
Bayesian Approach to the
Ill-posed EEG Inverse Problem

Thorsteinn Már Arinbjarnarson

Kongens Lyngby 2007

IMM-2007-77

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary

Scalp recorded EEG signals are caused by neural currents in the brain. The
brain currents are believed to be related to behavior and cognition. Estimat-
ing the current density from EEG recordings is the inverse EEG problem. The
EEG inverse problem is highly underdetermined and some assumptions have to
be made when solving it. Here assumptions will be made in the form of probabil-
ity distributions describing the neural current distribution and the signal noise.
Bayes theorem enables detailed analytical calculations to be made. These calcu-
lations lead to equations used to formulate iterative algorithms. Basic Gaussian
distribution assumption gives a simple and robust algorithm. Automatic rele-
vance determination (ARD) is used to from a more sparse current estimate. An
original update formula is presented in the ARD algorithm which the author
has not found elsewhere. Smoothing is also incorporated into the algorithms to
account for localized currents.

Simulations are presented for evaluation purposes of the different methods.
These tests show the different properties of the algorithms. The Gaussian al-
gorithm converges fast and is the most robust. For sparse sources the ARD
algorithm gives better estimates but for realistic forward models it usually fails.
Adding spatial smoothing into the ARD iteration improves its performance and
good results are obtained for realistic forward models. An attempt is made to
incorporate smoothing into the Bayesian framework but the resulting algorithm
does not perform better than the ARD one. Finally some real data is analyzed
using the algorithms.

ii

Preface

I think and think for months and years. Ninety-nine times, the
conclusion is false. The hundredth time I am right.
A. Einstein

After struggling a bit with getting some of my theory into code I was reading
through a booklet on creativity by Victor Vidal [33], a professor at IMM (In-
formatics and Mathematical Modelling), my department here at the Technical
University of Denmark. In it I came across the Einstein quotation above, it
immediately lifted my spirit. This was in the early stages of my project which
started in January 2007 and along the way I have surely made countless wrong
conclusions and written a whole lot of useless code. But now seven months later
close to the deadline in August my work has lead to some correct conclusions
and efficient code which forms the basis of this MSc thesis. Lars Kai Hansen
professor at the Intelligent Signal Processing Group has given me solid guidance
along the way, having kept me on track while giving me freedom to challenge
myself.

Kgs. Lyngby, August 2007

Þorsteinn Már Arinbjarnarson [s053120]

iv

Acknowledgements

I would like to thank my supervisor Professor Lars Kai Hansen for his guid-
ance. Morten Mørup I thank for mathematical discussions, on topics such as
linear algebra and regularization of ill-posed problems. Tom Bolwig and Troels
Kjær from Rigshospitalet have encouraged EEG brain imaging research at the
department and provided interesting discussion on their work with EEG and
their vision on possible future clinical applications. My friend and fellow stu-
dent Arngrímur Einarsson I thank for reviewing a draft of this thesis. Last but
not least I would like to thank my family, Jóhanna Magnúsdóttir and newborn
Sindri, for support and taking on this journey with me of studying and living
here in Copenhagen.

vi

Contents

Summary i

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Ill-conditioned vs. Ill-posed . 3

1.2 Signal-to-noise ratio (SNR) . 4

1.3 Thesis Overview . 6

2 Electroencephalography (EEG) 7

2.1 The Human Brain . 8

2.2 EEG Basics . 10

3 Forward Model 13

viii CONTENTS

3.1 Current Distribution and Dipoles 13

3.2 Forward Model Integral Equations 15

3.3 Algebraic Formulation . 19

3.4 Head Models . 20

3.4.1 Spherical . 21

3.4.2 BEM . 24

3.5 BrainStorm . 26

3.5.1 Phantom . 27

4 The Linear Inverse Problem 31

4.1 Bayesian Formulation . 32

4.1.1 Framework for Hyperparameters α and β 37

4.1.2 Algorithm I for Parameter Estimation 40

4.1.3 Performance Evaluation 41

4.1.4 Algorithm Improvements 42

4.2 Automatic Relevance Determination (ARD) 44

4.2.1 Framework for Hyperparameters Λ and β 47

4.2.2 Algorithm II for Parameter Estimation 49

4.2.3 Performance Evaluation 51

4.2.4 Numerical Issues . 54

4.2.5 Algorithm IIb . 55

4.2.6 Active Sets (Algorithm IIc) 56

4.2.7 Low Pass Filtering (Algorithm IId) 57

CONTENTS ix

4.3 Smoothing Prior . 58

4.3.1 Algorithm III for Parameter Estimation 61

4.4 Summary . 62

5 Simulations on Artificial Data 63

5.1 Algorithm I . 64

5.1.1 Basic Toy Examples . 65

5.1.2 Evaluation of Algorithm I 68

5.1.3 Ill-conditioned 3 Sphere Head Model 72

5.1.4 Discussion . 74

5.2 Algorithm II . 75

5.2.1 Evaluation of Algorithm II 75

5.2.2 Inspection of Active Sets 78

5.2.3 Ill-conditioned BEM Head Model 81

5.2.4 Effect of SNR . 85

5.2.5 Discussion . 86

5.3 Algorithm III . 87

5.3.1 Evaluation of Algorithm III 88

5.3.2 SNR Comparison for Algorithms 89

5.3.3 SNR Comparison with BEM 93

5.3.4 Discussion . 94

6 Real Data Testing 97

x CONTENTS

6.1 BCI Competition III Data . 97

6.2 Method . 98

6.3 Subject Forward Model . 99

6.4 Results . 100

6.5 Summary . 105

7 Conclusion 107

7.1 Future Work . 109

A Mathematical Appendix 111

A.1 Nomenclature . 112

A.2 MEG Forward Model . 113

A.3 Derivative and Hessian of L(s) 115

A.3.1 Two Hyperparameters Case, L(s, α, β) 115

A.3.2 ARD Case, L(s,Λ, β) . 117

A.4 Derivative of ln det(H) . 118

A.5 Algorithm II - Multiplicity of αk−new 119

A.6 Framework for Hyperparameters αk and β 120

A.7 Fourier Transform . 123

B Proposed Matlab Implementations 125

B.1 Algorithm I . 125

B.2 Algorithm II . 128

B.3 Algorithm IIb . 131

CONTENTS xi

B.4 Algorithm IIc . 134

B.5 Algorithm IId . 138

B.6 Algorithm III . 142

C BEM Head Model Details 145

C.1 256 Channel BEM . 145

C.2 118 Channel BEM . 147

D High Density EEG Data Analysis 151

D.1 Results . 152

D.2 Summary . 156

xii CONTENTS

Chapter 1

Introduction

In resent years tremendous advances have been achieved in the ability to pro-
duce images of human brain function. Functional brain imaging is a multi-
disciplinary research field that encompasses techniques aimed to better under-
stand the human brain through non-invasive imaging of the electrophysiological,
hemodynamic, metabolic and neurochemical processes that underlie normal and
pathological brain function. These techniques provide tools for non-invasive
exploration of the brain both of interest for neuroscience research and clini-
cal diagnosis of neurological and neuropsychological disorders, such as epilepsy,
schizophrenia, depression, Parkinson’s and Alzheimer’s diseases.

Using radioactively labeled organic molecules, that are involved in processes
of interest, brain metabolism and neurochemistry can be studied. Images of
dynamic changes in the spatial distribution of these molecules can be formed
using positron emission tomography (PET). The spatial resolution is as high as
2mm while temporal resolution is limited to several minutes by the dynamics of
the process being studied. Functional magnetic resonance imaging (fMRI) can
be used to detect hemodynamic changes which can give more direct studies of
neural activity. As neurons become active they induce very localized changes
in blood flow and oxygenation. fMRI studies are capable of producing spatial
resolution of 1mm and temporal resolution around 1s, which is better than PET
but still poor compared to temporal dynamics of electrical neural activity.

2 Introduction

Electroencephalography (EEG) measures electrical potentials on the scalp pro-
duced by electrical activity in neural cell assemblies. It directly measures electri-
cal brain activity and provides superior temporal resolution to PET and fMRI,
or in the range of milliseconds. However, the spatial resolution of EEG does not
match that of PET and fMRI since it is limited by the small number of spatial
scalp measurements and inherent ambiguity of the underlying electro-magnetic
inverse problem. It is also important to note that even if the EEG measurements
were continuous over the whole scalp the number of possible underlying source
distributions is infinite. The inverse EEG problem is therefore ill-posed in na-
ture and requires additional constraints and/or assumptions (e.g. anatomical)
to be solved. The two general approaches to EEG source estimation are equiv-
alent dipole localization or parametric and distributed source imaging or simply
imaging. Equivalent dipole localization typically assumes that the sources can
be represented by a few equivalent current dipoles of unknown location and
moment to be estimated with a non-linear numerical method. Although this
method gives good estimate when the number of active areas is small, it is dif-
ficult to determine the appropriate number of dipole sources for complicated
spatio-temporal activity. The distributed source imaging assumes distributed
currents in the brain volume. Often the sources are plausibly constrained to
the cortical surface, thus a current dipole is assigned to each of many thou-
sands of tessellation elements on the cortical surface. Since the locations are
fixed only the orientation and amplitudes have to be determined, reducing the
inverse problem to a linear one with strong similarities to those encountered in
image reconstruction. Furthermore the dipole orientations are often constrained
to equal the local surface normal, reducing the problem to only finding the am-

Figure 1.1: 256 EEG electrodes grid with respect to inner skull and brain.

1.1 Ill-conditioned vs. Ill-posed 3

plitudes. In this thesis the focus is on the distributed source imaging method
which is fundamentally ill-posed.

The ill-posedness of the inverse problem is most often tackled using regular-
ization techniques, known from image restoration and reconstruction (e.g. see
[1, 2] for extensive review). So called Tikhonov regularizer has two terms, one
that measures the fit to the data and other that measures the smoothness of the
image. Furthermore it has a regularization parameter that typically is chosen
using cross-validation methods or the L-curve 1. Other methods expand the
classical Tikhonov regularizer by means of using different norms, e.g. 1-norm
which presents sparsity to the solution, and constraints in the form of spatial
smoothing or a more localized solution. Probably the most well known method
is LORETA (low resolution electromagnetic tomography) [3, 4] which has the
same form as the Tikhonov regularizer with an added smoothness constraint, in
the form of a discrete Laplacian operator, and a normalization factor.

More recently a Bayesian approach to the inverse problem has been attempted
[5, 6]. In its simplest form it is equivalent to the Tikhonov regularizer ex-
cept that regularization parameters are optimized directly by means of iterative
update formulas. Furthermore sparsity, spatial smoothing and possibly other
constraints (anatomical, localized, etc.) can be incorporated into the prior distri-
bution in a hierarchical fashion. In this thesis the inverse problem will be solved
in a Bayesian fashion [7, 8, 9, 10, 11, 12] and different algorithms derived from
the Bayesian framework. Examples will be presented both on artificial data,
with different model complexities, and on real data. These examples should
reveal pros and cons of different methods and lead to some general discussion
and conclusions.

The concepts of condition number and posedness are important when describing
and analyzing the inverse EEG problem and signal-to-noise ratio is crucial in all
practical signal processing applications. Brief discussion about these concepts
is therefore included in the next two sections.

1.1 Ill-conditioned vs. Ill-posed

Frequently in the text the terms ill-conditioned and ill-posed will be used when
describing the inverse EEG problem. Although they often both apply an ill-

1The main idea of the L-curve method is to plot the smoothing norm as a function of
the residual norm for all values of the regularization parameter. This curve has an L-shaped
dependence and the optimal value of regularization parameter can be found at the corner of
the L-curve.

4 Introduction

conditioned problem is not necessarily ill-posed and vice versa so lets define
these concepts to avoid confusion in the following text.

The term well-posed goes back to the French mathematician J. S. Hadamard
(1865-1963) who believed that mathematical models of physical phenomena
should have three properties, namely that a solution exists, the solution is
unique and the solution depends continuously on the data. Examples of well-
posed problems include the Dirichlet problem for Laplace’s equation and the
heat equation with specified initial conditions. By contrast the backwards heat
equation, deducing a previous distribution of temperature from final data is not
well-posed in that the solution is not unique and highly sensitive to changes in
the final data. Problems that are not well-posed in the sense of Hadamard are
termed ill-posed. The solution to the inverse EEG problem is never unique, thus
the problem is ill-posed and requires some additional assumptions or constraints
to be solved.

A well-posed problem may suffer from numerical instability when solved with
finite precision on a computer or with errors on the data. So even if the prob-
lem is well-posed small changes in data can result in much larger errors in the
answers, thus the problem being ill-conditioned. An ill-conditioned problem is
indicated by a big condition number. In the case of a linear problem defined by
a matrix A the condition number can be defined

κ =
max(d)

min(d)
, (1.1)

where d is a vector containing the singular values of A.

1.2 Signal-to-noise ratio (SNR)

Signal-to-noise ratio (SNR) is defined by the ratio of signal power to the noise
power, ideally the noise should be zero giving infinite signal-to-noise ratio. But
whenever one is working with measured signals there is some corruption of the
signal. In electrical circuits there can be many sources for noise, e.g. thermal
noise (also known as Johnson noise, Nyquist noise or white noise) is generated
by the thermal agitation of the electrons inside an electrical conductor regardless
of the applied voltage, 50Hz noise (60Hz in USA) is often detected in electri-
cal devices because of the power grid supply voltage and in semiconductors
one often detects shot noise due to energy barriers in pn-junctions, generation-
recombination noise due to defects in the band gap and 1/f noise whose cause is
still under debate. Noise can also be generated by malfunction or bad handling
of the equipment being used, e.g. in EEG measurements faulty or ill-placed

1.2 Signal-to-noise ratio (SNR) 5

electrodes can have added noise.

