
Phase-ordering in optimizing
compilers

Matthieu Quéva

Kongens Lyngby 2007
IMM-MSC-2007-71

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Summary

The “quality” of code generated by compilers largely depends on the analyses
and optimizations applied to the code during the compilation process. While
modern compilers could choose from a plethora of optimizations and analyses,
in current compilers the order of these pairs of analyses/transformations is fixed
once and for all by the compiler developer. Of course there exist some flags that
allow a marginal control of what is executed and how, but the most important
source of information regarding what analyses/optimizations to run is ignored-
the source code. Indeed, some optimizations might be better to be applied on
some source code, while others would be preferable on another.

A new compilation model is developed in this thesis by implementing a Phase
Manager. This Phase Manager has a set of analyses/transformations available,
and can rank the different possible optimizations according to the current state
of the intermediate representation. Based on this ranking, the Phase Manager
can decide which phase should be run next.

Such a Phase Manager has been implemented for a compiler for a simple imper-
ative language, the while language, which includes several Data-Flow analyses.
The new approach consists in calculating coefficients, called metrics, after each
optimization phase. These metrics are used to evaluate where the transforma-
tions will be applicable, and are used by the Phase Manager to rank the phases.

The metrics are calculated using a new algorithm that approximates the data-
flow analyses for the while language. This algorithm skims through the inter-
mediate representation of the program only once, and thus solves the analyses’
equations faster than classical worklist algorithms.

ii

In order to evaluate the metric-based approach, a benchmark suite is created.
This suite generates a large amount of regular expressions that express various
orders of optimizations. The metric-based phase-ordering is applied on several
benchmark programs and compared to the best regular expression on each of
these programs.

Finally, this thesis considers the interactions between the transformations con-
sidered, as well as the effects of these transformations on the size and speed of
the program to improve the metric-based algorithm. The resulting versions of
the phase-ordering mechanism are then evaluated using the benchmark suite.

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the Master of Science degree in engineering.

The thesis deals with the ordering of optimization phases in optimizing com-
pilers. The main focus is on the application of a new approach based on the
calculation of metrics by a Phase Manager to rank the optimizations. In par-
ticular, this Phase Manager has been implemented on top of a compiler written
in Java for several Data-Flow analyses.

Lyngby, July 2007

Matthieu Quéva

iv

Acknowledgements

I wish to thank my supervisor, Christian Probst, for his strong interest in my
project and for his constructive criticisms during the period. We had a lot of
interesting talks about this project and it was very nice to have a supervisor
who followed closely my work, especially in moments of doubts and hesitations.

I would also like to thank the whole LBT (Language-Based Technology) group
at IMM in which I worked during this thesis.

I finally would like to thank all my friends in Denmark that supported me
during this thesis, including my girlfriend Julie who I should thank more often
for everything.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Compiler and optimizations . 2

1.2 Thesis outline . 5

2 Theoretical background 7

2.1 The Phase-Ordering Problem . 7

2.2 Data Flow analysis and algorithms 17

3 Setting the Scene 25

3.1 Description of the WHILE language 25

viii CONTENTS

3.2 Elements of the WHILE language compiler 26

3.3 Data Flow Analysis . 28

3.4 Transformations performed on the program 40

4 A new approach for optimizing compilers 47

4.1 Overall framework . 47

4.2 Introduction to the metric-based approach 48

4.3 Use of regular expressions . 49

5 Phase-ordering using a Metric-based Approach 63

5.1 The metric-based approach . 63

5.2 Choice of the different metrics . 64

5.3 Approximation of the different analyses 65

5.4 Definitions of the metrics . 85

5.5 Metric-based phase-ordering algorithm 90

6 Evaluation of the metric-based phase-ordering 97

6.1 Evaluation: Comparison with results from benchmark suite . . . 97

6.2 Dependencies between transformations 101

7 Evolution of the phase-ordering algorithm 111

7.1 Goals when optimizing a program 111

7.2 Effects of the transformations . 112

7.3 Consequences on the metrics’ comparison 118

CONTENTS ix

8 Design and implementation 123

8.1 Implementation language . 123

8.2 Main classes . 124

8.3 Implementation issues . 125

9 Future work and perspectives 127

9.1 Designing new metrics and extending the WHILE language . . . 127

9.2 Adding analyses and transformations 128

9.3 Integrating power and performance models 129

9.4 On the experimentation . 130

10 Conclusion 131

A Benchmark results 133

A.1 List of regular expressions used 133

A.2 Table of regular expressions with the number of instructions ex-
ecuted . 140

A.3 Data from metric-based phase-ordering evaluation 140

A.4 Data for metrics update using dependencies 142

A.5 Table of data for size-aimed optimization 143

B Comparison between the different algorithms 145

B.1 Equality of the results . 145

B.2 Comparison of performance . 147

x CONTENTS

C Dependencies and effects of the different transformations 149

C.1 Dependencies . 149

C.2 Effects . 158

Chapter 1

Introduction

Computer systems are used everywhere. From the desktop PC to the washing
machine, as you take your car that uses a plethora of micro-controllers, from
the high performance supercomputers to the tiny devices in mobile phones. A
computer systems in itself is a combination of hardware and software. To con-
trol the hardware, programmers implement a series of instructions in a specific
language called a programming language. The world depends on these pro-
gramming languages, because each software in any computer system is written
in some programming language. But before the machine can understand this
language, it must be transformed into another low-level language executable by
the computer.

The software that is responsible for this translation is called a compiler. The
compilers are also used to optimize the input code in order to improve the per-
formance of the application that has to be executed. In this thesis, we consider
the issue of the phase ordering in the optimizing compilers, i.e trying to find
the best order in which the different optimizations can be applied within the
compiler to produce the most efficient code.

This preliminary chapter briefly introduces the different features of a compiler,
from its structure to the optimizations and the issue of phase ordering. Then
the thesis outline is considered.

2 Introduction

1.1 Compiler and optimizations

We mentioned earlier the software programs called compilers, and in particu-
lar the optimizing compilers. This section deals with a description of what a
compiler is and does, and what optimizing compiler really means.

1.1.1 Description of a compiler

A formal description of what is a compiler can be obtained from Aho et al. ([1]):

a compiler is a program that can read a program in one language - the
source language - and translate it into an equivalent program in another
language - the target language.

The first programs to do this kind of translation were called assemblers, and
have been available since the 1950s. They were just taking assembly code
(e.g. “addcc %r1,%r2,%r4”) as input and translating it into machine code
(e.g “0x88804002”). Now, some of the current compilers can optimize the code
in order to improve the performance of the resulting application, according to
different goals (most often speed of execution, code size or power consumption).

These compilers are then called optimizing compilers, though the idea of an
optimal program is sometimes ambiguous in these compilers. Indeed, the no-
tion of optimality cannot exist in practice, because there are loops with condi-
tional jumps for which no semantically equivalent time-optimal program exists
on parallel machines ([22]). The structure of a typical multi-language, multi-
target compiler is shown in Figure 1.1.

[1] defines the two parts in a traditional compiler:

• The analysis part that breaks up the program into pieces that are then
used to create an intermediate representation. It can detect if the source
program is syntactically wrong and report it to the user. In an ideal
compiler, this part, also called the frontend of the compiler, is independent
from the target language (and thus the target machine).

• The synthesis part that constructs the target program from the interme-
diate representation. This part, also called the backend, is ideally inde-
pendent from the source program.

1.1 Compiler and optimizations 3

Figure 1.1: A multi-language, multi-target compiler ([5])

On the optimizing compilers, another part is included between these two parts:
it is the machine- and language-independent optimization part that applies var-
ious optimizations on the intermediate representation, aiming at improving the
target program’s performance.

1.1.2 Optimizations

It can be very profitable to improve the object code produced by a compiler.
Nowadays, a lot of applications have performance constraints: whenever a ven-
dor advertises his new application, he is likely to emphasize its performance in
order to attract the customers. Such constraints are also very frequent whenever
the computer system is an embedded device. Indeed, these embedded systems
face speed constraints, as many of the real-time systems; code size constraints,
because the memory available is limited; and power consumption constraints,
as power supply is also limited.

Thus, a lot of different optimizations are available in optimizing compilers and

4 Introduction

can be applied on the intermediate code, as illustrated in Figure 1.1. Again,
Muchnick ([15]) emphasizes the fact that “optimization is a misnomer - only very
rarely does applying optimizations to a program result in object code whose per-
formance is optimal, by any measure”.

A simplified model of an optimization phase is:

Optimization = Analysis + Transformation

The analysis part is used to gather information about different parameters in
the program, e.g. variables, instructions, structure of the program.... The trans-
formation is the part that will use the results from the analysis and apply the
changes on the program.

It is very profitable to apply optimizations on the intermediate representation
of the program because:

1. The intermediate code representation is normalized and source-independent:
thus programs written in different source languages can produce the sim-
ilar intermediate code.

2. The intermediate code representation is also target-independent, so the
optimizations can be applied on the same intermediate representation and
then the target code can be generated for different target architectures.

3. The intermediate representation is semantically simpler than the source
program, and is often represented as a parse tree, which simplify the anal-
yses.

1.1.3 Phase ordering

The phase ordering problem has long been known to be a difficult dilemma for
compiler writers ([25]). It consists on answering the question:

“Which number of optimizations should be applied to the program, and in
which order, to achieve the greatest benefit?”

One specific sequence of optimizations is highly unlikely to be the most effective
sequence for every program on a given machine. Current optimizing compilers
contain command-line flags (such as -O, -O2, -O3 for gcc [18]) that provide

1.2 Thesis outline 5

the user with some pre-defined optimizations sequences. These sequences are
worked out to be efficient optimizations orders, but these orders are still fixed
for all programs. Then, they cannot be optimal for every program, especially
because of the interactions between the different optimizations, and also because
a program may require a certain order that will not be very efficient on another
one.

1.2 Thesis outline

In this thesis, the issue of the phase ordering in the optimizing compilers will
be addressed. The thesis will focus on several intra-procedural analyses and
transformations, using one of the main approach to program analysis, namely
Data Flow Analysis.

The next chapter deals with the theoretical background behind the phase-
ordering problem. It addresses the previous work concerning this problem, as
well as the data flow analyses and the different algorithms currently available
to solve the equations derived from these analyses.

Chapter 3 describes the environment in which the phase-ordering problem has
been addressed in this thesis. It describes the while language and the analyses
and transformations available in the while compiler.

Chapter 4 introduces the new compilation model where another module, called
the Phase Manager, has been added to the existing compiler model. It also
covers the first approach to the phase-ordering problem, where regular expres-
sions are used to express the order of optimization. Finally a benchmark suite
is designed.

Chapter 5 covers the main approach to the problem considered in this the-
sis, where the Phase Manager uses coefficients, called metrics, to evaluate the
effects of the different optimizations according to the state of the intermediate
representation.

Chapter 6 establishes an experimental comparison between the best regular ex-
pressions from the benchmark suite and the metric-based compilation approach.
It then considers the interactions between the different optimizations to try to
improve the metrics’ computation time.

Chapter 7 covers a small study on the effects of the optimizations used and
an evolution of the phase-ordering algorithm toward a goal-dependent mecha-

6 Introduction

nism.

Chapter 8 covers the design and the implementation of the Phase Manager
in Java, and the different issues that occurred during this implementation.

Finally, Chapter 9 discusses several issues and perspectives of future work, and
Chapter 10 presents the conclusion of the work done in this thesis.

Chapter 2

Theoretical background

This chapter first gives an overview of the previous work that has been at-
tempted in order to find viable solutions to the phase-ordering problem in com-
pilers. Then the second part of this chapter is dedicated to some basic knowledge
about Data Flow Analysis, and the different frameworks and algorithms used
to model the analyses and solve the different resulting equations. This chapter
aims at giving the reader some knowledge about the different approaches of
the research community concerning this major issue in compilers, as well as the
necessary background for the different optimization techniques addressed in the
rest of this thesis.

2.1 The Phase-Ordering Problem

Finding the best order in optimizing compilation is an old problem [22]. Most
optimizing compilers contain tens of different optimization phases, but because
of their interactions, the target code produced can differ depending on the order
in which these optimization phases were applied.

Although the capabilities of optimizing compilers have grown over time, some
researchers have been investigating the benefits of this work. In [20], Scott

8 Theoretical background

describes (and evaluates) a pretty pessimistic assertion known as Proebsting’s
Law. This assertion is to be associated with the well-known Moore’s Law ([14]),
which states that the processors have been doubling in capabilities every 18
months, while according to Proebsting the capabilities of the optimizing com-
pilers have been doubling every 18 years! After evaluating Proebsting’s Law,
Scott concludes on the relative veracity of Proebsting, but clearly emphasizes
that the benefit from compiler research is still not negligible, as the developed
compiler technology has been able to achieve up to an average speedup of 8.1.

2.1.1 Theoretical models

In order to have a better overview of the phase ordering problem, some re-
searches have been attempted on a theoretical approach to this problem. In
[22], Touati and Barthou provides a formalism for two different known prob-
lems, including the phase-ordering issue itself. This part relates their work on
the modeling of the problem and their results concerning whether the phase-
ordering problem can be decidable or not.

2.1.1.1 Formulation of the problem

In order to study the decidability of the phase-ordering problem, Touati and
Barthou made a theoretical model in [22]. Starting from a finite set of opti-
mization modules M, the aim is to construct an algorithm A with four inputs:
a performance evaluation function t, a program P, an input data I and a de-
sired execution time T. Then, this algorithm A must compute a finite sequence
s = mn ◦mn−1 ◦ ... ◦m0,mi ∈M∗ that solves the following problem:

pb. 1 Let M be a finite set of program transformations. For any performance
evaluation function t, ∀T ∈ N an execution time (in processor clock cy-
cles), ∀P a program, ∀I input data, does there exist a sequence s ∈ M∗

such that t(s(P), I) < T ? In other words, if we define the set:

SM(t,P, I, T) = {s ∈M∗|t(s(P), I) < T}

is the set SM(t,P, I, T) empty ?

The decidability of this problem is very much linked to the different parameters
in stake. Indeed, when making the assumption that there exists a program that
can be optimized into an infinite number of different programs, they proved

2.1 The Phase-Ordering Problem 9

that the problem is undecidable. This means that the number of different op-
timization sequences is infinite, but also that it is not possible to find a fixed
point where all the remaining sequences create programs that have already been
generated previously.

2.1.1.2 Simplification of the problem

In order to simplify this problem towards a decidable model, Touati and Barthou
([22]) consider two cases:

1. a model with compilation costs

2. the case of generative compilers

The compilation cost model introduces a function c that models a cost in the
compilation. This cost can be the compilation time, the number of generated
programs, the number of compilation sequences, etc... Adding this function
makes the problem much easier, as it is a strictly increasing function, thus the
algorithm A can trivially search for all the compilation sequences with bounded
cost, and get the best one among them. This approach is often used in the
iterative compilation (see Section 2.1.2).

The other approach they consider is the one-pass generative compilers. In these
compilers, the intermediate program is optimized and generated in a one pass
traversal of the parse tree. Whenever a part of the program is optimized by
a set of compilation phases, the final code for this part is generated, so it is
not possible for another optimization module to re-optimized this part. This
approach aims at producing local optimized code instead of globally optimizing
the program. [22] contains a simple algorithm to show that this instance of the
phase ordering problem is decidable too. A synthesis of the decidability analysis
of the phase ordering problem can be seen in Figure 2.1.

This theoretical approach by Touati and Barthou is an interesting step to model
and understand the phase ordering problem, in order to come with efficient so-
lutions. However, this model is still vague about the decidability of the problem
when an evaluation function that does not require the execution of the program
is used. Indeed, they considered that the evaluation function t is not an ap-
proximation, and thus, as their model does not take the underlying hardware
of the target machine into account in the performance evaluation, only the real
execution time can yet satisfy this condition.

10 Theoretical background

Figure 2.1: Classes of Phase-Ordering Problems [22]. The SPIRAL project is
an example of a generative compiler [19]

This model however shows great hope for compiler’s developers as the simplifi-
cation of the phase-ordering problem can lead to make the problem decidable.
The use of static performance evaluation techniques or the limitation of some
parameters as the sequence length permits to obtain efficient optimized code,
as can be seen in the next section.

2.1.2 Current compilation techniques

Currently, several types of compilation are used in an attempt to find optimal
code. Some are requiring a longer compilation time than others, though most
often producing better results. The two types of compilation techniques consid-
ered in this section are the profit-driven compilation and iterative compilation,
with an emphasis on the latter one.

2.1.2.1 Profit-driven compilation

Profit-driven compilation consists in using static cost models in order to find
the best order of optimization associated with a specific performance goal. The
main issue with this type of compilation is that it heavily relies on the cost mod-

2.1 The Phase-Ordering Problem 11

els, which are not reliable for more and more complex and dynamic architectures.

In [26], Zhao et al. evaluate the different optimization sequences to apply to a
given program using a specific performance model. This model is determining
the profit of the different optimization sequences according to three types of
analytic models: code, optimization and resource models, considering resources
like cache behaviour, registers and functional units.

The code model is a representation of the input code automatically generated
by the optimizer. It expresses different characteristics of the code segment that
can be targeted by an optimization or that can have an impact on one of the
resources.
The optimization model is representing the impacts of a transformation on the
resources and on the target code. This model is defined by the compiler writer
whenever he is introducing a new optimization in the compiler.
The resource model consists in describing a specific resource according to the
benefits and costs information in using this particular resource. This model is
machine-dependent and must be modified whenever another target platform is
used.

These three models provide information to a profitability engine which will
compute the profit of the optimizations applied. In this particular model, and
contrary to the theoretical model defined in [22], the optimizations does not con-
sider the input data, and the same sequence of optimizations is applied whatever
the values of the input. However, the experimental results in [26] show that it
can be possible to find efficient optimization sequences without having to run
the resulting code, though an accurate modeling of the resources, which has an
important impact, can still be difficult for complex target architectures.

2.1.2.2 Iterative compilation

Another interesting approach is the field of iterative compilation. In this ap-
proach, the program is compiled multiple times iteratively, and at each iteration,
a new optimization sequence is used, until an “optimal” solution is found. How-
ever, it is clear that trying all the optimization sequences possible is far from
reasonable, as the optimization search space is much too wide to exhaustively
enumerate all the possible sequences. In fact, the problem can be very complex
as many optimizations are successful multiple times, making it impossible to fix
the sequence length for all functions. However, some researchers have created
efficient compilers with this iterative method, using several different methods to
prune the search space, and fixing some of the parameters.

12 Theoretical background

Three different methods are described in the following paragraphs: the Optimization-
Space Exploration, the characterization of the optimization search space, and
the use of heuristics.

The Optimization-Space Exploration approach

In [23], Triantafyllis et al. present an novel iterative compilation approach,
called Optimization-Space Exploration (OSE). This method uses the classic it-
erative compilation techniques, optimizing each code segment with various op-
timizations configurations and evaluating the resulting code after optimization
to find the best sequence, as can be seen in Figure 2.2.

Figure 2.2: Optimization-Space Exploration approach [23]

However, the compilation time is greatly reduced by three different techniques:

1. First, the search space that is explored at compile-time is pruned at com-
piler construction-time and dynamically at compile-time. At construction-
time, the number of configurations of optimization-parameter value pairs
are limited to those that are more likely to contribute to higher perfor-
mance, and these remaining configurations are arranged in a tree which
will be used for the optimization search at compile-time.

2. The second technique concerns the performance evaluation function. Per-
formance evaluation is a key factor in iterative compilation, taking an
important amount of time when the execution of the produced code is
needed. In [23], Triantafyllis et al. uses a static performance evaluation
function that uses a machine model. Again, each target architecture will
require a specific execution model.

3. The last technique consists in only considering the hot segments in the

2.1 The Phase-Ordering Problem 13

optimization. The stated reason is that most of the execution time is
spent in small portions of the code. These hot segments can be found
using profiling.

The main advantage of this approach is that it can produce relatively good result
with an acceptable compile time. However, the search space and the portion of
optimized code are limited, which makes it unlikely to provide an optimal final
code every time.

Characterization of the optimization search space

In order to make iterative compilation without having to make too many simpli-
fications, a study of the optimization search space is necessary. Unfortunately,
as written before, exhaustively enumerating all the possible optimization se-
quences is not feasible. However, Kulkarni et al. have been very enterprising on
this topic [9, 8, 11, 12].

In [9], they developed an interactive compilation system called VISTA. This
framework can be seen in Figure 2.3.

Figure 2.3: The VISTA framework. The EASE environment [6] can translate a
source program to machine instructions for a proposed architecture, imitate the
execution of these instructions and collect measurements.

This framework is associated to an optimization phase programming language
that provides the user the opportunity to define interactively the optimization
sequences he wants to apply on a specific program. Once these sequences are
given, they are all evaluated, the VISTA compiler chooses the best sequence
according to certain fitness criteria, and it finally displays the feedback infor-
mation.

14 Theoretical background

Kulkarni et al. used their VISTA framework in [8, 11] to explore the optimiza-
tion search space in two different ways, while investigating the phase ordering
problem without varying the optimization parameters. In [8], they used a ge-
netic algorithm and several techniques to aggressively prune the search space in
order to make the search for efficient optimization sequences faster. The defi-
nition of a genetic algorithm is considered further in this section. The pruning
techniques used are:

1. Finding redundant attempted sequences: whenever a new optimization
sequence is generated by mutation using the genetic algorithm, it can
happen that an already attempted sequence appears. Kulkarni et al. keep
track of all attempted sequence in order not to evaluate it again.

2. Finding dormant phases: some phases can have no effect when applied
after other phases. By only considering active (i.e non-dormant) phases,
they can find the already attempted active phases and not evaluate them
again.

3. Finding identical and equivalent code: using a CRC checksum, they can
detect if the resulting code has already been generated. They also detect
the cases where the generated code is not identical but has the same char-
acteristics, for example using different register names (equivalent code).

These techniques helped them to reduce the average number of generations re-
quired to find the best sequence by over two thirds.

In [11], they used these techniques to make an exhaustive enumeration of the op-
timization phase order space in a reasonable amount of time. The main pruning
process can be seen in Figure 2.4.

Thanks to this enumeration, they were able to gather some very interesting ex-
perimental insights concerning the interactions between the optimization they
used. They finally produced a probabilistic compilation algorithm using the
dependency probabilities from these experimental results. This exhaustive enu-
meration of the optimization phase order search space finally helped them to
find instances that achieve optimal dynamic execution performance in [12] for
most of the program functions they considered.

Using heuristics in adaptive compilers

As seen before, the exhaustive exploration or the optimization phase order space
is a good way to produce optimal optimization sequences, but, although Kulka-
rni et al. made it possible in a reasonable amount of time for a large majority of

2.1 The Phase-Ordering Problem 15

Figure 2.4: Pruning the search space [11]. The first figure shows a naive space
enumeration, while the second one is reduced using pruning techniques (deleting
dormant phases and joining identical instances detection).

the functions, it still takes long for most large functions, making it unsuitable
for routine use in iterative compilers.

Current compilers employ most often faster heuristic algorithms in order to
scan only a smaller part of the search space. The common heuristic search
techniques are:

• The local search techniques. One example is the hill climbing algo-
rithm. This algorithm starts with a randomly chosen phase sequence, and
measure its performance. Then the performance of all its neighbors is
evaluated. The neighbors can be defined to be all sequences that differ
from the base sequence in a single position. If one of the neighbors has
an equal or better performance than the base sequence, this neighbor be-
comes the new base sequence. This technique helps finding local optimum
in the phase order space. This is repeated for several sequence lengths.

• The greedy algorithms. Greedy algorithms look for the locally opti-
mum choice at every step of the sequence construction, in the hope of
finally reaching the global optimum. The base sequence can be the empty
sequence for the phase ordering problem.

• Algorithms that focus on leaf instances. Genetic algorithms are one
of these. They deals with leaf instances, which are sequences that cannot
be modified to change the resulting code anymore. They are based on

16 Theoretical background

Darwin’s theory of evolution; genes are the optimization phases, and the
chromosomes are the optimization sequences. For example, in [10], after
being initialized, the chromosomes are ranked by performance. The best
ones are kept, while the worst ones and some randomly chosen from the
poorly performing half suffer a mutation, where the sequence is mixed with
one from a good performing chromosome.

Using these techniques permits to decrease the compilation time, but it is not
possible to be ensured that the generated program will be optimal. Almagor et
al. [2] performed an experimental study to evaluate some of these techniques for
their compiler. Their compiler is said to be adaptive because it uses a steering
algorithm that automatically adjusts the compilation order once the previous
phase sequence has been evaluated. In order to complete their experiments,
they had to restrict the space to 10-of-5 subspaces (sequences of length 10 from
5 optimizations) and small programs. Their results show that biased search can
do almost as well as the more expensive genetic algorithms.

On the same topic, Kulkarni et al. [10] used their previously enumerated space
to perform a full study of various heuristic search algorithms. Again, they con-
clude that simpler techniques like hill climbing (with multiple iterations) can
produce better results than more complex solutions like genetic algorithms.

2.1.3 To a better understanding of the optimizations

In order to improve the previously described compilation techniques, under-
standing the different optimizations and their interactions remains one of the
most useful methods though it may also be one of the most challenging. In [13],
Lee et al. provides an experimental methodology to measure the benefits and
the cost of optimizations, alone and in combination with the other optimiza-
tions. However, their experiments still revealed that some of the optimization
phases considered had unpredictable behavior.

Aside from all the experimental work attempted to analyze the behavior of
the optimizations and find an efficient solution for the phase ordering problem,
some researchers have attempted to have a more formal approach in order to
improve the global understanding of the optimizations and address the problem
more systematically. Whitfield and Sofia [24] created a framework to specify
formally some classical compiler optimizations in order to have a more the-
oretical and systematic approach of the problem. This framework allows to
describe the optimizations and get theoretical feedback on the different inter-

2.2 Data Flow analysis and algorithms 17

actions between these transformations. In [25], they extended this framework
to define a specification language, called Gospel, that can be used to describe
other optimizations, as well as a tool that, given the Gospel specification of a
transformation, can generate the transformation code. The main issue is that in
cases of cyclic interactions between two optimizations, i.e. when two optimiza-
tions enable each other, it is not possible to know the best ordering without
having specific informations concerning the compiler.

2.1.4 Conclusions

This section related the previous work in attempting to find solutions to the
phase ordering problem. Currently, iterative compilers using heuristic search
algorithms are the most used, because they are not evaluating all the search
space, thus taking less time. These heuristics have been experimentally shown
to provide efficient results, though it is of course not possible to be sure that the
generating code will be optimal. Hence, despite the longer compilation time,
complete iterative compilation is most often used for high performance applica-
tions, as well as final applications in embedded systems, as they need to be as
optimized as possible.

Research has also produced other compilers capable to compile in a reduced
compile time, thanks to the use of static performance estimators that does not
require the real-time execution of the resulting code. However, the performance
of the generated code may be lower than the one from iterative compilation, due
to the number of assumptions and the approximation made in the performance
evaluation function.

2.2 Data Flow analysis and algorithms

The analyses considered in this thesis are all following the Data-Flow Analysis
approach. This section defines in what consists this approach, then describes
how some analyses can be grouped into frameworks, and finally the last part
considers the different algorithms available to solve the equations generated in
these analyses.

18 Theoretical background

2.2.1 The Data-Flow Analysis principle

In Data Flow Analysis, the program, in its intermediate representation, is seen
as a graph. The nodes of this graph are the different elementary blocks of the
program, and the edges represent the control flow of the program, i.e. the pos-
sible sequence in which the program’s blocks can be executed. Each block is
labeled in order to be directly accessible when performing the analyses.

Figure 2.6 shows the control flow for the small factorial program of Figure 2.5.

[x:=5]1; [y:=1]2; while [x>1]3 do [y:=x*y]4; [x:=x-1]5 od

Figure 2.5: The factorial program.

Figure 2.6: Flow graph for the factorial program.

Data-Flow Analysis provides information on specific data of the program (value
of variables, reaching definitions,...) at the entry and the exit of each block. In
order to compute these information, each instance of data-flow analyses defines
a transfer function, which is a relationship between the data before a block (at
the entry) and the data after the block (at the exit). Then, the definition of this
transfer function on the different blocks of the program defines the data-flow
equations for a specific analysis.

2.2 Data Flow analysis and algorithms 19

2.2.2 Monotone Frameworks

The different analyses from Data-Flow Analysis define different transfer func-
tions. They traverse the flow graph in different ways and concern several type of
data. However, there exist some similarities between them that make possible
to define an underlying framework.

The Monotone Framework defines the analyses where the transfer function is
a monotone function: fl : L → L. The data-flow equations for the analyses of
this framework take the form

Analysisentry(l) =
{

ι if l ∈ E⊔
{Analysisexit(l′)|(l′, l) ∈ F} otherwise

Analysisexit(l) = fl(Analysisentry(l))

where

• Analysisentry(l) and Analysisexit(l) are the data-flow information at the
entry and exit of the block labelled l.

•
⊔

is
⋂

or
⋃

(and t is ∩ or ∪).

• F defines pairs of label corresponding to the edges of the program. These
edges can be either forward or backward edges. For example, for Figure
2.6, F can be either {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} for a forward flow
and {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} for a backward flow.

• E is the entry set from which to start the equations. For Figure 2.6, E
would be {1} for a forward analysis and {3} for a backward one.

• ι specifies the initial or final analysis information.

L is defined to be the property space of an analysis. This property space is used
to represent the data flow information. In fact, most of the time this property
space is a complete lattice. As defined in [16], a complete lattice is a partially
ordered set, (L,v), such that each subset, Y , has a least upper bound,

⊔
Y . A

subset Y has l ∈ L as an upper bound if ∀l′ ∈ Y : l′ v l, and a least upper bound
l of Y is an upper bound of Y that satisfies l v l0 whenever l0 is another upper
bound of Y . Furthermore, ⊥=

⊔
∅ =

d
L is the least element (or bottom) and

> =
d
∅ =

⊔
L is the greatest element (or top). A lattice L is often represented

as a set (L,v,
⊔

,
d

,⊥,>).

20 Theoretical background

There exist stronger concepts than the Monotone Framework, including:

• A Distributive Framework is a Monotone Framework where additionally
all functions f of F are required to be distributive:

f(λ1 t λ2) = f(λ1) t f(λ2)

• A Bit Vector Framework is a Distributive Framework where additionally
L is a powerset of a finite set and all functions f of F have the form:

f(λ) = (λ\kill) ∪ gen

where kill and gen are two sets.

2.2.3 Algorithms

Here is an example of data-flow equations for Reaching Definitions Analysis
(defined in Section 3.3.1). Considering the factorial program again (Figure 2.5),
the killRD and genRD sets are for this program:

l killRD(l) genRD(l)
1 {(x, ?), (x, 1), (x, 5)} {(x, 1)}
2 {(y, ?), (y, 2), (y, 4)} {(y, 2)}
3 ∅ ∅
4 {(y, ?), (y, 2), (y, 4)} {(y, 4)}
5 {(x, ?), (x, 1), (x, 5)} {(x, 5)}

The equations for this analysis are shown in Figure 2.7. Several algorithms are
available to solve these equations. In the remaining of this section, two of these
algorithms are described: the first one, called the MFP solution (for Maximal
Fixed Point) uses the framework to obtain an analysis result, while the second
one, an abstract worklist algorithm, is a general algorithm for solving equation
and inequation systems. Other algorithms are available, for example the MOP
solution (for Meet Over all Paths) defined in [16] or the Region-Based Analysis
algorithm defined in [1].

2.2.3.1 The MFP solution

The MFP algorithm calculates the information reaching a node by combining
the information from all its predecessors. Then the transfer function of the node

2.2 Data Flow analysis and algorithms 21

RDentry(1) = {(x, ?), (y, ?)}
RDentry(2) = RDexit(1)
RDentry(3) = RDexit(2) ∪ RDexit(5)
RDentry(4) = RDexit(3)
RDentry(5) = RDexit(4)
RDexit(1) = (RDentry(1)\{(x, ?), (x, 1), (x, 5)}) ∪ {(x, 1)}
RDexit(2) = (RDentry(2)\{(y, ?), (y, 2), (y, 4)}) ∪ {(y, 2)}
RDexit(3) = RDentry(3)
RDexit(4) = (RDentry(4)\{(y, ?), (y, 2), (y, 4)}) ∪ {(y, 4)}
RDexit(5) = (RDentry(5)\{(x, ?), (x, 1), (x, 5)}) ∪ {(x, 5)}

Figure 2.7: Reaching definition equations for the factorial program.

is applied to calculate the exit information. The MFP algorithm works itera-
tively: it starts from the initial block of the program and visits all blocks once
or several times. Each time a block is visited, the corresponding entry and exit
points are recomputed using the corresponding equations, until a fixed point is
reached, i.e. until the entry and exit informations cannot change any further.

