NSMutableSet * tempset3 = [[NSMutableSet alloc]

initWithArray :[nextGameObject

findMyChildren]] ;

348 [tempset3 intersectSet:knownStates];

349

350 NSEnumerator * enumerator = [tempset3

objectEnumerator];

351 gameStateObject *obj;

352

353 while (obj = [enumerator nextObject])

354 {

355 NSEnumerator * knownE = [knownStates

objectEnumerator];

356 id obj2;

357

358 while (obj2 = [knownE nextObject])

359 {

360 if([obj2 isEqual:obj])

361 [obj2 addParrent:nextGameObject];

362 }

363 }

364

365 NSMutableSet * tempset4 = [[NSMutableSet alloc]

initWithArray :[nextGameObject

findMyChildren]] ;

366

367 [tempset4 minusSet:knownStates];

368 [states addObjectsFromArray: [tempset4

allObjects]];

369 }

370

371 }

372

373 [nextGameObject release];

374

375 [pool release];

376 }

377

378 if([rootgameState hasLoop] && player == PLAYER_RED)

379 NSLog(@"Red can enforce a loop.");

380 else if([rootgameState hasLoop] && player == PLAYER_BLACK

)

162 APPENDIX C. SOURCE CODE

381 NSLog(@"Black can enforce a loop.");

382 else if(player == PLAYER_BLACK)

383 NSLog(@"Black can not enforce a loop.");

384 else if(player == PLAYER_RED)

385 NSLog(@"Red can not enforce a loop.");

386

387 [states removeAllObjects];

388 [childStates removeAllObjects];

389 [knownStates removeAllObjects];

390 }

391 [pool release];

392 return 0;

393 }

Flow Diagrams

NS
Application UserNewGame

Controller

awakeFromNib:

GUI

Choose new
game in menu

validateMenuItem:

loadPlayers:

newGame:

GameWindow setVisible:

beginSheet:

display NewGameOptions

choose
game options

startGameButton:

redPlayer, blackPlayer and
GameEngine is initialized.

The setHighlightState:
and setBoardSize: is

called on GameController
before the game starts.

Diagram 2: UML flow diagram of game launch.

163

164

NS
Application GameLogicRed PlayerGameEngine

nextPlayer:

GUI

makeMove:

startNewTurn:

If red is a humen this
step involves the
reciving of mouse
events form the

GameBoard calss and
highlighting in the GUIplayerMove:

legalMovesForPieceInField:

makeMoveOnState()

updateToState:

setScore:

Posts
"NextPlayer"
notification

Sends out
"NextPlayer"
notification

to GameEngine

Diagram 3: UML flow diagram while playing through one turn.

165

NS
Application UserWinning

playerGameEngine

PlayerMove:

GameOverWithWinner:

GUI

ShowDialogMessage:

Respond to dialog:

GameDidEnd:

Assuming the
user choose to

quit

Terminate:

Diagram 4: UML flow diagram when the game is over.

Bibliography

[1] Suhas Sreedhar. Checkers, solved!, 2007. URL http://spectrum.
ieee.org/print/5379.

[2] Claude E. Shannon. Programming a computer for playing
chess. Philosophical Magazine, 41(314), March 1950. URL http:
//archive.computerhistory.org/projects/chess/related_
materials/text/2-0%20and%202-1.Programming_a_computer_
for_playing_chess.shannon/2-0%20and%202-1.Programming_a_
computer_for_playing_chess.shannon.062303002.pdf.

[3] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2. edition, 2003. ISBN 0137903952.

[4] Armand E. Prieditis. Machine discovery of effective admissible
heuristics. Machine Learning, 12(1-3), August 1993. URL http:
//dli.iiit.ac.in/ijcai/IJCAI-91-VOL2/PDF/017.pdf.

166

http://spectrum.ieee.org/print/5379
http://spectrum.ieee.org/print/5379
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-91-VOL2/PDF/017.pdf
http://dli.iiit.ac.in/ijcai/IJCAI-91-VOL2/PDF/017.pdf

	1 Preface
	1.1 Preconditions
	1.2 Aims and limitations
	1.2.1 Limitations

	1.3 Structure of thesis

	2 Game Development
	2.1 Concept design
	2.1.1 Graphical user interface
	2.1.2 Game Controller
	2.1.3 Game Engine
	2.1.4 Players

	2.2 User Interface
	2.2.1 Flow control
	2.2.2 GUI implementation

	2.3 Game Implementation
	2.3.1 Class details
	2.3.2 Kolibrat flow diagrams
	2.3.3 C data structures

	2.4 Testing
	2.4.1 Test summery

	3 Artificial intelligence
	3.1 Game Analysis
	3.1.1 Game state space
	3.1.2 Branching factor
	3.1.3 Complete analysis of Kolibrat
	3.1.4 Analyzing forced loops

	3.2 AI in Kolibrat games
	3.2.1 Mini-Max agent
	3.2.2 Optimizing the Mini-Max agent

	3.3 Implementing the Mini-Max agent
	3.3.1 Additional possible Mini-Max enhancements

	3.4 Optimizing the Heuristic function
	3.4.1 Neural network utility function
	3.4.2 Weighted linear evaluation function
	3.4.3 Choosing the heuristic parameters
	3.4.4 Determining the parameters weight

	3.5 Simulated annealing Implementation
	3.5.1 Simulated annealing results

	3.6 Heuristics Comparison

	4 Conclusions
	4.1 Future prospects

	A Kolibrat Rulebook
	A.1 Game Objectives
	A.2 Rules for movement

	B Tests Details
	C Source Code
	C.1 Kolibrat Source Code
	C.1.1 HumanPlayer.h
	C.1.2 HumanPlayer.m
	C.1.3 Datastructures.h
	C.1.4 Datastructures.m
	C.1.5 GameLogic.h
	C.1.6 GameLogic.m
	C.1.7 GameEngine.h
	C.1.8 GameEngine.m
	C.1.9 GameController.h
	C.1.10 GameController.m
	C.1.11 GameBoard.h
	C.1.12 GameBoard.m
	C.1.13 NewGameSheetController.h
	C.1.14 NewGameSheetController.m
	C.1.15 GUIProtocol.h
	C.1.16 PlayerProtocol.h
	C.1.17 main.m

	C.2 Kolibrat Test Source Code
	C.2.1 Kolibrat Test.m

	C.3 MiniMax Source Code
	C.3.1 AIDefinitions.h
	C.3.2 AIDefinitions.m
	C.3.3 AdvancedAI.h
	C.3.4 AdvancedAI.m

	C.4 Simulated Annealing Source Code
	C.4.1 simAneling.h
	C.4.2 simAneling.m

	C.5 Forced Loops Source Code
	C.5.1 FakeLogic.h
	C.5.2 FakeLogic.m
	C.5.3 Forced Loops.m

	Flow Diagrams
	Bibliography