If we let Ps denote the signal power and Pn the noise power then the SNR
is defined

SNR =
Ps
Pn

. (1.2)

In electrical engineering SNR is often given in the units of decibels (dB), defined

SNRdB = 10 log

(

Ps
Pn

)

.

where log is the base 10 logarithm. The SNR ratio can also be found from the
signal amplitude, e.g. a resistor with resistance R dissipates the power V 2

s /R
where Vs is the signal root mean square (rms) voltage. If there is noise present
with rms voltage of Vn the signal to noise ratio can be written,

SNR =
V 2
s /R

V 2
n /R

=
V 2
s

V 2
n

and equivalently in the units of dB

SNRdB = 10 log

(

V 2
s

V 2
n

)

= 20 log

(

Vs
Vn

)

.

For random signals the corresponding quantity to the power is the variance σ2.
Since we generally deal with stochastic variables here and the noise is assumed
Gaussian distributed the signal-to-noise ratio is defined

SNR =
σ2
m0

σ2
ǫ

(1.3)

where σ2
m0 and σ2

ǫ are the signal and noise variances respectively.

6 Introduction

1.3 Thesis Overview

• Chapter 1 is an Introduction to the ill-posed EEG inverse problem. It
includes a brief overview of previous work and methods used to model and
solve the inverse problem.

• Chapter 2 is an introduction to Electroencephalography (EEG). EEG
basics and some brain anatomy are presented. For an experienced EEG
veteran this chapter is not a necessary reading.

• Chapter 3 presents an important overview of the EEG forward problem.
The EEG Forward Model is derived which is a very important part of
solving the inverse problem. Here the physics of EEG are derived mathe-
matically. Solutions for different head shape approximations are presented
and an algebraic formulation of the forward problem shown, introducing
the so-called lead field matrix.

• Chapter 4 is the main theory. The Linear Inverse Problem is presented
and tackled using Bayes’ theorem. First a simple Gaussian approach in-
volving only two hyperparameters is derived. Then more complex prior
distribution is used where the number of hyperparameters are of the same
order as the number of sources. In this framework the author presents an
original update algorithm which he has not found in the literature. This
is one of the main parts of the thesis.

• Chapter 5 consists of simulations using artificial data for validation pur-
poses. These simulations show how the theoretical work in chapter 4
progressed and what were the causes of trying different modifications and
expansions of the algorithms.

• Chapter 6 shows the results of some real data testing using the algo-
rithms.

• Chapter 7 is the conclusion of the work. This chapter summarizes the
main results and gives a more clear overview of the simulations from chap-
ter 5 in context with the theoretical work in chapter 4. Finally there are
some notes regarding further work.

• The Appendix contains some additional information. In the mathemat-
ical appendix more details are provided on some of the derivations from
the text. Proposed Matlab implementations of the algorithms are listed
in detail. For reproducibility purposes detailed information is provided on
the BEM head models used in the simulations and real data testing. Final
part of the appendix presents some inverse solutions of sample data, this
was not included in the main text due to lack of information on the data.

Chapter 2

Electroencephalography
(EEG)

Neural activity in cell assemblies generates currents in the brain tissue causing a
potential distribution throughout a subjects head resulting in easily measurable
potential over the scalp. In electroencephalography (EEG) electrodes are placed
on a subjects head to measure these potentials. EEG is practiced by all who
are interested in the underlying neurophysiology, from medical professionals to
scientists. The electrical potentials exhibit spatial and temporal patterns that
depend on the nature and location of the sources. Since these dynamic patterns
are correlated with behavior and cognition it has often been said that EEG
provides a ”window on the mind”. German psychiatrist Hans Berger (1873-
1941) is usually credited with the first scalp recordings of the human EEG in
the mid-1920s. Others had performed similar experiments but he was the one
who gave the device its name. This chapter will give some basic introductory
information on EEG, starting with some human brain anatomy. The text is
primarily based on a classic and widely acclaimed book by Nunez and Srinivasan
[13], originally published in 1981 by the senior author but brought up to date
and republished in 2006. Review article on biomagnetism by Williamson and
Kaufman [14] provides a good overview and also the text by Hämäläinen et al.
[15].

8 Electroencephalography (EEG)

2.1 The Human Brain

The most complex structure known to exist is the human brain. In the outer-
most layer of the brain, the cerebral cortex, there are at least 1010 neurons which
form a vast signal handling network of around 1014 interconnections or synapses.
During information processing small currents flow in the neural system resulting
in the measurable scalp potential. Figure 2.1 shows the human brain and some
important anatomical features are identified. The three primary divisions of the

Figure 2.1: Human brain with some important areas indicated. Figure adopted
from [15]. Notice the motor cortex which is next to the Rolandic fissure stretch-
ing over both hemispheres. The motor cortex will be mentioned in the simula-
tions and testing in chapters 5 and 6.

human brain are the brainstem and cerebellum, which are marked on the figure,
and cerebrum which is the large folded structure on the figure with many dif-
ferent areas indicated. The cerebrum consists of two hemispheres, left and right
halves, separated by the longitudinal fissure. Each half is divided into lobes by
two deep grooves, the Rolandic fissure runs down the side of both hemispheres
while the Sylvian fissure is almost horizontal. There are four lobes in both
halves of the cortex, namely the frontal lobe, parietal lobe, occipital lobe and
the temporal lobe, all indicated on the figure. Most regions of the cortex have
been mapped and few of them are marked on the figure, e.g. visual, auditory
and motor cortex. EEG is usually mostly concerned with the cerebral cortex.

2.1 The Human Brain 9

It is a 2 to 5 mm thick layer having a total surface are around 1600 to 4000
cm2. Interconnections between neurons are very strong in this area, e.g. the
surface of a large cortical neuron may be covered with as many as 105 synapses
that transmit inputs, known as action potentials, from other neurons. The in-
puts to a neuron are of two types, excitatory postsynaptic potentials (EPSPs)
and inhibitory postsynaptic potentials (IPSPs) which make it easier and harder
respectively for the neuron to fire an action potential. EPSPs produce local
membrane current sinks with corresponding distributed passive sources. IPSPs
produce local current sources with more distant distributed passive sinks. Our
consciousness must involve, in some mostly unknown manner, the interaction of
cortical neurons.

The cortex tissue is called gray matter. When alive it is actually pink but when
stained by anatomists post mortem the cell bodies turn gray. White matter is
just below the gray matter and consists of numerous interconnections between
cortical regions. Hundreds of substructures within the brain have been labeled
by anatomists but here we are interested in larger structures near the surface
that are capable of generating potentials sufficiently coherent to be observed on
the scalp.

Neural Basics

Neurons and glial cells are the principal building blocks of the brain. The
glial cells are important for structural support, ionic concentration maintenance
and for transportation of nutrients and other substances between blood vessels
and brain tissue. Neurons are the information processing units with their cell
bodies concentrated in the gray matter. A neuron consists of the soma (cell
body), the dendrites and the axon as shown on figure 2.2. The soma contains
the nucleus and much of the metabolic machinery. The dendrites are threadlike
extensions that receive stimuli from other cells and the axon is a single long fiber
that carries the nerve impulse away from the soma to other cells. Pyramidal
and stellate cells are the two principal groups of cortical neurons where the
pyramidal ones are relatively larger. Their dendrites tend to be perpendicular
to the cortical surface, resulting in neural currents being perpendicular to the
cortical sheet of gray matter. This is an important property which will be used
in chapter 4 to simplify the forward model. Dendrites typically have thousands
of connections (synapses) from other neurons. Excitatory synapses are most
often on the dendrites and inhibitory synapses often attach to the soma.

10 Electroencephalography (EEG)

Figure 2.2: Schematic of a neuron with its three main parts indicated.

2.2 EEG Basics

Dynamic brain behaviour is believed to result from the interaction of neurons
and assemblies of neurons at multiple spatial scales. EEG electrodes can mea-
sure part of the dynamic behavior at macroscopic scales. This electrical activity
is divided into two major categories, namely spontaneous potentials such as sleep
rhythms and evoked potentials (EPs) or event related potentials (ERPs) which
are direct response to external stimulus such as an auditory tone or a light
flash. Using repeated stimulus, such as light flashes, a time averaged EP can
be calculated to remove the spontaneous EEG. The theoretical work in later
chapters deals with EEG in general, i.e. independently of which type of activity
is considered. But in the artificial simulations, chapter 5, and the real data test-
ing, chapter 6, the examples apply to EPs and ERPs. In most of the artificial
simulations we deal with single pulses on a cortical surface, these simulations
correspond to ideal averaged EPs where all background activity has been aver-
aged out.

Table 2.1 lists classification of different frequency bands for EEG measurements.
This classification is based on early experiments and findings. When pioneers
were interpreting their early results spectral analysis (Fourier transform) was
not in use. EEG waveforms were characterized by visual inspection and zero
crossings. This procedure tends to emphasize faster frequencies and it is not

2.2 EEG Basics 11

Range Rhythm
1 - 4 Hz delta
4 - 8 Hz theta

8 - 13 Hz alpha
13 - 20 Hz beta

> 20 Hz gamma

Table 2.1: EEG frequency domains classification. These values are from [13],
there is however some inconsistency in the literature specially regarding the beta
and gamma frequency ranges, e.g. the author has seen the beta range classified
from 13 to 30 Hz, 13 to 22 Hz and from 12 to 26 Hz.

clear to what extend overlap between regions occurred in early recordings. Fre-
quency ranges in the table are only roughly divided and inconsistency in the
literature is common. Underlying physiological processes have been linked to
different rhythms. Delta rhythms appear during sleep and in babies in the first
few months of age, its amplitude increases with eye closure and is believed to be
a precursor of mature alpha rhythms. The alpha rhythm is considered the main
EEG rhythm and the amplitude of scalp alpha oscillations is typically 20 to 50
µV. Normal resting alpha rhythms may be reduced in amplitude by eye open-
ing, drowsiness and challenging mental tasks. Like most EEG phenomena the
alpha rhythms exhibit inverse relationship between amplitude and frequency,
the physiological base for this inverse relation is largely unknown. For clinical
EEG examination alpha rhythms provide an appropriate starting point. During
periods of mental activity beta rhythms appear.

Electrode Placement

The international 10-20 system is an EEG standard used for placing electrodes
on a subjects head, originally proposed in 1958. Since then it has become the
standard for clinical as well as non-clinical EEG. On figure 2.3 the 10-20 system
is shown on a simplified 2D head viewed from above with the nose indicated
at the top. However advancement in EEG studies has lead to multi-channel
EEG hardware systems with much larger number of electrodes. Extensions
of the 10-20 system have therefore been proposed with up to 345 electrode
positions [17]. The placement of the electrodes is based on landmarks on the
skull, namely the nasion (Nz), the inion (Iz) and the left and right preauricular
points (LPA and RPA, placed near the ear canals). With respect to the 2D
map on figure 2.3 these landmarks would be placed at the top, the bottom and
left and right respectively. Contours and lines are then formed between these
landmarks and the numbers 10 and 20 indicate percentages of the total distances

12 Electroencephalography (EEG)

Figure 2.3: International 10-20 System recording cap available from EasyCap
[19]. 19 or 21 channels of the black labeled dots are used for recording and FCz
is recommended for reference and AFz for ground. The additional unmarked
circles are positions used for a higher density electrode grids.

of these landmark lines. This is best explained by an example. Lets look at the
line from LPA to RPA which runs through T7, C3, Cz, C4 and T8. We shall
denote the total length of the line by L, then T7 is placed 10% of L from the
LPA landmark, C3 is then placed 20% of L from T7, Cz is placed 20% of L
from C3 and so forth until T8 is reached which is placed 10% of L from RPA
and 20% from C4. Extended systems place the electrodes more densely on the
scalp, thus the distances between electrodes are shorter. Instead of 10 and 20%
lower percentages of the total distance are used with values down to 5 and 10%.
These systems are therfore called 10-10 and 5-10, where 5-10 is the most densely
packed with up to 345 defined locations [17].

Chapter 3

Forward Model

Here the physics of EEG will be modeled. Surface integral equations will be
derived using a well known approximation of Maxwell’s equations. This enables
forward calculations of EEG potentials given a specific set of neural current
sources. The head shape plays a role when solving the surface integrals. Dif-
ferent head shape approximations will be introduced and algebraic formulation
of the forward model presented. The forward model is necessary to be able to
tackle the inverse probelm. One can therefore say that this chapter is the first
step in solving the inverse EEG problem. The surface integral derivation in this
chapter is mostly based on papers by Geselowitz [20, 21]. Overview texts with
some nice explanations can also be found in [1, 14, 15, 22]. Good discussion on
different head models can be found in [23, 24]. The final part of the chapter is
an introduction to the forward model software package used [25].

3.1 Current Distribution and Dipoles

In the ideal case a sensory stimulus activates a small portion of the cortex which
causes measurable electric potentials on the scalp. This activation in the cortex
can be linked to membrane-spanning ionic flow in the neurons where chemi-
cal energy is converted to electrical potential over the cell membrane. This
membrane ionic flow shall be called impressed current or primary current Jp(r)

14 Forward Model

and has the unit of ampere per square meter. As a passive response to gra-
dients of the electrical potential set up by impressed currents another current
appears in the surrounding tissue. This current flow shall be called the volume
current Jv(r). Volume currents therefore represent the movement of charge in
surrounding tissue dictated by conductivity σ(r) and electric field E(r). Ohm’s
law gives Jv(r) = σ(r)E(r) and the total current at each point r in space is
J(r) = Jp(r)+Jv(r). Our interest is the impressed current which represents the
brain activity and below we will derive surface integral equations to calculate
scalp potentials from the the impressed currents.

Just as the magnetic dipole serves as the elemental generating source in mag-
netism then in electrophysiology the concept of a discrete current dipole q has
proven useful as the elemental generating source when modeling impressed cur-
rents. This can be thought of as the movement of a localized charge over a very
short distance, where the product of current and distance gives the moment q

of the current dipole and the direction coincides with that of the current. The
unit of q is ampere-meter. Thinking in terms of discretized points in space, q

at rq can also be thought of as the concentration of the impressed current to a
single point, i.e.