In order to know which blocks should be visited, this algorithm uses a worklist,
which is initialized with the pairs of labels corresponding to all the edges of the
flow graph. In every step of the algorithm, a pair is selected from the worklist.
The presence of a pair in the worklist means that the analysis information has
changed for the exit (or entry for backward analysis) of the block labeled by the
first component of this pair, so the analysis informations must be recomputed
for the second component of that pair. Then the pairs of the outgoing edges of
the recomputed block are added to the worklist, as they point to block where
information may have to be recomputed again. The algorithm continues by se-
lecting nodes from the worklist and ends whenever there are no nodes left in it.

The pseudo-code for the MFP algorithm can be found in [16].

2.2.3.2 The Abstract Worklist Algorithm

The Abstract Worklist Algorithm is abstracting away from the details of a par-
ticular analysis. Instead, this algorithm takes as input a set of constraints that
can be derived from the equation system of the analysis. The entry and exit in-

22 Theoretical background

formation at each block used in Data-Flow analysis are represented as flow vari-
ables for which the algorithm has to solve the system of constraints. For exam-
ple, the set of Reaching Definitions equations for the factorial program in Figure
2.7 can be represented as in Figure 2.8. In this figure, Xl1l2 = {(x, l1), (x, l2)};
×1,..., ×5 correspond to RDentry(1),..., RDentry(5); and ×6,..., ×10 correspond
to RDexit(1),..., RDexit(5).

×1 = X? ∪ Y?

×2 = ×6

×3 = ×7 ∪ ×10

×4 = ×8

×5 = ×9

×6 = (×1\X15?) ∪X1

×7 = (×2\Y24?) ∪ Y2

×8 = ×3

×9 = (×4\Y24?) ∪ Y4

×10 = (×5\X15?) ∪X5

Figure 2.8: Reaching definition equations for the factorial program.

As the main interest remains in RDentry, the equations can be simplified as in
Figure 2.9, without losing any information.

×1 = X? ∪ Y?

×2 = (×1\X15?) ∪X1

×3 = (×2\Y24?) ∪ Y2 ∪ (×5\X15?) ∪X5 ∪ Y2

×4 = ×3

×5 = (×4\Y24?) ∪ Y4

Figure 2.9: Simplified reaching definition equations.

The Abstract Worklist Algorithm works in the same way as the MFP algorithm:
all the constraints are initially placed into a worklist; at each iteration the first
constraint is extracted from the worklist and evaluated, and if there is a change
on the flow variable’s value, the other constraints influenced by that flow vari-
able are put in the worklist again. These iterations last until no changes occur
anymore, i.e. the worklist becomes empty.

The variations on this algorithm concern the way the constraints are organized
in the worklist. Indeed, the worklist could be simply represented as a set where
constraints are taken at random, or some more sophisticated representation can
be used, like using a reverse postorder organization or grouping the constraints
in strong components, as described in [16]. These more advanced technique are

2.2 Data Flow analysis and algorithms 23

more difficult to implement, but they allow to decrease the number of iterations
of the algorithm and thus to get a better performance.

These two algorithms are widely used to solve data flow analyses’ equations,
and have been implemented in the while compiler used in this thesis. They
will thus be considered during the analysis of the phase-ordering problem and
the design of the metrics, and compared to a new algorithm, called the propa-
gation algorithm, defined in Chapter 5.

24 Theoretical background

Chapter 3

Setting the Scene

The goal of this chapter is to make the reader familiar with the environment
in which the phase-ordering problem has been addressed, and to enable him
to understand the various references to the different elements of the compiler.
This chapter first describes the simple imperative language which will be com-
piled by the implemented tool. Then it gives a brief overview of the different
elements involved in the while compiler. Finally, the different analyses and
transformations implemented in the compiler are described.

3.1 Description of the WHILE language

The language used is based on the while language described in [16]. This is
a good example of a simple imperative programming language but complete
enough to act as a basis to analyze more complex languages like C. Programs
in while are, moreover, easily convertible into C programs.

The description of the language (which will be called the while language in this
thesis, for the sake of simplicity) is given in Figure 3.1 where x is a variable, n
is a natural number, opb is a binary operator from the set {+,−, ∗, /, &, |,=, <
,<=, >, >=, ! =} and opm is a monadic operator from the set {¬,−}.

26 Setting the Scene

e ::= x | n | true | false | e1 opb e2 | opm e | m(e)
S ::= [x := e]l | [skip]l | S1;S2 | begin D S end |

if [e]l then S1 else S2 fi | if [e]l then S fi |
while [e]l do S od | [read x]l | write [e]l

D ::= var x;D | ε
M ::= func var m(var x) begin D S; return e end;M | ε
P ::= D;M ;S

Figure 3.1: The while language

The value l represents the label of a specific block, and is used to represent the
program by a flow graph.

3.2 Elements of the WHILE language compiler

The while compiler is composed by a lexical analyzer and a parser that rep-
resent the frontend of the compiler; an optimization module, and a backend
composed by an interpreter and a deparser.
The lexical analyzer and the parser are both generated by tools and written in
Java. Figure 3.2 represents the overall structure of the while compiler.

Figure 3.2: Structure of the while compiler

3.2 Elements of the WHILE language compiler 27

3.2.1 The frontend and the intermediate representation

The lexical analyzer is used to tokenize any while program described with the
given syntax into an appropriate sequence of symbol. It takes as input a descrip-
tion of the tokens to be generated, which are in fact the terminals of the while
language. Once the lexer has tokenized the program, it needs to be parsed into
a parse tree. This parse tree will be the internal representation of the parsed
program, on which the analyses and transformations will be applied.

Figure 3.3: Example of a parse tree

Figure 3.3 shows an example of parsing a statement into a tree. The blue nodes
of the parse tree represent instances of statements, while the pink nodes are
instances of expressions. Finally the round green nodes are terminals of the
program.

Moreover, all the expressions and the statements contain a reference to their
parent statement (field up) in order to be able to redefine these expressions
when performing transformations in the program: this reference corresponds to
a reverse edge in the parse tree, and allows to go up in the parse tree when
needed. Finally, a reference to the scope the component belongs to has also
been added to all the components of the abstract syntax, as well as the labels
for some specific statements (assign, read and skip).

28 Setting the Scene

3.2.2 Interpreter

Instead of providing a backend that transforms the intermediate representation
into machine code, an Interpreter module has been designed. It can interpret
the program and write any results according to the semantics of the while lan-
guage defined in [17]. This module goes through the parse tree to update some
variable environments and stores where the values of the different variables in
the program are stored. The Interpreter can also define some type of errors,
as a type mismatch or the case where a variable has been used before being
initialized in order to stop the execution of the program.

An interesting feature of the Interpreter is also to indicate the number of in-
structions executed when the program is interpreted. Each time an instruction
is executed, a counter is incremented. However, all the instructions do not have
the same weight, in order to have a better estimation of the performance of the
program. For example, reading a variable x will have a higher weight than read-
ing a constant n. This weighted number of instructions executed can be very
interesting when comparing the different order of optimizations applied during
the different benchmarks. The different weights can of course be adjusted easily.

3.2.3 DeParser

A DeParser module can output the whole program after the optimization pro-
cess. It translates the intermediate representation of the program into while
language.

The main interest in this module is to get an understandable output of the
program after having applied a series of optimizations, in order to ensure the
correctness of the optimized program as well as its level of optimization.

3.3 Data Flow Analysis

In the while compiler, eight different analyses have been implemented:

1. the Reaching Definitions Analysis

2. the Available Expressions Analysis

3. the Copy Analysis

3.3 Data Flow Analysis 29

4. the Very Busy Expressions Analysis

5. the Live Variable Analysis

6. the Strongly Live Variables Analysis

7. the Constant Propagation Analysis

8. the Detection of Signs Analysis

The first five analyses are instances of the Bit Vector Framework (described in
Section 2.2.2), thus their transfer function is following the same pattern:

f(λ) = (λ\kill(Bl)) ∪ gen(Bl) where Bl ∈ blocks(S∗)

The Strongly Live Variables is just an instance of the Distributive Framework,
while the last two analysis are only instances of the Monotone Framework.

In the remainder of this section all the parameters of the lattices specifying
these eight different analyses will be described.

3.3.1 Reaching Definitions Analysis

The first analysis is the Reaching Definitions analysis. The aim of this analy-
sis is to determine for each program point, which assignments may have been
made and not overwritten, when program execution reaches this point along
some path. In summary, the analysis gives, at each program block entry or exit,
for each variable occurring in the program, the (smallest possible) set of labels
where the variable may have obtained its value. The special token ? is used to
indicate that the variable may have obtained its value outside the program.

The Reaching Definitions analysis is a forward, over-approximation analysis.
As an instance of the Bit Vector Framework, the parameters of the lattice are:

• P(Var∗ × (Lab?
∗)), the lattice of variables and labels, indicating where a

variable is last defined

• a partial ordering ⊆ and least upper bound operation
⋃

that since it is a
may-analysis

• ∅, the least element of the lattice ⊥

• {(x, ?) | x ∈ FV (S∗)}, the extremal value ι of the analysis

30 Setting the Scene

• {init(S∗)}, the extremal labels E

• flow(S∗), the definition of the flow F through the program

• the transition function f of the Bit Vector Framework

Finally, we need to define the kill and gen functions used in the transition
function fl:

killRD([x := a]l) = {(x, ?)} ∪ {(x, l′) | Bl′ is an assignment to x in S∗}
killRD([read x]l) = {(x, ?)} ∪ {(x, l′) | Bl′ is an assignment to x in S∗}
genRD([x := a]l) = {(x, l)}
genRD([read x]l) = {(x, l)}

killRD(Bl) = genRD(Bl) = ∅ otherwise

Consider the following program:

[x:=a+b]1; [y:=a*b]2; while [y>a+b]3 do [a:=a+1]4; [x:=a+b]5 od

Figure 3.4: Example program 1

Thanks to the framework defined above, the Reaching Definitions solutions can
be computed for the program in Figure 3.4:

l RDentry(l) RDexit(l)
1 {(x, ?), (y, ?), (a, ?)} {(x, 1), (y, ?), (a, ?)}
2 {(x, 1), (y, ?), (a, ?)} {(x, 1), (y, 2), (a, ?)}
3 {(x, 1), (x, 5), (y, 2), (a, ?), (a, 4)} {(x, 1), (x, 5), (y, 2), (a, ?), (a, 4)}
4 {(x, 1), (x, 5), (y, 2), (a, ?), (a, 4)} {(x, 1), (x, 5), (y, 2), (a, 4)}
5 {(x, 1), (x, 5), (y, 2), (a, 4)} {(x, 5), (y, 2), (a, 4)}

3.3.2 Use-Definition and Definition-Use chains

Before looking at other analysis, it is interesting to define two functions, called
the Use-Definition chain (often abbreviated ud-chain) and the Definition-Use
chain (abbreviated du-chain). The Use-Definition chain links each use of a vari-
able to the different assignments that could have define it, while the Definition-
Use chain links an assignment defining a variable to all the potential uses of this

3.3 Data Flow Analysis 31

variable.

It is possible to obtain the ud-chain from the results of the Reaching Defini-
tions Analysis described in the previous section (RD◦(l) is an abbreviation for
RDentry(l)):

UD : Var* × Lab* → P(Lab*)

UD(x, l) =
{
{l′|(x, l′) ∈ RD◦(l) if x ∈ used(Bl)

∅ otherwise

with

used([x := a]l) = FV (a), used([b]l) = FV (b)
used([read x]l) = used([skip]l) = ∅

and FV : AExp → Var* is a function returning the set of variables occurring
in an arithmetic expression.

The du-chain can be computed directly from the ud-chain:

DU : Var* × Lab* → P(Lab*)
DU(x, l) = {l′|l ∈ UD(x, l′)}

3.3.3 Available Expressions Analysis

The aim of the Available Expressions Analysis is to determine for each program
point, which expressions must have already been computed, and not later mod-
ified, on all paths to the program point.

The Available Expressions Analysis is a forward, under-approximation anal-
ysis which is an instance of the Bit Vector Framework. The parameters for the
lattice are:

• P(AExp*), the lattice of all non-trivial arithmetic expressions occurring
in the program

• a partial ordering ⊇ and least upper bound operation
⋂

that since this is
a must-analysis

32 Setting the Scene

• AExp*, the least element of the lattice ⊥

• ∅, the extremal value ι of the analysis

• {init(S∗)}, the extremal labels E

• flow(S∗), the definition of the flow F through the program

• the transition function f of the Bit Vector Framework

We also need the definitions of the kill and gen functions used in the transition
function fl:

killAE([x := a]l) = {a′ ∈ AExp* | x ∈ FV (a′)}
killAE([read x]l) = {a′ ∈ AExp* | x ∈ FV (a′)}

killAE([b]l) = ∅
killAE([skip]l) = ∅

genAE([x := a]l) = {a′ ∈ AExp(a) | x /∈ FV (a′)}
genAE([b]l) = AExp(b)

genAE([read x]l) = ∅
genAE([skip]l) = ∅

For example, it is possible to compute the Available Expressions Analysis solu-
tions for the program in Figure 3.4:

l AEentry(l) AEexit(l)
1 ∅ {a+b}
2 {a+b} {a+b,a*b}
3 {a+b} {a+b}
4 {a+b} ∅
5 ∅ {a+b}

3.3.4 Very Busy Expressions Analysis

An expression is very busy at the exit from a label if, no matter what path is
taken from the label, the expression is always used before any of the variables
occurring in it are redefined.
The aim of the Very Busy Expressions Analysis is to determine, for each pro-
gram point, which expressions must be very busy at the exit from the point.

3.3 Data Flow Analysis 33

The Very Busy Expressions Analysis is a backward, under-approximation analy-
sis, and an instance of the Bit Vector Framework. The parameters of the lattice
are:

• P(AExp*), the lattice of all non-trivial arithmetic expressions occurring
in the program

• a partial ordering ⊇ and least upper bound operation
⋂

that since this is
a must-analysis

• AExp*, the least element of the lattice ⊥

• ∅, the extremal value ι of the analysis

• final(S∗), the extremal labels E

• flowR(S∗), the definition of the flow F through the program

• the transition function f of the Bit Vector Framework

The definitions of the kill and gen functions are:

killV B([x := a]l) = {a′ ∈ AExp* | x ∈ FV (a′)}
killV B([read x]l) = {a′ ∈ AExp* | x ∈ FV (a′)}

killV B([b]l) = ∅
killV B([skip]l) = ∅

genV B([x := a]l) = AExp(a)
genV B([b]l) = AExp(b)

genV B([read x]l) = ∅
genV B([skip]l) = ∅

For example, it is possible to compute the Available Expressions Analysis solu-
tions for the program in Figure 3.4:

l VBentry(l) VBexit(l)
1 {a+b,a*b} {a+b,a*b}
2 {a+b,a*b} {a+b}
3 {a+b} ∅
4 {a+1} {a+b}
5 {a+b} {a+b}

34 Setting the Scene

3.3.5 Copy Analysis

The aim of the Copy Analysis is to determine for each program point, which
copy statements [x := y]l still are relevant i.e., neither x nor y have been rede-
fined, when control reaches that point.

The Copy Analysis is a forward, under-approximation analysis and an instance
of the Bit Vector Framework. The parameters for the lattice are:

• P(Var∗ × Var∗), the lattice of all pairs of variables occurring in the
program

• a partial ordering ⊇ and least upper bound operation
⋂

that since this is
a must-analysis

• Var∗ × Var∗, the least element of the lattice ⊥

• ∅, the extremal value ι of the analysis

• {init(S∗)}, the extremal labels E

• flow(S∗), the definition of the flow F through the program

• the transition function f of the Bit Vector Framework

The definitions of the kill and gen functions used in the transition function fl

are:

killCA([x := a]l) = {(x, y)|y ∈ FV (S∗)} ∪ {(y, x)|y ∈ FV (S∗)}
killCA([read x]l) = {(x, y)|y ∈ FV (S∗)} ∪ {(y, x)|y ∈ FV (S∗)}
genCA([x := a]l) = {(x, y)|a = y ∧ y ∈ FV (S∗)}

killCA(Bl) = genCA(Bl) = ∅ otherwise

Consider another example program:

[x:=1]1; [y:=x]2; [z:=y*(-y)]3; write [y]4; [y:=10]5

Figure 3.5: Example program 2

3.3 Data Flow Analysis 35

Thanks to the framework defined above, the Copy Analysis solutions can be
computed for the program in Figure 3.5:

l CAentry(l) CAexit(l)
1 ∅ ∅
2 ∅ {(x, y)}
3 {(x, y)} {(x, y)}
4 {(x, y)} {(x, y)}
5 {(x, y)} ∅

3.3.6 Live Variables Analysis

A variable is live at the exit from a label if there is a path from the label to
a use of the variable that does not re-define the variable. The aim of the Live
Variables Analysis is to determine for each program point, which variables may
be live at the exit from the point. In practice, we are interested in variables
that are not live at the exit from a program point.

The Live Variables Analysis is a backward, over-approximation analysis and
an instance of the Bit Vector Framework. The parameters for the lattice are:

• P(Var*), the lattice of all variables occurring in the program

• a partial ordering ⊆ and least upper bound operation
⋃

that since this is
a may-analysis

• ∅, the least element of the lattice ⊥

• ∅, the extremal value ι of the analysis

• final(S∗), the extremal labels E

• flowR(S∗), the definition of the flow F through the program

• the transition function f of the Bit Vector Framework

The definitions of the kill and gen functions used in the transition function fl

are:

killLV ([x := a]l) = {x}
killLV ([read x]l) = {x}

killLV ([b]l) = killLV ([skip]l) = ∅

36 Setting the Scene

genLV ([x := a]l) = FV (a)
genLV ([b]l) = FV (b)

genLV ([read x]l) = ∅
genLV ([skip]l) = ∅

For example, it is possible to compute the Live Variables Analysis solutions for
the program in Figure 3.5:

l LVentry(l) LVexit(l)
1 ∅ {x}
2 {x} {y}
3 {y} {y}
4 {y} ∅
5 ∅ ∅

3.3.7 Strongly Live Variables Analysis

If we consider the program:

[x := 1]1; [x := x− 1]2; [x := 2]3

We can see that x is dead at the exits from 2 and 3. But x is live at the exit of
1 even though its only use is to calculate a new value for a variable that turns
out to be dead.
A variable is defined as a faint variable if it is dead or if it is only used to calcu-
late new values for faint variables; otherwise it is strongly live. In the example
x is faint at the exit from 1.
The aim of the Strongly Live Variables Analysis is to determine which variables
may be strongly live at the exit from a point. In practice, we are more interested
in the faint variables which can be eliminated.

The Strongly Live Variables Analysis is not an instance of the Bit Vector Frame-
work, but only of the Distributive Framework. All the parameters of the lattice
are the same as the ones of the Live Variable Analysis, except the transition
function f . Hence, we have to give its data flow equations:

SLV entry(l) =
{

(SLV exit(l)\killLV (Bl)) ∪ genLV (Bl) if killLV (Bl) ⊆ SLV exit(l)
SLV exit(l) otherwise

SLV exit(l) =
⋃ {

SLVentry(l′ | (l′, l) ∈ flowR(S∗))
}

3.3 Data Flow Analysis 37

We can underline the fact that the kill and gen functions are also the same as
those of the Live Variables Analysis

3.3.8 Constant Propagation Analysis

Another analysis which does not belong to the Bit Vector Framework is the
Constant Propagation Analysis. The aim of this analysis is to determine, for
each program point, whether or not a variable has a constant value whenever
the execution reaches that point. This analysis then gives, for each program
point, a mapping between the variables and the corresponding information i.e,
whether or not the value of the variable is constant, and if so what is the value.
We can see here the complete lattice used for the Constant Propagation Analysis,
which is a forward analysis and an instance of the Monotone Framework, though
not of the Distributive Framework:

• ŜtateCP = (Var* → Z>)⊥, the lattice which maps variables to values,
where > is used to indicate that a variable is not constant and ⊥ when
we have no information at all.

• λx.>, the extremal value ι of the analysis

• {init(S∗)}, the extremal labels E

• flow(S∗), the definition of the flow F through the program

• a special partial ordering v defined by:

∀σ̂ ∈ (Var* → Z>)⊥ : ⊥v σ̂

∀σ̂1, σ̂2 ∈ Var* → Z> : σ̂1 v σ̂2 iff ∀x : σ̂1(x) v σ̂2(x)

using the partial ordering define on Z> = Z ∪ {>}:

∀z ∈ Z> : z v >
∀z1, z2 ∈ Z : (z1 v z2) ⇔ (z1 = z2)

38 Setting the Scene

• a least upper bound operation t defined by:

∀σ̂ ∈ (Var* → Z>)⊥ : σ̂t ⊥= σ̂ = ⊥ t σ̂

∀σ̂1, σ̂2 ∈ Var* → Z> : ∀x : (σ̂1 t σ̂2)(x) = σ̂1(x) t σ̂2(x)

• a special transfer function fCP
l defined by:

[x := a]l : fCP
l (σ̂) =

{
⊥ if σ̂ = ⊥

σ̂[x 7→ ACP (a)σ̂] otherwise

[read x]l : fCP
l (σ̂) =

{
⊥ if σ̂ = ⊥

σ̂[x 7→ >] otherwise

[skip]l : fCP
l (σ̂) = σ̂

[b]l : fCP
l (σ̂) = σ̂

This transfer function uses the auxiliary function ACP defined below:

ACP (x)σ̂ =
{

⊥ if σ̂ = ⊥
σ̂(x) otherwise

ACP (n)σ̂ =
{
⊥ if σ̂ = ⊥
n otherwise

ACP (a1 opa a2)σ̂ = ACP (a1)σ̂ ôpa ACP (a2)σ̂

where ôpa is a function that performs a specific operation on the values
given as inputs and compute the result ; if one of the operand is ⊥ or >,
the value returned is >.

It is now possible to compute the Constant Propagation Analysis solutions for
the program in Figure 3.5:

l CPentry(l) CPexit(l)
1 σ̂ = {x 7→ >, y 7→ >, z 7→ >, } σ̂ = {x 7→ 1, y 7→ >, z 7→ >, }
2 σ̂ = {x 7→ 1, y 7→ >, z 7→ >, } σ̂ = {x 7→ 1, y 7→ 1, z 7→ >, }
3 σ̂ = {x 7→ 1, y 7→ 1, z 7→ >, } σ̂ = {x 7→ 1, y 7→ 1, z 7→ −1, }
4 σ̂ = {x 7→ 1, y 7→ 1, z 7→ −1, } σ̂ = {x 7→ 1, y 7→ 1, z 7→ −1, }
5 σ̂ = {x 7→ 1, y 7→ 1, z 7→ −1, } σ̂ = {x 7→ 1, y 7→ 10, z 7→ −1, }

3.3 Data Flow Analysis 39

3.3.9 Detection of Signs Analysis

The last analysis, which does also not belong to the Bit Vector Framework is
the Detection of Signs Analysis. The aim of this analysis is to decide whether
a variable at a given program point will have a negative value, a positive value,
be zero, or combinations of these. The analysis must specify all the signs that
a variables might have.
The Detection of Signs Analysis is a forward over-approximation analysis, and
an instance of the Monotone Framework:

• ŜtateDS = (Var* → Sign), the lattice which maps variables to a set of
signs Sign = P ({-, 0, +}).

• λx.{−, 0,+}, the extremal value ι of the analysis

• {init(S∗)}, the extremal labels E

• flow(S∗), the definition of the flow F through the program

• a special partial ordering v defined by:

∀σ̂1, σ̂2 ∈ Var* → Z> : σ̂1 v σ̂2 iff ∀x : σ̂1(x) ⊆ σ̂2(x)

• a least upper bound operation t defined by:

∀σ̂1, σ̂2 ∈ Var* → Z> : ∀x : (σ̂1 t σ̂2)(x) = σ̂1(x) ∪ σ̂2(x)

• a special transfer function fDS
l defined by:

[x := a]l : fDS
l (σ̂) = σ̂[x 7→ ADS(a)σ̂]

[read a]l : fDS
l (σ̂) = σ̂[x 7→ {−, 0,+}]

[skip]l : fDS
l (σ̂) = σ̂

[b]l : fDS
l (σ̂) = σ̂

This transfer function uses the auxiliary function ADS defined below:

ADS(x)σ̂ = σ̂(x)

ADS(n)σ̂ =

 {−} if n < 0
{0} if n = 0
{+} if n > 0

ADS(a1 opa a2)σ̂ = ADS(a1)σ̂ ôpa ADS(a2)σ̂

40 Setting the Scene

where ôpa : Sign × Sign → Sign is a function that performs a specific
operation on the signs given as inputs and returns the corresponding re-
sults ,e.g if ∗̂, if {+} and {-} are given as inputs, it will return {-}; if {0,
+} and {-} are given as inputs, it will return {-, 0}; etc...

Here are the solutions for the Detection of Signs Analysis, for the program in
Figure 3.5:

l DOSentry(l) DOSexit(l)
1 {x 7→ S−,0,+, y 7→ S−,0,+, z 7→ S−,0,+, } {x 7→ S+, y 7→ S−,0,+, z 7→ S−,0,+, }
2 {x 7→ S+, y 7→ S−,0,+, z 7→ S−,0,+, } {x 7→ S+, y 7→ S+, z 7→ S−,0,+, }
3 {x 7→ S+, y 7→ S+, z 7→ S−,0,+, } {x 7→ S+, y 7→ S+, z 7→ S−, }
4 {x 7→ S+, y 7→ S+, z 7→ S−, } {x 7→ S+, y 7→ S+, z 7→ S−, }
5 {x 7→ S+, y 7→ S+, z 7→ S−, } {x 7→ S+, y 7→ S+, z 7→ S−, }

where S−,0,+ = {−, 0,+}, S+ = {+}, etc...

3.4 Transformations performed on the program

This section describes the eight transformations implemented in the while com-
piler:

1. the Constant Folding transformation

2. the Common Subexpressions Elimination transformation

3. the Copy Propagation transformation

4. the Dead Code Elimination transformation

5. the Code Motion transformation

6. the Elimination with Signs transformation

7. the Precalculation process

3.4 Transformations performed on the program 41

3.4.1 Constant Folding

When the Reaching Definitions analysis is performed, we can use the results
to optimize the program using Constant Folding. The aim is to find where the
assignment of a variable x in the block l [x:=n]l is used in the later blocks, before
any other assignment of x.
Then, in the concerned blocks, we can replace the variable x by its value n.
In the case that there are several assignments of x that reach one block l’, the
transformation is also effective if n is assigned to x in every one of them. In this
situation, we use the ud-chains.
Example
Consider this small program :

[x:=4]1; [x:=5]2; [y:=x+5]3

becomes

[x:=4]1; [x:=5]2; [y:=5+5]3

after the Constant Folding Transformation.
This transformation does not add or remove lines of the program, it only reduces
the number of access to the variables by replacing them by their value when it
can be known.

This transformation can also be applied using the Constant Propagation Anal-
ysis. As this analysis directly provides the value of a variable (if it is constant),
this second implementation is more straightforward. Indeed, it is enough to
visit all the variables used in each blocks of the program and, in the case the
map resulting of the Constant Propagation Analysis contains a constant value
for this variable, perform the change.

Not only the implementation of Constant Folding is easier using this analy-
sis, but the results are also better. Indeed, the Constant Propagation Analysis
includes a static computation and a propagation of the constant value of vari-
ables, while using the Reaching Definitions Analysis it is sometimes necessary
to apply the Constant Folding transformation several times.

42 Setting the Scene

Example
Consider the following example :

[x:=4]1; [y:=x*x]2; write [y]3

becomes, using Constant Folding with Reaching Definitions Analysis

[x:=4]1; [y:=4*4]2; write [y]3

while it becomes, using Constant Folding with Constant Propagation Analysis

[x:=4]1; [y:=4*4]2; write [16]3

3.4.2 Common Subexpressions Elimination

Using the Available Expressions Analysis, we can perform a new transforma-
tion: the Common Subexpressions Elimination transformation. The aim of that
optimization is to find the expressions used at least twice during a path of the
program and to compute them once before any use. Then, instead of calculat-
ing twice or more the same expression, it will be computed only once, hence
a possible gain of time, even if, after this transformation, the program may be
longer (in number of statements) with more variables.

Example
The program :

[x:=a+b]1; [y:=3]2; if [y<a+b]3 then [y:=a+b]4; [x:=b]5 fi;

becomes

[u:=a+b];1 [x:=u]2; [y:=3]3; if [y<u]4 then [y:=u]5; [x:=b]6 fi;

3.4.3 Copy Propagation

Copy Propagation looks for assignments of one variable to another variable like
[x:=y]l in the block l, and for the uses of this variable x in the later blocks.

3.4 Transformations performed on the program 43

The Copy Analysis is able to detect the blocks where x is used and will have the
same value as y. The transformation replaces these uses of x by the variable y.
But this is not the only change performed: there can be unused assignments af-
ter that Copy Propagation has replaced the variables, so the unused statements
can be removed as well.

Example
The program :

[u:=a+b]1; [x:=u]2; [y:=a*x]3

becomes

[u:=a+b]1; [y:=a*u]3

after a Copy Propagation transformation.

3.4.4 Dead Code Elimination

The Dead Code Elimination transformation can use the results of one of the
two analyses Strongly Live Variables and Live Variables. Both analysis have the
same kind of output, so there is no need to write one transformation for each of
them. The aim of this transformation is to remove assignments that are not alive
at the output of the block they are in i.e., never used again during the rest of
the program, whichever path is taken. Whenever the transformation is applied
based on the Strongly Live Analysis, assignments of faint variables (variables
used only in dead or faint assignments) will be removed as well. However, if the
block contains a read statement, it will not be removed, as the optimization
must preserve the fact that the user will be asked for input.

Example
The program :

[x:=4]1; [x:=5]2; [y:=x+5]3

44 Setting the Scene

becomes

[x:=5]1; [y:=x+5]2

after the Dead Code Elimination transformation.

3.4.5 Code Motion

The Code Motion transformation uses the result of the Reaching Definitions
Analysis. The aim of this transformation is to move statements that are not
influencing the iterations of a loop to a pre-header.
The idea is to find, in a specific loop i.e, while loop in the while language
used, which statements are loop invariants, and therefore can be move before
the loop. In fact, as the condition at the beginning of a while loop has to be
tested at least once, the new structure will include an if statement that tests
the condition and after executes the invariants and the while loop where the
loop invariants have been deleted from the body.

Example
The program :

while [a=0]1 do [i:=j]2 od

becomes

if [a=0]3 then [i:=j]4; while [a=0]1 do [skip]2 od fi

after a Code Motion transformation.

3.4.6 Elimination with signs

The Elimination with Signs transformation uses the results of the Detection of
Signs Analysis to try to predict the value of boolean expressions. This can be
useful in the case of boolean expressions being the condition in an if statement

3.4 Transformations performed on the program 45

or in a while loop.

Example
The program :

[x:=5]1; while [x>=-9]2 do [i:=j]3; [x:=4]4 od

becomes

[x:=5]1; while [true]2 do [i:=j]3; [x:=4]4 od

after an Elimination with Signs transformation.

This optimization will not often give better results than using a Constant Folding
transformation and after evaluating the boolean expression, as most of the time
we get result from Elimination with Signs when constant values are used. But
we can see that in the case of the example shown above, the value of x could be
either 5 or 4, but the Elimination with Signs can still predict the value of the
boolean expression, while the Constant Folding will be no use here.

3.4.7 The Precalculation Process

The last transformation performed on the program is not using any analysis
previously described. It is in fact a sum of several transformations used to
optimize the program. Here are the different operations performed by this
process:

1. Calculation of simple expressions with constants or booleans:
One of the first steps to improve the program is to compute the simple
expressions like 4+5 or true & false. The compiler has to be able to
replace them by their result. Thanks to this, the others parts of the
optimization can go further because 4+5 will be the same as 9 and the
compiler will be able to tell that true & false will always be false.

2. Simplification of an If Statement: an if statement can be simplified
if the condition is known to be always true or always false. If the value
of the condition is known, then the if statement can be replaced by one

46 Setting the Scene

of its bodies. If there is nothing to be executed, like an if statement with
a false condition and without an else, the if statement is removed.

Example:

while [x>y]1 do if [false]2 then [y:=a]3 else [y:=b]4 fi; [x:=y]5 od

becomes

while [x>y]1 do [y:=b]4; [x:=y]5 od

3. Simplification of an While Statement: like for an if statement, a
while loop can be simplified if the condition is always false: indeed, in
this case the while statement can be simply deleted.

4. Removes useless skip statements: This operation removes all the
useless skip statements appearing in the program.

5. Clean the variables Declaration: Sometimes variables are not used
any more in the program. This operation then deletes their declaration in
the variable declaration list.