Jp(r) = qδ(r − rq) (3.1)

where δ(r) is the Dirac delta function. One can say that the current dipole is a
straightforward extension of the more well known model of paired-charges dipole
in electrostatics. It is important to emphasise that the brain activity does not
actually consist of discrete sets of physical current dipoles, but rather that the
dipole is a convenient representation for coherent activation of a large number
of pyramidal cells.

Jv

q q

Figure 3.1: On the left a current dipole is viewed as a battery immersed in a con-
ducting medium. The battery represents the dipole moment and the surrounding
backflow current is the volume current density. On the right the current dipole
is viewed as a point source and a nearby point sink.

3.2 Forward Model Integral Equations 15

Williamson and Kaufman [14] present a good intuitive example of how one
can think of the current dipole approximation. A current dipole can be viewed
as a small battery. Inside it biochemical processes impress a specified current di-
rectly from the negative to the positive terminal. Immersing this current dipole
in a conducting medium a backflow is generated outside the battery described
by the volume current density Jv(r). This example is illustrated on figure 3.1.
Equivalently, the volume current can be viewed as the superposition of a radially
symmetric outflow from a point source and an equal radially symmetric inflow
toward a nearby point sink. This is also illustrated on figure 3.1.

3.2 Forward Model Integral Equations

From previous section we know that the total current density at each point in
the head volume can be divided into two components, i.e. the primary current
flow Jp(r) and the volume current Jv(r). Since EEG studies generally deal with
frequencies on the range from 0.1Hz to 100Hz the physics can be described by
using the quasi-static approximation of Maxwell’s equations [21]. That means
that the electric field can be expressed with a scalar potential V (r)

E(r) = −∇V (r) (3.2)

and then the current can be written as

J(r) = Jp(r) − σ(r)∇V (r). (3.3)

Neglecting tissue capacitance is reasonable for the frequency range mentioned
above, that gives

∇ · J = 0. (3.4)

Combining this with equation 3.3 gives

∇ · Jp(r) = ∇ · σ(r)∇V (r). (3.5)

This differential equations fully describes the relation beween the primary cur-
rents and voltages throughout the head, i.e. it formulates the forward problem.
However it is not feasible to solve and we are only interested in the scalp surface
potentials. The rest of this section therefore derives a surface integral equation
relating the surface potentials with the primary currents.

We continue by looking at Green’s second identity, as proposed by Geselowitz
[20]. It states for scalar fields φ and ψ and surface S bounding volume G that

∫

G

(φ∇2ψ − ψ∇2φ)dv =

∫

S

(φ∇ψ − ψ∇φ) · ds

16 Forward Model

By appropriately identifying the scalar fields Green’s identity can give the de-
sired integral equations. We assume the head consists of different regions (brain,
skull, scalp, etc.) of uniform and isotropic conductances σ′

i. Then using the well
behaved functions φ = 1

|r−rq|
and ψ = V , as Geselowitz suggests, along with

Green’s identity gives

∑

i

σi

∫

Gi

(

1

|r − rq|
∇2V − V∇2

(

1

|r − rq|

))

dv =

∑

i

∫

Si

(

σ′
i

(

1

|r − rq|
∇V ′ − V ′∇ 1

|r − rq|

)

−

σ′′
i

(

1

|r − rq|
∇V ′′ − V ′′∇ 1

|r − rq|

))

· dsi,

where σ′
i and σ′′

i are the conductivities of the inner and outer sides respectively
of surface Si bounding volume Gi, as illustrated on figure 3.2. Remember that
r refers to the voltage location and rq to the dipole location. From here on we
assume that dsi is directed from the primed region to the double primed. And
at the external boundary σ′′ = 0 is assumed, i.e. zero air conductivity. Now

σ′
i

σ′′
i

Si

Gi

dsi

Figure 3.2: Surface Si, bounding volume Gi, with inner conductivity σ′ and
outer conductivity σ′′.

using boundary conditions of continuous voltages and currents on an interface
between regions of conductivities σ′ and σ′′, i.e. 1

V ′ = V ′′ and σ′δV ′/δn = σ′′δV ′′/δn on Si,

the right hand side of the equation reduces to

−
∑

i

∫

Si

(

(σ′
i − σ′′

i)V∇
(

1

|r − rq|

))

· ds

On the left hand side the following relationship can be used

∇2

(

1

|r − rq|

)

= −4πδ(r − rq)

1regarding the notation then δV/δn = ∇V · ds

3.2 Forward Model Integral Equations 17

where δ(r) is the Dirac delta function2. This gives

∑

i

σi

∫

Gi

(

1

|r − rq|

)

∇2V dv+V (r)4πσi(r) = −
∑

i

∫

Si

(σ′
i−σ′′

i)V∇
(

1

|r − rq|

)

·ds

Putting the identity from equation 3.5 into the equation above and assuming
all primary currents are confined within a single homogeneous volume, namely
the brain, we get

∫

G

∇ · Jp
|r − rq|

dv + V (r)4πσ = −
∑

i

∫

Si

(σ′
i − σ′′

i)V∇
(

1

|r − rq|

)

· ds

or

σV (r) = σ0V0(r) −
1

4π

∑

i

(σ′
i − σ′′

i)

∫

Si

V (rq)∇
(

1

|r − rq|

)

· ds (3.6)

where the primary potential is

V0(r) = − 1

4πσ0

∫

G

∇ · Jp
|r − rq|

dv

Here σ0 is needed to get the dimensions right and V0 is the potential due to Jp

in an infinite homogeneous medium with unit conductivity. The integral in the
equation for V0 can be transformed using the following

∫

G

∇ ·
(

Jp

|r − rq|

)

dv =

∫

S

Jp

|r − rq|
· ds

=

∫

G

(

Jp · ∇
(

1

|r − rq|

)

+

(

1

|r − rq|

)

∇ · Jp
)

dv

and assuming Jp vanishes on the boundary of the region containing the sources
then

∫

G

(

1

|r − rq|

)

∇ · Jpdv = −
∫

G

Jp · ∇
(

1

|r − rq|

)

dv.

Putting this into the equation for V0(r) gives

V0(r) =
1

4πσ0

∫

G

Jp · ∇
(

1

|r − rq|

)

dv. (3.7)

In equation 3.6 above the placement of r has not been specified, i.e. the voltage
can be at an arbitrary place. To obtain an integral equation for V (r) on the
surfaces Si we let r approach a point on Si from the inside (where the conduc-
tivity is σ′). Vladimirov [29] derives a limit rule for this case which can be used

2e.g. see Vladimirov [29] and/or Strauss [30] for more details on this identity

18 Forward Model

here 3. Let Fi(r) represent the integral on the right hand side of equation 3.6,
i.e.

Fi(r) =

∫

Si

V (rq)∇
(

1

|r − rq|

)

· ds.

If we let r0 be a point in the region inside of surface Si and let r0 approach a
point, r, on the surface Si (r ∈ Si) then the limit rule from Vladimirov states

lim
r0→r∈Si

Fi(r0) = −2πV (r) + Fi(r).

Using this on the integral in equation 3.6 gives for r, on some boundary Sk,

σ′V (r) − 1

2
(σ′ − σ′′) = σ0V0(r) +

1

4π

∑

i

(σ′
i − σ′′

i)

∫

Si

V (rq)
r − rq

|r − rq|3
· ds

or equivalently an integral equation for r ∈ Sk

(σ′ + σ′′)V (r) = 2σ0V0(r) +
1

2π

∑

i

(σ′
i − σ′′

i)

∫

Si

V (rq)
r − rq

|r − rq|3
· ds (3.8)

where Sk is the scalp in the case of EEG measurements (note that
r−rq

|r−rq|3
=

−∇
(

1
|r−rq|

)

).

Now to briefly summarize the results for the forward calculations. If one knows
the current density, Jp, equation 3.7 can be used to calculate the primary po-
tential V0. Which can then be used to solve 3.8 for the potential V (r) on surface
Sk, which would be the scalp in the case of EEG measurements.

A related measurement technique called magnetoencephalography (MEG) mea-
sures the magnetic field, B(r), outside the head volume using multichannel
SQUID (superconducting quantum interference device) gradiometers. Same
methods as used for EEG are used when solving the MEG inverse problem.
These two techniques are complementary and often used together but in this
thesis the focus is only on EEG. However in appendix A.2 the forward model
MEG integral equations are derived and interestingly when solving the MEG
forward problem one must also solve the EEG forward problem.

3see pages 291-303 in Vladimirov [29] for more details on the derivation of this limit rule

3.3 Algebraic Formulation 19

3.3 Algebraic Formulation

Having derived the integral equations for solving the forward problem algebraic
equations can be introduced that describe the scalp potential V (r). In the
following text the measured scalp EEG potential shall be noted by m(r), i.e.
when r is a point on the scalp then V (r) = m(r). It can be shown that the
scalp potential measurements are linear with respect to the dipole moment q

and non-linear with respect to the location rq of the dipole [15, 23]. For reasons
that will be clear soon it is convenient to separate the dipole magnitude q = |q|
and orientation θ = q/|q|. The scalp electric potential at location r generated
by a single dipole can then be written

m(r) = a(r, rq, θ)q (3.9)

where a(r, rq, θ) is the solution to the electric forward problem for a dipole with
unit amplitude and orientation θ. Expanding this by linear superposition to
simultaneous activation of P dipoles located at rqi (i = 1, ..., P) and N scalp
measurements at rj (j = 1, ..., N) gives

m =







m(r1)
...

m(rN)






=







a(r1, rq1, θ1) . . . a(r1, rqP , θP)
...

. . .
...

a(rN , rq1, θ1) . . . a(rN , rqP , θP)













q1
...
qP






(3.10)

or simply
m = As, (3.11)

where A has dimensions N ×P and for EEG scalp recordings N << P , making
the inverse solution very ill-posed. A is often called the lead field matrix or
simply the gain matrix and s = [q1, q2, ..., qP]T is a vector of dipole magnitudes.
In later chapers s will also be refered to as simply the source vector and denoted
s = [s1, s2, ..., sP]T . This model can be extended to include a time component t
when time evolving activities of each dipole are considered. The orientation gain
matrix A can therefore be calculated for each time index allowing the dipole to
rotate as a function of time.

Alternatively A can be fixed allowing the addition of discrete time samples
to the model. Then for P sources and N sensors at T discrete time samples the
spatio-temporal model can be represented as

M =







m(r1, 1) . . . m(r1, T)
...

. . .
...

m(rN , 1) . . . m(rN , T)






= A







q11 . . . q1T
...

. . .
...

qP1 . . . qPT






= AST (3.12)

where ST is a P×T spatio-temporal matrix of dipole amplitudes qij (i = 1, ..., P
and j = 1, ..., T) and M is the spatio-temporal N × T matrix of EEG scalp
potentials.

20 Forward Model

3.4 Head Models

Figure 3.3: Figure on the left shows three concentric spheres fitted to head tesse-
lation surfaces. Parts of the frontal cortex are cut off. On the right tesselation
surfaces extracted from anatomical data are shown.

To solve the forward problem described by equation 3.8 one needs to know the
structure of the surfaces for the different volumes of the head. Analytic solutions
exist of equation 3.8 for simple head models in the form of spherical models.
Because of their simplicity and ease of computation they have traditionally been
used for approximating the human head. There are however some fundamental
drawbacks which lie in its shape. Sensor positions need to be projected onto the
fitted sphere, distorting the true sensor-dipole spatial geometry. In the case of
single multilayer spheres there is incomplete coverage of brain areas, typically
ignoring the frontal cortex, as figure 3.3 illustrates. Compensating for these
kinds of errors is often resolved by fitting additional spheres to those regions
not covered by the primary sphere, complicating the EEG forward model since
neural sources may simultaneously be inside of some spheres while outside oth-
ers.

The head shape is clearly not spherical and improvements can be made by
using a more realistic head shape. High resolution spatial information is gen-
erally extracted from anatomical images (e.g. using MRI or CT scans) giving
surface tesselations of the scalp, outer skull, inner skull and other regions. The
brain tesselation surface can furthermore be used to confine sources on or within
the brain surface. For a surface of arbitrary shape analytical solutions for the
potentials over multilayer surfaces do not exist. Using numerical methods such
as the boundary element method (BEM) or other related techniques the sur-
face integral equations can be solved to find the surface potentials. The major

3.4 Head Models 21

drawback of BEM and related numerical methods is their computational cost,
exceeding that of spherical models by orders of magnitude.

In this section different head models will be discussed [23, 24] and in a fol-
lowing section the BrainStorm software package [25], which was used for the
forward modeling, will be introduced.

3.4.1 Spherical

Single-layer spherical shell with uniform conductivity is probably the simplest
EEG head model. A closed form solution was introduced in 1973 but in practice
this model proves far too simplistic for the human head which consists of multiple
layers where the conductivity varies as much as two orders of magnitude between
skull and brain (as shown in table table 3.1 on page 26). To account for this great
variety in conductance analytic solutions have been derived for three- and four-
layer concentric spheres, using anatomically extracted tesselation surfaces of
brain, skull, scalp and sometimes cerebrospinal fluid (CSF). Multilayer spherical
models are by far the most widely used because of their simplicity and relatively
good accuracy. The closed form solution for the single sphere is compact and
straight forward but the multishell case requires the evaluation of an infinite
series. Methods to improve the computational efficiency of multilayer spherical
models have focused primarily on approximating the infinite series. Here we
will start by presenting a closed form solution for the single sphere following a
discussion on multishell models and single sphere based approximations of the
multishell model.