Chapter 4

A new approach for
optimizing compilers

This chapter describes a new model for the optimizing compilers. The main
concept is to add another module, called the Phase Manager, that will guide
the optimization process by deciding what optimization should be done at what
time. The first section of this chapter presents the new framework, then the
second section introduces the metric-based approach. Finally the third section
describes a semi-dynamic ordering using regular expressions.

4.1 Overall framework

In this thesis, a new compiler framework is considered. This framework com-
prises the three classical components of an optimizing compiler (the frontend,
the optimization module and the backend), and another module, called the
Phase Manager. The Phase Manager module is the main entity of the whole
optimization process. Its goal is to organize the optimization process by using
the different approaches described below. It has a direct control over the opti-
mization module and can see the intermediate representation of the program.
This allows him to have access to different information concerning the state
of the intermediate program during the compilation, and thus it can use these

48 A new approach for optimizing compilers

information when deciding which optimizations should be called.

The remaining of this chapter introduces two different methods the Phase Man-
ager can use to guide the optimization module:

1. A metric-based approach: In this approach, the Phase Manager com-
putes after every optimization phases different coefficients, called metrics,
that will represent the effect of the different transformations and help him
to dynamically choose the following transformation to apply.

2. Using regular expressions: This approach allows the user to input a
regular expression that will define a specific order of optimization. It also
represents a very practical way to perform benchmarking on the optimizing
compiler. This technique is fully described in the next section.

The new compiler framework is organized as in Figure 4.1.

Figure 4.1: Integration of the Phase Manager

4.2 Introduction to the metric-based approach

The main approach considered in this thesis is the metric-based approach. In
this approach, the Phase Manager uses the information it can gather about the
state of the intermediate representation to decide about the ordering of the op-
timization phases.

4.3 Use of regular expressions 49

In fact, after each new optimization phase, the Phase Manager calculates some
coefficients, called metrics, that represent the effects of applying a specific trans-
formation on the program. Once all these metrics have been calculated, the
Phase Manager can rank the different optimizations available and choose the
most appropriate one that will be apply next. The real interesting point in this
approach is that it allows the Phase Manager to have a fully dynamic view of the
different effects of the transformations on the intermediate program and thus
it can dynamically compute the ordering of the different optimization phases
accordingly to the input program.

The metric-based approach is fully detailed in Chapter 5.

4.3 Use of regular expressions

The other approach to the phase-ordering problem considered in this thesis is
to introduce a semi-dynamic ordering using regular expressions. These regular
expressions will express different ordering patterns to be applied on the inter-
mediate representation of the program. The first part of this section introduces
the regular expression framework used. The second part describes the way the
regular expressions are interpreted by the Phase Manager. Finally, the last part
concerns the creation of a benchmark suite, where a regular expression gen-
erator is used to launch a considerable amount of optimizations using regular
expressions in order to get some experimental feedback.

4.3.1 Description of the regular expression framework

In this first section, the regular expressions must be defined in a more detailed
way. The grammar representing these regular expressions is described in Figure
4.2.

R → R + R | R ·R | R∗ | (R) | I
I → cf | dce | cm | cse | pre | cp | es

Figure 4.2: Grammar for regular expressions

50 A new approach for optimizing compilers

In this grammar, the usual rules of precedence for regular expressions apply.
The different identifiers I, which represent the terminals of the regular expres-
sion grammar, represent the transformations described in the previous Chapter:

• cf stands for Constant Folding

• dce stands for Dead Code Elimination

• cm stands for Code Motion

• cse stands for Common Subexpressions Elimination

• pre stands for Precalculation

• cp stands for Copy Propagation

• es stands for Elimination with Signs

As foreseen above, these regular expressions express the order in which different
transformations will be applied. The following rules describe the way a regular
expression is interpreted by the Phase Manager:

1. For a Union Expression, i.e. R = R1+R2, a random choice is made between
the two expressions R1 and R2 (each expression has 50% of chance to be
chosen)

2. For a Concatenate Expression, i.e. R = R1 ·R2, the first expression R1 is
applied, followed by the expression R2.

3. For a Parenthesis Expression, i.e. R = (R1), the expression R1 is applied.

4. For a Star Expression, i.e. R = R∗
1, the expression R1 is applied until no

new change is observed by applying R1 again.

5. For a Symbol Expression, i.e. R = I, the specific transformation repre-
sented by I is applied.

Though the optimization process is still defined statically by the user choosing
the regular expression he wants to use, the use of some type of regular expression,
such as Star Expressions (i.e R = R∗

1) or Union Expression (i.e R = R1 +
R2) implies dynamic choices and decisions that make the process much more
flexible than a sequence of optimization phases statically defined at the compiler
construction-time.

4.3 Use of regular expressions 51

4.3.2 Interpretation of the regular expressions

As written above, the Phase Manager is capable, given a specific regular ex-
pression, to extract the specific transformations and to order an optimization
process by following the different rules described in Section 4.3.1.

This mechanism implemented in the Phase Manager computes the desired order
by applying the rules quoted previously. Two interesting rules must be pointed
out:

• Rule 1 concerning the Union Expressions: to apply this rule, a number
between 0 and 1 is generated randomly, and in the case this number is less
than 0.5, the first expression is computed; otherwise the second expression
is computed. This way of handling the Union Expression involved a degree
of probability, which is by default 50%. This value could also be given as
a parameter for the user to decide, or another way of handling this kind of
expression could also be addressed: the Phase Manager could perform the
two expressions R1 and R2 (for R = R1+R2) in parallel, and then evaluate
the generated program to determine which path is the best optimization
between the two of them, and thus take the better choice. However, this
raises the issue of performance evaluation, which can take a considerable
amount of time if the program has to be executed.

• Rule 4 concerning Star Expressions: to apply this rule, first the actual in-
stance of the program to perform the optimizations on is cloned, and then
the expression R1 (from R = R∗

1) is computed. Then the two instances
of the program (the current one that has been optimized and the original
one) are compared, and if any change has occurred, then the transforma-
tion is applied again. In the case the two instances are the same, then the
computation of the inner regular expression is stopped. This rule can only
be applied under the assumption that it is not possible to apply endlessly
the same sequence of optimizations that always performs changes on the
program. This assumption is valid for the optimization phases considered
in these thesis, but may not be valid for all possible optimizations. An-
other approach for this rule is to allow the user to specify a maximum
number of times the regular expression R1 should be applied, using an
expression like R = Rn

1 .

Thus this mechanism represents an interesting way of specifying a semi-dynamic
order of optimizations, that can evolve depending on how the intermediate rep-
resentation reacts to the different optimizations. Of course the metric-based

52 A new approach for optimizing compilers

approach should provide a completely dynamic ordering that the Phase Man-
ager will used to decide which optimization to perform in real time.

4.3.3 Creation of a benchmark suite

Once this regular expression approach has been implemented in the Phase Man-
ager, a benchmark suite has been designed in order to get some feedback about
the effects of different regular expressions, and to be able to compare with the
metric-based approach.

4.3.3.1 Structure of the benchmark suite

As explained earlier, the main objective of the benchmark suite is to provide
a utility that, coupled with a Regular Expression Generator, allows the user
to launch a specified number of regular expressions determining the efficiency
of different orders of optimizations on several benchmark programs. Then an
analysis is made on the results of these tests in order to determine which regular
expressions performed the better on this benchmark programs.

Hence, the benchmarks are composed by:

• The optimization module associated with the Phase Manager

• The Regular Expression Generator providing regular expressions

• Several benchmark programs

• An analyzer, that gets the outputs from the Phase Manager and analyzes
results files

The structure of the suite can be observed in Figure 4.3.

The Phase Manager’s process that handles the benchmarks contains several
steps:

1. It gets the list of benchmark programs

4.3 Use of regular expressions 53

Figure 4.3: Structure of the benchmark suite

2. It generates a specific number of regular expressions using the Regular
Expression Generator

3. For each of the pairs benchmark program/regular expression, it applies the
regular expression on the program and stores in a record several values
relating the optimization, such as the resulting program, the time spent in
optimizing, the number of transformation used, etc...(see Section 4.3.3.3)

4. It finally prints out, for each of the benchmark programs, the results stored
in the records

Then these results are forwarded to the Record Analyser in order to be analyzed
(see Section 4.3.3.4).

4.3.3.2 The Regular Expressions generator

The first module of the benchmark suite is the Regular Expressions Generator.
The principle behind this element is the generation of groups of regular expres-
sions that follow different guidelines. Indeed, it consists on different modules
generating several different groups of regular expressions.

54 A new approach for optimizing compilers

Firstly, four statically computed regular expressions are added to the final set
of regular expressions:

1. pre · (cse · cp · pre)∗ · (cf · pre)∗ · dce · pre · cm · (cf · es · pre)∗

2. pre · (cf · pre)∗ · (cse · cp · pre)∗ · dce · pre · cm · (cf · es · pre)∗

3. pre · (cse · cp · pre)∗ · (cf · pre)∗ · (cf · es · pre)∗ · dce · pre · cm

4. pre · (cf · pre)∗ · (cse · cp · pre)∗ · (cf · es · pre)∗ · dce · pre · cm

These four regular expressions have been designed after the analysis of the de-
pendencies performed further in Section 6.2.2, and represent what could be good
order of optimization.

Another module generates n1 regular expressions containing the concatenation
of each transformation only once, in a random order. The result has a proba-
bility of 50% to be starred.

A third module generates n2 regular expressions using static probabilities:

1. Each transformation has a static probability to appear when a Symbol
Expression is created. These probabilities has been equally shared between
the different transformations, except for Precalculation which has twice
more chance to be called, as it is a very cheap transformation (because it
does not need any analysis and skims through the program only once):

- CF: 12.5%

- CSE:12.5%

- CP:12.5%

- DCE:12.5%

- CM:12.5%

- ES:12.5%

- PRE:25%

2. The process of the recursive creation of a new regular expression is as
follows:

- a counter count records the number of Symbol Expression already
generated. This allows to limit the sequence length to a maximum
of 15.

4.3 Use of regular expressions 55

- the method starts by creating a Concatenate Expression then gener-
ates its two members R1 and R2

- different probabilities are applied when generating members of a reg-
ular expression:

* Generating the members of a Concatenate Expression R1 ·R2:

⇒ For the first member R1:
If count<15:
∗ either a Symbol Expression (using transformation probabili-

ties described above), a Star Expression or a Union Expres-
sion is created.

else
∗ a Symbol Expression is created

⇒ For the second member R2:
If count<15
∗ either a Concatenate Expression, a Star Expression or a Sym-

bol Expression is created
else
∗ a Symbol Expression is created

* Generating the members of a Union Expression R1 + R2:

⇒ For the two members R1 and R2, the same process applies:
If count<15
∗ either a Symbol Expression, a Star Expression a Concatenate

Expression or a Union Expression is created
else
∗ a Symbol Expression is created

* Generating the member of a Star Expression R∗
1:

⇒ If the Star Expression is coming from the first member (left
child in the parse tree) of a Concatenate Expression:
If count<15
∗ the choice is made randomly between a Symbol Expression,

a Concatenate Expression and a Union Expression/

56 A new approach for optimizing compilers

else
∗ a Symbol Expression is created

⇒ If the Star Expression is coming from the second member
(right child in the parse tree) of a Concatenate Expression:
If count<15
∗ the Generator chooses between a Symbol Expression, a Con-

catenate Expression and a Union Expression
else
∗ a Symbol Expression is created

The fourth module generates n3 regular expressions using dynamic probabilities
for the apparition of the transformation:

1. The method starts with the same probabilities than in the third module
(that uses static probabilities).

2. Each time a transformation is used in a Symbol Expression, its probability
to appear again is multiplied by a coefficient m (0.5 for example), and the
remainder is shared between the other transformations.

3. Then the method uses the same generating process than in the third mod-
ule to decide the type of regular expressions to be created next.

Finally, the last module generates n4 regular expressions by concatenating sev-
eral already computed regular expressions. These expressions have been de-
signed thanks to the analysis of the different interactions between the transfor-
mations in Section 6.2.2.The regular expressions to be concatenated are:

1. (cf · pre)∗

2. (es · pre)∗

3. cse · cp · pre

4. cp · cse · pre

5. dce · pre · cm · cf · pre

6. dce · pre · cm · es · pre

4.3 Use of regular expressions 57

These expressions are also randomly concatenated using static probabilities.

All the generation of regular expressions is synthesized in the main module of the
Regular Expression Generator. It outputs the whole set of regular expressions
which can then be used in the benchmark suite.

4.3.3.3 Criteria used to rank the regular expressions

In order to determine which regular expression is describing the best order of
optimizations during the benchmark tests, some information concerning the op-
timization process are gathered during the compilation and stored in a record.

These parameters are:

• The intermediate representation of the optimized program itself.

• The time spent (in milliseconds) during the optimization phase. This value
takes into account the whole optimization time, but does not include the
time spent in the frontend nor the backend of the compiler.

• A value representing the weighted number of instructions executed in the
optimized program. This value is used to compare the performance of the
optimized program with the one from the original program and the other
version of the optimized program. In order to get this value, the program
has to be executed with the Interpreter (Section 3.2.2). The main interest
in the weighted number of instructions is that it provides a stable way
to compare the programs in performance. Indeed, it would be possible
to get the running time of the optimized program, but this running time
is always changing depending on how much the machine executing the
program is busy, and small changes may not be significant enough to be
separated from the overhead due to the start of a background process on
the executing machine.

• The number of transformations used when optimizing the program. In-
deed, each call to a transformation is recorded: the less transformations
are used, the better is the order of optimizations.

• The number of Skip statements and variable declarations occurring in
the optimized program. Skip statements and variable declarations are not
changing anything in the behavior of the optimized program, but it should
be removed as much as possible when useless, so the program is smaller
and unused variables does not have any allocated space in the memory.

58 A new approach for optimizing compilers

As explained before, this records are, after having been created by the Phase
Manager during the benchmark runs, transferred to the Record Analyser that
will use them to rank the different regular expressions. All the parameters
recorded in these objects are used as criteria to evaluate the regular expressions,
though some have more importance than others. With a goal of optimization set
to the shortest running time of the program, the weighted number of executed
instructions is of primary importance, as it evaluates the degree of optimization
of the program, and before improving the speed of the compiler, it must be en-
sured that the program is optimized the better. After this, the time spent while
optimizing and the number of transformations used are also very important to
determine which order is the best one, whereas the number of Skip statements
and variable declarations is not fundamental, though it can still interesting.

Thanks to these parameters, a general ranking can be made by first choosing
the regular expression giving a program with the least number of instructions,
then with the smallest optimization time, number of transformations and finally
number of skip statements and variable declarations. In case the goal of the op-
timization process may change from speed to program size, the importance of
the parameters may change as well, as removing useless skip statements and
variable declaration may be much more profitable.

4.3.3.4 Analysis: the Record Analyser

Once the benchmark tests have been performed, the results stored in the records
are transfered to the Record Analyser. This Analyser gets all the data from these
records to compute different rankings and outputs the result.

This module is composed by three components:

• The first two ones contains five rankings:

1. A ranking on the time spent by a regular expression while optimizing.
2. A ranking on the number of executed instructions in the optimized

program.
3. A ranking on the number of transformations used in the optimization

process.
4. A ranking on the number of skip statements and variable declaration

in the optimized program.
5. A general ranking of all the regular expressions, using the previous

rankings and the order of importance of each parameter to globally
rank the regular expressions.

4.3 Use of regular expressions 59

• The third component can record the “points” earned by a regular ex-
pression. Indeed, each time a regular expression is in a ranking, it earns
a specific number of points in order to be globally ranked in the whole
benchmark general ranking.

Figure 4.4 shows the overall structure of the analyzer.

Figure 4.4: Structure of the analyzing process: the regExpAnalysis is the third
component that globally ranks the regular expressions, while the two others
(prgAnalysis and generalBenchAnalysis) have the five rankings and rank either
each program or the whole benchmark.

4.3.3.5 Results of the benchmarks

Once the benchmark suite has been set up, tests have been made in order to
get some insights about how applying different orders of optimizations (through
different regular expressions) can affect the degree of optimization of the pro-

60 A new approach for optimizing compilers

gram.

These tests have been done by generating 500 regular expressions. This number
have been arbitrarily chosen. More regular expressions could have been gener-
ated but it would have induced a considerable increase in the amount of time
needed for the benchmarks. Figure 4.5 represents the results for the best regular
expression for each benchmark program. To choose the best regular expression,
the algorithm:

1. takes all the regular expressions with the lowest number of instructions
executed.

2. among them takes the regular expressions spending the least time in op-
timization.

3. sorts the remaining regular expressions according to the number of trans-
formation used, and finally the number of skip and variable declarations.

Weighted number of Transformations Time spent
instructions exec. applied (in ms)

BenchPrg1 896 6 491
BenchPrg2 3708603 4 2770
BenchPrg3 171925 11 2120
BenchPrg4 121216 2 197
BenchPrg5 97247 0 27
BenchPrg6 51710 3 219
BenchPrg7 431514 0 25
BenchPrg8 1590652 9 721
BenchPrg9 3508 30 256
BenchPrg10 39826115 3 10482
BenchPrg11 26407 36 994
BenchPrg12 1705 8 53
BenchPrg13 1108 10 164
BenchPrg14 258 0 157
BenchPrg15 498190 24 1487
BenchPrg16 14109 36 532
BenchPrg17 34096 30 1408

Figure 4.5: Results for the best regular expression in the benchmark suite

These results represents some of the best optimization runs that could be per-
formed on the benchmark programs used. Hence, it provides a good basis to be
compared with the results from the metric-based approach defined in the next
chapter (the comparison is made in Section 6.1).

4.3 Use of regular expressions 61

It could also be interesting to focus on the regular expressions that performed
well in these benchmarks. The following graph (Figure 4.6) gives the percent-
age of regular expressions where the number of instructions executed is at the
optimum.

Figure 4.6: Percentage of regular expressions reaching the minimum number of
instructions executed

This figure shows that for most of the benchmark programs, more than half of
the regular expressions optimize the program less than the optimum observed.
The two benchmark programs (BenchPrg 5 and 7), where 100% of the regular
expressions produce the best code, are the two programs that cannot be op-
timized at all (the best regular expressions is the empty one). Assuming that
the best regular expression produces an optimal program, it would mean that
more than half of the regular expressions are not producing a program optimized
enough.

Another interesting point is to evaluate the regular expressions for the whole
benchmark. The results from the Record Analyser show that there is no regular
expression that clearly outperforms the rest. Indeed, on these benchmarks, a
group of regular expressions share the top of the general ranking, and most of
the regular expressions in at least the 25 first places have been observed to be
one of the best regular expressions for at least a benchmark program.

62 A new approach for optimizing compilers

Finally, these benchmarks have highlighted several interesting points:

• It is very difficult (verily impossible) to design an regular expression that
would compute an optimal order of optimization for most of the programs.
Thus, the use of statically defined optimization sequences is very unlikely
to produce the best code for most of the programs.

• Nevertheless, allowing the user to provide his own regular expression for
the program he wants to optimize could be an interesting step towards a
better optimization process. However, this would require that the user has
sufficient knowledge about the optimization phases available and that it is
able to design a good regular expression for each of his specific programs.

• Finally, the best regular expressions can still be good indicators of how
much the different programs can be optimized, and it can be very interest-
ing to compare these results with the ones coming from the metric-based
approach.

The conclusion of these tests is that this approach, however interesting for bench-
marking, is not very suited for practical compiling. It can probably take less
time that the common iterative compilation process, but ensuring a good proba-
bility of having an optimal program at the end requires to generate and apply a
considerable amount of regular expressions, which can become very long. There-
fore, a more advanced compilation process which will be dynamic and relatively
fast is clearly necessary.

Chapter 5

Phase-ordering using a
Metric-based Approach

In the previous chapter, an approach based on regular expressions has been
considered. The main approach to the phase-ordering problem developed in
this thesis is another one based on coefficients, called metrics, to evaluate the
potential of optimization a specific transformation can have on the program.
During the optimization process, these metrics can then be all compared in
order to approximate how useful the available transformations will be and apply
the one that looks the most adequate. Thus, the state of the intermediate
representation is taken into account. This chapter relates how this approach
has been defined: the first two parts give an overview of the approach, while
the third and fourth part contain detailed descriptions of the different metrics;
finally the last part deals with the algorithm implemented to use the metrics’
values to perform the phase-ordering.

5.1 The metric-based approach

The main idea is to develop a dynamic ordering of transformations, depending on
the different states the program goes through during the optimization process.
Thus, the metrics should take into account the different points of the program

64 Phase-ordering using a Metric-based Approach

where the corresponding transformation will be useful, in order to represent as
much as possible the interest the Phase Manager can have in performing a spe-
cific transformation instead of another.

Thus, the different metrics will approximate the different analyses used to per-
form the corresponding transformations, and then guess the number of blocks
in the program where each transformation would actually be applicable. How-
ever, even though the main aim of this approach is to generate a dynamic order
of transformations applied to a specific program, an important parameter to
take into account is the time spent while optimizing, as an implicit aim is to
generate this order while decreasing the average optimization time, or at least
not increasing it. That is why it appears totally impossible to use the MFP
(Maximal Fixed Point) or an abstract worklist algorithm (described in Section
2.2.3) to compute all the analyses and then use these results to get the metrics.

5.2 Choice of the different metrics

When choosing a metric it is important to make sure that it:

1. has a complexity that is at least an order of magnitude smaller than that
of the analysis, so that the calculation of the metric will take much less
time than performing the real analysis

2. has a non-zero value whenever a transformation can be used to optimize
the program

3. never decreases whenever the use of the associated transformation becomes
more interesting, in terms of number of changes that can be performed in
the program

The first point is of a great importance in the metric definitions. Indeed, the
metrics’ complexity must be relatively small not to increase the compilation
time too much. Then the use of the different algorithms appearing in [16] to
compute the analysis, such as the MFP, MOP, or worklist algorithm, is to be
avoided, as it uses the flow graph to calculate the entry and exit informations of
the analysis, with a non-linear time whenever the program to optimize contains
loops. Instead of these algorithms, an algorithm that will be called propagation
algorithm will be used to approximate these analysis information in linear time.
This algorithm is detailed in Section 5.3.2.1.
This issue also has another consequence on the choice of the different metrics.

5.3 Approximation of the different analyses 65

This concerns more precisely the Precalculation Process: this transformation is
different from the other ones, as it does not use any analysis information, but
just goes through the program once and makes different changes, as shown in
Section 3.4.7. Hence this transformation is much cheaper than the other ones,
and much faster. That is why this transformation will be applied once after
every other transformations. In Section 6.2.2, this will be compared to another
approach, where a metric for the Precalculation Process will be used.

The second point also uncovers an interesting issue. In fact, the metrics aims
at helping the Phase Manager to rank all the available transformations, and
determine which one should be applied next on the program. In order to per-
form the necessary amount of transformations to get a program as optimized
as possible at the end of the process, this second rule is very important. Thus,
for the metrics to respect this rule, and as a result of the first rule as well, the
metrics should compute an over-approximation: this may lead to unnecessary
transformations, but it will ensure that the program will be optimized as best
as possible, which is the most important criteria.

Finally, the third point is just used to make sure that the parameters involved
in a metric computation should be related to the parameters used during the
call of a transformation associated with the metric. For example, the param-
eters used in the metric corresponding to Common Subexpression Elimination
should consider expressions and their occurrences in the program, because it is
the most important factor that is concerned by this optimization.

As a result of these rules, a metric will be defined for each of the transfor-
mations available in the compiler.

5.3 Approximation of the different analyses

In order to calculate the metrics’ values, the different analyses involved in the
transformations represented by all of these metrics have to be approximated.
As explained in the previous section, it is totally impossible to use the results
coming from MFP or MOP to get these information, as it would significantly
increase the compilation time. So instead of using these algorithms, which give
exact analysis results, an algorithm called propagation algorithm has been im-
plemented to get an over-approximation of the analysis information.

This algorithm visits nodes in a linear way, and thus reduces the computation
time, while of course reducing the analysis accuracy. In the following sections
the propagation functions associated with all used analyses are described, as

66 Phase-ordering using a Metric-based Approach

well as the general propagation algorithm.

5.3.1 Visiting graph

When presenting the different propagation functions and the general propaga-
tion algorithm, different functions will be used, creating a visiting graph from
the program.

Initial and final labels. The first function is initV : Stmt → Lab.

This function returns the initial label of a statement in a visiting graph, and is
very similar to the init() function defined in [16] for the flow graph of the while
language:

initV ([x := e]l) = l

initV ([skip]l) = l

initV (write [e]l) = l

initV ([read x]l) = l

initV (S1;S2) = initV (S1)
initV (begin D S end) = initV (S)
initV (if [e]l then S fi) = l

initV (if [e]l then S1 else S2 fi) = l

initV (while [e]l do S od) = l

Similarly, function finalV : Stmt → Lab returns the single final label for each
statement.

It is defined by:

finalV ([x := e]l) = l

finalV ([skip]l) = l

finalV (write [e]l) = l

finalV ([read x]l) = l

finalV (S1;S2) = finalV (S2)
finalV (begin D S end) = finalV (S)
finalV (if [e]l then S fi) = finalV (S)

finalV (if [e]l then S1 else S2 fi) = finalV (S2)
finalV (while [e]l do S od) = l

5.3 Approximation of the different analyses 67

Blocks and labels. The visiting graph uses two functions defined in [16],
which represent the mapping of statements with the blocks of the graph, as well
as the set of labels occurring in the statements:

blocks : Stmt → P(Blocks)
labels : Stmt → P(Lab)

Visit and reverse visit functions. These functions allow the con-
struction of the visiting graph by defining its edges, or visiting flows, using the
function visit : Stmt → P(Lab × Lab).

This function maps statement to sets of visiting flows:

visit(S1;S2) = visit(S1) ∪ visit(S2)
∪{(finalV (S1), initV (S2))}

visit(begin D S end) = visit(S)
visit(if [e]l then S fi) = visit(S) ∪ {(l, initV (S))}

visit(if [e]l then S1 else S2 fi) = visit(S1) ∪ {(l, initV (S1))} ∪ visit(S2)
∪{(finalV (S1), initV (S2))}

visit(while [e]l do S od) = visit(S) ∪ {(l, initV (S)), (finalV (S), l)}
visit(Bl) = ∅ otherwise

For backward analyses, the reverse function visitR : Stmt → P(Lab × Lab)
is used. This function is defined by: visitR(S) = {(l, l′)|(l′, l) ∈ visit(S)}

Figure 5.1 shows an example of a visiting graph for a very simple program
based on the example from Figure 3.3. It has to be pointed out that the visit-
ing graph is only used for creating a visiting order while using the propagation
algorithm, and in no case is an equivalent for the flow graph.

Two other functions are defined on the visiting graph:

• nextVisit Lab → P(Lab), which, given a label, returns all the next ele-
ments of the visiting graph for this specific label. The set of next elements
is in fact a singleton for all blocks except if the block is a loop condition,
in which case there are two elements (one going in the loop’s body and
one leaving the loop).

• nextV isitR Lab → P(Lab), which does the same for the reverse visiting
graph.

68 Phase-ordering using a Metric-based Approach

Figure 5.1: Example of a visiting graph

5.3.2 Analyses of Bit-Vector Framework

This section establishes, for all the analyses of the bit-vector framework imple-
mented in the while compiler, the different parameters and functions used in
the propagation algorithm, as well as the algorithm itself.

The propagation algorithm uses kill and gen functions for bit-vector analyses,
but as the lattices are changing, these functions must be re-defined.

These new functions are also used in a transition function, which is the same as
the one defined for classical algorithms:

fapprox(λ) = (λ\killapprox(Bl)) ∪ genapprox(Bl), where Bl ∈ blocks(S∗)

5.3.2.1 General propagation mechanism

The propagation algorithm follows a simple mechanism that permits to approx-
imate the different analyses the transformations need. Two main functions are
used in this mechanism: a transition function and a propagation function.

The transition function is proper to each of the analyses, and defines the way
to modify the data when computing the analyses on a specific block, using kill
and gen functions. These functions will be defined in the following sections.

5.3 Approximation of the different analyses 69

For each of the analyses, a propagation function must be described as well.
This propagation function is used when the computation comes back to a node
already visited, e.g. the condition of a loop. It is then used to propagate new
information to the entry and exit points of all the labels within the loop, ac-
cording to the corresponding least upper bound associated with the analysis.

Consider the Reaching Definitions Analysis as an example, with the following
code:

[x:=5]1;[y:=1]2;while [x>1]3 do [y:=x*y]4;[x:=x-1]5 od

This analysis is chosen as an example, because the different parameters of the
lattice and the transition function are the same as in the classical analysis, as
can be seen in the next section.

Figure 5.2 shows the visiting graph and the exit and entry before and after
having been in the loop, but still before propagation. This first step is simply

(a) Before entering the
loop

(b) After the loop

Figure 5.2: Visiting graph before propagation

updating the entry and exit informations of all labels. The use of the visiting
graph makes this step easy and accurate, except for loops, but that is where the
propagation must be made. Note that in this step if statements do not raise

70 Phase-ordering using a Metric-based Approach

any issues, as their bodies are treated sequentially, based on the visiting graph.

Once this first part is computed, the data must then be propagated through
the loop. The two entry information of the loop condition, respectively called
entryUp for the one coming from the body of the loop and entryDown for the
one coming from the blocks before the loop, must be compared, for each vari-
able. Then, if any information are present in the entryUp information, it must
be propagated to all the entry/exit informations that the data from entryDown
are able to reach. This propagation mechanism for variable x can be seen in
Figure 5.3. In this particular example, the informations must be added to the
entry/exit information of the loops.

Figure 5.3: Propagation of variable x

Two particular issues must be pointed out. The first one concerns the lattices
of the analyses. The important part of this propagation is to know where the
data must be propagated. In the case of the Reaching Definitions Analysis, it is
easy to follow the data from the entryDown information until when it is killed.
In the case of other analyses, lattices must often be adapted to keep track of
where the data are defined/used: for the Available Expression analysis (Section
5.3.2.4), the lattice must be changed to P(AExp* × Lab?

∗) so it is possible to
follow the expressions defined at the entry of a loop and know until where to
propagate (or kill in this case) the information.

Another issue is the occurrence of nested inner loops. To solve this problem, it
is necessary to keep track of the level of nesting of each block in the loop, and

5.3 Approximation of the different analyses 71

Figure 5.4: Nested loops and propagation tree

whenever a propagation is made at one loop’s entry, the data is also propagated
to its children. An example of nested loops and of the corresponding propaga-
tion tree can be seen in Figure 5.4.

The propagation algorithm, as described in Algorithm 1, has been implemented
in the Phase Manager. In this algorithm, the functions blocks() and labels()
defined in Section 5.3.1 are used to determine if a block is a loop condition, and
if so, the blocks from the loop’s body are first evaluated, then the propagation
is made and finally the algorithm leaves the loop.

As explained in Section 5.3.1, the set of next elements of a block in the visiting
graph is a singleton for every block except the one corresponding to a loop’s con-
dition. Moreover, in the case of the block being a loop’s condition, the nested
loops propagation tree has to be updated, thanks to the PropTreeNode object
(which represents a node in the propagation tree, as in Figure 5.4).

72 Phase-ordering using a Metric-based Approach

Step 1:Initialization:
W = ∅ ; // W = the list of visited labels
foreach l′ in labels(S∗) do

if l = E then approx◦(l) = ι;
end
call iterationStep(E,null);

Step 2:Method iterationStep(Lab curLabel,PropTreeNode ptn):
if curLabel /∈ W then

W = insert(curLabel);
previousLabs = the predecessors of curLabel in the flow graph
approx◦(curLabel) =

⊔
l′∈W∩previousLabs approx•(l′);

approx•(curLabel) = fapprox
l (approx◦(curLabel));

if BcurLabel 6= loop condition then
if ptn 6= null then add curLabel to ptn;
nextLab = get the single next element of curLabel in the visiting graph;
call iterationStep(nextLab,ptn);

else
newPtn = create new PropTreeNode;
add newPtn to the sons of ptn;
entryDown = approx◦(curLabel);
nextLabels = next labels of curLabel in visiting graph;
labelsInBody = labels(loop’s body statement);
foreach l in nextLabels do

if l ∈ labelsInBody then call iterationStep(l,newPtn);
end
entryUp =

⊔
l′∈W∩labelsInBody approx•(l′);

compare entryUp and entryDown and propagate entry/exit
information to newPtn and its sons;
foreach l in nextLabels do

if l /∈ labelsInBody then call iterationStep(l,ptn);
end

end
end

Algorithm 1: Propagation algorithm for bit-vector framework analyses

5.3.2.2 Reaching Definition Analysis

The parameters used in the propagation algorithm to approximate the different
analyses are now defined, starting by the Reaching Definitions Analysis. As
pointed out in the previous section, the metric for Reaching Definitions uses
the same parameters as the analysis, because the lattice P(Var∗ × (Lab?

∗))

5.3 Approximation of the different analyses 73

allows already to use traceable information. Of course, the visiting graph cor-
responding to a forward analysis must still be added. Moreover, due to the use
of the visiting graph, the parameter E now represents a single extremal label,
for the Reaching Definitions Analysis and all the analyses from the bit-vector
framework as well.

Here is a recall of the parameter used for the Reaching Definition Analysis:

• P(Var∗ × (Lab?
∗)), the lattice of variables and labels, indicating where a

variable is last defined

• a partial ordering ⊆ and least upper bound operation
⋃

that shows we
have a may-analysis

• {(x, ?) | x ∈ FV (S∗)}, the extremal value ι of the analysis

• init(S∗), the single extremal label E

• flow(S∗), the definition of the flow F through the program

• visit(S∗), the forward visiting graph

• the transition function fapprox

For the same reasons, the killapprox and genapprox functions remain the same
(see Section 3.3.1).

5.3.2.3 UD and DU chains

With the propagation algorithm applied to the Reaching Definitions Anal-
ysis, it is then possible to obtain the Use-Definition and Definition-Use chains.
These chains are defined in a similar way as in Section 3.3.2, by replacing RD◦(l)
by the result of the propagation algorithm for Reaching Definitions Analysis,
approxRD

◦ (l).

5.3.2.4 Available Expressions Analysis

When looking at the classic parameters for the Available Expressions Analysis,
it can be observed that the lattice deals only with expressions, with no way to
distinguish two instances of the same expression used at different places. This
raises an issue when propagating, since it may occur that two instances of the

74 Phase-ordering using a Metric-based Approach

same expression are defined in the same loop, and only one of them must be
eliminated because of the propagation, as can be seen in Figure 5.5.

Figure 5.5: Issue with Available Expression lattice

That is why in the lattice, for each instance of an expression, expressions are
now stored with the label where they are used. The parameters are then:

• P(AExp*×Lab?
∗), the lattice of all pairs containing non-trivial arithmetic

expressions occurring in the program and the label of their use

• a partial ordering ⊇ and least upper bound operation
⋂

that shows we
have a must-analysis

• ∅, the extremal value ι of the analysis

• initV (S∗), the single extremal label E

• flow(S∗), the definition of the flow F through the program

• visit(S∗), the forward visiting graph

• the transition function fapprox

5.3 Approximation of the different analyses 75

As the lattice has been changed, the killapprox and genapprox functions also need
to be changed:

killapprox
AE ([x := a]l) = {(a′, l′) | a′ ∈ AExp* ∧ x ∈ FV (a′) ∧ l′ ∈ Lab?

∗}
killapprox

AE ([read x]l) = {(a′, l′) | a′ ∈ AExp* ∧ x ∈ FV (a′) ∧ l′ ∈ Lab?
∗}

killapprox
AE ([b]l) = ∅

killapprox
AE ([skip]l) = ∅

genapprox
AE ([x := a]l) = {(a′, l) | a′ ∈ AExp(a) ∧ x /∈ FV (a′)}

genapprox
AE ([b]l) = {(b′, l) | b′ ∈ AExp(b)}

genapprox
AE ([read x]l) = ∅

genapprox
AE ([skip]l) = ∅

Using this new lattice, the propagation mechanism gives correct results, as can
be seen in Figure 5.6. The labeling of the expressions permits to follow the ones
that were at the beginning of the loop and eliminate them if needed in the loop.

Figure 5.6: Available Expression Analysis propagation with new lattice

76 Phase-ordering using a Metric-based Approach

5.3.2.5 Copy Analysis

The parameters for the Copy Analysis raise the same issue as with the Available
Expressions Analysis, which also causes the need of labeling the different pairs
of copy variables for propagation need. Thus the parameters are:

• P(Var∗ × Var∗ × Lab?
∗), the lattice of all triples of two variables and a

label

• a partial ordering ⊇ and least upper bound operation
⋂

that shows we
have a must-analysis

• ∅, the extremal value ι of the analysis

• initV (S∗), the single extremal label E

• flow(S∗), the definition of the flow F through the program

• visit(S∗), the forward visiting graph

• the transition function fapprox

The definitions of the killapprox and genapprox functions used in the transition
function fapprox

l are:

killapprox
CA ([x := a]l) = {(x, y, l′), (y, x, l′)|y ∈ FV (S∗) ∧ l′ ∈ Lab?

∗}
killapprox

CA ([read x]l) = {(x, y, l′), (y, x, l′)|y ∈ FV (S∗) ∧ l′ ∈ Lab?
∗}

genapprox
CA ([x := a]l) = {(x, y, l)|a = y ∧ y ∈ FV (S∗)}

killapprox
CA (Bl) = genapprox

CA (Bl) = ∅ otherwise

5.3.2.6 Very Busy Expressions Analysis

The parameters for the Very Busy Expressions Analysis follow closely the same
patterns as the Available Expressions Analysis, except that it is a backward
analysis. These parameters are:

• P(AExp*×Lab?
∗), the lattice of all pairs containing non-trivial arithmetic

expressions occurring in the program and labels

• a partial ordering ⊇ and least upper bound operation
⋂

• ∅, the extremal value ι of the analysis

5.3 Approximation of the different analyses 77

• finalV (S∗), the single extremal label E

• flowR(S∗), the definition of the flow F through the program

• visitR(S∗), the forward visiting graph

• the transition function fapprox

The definitions of the killapprox and genapprox functions are:

killapprox
V B ([x := a]l) = {(a′, l′) | a′ ∈ AExp* ∧ x ∈ FV (a′) ∧ l′ ∈ Lab?

∗}
killapprox

V B ([read x]l) = {(a′, l′) | a′ ∈ AExp* ∧ x ∈ FV (a′) ∧ l′ ∈ Lab?
∗}

killapprox
V B ([b]l) = ∅

killapprox
V B ([skip]l) = ∅

genapprox
AE ([x := a]l) = {(a′, l) | a′ ∈ AExp(a)}

genapprox
AE ([b]l) = {(b′, l) | b′ ∈ AExp(b)}

genapprox
V B ([read x]l) = ∅

genapprox
V B ([skip]l) = ∅

5.3.2.7 Live Variables Analysis

The parameters for the last analysis of the Bit Vector Framework, the Live
Variables Analysis, are also different from the classic parameters seen in Section
3.3.6. Again, the main issue is to know until where to propagate the data.
That is why this analysis uses the lattice P(Var∗ × Lab+/−

∗), where Lab+/−
∗ =

Lab∗ ∪ {0} ∪ {0− l|l ∈ Lab∗}. The idea is that all variables should be present
in the entry and exit sets, but the ones that are dead will be those without a
strictly positive value for the label. Each time a variable is declared dead, its
label is set to the next negative label. A single value for dead variable cannot
be used, as there can be several kills of the same variable inside a loop, and the
propagation must be able to see the difference. This mechanism is illustrated
in Figure 5.7.

The mechanism has to use a general counter nextdead to recall the value of
the last negative label given to the last dead variable. The parameters for the
lattice are:

• P(Var∗ × Lab+/−
∗), the lattice of all variables occurring in the program

with an integer label

• a partial ordering ⊆ and least upper bound operation
⋃

that shows we
have a may-analysis

78 Phase-ordering using a Metric-based Approach

Figure 5.7: Mechanism for Live Variable Analysis

• {(x, 0) | x ∈ FV (S∗)}, the extremal value ι of the analysis

• final(S∗), the single extremal label E

• flowR(S∗), the definition of the flow F through the program

• visitR(S∗), the forward visiting graph

• the transition function fapprox

The definitions of the killapprox and genapprox functions are:

killapprox
LV ([x := a]l) = {(x, l′)|l′ ∈ Lab+/−

∗ }
killapprox

LV ([read x]l) = {(x, l′)|l′ ∈ Lab+/−
∗ }

killapprox
LV ([b]l) = ∅

killapprox
LV ([skip]l) = ∅

genapprox
LV ([x := a]l) = {(y, l)|y ∈ FV (a)} ∪ {(x, nextdead), if x /∈ FV (a)}

genapprox
LV ([b]l) = {(y, l)|y ∈ FV (b)}

genapprox
LV ([read x]l) = {(x, nextdead)}

genapprox
LV ([skip]l) = ∅

Note that each time the counter nextdead is assigned to a variable, it is decre-
mented. This counter is in {0}∪{0− l|l ∈ Lab∗} because it is decremented once
at each assignment or read statement: there are at most n blocks like this in the
program, so it is less than the total number of blocks (and then less than the
total number of labels): n ≤ nblocks. This is important because it makes sure
that nextdead is always within the bounds of the lattice P(Var∗ × Lab+/−

∗).

5.3 Approximation of the different analyses 79

5.3.3 Constant Propagation Analysis

The propagation algorithm defined in Section 5.3.2 can be modified in order to
compute the approximation of some analyses which are based neither on the
bit-vector framework nor on the distributive framework. This is, for example,
the case for the Constant Propagation Analysis.

The idea is to use the propagation algorithm with the parameters for the Reach-
ing Definitions Analysis, and to add a mapping that will, for each variable def-
inition, contain the value of the variable (“?” if not constant) and link this
variable definition to all the variables that are used in the evaluation of this
value. This will then create some constraints that can be used after to add the
propagation mechanism. This mapping function is called the σ function:

σ : (Var × Lab) → (P(Var× Lab) × Value)

where the Value can be either a boolean or an integer. The parameter P(Var×
Lab) contains the set of reaching definitions of the variable used in the evalua-
tion of the variable’s value.

Figure 5.8 shows an example of how the σ function is used. It represents the
small program:

x:=1;y:=5;if true then (if y>1 then y:=2*x-1 else write x fi;
y:=x+1) fi;write y

The σ function stores, from the current reaching definitions information avail-
able, the possible reaching definitions of the variables used in the current variable
definition, and computes its value according to this set (each value is computed
and the result is a single value if they are all the same, ? otherwise).

During propagation, the sets of reaching definitions are updated like for Reach-
ing Definitions Analysis, and the value is updated as well. In fact, if the values
of the different reaching definitions are not the same, a “?” has to be propagated
where the value were constant before. To perform this propagation, the process
starts from the σ node of the reference node (coming from the entryDown set)
and follows the links of used variables backward. An example of this propaga-
tion mechanism can be seen in Figures 5.9 and 5.10.
First, note that the process execution in these picture is stopped after the visit
of the second loop. The first picture shows the visiting graph used in the exam-
ple, as well as the propagation tree. This propagation tree is slightly different

80 Phase-ordering using a Metric-based Approach

Figure 5.8: Use of the sigma function for Constant Propagation

Figure 5.9: Visiting graph and propagation tree

from the ones seen with the analyses from the bit-vector framework: here the
nodes keep track of the definition pairs involved in the loop, so the propagation
does not reach unwanted node outside the loop involved.

5.3 Approximation of the different analyses 81

Figure 5.10: Propagation mechanism for Constant Propagation

The second picture shows the propagation of x6, starting from x1 to each of
the pairs linked to σ(x1) (and in the set of pairs involved): the set of reaching
definitions is updated and the value set to “?”. Then the propagation continues
through y5, because its value has turned into “?”: thus the linked variables’
value must also be set to “?” and propagated.

Hence, this mechanism gives the same information as the Constant Propagation
Analysis, by using the propagation algorithm for Reaching Definitions Analysis
computed earlier, and adding a constant propagation mechanism using con-
straints.

5.3.4 Detection of Signs approximation

The Detection of Signs Analysis is the last analysis to be approximated. This
analysis is similar to the Constant Propagation Analysis, except that instead of
mapping a pair (Var × Lab) to a set of reaching definitions and a value, the
evaluation function maps it to a set of reaching definitions and a set of signs.

Thus the Detection of Signs Analysis uses the function:

σES : (Var × Lab) → (P(Var× Lab) × P({-, 0, +}))

The use of the σES function, the propagation mechanism and the use of propa-
gation tree nodes, are built in the same way as with the Constant Propagation
Analysis (see Section 5.3.3).

The single (but important) change is that instead of propagating “?” when
the values are different than in Constant Propagation, the Detection of Signs

82 Phase-ordering using a Metric-based Approach

Analysis needs to propagate the union of the different set of signs. So the
propagation mechanism used here only propagates the Reaching Definitions to
the variables linked in the current constraints, and the values are re-evaluated
from this new set of Reaching Definitions, instead of being only updated to “?”.
Then, of course, the propagation continues to the following linked variables.

5.3.5 Type of analysis and accuracy of the results

As has been pointed out during the description of the propagation algorithm
and the definition of the parameters for the different analyses, the main issue of
this algorithm is that, to propagate the entry information coming from a loop’s
body, there must be a way to figure out until where the data must be propagated
through the loop’s body. Concretely, using the terms of Section 5.3.2.1, there
must be a way to know until where the entryDown information in the loop’s
blocks to add (or remove) the entryUp information.

An interesting point is the fact that analyses from the bit-vector framework
defined previously give very accurate data with the propagation algorithm. In
fact, using this algorithm, these adapted versions of the analyses will give exact
results, due to the fact that the entry/exit informations are proper to each block
and not used for any choice on the transition function to apply. An experimental
study on all the benchmark programs used previously in the benchmark suite
has been made to confirm that running the propagation algorithm for these
analyses gives exactly the same results as using a classic algorithm such as the
MFP algorithm (the results are located in Appendix B).

The two other analyses considered, Constant Propagation and Detection of
Signs, have been computed with a modified algorithm using constraints in order
to keep this accuracy of the results. Again, experiments on the different test pro-
grams have confirmed that the propagation mechanism also gives exact results
in these two cases, i.e that these two adapted versions of the analyses returns
the same informations (though arranged differently) as the original Constant
Propagation and Detection of Signs using the MFP algorithm.

On the other hand, in the case of the Strongly Live Variables Analysis (Sec-
tion 3.3.7), it is not possible to apply this algorithm. Indeed, this analysis uses
the entry information SLVexit(l) = analysis◦ to make a choice on whether or
not using the kill and gen sets. In the case this choice is made in one way at
the first computation (e.g. the variable is thought to be faint and it is thus not
added to the set of live variables), if the algorithm changes the entry information
SLVexit(l) during the propagation, forcing the other choice, then the exit infor-
mation would be completely changed, and all the following blocks’ entry/exit

5.3 Approximation of the different analyses 83

information would need to be re-computed.

Hence, it can be conclude that there must be a pattern describing the dif-
ferent analyses that can use this kind of algorithm, either the direct and simple
algorithm used with the analyses from the bit-vector framework, or the modified
algorithm using constraints used for the last two analyses. Thus, an interesting
future work could be to investigate and try to describe this class of analyses,
and perhaps find a way to derive some constraints from the different equations
characterizing the analyses (see Chapter 9).

5.3.6 Comparison for data flow analysis

As seen in the previous section, for some analyses, the propagation algorithm
gives exactly the same results as the classical algorithms. An interesting point
is then to see the running time of the different algorithms, in order to compare
the different algorithms and also to see if the propagation algorithm can be fast
enough to fit the metric-based approach requirements.

The comparison is performed on the same benchmark programs as in the eval-
uation of the benchmark suite at Section 4.3.3.5. The Copy Analysis has been
chosen as an example, using two classical algorithms, the MFP algorithm and
the abstract worklist algorithm using iteration through strong components, de-
fined in [16], and the propagation algorithm from Section 5.3.2.1. The results
are shown under different views in Figure 5.11 and Figure 5.12. The full table
can be seen in Appendix A.

The first remark that can be made about this figure is that for the smallest pro-
grams, the running time of the algorithms are so small that the comparison does
not appear to be relevant, though in that kind of case none of the algorithms
appears to be far behind any other.

The most interesting point is that, though the two classical algorithms are run-
ning in the same scale of time (with better results for the abstract worklist
algorithm), the propagation algorithm gives most of the time satisfying results.
The figures for the two biggest benchmark programs (2 and 10) clearly show
that the propagation algorithm is faster than the two other algorithms.

These results are very promising, as they show that the propagation algorithm
can be used in the metrics’ calculation without significantly increasing the total
optimizing time.

84 Phase-ordering using a Metric-based Approach

Figure 5.11: Comparison of the Copy Analysis computation using different al-
gorithms

Figure 5.12: Relative comparison of Copy Analysis using different algorithms

5.4 Definitions of the metrics 85

5.4 Definitions of the metrics

Once the different analyses have been approximated, the results can be used
to calculate the metrics that will be used in the phase-ordering algorithm (see
Section 5.5). These metrics are all implemented in the Phase Manager. De-
pending of the type of analysis, these metrics can give very accurate results
on where the transformation will be efficient, but they are all designed to be
over-approximations, i.e. a metric should not have a value of zero if the trans-
formation can be efficient somewhere.

5.4.1 Metric for Copy Propagation

The metric CP represents the Copy Propagation transformation. Copy Propa-
gation deals with variables that have the same values as other variables. This
is due to the occurrence of copy assignments (assignments of type [x := y]l).
As shown in Section 3.4.3, the Copy Propagation transformation replaces these
variables by their copy variables, thus making copy assignments become dead
assignments. The main improvement of the program is that target variables
become dead, therfore copy assignments are removed by the transformation.

The metric for the Copy Propagation transformation represents the number of
copy assignments that could be removed using the transformation. This metric
uses the result from the Copy Analysis performed using the propagation algo-
rithm. It starts also by computing the ud- and du-chains, using the propagation
algorithm on the Reaching Definitions Analysis (see Section 5.3.2.3). Then it
follows closely the different steps involved in the transformation itself. For each
of the copy assignments [x:=y]l of the program, it:

1. Gets the set of blocks using the copy assignment from the Definition-Use
chains.

2. If the copy assignment is still valid at each of these blocks, increases the
metric’s value by 1.

Indeed, in this case, the transformation would delete the copy assignment (and
replace the variables used by the copy variable). To know if the assignment is
still valid, the entry information approx◦ from the Copy Analysis is used.

As shown in Section 5.3.5, the result of the propagation algorithm for the Copy
Analysis and the Reaching Definitions are exact, so this metric gives the ex-

86 Phase-ordering using a Metric-based Approach

act number of copy assignments that will be removed by a Copy Propagation
transformation.

5.4.2 Metric for Common Subexpressions Elimination

The metric CSE represents the Common SubExpressions Elimination trans-
formation. This transformation is only concerned with expressions, and their
occurrences in the program. Indeed, the more often an expression is computed
in the program, the more often the Common SubExpression Elimination trans-
formation could be applied to reduce the number of computation by introducing
a temporary variable.

The metric for the Common Subexpressions Elimination represents the num-
ber of available expressions re-used in the program. It uses the propagation
algorithm with the parameters for the Available Expression Analysis to com-
pute the set of available expressions at each block’s entry. Then, for each block
of the program, it:

1. Gets the set of non-trivial expressions involved in the block.

2. If an expression is already available, increases the metric’s value by 1.

On all the available expressions re-used in the program, some will have to intro-
duce new temporary variables, e.g. when the expression is part of a loop, and
thus will not be as interesting as those where only a replacement is made, but
this metric gives a good over-approximation of the places where the transfor-
mation may be beneficial.

5.4.3 Metric for Code Motion

The metric CM represents the Code Motion transformation. The transforma-
tion tracks loop invariants and moves them out of the loop in order to reduce
the number of computations of these invariants. Thus, most of the time, the
transformation improves the program for each of the loop invariants.

The metric for the Code Motion transformation represents the number of loop
invariants in the whole program. It uses the result from the propagation al-
gorithm used with the parameters from the Reaching Definition Analysis, as
well as the new version of Use-Definition and Definition-Use chains (see Section
5.3.2.3).

5.4 Definitions of the metrics 87

For all assignment [x:=y]l in loops, it:

1. Using the UD-chain, checks whether all variables used are defined outside
the loop, or if not checks whether only one definition reaches the variable
and that definition is already a loop-invariant.

2. As the execution can only leave a while loop by rendering the boolean
condition false, the block containing [x:=y]l always dominates all loop
exits, so there is nothing to check for this point.

3. Then, first checks if there is no other assignment to x in the loop. This is
done by looking at the entry information approx◦ and checking if it does
not contain other results for x among the labels in the loop.

4. Finally, using the DU-chain, check if no use of x in the loop is reached by
any definition of x other than [x:=y]l

5. If every check is OK, then mark the assignment as a loop invariant, and
increase the metric by 1.

This metric hence gives the exact number of loop invariants of the program
where the Code Motion transformation could be applied.

5.4.4 Metric for Constant Folding

The Constant Folding transformation uses results either from the Reaching Def-
inition Analysis or the Constant Propagation Analysis. The metric for Constant
Folding has been based on Constant Propagation, since it has been explained
in Section 3.4.1 that this analysis yields better results.

The metric CF represents the number of variables that could be replaced by
a constant value. This metric uses the results from the propagation algorithm
for Constant Propagation. It is calculated by iterating through the blocks of
the program and, for each of them, it:

1. Gets the set of variables used in the block

2. For each of these variables gets the assignments (of the same variable)
reaching the block, using Reaching Definitions Analysis results

3. Gets the value of each of these variable definitions from the σ map (from
Constant Propagation Analysis Section 5.3.3), and gets the value of the

88 Phase-ordering using a Metric-based Approach

variable used. If this value is constant (i.e different from “?”), increases
the metric’s value by 1.

As explained in Section 5.3.5, the σ mapping and the results from the propa-
gation analysis used with the Reaching Definitions Analysis parameters gives
exact data, so it can be concluded that this metric returns exactly the number
of variables that have a constant value in the program. Once again, this claim
has been experimentally verified using the Phase Manager implementation and
the different test programs.

5.4.5 Metric for Elimination with Signs

The metric ES represents the Elimination with Signs transformation. This
transformation aims at statically computing expressions when the signs of the
operands are known. It uses the Detection of Signs Analysis.

The metric for Elimination with Signs uses the σES map from the propaga-
tion algorithm for Detection of Signs (see Section 5.3.4) to determine how many
expressions could be statically computed. For each expression of the program,
it:

1. Looks for non-trivial boolean expressions

2. Gets the sets of signs of all the operands of the expression, using the σES

map.

3. If these sets of signs match, the result of the expression’s computation can
be guessed, so increases the metric’s value by 1.

As for the metric for Constant Propagation Analysis, the mechanism used to
calculate this metric gives exact results. Thus, the metric will show the num-
ber of places where the Elimination with Signs transformation will be able to
statically compute the expressions.

5.4.6 Metric for Dead Code Elimination

The last metric to be computed is the metric DCE. This metric represents the
Dead Code Elimination transformation. This transformation simply aims at
deleting the variables declared dead in the program, and can be extended to

5.4 Definitions of the metrics 89

delete the variables declared faint as well (see Section 3.4.4).

The metric for Dead Code Elimination has been designed to represent the total
number of assignments that would be removed by the Dead Code Elimination
transformation. A simple way to calculate this metric would be to use the result
of the propagation algorithm with the parameters for the Live Variable Analysis,
which gives exact results. However, the Dead Code Elimination transformation
is applied using the Strongly Live Variables Analysis in the compiler, because
this analysis is available in the compiler and gives better results.

Hence, in order to count the assignments of faint variables as well, a mechanism
to find faint variables must be added. The metric is calculated by iterating
through the blocks of the program. Then, for each assignments [x := a1]l, it:

1. Gets the sets of live variables at the exit of this block.

2. If this set does not contains xl, declares the variable dead, and increases
the metric’s value by 1.

3. Look for any variable becoming faint because of xl being dead. This uses
the auxiliary algorithm defined below.

The auxiliary algorithm aims at finding the faint variables from a dead/faint
assignment [x := a1]l. For each of the variables y in FV (a1):

1. Get the set of assignments defining y, using the UD-chain.

2. For each of these definition [y := a2]l
′
, get all the places where y is used,

from the DU-chain. If all these places are assignments of already declared
dead or faint variables, declare the variable faint and increase the metric’s
value by 1. Then look for any variable becoming faint because of yl′ being
faint.

Using these UD- and DU-chains, this metric gives the exact number of dead and
faint assignments, though finding faint variables takes a little more time than
just using the results from the propagation algorithm with the parameters from
the Live Variables Analysis.

90 Phase-ordering using a Metric-based Approach

5.5 Metric-based phase-ordering algorithm

The different metrics defined previously aim at creating a dynamic order of
transformations during the optimization process in the compiler. As the Phase
Manager is responsible for the ordering of the different phases, it will compute
the metrics and analyze them to choose in which order the different transfor-
mations should be called.

The following sections deal with the design of an algorithm that will be used to
determine which transformations should be called and in which order.

5.5.1 Algorithm used

In order to define the algorithm to compute an efficient order of optimizations,
two points must be determined:

1. given the values of the different metrics, which transformations should be
called first, and

2. when should the manager stop the execution of the algorithm.

The first issue can seem easy to solve, but in fact it raises some problems.
Indeed, the obvious way to compute the next transformations to be called is
to look at the different values of the metrics and to take the transformation(s)
associated with one of the metrics with the highest value, as all the metrics’
values are on the same scale.
But something else must be taken into account. Because of the fact that metrics
are defined by over-approximation (see Section 5.4), it may happen that a metric
has a non-zero value that corresponds to blocks of interest in the program, but
that in fact the corresponding transformation has been judged applicable on
these blocks while it is not. Then the value of this metric corresponding to
these blocks never decreases if the transformation is applied, and this situation
can result in a deadlock, as can be seen in Figure 5.13(a).

That is why the algorithm should include a mechanism for remembering the
metrics corresponding to transformations that are not efficient on the program:
hence, whenever some transformations do not change the program, their cor-
responding metric is added to a blacklist. This blacklist is updated at every
phase, by removing all the metrics that have changed since the preceding phase:

5.5 Metric-based phase-ordering algorithm 91

indeed, if a blacklisted metric has changed, it means that there may be other
optimizations to perform on the program that were not applicable before, and so
the transformation may be beneficial again. In this case the deadlock is avoided,
as illustrated in Figure 5.13(b). This mechanism is also a good way to allow the
manager to skip the transformations that have proved to be inefficient, while
their metric still has a non-zero value, due to over-approximation.

(a) Case of deadlock (b) Deadlock avoided

Figure 5.13: Use of the blacklist

The second point is also relatively important: the manager needs a way to decide
whether or not it should continue to call optimizations on the program. This
condition is closely related to the different issues that appeared when analyzing
the first point. Indeed, as the transformations are ranked by the values of their
metric, the condition of termination is to have all the metrics set to zero. But
as described earlier, some metrics may have encountered cases where they could
not decrease because of over-approximation in their definition. That leads to
the algorithm termination being based on all the metrics either set to zero or
blacklisted.

However, as the degree of optimization of the program at the end of the process
is the primary concern, another issue has to be accounted for. As explained
before, some of the metrics may have been blacklisted to avoid useless transfor-

92 Phase-ordering using a Metric-based Approach

mation calls (and deadlock), and are supposed to get out of blacklist once their
value is changing. But there can be some cases where the value of the metric is
not changing while the metric should be un-blacklisted.
Consider two metrics m1 and m2, respectively with values 2 and 1. The manager
will then decide to call the transformation corresponding to m1. In the case that
metric m1 was an over-approximation and the transformation does not change
the program, the metric m1 will be blacklisted and the transformation corre-
sponding to m2 will be applied. Assume that the metrics’ values are now m1 = 2
and m2 = 0. The metric m1 will not be unblacklisted, but there is a chance
that the transformation corresponding to m2 removed the over-approximation
on m1 and that now the transformation corresponding to m1 will have some
effects on the program. Therefore, the algorithm must include a way to give a
“second chance” to these transformations in this case.
The mechanism used to solve this problem checks whether the blacklist is empty
at the end of the execution. If the algorithm has reached the end of the exe-
cution with an empty blacklist, it means that all the metrics have a zero value,
and then the issue raised before is avoided.
Otherwise, the “second chance” must be given, and the blacklist should be emp-
tied. So the mechanism includes the creation of two others sets, called notToBe-
DeBlacklisted and toBeDeBlackListedIfChange. The set notToBeDeBlacklisted
represents the metrics that have been blacklisted since the last change on the
program: these metrics should in fact not be removed from the blacklist until
the program is changed again, as it is known that they are inefficient on the
actual version of the program.

At the end of the “first chance”, the last set toBeDeBlackListedIfChange will
contain the same metrics as the set notToBeDeBlacklisted, in order to remember
which metrics are supposed to be directly removed from the blacklist whenever
the program changes.

The actual algorithm can be seen in Figure 2. It uses several parameters:

• three instances of the program (including the algorithm input) prg, prg2
and prgAtEnd.

• two mappings between the metrics and their values metricValues and
metricValuesOld.

• three sets of metrics blacklist, notToBeDeBlacklisted and toBeDe-
BlackListedIfChange.

• a metric name op used to identify the associated transformation(s) to be
applied.

5.5 Metric-based phase-ordering algorithm 93

Initialization step:
Initialize blacklist and metrics’ maps to ∅;
prgAtEnd = clone(prg);
op = updateMetricsMap(metricV alues,metricV aluesOld,blackList);

Iteration step:
outerloop: while true do

while op 6= −1 do
prg2 = clone(prg);
callOptimizations(op,prg);
if prg = prg2 then

blacklist = insert(op);
notToBeDeBlacklisted = insert(op);
op = findHighestMetric(metricV alues,blackList);

else
notToBeDeBlacklisted = ∅;
blacklist = blackList

⋂
toBeDeBlackListedIfChange;

toBeDeBlackListedIfChange = ∅;
metricV aluesOld = insert(metricV alues);
op =
updateMetricsMap(metricV alues,metricV aluesOld,blackList);

end
end
if blacklist 6= ∅ then

if prg = prgAtEnd then
break outerloop;

else
blackList = blackList

⋂
notToBeDeBlacklisted;

toBeDeBlackListedIfChange = toBeDeBlackListedIfChange
⋃

notToBeDeBlacklisted;
notToBeDeBlacklisted = ∅;
prgAtEnd = clone(prg);
op = findHighestMetric(metricV alues,blackList);

end
else

break outerloop;
end

end
Algorithm 2: Metric-based phase-ordering algorithm

94 Phase-ordering using a Metric-based Approach

Additional functions are used within the algorithm as well:

• the function updateMetricsMap() computes and updates the mapping be-
tween the metrics and their current values, and returns the identifier of
the metric with the highest value. It also updates the blacklist by making
the difference between the two mappings of metrics’ values (old and new)
and returning the blacklist where all the metrics whose value has changed
have been removed

• the function findHighestMetric(...), given a mapping with metrics’ values
and a blacklist, returns the metric’s name whose associated transforma-
tion(s) will be used on the program. As explained before, the function
returns the name of the non-blacklisted metric with the highest value. If
no non-blacklisted metric is greater than zero then the function returns
−1.

• the function clone(...) returns an exact clone of the specified instance of
the program.

• the function callOptimization(...) launches the transformation(s) given by
the specified metric on the specified instance of the program. In the imple-
mentation, this function takes another parameter that allows a control on
whether the transformation(s) called should uses the analysis computed in
the metric’s calculation or just recompute the analysis with the classical
algorithms.

• the function insert(...) that inserts one or several elements specified as
parameters into a set or a mapping.

5.5.2 Termination of the algorithm

As two while loops are involved in the algorithm, it is interesting to see whether
this algorithm can always terminate, as otherwise it becomes useless. This part
contains a small proof that the algorithm will eventually terminate, with the
following assumptions concerning the degree of transformation of the program
d:

(i) it is assumed that there exists a maximum value for d where the program
is as transformed as possible, and it is not possible to optimize it further,
i.e.,

∃dmax : ∀d, d ≤ dmax

5.5 Metric-based phase-ordering algorithm 95

(ii) it is assumed that every metric m involved in this algorithm is associated
with transformations tm that either improve the degree of transformation
of the program or let it unchanged, i.e.,

∀m, tm applied ⇒ dafter tm
≥ dbefore tm

These two assumptions are valid if it is not possible to have several transfor-
mations T1,...,Tn such as the program generated after the sequence T1 · ... · Tn

is equal to the original program. It is true for the optimizations considered in
this thesis, simply because they are shown to reduce the number of instructions
executed by the program (or at least not increase it) whenever they are applied
(see Section 7.2), and this number of instructions has an obvious lower bound
of 0. However, the general concept is addressed in Chapter 9.

To prove that the algorithm eventually terminates, one must prove that:

(a) the execution gets out of the inner loop, i.e., eventually reaches the inner
loop condition in a state where op = −1. For this matter, the last statement
of the loop’s body (call to findHighestMetric(...)) must assign the value −1
to op.

(b) the execution gets out of the outer loop, i.e., eventually reaches one of the
two statements break outerloop.