Single Sphere

Referring to the geometry of figure 3.4 where r and rq are vectors pointing to an
electrode position on the boundary and dipole within the volume respectively.
The dipole is represented by q as before and d = r − rq is introduced to make
the equations below more compact. Three angles are additionally defined, φ1 is
the angle between the vector pointing to surface position r and dipole location
rq, φ2 is the angle that the dipole makes with the radial direction at rq and
φ3 is the angle between the plane formed by rq and q and the plane formed
by rq and r. The signed dipole intensity can be represented by its radial and
tangential components, i.e. qr = q cosφ2 and qt = q sinφ2 respectively The
measured potential V 1(r) on the surface at location r can then be expressed as
a sum of two potentials

V 1(r) = Vr(r) + Vt(r) (3.13)

22 Forward Model

r

rq

φ1

φ2
q

Figure 3.4: Geometries for a single sphere model with uniform conductivity σ.
The angle φ3 is not shown on this 2D figure. It is the angle between the plane
formed by rq and q and the plane formed by rq and r.

where

Vr(r) =
(qr

4πσ

)

(

2(r cosφ1 − rq)

d3
+

1

rqd
− 1

rrq

)

(3.14)

and

Vt(r) =
(qt

4πσ

)

cosφ3 sinφ1

(

2r

d3
+

d+ r

rd(r − rq cosφ1 + d)

)

. (3.15)

As was mentioned in the algebraic formulation section before, these equations
show that the measured voltages are linear with respect to the dipole moment
q but non-linear with respect to the dipole location rq.

Multishell Sphere

To account for the large conductivity differences of brain and skull multishell
spherical models typically include three layers for the brain, skull and scalp.
Sometimes additional CSF layer is included. The multishell case of M spherical
shells requires the evaluation of an infinite series, namely

VM (r) =
q

4πσMr2

∞
∑

n=1

2n+ 1

n

(rq
r

)n−1

...

fn(n cosφ2Pn(cosφ1) + cosφ3 sinφ2P
1
n(cosφ1)) (3.16)

where Pn and P 1
n are the Legendre and associated Legendre polynomials4 re-

spectively and

fn =
n

nm22 + (1 + n)m21
. (3.17)

4in problems with spherical symmetry Legendre’s differential equation is often encountered,
for more details see e.g. [30].

3.4 Head Models 23

The m22 and m21 coefficients are found from

[

m11 m12

m21 m22

]

= 1
(2n+1)M−1

∏M−1
k=1 ...







n+ (n+1)σk

σk+1
(n+ 1)

(

σk

σk+1
− 1
)(

rq

rk

)2n+1

n
(

σk

σk+1
− 1
)(

rk

rq

)2n+1

(n+ 1) + nσk

σk+1







(3.18)

where the conductivities are arranged from the innermost sphere to the outer-
most, σ1, ..., σM , corresponding to the radii of the spheres r1 < ... < rM . The
matrices in equation 3.18 are non-commuting with the highest index matrix ap-
plied first. Although this is a closed form solution it includes and infinite series
which has to be truncated or approximated. Under certain circumstances a
single-sphere model can approximate a three-sphere model with good accuracy.
Using the notation above, with rq and q added to the dependent variables,
V 1(r, rq,q) represents the single-sphere and V 3(r, rq,q) represents the three-
sphere model. Then the approximation can be written as

V 3(r, rq,q) ≃ λV 1(r, µrq,q), (3.19)

where V 3(r, rq,q) is approximated by adjusting the location of the dipole along
its radial direction by a scaling factor µ, then computing the much simpler
single-sphere solution scaled by a factor λ. Exceptionally good approximations
have been created in this way for three- and four-sphere head models and one
commonly used is called the Berg approximation.

Overlapping Spheres

Overlapping spheres or sensor fitted sphere method fits a multishell sphere indi-
vidually to each EEG sensor. This resolves the problem of ignoring brain areas
as was illustrated on figure 3.3 when using multishell spheres. But there is some
extensive added complexity which results in computational cost equivalent to
that of using BEM models. We therefore focus on the BEM method in this text
and introduce it in the next section. A detailed discussion of overlapping sphere
head models can be found in [24].

24 Forward Model

3.4.2 BEM

To account for the non-spherical shape of the head the boundary element method
can be used by using anatomically extracted shapes. The boundary element
method is a numerical computational method of solving linear partial differen-
tial equations which have been formulated as integral equations, i.e. in boundary
integral form as equation 3.8. Here a short introduction to the BEM approach
using the method of weighted residuals will be presented. A detailed review of
this method can be found in [23].

The forward problem from equation 3.8 can be rewritten as

σ0V0(r) =
(σ′ + σ′′)

2
V (r) − 1

4π

∑

i

(σ′
i − σ′′

i)

∫

Si

V (r′)
r − r′

|r − r′|3 · ds (3.20)

and the right hand side of this equation can be expressed as a linear operator
acting on the potential function V (r), i.e.

σ0V0(r) = L(V (r)). (3.21)

The source is known in the forward problem and hence the function V0(r) is
known. The task is therefore to determine V (r) so that the residual L(V (r)) −
σ0V0(r) is as small as possible. Using the method of weighted residuals solves
this problem using a weighting function w(r), i.e. solving the related problem

∫

S

(L(V (r′)) − σ0V0(r
′))w(r′)dr′ = 0 (3.22)

where the integration is over the domain of the unknown potential, namely the
surface S. If (f, g) denotes the inner product of two functions f and g the
equation can equivalently be written

(w(r), V0(r)) = (w(r), L(V (r))) (3.23)

The selection of a particular weighting function determines the class of error
method. In the BEM the weighting functions are restricted to a finite combina-
tion of N known linearly independent basis functions ψn(r),

w(r) =

N
∑

n=1

χnψn(r). (3.24)

Coefficients χn are arbitrary, such that w spans this N dimensional space. Equa-
tion 3.23 must therefore hold for each of the individual basis functions resulting
in N equations like 3.23, namely

(ψn(r), V0(r)) = (ψn(r), L(V (r))) n = 1, ..., N. (3.25)

3.4 Head Models 25

The unknown potential is transformed to something more tractable for numer-
ical computing by approximating it as a linear combination of N linearly inde-
pendent basis functions ϕn(r) (n = 1, ..., N)

V (r) ≃
N
∑

n=1

vnϕn(r) (3.26)

where vn are nodal parameters which are functions of the nodal points rn. The
most commonly used basis functions are planar triangles with either a constant
potential or linearly varying potential across the surface of each triangle. The
unknown coefficients therefore control the approximations to the true potentials.

Naturally these approximations lead to errors that must be controlled using the
basis functions. Common error control methods are collocation and Galerkin
weighting. The simpler method of these two is collocation weighting, in it the
error is controlled at the same discrete locations as the nodal points. In Galerkin
weighting the error is controlled as either constant or linear function across the
entire triangle.

This short introduction to BEM head modeling should indicate that in all cases
the selection of weighting basis functions and potential basis functions lead to
an N ×N system of equations of the form g = Hv. The solution for v can then
be expressed as

v = H−1g

where

g = G0q =







(ψn(r), k0(r, rq))
T

...
(ψn(r), k0(r, rq))

T






q

with

k0(r, rq)) =
1

4π

r − rq

|r − rq|3
.

The potential, V (r), can now be found from equation 3.26 using these coefficients

V (r) ≃ [ϕ1(r), ..., ϕN (r)]v = [ϕ1(r), ..., ϕN (r)]H−1G0q. (3.27)

The solution can be further partitioned into once-per-subject computation and
run-time computation terms. With the dipoles restricted to the cortex surface
and orientation equal to the surface normal the run-time terms are simply the
dipole moments (also referred to as simply the sources in this text).

Although this is an improvement from the spherical head shapes the computa-
tional overhead is significant. The BEM method still also assumes homogeneity
and isotropy within each region of the head, ignoring for example anisotropy in

26 Forward Model

Head volume Conductivity, σ [(Ωm)−1]
Brain 0.33
Skull 0.0042
Scalp 0.33

Table 3.1: Typical conductivity values used for different parts of the head volume.
A detailed discussion on the topic of tissue conductivity can be seen in [13] pp.
151-158.

the white matter and in the skull. Conductivity values typically used in the bio-
electromagnetism community assume the skull to be 40-90 times more resistive
than the brain and scalp [1]. The values used in this thesis for the conductivity
of the brain, skull and scalp are listed in table 3.1.

3.5 BrainStorm

The discussion so far on the forward model indicates the complexity and im-
portance of it for EEG research. In this thesis the main focus is on solving the
inverse EEG problem but to do so a forward model is needed. This forward
model is obtained using a Matlab software package called BrainStorm [25], free
but copyrighted software available under the terms of the GNU General Public
License . The package implements many different head modeling techniques
which have been discussed above. In the simulations and tests presented later
the head models are obtained using methods and functions implemented in
BrainStorm. This section therefore describes the basic steps of creating the
head model from tesselation surfaces obtained from MRI data and how a head
model can be obtained using electrode channel location if no MRI data is avail-
able.

The first step in the head modeling process is acquiring the tesselation surfaces
for different head volumes, which typically include brain, inner skull, outer skull
and scalp, sometimes also CSF (e.g. see figure 3.3 on page 20). Anatomical
images are necessary for this and commonly MR Images are used. The details
of tesselation surface extraction from MRI data is beyond the scope of this
text. BrainSuite [26] is a software package for surface extraction compatible
with BrainStorm and available online for research purposes. The EEG elec-
trode placement on the subjects head is very important. This requires electrode
channel placements being aligned with the tesseleation surfaces. With surfaces
and EEG channels aligned a forward model can be calculated. Remember that
the forward model provides the information on how dipole moments s located
inside the head produce measureable voltages m on the scalp. Here we fur-

3.5 BrainStorm 27

thermore use the cortical tesselation surface to restrict the sources to be placed
vertically on its nodal points. Now using the head models introduced in last
section equation 3.8 can be solved to give the forward model. With the algebraic
formulation from section 3.3 and remembering that the dipole orientations are
fixed the head modeling procedure gives us the lead field matrix A where in
the noise free case the relationship between the sources s = [q1, ..., qP]T and
potentials (EEG measurements) m is

m = As.

The forward modeling is therefore necessary to give us the lead field matrix A

of the system.

3.5.1 Phantom

In some cases there is no anatomical information available on the subjects head
or simulated data testing is needed for validation purposes. Collins et al. [27]
presented the design and creation of a realistic, digital, volumetric phantom of
the human head. It is made up of ten volumetric data sets that define the spatial
distribution for different tissues (e.g. gray matter, white matter, skin, etc.). This
brain phantom, often referred to as the Montreal Brain Phantom, is intended
for validation of medical image processing algorithms on simulated data since in
most cases it is impossible to establish ground truth with in vivo data, as is the
case for EEG. By using the brain phantom one can evaluate his algorithm or
procedure in a controlled fashion. By a method called thin-plate-spline (TPS)
warping Darvas et al. [28] fitted the Montreal Brain Phantom to a subject’s head
using the EEG electrode placement. This method is implemented in BrainStorm
and used to generate tesselation surfaces from electrode placements when no
MRI data (or tesselation data) is available. Since this method is used when
creating a head model in some of the simulations and tests in chapters 5 and 6
we briefly go through the steps here.

Montreal Phantom Warping Using Channel Locations

3D coordinates of the subjects EEG channel locations are necessary. The first
step is to align the coordinate systems of the Montreal Phantom and the EEG
channels. Figure 3.5 shows 256 EEG channels as yellow dots and the inner skull
tesselation surface of the Montreal Phantom. The illustration on the left shows
how the coordinate systems are rotated with respect to each other. On the
right illustration the coordinate systems have been aligned. After alignment it
can be seen from the figure that the channels still do not match the Phantom

28 Forward Model

Figure 3.5: The figure to the left shows that there is a 90◦ rotation between the
EEG channels (yellow dots) and the Montreal Phantom coordinates. On the
right the coordinate systems are aligned but some channels are placed inside of
the surface (inner skull).

head model since some channels are placed inside of the skull. On figure 3.6
the Phantom head model has been warped using TPS to match the channel
locations. One must keep in mind that this is only a head model template.
For artificial simulations this does not matter since all forward calculations are
done using this head model. However for real data testing this head model is
only a crude estimation of the subjects head and some errors inevitably will be
generated because of that.

3.5 BrainStorm 29

Figure 3.6: After using TPS warping a Phantom head model has been created
that matches the channel locations. The surfaces show are the brain and outer
skull, on the left and right respectively.

30 Forward Model

Chapter 4

The Linear Inverse Problem

With the forward model established in previous chapter the ill-posed inverse
problem can be tackled. Using a lead field matrix A and a vector m of EEG mea-
surements the highly underdetermined task is to estimate the vector of source
dipole magnitudes s. This will be done using Bayes’ theorem. Constraints are
therefore applied to the problem by specifying probability distributions for the
noise and sources, called likelihood and prior respectively. The parameters de-
scribing these two distributions will be referred to as the hyperparameters in
the text. By adjusting the hyperparameters using the data in m the posterior
probability can be determined, which specifies the most probable value for the
sources. The first approach will assume Gaussian distributions for both the
noise and sources. Thus only two hyperparameters need to be adjusted, namely
the variances of the two distributions. More complicated prior distributions
will then be applied which incorporate sparsity and spatial smoothing into the
source space. The number of hyperparameters increases drastically for these
cases. The first part of this chapter is mostly based on the final chapter in a
book by Bishop [7] and papers by MacKay [9, 10], where this method is used
on Neural Networks. Second part of this chapter uses Automatic relevance de-
termination (ARD) [8, 10, 11, 12]. Different iterative update algorithms for
hyperparameter estimation will be presented and in the ARD algorithms there
are some original update formulas the author has not found in the literature.
In chapter 5 evaluation and testing of the algorithms will be presented.

32 The Linear Inverse Problem

Before starting the formulation lets look at a simple example which indicates
the complexity of the problem at hand. As was noted in previous chapters
we assume primary currents to be aligned normally to the cortical surface. So
assigning a current dipole to each node of the triangular tessellation elements
on the cortical surface means the dipole orientation is fixed to equal the local
surface normal. Using the algebraic formulations from section 3.3 the inverse
problem is linear and the only unknowns are the dipole amplitudes in each of the
tessellation elements (i.e. the elements of s). Now since A from equation 3.11
is fixed one could simply try to estimate the sources from the measurements m

using the well known method of least squares, i.e. the calculated sources would
be

ŝ = (ATA)−1ATm.

But assuming the number of sensors N is in the order of 102 and the number
of unknowns P is in the order of 104 the problem is severely underdetermined.
Any measurement noise would be amplified beyond any acceptable level. Lets
illustrate this with a simple example. We define a discrete gray scale source
figure of dimensions 16 × 16 and reorder its elements in a vector s of length
P = 16×16 = 256. Then we warp it using a random matrix A with its elements
drawn from a Gaussian distribution to generate our signals m. Simulating an
actual measurement some Gaussian noise is added, with standard deviation 0.01.
The resulting signal-to-noise ratio is therefore around 44dB which is rather high.
Lets see what happens if we now simply use the method of least squares to
estimate the source image and how the dimensions of A influence the result.
On figure 4.1 we can see the true source in the top left corner. Next to it we
can see the least squares source estimate if A has dimensions 256 × 256. In
the two figures below the dimensions of A have been reduced slightly in the
sense that the number of ”measured” values N is reduced. The source estimates
in these cases is unacceptable even though the problem is far from being as
underdetermined as the EEG inverse problem.

4.1 Bayesian Formulation

The forward model which will be used from now on is based on the algebraic
formulation from equation 3.11. To account for some measurement noise an
additive noise vector ǫ is added to the model. The forward model will therefore
be written

m = As + ǫ (4.1)

where m is an N × 1 vector of EEG signals, A is the N × P lead field matrix
and s is a P × 1 vector of source dipole magnitudes to be estimated. For now
the noise vector is not specified further, that will be done when the likelihood

4.1 Bayesian Formulation 33

True figure

5 10 15

2

4

6

8

10

12

14

16

A is 256x256

5 10 15

2

4

6

8

10

12

14

16

A is 246x256

5 10 15

2

4

6

8

10

12

14

16

A is 236x256

5 10 15

2

4

6

8

10

12

14

16

Figure 4.1: Estimation of a source figure s from measurements m for different
sizes N of m. The method of least squares is used and the matrix A is generated
by drawing numbers from a normal distribution. The true source is plotted
in the top left corner. Three other figure estimates are plotted for different
dimensions of A. They clearly show how the estimate gets worse as the number
of ”measured” values N is reduced. The signal-to-noise ratio is very high, or
around 44dB for all examples.

is introduced below. The noise free signal m0 is then

m0 = As (4.2)

Using Bayes’ theorem the posterior probability can be written

p(s|m) =
p(m|s)p(s)
p(m)

(4.3)

or writing the theorem in words

posterior =
likelihood × prior

normalizing const.
. (4.4)

In general the prior can be written as an exponential of the form

p(s) =
1

Zs(α)
exp(−αEs) (4.5)

34 The Linear Inverse Problem

where

Zs(α) =

∫

exp(−αEs)ds (4.6)

is a normalization factor ensuring that
∫

p(s)ds = 1. For now it is assumed the
hyperparameter α is known. Lets call Es the decay function, it controls what
type of prior distribution is assumed. The decay function relates directly to
Tikhonov regularization and what type of regularization norm is used. Here

Es =
1

2
|s|2 =

1

2

P
∑

i=1

s2i (4.7)

is chosen which gives a Gaussian prior distribution enabling us to proceed with
rather straight forward analytical calculations. The prior then takes the form

p(s) =
1

Zs(α)
exp

(

−α
2
|s|2
)

(4.8)

and using the identity
∫∞

−∞
exp(λ2x

2)dx =
(

2π
λ

)1/2
gives

Zs(α) =

∫ ∞

−∞

exp

(

−α
2

P
∑

i=1

s2i

)

ds1 · · · dsP

=
P
∏

i=1

∫ ∞

−∞

exp
(

−α
2
s2i

)

dsi

=

P
∏

i=1

(

2π

α

)1/2

=

(

2π

α

)P/2

. (4.9)

As for the prior the likelihood distribution can in general be written in expo-
nential form

p(m|s) =
1

Zm(β)
exp(−βEm) (4.10)

with normalization factor

Zm(β) =

∫

exp(−βEm)dm (4.11)

where β is another hyperparameter assumed to be known for now and Em is an
error function. Using the sum-of-squares error function given by

Em =
1

2
|m − As|2 (4.12)

means that the noise on the measured data is assumed Gaussian with zero mean.
Then as for the prior we get the likelihood

p(m|s) =
1

Zm(β)
exp

(

−β
2
|m − As|2

)

. (4.13)

4.1 Bayesian Formulation 35

Using the same methods calculating the normalization factor as we used for the
prior gives

Zm(β) =

N
∏

n=1

∫ ∞

−∞

exp

(

−β
2

(mn − aTns)2
)

dmn

where aTn is the n-th row vector of A. Then using change of variables, i.e.
ξn = mn − aTns and then dξn = dmn, we get

Zm(β) =

N
∏

n=1

∫ ∞

−∞

exp

(

−β
2
ξ2n

)

dξn

=

(

2π

β

)N/2

. (4.14)

Having defined identities for both the prior and the likelihood Bayes’ theorem
can be used to give an equation for the posterior, i.e.

p(s|m) =
1

ZL(α, β)
exp(−L(s, α, β)) (4.15)

where

ZL(α, β) =

∫

exp(−L(s, α, β))ds (4.16)

and
L(s, α, β) = βEm + αEs. (4.17)

Note that L(s, α, β) and L(s) will be used interchangeably. Before going further
lets summarize a bit the above. The prior and likelihood were assumed Gaussian
enabling us to calculate the posterior using Bayes’ theorem. Two hyperparam-
eters were introduced, one for the prior and the other for the likelihood. For
now we assume these parameters are known but later it will be shown how one
can estimate them.

Moving on we consider the important part of finding the most probable value of
s by finding the maximum of the posterior distribution. Instead of maximizing
the posterior distribution directly it is more convenient to maximize the loga-
rithm of the posterior. This is equivalent since the logarithm is a monotonic
increasing function. Lets call this most probable vector sMP . Since ZL(α, β) is
independent of s then maximizing ln(p(s|m)) with respect to s is equivalent to
maximizing

−L(s, α, β) = −βEm − αEs = −β
2
|m − As|2 − α

2
|s|2.

Differentiation gives

− ∂

∂s
L(s) =

∂

∂s

(

β

2
|m − As|2

)

+
∂

∂s

(α

2
|s|2
)

= β(ATm − ATAs) − αs (4.18)

36 The Linear Inverse Problem

resulting in the most probable value

sMP =

(

ATA +
α

β
I

)−1

ATm. (4.19)

The differentiation above is straight forward but tedious, it is therefore listed
in more detail in appendix A.3.1. Using an identity presented later in the text
(see equation 4.66) the most probable value can equivalently be written

sMP = AT

(

AAT +
α

β
I

)−1

m.

The equations so far are exact although ZL(α, β) cannot be calculated analyt-
ically. Furthermore the calculation of ZL(α, β) is over the space of s which in
practice is very large. A simplifying expression is therefore introduced. MacKay
[10] was dealing with neural networks and introduced a Gaussian approximation
for the posterior distribution. He obtained it by considering the Taylor expan-
sion around its minimum value and retaining terms up to the second order. It
turns out that doing the same here is equivalent to completing the square over
s (e.g. see page 167 in [8]), except that here the identity is exact. Considering
the expansion of L(s, α, β) around its minimum value gives

L(s) = L(sMP) +
1

2
(s − sMP)TH(s − sMP) (4.20)

where H is the P × P Hessian matrix of the total error function, i.e. defining
∇ as the gradient in the space of s the Hessian is

H = ∇∇L(s, α, β)

= β∇∇Em + α∇∇Es
= βATA + αI. (4.21)

More detailed calculations of the Hessian are shown in appendix A.3.1. This
expansion now leads to a Gaussian posterior distributions around sMP given by

p(s|m) =
1

Z∗
L

exp

(

−L(sMP) − 1

2
(s − sMP)TH(s − sMP)

)

(4.22)

where Z∗
L = ZL is a normalization constant appropriate to the expansion, given

by

Z∗
L =

∫

exp

(

−L(sMP) − 1

2
(s − sMP)TH(s − sMP)

)

ds.

With the posterior distribution rewritten to this form allows a great deal of
progress to be made analytically.

4.1 Bayesian Formulation 37

Evaluation of the normalization constant Z∗
L is straight forward but involves

some lengthy calculations. The most important steps will be listed here 1. It
is convenient to work in terms of the eigenvectors uk and eigenvalues λk of H

(k = 1, ..., P). So lets consider the eigenvector equation for H

Huk = λkuk.

The vector s−sMP can be expanded as a linear combination of the eigenvectors

s − sMP =

P
∑

k=1

ξkuk.

By change of variables the integration can be done over dξ1...dξP instead of
ds1...dsP . Furthermore using the orthonormality of uk the normalization con-
stant becomes

Z∗
L =

P
∏

k=1

∫ ∞

−∞

exp

(

−L(sMP) − λkξ
2
k

2

)

dξk

which can be simplified to

Z∗
L = exp(−L(sMP))(2π)P/2 det(H)−1/2 (4.23)

4.1.1 Framework for Hyperparameters α and β

Until now the values of α and β have been assumed to be known but. In general
the values are unknown and have to be estimated from the data. Treatment
of hyperparameters involves Occam’s razor 2 since the hyperparameters which
give the best fit to the data represent over fitting and do not give the best
generalization. The correct treatment for unknown parameters is to integrate
them out of the predictions. For example the posterior distribution of dipole
amplitudes is given by

p(s|m) =

∫∫

p(s, α, β|m)dαdβ

=

∫∫

p(s|α, β,m)p(α, β|m)dαdβ. (4.24)

The approach used here is called the evidence approximation, e.g. discussed by
MacKay [9].

1for more details see appendix B in Bishop [7].
2Named after William of Occam (1285-1349), and is the principle that simple models should

be preferred over more complex ones.

38 The Linear Inverse Problem

Assuming the posterior probability distribution p(α, β|m) is sharply peaked
around the most probable values of the hyperparameters αMP and βMP then
we can write

p(s|m) ≃ p(s|αMP , βMP ,m)

∫∫

p(α, β|m)dαdβ. (4.25)

= p(s|αMP , βMP ,m) (4.26)

What this says is that we should find the hyperparameters which maximize the
posterior probability and use them for remaining calculations. To find α and β
we need to evaluate the posterior given by

p(α, β|m) =
p(m|α, β)p(α, β)

p(m)
(4.27)

which requires a choice for the prior p(α, β), sometimes called the hyperprior.
Since we have no idea of what are suitable values for α and β the prior should
be chosen so that it gives in some sense equal weight to all possible values. Thus
we assume the prior is very flat, such priors are often called non-informative.
By choosing a very flat prior means it is very insensitive to the values of α and
β. The denominator in 4.27 is independent of α and β and the prior p(α, β) is
assumed very flat. Maximizing the posterior p(α, β|m) can therefore be done
by maximizing p(m|α, β), called the evidence for α and β. Our overall Bayesian
analysis is proceeding in a hierarchical fashion. First level is determining the
distribution of s and now we are seeking the distribution for the hyperparame-
ters. Writing in terms of parameters already established in equations 4.5, 4.9,
4.10 and 4.14 we get

p(m|α, β) =

∫

p(m|s, α, β)p(s|α, β)ds

=

∫

p(m|s, β)p(s|α)ds

=
1

Zm(β)Zs(α)

∫

exp(−L(s, α, β))ds

=

(

2π

β

)−N/2(
2π

α

)−P/2

ZL(α, β). (4.28)

Using Z∗
L = ZL from equation 4.23 gives

p(m|α, β) =

(

2π

β

)−N/2(
2π

α

)−P/2

exp(−L(sMP))(2π)P/2 det(H)−1/2. (4.29)

4.1 Bayesian Formulation 39

The natural logarithm of the evidence is then

ln p(m|α, β) = −N
2

ln
2π

β
− P

2
ln

2π

α
− L(sMP) +

P

2
ln 2π − 1

2
ln det(H)

= −L(sMP) − 1

2
ln det(H)

+
P

2
lnα+

N

2
lnβ − N

2
ln 2π. (4.30)

Lets first find the maximum with respect to α. Equation 4.21 gives the Hessian:

H = βATA + αI.

Let λi (i = 1, ..., P) be the eigenvalues of βATA, then H has eigenvalues λi+α
and

∂

∂α
ln det(H) =

∂

∂α
ln

(

P
∏

i=1

(λi + α)

)

=
∂

∂α

P
∑

i=1

ln(λi + α)

=

P
∑

i=1

1

λi + α
= Tr(H−1).

Using this along with L(sMP) = βEm(sMP) + αEs(sMP) the differentiation of
the log-evidence is straight forward

∂

∂α
ln p(m|α, β) = −Es(sMP) − 1

2
Tr(H−1) +

P

2α

= −Es(sMP) − 1

2

P
∑

i=1

1

λi + α
+
P

2α
.

Setting this derivative to zero to locate the maximum gives

2αEs(sMP) = P −
P
∑

i=1

α

λi + α
=

P
∑

i=1

1 −
P
∑

i=1

α

λi + α
=

P
∑

i=1

λi + α− α

λi + α

=
P
∑

i=1

λi
λi + α

≡ γ. (4.31)

Now we have an equation which specifies the value of α which maximizes the
evidence. Next step is to do the same for β. Since λi are the eigenvalues of
βATA we see that λi is directly proportional to β and hence

∂λi
∂β

=
λi
β

40 The Linear Inverse Problem

then

∂

∂β
ln det(H) =

∂

∂β

P
∑

i=1

ln(λi + α) =
P
∑

i=1

(

1

λi + α

∂λi
∂β

)

=
1

β

P
∑

i=1

λi
λi + α

.