To solve the first point, assumption (ii) can be used. Two cases are then possi-
ble: either the degree d does increase, or the degree d is unchanged, and then,
according to the algorithm, the metric m is placed into the blacklist. The exe-
cution can then reach three different situations:

1. if every metric m has a value of zero, then the blacklist is empty and the
last function call findHighestMetric(...) returns −1

2. if no non-blacklisted transformation tm makes d increase anymore, then
each metric m has either a value of zero or is in the blacklist, thus the last
function call findHighestMetric(...) returns −1, too.

3. if d keeps increasing, following assumption (i), the execution eventually
reaches a point where d = dmax where no more transformation tm can
improve the program: thus it is either like case 1 or 2.

Consequently, in the three cases, the value of op will eventually be −1, and the
execution will go out of the inner loop.

96 Phase-ordering using a Metric-based Approach

The second point deals with the outer loop. Once the execution gets out of
the inner loop, if the blacklist is empty or the program did not change since the
last time it got there, one of the break outerloop is directly reached. Otherwise,
either

• dmax is reached, and if the blacklist is not empty yet, the execution goes
back to the inner loop in the case 1 or 2. Then, once out of the inner loop
again, it directly quits, and, as the program did not change (prgAtEnd =
prg), the first break outerloop is reached.

• dmax is not reached yet and the blacklist is not empty: the algorithm gives
a “second chance” to the blacklisted metrics and it enters the inner loop
again. The program then keeps being optimized, until dmax is reached or
no transformation from non-zero metrics can optimize the program better.
As the metrics are defined by over-approximation, the second case should
not happened without dmax being reached, because then the metrics that
could optimize the program to dmax should not have a value of zero.

Chapter 6

Evaluation of the
metric-based phase-ordering

This chapter deals with the evaluation of the metric-based approach of the
phase-ordering problem. The first section describes the comparison made be-
tween the metric-based approach and the best regular expressions from the
benchmark suite. The second section introduces an analysis of the dependen-
cies between the transformations, and how the phase-ordering algorithm can be
modified according to it. This chapter aims at giving the reader an overview of
the performance of the metric-based approach defined in the previous chapter,
as well as an idea of a potential improvement of this approach.

6.1 Evaluation: Comparison with results from
benchmark suite

This section deals with the comparison between the metric-based phase-ordering
and the results from the benchmark suite using regular expressions. The tests
have been run on the same benchmark programs as during the evaluation of the
benchmark suite. The characteristics of the machine used for these tests are not
of primary importance, as the main interest of this evaluation is the comparison

98 Evaluation of the metric-based phase-ordering

of the two approaches.

In the metric-based approach, a propagation algorithm is used to approximate
the analysis during the calculation of the metrics. On several cases, these analy-
ses give exact results, which can then be used when performing the transforma-
tions on the program. Thus, the next two subsections are organized as follows:
the first subsection is about the metric-based approach without reusing the re-
sults from the metrics’ computation, while the second subsection deals with the
same approach with a reuse of the analysis results already computed.

6.1.1 Without using analysis results from metrics’ com-
putation

In this section, the results of the metric-based phase-ordering will be presented
and compared to the results from the benchmark suite from Section 4.3.3.5.
While the benchmark suite uses a regular expression generator which includes
probabilities in generating the different expressions, the metric-based compila-
tion will always compute the same order of transformations for the same test
program, as the algorithm is totally deterministic.

The results show that the phase-ordering using metrics optimizes the program
as much as the best regular expressions would do. The tables of data can be
found in Appendix A.3. As it can be seen in Figure 6.1, the overall time spent
is most often better for the metric-based approach.

As the values from Bench Program 10 are much higher than the others, the
highest part has been cut in the graph. The lower part of the columns for the
metric-based approach represents the time spent in the metrics’ calculation. In
some case the time spent on the metric’s calculation is a significant percentage
of the overall time, but this increase of time is counterbalanced by the fact that
the optimization is using less transformations than with the regular expression-
based approach. Indeed, only one regular expression is giving better results in
terms of number of transformations used (for Bench Program 4). This comes
from the over-approximation in one of the metrics, namely the metric for Com-
mon Subexpression Elimination.
The only case where the best regular expression is performing better is for the
Bench Program 10, where the metric-based algorithm takes 36% more time than
the best regular expression. In this case, the best regular expression compiles
the optimal program using as many transformations as the metric-based ap-
proach; the overhead in metric-based compilation is therefore coming from the
metrics’ calculation.

6.1 Evaluation: Comparison with results from benchmark suite 99

Figure 6.1: Comparison of the overall time spent in optimizing

6.1.2 Using analysis results from metrics’ computation

During the calculation of the different metrics, some analyses are approximated,
as explained in Section 5.3, using a propagation algorithm. In particular, in some
cases, the use of the propagation algorithm gives exactly the same results as the
classic algorithms used when the transformations are actually applied. Hence, in
these cases, the analysis’ results can be re-used instead of computing the analysis
solutions again with these algorithms, first because they are already available,
and also because, in case a re-computation is needed during the transformation
itself, the propagation algorithm has been shown to be faster (see Section 5.3.6).

Thus, the phase-ordering mechanism based on metrics has been applied using
the analysis’ results from the metrics’ computation, and it has been compared
to the one that does not reuse these results. The table of results of this com-
parison is shown in Appendix A.3. This comparison does not take into account
the number of instructions executed nor the number of transformations, as they
are obviously the same, since nothing changes in the optimization process itself.
Figure 6.2 shows a complete comparison, including the results from the bench-
mark suite, and the two cases of metric-based algorithm.

The time spent on the metrics’ calculation for both cases is approximately the

100 Evaluation of the metric-based phase-ordering

Figure 6.2: Complete comparison of the overall time spent in optimizing

same, as could be expected. Indeed, though the different analysis’ results com-
ing from the metrics’ computation are reused, the computation process of the
metrics themselves is not changing at all. Concerning the overall time spent in
the optimization, the algorithm using metrics and reusing the analysis results
is performing better than when the analysis solutions are re-calculated in the
transformations using classical algorithms, confirming the good performance of
the propagation algorithm. The case of Benchmark Program 10 is again cut on
this graph; however, the metric-based phase-ordering with reuse of the metrics’
results is only taking 39% of the time the best regular expression needed.

This graph concludes the comparison between the two considered approaches:
the metric-based approach is clearly giving better result than the regular ex-
pression approach. More precisely, the best regular expression gives often worse
results than the metric-based phase-ordering. The number of transformations
used in the metric-based approach is close to the optimal one, though the fact
that the metrics are defined by over-approximation may still introduce some
unnecessary transformations.

6.2 Dependencies between transformations 101

6.2 Dependencies between transformations

As it can be seen in the previous section, the time spent on the metric calcu-
lation is an important parameter in the speed of the optimization process. In
order to reduce the metrics’ calculation time, the approach considered in this
section is to study the different connections between the transformations, and
then try to derive from these dependencies a mechanism in which some metrics
would not be re-computed after specific transformations, in the case where the
value is known not to change.

As explained in Section 2, the interactions between the different transforma-
tions is one of the most interesting topics that can be considered when dealing
with phase-ordering in compilers. It is here possible to draw an overview of
the interactions between the transformations involved because they are all well
described and understood.

A last point concerns the Precalculation Process. Indeed, in the current phase-
ordering mechanism, the Precalculation Process is applied after each trans-
formation, because it is a very cheap transformation, almost as cheap as the
metric that could be designed for it. However, in order to perform this non-
recomputation of the metrics, Precalculation must be treated like all the other
transformations. Indeed, it interacts with every transformations and provokes
changes in all the other metrics. As a consequence there would be no case where
a metric is sure not to have changed if Precalculation is always called after every
transformation.

This section first describes the metric for the Precalculation Process, then estab-
lishes which transformation can enable or disable other transformations, and fi-
nally describes the experimental study made in order to confirm the interactions
found and their impact on the metrics, in order to avoid useless re-computation
of metrics. At the end of the section, a performance comparison is made between
this new way to compute the metrics and the previous version.

6.2.1 Metric for Precalculation Process

The metric PRE represents the Precalculation process. This transformation
aims at statically compute constant expressions, remove skip statements and
simplify both if and while statements whenever the condition is constant. It
uses no analysis, and thus can be perform in a linear time, as the program to
transform is skimmed through only once.

102 Evaluation of the metric-based phase-ordering

As can be seen in Section 3.4.7, this process mainly deals with four parame-
ters:

• the skip statements

• the non-trivial expressions where only constant values are involved

• the if statements with a constant condition

• the while loops with a false condition

⇒ Definition of the metric: The metric PRE, used to rank the need of using
the Precalculation process, is computed by counting the number of skip state-
ments, of non-trivial expressions where only constant values are involved, of if
statements with a constant condition and of while loops with a false condition.

No approximation are involved in this metric, so it obviously finds the exact
number of places the transformation could be applied.

6.2.2 Overview of the dependencies between transforma-
tions

In some cases, a transformation can perform some changes on the intermedi-
ate representation such that the others transformations’ efficiency is modified,
i.e the different places where this transformations can be applied are not the
same after this transformation. In these cases, these other transformations will
be able to perform either better or worse than they would have done if the
first transformation would not have been called. In other cases, performing the
first transformation cannot change the results of some specific transformations,
whatever the program given as input is.

In [24, 25], Whitfield and Soffa used their theoretical model to conclude on
the dependencies of some transformations. In the remaining of this section, a
more practical approach is used to define these interactions, in an attempt to
draw a connection table. Then this connection will be compared to Whitfield
and Soffa’s conclusions on the transformations in common.

For the sake of readability, only the interactions of Constant Folding with the
other transformations are described in this section. The remaining transforma-
tions can be found in Appendix C.1. Then, the connection table is summarized,

6.2 Dependencies between transformations 103

“tested” experimentally and used in the last subsections in an attempt to im-
prove the update of the different metrics.

6.2.2.1 Interactions of Constant Folding

This part deals with the interactions of Constant Folding. It describes the
different effects that the transformation can have on all the other ones, insisting
on when the Constant Folding transformation is not modifying any results for
some transformations. The (+) symbol means that there is a connection from
Constant Folding, where (-) means there is not.

• Dead Code Elimination (+). Constant Folding is obviously connected
to the Dead Code Elimination transformation: indeed, whenever Constant
Folding is applied, it replaces some variables x by their constant value,
potentially making assignments to x dead, as can be seen in the following
example:

[a:=5]1; [b:=a*a+3]2; write [b]3

In the above program, Dead Code Elimination cannot be applied, but
applying Constant Folding enables it, as illustrated here:

⇒CF [a:=5]1; [b:=5*5+3]2; write [28]3

⇒DCE write [28]3

• Common Subexpressions Elimination (+). Constant Folding also
enables Common Subexpressions Eliminations: as an example, the latter
is not capable of recognizing the expressions a+b and a+3 to be the same,
even when b is constant and has a value of 3. Thus, after a Constant
Folding, the two expressions will be a+3, and the Common Subexpressions
Elimination will be applicable.

• Precalculation Process (+). Constant Folding obviously enables the
Precalculation Process. For example in the program:

[a:=5]1; [b:=a*a+3]2

the Precalculation Process is useless, while after Constant Folding it can
be applied:

⇒CF [a:=5]1; [b:=5*5+3]2

⇒PRE [a:=5]1; [b:=28]2

104 Evaluation of the metric-based phase-ordering

Constant Folding can also enables Precalculation by replacing a boolean
variable in a condition (in if or while statements) by their boolean constant
value, allowing Precalculation to simplify the statement.

• Code Motion (+). The Constant Folding transformation is also inter-
acting with the Code Motion transformation. In the program:

while [x<3]1 do [x:=1]2; [p:=x]3 od

Code Motion cannot be applied at label 3, because it uses x assigned in
the loop, and which is not an invariant (since x is used in the condition as
well). However, after Constant Folding, the label 3 can be moved out of
the loop:

⇒CF while [x<3]1 do [x:=1]2; [p:=1]3 od
⇒CM if [x<3]4 then ([p:=1]5; while [x<3]1 do [x:=1]2 od) fi

• Copy Propagation (+). Copy Propagation is influenced by the use of
Constant Folding. Indeed, Copy Propagation deals with the replacement
of copy variables and delete the copy assignments if possible. If the vari-
ables used in the copy assignments are replaced by their constant values,
Copy Propagation cannot be applied while it could before. For example,
Copy Propagation can be applied in the following program:

[x:=1]1; [p:=x]2; write [p]3

⇒CP [x:=1]1; write [x]3

while after Constant Folding it cannot be applied anymore:

[x:=1]1; [p:=x]2; [write p]3

⇒CF [x:=1]1; [p:=1]2; write [1]3

⇒CP [x:=1]1; [p:=1]2; write [1]3

• Elimination with Signs (-). The only transformation not evolving
after Constant Folding is the Elimination with Signs transformation. This
comes from the fact that, if a variable x is replaced by its constant value
n, the Detection of Signs Analysis will find that σ(x, l) = sign(n), while
without Constant Folding it will have to propagate the sign of n to x. So
the use of Constant Folding makes the analysis easier, but the results will
be the same. The Elimination with Signs transformation will not get more
information from the Detection of Signs Analysis with or without the use
of Constant Folding.

6.2 Dependencies between transformations 105

6.2.2.2 Summary of the dependencies

The following table (Figure 6.3) sums up the different dependencies between the
transformations used. Of course each transformation is potentially influenced
by itself, as using a transformation can decrease the efficiency of a future re-use
of this transformation. The interesting part is of course the transformations
that does not influence some other transformations, so metrics do not have to
be re-computed.

CF CSE CP DCE CM ES PRE
CF

√ √ √ √ √ √

CSE
√ √ √ √ √ √

CP
√ √ √ √ √

DCE
√ √ √ √ √ √ √

CM
√ √ √ √ √

ES
√ √ √ √ √ √ √

PRE
√ √ √ √ √ √ √

Figure 6.3: Table of dependencies between transformations

The different conclusions are:

• Constant Folding does not influence Elimination with Signs.

• Common Subexpressions Elimination does not influence Elimination with
Signs.

• Copy Propagation does not influence Elimination with Signs nor Precal-
culation.

• Code Motion does not influence Copy Propagation and Dead Code Elim-
ination.

[24, 25] have four transformations in common with the compiler framework
implemented in this thesis: Dead Code Elimination (abbreviated dce as well),
Copy Propagation (abbreviated cpp), Code Motion (abbreviated icm), and Con-
stant Folding (abbreviated ctp for Constant Propagation). Their conclusions
about the interactions between these transformations are the same that the ones
presented here, except for the three pairs (cpp → dce), (cpp → ctp) and (icm
→ ctp), where they conclude on no interactions while the study made in this
thesis concluded on the existence of dependencies. As it is the existence of the
interactions that must be discussed, the remaining of this thesis will be in favor

106 Evaluation of the metric-based phase-ordering

of the results from the study made in the previous section, because some ex-
plicit counter-examples have been provided to show the veracity of these results.
The probable reason of this difference between these results and the ones from
[24, 25] must come from the possible differences in the definition of the Constant
Folding transformation and Dead Code Elimination, where faint variables may
not have been considered.

6.2.3 Impact on metrics’ calculation

As seen in the previous part, some transformations may not influence the results
of others. Thus, it should be the same with metrics, as they are supposed to
reflect the effect of the transformations they are representing.

An experimental study has been made in order to get some insights about how
the metrics are reacting when a specific transformation is used. An indepen-
dent Dependency Module has been designed in that aim. This module is used
in conjunction with the benchmark suite. During the computation of an order
of optimizations (defined by a regular expression), whenever a transformation
is called, the Dependency Module gets the different metrics before and after the
transformation, and compare the values. If the transformation has made the
metric change, a special counter, corresponding to this transformation and this
metric, is incremented.

The results of these tests can be seen in the following table (Figure 6.4).

Transf.
Metrics

CF CSE CP DCE CM ES PRE

CF 1.00 0.02 0.07 0.88 0.10 - 0.57
CSE 0.35 1.00 0.50 - 0.10 - -
CP 0.41 0.01 1.00 - 0.34 - -

DCE 0.21 0.08 0.01 1.00 0.33 - 0.12
CM 0.96 0.20 - - 1.00 0.70 0.12
ES 0.76 0.03 - 0.22 - 1.00 0.62

PRE 0.40 0.05 0.01 0.17 0.15 0.08 1.00

Figure 6.4: Table representing the frequency in which a metric’s value changed
with a specific transformation’s successful call

From these results, it is possible to see that the results from the analysis made
previously in Section 6.2.2 hold, as the metrics related to transformations that
should not be influenced never changed (i.e the frequency of the metrics’ changes

6.2 Dependencies between transformations 107

is equal to 0).

It can be pointed out that, on this experiment, several pairs give unexpected
results: (cp → dce), (cse → dce), (cse → pre), (dce → es), (es → cm)
and (es → cp). The frequencies for these pairs are equal to 0, while the anal-
ysis made previously showed that the transformation applied could potentially
modify the other transformation’s results, using examples. The reasons for these
values could be the potential over-approximation introduced in the metric cal-
culation (for Common Subexpressions Elimination), or most likely the fact that
the situations described in the examples never occurred.

It is now relatively safe to update the metric-based phase-ordering mechanism
by avoiding the useless re-computation of metrics that are not changed by spe-
cific transformations calls. A special version of the phase-ordering algorithm is
used where, after each transformation, the metrics that were not influenced by
a previously called transformation are not updated.

6.2.4 Comparison

This last part deals with the comparison of the results of the phase-ordering
mechanism with and without the mechanism to avoid useless re-computation of
metrics’ values. The fact that the Precalculation Process is not directly called
after each transformation but associated to a metric is also a parameter that
changed between the two approaches.

An interesting point of the dependencies analysis is to note that, though Precal-
culation is often influenced by other transformations, it is only disabled in some
cases (for Common Subexpressions Elimination and Dead Code Elimination),
so it does not have to be called after these transformations in the mechanism
using the classic update of the metrics.

Figure 6.5 and 6.6 shows the comparison of the time spent in the optimiza-
tion process between the normal update of the metrics and the new approach,
for both the case where the metrics’ results are re-used for the transformations
calls or not.

Again, Bench Program 10 is not shown in these graphs, but the complete tables
of data can be seen in Appendix A.4. The main insight that can be deducted
from these graphs is that the new mechanism is globally not improving the
optimization time. The two main causes are:

108 Evaluation of the metric-based phase-ordering

Figure 6.5: Comparison of the optimization time without reuse of the metric’s
results

Figure 6.6: Comparison of the optimization time with reuse of the metric’s
results

6.2 Dependencies between transformations 109

• The metric for Precalculation has to be calculated after almost every
phases, which increases the metrics’ calculation time. This can be com-
pensated by the fact that in the previous approach, Precalculation was
called after some of the transformations (though not after all anymore)
and calculating the metric takes globally the same amount of time as
calling the transformation, since no analysis is involved. With this new
mechanism, it must also be added the time to call the transformation.
Then the speed-up resulting from the non re-computation of the metrics
may be not important enough to make up for this overhead.

• The fact that Precalculation is automatically applied after some phases in
the previous version of the phase-ordering mechanism can enable opportu-
nities that are not enabled in this new mechanism. Thus sometimes more
transformations calls are needed in the compilation process with this new
version.

The results with this new version of the metrics’ update are not very satisfying.
However, this new mechanism could be more interesting if more transformations
were used, as there would be more cases where there is no interaction, improving
the speed-up. An even bigger experiment could be made to affine the different
probabilities and integrate it in the metrics’ calculation mechanism for example,
is a similar way as what has been done in [11].

110 Evaluation of the metric-based phase-ordering

Chapter 7

Evolution of the
phase-ordering algorithm

Now that the phase-ordering mechanism has been set up in some specific con-
ditions, it is interesting to investigate how to extend this very mechanism to
other goals. This chapter consists first in describing the different goals in pro-
gram optimization. Then an analysis of the effects of the transformations is
performed. The results of this analysis are finally used in an attempt to adapt
the phase-ordering mechanism to other goals than speed.

7.1 Goals when optimizing a program

As explained briefly in Section 2, optimizing compilers may have several goals.
The overall aim of such a compiler is to “produce code that is more efficient
than the obvious code. [...] The compiler must be effective in improving the
performance of many input programs.” ([1]). The most common requirements
are:

• the speed of the program execution: it is the “usual” parameter users
want to improve using optimizing compiler. The aim here is to reduce the

112 Evolution of the phase-ordering algorithm

running time of a program while of course getting the same behavior. It
is the parameter that have been used throughout all the experiments of
this thesis until now.

• the size of the generated code: as embedded applications are more
and more common, some users need to shorten their programs, in order
to minimize the amount of memory occupied.

• the power consumed by a program: because of the growth of portable
computers, the power consumption of a program is becoming a more and
more important parameter. These mobile devices have in general a limited
power supply, so the applications running on them must consume the least
possible energy.

Taking the user’s need into account is important before compiling a program.
Indeed, in embedded applications for example, an optimization can often im-
prove degrade one aspect (e.g size) while improving another one (e.g speed)
([21]), so knowing the goal of the optimization before performing it is necessary.

7.2 Effects of the transformations

The main topic in this section is to investigate the different effects of the trans-
formation according to the different goals defined in Section 7.1. On these three
goals, only two of them will be considered: speed and size of the generated pro-
gram. Indeed, the measure of power consumption is inaccessible in this thesis.
Intensive experiments have already been conducted on this topic ([7, 3]), and
the integration of such results in this phase-ordering mechanism is left for future
work, as explained in Section 9.

The first subsection deals with a theoretical analysis of the effects of differ-
ent transformations, and aims at finding the potential improvements that these
transformations may perform either on the speed or on the size of the program.
Again, for the sake of readability, only the part concerning Constant Folding
is shown in this section. The remaining transformations can be found in Ap-
pendix C.2. The second subsection introduces an experimental study in order
to evaluate the results found in the first subsection.

7.2 Effects of the transformations 113

7.2.1 Theory

In this part, the effects of Constant Folding are considered in order to establish
whether the transformation is improving the speed or the size of the input pro-
gram. As the Precalculation Process is applied after some transformations in
the metric-based phase-ordering algorithm, a concluding remark is taking the
Precalculation into account to evaluate the overall effect of the sequence of the
two transformations in that case.

Finally all the effects of the transformations considered are summarized in the
last part of this subsection.

7.2.1.1 Effects of Constant Folding

The transformation to be analyzed is the Constant Folding transformation, de-
scribed in Section 3.4.1.

Functional effect:

The aim of this optimization is to look for all variables assignments with
constant values on the right side, and to replace further in the program
the variables with their constant value.

Consequences on the program:

When replacing a variable’s occurrences by its constant value, the variable
itself is less and less used. In fact, most of the time, all the occurrences
of the variable between the first definition and the next assignment to
this variable are replaced by a constant value, which makes the variable
becomes dead at this point of the program. However, the transformation
does not remove the dead assignments created.

⇒ Conclusion:

∗ Size �: The effect of Constant Folding on the size of the program
varies depending on the variables replaced. Indeed, replacing a vari-
able with a long name can improve the size of the program, while
replacing a one-letter variable with true or false can degrade the
size for example.

∗ Speed ⊕: A successful Constant Folding call will improve the speed

114 Evolution of the phase-ordering algorithm

of the program, as runtime variable evaluations are replaced by simple
access to constant values.

∗ Associated with Precalculation: Constant Folding will still im-
prove speed, while the effect on the size are still impossible to pre-
dict, but there is more chance that Precalculation improves the size,
as Constant Folding may create constant expressions to be computed.

7.2.1.2 Summary

The effects of the transformations considered in this thesis are summarized in
Figure 7.1. For each case, a ⊕ means that the transformation is very likely to
improve the size or speed, a 	 means it is likely to degrade the size or speed, and
a � means that the effects can vary depending on some parameters, such as the
length of the variables used for Constant Folding, or the number of expressions
replaced for Common Subexpressions Elimination.

Size Speed
CP ⊕ ⊕
ES � ⊕

CSE � ⊕
DCE ⊕ ⊕
CM 	 ⊕
CF � ⊕

Figure 7.1: Effects of transformations

This study points out that all the transformations considered should improve the
speed of the program, characterized in this thesis by the number of instructions
executed. On the other hand, all are not always improving the size of the
program. Some, like Code Motion, are even very likely to degrade it. For
others, like Common Subexpressions or Elimination of Signs, it depends on
some properties of the input program.

7.2.2 Experimental results

An experimental study have been conducted using the benchmark suite in order
to get some insights about the effects of the transformations on the size and the
speed of the program.

7.2 Effects of the transformations 115

Figure 7.2 (respectively 7.3) represents the percentage of transformation calls
improving or degrading the size of the program (respectively the speed of the
program, measured by the number of instructions executed).

Figure 7.2: Percentage of transformation calls improving/degrading the size

These measures have been made using the regular-expression based approach in
order to run a lot of different orders of optimization phases on the benchmark
programs. Then, after each transformation call in each regular expression, the
relative improvement of the size or speed of the program has been measured
using the following coefficient:

N = Sbefore−Safter

Sbefore

where S is either the size of the program or the number of instruction executed.

These figures show that:

• the speed of the program is never degraded except for a very few percent-
age of Code Motion calls. The cause of this degradation is very likely to be,

116 Evolution of the phase-ordering algorithm

Figure 7.3: Percentage of transformation calls improving/degrading the speed

as mentioned in the theoretical analysis of the effects of Code Motion (in
Appendix C.2), the existence of a loop containing invariants and which is
only executed once. Otherwise, as expected, all the other transformations
are improving the speed of the program (though sometimes Precalculation
is not improving, probably only removing useless skip statements).

• only two transformations (and Precalculation) are always improving the
size of the program: Dead Code Elimination and Copy Propagation. Elim-
ination with Signs improved the size of the program more often than not,
but the other three transformations are very likely to degrade it, especially
Code Motion which never improved it.

This corroborates the previous analysis, and gives some useful insights on the
proportion in which Constant Folding, Elimination with Signs and Common
Subexpressions Elimination can improve or degrade the size of the program.

Figure 7.4 and 7.5 shows the average relative improvement of the transforma-
tions on the size and the speed of the program.

These figures show the importance of using Dead Code Elimination in both case
(speed or size improvement), and permit to establish some comparison between
the different transformations.

7.2 Effects of the transformations 117

Figure 7.4: Average improvement of transformations on the size of the program

Figure 7.5: Average improvement of transformations on the speed of the pro-
gram

118 Evolution of the phase-ordering algorithm

For example, it shows that Copy Propagation should be of better use for re-
ducing the size than Constant Folding or Common Subexpressions Elimination,
but Dead Code Elimination is likely to be more efficient than Copy Propagation.
Thanks to these insights, a new mechanism for the comparison of the metrics
can be designed, using coefficients to weight the different metrics, in order to
improve the phase-ordering mechanism.

7.3 Consequences on the metrics’ comparison

As it has been shown in the previous section, optimizing for size is not as easy as
optimizing for speed with the transformations considered in this thesis. Indeed,
while all these transformations are improving the speed of the program, it is
not the same when the goal set is to optimize the size of the program. In
order to consider an optimization process that aims at reducing the size of the
program, the insights gained in the previous sections can be used to design two
mechanisms: a mechanism to detect non-improving transformation calls, and
the use of weights when comparing the metrics to know which transformation
to choose next.

7.3.1 Detection of non-improving transformation

As some transformations are not always improving the size of the program, a
mechanism allowing the detection of non-improving transformation calls has
been designed in the phase-ordering algorithm.

The basic idea is to calculate the size of an instance of the program before
a transformation call, and compare it with the size after the transformation
call. Then if the size increased, the transformation is blacklisted and the old
version of the program is taken for the remaining optimization process.

However, some specific cases must be considered. Indeed, some transforma-
tions may increase the size of the program at first glance, but enables other
transformations to be applied such as the size globally decreases. Consequently,
using the informations gathered in Section 6.2.2 about the interactions between
the transformations, some transformations are treated specifically:

1. Constant Folding: in the case Constant Folding makes the original size
of the program decrease, the Phase Manager takes a look at the met-

7.3 Consequences on the metrics’ comparison 119

ric DCE. Indeed, Dead Code Elimination is often enabled by Constant
Folding, so there is a chance that applying Dead Code Elimination after
Constant Folding is going to be beneficial. So if the metric DCE increases,
that means that Dead Code Elimination has been enabled by Constant
Folding, and in that case Dead Code Elimination is applied on the pro-
gram. If the size after Dead Code Elimination is smaller than the original
size (before Constant Folding), then the optimization process continues
normally, otherwise Constant Folding is blacklisted and the original pro-
gram (before Constant Folding) is used when resuming the process.

2. Code Motion: Code Motion has been shown in the previous section to
degrade the size of the program. However, there are some cases where
it may be beneficial, combined with Constant Folding and Dead Code
Elimination: indeed, the pre-header condition can often be simplified and
the pre-header itself can be removed. So in the case Code Motion is applied
(and makes the size increase), Constant Folding is considered in a similar
way as Dead Code Elimination above. If this still does not improve the
size, another call of Constant Folding (because Precalculation, called after
the first Constant Folding may have removed the pre-header and enabled
Constant Folding again) is made combined with Dead Code Elimination. If
this still degrades the size of the program, then Code Motion is blacklisted
and the original program is used in the rest of the optimization process.

Calling other transformations without being sure it will be beneficial can in-
crease the compilation time, so it could be interesting to affine the choice of
the order in which the transformations will be considered. The next part intro-
duces some coefficients used to weight the different metrics in order to reduce
the compilation time.

7.3.2 Use of weights in phase-ordering mechanism

This second part deals with the mechanism that allows to weight the metrics’
values according to the probability they have to improve the program. This
can be used to help the phase-ordering mechanism to make a better choice of
transformation depending on the goal specified by the user.

The previous section considered transformations that are not improving the
size of the program. A good way to reduce the optimization time is to applied
first the transformations that are unlikely to degrade the size of the program,
and let the problematic transformations be called at the end. In order to classify
the transformations by their probability to improve the size but still consider the

120 Evolution of the phase-ordering algorithm

metric associated with them, a system of weighting has been designed. When-
ever a metric is calculated, it is multiplied by a coefficient that represents the
weight of the transformation.

These weights have been defined according to the results of Section 7.2.2: the
most often a transformation is improving the size in the previous experiments,
the higher will be the weight of the metric associated to this transformation.

A rough estimation of potentially good weights designed from Figure 7.4 is:

• Copy Propagation: 1.3

• Elimination with Signs: 1

• Common Subexpressions Elimination: 0.3

• Dead Code Elimination: 2

• Code Motion: 0.1

• Constant Folding: 0.7

These values have been chosen as an example, but of course a more in-depth
choice should be realized for optimal performance.

7.3.3 Evaluation

This last part deals with the evaluation of the phase-ordering mechanism aiming
at reducing the size of a program. Figure 7.6 shows the size of the optimized
benchmark programs in three cases:

• using the benchmark suite and choosing the best regular expression ac-
cording to the size of the program and then the optimization time.

• the classic metric-based phase-ordering mechanism evaluated in Section
6.1, with reuse of the results from the metrics’ calculation.

• the metric-based phase-ordering using the two mechanisms from the pre-
vious sections aiming at improving the size of the optimized program.

The size of the optimized benchmark programs are almost always the same, ex-
cept for two benchmark programs: in one of them (BenchPrg1), the best regular

7.3 Consequences on the metrics’ comparison 121

Best regular Metric-based Metric-based
expression without weights with weights

BenchPrg1 331 365 331
BenchPrg2 1781 1781 1781
BenchPrg3 723 698 698
BenchPrg4 431 431 431
BenchPrg5 536 536 536
BenchPrg6 438 438 438
BenchPrg7 582 582 582
BenchPrg8 411 411 411
BenchPrg9 87 87 87
BenchPrg10 3731 3731 3731
BenchPrg11 192 192 192
BenchPrg12 89 89 89
BenchPrg13 111 111 111
BenchPrg14 62 62 62
BenchPrg15 568 568 568
BenchPrg16 185 185 185
BenchPrg17 402 402 402

Figure 7.6: Size of the optimized benchmark programs

Figure 7.7: Optimization time for metric-based phase-ordering

122 Evolution of the phase-ordering algorithm

expression compute a program with a smaller size than the classic metric-based
algorithm, as in the other (BenchPrg3), the classic metric-based algorithm is
performing better than the best regular expression in terms of size. In both
cases, the new mechanism presented in this section is producing a program with
the smallest size.

Finally, introducing the detection of non-improving transformation calls in-
creased slightly the optimization time, compared to the metrics’ choice without
any weight, as illustrated in Figure 7.7.

The corresponding table of data can be found in Appendix A.5. This overhead
is compensated by the fact that the mechanism using this detection is likely to
produce better results for the size of the program, for example for BenchPrg 1.

Thus, this new version of the phase-ordering algorithm using weights and a
non-improving transformation calls detection mechanism is an interesting im-
provement and proved to be efficient on these benchmark programs. However it
requires some knowledge about the interactions between the transformations in
order to spot the good sequences that can be efficient while single transformation
calls are not.

Chapter 8

Design and implementation

This chapter deals with the design and the implementation of the Phase Manager
in Java and all the different auxiliary modules that are used for the manager,
the benchmarks and the metrics. After considering the implementation language
chosen, the second section contains references to the main classes and methods
involved in the optimization part of the compiler framework, while the last
section addresses the different implementation issues that occurred during this
thesis.

8.1 Implementation language

The while compiler is written using the Java 1.4 programming language. The
main advantage of this language is that it is an object-oriented language, which
allows an object representation of the different elements of the parse tree rep-
resenting the intermediate representation of a program (see Section 3.2.1).

124 Design and implementation

8.2 Main classes

This section introduces the main Java classes that were implemented for the
compiler framework, with an emphasis on the Phase Manager and the other
modules involved in the optimization process.

The frontend of the compiler (the lexical analyzer and the parser) is defined
in the Parse package. The lexical analyzer has been generated using a tool
JLex, which tokenizes the input program into different terminal tokens. The
parser is constructed using the Java CUP tool. It takes as input a description
of how the program should be parsed and which Java objects should be created
depending on the situation.
As a result, the parse tree is composed by Java objects representing the syntax
of the program. These classes are contained in the package Absyn, and are
subclasses of the Absyn.Absyn class. The overall program is constructed as an
instance of the Prg class, which has two fields, a DecList object that represents
the variable declaration, and a Stm object that represents the body of the pro-
gram. All statements in the program are instances of the Stm class (in fact, they
are instances of classes that extends the Stm class, like IfStm for a if-statement,
or WhileStm for a while-statement...), and all expressions are extending the Exp
class (VarExp, ConstExp...).

The Phase Manager itself has been implemented in a class called PhaseManager
of the optimizer.manager package. In this class are implemented all the methods
that are used to interprete the regular expressions and launch the benchmarks
as well as the calculation of the different metrics and the algorithm to use the
metric to optimize the program, or the method updateUDandDUchains(...) to
compute the UD- and DU- chains for example. The two main method are:

• The method optimizeUsingMetrics(...) that performs the dynamic phase-
ordering algorithm. This method calculates the different metrics for all
the optimizations available.

• The method launchBenchmark(...) that handles the benchmark tests.
This method uses the Regular Expression Generator to generates regular
expressions, then for each program (specified by a file), applies each regular
expressions and forwards all the results to the Record Analyser.

In the optimizer.manager package are also defined two other utility classes: the
class DependenciesUtilities and the class EffectsUtilities that contain various
methods to evaluate respectively the dependencies between the transformations
(Section 6.2.2) and the effects of these transformations (Section 7.2).

8.3 Implementation issues 125

The Regular Expression Generator is defined in the regExp.RegExpGenerator
class. Each module is represented by one method, all grouped together in the
main method called generateRegExps(...). This method calls all the Generator’s
modules and creates an array of regular expressions that can then be used in
the benchmark suite.

The Record Analyzer is implemented in the RecordAnalyser class of the op-
timizer.analyser package. It gets Record objects from the Phase Manager as
input, and analyzes them in the method analyseBench(...), which updates the
different java.util.HashMap objects containing the different rankings.

Finally, the Optimizer class from the optimizer.optimizer package is the class
containing all the data-flow analyses and transformations implemented to work
with the Phase Manager. Each transformation can be called using one method,
and two different analysis algorithms are available (the MFP algorithm and the
Abstract Worklist Algorithm).

8.3 Implementation issues

During this thesis, several implementation issues made this work challenging.
First, producing code that will always generate the correct output for several
different sequences of optimizations is difficult. Even the task of implementing a
conventional compiler that has to produce correct output for several predefined
optimization phase sequences is not easy at all. So producing code that will
always execute correctly for hundreds of different sequences of optimizations is,
in contrast, a severe stress test.

Making sure that all the attempted sequences will produce valid code required
backtracking a lot of different errors that were not discovered previously when
implementing the optimizations in the while compiler. These errors made the
quantity of benchmark runs increase severely, which can be represented as more
than a hundred hours spent on the benchmarks.

However, the final version of the Optimizer and the Phase Manager implemen-
tation have produced code that shown very good results, where no errors were
discovered again, increasing the confidence that can be put in the correctness
of this final implementation.

126 Design and implementation

Chapter 9

Future work and perspectives

There is much future work to consider on this novel approach of metric-based
phase-ordering in optimizing compilers. This chapter introduces a variety of im-
provements that are planned to be investigated in the future. The first section
deals with the design of new metrics and the extension of the while language;
the second section concerns the study of new analyses and transformations;
while the third section introduces the possible integration of static power and
performance models to have wider insights on the effects of the transforma-
tions applied during the optimization. Finally, the last section considers the
experimentation setup.

9.1 Designing new metrics and extending the
WHILE language

A first improvement to the actual mechanism would be the creation of new
metrics. It would be interesting to design metrics that represent not only the
potential effects of individual transformations, but also sequences of transfor-
mations that have been shown to be efficient. Considering the Constant Folding
transformation, Section 6.2.2 about the interactions between the transforma-
tions shows that it has a high probability of enabling Dead Code Elimination.

128 Future work and perspectives

This insight has already been used in the previous section when designing a
mechanism to detect non-improving transformation calls for size-aimed opti-
mization. Designing a metric that considers the combined action of both Con-
stant Folding and Dead Code Elimination may thus improve the optimization
process.
Others sequences of optimization phases can also be considered, as Code Motion
followed Constant Folding for example. Research on a better understanding of
the interactions between the transformations is still going on, and may give use-
ful insights on the sequences of optimization phases on which a metric would be
profitable.

The while language considered in this thesis is a simple imperative language
containing most of the interesting features of other well-known languages like C.
An interesting future work would be to extend this language with other types
of statements, from the switch statement to the goto and break statements.
Some mechanisms used in the propagation algorithm, such as the visiting graph,
would need to be modified to work with these new statements.
Another improvement to the analysis of the while language would be to con-
sider interprocedural analyses instead of only intraprocedural analyses. Again,
the visiting graph would need to be extended in order to take function calls into
account.

Finally, the work done in this thesis was planned to be integrated in the Mi-
crosoft Phoenix framework. Phoenix is a codename for Microsoft’s next-generation,
state-of-the-art infrastructure for program analysis and transformation. It aims
at creating an industry leading compilation and tools framework. Implementing
the propagation algorithm in Phoenix has not been attempted due to lack of
time. It would have required to adapt the algorithm to the Phoenix Interme-
diate Representation and the programming language used, and to consider the
transformations available. Thus, the design and implementation of the propa-
gation algorithm and the metric-based phase-ordering mechanism is left for a
very interesting future work as well.

9.2 Adding analyses and transformations

Additionally, the set of optimization phases could be increased. Seven transfor-
mations (including Precalculation) has been considered in this thesis. Adding
new transformations could enable other interesting interactions, and raise new
challenges when designing the metrics. Previous work could also be used to
generate new metrics: in [4] for example, Click and Cooper combines Constant
Propagation (equivalent to the Constant Folding used in this thesis) and Un-

9.3 Integrating power and performance models 129

reachable Code Elimination, which aims at removing statements that will never
be executed.

However, adding new transformations may require new analyses to be used in
the propagation algorithm. A challenging future work would be to find out what
type of analyses can run this algorithm. Then, a model could be established to
characterize these analyses and the propagation algorithm could be shaped in
a more abstract way. A good start would be to use constraints in the version
for bit-vector analyses in order to group Constant Propagation and Elimination
with Signs with the bit-vector analyses in a single and general version of the
propagation algorithm.

9.3 Integrating power and performance models

Another area of future work is to study the effects of the transformations in
a more detailed way. When optimizing for size, the phase-ordering mechanism
has been modified in order to detect non-improving transformations. Adding
such a mechanism when optimizing for speed was not necessary in this thesis,
as all the optimizations considered have been shown to be beneficial in terms of
speed. However, in the case other transformations would be added, a runtime
performance evaluation of the optimized program could be useful.
Performance evaluation is a very important factor in optimizing compilation,
as has been shown in Section 2. It would then be interesting to investigate the
static performance evaluation functions currently used in the literature and in
the research area: indeed, performance models that predict running time could
greatly reduce the cost of evaluating the effect of a transformation call, and thus
permit the design of a runtime detection of non-improving call, as was done for
size.

The issue of the termination of the metric-based phase-ordering algorithm has
been addressed in Section 5.5.2. This was based on the assumption that a se-
quence of transformations could not be applied on a program P and output the
same program P , making a loop in the optimization process. The use of a mech-
anism that detects non-improving calls would solve this issue, as the program
would be always improving, finally reaching a fixed point (because the execu-
tion time has a lower bound set to 0 sec.). Even without this mechanism, the
situation described above is unlikely to appear. However, another mechanism
could be designed to detect this kind of looping in the optimization process and
solve it by blacklisting the transformations responsible for it.

Finally, the integration of power evaluation models could also be used in or-

130 Future work and perspectives

der to provide the user the choice to optimize for power consumption. The
optimization process would also use the same mechanisms as when optimizing
for size. For example, Kandemir et al. use in [7] a power estimation tool in
their experiments, called SimplePower.

9.4 On the experimentation

Last but not least, the set of benchmark programs considered in the experiments
could be increased. Indeed, several key insights in this thesis came from the
experimentation made using the implementation of the Phase Manager. Thus,
performing experiments of larger scale would obviously give more interesting
results.

Chapter 10

Conclusion

The design of optimizing compilers has always been a difficult task. One of the
oldest problems is to find the best order of optimization phases to be applied in
order to produce optimal code. This issue, called the phase-ordering problem,
has been investigated since many years, as applying a fixed sequence of opti-
mization phases is widely acknowledged not to produce optimal code for every
applications.

Optimizing compilation for high-performance computing or embedded applica-
tions involves iterative compilers that generate various sequences of optimization
phases and evaluate them in order to find the best ordering. This approach takes
a considerable amount of time. On the other hand, classic command-line com-
pilers only provide the user with some specific options that applies optimization
phases to all programs in one fixed order.

This thesis describes a novel approach to the phase-ordering problem. A new
entity, the Phase Manager, is calculating coefficients, called metrics, to evalu-
ate where the different transformations can be applied, and choose dynamically
the order of optimizations during the optimization process. These metrics take
into account the intermediate representation of the program, so that a specific
sequence of optimizations is computed for each program.

The Phase Manager has been implemented in Java for a simple but complete

132 Conclusion

imperative language and for seven transformations using data-flow analyses.
The metrics use a new algorithm that has been shown to solve these analyses
faster than the classical algorithms. This metric-based approach has been com-
pared to the results from a benchmark suite that generates a large amount of
optimization sequences using regular expressions. The new approach has been
shown to optimize the benchmark programs in a globally faster time than the
best regular expressions for each program.

This thesis also considered the interactions between the transformations to
try to improve the metric-based mechanism. The new technique used has not
shown significant improvements compared to the first version of the metric-
based phase-ordering mechanism.

Finally, the phase-ordering algorithm has been extended to consider an opti-
mization process aiming at reducing the size of the program. This version has
been evaluated and shown to produce a smaller (or equally small) code than the
benchmark suite or the first version of the algorithm.

Several perspectives of future work have already been considered, but the po-
tential of this new approach to the phase-ordering problem has been proved
in this thesis. In particular, the new algorithm used to evaluate the data-flow
analyses showed a good potential to decrease the time spent in solving data-flow
equations.

Appendix A

Benchmark results

In this appendix are shown the different benchmark results that are not part of
the other chapters. This includes:

1. The list of regular expressions used in the benchmarks

2. The tables of data from the metric-based phase-ordering evaluation

3. The data from the regular expressions reaching the minimum number of
executed instructions

4. The tables of data for the metrics’ calculation using or not using the
dependencies analysis

5. The tables of data for the optimization aiming at reducing the size of the
program

A.1 List of regular expressions used

xxxxxxxxxxxxxxxx L i s t o f the r egu l a r exp r e s s i on s used in opt imi sa t i on xxxxxxxxxxxxxxxx

Reg . exp . 0 : PRE. (CSE.CP.PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM. (CF.ES .PRE)∗
Reg . exp . 1 : PRE. (CF.PRE)∗ . (CSE.CP.PRE)∗ .DCE.PRE.CM. (CF.ES .PRE)∗
Reg . exp . 2 : PRE. (CSE.CP.PRE)∗ . (CF.PRE)∗ . (CF.ES .PRE)∗ .DCE.PRE.CM

134 Benchmark results

Reg . exp . 3 : PRE. (CF.PRE)∗ . (CSE.CP.PRE)∗ . (CF.ES .PRE)∗ .DCE.PRE.CM
Reg . exp . 4 : ES .PRE.DCE.CSE.CM.CF.CP
Reg . exp . 5 : (ES .PRE.DCE.CSE.CM.CF.CP)∗
Reg . exp . 6 : ES .PRE.DCE.CSE.CM.CF.CP
Reg . exp . 7 : ES .PRE.DCE.CSE.CM.CF.CP
Reg . exp . 8 : (ES .DCE.PRE.CSE.CF.CP.CM)∗
Reg . exp . 9 : (ES .DCE.PRE.CSE.CF.CP.CM)∗
Reg . exp . 10 : ES .DCE.PRE.CSE.CF.CP.CM
Reg . exp . 11 : ES .DCE.PRE.CSE.CF.CP.CM
Reg . exp . 12 : (ES .DCE.PRE.CSE.CF.CP.CM)∗
Reg . exp . 13 : ES .DCE.PRE.CSE.CF.CP.CM
Reg . exp . 14 : ES .DCE.PRE.CSE.CF.CP.CM
Reg . exp . 15 : (ES .DCE.PRE.CSE.CF.CP.CM)∗
Reg . exp . 16 : (ES .DCE.PRE.CSE.CF.CP.CM)∗
Reg . exp . 17 : ES .DCE.PRE.CSE.CF.CP.CM
Reg . exp . 18 : (ES .DCE.PRE.CSE.CF.CP.CM)∗
Reg . exp . 19 : ES .DCE.PRE.CSE.CF.CP.CM
Reg . exp . 20 : ES .DCE.PRE.CSE.CF.CP.CM
Reg . exp . 21 : (ES .DCE.PRE.CSE.CF.CP.CM)∗
Reg . exp . 22 : ES .DCE.PRE.CSE.CF.CP.CM
Reg . exp . 23 : ES .DCE.PRE.CSE.CM.CF.CP
Reg . exp . 24 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 25 : CP.DCE.CSE.CM.PRE.CF.ES
Reg . exp . 26 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 27 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 28 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 29 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 30 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 31 : CP.DCE.CSE.CM.PRE.CF.ES
Reg . exp . 32 : CP.DCE.CSE.CM.PRE.CF.ES
Reg . exp . 33 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 34 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 35 : CP.DCE.CSE.CM.PRE.CF.ES
Reg . exp . 36 : CP.DCE.CSE.CM.PRE.CF.ES
Reg . exp . 37 : (CP.DCE.CSE.CM.PRE.CF.ES)∗
Reg . exp . 38 : CP.DCE.CSE.CM.PRE.CF.ES
Reg . exp . 39 : CP.CF.CSE.CM.ES .DCE.PRE
Reg . exp . 40 : (DCE.CSE.CF.CM.ES .CP.PRE)∗
Reg . exp . 41 : (DCE.CSE.CF.CM.ES .CP.PRE)∗
Reg . exp . 42 : (DCE.CSE.CF.CM.ES .CP.PRE)∗
Reg . exp . 43 : (DCE.CSE.CF.CM.ES .CP.PRE)∗
Reg . exp . 44 : DCE.CSE.CF.CM.ES .CP.PRE
Reg . exp . 45 : (DCE.CSE.CF.CM.ES .CP.PRE)∗
Reg . exp . 46 : (DCE.CSE.CF.CM.ES .CP.PRE)∗
Reg . exp . 47 : DCE.CSE.CF.CM.ES .CP.PRE
Reg . exp . 48 : (DCE.CSE.CF.CM.ES .CP.PRE)∗
Reg . exp . 49 : DCE.CSE.CF.CM.ES .CP.PRE
Reg . exp . 50 : CM. (((CSE) + (DCE) . ES . ((DCE)∗ .CSE.CF. (PRE)∗) + ((CP)

+ (ES . (CSE.CM.CM. (CSE)∗)∗) . (PRE)∗) .CF) + (PRE))∗
Reg . exp . 51 : (PRE) + (PRE) . (CSE)∗
Reg . exp . 52 : (((DCE)∗) + (ES . (CP. (CSE.PRE.PRE. ((CM.CSE.DCE. (ES . (CSE)∗)∗)∗)

+ (ES) . (PRE) + (CSE) .CSE.PRE)∗)∗))∗ .CF
Reg . exp . 53 : PRE. (CSE . (CSE)∗)∗ . (((PRE. ((DCE. (CP)∗) + (CP))∗) + (CP))∗ . (PRE)∗)∗
Reg . exp . 54 : CF. (ES)∗
Reg . exp . 55 : CP.CF. (DCE.CF. (CM)∗)∗
Reg . exp . 56 : ((PRE) + (PRE))∗ . (PRE. ((PRE)∗ .PRE. (DCE)∗)∗)∗
Reg . exp . 57 : (((((ES .PRE.PRE.PRE. (PRE)∗)∗) + (CF)) + (PRE)) + (CF))∗ . (PRE)∗
Reg . exp . 58 : (DCE)∗ . (PRE.ES .CF. (CF)∗ . (ES)∗)∗
Reg . exp . 59 : CF. (PRE)∗
Reg . exp . 60 : (CP)∗ . (CF.ES . (CM. ((CSE.PRE.CSE . (DCE. (CF)∗)∗)∗ .PRE. (CP)∗)∗)∗ . (ES . (CF)∗ . (CSE)∗)∗)∗ .ES .CP
Reg . exp . 61 : (PRE)∗ . (CF)∗
Reg . exp . 62 : (CM)∗ .CSE . (((CF)∗ . (DCE)∗ . (CM) + (((ES)∗ . (DCE)∗) + (DCE)) .PRE.ES .CF. (PRE)∗) + (PRE))∗
Reg . exp . 63 : CP. ((CF)∗ .PRE.CF. (PRE)∗)∗
Reg . exp . 64 : (CM)∗ .CF. (PRE)∗
Reg . exp . 65 : PRE.CF.CSE . (ES)∗
Reg . exp . 66 : CF.PRE. (CSE)∗
Reg . exp . 67 : PRE.PRE. (PRE)∗
Reg . exp . 68 : CM.ES . ((CP) + (CF))∗ .CSE . (CF)∗
Reg . exp . 69 : (PRE)∗ . (CF)∗
Reg . exp . 70 : PRE. (CM)∗
Reg . exp . 71 : (ES .CF.PRE. (PRE. (CSE)∗)∗)∗ . (PRE. (PRE)∗)∗
Reg . exp . 72 : ES . (((CSE)∗) + (ES) . ((DCE)∗ .CP. (PRE)∗)∗)∗
Reg . exp . 73 : DCE. (CP)∗
Reg . exp . 74 : ES . (PRE)∗
Reg . exp . 75 : (CF)∗ . (CP)∗
Reg . exp . 76 : CP. ((CM) + (CF))∗
Reg . exp . 77 : (CM) + ((DCE)∗ .CF. (CF)∗) . (ES)∗ .CM. (PRE)∗
Reg . exp . 78 : ((CSE) + ((PRE. (PRE)∗)∗))∗ .CSE.CSE . (CM)∗
Reg . exp . 79 : CM. ((CP) + (CP. (CSE)∗))∗ . (PRE.ES .PRE.DCE.CF. (CP. (CP)∗)∗ .CP. ((PRE)∗ .CF. (ES .CSE)∗)∗)∗
Reg . exp . 80 : CF. (CP)∗
Reg . exp . 81 : (ES)∗ .CF. (PRE) + (CSE) . ((CM) + (PRE. (PRE. (CM. ((CSE.CF.PRE. (CP)∗)

+ (CM))∗)∗)∗))∗ .DCE. (PRE)∗
Reg . exp . 82 : PRE. (DCE)∗
Reg . exp . 83 : CM. (DCE. (CSE)∗)∗
Reg . exp . 84 : CM. (ES)∗
Reg . exp . 85 : PRE.CF. (((PRE) + ((PRE)∗ .PRE. (PRE) + (CF) . (CP)∗) .PRE. (CF. (CSE)

+ (PRE) .DCE.CSE . (DCE) + (CM) .PRE)∗) + (PRE))∗

A.1 List of regular expressions used 135

Reg . exp . 86 : CP.CF. ((CF) + (PRE))∗ . (PRE)∗
Reg . exp . 87 : (CF)∗ .PRE. (CP)∗
Reg . exp . 88 : (CP)∗ .DCE.PRE. (ES .PRE. (((CM.CP. (PRE)∗) + (CSE)) + (PRE))∗)∗
Reg . exp . 89 : ES .CM. (PRE. (CM)∗)∗
Reg . exp . 90 : DCE. (PRE. (ES)∗)∗
Reg . exp . 91 : PRE. (CM)∗
Reg . exp . 92 : DCE.CF. (DCE. (CM)∗)∗
Reg . exp . 93 : (CSE) + ((PRE)∗) . (CM)∗
Reg . exp . 94 : (ES)∗ . (PRE)∗
Reg . exp . 95 : (CM)∗ .CP. (CSE)∗
Reg . exp . 96 : CF. (PRE)∗
Reg . exp . 97 : CM. (ES)∗
Reg . exp . 98 : (CM)∗ . (CM)∗
Reg . exp . 99 : (PRE)∗ . (PRE. ((CF)∗) + (CF) . (CF)∗)∗
Reg . exp . 100 : CF. (PRE)∗
Reg . exp . 101 : CM. (CP)∗ . (CP)∗
Reg . exp . 102 : (CP)∗ . (PRE)∗
Reg . exp . 103 : CSE . (PRE)∗
Reg . exp . 104 : CP. ((CP)∗ . (PRE. ((CP) + (PRE))∗)∗)∗
Reg . exp . 105 : PRE. (PRE)∗ . (ES)∗
Reg . exp . 106 : CM. (PRE.CP. (DCE)∗) + ((((PRE)∗) + ((ES . (CM)∗)∗)) + (PRE)) . ((CM)

+ (ES .CP.ES . ((CM) + (ES) . (DCE.PRE)∗)∗) .PRE)∗
Reg . exp . 107 : (((CF) + (CF))∗) + ((ES) + (PRE)) . (ES)∗
Reg . exp . 108 : CSE . (CSE . (PRE. (CM)∗ . (PRE. (DCE. (ES)∗)∗)∗)∗)∗
Reg . exp . 109 : (ES)∗ . (DCE) + (CSE) . (CM. (ES) + (CM) . (PRE)∗)∗
Reg . exp . 110 : CM.DCE. (ES)∗
Reg . exp . 111 : (CP) + ((((PRE)∗) + (CSE)) ∗) . (DCE)∗
Reg . exp . 112 : (DCE.ES . (PRE)∗)∗ . (ES . (CP)∗)∗
Reg . exp . 113 : CF. (CP. (CM)∗)∗
Reg . exp . 114 : CF. ((DCE) + (PRE))∗
Reg . exp . 115 : CP. (DCE)∗
Reg . exp . 116 : PRE. ((PRE. (ES)∗)∗ . ((DCE) + (ES))∗)∗
Reg . exp . 117 : DCE. ((CF) + (ES)) ∗ . (((CP. ((CF)

+ ((PRE) + (PRE)))∗)∗ .PRE. (PRE. (CF. (CP)∗)∗)∗) + (PRE))∗
Reg . exp . 118 : CSE.DCE.CP.CF. (CM)∗
Reg . exp . 119 : ((ES) + (PRE)) ∗ . ((CM) + (CP) .CF. (PRE)∗)∗
Reg . exp . 120 : ES . (CM.DCE. (CM. (CF)∗)∗)∗
Reg . exp . 121 : CF.CP.PRE. ((CP) + (PRE. (DCE)∗))∗
Reg . exp . 122 : (CF)∗ . (CF)∗
Reg . exp . 123 : (DCE.ES .PRE.PRE. (CM)∗)∗ . (ES .DCE. (CM.DCE.CP. (ES)∗)∗)∗
Reg . exp . 124 : CP.DCE. (PRE)∗
Reg . exp . 125 : CP. (DCE.PRE. (DCE. (CF.DCE. ((ES . (CF)∗)∗ . (ES)∗)∗)∗)∗)∗
Reg . exp . 126 : (CF) + (ES) . (PRE)∗
Reg . exp . 127 : ES . (((CSE)∗) + ((CSE) + (CSE))) ∗ . (((((CF) + (((CM) + (CSE.CF. (CM)∗)) + (CM)))

+ (ES))∗ .PRE. (CF)∗) + (CM) . (CP)∗)∗
Reg . exp . 128 : (((PRE)∗) + ((CM)∗) .CSE . (ES)∗)∗ . (CM.CP.CP.PRE. (CF)∗)∗
Reg . exp . 129 : (CSE)∗ . (CM.CM. ((CSE)∗ . (PRE)∗)∗)∗
Reg . exp . 130 : CF. (CF)∗ . (CM)∗
Reg . exp . 131 : PRE.PRE. (CM)∗ .CM. ((CF. (ES)∗)∗ . ((PRE) + ((PRE)∗))∗)∗
Reg . exp . 132 : CF. (CSE)∗
Reg . exp . 133 : (PRE)∗ . (PRE. (CF)∗)∗
Reg . exp . 134 : (((CSE)∗ . ((PRE.PRE. (DCE)∗) + ((ES)∗))∗)∗ . (ES)∗)∗ .CF. (ES . (PRE)∗)∗
Reg . exp . 135 : PRE. (CM)∗ . (PRE)∗
Reg . exp . 136 : PRE.CSE . (((CF)∗) + (((CP)∗) + (DCE)) . (CM)∗)∗ . (CM.PRE. (CSE)∗)∗ . (CF)∗
Reg . exp . 137 : CSE.PRE. (PRE)∗
Reg . exp . 138 : CF. (PRE)∗
Reg . exp . 139 : (CM)∗ .PRE.ES . (PRE)∗
Reg . exp . 140 : PRE.CF.PRE. (ES)∗
Reg . exp . 141 : CSE . (PRE. (ES)∗)∗
Reg . exp . 142 : PRE.CP.ES .PRE. (CF)∗
Reg . exp . 143 : DCE.CSE . (PRE)∗
Reg . exp . 144 : PRE.CP. (CF)∗
Reg . exp . 145 : (CSE.CM.CP. (PRE)∗) + ((CSE) + ((CSE) + ((CSE.CP. (CF)∗)

+ ((PRE) ∗) . ((CSE)∗ . (CM)∗)∗) . (PRE) ∗)) . (PRE)∗
Reg . exp . 146 : (CF)∗ . (PRE)∗
Reg . exp . 147 : (CF)∗ . (ES)∗
Reg . exp . 148 : CSE.CSE . (PRE. (DCE)∗ . (CF)∗)∗
Reg . exp . 149 : PRE. (DCE)∗
Reg . exp . 150 : ((PRE.PRE. (CF.CSE . (PRE)∗)∗)∗) + (ES) . (CM. (PRE)∗)∗
Reg . exp . 151 : ES . (ES)∗
Reg . exp . 152 : CSE.CM. (CP)∗
Reg . exp . 153 : PRE. (PRE)∗
Reg . exp . 154 : ES . (((PRE)∗ . (PRE)∗ . (CM)∗) + (CM))∗
Reg . exp . 155 : CP. ((PRE. (PRE. (ES)∗)∗) + ((PRE) + (CP)))∗
Reg . exp . 156 : ((DCE) + (((CF) + ((CP)∗ . (CSE)∗) .PRE.CM. ((PRE.CSE.CP.CSE.CM. ((PRE) + (ES))∗)

+ (PRE))∗) + (ES))) + (PRE) .CF
Reg . exp . 157 : PRE. (CP)∗
Reg . exp . 158 : CP. (PRE)∗
Reg . exp . 159 : (ES)∗ . (PRE) + (PRE) . (((CSE.PRE. ((CF) + (DCE)) ∗ . ((PRE)∗ .ES . (CP.PRE. ((DCE)

+ (CF) . (CM)∗)∗)∗)∗)∗) + (PRE))∗
Reg . exp . 160 : CF. ((PRE. (ES)∗)∗ . (DCE)∗)∗
Reg . exp . 161 : CSE . ((CF)∗ .PRE. (PRE)∗)∗
Reg . exp . 162 : (DCE)∗ . (ES)∗ . (PRE)∗
Reg . exp . 163 : ES . (PRE)∗
Reg . exp . 164 : (PRE)∗ .PRE. (PRE)∗
Reg . exp . 165 : PRE. (PRE)∗
Reg . exp . 166 : (PRE)∗ . (CSE . (CF)∗)∗

136 Benchmark results

Reg . exp . 167 : (CF)∗ . (PRE)∗
Reg . exp . 168 : DCE. ((ES) + ((CF) + (CM))) + ((DCE. (CP)∗)∗) .CF. (CF)∗ . (ES)∗
Reg . exp . 169 : DCE.DCE. ((DCE.CF. ((PRE) + ((CM)∗))∗)∗ . (CM)∗)∗
Reg . exp . 170 : DCE.DCE. ((PRE) + ((CF)∗))∗
Reg . exp . 171 : (DCE. (PRE)∗)∗ . (CM.CF. (PRE) + (PRE) . ((CF)∗ .CM.CSE.PRE.PRE.PRE. (CM)∗)∗ .CF.CP.DCE)∗
Reg . exp . 172 : (DCE)∗ .CF. (CSE . (DCE)∗)∗
Reg . exp . 173 : CSE . ((DCE. (PRE)∗) + (DCE))∗
Reg . exp . 174 : CF. ((ES)∗) + (CP) .CM. (CM. (ES . (PRE. (PRE. (PRE. (PRE)∗)∗)∗)∗)∗ . (DCE) + (CM) . (PRE)∗)∗
Reg . exp . 175 : CP.CSE . (PRE)∗
Reg . exp . 176 : (CF)∗ . (ES . (CP)∗)∗ . (CP)∗ . (PRE)∗ .ES .DCE. (CF. (CSE . (CSE)∗)∗)∗
Reg . exp . 177 : CF.CM. (CM)∗ . (CP)∗
Reg . exp . 178 : CP. (PRE. (CSE)∗)∗
Reg . exp . 179 : (PRE. (CSE)∗ . (CP. ((ES) + ((DCE)∗))∗)∗) + (DCE) . (DCE)∗
Reg . exp . 180 : CM. (PRE)∗
Reg . exp . 181 : PRE. ((PRE)∗ . (PRE)∗) + ((CM)∗) .CSE.CM. ((CSE . (DCE)∗ . (ES)∗)∗ .CSE . (CP)∗)∗
Reg . exp . 182 : DCE.PRE. (PRE)∗
Reg . exp . 183 : (PRE) + ((CM) + (DCE)) . (CP)∗
Reg . exp . 184 : ES . (PRE)∗
Reg . exp . 185 : ES .PRE. (CM)∗
Reg . exp . 186 : PRE. (CM. ((PRE. ((CF) + (PRE))∗)∗ . (CM. (CSE)∗)∗)∗)∗
Reg . exp . 187 : ((CP) + (CF))∗ .CSE . ((CF) + (PRE. (CSE)∗ .ES . (((PRE)∗)

+ (PRE. (PRE. (PRE)∗ . (CSE)∗)∗))∗) . (PRE)∗)∗ . (ES)∗ . (PRE.ES)∗
Reg . exp . 188 : (CF)∗ . (CSE)∗
Reg . exp . 189 : PRE. (CM)∗
Reg . exp . 190 : CF. (PRE)∗
Reg . exp . 191 : CF. ((CP) + (DCE))∗
Reg . exp . 192 : PRE. (PRE)∗ . (CSE)∗
Reg . exp . 193 : PRE. (CP)∗
Reg . exp . 194 : (ES . (DCE)∗)∗ . (CSE)∗ .PRE. (PRE. (PRE)∗)∗
Reg . exp . 195 : PRE. (PRE.ES . (PRE. (PRE)∗)∗)∗
Reg . exp . 196 : PRE.PRE. (CP)∗
Reg . exp . 197 : DCE. (ES .ES . ((CM)∗) + (CP. (ES)∗) .CSE . (CSE)∗)∗
Reg . exp . 198 : DCE. (CF. (CM)∗ .DCE. ((DCE. (PRE. ((PRE) + (DCE. (CP. (CM)∗)∗))∗)∗)∗) + (PRE) . (DCE)∗)∗
Reg . exp . 199 : (((PRE. (CSE)∗) + (PRE. (PRE)∗) .CF. (ES)∗ . (DCE. (DCE)∗)∗)