And as we did before we differentiate the log-evidence but now with respect to
β

∂

∂β
ln p(m|α, β) = −Em(sMP) − 1

2β

P
∑

i=1

λi
λi + α

+
N

2β

setting this to zero gives then an equation for β at the maximum

2βEm(sMP) = N −
P
∑

i=1

λi
λi + α

= N − γ. (4.32)

Now we have two criteria for finding the optimum values for the hyperparameters
α and β. In practical applications of the approach described so far one needs to
find the optimum hyperparameters as well as the optimum source vector sMP .
A simple approach to solve this problem is to use an iterative algorithm. Finally
it is worth noting that an alternative to the evidence approximation used here
a technique called the Expectation Maximization (EM) algorithm can be used
which converges to the same solution, as shown in [8] (pp. 448-450).

4.1.2 Algorithm I for Parameter Estimation

Here a simple iterative algorithm will be presented that uses the equations
already derived to optimize the hyperparameters α and β while also estimating
the optimum source vector sMP .

Algorithm I

(i) Initialize hyperparameters α and β as 1.

(ii) Estimate sMP using equation 4.19, i.e.

sMP =

(

ATA +
α

β
I

)−1

ATm.

4.1 Bayesian Formulation 41

(iii) Re-estimate α and β using the criteria from equations 4.31 and 4.32:

αnew =
γ

2Es(sMP)

βnew =
N − γ

2Em(sMP)

where γ =
∑P
i=1

λi

λi+α
and λi are the eigenvalues of βATA.

(iv) If convergence criterion fulfilled then stop, else go back to step (ii).

The convergence of the algorithm is evaluated using the change in α and β be-
tween iterations. If the larger change of the two is smaller than some predeter-
mined threshold value ε > 0 the algorithm is stopped. Or in more mathematical
way the algorithm stops at iteration i if K(i) < ε where

K(i) = max {|α(i) − α(i− 1)|, |β(i) − β(i− 1)|} . (4.33)

Regarding the initialization of hyperparameters the author also tried using ran-
dom numbers between 0 and 1 drawn from a uniform distribution. In general
the difference between the two methods was not great. The benefit of initializing
with constant numbers is reproducibility of results.

4.1.3 Performance Evaluation

Now lets look at equations 4.8 and 4.13 for the prior and likelihood distributions.
For our choice of Em and Es both of these distributions are Gaussian so if the
algorithm converges the inverse alpha and beta values should equal the variances
of the prior and likelihood respectively, i.e.

σ2
p(s) =

1

α
(4.34)

σ2
p(m|s) =

1

β
. (4.35)

In chapter 5 these equations will be used to test the algorithm, e.g. using ar-
tificial data where the variances are known we can see whether the algorithm
returns the correct values. For real data where one has little or no knowledge
of the variances the algorithm should therefore give us estimates of the signal
and noise variances. Naturally these estimates should be positive since they
represent variance values.

Lets therefore check if the update equations are guaranteed to give positive

42 The Linear Inverse Problem

outcomes. First step is to look at the eigenvalues of βATA (or equivalently
βAAT), this matrix is real symmetric. Eigenvectors of real symmetric matri-
ces can be chosen to be orthonormal. More importantly this matrix is positive
semidefinite meaning that all eigenvalues are non-negative, i.e. λi ≥ 0 for all
i = 1, ..., P . Since all eigenvalues are non-negative and initializing α with a
positive number then γ ≥ 0. Furthermore we know that Es(sMP) is always
positive by definition so we have shown that

αnew ≥ 0 (4.36)

as long as the initialization value is positive.

Next lets check the update equation for β. By definition we know that Em(sMP)
is positive, so to demonstrate that β is non-negative we need to show that N−γ
is non-negative. From above we know that γ ≥ 0, furthermore we know that we
have N eigenvalues λi ≥ 0 giving

N − γ = N −
P
∑

i=1

λi
λi + α

= N −
N
∑

i=1

λi
λi + α

where 0 ≤ λi

λi+α
≤ 1 for all non-zero λi. This gives

0 ≤∑N
i=1

λi

λi+α
≤ N

⇔ 0 ≥ −∑N
i=1

λi

λi+α
≥ −N

⇔ N ≥ N −∑N
i=1

λi

λi+α
≥ −N +N

⇔ N ≥ N − γ ≥ 0

which shows that N − γ is non-negative and then

βnew ≥ 0. (4.37)

It can therefore be concluded that this algorithm is guaranteed to return non-
negative α and β values. And for reasonable lead-field matrices where at least
one eigenvalue is not zero then α and β are positive.

4.1.4 Algorithm Improvements

The algorithm just described is simple and implementing it on a computer is
straight forward. But for our head models the N × P gain matrix A is usu-
ally very large where typical values for the dimensions could be N = 256 and

4.1 Bayesian Formulation 43

P = 10000. The matrix calculations in the algorithm therefore quickly be-
come very memory and CPU intensive. Furthermore A is generally very ill-
conditioned making the calculations more sensitive to numerical errors when
doing finite resolution calculations on a computer. There are however some
tricks that can be used to reduce memory consumption, speed up calculations
and avoid build up of numerical errors.

Factorization called singular value decomposition (SVD) enables N × P matrix
A to be written

A = UDVT (4.38)

where U is N ×N orthogonal 3 matrix of the eigenvectors of AAT , V is P ×P
orthogonal matrix of the eigenvectors of ATA and D is N ×P matrix with the
square root of the eigenvalues of AAT on the diagonal, or simply the singular
values, and zeros off the diagonal. SVD can be used to simplify the calculations
in step (ii) of the algorithm. Using SVD on the equation in step (ii) gives

sMP =

(

ATA +
α

β
I

)−1

ATm

=

(

(UDVT)TUDVT +
α

β
I

)−1

(UDVT)Tm

=

(

VDTUTUDVT +
α

β
I

)−1

VDTUTm

=

(

VDTDVT +
α

β
VVT

)−1

VDTUTm

=

(

V(DTD +
α

β
I)VT

)−1

VDTUTm

= V

(

DTD +
α

β
I

)−1

VTVDTUTm

= V

(

DTD +
α

β
I

)−1

DTUTm. (4.39)

The N ×N matrix (DTD + α
β I) is diagonal simplifying the inverse calculations

significantly since the inverse of a diagonal matrix is obtained simply by taking
the scalar inverse of all the diagonal elements.

In step (iii) of the algorithm the eigenvalues of βATA are calculated. This
is a P × P matrix and since generally N << P it is convenient to use the
relationship

eig(βATA) = β · eig(AAT)

3
V

−1
= V

T if the matrix is orthogonal.

44 The Linear Inverse Problem

that way the eigenvalues of the N × N matrix AAT are only calculated once
and simply scaled after each iteration as β is updated.

It is worth noting that when the algorithm is run on systems with large A

it is sometimes necessary to scale the data to avoid numerical problems caused
by finite resolution in computers. For clarity the system equation is rewritten

m = As + ǫ

and scaling it with constant K > 0 gives

Km = KAs +Kǫ (4.40)

or equivalently
ms = Ass + ǫs (4.41)

where ms = Km, ss = Ks and ǫs = Kǫ are the scaled sources, measurements
and noise respectively. After running the algorithm on the scaled data the
returned values therefore have to be scaled back to the original units.

4.2 Automatic Relevance Determination (ARD)

In previous section a single hyperparameter α was defined for the prior distri-
bution and with the chosen decay function Es the prior was Gaussian over the
whole source space. In chapter 5 it will be shown how this can give good results
for some examples. In the most general case one might expect the source dis-
tribution at a single time instance to be Gaussian distributed over the cortex,
but for certain examples this is not the case. For example when using averaged
evoked potentials (EPs), which were introduced in chapter 2.2, all background
activity is averaged out and one would expect the sources to be localized and
sparse. For this kind of non-Gaussian sources the Gaussian prior assumption is
not a good one and we need to generalize the model from last section a bit more.
Automatic Relevance Determination (ARD) [10, 11, 12] is a method that classi-
fies the unknowns of the model. Using ARD here the sources sk (k = 1, ..., P) of
s are divided into different classes and each class is assigned a hyperparameter.
Effectively the cortex is therefore divided into classes. The ARD hyperparame-
ters define the relevance of each class in the sense that if the sources belonging
to the class are inactive their hyperparameter is high, vice versa if the sources
are active the hyperparameter is low. In this way regions of inactive cortex area
can then be switched of using the appropriate hyperparameters. That way the
available data in m can be used on a smaller subspace of the source space. For
the inverse EEG problem this is precisely what we want since the measurement
space is much smaller than the source space.

4.2 Automatic Relevance Determination (ARD) 45

For C different classes the ARD prior can be written as

p(s) =
1

∏

c Zc
exp

(

−
C
∑

c=1

αcEc

)

(4.42)

where αc are the hyperparameters for each class, Ec is the decay functions for
the classes and Zc =

∫

exp(−αcEc)ds are the normalization factors. Here we
will use the same decay function as in last section for all classes and a single
hyperparameter will be assigned to each source, meaning that the total number
of classes will equal the number of sources (C = P). The prior can then be
written

p(s) =
1

Zs(α1, ..., αP)
exp

(

−1

2

P
∑

i=1

αis
2
i

)

. (4.43)

For further algebraic calculations it is convenient to write this in matrix notation
by defining a diagonal matrix of α-values as

Λ =









α1 0
. . .

0 αP









. (4.44)

Then the prior can equivalently be written

p(s) =
1

Zs(Λ)
exp

(

−1

2
sTΛs

)

(4.45)

where the normalization factor is calculated in the same way as before

Zs(Λ) =

∫ ∞

−∞

exp

(

−1

2

P
∑

i=1

αis
2
i

)

ds1...dsP

=

P
∏

i=1

∫ ∞

−∞

exp

(

−1

2
αis

2
i

)

dsi

=
P
∏

i=1

(

2π

αi

)1/2

= (2π)P/2
P
∏

i=1

α
−1/2
i . (4.46)

In previous section the likelihood was Gaussian with single hyperparameter β,
which will also be used here. Note that this means that the measurement noise
is assumed to be Gaussian and the same over all electrodes. For clarity lets
rewrite the equations (4.10 and 4.14) for the likelihood distribution from last
section

p(m|s) =
1

Zm(β)
exp

(

−β
2
|m − As|2

)

46 The Linear Inverse Problem

where

Zm(β) =

(

2π

β

)N/2

.

Before continuing further it is worth noting that the formulation here will be
very similar to the one from last section. The only major difference is the prior
distribution leading to more tedious calculations in the ARD case. Since the
procedure here is so similar to the one from last section the derivation will not
be as detailed. The reader should be able to go quickly through this section
and if more details are required for better understanding one can always look
at previous section.

Now Bayes theorem can be used to give an identity for the posterior (same
as equation 4.15 from last section)

p(s|m) =
1

ZL(Λ, β)
exp(−L(s,Λ, β))

with

ZL(Λ, β) =

∫

exp(−L(s,Λ, β))ds

where

L(s,Λ, β) =
β

2
|m − As|2 +

1

2
sTΛs. (4.47)

Maximizing the log-posterior is equivalent to maximizing −L(s,Λ, β). Using
the results from appendix A.3.2 gives

∂

∂s
(−L(s)) = β(ATm − ATAs) − Λs (4.48)

and setting this equal to zero and solving for s gives the most probable value

sMP =

(

ATA +
1

β
Λ

)−1

ATm. (4.49)

The similarity to equation 4.19 is obvious and as before the equations so far
are exact analytical expressions. Using the same method as in last section an
identity for L(s) around the most probable value is considered (as in equation
4.20), written here again for clarity

L(s) = L(sMP) +
1

2
(s − sMP)TH(s − sMP).

The Hessian matrix H is then

H = ∇∇L(s,Λ, β)

= βATA + ∇∇
(

−1

2

P
∑

i=1

αis
2
i

)

= βATA + Λ. (4.50)

4.2 Automatic Relevance Determination (ARD) 47

The posterior is then given by equation 4.22 and the normalization factor by
equation 4.23, for clarity these equations are rewritten here:

p(s|m) =
1

Z∗
L

exp

(

−L(sMP) − 1

2
(s − sMP)TH(s − sMP)

)

Z∗
L = exp(−L(sMP))(2π)P/2 det(H)−1/2

where Z∗
L = ZL.

4.2.1 Framework for Hyperparameters Λ and β

Now the hyperparameters need to be estimated with the best generalization in
mind as was done in section 4.1.1. To find the most probable values for Λ and
β we evaluate

p(Λ, β|m) =
p(m|Λ, β)p(Λ, β)

p(m)
(4.51)

assuming a flat non-informative hyperprior p(Λ, β). That way maximizing
p(Λ, β|m) can be done by maximizing the evidence p(m|Λ, β). Using equa-
tions 4.10, 4.14, 4.45 and 4.46 along with Z∗

L = ZL gives

p(m|Λ, β) =

∫

p(m|s,Λ, β)p(s|Λ, β)ds

=

∫

p(m|s, β)p(s|Λ)ds

=
1

Zm(β)Zs(Λ)

∫

exp(−L(s,Λ, β))ds

=

(

2π

β

)−N/2

(2π)−P/2
P
∏

i=1

α
1/2
i ZL(Λ, β)

=

(

2π

β

)−N/2

(2π)−P/2
P
∏

i=1

α
1/2
i

exp(−L(sMP))(2π)P/2 det(H)−1/2

=

(

2π

β

)−N/2 P
∏

i=1

α
1/2
i exp(−L(sMP)) det(H)−1/2. (4.52)

48 The Linear Inverse Problem

The natural logarithm of the evidence is then

ln p(m|Λ, β) = −N
2

ln
2π

β
+

1

2
ln

P
∏

i=1

αi − L(sMP) − 1

2
ln det(H)

= −N
2

ln
2π

β
+

1

2

P
∑

i=1

lnαi − L(sMP) − 1

2
ln det(H).(4.53)

Lets first find the most probable value of each diagonal element of Λ by differ-
entiating with respect to αk (k = 1, ..., P).