+ (CF. (ES)∗) . (CSE)∗) + (CSE) .CSE.CF. (PRE)∗
Reg . exp . 200 : ES .CF. (ES)∗
Reg . exp . 201 : CM. ((PRE) + ((CF)∗))∗ .ES .CSE . (CM)∗ . (CF)∗
Reg . exp . 202 : (CP)∗ . (ES)∗
Reg . exp . 203 : CSE . (PRE)∗
Reg . exp . 204 : CP.CSE . (CF)∗ . (DCE)∗
Reg . exp . 205 : ES . (PRE)∗
Reg . exp . 206 : (((CSE) + (DCE))∗) + (CM. ((CSE) + (CP))∗) . ES . (CSE)∗
Reg . exp . 207 : CM.DCE.DCE. (CF.CF. (ES)∗) + ((CM)∗ .CP. ((DCE)

+ (CF) . ((ES)∗ .PRE. (PRE)∗)∗)∗) .CF. ((DCE) + (CM))∗
Reg . exp . 208 : ((ES . (ES)∗) + (CP) . (CM.PRE. (CF)∗)∗)∗ . (PRE)∗
Reg . exp . 209 : CSE . (CF)∗
Reg . exp . 210 : CM.ES . (ES)∗
Reg . exp . 211 : DCE.CM.CP. (((CM) + ((CF)∗ . (CP)∗)) + (CSE . ((DCE) + ((CSE)∗) . (PRE)∗)∗))∗
Reg . exp . 212 : CP. (PRE)∗
Reg . exp . 213 : CF. (CSE.ES . (((CM)∗) + (DCE))∗)∗
Reg . exp . 214 : PRE.CP.DCE. (CF.PRE.CSE . (DCE. ((CSE) + (CM))∗)∗)∗
Reg . exp . 215 : CP. ((CF) + (DCE))∗ . (ES . (CSE . (ES)∗)∗)∗
Reg . exp . 216 : CP. ((CSE)∗ . (PRE. ((CM)∗ . (CSE)∗)

+ (CF. (PRE)∗) .CM.ES . (CP. (DCE.PRE. (CP)∗)∗)∗)∗)∗ . (ES .CF.PRE)∗
Reg . exp . 217 : CP.DCE. (CSE)∗ . (PRE)∗
Reg . exp . 218 : CSE.ES . (DCE)∗
Reg . exp . 219 : CF. ((CSE . (DCE. ((PRE)∗ .CM. (ES)∗)∗) + ((CP)∗) . (PRE)

+ (CM) .CF. (CSE)∗)∗ .CM. ((PRE)∗ . (CP)∗ . (CSE)∗)∗)∗
Reg . exp . 220 : (ES . (ES . (CP)∗ . (CP)∗)∗)∗ . (CM. (DCE)∗)∗
Reg . exp . 221 : DCE. (((CF) + (CF) . (DCE. (CSE . (CP)∗ .DCE.ES .CF. (ES)∗)∗)∗)∗ . (CM)∗)∗
Reg . exp . 222 : PRE. (ES)∗
Reg . exp . 223 : (CP) + (CF) . (CSE)∗
Reg . exp . 224 : CSE . (ES . ((DCE)∗) + (CM) . (CM)∗)∗ . (CP)∗
Reg . exp . 225 : CP. (CF)∗
Reg . exp . 226 : CM. (DCE)∗
Reg . exp . 227 : PRE. (PRE) ∗ . (((CF) + (CSE . (ES)∗ .CSE.DCE.DCE.CM. (DCE)∗))∗ . ((PRE) + (CF))∗)

+ (CM) . ((CSE) + (ES))∗
Reg . exp . 228 : ES . (DCE)∗
Reg . exp . 229 : CP. (CF)∗
Reg . exp . 230 : CP. (PRE)∗
Reg . exp . 231 : DCE.CF. (DCE)∗ . (DCE)∗
Reg . exp . 232 : (CM)∗ . ((CP) + (ES))∗
Reg . exp . 233 : CM. (CSE)∗
Reg . exp . 234 : CSE.CF.CF . ((((CM) + (CP)) + (PRE)) + (ES)) + (DCE) .PRE.ES . (CP)∗
Reg . exp . 235 : DCE.CF.CM. ((CP) + ((ES)∗))∗ .ES . (CSE)∗
Reg . exp . 236 : PRE. (DCE) ∗ . ((((CSE) + (CP.CF. (CF)∗))∗) + ((PRE) + ((PRE. ((CSE . (CM)∗)

+ (CF))∗)∗) . (ES)∗))∗
Reg . exp . 237 : (DCE)∗ .ES . (CSE)∗
Reg . exp . 238 : (CM)∗ . (CP)∗
Reg . exp . 239 : CM.CSE . (CSE)∗
Reg . exp . 240 : DCE. (CP)∗
Reg . exp . 241 : ES . (CF)∗
Reg . exp . 242 : ES . (CM. (ES)∗)∗ . (DCE)∗
Reg . exp . 243 : PRE.CSE . (((CF)∗ . (CP)∗) + (DCE. ((ES) ∗ . (((CM. (CSE . (CM)∗)∗ . (CSE)∗)∗)

+ (ES))∗)∗ . (CSE)∗) . (CM)∗)∗
Reg . exp . 244 : (PRE. (DCE)∗)∗ .CP. (CM.PRE. (CP. (((CSE . (DCE)∗)∗) + ((CF)

+ ((ES)∗ . ((DCE)∗ . (CF)∗)∗) . ((CF)∗ .DCE.CP.ES)∗))∗)∗)∗

A.1 List of regular expressions used 137

Reg . exp . 245 : CM. (CSE . (CM. (CF)∗)∗)∗ . (DCE. (PRE)∗)∗
Reg . exp . 246 : (CSE)∗ .PRE.ES .CSE.DCE. (CP)∗
Reg . exp . 247 : CSE . ((ES)∗ . (CSE)∗)∗
Reg . exp . 248 : DCE.CM.CF.CM.CSE . (CP.ES . (DCE)∗)∗
Reg . exp . 249 : PRE. (CSE)∗
Reg . exp . 250 : (PRE)∗ . (CP)∗
Reg . exp . 251 : (ES)∗ .DCE.CF. (CSE)∗
Reg . exp . 252 : PRE. (CF. (CM)∗)∗
Reg . exp . 253 : CM.PRE. (ES . (((CF)∗) + ((DCE)∗))∗)∗
Reg . exp . 254 : ((DCE)∗ .CP. (DCE)∗) + (DCE. (ES)∗) .PRE. (CSE)∗ .PRE. (CP)∗
Reg . exp . 255 : (CSE)∗ . (CF)∗ . (CM)∗
Reg . exp . 256 : (CSE) + (PRE) .DCE. (CP.CF.CSE . (CM. (PRE)∗)∗)∗
Reg . exp . 257 : PRE. (PRE. (CF)∗)∗
Reg . exp . 258 : CM. (ES)∗
Reg . exp . 259 : CSE . (DCE)∗
Reg . exp . 260 : ((CP) + ((CP) + ((PRE)∗)))∗ . (DCE)∗
Reg . exp . 261 : CM. ((ES) + (((CF) + ((CM) + (CM)))∗))∗
Reg . exp . 262 : DCE.CF.ES . (PRE)∗
Reg . exp . 263 : (CSE . (CP)∗)∗ . (PRE)∗
Reg . exp . 264 : PRE. (CSE . (ES . (CF)∗)∗)∗ . ((ES) + (CM))∗ . (DCE)∗
Reg . exp . 265 : CP. (CF)∗
Reg . exp . 266 : DCE. (CSE)∗
Reg . exp . 267 : PRE.CM. (CSE . (ES)∗)∗
Reg . exp . 268 : CF. (CP)∗
Reg . exp . 269 : DCE. (ES)∗
Reg . exp . 270 : (DCE)∗ .PRE.CF. ((CF) + (CP.ES . (DCE) ∗) . (((CM)∗) + (ES))∗)∗
Reg . exp . 271 : CF. ((CSE . (ES)∗)∗ . (CP)∗ . ((CF)∗) + ((CP.CM. (CF. (CF)∗)∗)∗) . ((PRE) + (DCE) . (CF)∗)∗)∗
Reg . exp . 272 : (PRE)∗ . (DCE) + (CSE) . (CP)∗
Reg . exp . 273 : (CSE) + (CM) . ((CSE) + (DCE))∗
Reg . exp . 274 : PRE. (((((CSE) + (ES))∗) + (CF.CM.CM.CM. (CP)∗)) + (CF) . (CSE)∗)∗
Reg . exp . 275 : ES . (DCE)∗
Reg . exp . 276 : PRE. (((PRE)∗ . (ES)∗) + ((CP. (DCE. (PRE)∗)∗)∗))∗
Reg . exp . 277 : CSE . (ES)∗
Reg . exp . 278 : CM. (CF)∗
Reg . exp . 279 : CSE . (PRE. (CP)∗)∗
Reg . exp . 280 : DCE. (ES)∗
Reg . exp . 281 : CF.DCE. (ES . (CF)∗)∗ .CP . ((((((CSE) + (DCE))∗) + (CSE))

+ (CSE))∗ .PRE.DCE. (CM.CM. ((CF) + (ES))∗)∗)∗
Reg . exp . 282 : (CF)∗ . (ES .CP. (DCE.CP.ES . (DCE. (CM)∗)∗)∗)∗
Reg . exp . 283 : CSE . (PRE)∗
Reg . exp . 284 : (CP. (CSE)∗)∗ .DCE. (CP. (CM) + (PRE. (ES)∗) . (ES) + (PRE) . (CM. ((CF) + (ES))∗)∗)∗
Reg . exp . 285 : CSE.CSE . ((CM)∗) + (CP.PRE.ES . (DCE)∗) . (CF)∗
Reg . exp . 286 : CP. (ES)∗
Reg . exp . 287 : (CM. (CP)∗)∗ . ((PRE) + ((CSE)∗))∗
Reg . exp . 288 : DCE.DCE.CF.CSE . (CF. (PRE)∗)∗
Reg . exp . 289 : CP.CSE . (CM)∗
Reg . exp . 290 : CSE.CM. ((DCE) + (((ES)∗) + (CP)) . (CSE)∗)∗
Reg . exp . 291 : CP. (CF)∗ . (CM)∗
Reg . exp . 292 : CF. ((ES) + ((CP)∗))∗
Reg . exp . 293 : ES . (PRE)∗
Reg . exp . 294 : DCE. (CSE . (CSE) + ((DCE)∗) . (DCE)∗)∗
Reg . exp . 295 : CF . (((PRE)∗) + (ES) .CP. (CM)∗ . (CM)∗) + (((DCE. (CF.CF. (CP)∗)∗)∗) + (DCE)) . (CM)∗
Reg . exp . 296 : ES .PRE. (PRE)∗
Reg . exp . 297 : CSE.DCE.CM.PRE. ((CP)∗ .CF. (CF)∗)∗
Reg . exp . 298 : (DCE) ∗ . (((CM) + (CP)) + (CSE))∗
Reg . exp . 299 : DCE.ES . (CM)∗
Reg . exp . 300 : (DCE)∗ . (CSE)∗
Reg . exp . 301 : CF. (PRE)∗
Reg . exp . 302 : ES . (DCE)∗
Reg . exp . 303 : ((CF. (ES . (CM. (CM)∗ . (ES . (((CP)∗)

+ (CF. (PRE. (CF)∗)∗))∗ . (CF)∗)∗)∗)∗)∗) + (ES) . (CP)∗
Reg . exp . 304 : CM.PRE. ((CSE) + (CSE))∗
Reg . exp . 305 : CP. (DCE)∗
Reg . exp . 306 : PRE. (ES)∗
Reg . exp . 307 : (DCE) + ((CF)∗ .ES . (CSE)

+ ((CF. ((CP)∗ . (CSE)∗ .DCE. (CM)∗)∗)∗) . (CF)∗ .CSE . (PRE)∗) . (PRE. (CM. ((PRE) + (CF))∗)∗)∗
Reg . exp . 308 : DCE. (ES)∗
Reg . exp . 309 : (CP. (CF)∗)∗ .CM. (CM) + ((CF. (ES)∗)∗) .CF. (DCE)∗
Reg . exp . 310 : ES . ((CSE) + ((PRE)∗))∗
Reg . exp . 311 : (CSE . (DCE)∗) + ((((CSE)∗ . (CP. ((((CSE)∗ . (CF)∗)∗ . (ES)∗)

+ (ES))∗ . (DCE)∗)∗) + (PRE)) ∗) . (PRE)∗
Reg . exp . 312 : CM. (PRE.CM. (ES)∗)∗
Reg . exp . 313 : CP.CSE . (CP)∗
Reg . exp . 314 : ES . (ES)∗
Reg . exp . 315 : CF. (DCE)∗
Reg . exp . 316 : DCE.ES .CP.PRE. (PRE)∗
Reg . exp . 317 : CF.CSE . (CF)∗
Reg . exp . 318 : (DCE)∗ . ((CM) + (CP))∗
Reg . exp . 319 : (CP)∗ . (PRE. (ES)∗)∗ . (DCE)∗
Reg . exp . 320 : CM. (CP)∗
Reg . exp . 321 : DCE.CM. (CF. (ES)∗)∗
Reg . exp . 322 : DCE. (ES)∗
Reg . exp . 323 : CF.CSE . ((CF. ((CP. (CP. (DCE)∗)∗) + ((CM)∗))∗)∗) + (PRE) . (CSE)∗
Reg . exp . 324 : CF. (CM. (CSE.CF. (CF)∗) + (ES) .CP. (DCE)∗)∗
Reg . exp . 325 : (CSE)∗ .PRE.PRE. (CSE)∗
Reg . exp . 326 : (ES . (CP)∗ .CM. (DCE)∗)∗ .CSE . (((CF.CM.PRE. (CF)∗)∗ . (ES)∗)∗ . (DCE)∗)

+ (CP) . (ES) + (CP) . (CP)∗

138 Benchmark results

Reg . exp . 327 : CSE.CF . (((ES)∗) + (CSE) . (DCE)∗)∗
Reg . exp . 328 : PRE. (PRE)∗
Reg . exp . 329 : (CF) + (CSE) . (PRE)∗
Reg . exp . 330 : DCE. (CM. (PRE)∗)∗
Reg . exp . 331 : CM.CF. (DCE)∗
Reg . exp . 332 : ES . (CM)∗
Reg . exp . 333 : PRE. (PRE. (CP)∗)∗
Reg . exp . 334 : ES . (CF. (CM)∗)∗
Reg . exp . 335 : ((CSE) + (CP)) + (DCE) . (CM. (CP)∗)∗
Reg . exp . 336 : (PRE)∗ . (CSE)∗ . ((CSE)∗ . (CM)∗)∗
Reg . exp . 337 : ((ES)∗) + ((CF)∗) .PRE. (DCE)∗
Reg . exp . 338 : CM.ES .CF. (CP.CSE . (CP)∗)∗
Reg . exp . 339 : (CSE)∗ . (DCE)∗
Reg . exp . 340 : DCE. (PRE)∗
Reg . exp . 341 : CSE . (PRE)∗
Reg . exp . 342 : ES .CF.PRE. (CF)∗
Reg . exp . 343 : ((CSE)∗ .PRE. (ES)∗)∗ . (CM)∗
Reg . exp . 344 : (CP) + ((CM. (CSE)∗ . ((DCE) + ((DCE. (CP)∗)∗))∗)∗ .PRE.CF.CM. (DCE)∗) . (ES)∗
Reg . exp . 345 : CSE . (CF)∗
Reg . exp . 346 : CSE . (CM)∗
Reg . exp . 347 : (CP) + ((PRE) + (DCE)) . (CSE . (ES)∗) + ((((CP. (ES)∗)∗ .CF. (CSE)∗)

+ ((PRE) + (CM) . ((CP)∗ . (CP)∗)∗))∗) . (DCE)∗
Reg . exp . 348 : PRE. (CF)∗ .ES . (CF)∗
Reg . exp . 349 : CSE . (PRE)∗
Reg . exp . 350 : ((ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 351 : (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.CF.PRE. (ES .PRE)∗ . (DCE.PRE.CM.ES .PRE)∗
Reg . exp . 352 : ((ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 353 : ((CF.PRE)∗ . (CSE.CP.PRE)∗ .DCE.PRE.CM.CF.PRE. (ES .PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 354 : (ES .PRE)∗ . (CSE.CP.PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE
Reg . exp . 355 : ((ES .PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 356 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ . (CSE.CP.PRE)∗)∗
Reg . exp . 357 : (ES .PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE
Reg . exp . 358 : (ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ . (CP.CSE.PRE)∗
Reg . exp . 359 : ((ES .PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 360 : (ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE
Reg . exp . 361 : ((ES .PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 362 : ((ES .PRE)∗ . (CP.CSE.PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 363 : (ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ . (CP.CSE.PRE)∗
Reg . exp . 364 : (ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CP.CSE.PRE
Reg . exp . 365 : ((ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 366 : ((CP.CSE.PRE)∗ . (CF.PRE)∗ . (ES .PRE)∗)∗
Reg . exp . 367 : ((ES .PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 368 : (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CP.CSE.PRE
Reg . exp . 369 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 370 : ((ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 371 : ((ES .PRE)∗ .CSE.CP.PRE. (DCE.PRE.CM.ES .PRE)∗ . (CF.PRE)∗ . (DCE.PRE.CM.CF.PRE)∗)∗
Reg . exp . 372 : ((ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 373 : ((ES .PRE)∗ . (DCE.PRE.CM.ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 374 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 375 : ((ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 376 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ . (CP.CSE.PRE)∗)∗
Reg . exp . 377 : (ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CP.CSE.PRE
Reg . exp . 378 : ((ES .PRE)∗ . (CSE.CP.PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 379 : ((ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 380 : (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ . (CSE.CP.PRE)∗
Reg . exp . 381 : (ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CSE.CP.PRE
Reg . exp . 382 : ((ES .PRE)∗ . (DCE.PRE.CM.ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 383 : (CP.CSE.PRE. (CF.PRE)∗ . (ES .PRE)∗)∗
Reg . exp . 384 : (DCE.PRE.CM.ES .PRE. (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 385 : (CP.CSE.PRE. (CF.PRE)∗ . (ES .PRE)∗)∗
Reg . exp . 386 : ((DCE.PRE.CM.ES .PRE)∗ . (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ . (CP.CSE.PRE)∗)∗
Reg . exp . 387 : ((ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 388 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 389 : (ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CP.CSE.PRE
Reg . exp . 390 : (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CP.CSE.PRE
Reg . exp . 391 : (DCE.PRE.CM.ES .PRE. (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 392 : ((ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 393 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ . (CSE.CP.PRE)∗)∗
Reg . exp . 394 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 395 : ((ES .PRE)∗ . (DCE.PRE.CM.ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 396 : (CSE.CP.PRE. (CF.PRE)∗ . (ES .PRE)∗)∗
Reg . exp . 397 : ((ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 398 : (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CP.CSE.PRE
Reg . exp . 399 : ((ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 400 : ((ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ . (CP.CSE.PRE)∗)∗
Reg . exp . 401 : ((ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 402 : (ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE
Reg . exp . 403 : ((ES .PRE)∗ . (DCE.PRE.CM.ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 404 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 405 : (DCE.PRE.CM.ES .PRE. (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 406 : (DCE.PRE.CM.ES .PRE. (ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 407 : (DCE.PRE.CM.ES .PRE. (ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 408 : ((ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 409 : ((ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 410 : (DCE.PRE.CM.ES .PRE. (ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 411 : (CSE.CP.PRE. (CF.PRE)∗ . (ES .PRE)∗)∗
Reg . exp . 412 : (DCE.PRE.CM.ES .PRE. (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ . (CSE.CP.PRE)∗)∗

A.1 List of regular expressions used 139

Reg . exp . 413 : (ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE
Reg . exp . 414 : ((ES .PRE)∗ . (DCE.PRE.CM.ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 415 : ((ES .PRE)∗ . (DCE.PRE.CM.ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 416 : (ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CSE.CP.PRE
Reg . exp . 417 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 418 : (CP.CSE.PRE. (CF.PRE)∗ . (ES .PRE)∗)∗
Reg . exp . 419 : ((ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 420 : ((ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 421 : (CP.CSE.PRE. (CF.PRE)∗ . (ES .PRE)∗)∗
Reg . exp . 422 : (DCE.PRE.CM.ES .PRE. (ES .PRE)∗ .DCE.PRE.CM.CF.PRE. (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 423 : (ES .PRE)∗ .DCE.PRE.CM.ES .PRE. (CF.PRE)∗ .CP.CSE.PRE
Reg . exp . 424 : ((ES .PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ . (CF.PRE)∗ . (CSE.CP.PRE)∗)∗
Reg . exp . 425 : ((ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.CF.PRE)∗
Reg . exp . 426 : ((ES .PRE)∗ . (CF.PRE)∗ . (CSE.CP.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 427 : ((CF.PRE)∗ . (ES .PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 428 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 429 : (CF.PRE)∗ . (ES .PRE)∗ . (CSE.CP.PRE)∗
Reg . exp . 430 : ((ES .PRE)∗ . (CF.PRE)∗ . (CP.CSE.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 431 : ((ES .PRE)∗ . (CF.PRE)∗ . (CSE.CP.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 432 : ((ES .PRE)∗ . (CF.PRE)∗ . (CP.CSE.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 433 : (ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE
Reg . exp . 434 : (ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.ES .PRE
Reg . exp . 435 : ((ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 436 : (ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.ES .PRE
Reg . exp . 437 : ((CSE.CP.PRE)∗ . (ES .PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM.CF.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 438 : ((CP.CSE.PRE)∗ . (ES .PRE)∗ . (CF.PRE)∗ . (DCE.PRE.CM.CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 439 : ((CF.PRE)∗ . (ES .PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 440 : ((ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 441 : (ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.CF.PRE
Reg . exp . 442 : (ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE
Reg . exp . 443 : ((CF.PRE)∗ . (ES .PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 444 : (CP.CSE.PRE. (ES .PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM.CF.PRE. (DCE.PRE.CM.ES .PRE)∗)∗
Reg . exp . 445 : ((ES .PRE)∗ .CSE.CP.PRE. (CF.PRE)∗ . (DCE.PRE.CM.CF.PRE)∗)∗
Reg . exp . 446 : ((ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 447 : (ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE
Reg . exp . 448 : ((ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 449 : ((ES .PRE)∗ . (CP.CSE.PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 450 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 451 : ((DCE.PRE.CM.CF.PRE)∗ . (ES .PRE)∗ .CSE.CP.PRE. (CF.PRE)∗ . (DCE.PRE.CM.ES .PRE)∗)∗
Reg . exp . 452 : (DCE.PRE.CM.CF.PRE. (ES .PRE)∗ .CSE.CP.PRE. (CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 453 : (ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE
Reg . exp . 454 : (ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE
Reg . exp . 455 : ((ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 456 : ((DCE.PRE.CM.CF.PRE)∗ . (ES .PRE)∗ . (CSE.CP.PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 457 : (ES .PRE)∗ . (CP.CSE.PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM.ES .PRE
Reg . exp . 458 : ((ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 459 : (ES .PRE)∗ .CSE.CP.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE
Reg . exp . 460 : (DCE.PRE.CM.CF.PRE. (ES .PRE)∗ . (CSE.CP.PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 461 : (DCE.PRE.CM.CF.PRE. (ES .PRE)∗ . (CSE.CP.PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 462 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 463 : ((ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 464 : ((ES .PRE)∗ . (CP.CSE.PRE)∗ . (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 465 : (DCE.PRE.CM.CF.PRE. (ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 466 : ((ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 467 : (DCE.PRE.CM.CF.PRE. (ES .PRE)∗ .CSE.CP.PRE. (CF.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 468 : ((ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 469 : (ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.ES .PRE
Reg . exp . 470 : ((ES .PRE)∗ . (CF.PRE)∗ . (CSE.CP.PRE)∗)∗
Reg . exp . 471 : (ES .PRE)∗ .CSE.CP.PRE. (CF.PRE)∗ .DCE.PRE.CM.ES .PRE
Reg . exp . 472 : DCE.PRE.CM.CF.PRE. (ES .PRE)∗ .CP.CSE.PRE. (CF.PRE)∗ .DCE.PRE.CM.ES .PRE
Reg . exp . 473 : ((CF.PRE)∗ . (ES .PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 474 : ((ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 475 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 476 : (ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.CF.PRE
Reg . exp . 477 : ((ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.CF.PRE)∗
Reg . exp . 478 : (ES .PRE)∗ . (CF.PRE)∗ . (CSE.CP.PRE)∗ .DCE.PRE.CM.ES .PRE
Reg . exp . 479 : (DCE.PRE.CM.CF.PRE. (ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 480 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.CF.PRE)∗
Reg . exp . 481 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.CF.PRE)∗
Reg . exp . 482 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.CF.PRE)∗
Reg . exp . 483 : ((DCE.PRE.CM.CF.PRE)∗ . (ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 484 : ((CF.PRE)∗ . (ES .PRE)∗ .CP.CSE.PRE)∗
Reg . exp . 485 : (ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE
Reg . exp . 486 : ((CF.PRE)∗ . (ES .PRE)∗ .CSE.CP.PRE)∗
Reg . exp . 487 : (ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.ES .PRE
Reg . exp . 488 : ((CF.PRE)∗ . (ES .PRE)∗ . (CSE.CP.PRE)∗)∗
Reg . exp . 489 : ((ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE. (DCE.PRE.CM.CF.PRE)∗)∗
Reg . exp . 490 : ((CF.PRE)∗ . (ES .PRE)∗ . (CP.CSE.PRE)∗)∗
Reg . exp . 491 : ((ES .PRE)∗ . (CF.PRE)∗ .CP.CSE.PRE.DCE.PRE.CM.CF.PRE)∗
Reg . exp . 492 : (CF.PRE)∗ . (ES .PRE)∗ .CSE.CP.PRE
Reg . exp . 493 : DCE.PRE.CM.CF.PRE. (ES .PRE)∗ . (CF.PRE)∗ . (CP.CSE.PRE)∗ . (DCE.PRE.CM.ES .PRE)∗
Reg . exp . 494 : ((ES .PRE)∗ . (CF.PRE)∗ . (CP.CSE.PRE)∗ .DCE.PRE.CM.CF.PRE)∗
Reg . exp . 495 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.CF.PRE)∗
Reg . exp . 496 : ((ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.ES .PRE)∗
Reg . exp . 497 : ((ES .PRE)∗ . (CF.PRE)∗ . (CSE.CP.PRE)∗ .DCE.PRE.CM.ES .PRE)∗
Reg . exp . 498 : (ES .PRE)∗ . (CF.PRE)∗ .CSE.CP.PRE.DCE.PRE.CM.ES .PRE
Reg . exp . 499 : ((CF.PRE)∗ . (ES .PRE)∗ .CP.CSE.PRE)∗

140 Benchmark results

A.2 Table of regular expressions with the num-
ber of instructions executed

Regular expressions with the best number of executed instructions
Number of Number of Percentage

instructions exec. regular expressions
BenchPrg1 896 115 23.00%
BenchPrg2 3708603 167 33.40%
BenchPrg3 171925 151 30.20%
BenchPrg4 121216 168 33.60%
BenchPrg5 97247 500 100.00%
BenchPrg6 51710 168 33.60%
BenchPrg7 431514 500 100.00%
BenchPrg8 1590652 158 31.60%
BenchPrg9 3508 128 25.60%
BenchPrg10 3982611 168 33.60%
BenchPrg11 26407 121 24.20%
BenchPrg12 1705 168 33.60%
BenchPrg13 1108 125 25.00%
BenchPrg14 258 158 31.60%
BenchPrg15 498190 133 26.60%
BenchPrg16 14109 126 25.20%
BenchPrg17 34096 134 26.80%

Average 37.51%

A.3 Data from metric-based phase-ordering eval-
uation

In this section are shown the tables for the evaluation of the metric-based phase-
ordering in Section 6.1.

A.3 Data from metric-based phase-ordering evaluation 141

Without using analysis results from metrics’ computation:
Number of Transformations Time spent on Time spent

instructions exec. used metrics in ms in ms (overall)
BenchPrg1 896 4 214 443
BenchPrg2 3708603 2 753 1598
BenchPrg3 171925 6 368 969
BenchPrg4 121216 3 86 199
BenchPrg5 97247 0 14 14
BenchPrg6 51710 3 67 195
BenchPrg7 431514 0 11 12
BenchPrg8 1590652 4 199 387
BenchPrg9 3508 6 33 69
BenchPrg10 3982611 3 4105 14225
BenchPrg11 26407 7 48 127
BenchPrg12 1705 2 6 10
BenchPrg13 1108 6 11 23
BenchPrg14 258 4 18 44
BenchPrg15 498190 6 120 415
BenchPrg16 14109 10 31 102
BenchPrg17 34096 8 90 355

Using analysis results from metrics’ computation:
Without reuse of analysis’ results With reuse of analysis’ results
Time spent on Time spent Time spent on Time spent
metrics in ms in ms (overall) metrics in ms in ms (overall)

BenchPrg1 214 443 198 251
BenchPrg2 753 1598 750 765
BenchPrg3 368 969 364 462
BenchPrg4 86 199 66 80
BenchPrg5 14 14 13 13
BenchPrg6 67 195 64 75
BenchPrg7 11 12 11 12
BenchPrg8 199 387 200 209
BenchPrg9 33 69 31 41
BenchPrg10 4105 14225 4074 4111
BenchPrg11 48 127 77 90
BenchPrg12 6 10 5 7
BenchPrg13 11 23 14 14
BenchPrg14 18 44 19 23
BenchPrg15 120 415 134 152
BenchPrg16 31 102 33 48
BenchPrg17 90 355 103 147

142 Benchmark results

A.4 Data for metrics update using dependencies

Below is the table of the results for the metric-based optimization using depen-
dencies, without reuse of metrics’ analysis results for the transformation calls.

The number of transformations between parenthesis represents the number of
Precalculation used; this number is counted in the total number of transforma-
tions used, while it was not when comparing the metric-based phase-ordering
without using the dependencies.

Nb. of Transformations Time spent in Time spent in
instructions used ms (metrics) ms (overall)

BenchPrg1 896 4 (0) 198 434
BenchPrg2 3708603 3 (1) 986 1868
BenchPrg3 171925 10 (4) 541 1175
BenchPrg4 121216 4 (1) 142 265
BenchPrg5 97247 0 (0) 12 13
BenchPrg6 51710 4 (1) 103 239
BenchPrg7 431514 0 (0) 8 8
BenchPrg8 1590652 5 (1) 281 469
BenchPrg9 3508 11 (3) 41 127
BenchPrg10 3982611 4 (1) 5267 15427
BenchPrg11 26407 12 (3) 74 167
BenchPrg12 1705 3 (1) 8 13
BenchPrg13 1108 7 (1) 13 31
BenchPrg14 258 5 (1) 20 54
BenchPrg15 498190 9 (2) 210 503
BenchPrg16 14109 15 (3) 60 152
BenchPrg17 34096 12 (4) 137 408

The other table below represents the results for the metric-based optimization
using dependencies with reuse of metrics’ analysis results.

A.5 Table of data for size-aimed optimization 143

Nb. of Transformations Time spent in Time spent in
instructions used ms (metrics) ms (overall)

BenchPrg1 896 4 216 256
BenchPrg2 3708603 3 974 998
BenchPrg3 171925 10 509 601
BenchPrg4 121216 4 137 160
BenchPrg5 97247 0 11 11
BenchPrg6 51710 4 103 113
BenchPrg7 431514 0 8 8
BenchPrg8 1590652 5 283 296
BenchPrg9 3508 11 63 78

BenchPrg10. 3982611 4 (1) 5274 5318
BenchPrg11 26407 12 (3) 80 98
BenchPrg12 1705 3 (1) 7 8
BenchPrg13 1108 7 (1) 19 19
BenchPrg14 258 5 (1) 21 27
BenchPrg15 498190 9 (2) 179 227
BenchPrg16 14109 15 (3) 66 91
BenchPrg17 34096 12 (4) 147 190

A.5 Table of data for size-aimed optimization

Size of Transformations Time spent in
the program used ms (overall)

BenchPrg1 365 4 251
BenchPrg2 1781 2 765
BenchPrg3 698 6 462
BenchPrg4 431 3 80
BenchPrg5 536 0 13
BenchPrg6 438 3 75
BenchPrg7 582 0 12
BenchPrg8 411 4 209
BenchPrg9 87 6 41
BenchPrg10 3731 3 4111
BenchPrg11 192 7 90
BenchPrg12 89 2 7
BenchPrg13 111 6 14
BenchPrg14 62 4 23
BenchPrg15 568 6 152
BenchPrg16 185 10 48
BenchPrg17 402 8 147

144 Benchmark results

Above is the table of data for metric-based phase-ordering without weights.
Below is the table of data for metric-based phase-ordering using weights and
detection of non-improving transformation calls:

Size of Transformations Time spent in
the program used ms (overall)

BenchPrg1 331 4 228
BenchPrg2 1781 2 818
BenchPrg3 698 7 566
BenchPrg4 431 4 118
BenchPrg5 536 0 15
BenchPrg6 438 4 133
BenchPrg7 582 0 8
BenchPrg8 411 4 199
BenchPrg9 87 6 26
BenchPrg10 3731 3 4437
BenchPrg11 192 9 72
BenchPrg12 89 2 8
BenchPrg13 111 6 14
BenchPrg14 62 4 24
BenchPrg15 568 6 219
BenchPrg16 185 12 59
BenchPrg17 402 10 152

Appendix B

Comparison between the
different algorithms

This appendix contains the different data dealing with the comparison between
the different algorithms available (MFP algorithm, Abstract Worklist algorithm
and Propagation algorithm). The first section compares the outputs of these
algorithms, while the second section contains the data for the comparison of
performance for the Copy Analysis performed in Section 5.3.6.

B.1 Equality of the results

In order to evaluate the efficiency of the Propagation algorithm, its results have
been compared to the ones from two classical algorithms (the MFP algorithm
and the Abstract Worklist algorithm). A Java class TestAlgorithms (in the
package optimizer.manager.util) has been implemented to evaluate if the Prop-
agation algorithm was giving the same results as the MFP algorithm for the
different data-flow analyses, as the MFP algorithm and the Abstract Worklist
Algorithm are already known to give the same results.

In this test class has been implemented several test methods:

146 Comparison between the different algorithms

1. Method testCopyAnalysis(): this method tests the equality between the
results of the two algorithms (MFP and Propagation) for the Copy Anal-
ysis.

2. Method testReachingDefinitions(): this method tests the equality between
the results of the two algorithms (MFP and Propagation) for the Reaching
Definitions Analysis.

3. Method testAvailableExpressions(): this method tests the equality be-
tween the results of the two algorithms (MFP and Propagation) for the
Available Expressions Analysis.

4. Method testLiveVariables(): this method tests the equality between the
results of the two algorithms (MFP and Propagation) for the Live Vari-
ables Analysis.

5. Method testVeryBusyExpressions(): this method tests the equality be-
tween the results of the two algorithms (MFP and Propagation) for the
Very Busy Expressions Analysis.

6. Method testConstantPropagation(): this method tests the equality be-
tween the results of the two algorithms (MFP and Propagation) for the
Constant Propagation Analysis.

7. Method testDetectionOfSigns(): this method tests the equality between
the results of the two algorithms (MFP and Propagation) for the Detection
of Signs Analysis.

8. Method testAllPrograms(): this method uses all the previous method to
test all the analyses available on all benchmark programs.

Each of these methods gets the results from the Propagation algorithm, then
transforms the shape of these results so it can fit the same layout than the
results from the MFP algorithm, and finally tests the equality of the resulting
mappings. This transformation is necessary as the Propagation algorithm does
not use exactly the same lattices than the one in the MFP algorithm, though
it deals with the same information. Thus, adapting the results’ organization is
important in order to be able to directly test for equality.

B.2 Comparison of performance 147

The following table shows the results of these tests:

Bench Program RD LV CA AE VBE CP DOS
1

√ √ √ √ √ √ √

2
√ √ √ √ √ √ √

3
√ √ √ √ √ √ √

4
√ √ √ √ √ √ √

5
√ √ √ √ √ √ √

6
√ √ √ √ √ √ √

7
√ √ √ √ √ √ √

8
√ √ √ √ √ √ √

9
√ √ √ √ √ √ √

10
√ √ √ √ √ √ √

11
√ √ √ √ √ √ √

12
√ √ √ √ √ √ √

13
√ √ √ √ √ √ √

14
√ √ √ √ √ √ √

15
√ √ √ √ √ √ √

16
√ √ √ √ √ √ √

17
√ √ √ √ √ √ √

On this table, RD stands for “Reaching Definitions Analysis”, LV for “Live
Variables Analysis”, CA for “Copy Analysis”, AE for “Available Expressions
Analysis”, VBE for “Very Busy Expressions Analysis”, CP for “Constant Prop-
agation Analysis”, and DOS for “Detection of Signs Analysis”.

Performing these tests ensured that the two algorithms computed the same
results on all the benchmark programs, which permits to declare that the Prop-
agation algorithm gives exactly the same results as the classical algorithms.

B.2 Comparison of performance

The following table contains the running time of the different algorithms for the
calculation of Copy Analysis on the different benchmark programs.

148 Comparison between the different algorithms

Running time for Copy Analysis (in ms)
Bench Program MFP algorithm Abstract Worklist algorithm Propagation algorithm

1 156 125 47
2 2891 904 188
3 372 218 94
4 110 109 47
5 77 62 49
6 94 78 46
7 16 31 16
8 78 63 31
9 47 47 30
10 4968 4562 515
11 116 84 78
12 46 63 16
13 125 62 15
14 82 63 31
15 110 78 63
16 172 125 67
17 139 109 58

As it is explained in Section 5.3.6, this comparison shows that the Propagation
algorithm is much faster than the two other algorithms (MFP and Abstract
Worklist algorithms), while giving exactly the same information.

Appendix C

Dependencies and effects of
the different transformations

This appendix aims at completing the analyses of the transformations’ depen-
dencies and effects made in the previous chapters (Section 6.2.2 and Section
7.2).

C.1 Dependencies

C.1.1 Common Subexpression Elimination

This part deals with the connections of the Common Subexpression Elimination
transformation. It describes the different effects that can have the transforma-
tion on all the other ones. The (+) symbol means that there is a connection
from Common Subexpression Elimination, where (-) means there is not.

• Dead Code Elimination (+). Common Subexpressions Elimination is
connected to the Dead Code Elimination transformation: indeed, the use
of Common Subexpressions Elimination can increase the number of time
the Dead Code Elimination can be applied, by introducing faint temporary

150 Dependencies and effects of the different transformations

variables. Consider the following program:

[x:=a+b]1; [y:=a+b]2

Dead Code Elimination can remove the two assignments labeled 1 and 2.
By applying the Common Subexpressions Elimination:

⇒CSE [tp:=a+b]3; [x:=tp]1; [y:=tp]2

Now the Dead Code Elimination can remove all three assignments, as the
variable tp is faint (i.e only used in dead assignments).

• Constant Folding (+). Common Subexpressions Elimination is also
linked to the Constant Folding transformation: the use of Common Subex-
pressions Elimination can reduce the number of time the Constant Folding
can replace variables by their constant value, because expressions are cal-
culated less often, as shown in the example:

[b:=3]1; [x:=b-a]2; [y:=b-a]3

Here Constant Folding can be applied once at label 2 and once at label 3,
replacing variable b by its value 3. After performing Common Subexpres-
sions Elimination:

⇒CSE [b:=3]1; [tp:=b-a]4; [x:=tp]2; [y:=tp]3

the Constant Folding transforming can only be applied once at label 4.

• Copy Propagation (+). Common Subexpressions Elimination can en-
able the Copy Propagation transformation when replacing available ex-
pressions by temporary variables. Consider the following example:

[x:=a+b]1; [y:=a+b]2; write [x+c]3

Copy Propagation cannot be applied here, but Common Subexpressions
Elimination can. Once it is applied, Copy Propagation can also be applied:

⇒CSE [tp:=a+b]4; [x:=tp]1; [y:=tp]2; write [x+c]3

⇒CP [tp:=a+b]4; write [tp+tp]3

• Precalculation Process (+). Common Subexpressions Elimination
modify the Precalculation Process’ results. Indeed, as it aims at reduc-
ing the number of computation of some expressions, the Precalculation
Process’ efficiency is reduced whenever these expressions are constant.For
example in the program:

C.1 Dependencies 151

[x:=3+4]1; [y:=3+4]2

the Precalculation Process is applied twice (at label 1 and 2), while after
Common Subexpressions Elimination:

⇒CSE [tp:=3+4]3; [x:=tp]1; [y:=tp]2

⇒PRE [tp:=7]3; [x:=tp]1; [y:=tp]2

here the Precalculation Process is only applied once at label 3.

• Code Motion (+). The last transformation, Code Motion, is influenced
by Common Subexpressions Elimination as well. It simply comes from
the fact that Common Subexpressions Elimination introduces new assign-
ments: these assignments can be loop invariants as well and thus increase
the number of invariants to move out of the loop by the Code Motion
transformation. Consider this example program:

while [true]1 do [x:=a+b]2; [y:=a+b]3 od

⇒CM if [true]4 then ([x:=a+b]5; [y:=a+b]6;
while [true]1 do [skip]3 od) fi

Code Motion can be applied to the two loop invariants labeled 2 and 3.
However, if Common Subexpressions Elimination is used before, the extra
assignment created is also a loop invariant and can be moved as well, so
three invariants are concerned by Code Motion:

⇒CSE while [true]1 do [tp:=a+b]4; [x:=tp]2; [y:=tp]3 od

⇒CM if [true]5 then ([tp:=a+b]6; [x:=tp]7; [y:=tp]8;
while [true]1 do [skip]3 od) fi

• Elimination with Signs (-). The Elimination with Signs transforma-
tion’s results are not modified by the use of Common Subexpressions Elim-
ination, because Elimination with Signs deals with evaluating non-trivial
boolean expressions, while Common Subexpressions Elimination just re-
places non-trivial arithmetic expressions. Thus, even if the arithmetic
expressions inside a boolean expression are replaced by temporary vari-
ables, the Detection of Signs analysis will still be able to figure out the sign
of the boolean expression if it could do it before Common Subexpressions
Elimination.

152 Dependencies and effects of the different transformations

C.1.2 Copy Propagation

This part deals with the connections of the Copy Propagation transformation.
The (+) symbol means that there is a connection from Copy Propagation, where
(-) means there is not.

• Common Subexpressions Elimination (+). Copy Propagation can
enable the Common Subexpressions Elimination transformation when re-
placing variables by their associated copy. Consider the following example:

[c:=b]1; [x:=a+b]2; [y:=a+c]3

Common Subexpressions Elimination cannot be applied here, but Copy
Propagation can. Once it is applied, Common Subexpressions Elimination
can also be applied:

⇒CP [x:=a+b]2; [y:=a+b]3

⇒CSE [tp:=a+b]4; [x:=tp]2; [y:=tp]3

• Code Motion (+). Code Motion is influenced as well by the Copy Prop-
agation transformation. It comes from the fact that Copy Propagation can
remove some assignments inside loops and thus allows some statements to
become invariants. Consider this example program:

[x:=y]1; while [x<3]2 do [x:=y]3; [t:=x+2]4 od

Here Code Motion cannot be applied, as x is redefined in the loop. But it
is possible to use Code Motion once Copy Propagation has been applied:

⇒CP while [y<3]2 do [t:=y+2]4 od
⇒CM if [y<3]5 then ([t:=y+2]6;
while [y<3]2 do [skip]4 od) fi

• Constant Folding (+). A straightforward example shows that Constant
Folding has dependencies with Copy Propagation:

[a:=3]1; [x:=a]2; [y:=x*2]3

Here Constant Folding can be applied once at label 2 and once at label
3, replacing variable a and x by their value 3. After performing Copy
Propagation:

⇒CP [a:=3]1; [y:=a*2]3

C.1 Dependencies 153

Constant Folding can only be applied once at label 3.

• Dead Code Elimination (+). When replacing variables by their copy,
the Copy Propagation transformation makes some copy assignments be-
come dead. However, the very Copy Propagation deletes these assignments
by himself, so at the end of the transformation there is no more dead as-
signment than there was before the execution of the transformation, and
no less, since the dead copy assignments are not removed by this trans-
formation. However, Copy Propagation may also remove assignments to
faint variables. Consider the following example:

[x:=y]1; [z:=4*x]2

Dead Code Elimination can be applied on both assignments, as z is dead
at label 2 and x is faint at label 1. However, if Copy Propagation is
applied:

⇒CP [z:=4*y]2

Dead Code Elimination can only be applied once.

• Precalculation Process (-). The Precalculation Process’ results are
not modified by the use of Copy Propagation. Indeed, Copy Propagation
affects only copy variables that are replaced by other variables (so that
does not influence anything in the Precalculation), and can delete copy
assignments, which could not be improved by the Precalculation.

• Elimination with Signs (-). As for the Dead Code Elimination, the
Elimination with Signs transformation is not influenced by the use of Copy
Propagation. This transformation aims at statically computing expres-
sions when the signs of the operands are known, so whenever a variable is
replaced by its copy variable, their are supposed to have the same value, so
a fortiori the same sign. Thus, the Elimination with Signs transformation
will have exactly the same effects of the variables are replaced by their
copy variables. Moreover, the fact that copy assignments become dead
and are deleted does not influence in any case the Elimination with Signs
transformation, which deals with non-trivial expressions only (variables
are trivial expressions).

C.1.3 Dead Code Elimination

This part deals with the connections of the Dead Code Elimination transforma-
tion.

154 Dependencies and effects of the different transformations

• Common Subexpressions Elimination (+). Dead Code Elimination
can modify Common Subexpressions Elimination’s results when deleting
dead assignments containing available expressions. Consider the following
example:

[x:=a+b]1; [y:=a+b]2; write [|x|]3

Common Subexpressions Elimination can be applied here, because a+b is
available at the entry of label 2. But if Dead Code Elimination is applied:

⇒DCE [x:=a+b]1; write [|x|]3

Now Common Subexpressions Elimination cannot be applied any more.

• Code Motion (+). Code Motion is influenced as well by Dead Code
Elimination, in a similar way as Common Subexpressions Elimination.
It simply comes from the fact that if an assignment to a dead (or faint)
variable is a loop invariant, it can be moved out of the loop if Code Motion
is used, but if Dead Code Elimination is used before, then Code Motion
will be useless.

• Precalculation Process (+). Again, the same reason as for the previous
transformation applies for the Precalculation Process. If a dead assign-
ment contains a non-trivial expressions with only constant values involved,
the Precalculation Process will be able to statically compute their results,
while if Dead Code Elimination is used before, the Precalculation Process
will be of no use.

• Constant Folding (+). It is pretty obvious to see that Constant Folding
has dependencies with Dead Code Elimination:

[a:=-1]1; [x:=(a>0)]2

Here Constant Folding can be applied once at label 2, while after Dead
Code Elimination (a and x are dead variables), Constant Folding cannot
be applied at all:

⇒DCE [skip]2

Constant Folding can only be applied once at label 3.

• Elimination with Signs (+). The same example as for Constant Fold-
ing can be used to show that Dead Code Elimination can influence Elim-
ination with Signs’ results as well. In the original program, Elimination
with Signs can be applied at label 2 to replace a>0 by false, while it
cannot be applied after the use of Dead Code Elimination.

C.1 Dependencies 155

• Copy Propagation (+). Finally, the Copy Propagation transformation
can be, as all the others transformations, sensitive to the use of Dead Code
Elimination: if the copy assignments considered are dead assignments (or
faint), Dead Code Elimination will delete them, and Copy Propagation
will not be able to be useful after:

[x:=y]1; [y:=2*x]2

⇒DCE [skip]2

Here the variable x is faint, and y is dead, so everything is removed, and
Copy Propagation cannot be applied afterwards.

C.1.4 Code Motion

This part deals with the connections of the Code Motion transformation. The
(+) symbol means that there is a connection from Code Motion, where (-) means
there is not.

• Precalculation Process (+). The Precalculation Process’ results are
modified by the use of Code Motion. When moving code outside a while
loop, Code Motion creates if statements to guard the pre-header containing
loop invariants, and thus the Precalculation Process may simplify the if
statement if the condition is constant.

• Constant Folding (+). Constant Folding is influenced by Code Motion,
for example because Constant Folding can be enable in the condition of
the if statements, as can be seen in this example:

[x:=2]1; while [x>3]2 do [t:=5]3; [x:=6]4 od

Here Constant Folding cannot be applied, but once Code Motion has been
applied, Constant Folding can replace x in the created if statement con-
dition:

⇒CM [x:=2]1; if [x>3]5 then ([t:=5]6;
while [x>3]2 do [x:=6]4 od) fi

⇒CF [x:=2]1; if [2>3]5 then ([t:=5]6;
while [x>3]2 do [x:=6]4 od) fi

• Elimination with Signs (+). The same reason as for Constant Folding
applies for Elimination with Signs: as Code Motion introduces a new

156 Dependencies and effects of the different transformations

condition with the if statement guarding the pre-header, Elimination with
Signs may be enabled to compute the boolean expressions involved in this
condition.

• Common Subexpressions Elimination (+). Again, as Code Motion
duplicates the condition of the while loop in order to create the if state-
ment, an available expression involved in this condition can have to be
replaced by Common Subexpressions Elimination once more, hence re-
sults of this transformation are modified.

• Copy Propagation (-). The use of Code Motion does not modify the
efficiency of the Copy Propagation transformation. Indeed, Code Motion
does not introduce nor delete any copy assignments, and even if adding
an if statement condition can force the Copy Propagation to replace more
variables by their copy, their will still be the same number of copy assign-
ments removed (which is the only real optimization in the transformation).

• Dead Code Elimination (-). Dead Code Elimination is not influenced
at all by the use of Code Motion. Code Motion does not create any
new assignment, nor delete any blocks, so no variables can become dead
after Code Motion. The introduction of the if statement cannot make
dead variables become live, as the only variables used in the if statement’s
condition are the variables already used in the while loop’s condition.

C.1.5 Elimination with Signs

This part deals with the connections of the Elimination with Signs transforma-
tion. The (+) symbol means that there is a connection from Elimination with
Signs, where (-) means there is not.

• Precalculation Process (+). The Elimination with Signs clearly influ-
ences the Precalculation Process by being able to replace if statements’
and loops’ conditions by their boolean value when this one can be guessed
using the Detection of Signs analysis. Thus the Precalculation Process can
simplify the if statements and the while loops (if the condition is false).

• Code Motion (+). As with Constant Folding, the Code Motion trans-
formation is influenced by the Elimination with Signs. Consider this ex-
ample:

while [x<3]1 do [x:=1]2; [p:=x>0]3 od

C.1 Dependencies 157

Code Motion cannot be applied at label 3, because it uses x assigned in
the loop, and which is not an invariant (since x is used in the condition
as well). However, after Elimination with Signs, the label 3 can be moved
out of the loop:

⇒ES while [x<3]1 do [x:=1]2; [p:=true]3 od
⇒CM if [x<3]4 then ([p:=true]5; while [x<3]1 do [x:=1]2 od) fi

• Common Subexpressions Elimination (+). By replacing expressions
by their constant boolean value, the Elimination with Signs can obviously
reduce the number of available expressions and then the efficiency of the
Common Subexpressions Elimination.

• Copy Propagation (+). Copy Propagation is influenced by Elimination
with Signs as well, because Elimination with Signs can remove the use
of some variables and thus make some copy assignments become dead,
where the Dead Code Elimination will have to delete them, instead of
Copy Propagation. Consider the following example:

[x:=1]1; [y:=x]2; [p:=y>-1]3

Copy Propagation could propagate x to label 3, and eliminate the copy
assignment of label 2. But if applied, Elimination with Signs will see that
y is strictly positive, and thus evaluate y>-1 at label 3 by true:

⇒ES [x:=1]1; [y:=x]2; [p:=true]3

Now the copy assignment at label 2 is not used anymore, so the Copy
Propagation will not delete it.

• Dead Code Elimination (+). As seen for the Copy Propagation, Elim-
ination with Signs can create new dead assignments, and thus increase the
efficiency of the Dead Code Elimination transformation.

• Constant Folding (+). The last transformation, Constant Folding, can
also be enabled by the Elimination with Signs transformation, as can be
seen in the following example:

if [b]1 then [x:=3]2 else [x:=4]3 fi; [t:=x>0]4; write [t]5

Constant Folding cannot be used at any place here, especially not in label
4, because x can have the value of 3 or 4. But after Elimination with
Signs:

⇒ES if [b]1 then [x:=3]2 else [x:=4]3 fi; [t:=true]4; write [t]5

⇒CF if [b]1 then [x:=3]2 else [x:=4]3 fi; [t:=true]4; write [true]5

158 Dependencies and effects of the different transformations

Elimination with Signs has spotted that x is strictly positive, and evaluate
the expression at label 4 to true. Then the Constant Folding has been
able to replace t at label 5 by true.

C.1.6 Precalculation Process

The last transformation, the Precalculation Process, is capable of removing a
whole group of statements by simplifying if statements for example, when the
condition is a boolean constant. Thus, every possible transformations seen be-
fore could have anything to do in this group of statements, and thus may see
their efficiency reduce.

Hence the Precalculation Process can influence every transformations seen above.

C.2 Effects

In this section are described the effects on the size and the speed of the program
of all the transformations other than Constant Folding.

C.2.1 Copy Propagation

The transformation described in this section is the Copy Propagation transfor-
mation, described in Section 3.4.3.

Functional effect:

The aim of this optimization is to look for the variables involved in copy
assignments (assignments of type [x := y]l). Then the optimization re-
places further use of the variable assigned in a copy assignment by its
copy variable, and removes the copy assignments associated.

Consequences on the program:

When replacing a variable’s occurrences by its copy variable, the variable
itself is less and less used. In fact, if all the occurrences of the variable
between the copy assignment and the next assignment to this variable

C.2 Effects 159

are replaced by another variable (the copy variable), the variable becomes
dead at this point of the program. The copy assignments are then re-
moved, so the total number of copy assignments decreases.

⇒ Conclusion:

∗ Size ⊕: Copy Propagation does decrease the size of the program, as
dead copy assignments are removed, except in the case the name of
the copy variable is much longer than the one of the variable con-
sidered (long enough to counterbalanced the removal of the dead
assignment). However, the latter situation may not happen very of-
ten.

∗ Speed ⊕: Copy Propagation will improve the speed of the program,
as, aside from variables replaced by other variables, the noticeable
changes to the program are the deletion of the copy assignments,
which means one assignment less to compute.

C.2.2 Elimination with Signs

The transformation described in this section is the Elimination with Signs trans-
formation, described in Section 3.4.6.

Functional effect:

The aim of this optimization is to statically evaluate boolean expressions
whenever their value can be predicted from the sign of the variables in-
volved in it.

Consequences on the program:

By replacing boolean expressions by their value, the transformation de-
creases the number of use of some variables. Indeed, the variables used in
an expression which has a sign that can be predicted, are not used in the
expression anymore after the expression has been changed to a constant
value. Hence, these variables are less used, and in some cases they become
dead. The assignments to these variables become then dead assignments
(i.e assignments to a dead variable). However, as for Constant Folding,
these dead assignments are not removed by the transformation. Thus,
only the static evaluation of boolean expressions is performed.

160 Dependencies and effects of the different transformations

⇒ Conclusion:

∗ Size �: As Constant Folding, the way Elimination with Signs will
modify the size of the program varies depending on the length of the
name of the variables composing the expressions evaluated.

∗ Speed ⊕: Elimination with Signs improves the speed of the pro-
gram, as runtime expressions evaluations (i.e variables evaluations)
are replaced by constant boolean values.

∗ With Precalculation: Elimination with Signs improves speed and
might also improve the size, as it may create if and while statements
with constant conditions that will be deleted by Precalculation.

C.2.3 Dead Code Elimination

The transformation described in this section is the Dead Code Elimination trans-
formation, described in Section 3.4.4.

Functional effect:

The aim of this optimization is simply to look for dead and faint as-
signments and to remove them.

Consequences on the program:

The only (but important) change to the program is the deletion of all
assignments to dead (and faint) variables.
⇒ Conclusion:

∗ Size ⊕: Dead Code Elimination improves the size only by removing
the dead assignments.

∗ Speed ⊕: Dead Code Elimination improves the speed of the pro-
gram, as dead assignments may be deleted, which means less assign-
ments to compute.

C.2.4 Common Subexpressions Elimination

The transformation described in this section is the Common Subexpressions
Elimination transformation, described in Section 3.4.2.

C.2 Effects 161

Functional effect:

This transformation replaces expressions used more than once during a
path of the program by temporary variables, and assigns the temporary
variables to these expressions, in order to compute them less often.

Consequences on the program:

As the transformation replaces an expression used at least twice by a tem-
porary variable, and compute it only when assigning it to the temporary
variable, the expression will be computed less often. Thus the number of
occurrences of available expressions in the program will decrease. On the
other hand, new assignments are inserted.

⇒ Conclusion:

∗ Size �: Common Subexpression Elimination may degrade the size
because, however some expressions are replaced by a single variable,
new assignments are created. Thus, the more expressions replaced
by a temporary variables there are, the more the size will be likely
to be improved.

∗ Speed ⊕: Common Subexpression Elimination improves the speed
of the program, as available expressions are computed less often.

C.2.5 Code Motion

The transformation described in this section is the Code Motion transformation,
described in Section 3.4.5.

Functional effect:

This transformation operates on loops, where the loop invariants are moved
outside the loop, to a pre-header.

Consequences on the program:

As a direct consequence from the functional effect of the transformation,
the number of loop invariants in all the loops is decreasing. And because
these invariants are assignments, the total number of assignments in the

162 Dependencies and effects of the different transformations

loop bodies should also decrease. However, the transformation will intro-
duce an if statement as pre-header if there is any invariant to move outside
a loop.
⇒ Conclusion:

∗ Size 	: Code Motion degrades the size because if pre-header is added
if invariants are found.

∗ Speed ⊕: Code Motion improves the speed of the program, as loop
invariant statements are moved outside the loops, so they are com-
puted less often, except in the few cases where a loop’s body is com-
puted only once, which is unlikely.

∗ With Precalculation: Code Motion improves speed, and may de-
grade size: with Precalculation, there will not be less code than
before the Code Motion transformation, as the invariants are not
deleted, just moved. The only case where the size is not degraded is
when the condition of the loop is true: in this case, the if pre-header
is simplified by the Precalculation Process.

Bibliography

[1] Aho, Lam, Sethi, and Ullman. Compilers: Principles, Techniques, & Tools.
Pearson International Edition, second edition, 2007.

[2] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey,
Steven W. Reeves, Devika Subramanian, Linda Torczon, and Todd Water-
man. Finding effective compilation sequences. SIGPLAN Not., 39(7):231–
239, 2004.

[3] L. N. Chakrapani, P. Korkmaz, V. J. Mooney III, K. V. Palem, K. Put-
taswamy, and W. F. Wong. The emerging power crisis in embedded proces-
sors: What can a (poor) compiler do? In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embedded Sys-
tems, pages 176 – 180, 2001.

[4] Cliff Click and Keith D. Cooper. Combining analyses, combining optimiza-
tions. ACM Trans. Program. Lang. Syst., 17(2):181–196, 1995.

[5] Wikipedia: Compiler. http://en.wikipedia.org/wiki/Compiler.

[6] J. Davidson and D. Whalley. A design environment for addressing ar-
chitecture and compiler interactions. Microprocessors and Microsystems,
15(9):459–472, November 1991.

[7] M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and W. Ye. Influence of com-
piler optimizations on system power. In Proceedings of the 37th conference
on Design automation, pages 304 – 307, 2000.

[8] Prasad Kulkarni, Stephen Hines, Jason Hiser, David Whalley, Jack David-
son, and Douglas Jones. Fast searches for effective optimization phase

http://en.wikipedia.org/wiki/Compiler

164 BIBLIOGRAPHY

sequences. In PLDI ’04: Proceedings of the ACM SIGPLAN 2004 confer-
ence on Programming language design and implementation, pages 171–182.
ACM Press, 2004.

[9] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David
Whalley, Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan.
Finding effective optimization phase sequences. In LCTES ’03: Proceedings
of the 2003 ACM SIGPLAN conference on Language, compiler, and tool
for embedded systems, pages 12–23. ACM Press, 2003.

[10] Prasad A. Kulkarni, David B. Whalley, and Gary S. Tyson. Evaluating
heuristic optimization phase order search algorithms. In CGO ’07: Proceed-
ings of the International Symposium on Code Generation and Optimization,
pages 157–169. IEEE Computer Society, 2007.

[11] Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson, and Jack W. David-
son. Exhaustive optimization phase order space exploration. In CGO ’06:
Proceedings of the International Symposium on Code Generation and Op-
timization, pages 306–318. IEEE Computer Society, 2006.

[12] Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson, and Jack W. David-
son. In search of near-optimal optimization phase orderings. In LCTES ’06:
Proceedings of the 2006 ACM SIGPLAN/SIGBED conference on Language,
compilers, and tool support for embedded systems, pages 83–92. ACM Press,
2006.

[13] Han Lee, Daniel von Dincklage, Amer Diwan, and J. Eliot B. Moss. Un-
derstanding the behavior of compiler optimizations. Softw. Pract. Exper.,
36(8):835–844, 2006.

[14] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 1965.

[15] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[16] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 2005.

[17] H. R. Nielson and F. Nielson. Semantics with Applications: An Appetizer.
Springer, 2007.

[18] GCC Optimize options. http://gcc.gnu.org/onlinedocs/gcc/
Optimize-Options.html.

[19] Markus Püschel, José Moura, Jeremy Johnson, David Padua, Manuela
Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yev-
gen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo. Spiral:

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

BIBLIOGRAPHY 165

Code generation for dsp transforms. Proceedings of the IEEE, Special Issue
on Program Generation, Optimization, and Platform Adaptation, February
2005.

[20] Kevin Scott. On proebsting’s law. http://citeseer.ist.psu.edu/
446305.html.

[21] S. Segars, K. Clarke, and L. Goudge. Embedded control problems, thumb,
and the arm7tdmi. IEEE Micro, 15(5):22 – 30, 1995.

[22] S. Touati and D. Barthou. On the decidability of phase ordering problem in
optimizing compilation. In Proceedings of the 3rd conference on Computing
frontiers, pages 147 – 156, 2006.

[23] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and
David I. August. Compiler optimization-space exploration. In CGO ’03:
Proceedings of the international symposium on Code generation and opti-
mization, pages 204–215. IEEE Computer Society, 2003.

[24] D. Whitfield and M. L. Soffa. An approach to ordering optimizing trans-
formations. SIGPLAN Not., 25(3):137–146, 1990.

[25] Deborah L. Whitfield and Mary Lou Soffa. An approach for exploring code
improving transformations. ACM Trans. Program. Lang. Syst., 19(6):1053–
1084, 1997.

[26] Min Zhao, Bruce R. Childers, and Mary Lou Soffa. A model-based frame-
work: An approach for profit-driven optimization. In CGO ’05: Proceedings
of the international symposium on Code generation and optimization, pages
317–327. IEEE Computer Society, 2005.

http://citeseer.ist.psu.edu/446305.html
http://citeseer.ist.psu.edu/446305.html

	Summary
	Preface
	Acknowledgements
	1 Introduction
	1.1 Compiler and optimizations
	1.2 Thesis outline

	2 Theoretical background
	2.1 The Phase-Ordering Problem
	2.2 Data Flow analysis and algorithms

	3 Setting the Scene
	3.1 Description of the WHILE language
	3.2 Elements of the WHILE language compiler
	3.3 Data Flow Analysis
	3.4 Transformations performed on the program

	4 A new approach for optimizing compilers
	4.1 Overall framework
	4.2 Introduction to the metric-based approach
	4.3 Use of regular expressions

	5 Phase-ordering using a Metric-based Approach
	5.1 The metric-based approach
	5.2 Choice of the different metrics
	5.3 Approximation of the different analyses
	5.4 Definitions of the metrics
	5.5 Metric-based phase-ordering algorithm

	6 Evaluation of the metric-based phase-ordering
	6.1 Evaluation: Comparison with results from benchmark suite
	6.2 Dependencies between transformations

	7 Evolution of the phase-ordering algorithm
	7.1 Goals when optimizing a program
	7.2 Effects of the transformations
	7.3 Consequences on the metrics' comparison

	8 Design and implementation
	8.1 Implementation language
	8.2 Main classes
	8.3 Implementation issues

	9 Future work and perspectives
	9.1 Designing new metrics and extending the WHILE language
	9.2 Adding analyses and transformations
	9.3 Integrating power and performance models
	9.4 On the experimentation

	10 Conclusion
	A Benchmark results
	A.1 List of regular expressions used
	A.2 Table of regular expressions with the number of instructions executed
	A.3 Data from metric-based phase-ordering evaluation
	A.4 Data for metrics update using dependencies
	A.5 Table of data for size-aimed optimization

	B Comparison between the different algorithms
	B.1 Equality of the results
	B.2 Comparison of performance

	C Dependencies and effects of the different transformations
	C.1 Dependencies
	C.2 Effects