∂

∂αk
ln p(m|Λ, β) =

1

2αk
− ∂

∂αk
L(sMP) − 1

2

∂

∂αk
ln det(H)

=
1

2αk
− ∂

∂αk

(

β

2
|m − AsMP |2 +

1

2

P
∑

i=1

αis
2
i

)

−1

2

∂

∂αk
ln det(H)

=
1

2αk
− s2k

2
− 1

2

∂

∂αk
ln det(H). (4.54)

The last derivative on the right hand side of the equation above is a little bit
more tricky. In appendix A.4 it is calculated and using the results derived there
gives

∂

∂αk
ln p(m|Λ, β) =

1

2αk
− s2k

2
− h′kk

2
(4.55)

where h′kk is the k-th diagonal element of the inverse Hessian matrix:

H−1 =
(

βATA + Λ
)−1

.

Setting the derivative with respect to αk to zero gives the following identity for
αk which maximizes the evidence

αk =
1

s2k + h′kk
. (4.56)

Now an identity for β is needed. Differentiation the log-evidence with respect
to β gives

∂

∂β
ln p(m|Λ, β) =

N

2β
− ∂

∂β
L(sMP) − 1

2

∂

∂β
ln det(H)

=
N

2β
− 1

2
|m − AsMP |2 −

1

2

∂

∂β
ln det(H)

=
N

2β
− 1

2
|m − AsMP |2 −

1

2
Tr

(

H−1 ∂

∂β
H

)

=
N

2β
− Em(sMP) − 1

2
Tr
(

H−1ATA
)

. (4.57)

4.2 Automatic Relevance Determination (ARD) 49

Setting the derivative to zero to find the maximum and writing up the Hessian
gives

N

2β
− Em(sMP) − 1

2
Tr
(

(βATA + Λ)−1ATA
)

= 0

which, with some basic algebra, can be written as

2βEm(sMP) = N − Tr

(

(ATA +
1

β
Λ)−1ATA

)

. (4.58)

Next step is using the equations above in an iterative algorithm to estimate
sMP , the diagonal elements αk of Λ and β.

4.2.2 Algorithm II for Parameter Estimation

Here an iterative algorithm will be presented that uses the equations already
established to optimize the hyperparameters Λ and β in the ARD model while
also estimating the optimum source vector sMP .

Algorithm II

(i) Initialize Λ and β with positive random numbers. β is drawn from a
uniform distribution between 0 and 0.1 while the elements of Λ are drawn
from a uniform distribution between 0 and 1.

(ii) Estimate sMP using equation 4.49:

sMP =

(

ATA +
1

β
Λ

)−1

ATm.

(iii) Re-estimate diagonal elements αk (k = 1, ..., P) of Λ and β using the
criteria from equations 4.56 and 4.58:

αk,new =
1

s2k + h′kk

βnew =
N − Tr

(

(ATA + 1
βΛ)−1ATA

)

2Em(sMP)

where sMP = [s1, ..., sk, ..., sP]T and h′kk is the k-th diagonal element of
the inverse Hessian matrix.

(iv) If convergence criterion fulfilled then stop, else go back to step (ii).

50 The Linear Inverse Problem

It can be shown that the update equation for αk in step (iii) is multiplicative
(see appendix A.5). The convergence criterion used here is on the maximum
change in αk values that have not reached infinity, and by infinity we mean
a predetermined maximum αk value. Note that αk should ideally converge to
infinity for all non-relevant classes, thus for numerical reasons it is convenient to
set a maximum value αk−max. Iteration then stops at step i if K(i) < ε where

K(i) = max {|α1(i) − α1(i− 1)|, |α2(i) − α2(i− 1)|, ..., |αP (i) − αP (i− 1)|} .
(4.59)

and ε > 0. It turns out that the algorithm is sensitive to the dimensions ofN and
P in the model. Meaning that as the model becomes more ill-posed (N << P)
the value of β becomes worse in the sense that the noise can be under- or over-
estimated. Underestimation of noise leads to worse generalization because of
overfitting to the noise. Alternatively overestimating the noise inevitably gives
worse source estimate. This is the main reason for omitting the change in β
from the convergence criterion above and defining a maximum value for β. The
maximum value is set by considering a minimum possible SNR ratio. Lets write
the SNR ratio given in equation 1.3 for our model m = m0 + ǫ,

SNR =
σ2
m0

σ2
ǫ

In next section we will see that β should converge toward the noise variance,
which is described by the likelihood, i.e. σ2

ǫ = σ2
p(m|s) = 1

β . Using this we can
write

SNR = βσ2
m0
.

In the worst case SNR −→ 0+ and the noise is much larger than the signal
(σ2
ǫ >> σ2

m0
). In this case the β is small and converges usually nicely but

estimating the prior correctly is much harder. As the noise gets smaller (i.e. β
gets larger) there is a tendency in the algorithm to overfit to the data giving too
large value for β. An upper limit is therefore set on SNR which will be called
SNRmax. This upper limit therefore creates a boundary for β giving

βmax =
SNRmax
σ2
m0

.

If we assume SNRmax >> 0 then σ2
m0

>> σǫ and σ2
m0

≃ σ2
m is a good approx-

imation giving

βmax =
SNRmax

σ2
m

. (4.60)

Expressing βmax in terms of σm is preferred since σm can easily be estimated
from the data. A typically SNRmax = 1000 = 30dB is used in chapters 5 and
6. The issue of bad β estimate is also the main reason for introducing another
algorithm later on which will be a combination of Algorithm I and II.

4.2 Automatic Relevance Determination (ARD) 51

4.2.3 Performance Evaluation

Like in Algorithm I the β value represents the inverse of the noise variance and
should converge toward it,

σ2
p(m|s) =

1

β
. (4.61)

The αk values represent similarly the variances of the classes. Remember that
each source sk (k = 1, ..., P) belongs to its own class. If we let σ2

k denote the
variance of each class k the converged αk values should fulfill

σ2
k =

1

αk
. (4.62)

This means that if source sk contains no signal the variance should be zero giving
αk −→ ∞ as the algorithm converges. This can be interpreted in the following
way, as the signal (magnitude) of source sk decreases toward zero the relevance
parameter αk belonging to that source should increase and approach infinity.
So if the source vector s is sparse then many αk values should approach infinity.
The convergence of Algorithm II can therefore not be evaluated in exactly the
same way as was done in Algorithm I.

But as in Algorithm I the non-negativity of the hyperparameters update equa-
tions is of importance. Lets first take a look at the update equation for αk
(k = 1, ..., P), namely

αk,new =
1

s2k + h′kk
.

Obviously s2k ≥ 0 for all k = 1, ...P , the necessary condition for a positive αk,new
is therefore h′kk > 0, where h′kk is the k-th diagonal element of the inverse Hessian

matrix H−1 =
(

βATA + Λ
)−1

. The matrix βATA is real square symmetric so
the Hessian matrix is also real square symmetric which means H = HT . The
inverse of a symmetric matrix is also symmetric and the eigenvectors of real
symmetric matrices can be chosen to be orthogonal, so if U is a P × P matrix
with the eigenvectors ui of H as the columns then U is orthogonal, i.e.

UTU = I.

Let λi be the eigenvalues of H, then by forming a diagonal matrix E with the
eigenvalues on the diagonal the eigenvector equation Hui = λiui can be written
as

HU = UE.

Then using the orthogonality of U we get

H = UEUT .

52 The Linear Inverse Problem

Taking the inverse and using the orthogonality again (UT = U−1) we get

H−1 = (UEUT)−1

= (UT)−1E−1U−1

= UE−1UT

which can equivalently be written

H−1 =

P
∑

i=1

1

λi
uiu

T
i . (4.63)

If we let uiˆ2 denote the elements vise square of ui then the diagonal elements
of the inverse Hessian can be written







h′11
...

h′PP






=

P
∑

i=1

1

λi
uiˆ2.

Which shows that the sign of h′kk only depends on the signs of the eigenvalues
of the Hessian. The final step is therefore to show that the eigenvalues of the
Hessian are positive, or equivalently that the Hessian is positive definite. For
information about positive definite matrices see e.g. [32]. The matrix βATA is
positive semi-definite, i.e. for all x 6= 0 then

xT (βATA)x ≥ 0.

Lets then check if the Hessian is positive definite

xT
(

βATA + Λ
)

x = xT (βATA)x + xTΛx

where

xTΛx = [x1, x2, ..., xP]Λ











x1

x2

...
xP











= α1x
2
1 + α2x

2
2 + ...+ αPx

2
P .

Therefore if αk > 0 for all k = 1, ...P then

xTΛx > 0

and the Hessian is positive definite, meaning that its eigenvalues are positive
giving positive update of αk,new. We can therefore conclude that if we make

4.2 Automatic Relevance Determination (ARD) 53

sure to initialize all αk > 0 the update equation will always give positive αk,new,
i.e.

αk,new > 0. (4.64)

Next lets take a look at the update equation for β:

βnew =
N − Tr

(

(ATA + 1
βΛ)−1ATA

)

2Em(sMP)

Em(sMP) is non-negative by definition. The necessary condition for a non-
negative β is therefore to show that

0 ≤ N − Tr

(

(ATA +
1

β
Λ)−1ATA

)

applies. By initializing the hyperparameters with positive numbers the diagonal
matrix 1

βΛ has positive numbers on its diagonal. Taking the square root of its
elements can therefore be done and we can write

1

β
Λ =

(

Λ

β

)1/2(
Λ

β

)1/2

.

Using this in the trace expression gives

Tr

(

(ATA +
1

β
Λ)−1ATA

)

= Tr





(

Λ

β

)−1/2
(

(

Λ

β

)−1/2

ATA

(

Λ

β

)−1/2

+ I

)−1
(

Λ

β

)−1/2

ATA





= Tr





(

(

Λ

β

)−1/2

ATA

(

Λ

β

)−1/2

+ I

)−1
(

Λ

β

)−1/2

ATA

(

Λ

β

)−1/2




= Tr
(

(

QTQ + I
)−1

QTQ
)

where Q = A(Λ/β)−1/2 has been introduced to simplify the notation. The
matrix Q is of same dimensions as A (N ×P) and remember that eig(ATA) =
eig(AAT). Q therefore has N eigenvalues λn ≥ 0 and the trace can be written

Tr

(

(ATA +
1

β
Λ)−1ATA

)

=

N
∑

n=1

λn
λn + 1

≤ N

or equivalently

N − Tr

(

(ATA +
1

β
Λ)−1ATA

)

≥ 0.

We can therefore conclude that

βk,new ≥ 0. (4.65)

54 The Linear Inverse Problem

4.2.4 Numerical Issues

For practical applications where N << P one faces some problems when imple-
menting the algorithm on a computer. In step (ii) of the algorithm the inverse
of a P ×P matrix has to be calculated, as was also the case in Algorithm I but
there the CPU intensity was minimized using SVD. Here some improvements
can be obtained using some matrix algebra. In [31] the following identity is
listed

(C + BBT)−1BT = C−1B(I + BTC−1B)−1 (4.66)

for matrices B and C. This can be used on the identity for calculating sMP

H−1AT =
(

βATA + Λ
)−1

AT

=
1

β

(

1

β
Λ + ATA

)−1

AT

= Λ−1AT
(

I + βAΛ−1AT
)−1

=
1

β
Λ−1AT

(

1

β
I + AΛ−1AT

)−1

Looking at the final identity on the right the inverse needed is that of an N ×
N matrix instead of the original, usually much bigger, P × P Hessian matrix
(remember that the inverse of the diagonal matrix Λ can be obtained by taking
the scalar inverse of the diagonal elements). Lets introduce the notation

T = H−1AT =
1

β
Λ−1AT

(

1

β
I + AΛ−1AT

)−1

. (4.67)

Then the most probable source vector can be written

sMP = βTm. (4.68)

Re-estimation of hyperparameter β in step (iii) can furthermore be written

βnew =
N − Tr

(

(ATA + 1
βΛ)−1ATA

)

2Em(sMP)

=
N − Tr(βTA)

2Em(sMP)
. (4.69)

Note that the trace of a matrix is simply the sum of the diagonal elements
meaning that instead of calculating the full matrix βTA we only need to find
the diagonal elements. Now the re-estimation of αk parameters remains and that
involves using the diagonal elements of the inverse Hessian matrix h′kk directly.

4.2 Automatic Relevance Determination (ARD) 55

We can use the so called Kailath variant [31], which states that for matrices E,
F and G the following holds

(E + FG)−1 = E−1 − E−1F(I + GE−1F)−1GE−1.

Lets use this identity on the inverse Hessian matrix

H−1 = (βATA + Λ)−1

=
1

β
(
1

β
Λ + ATA)−1

=
1

β

(

βΛ−1 − βΛ−1AT (I + βAΛ−1AT)−1AβΛ−1
)

= Λ−1 − Λ−1AT (
1

β
I + AΛ−1AT)−1AΛ−1 (4.70)

so instead of having to take the inverse of the P×P Hessian matrix we only have
to calculate the inverse of an N ×N matrix and a diagonal matrix. Looking at
the final result here above we see that in the matrix multiplication furthest to
the right the first and last matrices are diagonal which means that we do not
have to do the full matrix multiplication. We can simply calculate the diagonal
of the matrix AT (1

β I + AΛ−1AT)−1A. Lets call its k-th diagonal element tkk
and use it with the k-th diagonal element of Λ to calculate the k-th diagonal
element h′kk of the inverse Hessian, which is needed for the re-estimation αk,new,
i.e. we calculate

h′kk =
1

αk
− tkk
α2
k

=
1

αk

(

1 − tkk
αk

)

. (4.71)

Calculating only the diagonal elements tkk can be implemented very efficiently
on a computer and a proposed Matlab solution can be seen in appendix B.

4.2.5 Algorithm IIb

As was briefly noted before the convergence of β in Algorithm II is is sensitive
to how ill-posed the system is, meaning that as P becomes larger than N the β
value returned by the algorithm gets worse with respect to the generalization.
This was not the case with Algorithm I and the β value returned was not as
sensitive to the dimensions N and P . Here an algorithm is therefore presented
that takes advantage of that. It first uses Algorithm I to find the β value and
then uses Algorithm II to find the diagonal values of Λ and the source estimates
sMP .

56 The Linear Inverse Problem

Algorithm IIb

(i) Initialize Λ with positive random numbers between 0 and 1 drawn from a
uniform distribution.

(ii) Run Algorithm I and use the β value returned. β is now constant and the
equations from Algorithm II are used to find Λ and sMP .

(iii) Estimate sMP using equation 4.49:

sMP =

(

ATA +
1

β
Λ

)−1

ATm.

(iv) Re-estimate diagonal elements αk (k = 1, ..., P) of Λ using the criterion
from equation 4.56:

αk,new =
1

s2k + h′kk

where sMP = [s1, ...sk, ...sP]T and h′kk is the k-th diagonal element of the
inverse Hessian matrix.

(v) If convergence criterion fulfilled then stop, else go back to step (iii).

The convergence criterion used in step (v) is the same as is used in Algorithm II.
In the ideal case both Algorithm II and IIb should give the same results since
the only difference between them is how the noise is estimated. In practice
however the noise estimate in Algorithm IIb is better resulting in better source
estimates.

4.2.6 Active Sets (Algorithm IIc)

When using automatic relevance determination (ARD) it was noted before that
for irrelevant sources the corresponding hyperparameter αk converges to infinity,
effectively removing the source from the model. This can be used to gradually
decrease the size of the model during the iteration procedure, significantly re-
ducing the computation for large models. By applying this to Algorithm IIb the
same update equations can be used but an extra step has to be added to the
algorithm where classes that have exceeded the αk−max value are removed from
the model. This step would come between steps (iv) and (v) in Algorithm IIb,
i.e. after updating the αk parameters we would remove the ones from the model
that have exceeded αk−max. Lets attempt to explain this a little bit more in
detail. Assume the model is unchanged before iteration i. After updating the
parameters then j number of αk values have exceeded αk−max. Those j classes

4.2 Automatic Relevance Determination (ARD) 57

are removed from the model, i.e. j sources and their hyperparameters are re-
moved. This effectively shrinks the matrix A down to N × (P − j), the source
vector s down to (P − j) and the diagonal matrix Λ down to (P − j)× (P − j).
As more classes are removed during the iteration process the system shrinks
more and more ideally leaving only the relevant sources. This is fairly easy to
add to Algorithm IIb and only requires some additional book keeping during
the iteration process to keep track of which indices of the original classes are
still relevant at the end of the iteration. For simulation purposes Algorithm
IIc refers to Algorithm IIb with the active set feature added, so that inactive
sets are removed from the model during the iteration.

4.2.7 Low Pass Filtering (Algorithm IId)

s′1 s′2

s′3

s′4

s′5

sk

Figure 4.2: The dots represent a grid of sources. Source sk is labeled and its
nearest neighbours s′j (j=1,...,5).

In general one would expect the activity over the cortical surface to be smooth
in the sense that if a source is active then its neighboring sources are more likely
also to be active than other sources placed further away. This relates directly
to the fact the EEG signals are believed to be generated by coherent groups of
pyramidal neurons. There is an intuitive way to incorporate spatial smoothing
on the source magnitudes, we simply add a low pass filter step into the iteration
procedure of Algorithm IIb between steps (iii) and (iv) by applying a window
function on the sources. Lets formulate this in a mathematical way. Assume
each source sk has nk number of nearest neighbours. The neighbours of sk will
be denoted s′j (j = 1, ..., nk). Then for q ∈]0; 1[the filtered source sLPk is

sLPk = qsk +
1 − q

nk

nk
∑

j=1

s′j . (4.72)

Figure 4.2 shows a grid of discrete sources, these could represent sources placed

58 The Linear Inverse Problem

on the nodes of the cortical tesselation surface. A source sk is labeled on the
figure along with its neighbouring sources. Note that the distance between
the sources is not taken into account in the filter. This low passed version of
Algorithm IIb shall be called Algorithm IId from now on. In the following
section an attempt is made to incorporate spatial smoothing into the prior
distribution.

4.3 Smoothing Prior

In section 4.2 an ARD framework was presented with a prior distribution suit-
able for sparse source space. The sparsity assumption is reasonable for some
cases of EEG measurements (e.g. averaged EPs), but furthermore one would
expect the activity in these cases to be localized in the sense that neighbouring
neurons are more likely to fire than ones placed further apart. With this in mind
spatial smoothing in the form of an average window function was added to the
ARD algorithm in section 4.2.7. Here an attempt will be made to incorporate
spatial smoothing into the prior distribution itself. So instead of applying a
single hyperparameter to each source a neighborhood of sources will be given
a hyperparameter αk. The neighborhood is defined in a similar way as was
done in section 4.2.7 and shown on figure 4.2. For each source and its nearest
neighbours a class is defined where the center source has the highest weight.
The source space (i.e. the cortex) will in this way be divided into overlapping
classes centered around each source. General notation for an ARD prior was
given with equation 4.42 and in terms of the overlapping classes we define the
prior as

p(s) =
1

Zs(α1, ..., αP)
exp



−1

2

P
∑

i=1

αi



s2i +
1

ni

ni
∑

j=1

(s′j)
2







 . (4.73)

where for each source sk (k = 1, ..., P), ni are the number of neighbouring
sources s′j as explained on figure 4.2. Notice the relation with equation 4.72.
The classes will overlap and the total number of classes equal the number of
sources. In matrix notation the prior can be written

p(s) =
1

Zs(α1, ..., αP)
exp

(

−1

2

P
∑

i=1

αis
TCis

)

. (4.74)

where Ci is a diagonal matrix defining the connectivity for each source si. For
the following calculations the notation from equation 4.73 will be used which
avoids defining different Ci matrices for each source. One of the key steps in
previous sections when going through the Bayesian formulation was finding the

4.3 Smoothing Prior 59

normalization factors analytically. This is also possible here and for the prior
the normalization factor is

Zs(α1, ..., αP) =

∫ ∞

−∞

exp



−1

2

P
∑

i=1

αi



s2i +
1

ni

ni
∑

j=1

(s′j)
2







 ds

=

∫ ∞

−∞

exp

(

−1

2

P
∑

i=1

(αi + ψi)s
2
i

)

ds. (4.75)

In this first step the prior has only been rewritten to a simpler form where a new
variable ψi (i = 1, ..., P) has been defined. Using this new variable ψi will make
following calculations simpler and more readable so it is important to give a good
accurate definition of it here. By looking at the prior in equation 4.73 we see
that each hyperparameter αi is assigned to a source si along with an average of
its closest neighbouring sources s′j . This causes overlapping of the classes in the
sense that each source does not only have a single hyperparameter as in section
4.2. So instead of writing the prior in terms of how single hyperparameters effect
groups of sources the step taken in the equation above rewrites the prior in terms
of how single sources si are effected by groups of hyperparameters (αi +ψi), so
ψi defines a group of hyperparameters. Now let α′

j define the hyperparameters
centered around the neighbouring sources s′j of si and n′j be the number of
neighbours for each s′j . Then if source si has ni number of neighbours we get

ψi(α
′
1, ..., α

′
ni
, n′1, ..., n

′
ni

) =
α′

1

n′1
+
α′

2

n′2
+ ...+

α′
ni

n′ni

. (4.76)

Continuing with the calculation of Zs(α1, ..., αP) is now straight forward and
done in the same way as in previous sections,

Zs(α1, ..., αP) =

P
∏

i=1

∫ ∞

−∞

exp

(

−1

2
(αi + ψi)s

2
i

)

dsi

=
P
∏

i=1

(

2π

αi + ψi

)1/2

= (2π)P/2
P
∏

i=1

(αi + ψi)
−1/2. (4.77)

The likelihood is the same as before (see equations 4.10 and 4.14) and rewritten
here for clarity

p(m|s) =
1

Zm(β)
exp

(

−β
2
|m − As|2

)

where

Zm(β) =

(

2π

β

)N/2

.

60 The Linear Inverse Problem

Now Bayes’ theorem (see eq. 4.3 and 4.4) can be used to form an identity for
the posterior distribution:

p(s|m) =
1

ZL(α1, ..., αP , β)
exp(−L(s, α1, ..., αP , β)) (4.78)

with

ZL(α1, ..., αP , β) =

∫

exp(−L(s, α1, ..., αP , β))ds (4.79)

where

L(s, α1, ..., αP , β) =
β

2
|m − As|2 +

1

2

P
∑

i=1

(αi + ψi)s
2
i (4.80)

=
β

2
|m − As|2 +

1

2
sTΓs, (4.81)

and the diagonal matrix Γ is defined

Γ =









α1 + ψi 0
. . .

0 αP + ψP









, (4.82)

note the resemblance to the Λ matrix from last section which had only the α’s
on the diagonal. As before maximizing the posterior to find the most probable
value of s is equivalent to maximizing −L(s, α1, ..., αP , β) with respect to s,
assuming the hyperparameters are known. With the similarity of Λ and Γ in
mind the results from appendix A.3.2 can be used when finding the derivative
of L with respect to s giving

∂

∂s
(−L(s, α1, ..., αP , β)) = β(ATm − ATAs) − Γs. (4.83)

Setting this equal to zero results in the most probable value

sMP =

(

ATA +
1

β
Γ

)−1

ATm. (4.84)

The similarity to equations 4.19 and 4.49 is obvious and enables some intuitive
interpretation. We can say that equation 4.49 gives a sparse representation of
4.19 and equation 4.84 is a smoothed version of the sparse case 4.49.

Rewriting L(s) around the most probable value sMP can be used, as has been
done before in previous sections. Using this a framework for the optimum hy-
perparameters can be formulated and this is what is done in appendix A.6. The

4.3 Smoothing Prior 61

equations derived in the appendix are similar to the ones from the ARD for-
mulation (section 4.2.1) but include some tedious summations which are very
impractical for computer implementation and more importantly formulating up-
date equations for αk (k = 1, ..., P) where non-negativity is guaranteed is very
hard, if not impossible. What we do here therefore is use equation 4.84 along
with the update equations for the hyperparameters from Algorithm IIb to form
a spatially smoothed version of Algorithm IIb.

4.3.1 Algorithm III for Parameter Estimation

Here an iterative algorithm will be presented where the framework from last sec-
tion will be used to estimate the most probable source vector sMP , introducing
a low pass filtering effect on the sources. The update equations from Algo-
rithm IIb will however be used for the hyperparameters αk (k = 1, ..., P) and
β (remember that Algorithm IIb uses Algorithm I to find β). This algorithm,
which shall be called Algorithm III, is therefore a mixture of two different prior
assumption and by comparing equation 4.55 with that of A.17, which should
strictly speaking be used to find the optimum αk values here, we note that some
overestimation of αk values are expected in Algorithm III leading to a bit too
strong low pass filtering.

Algorithm III

(i) Initialize all αk (k = 1, ..., P) as 1.

(ii) Run algorithm I to find β.

(iii) Estimate sMP using equation 4.84:

sMP =

(

ATA +
1

β
Γ

)−1

ATm.

(iv) Re-estimate αk (k = 1, ..., P) using the criterion from equation 4.56:

αk,new =
1

s2k + h′kk

where sMP = [s1, ...sk, ...sP]T and h′kk is the k-th diagonal element of

the inverse Hessian matrix from section 4.2, i.e. H−1 =
(

βATA + Λ
)−1

,
where Λ is a diagonal matrix with αk as the diagonal elements.

(v) If convergence criterion fulfilled then stop, else go back to step (iii).

62 The Linear Inverse Problem

Same convergence criterion as in Algorithm II is used. The numerical methods
introduced in section 4.2.4 are also valid and can be used here to avoid compu-
tational issues. Since the theoretical framework of this algorithm is a mixture
of two prior assumptions the performance evaluation is not as clear. However
same should apply as before on the noise estimation from the β parameter, i.e.
β should converge toward the inverse of the noise variance. The αk hyperpa-
rameters we would expect to converge in a similar way as in Algorithm II, i.e.
αk centered around an active source should converge toward a finite number
proportional to the source amplitude and for inactive sources the corresponding
αk value centered around it should converge to infinity. Furthermore, as men-
tioned above, we would expect some overestimation of αk due to the mixing of
the two different prior assumptions.

4.4 Summary

In this chapter many methods have been introduced in the form of different al-
gorithms. These algorithms will be tested in the following chapters so for clarity
the main parts this chapter will be summarized.

The likelihood distribution for all algorithms was Gaussian meaning that the
noise is assumed Gaussian. Algorithm I was based on a Gaussian prior distri-
bution assuming Gaussian distribution of sources. Only two hyperparameters
describing the variances of sources and noise are therefore used in Algorithm I.

Algorithm II was based on ARD, assuming sparse sources. The prior distri-
bution in this case had a single hyperparameter for each source along with the
noise hyperparameter. Algorithm IIb used Algorithm I to get a better estimate
of the noise. By keeping track of hyperparameters converging toward infinity
the third ARD algorithm variant was introduced. Algorithm IIc removed in-
active set during the iteration. Finally spatial smoothing was introduced into
Algorithm IIb by low pass filtering the sources during iteration.

In the last part of the chapter spatial smoothing was incorporated into the
prior distribution. Algorithm III used this prior assumption to estimate the
sources but the hyperparameter estimation from Algorithm IIb was used.

Chapter 5

Simulations on Artificial
Data

Here the algorithms will be tested using simulated data. By simulated data we
mean that the source vector s is created by hand, in the sense that its values
are chosen and therefore known. The lead-field matrix is also known and used
to warp the source vector into the measurement space. Then some noise is
added to create the artificial measured vector m. Inverse calculations can then
be performed on m and the source estimate sMP compared to the real source
vector s. The primary benefit of using simulated data is that many aspects of
the algorithms can be controlled. That way the behavior of the algorithms can
be carefully evaluated while yielding the important advantage that the answer
is known in the validation experiment. But while testing with simulated data
is necessary it is not sufficient. Additional testing with real data is presented in
next chapter.

In the testing presented here the error will be in terms of the mean squared
error, often noted mse and in this text often noted msq error. If s is the true
source moments and sMP is the estimated moments the msq error is

msq error =
1

P

P
∑

i=1

(si − sMPi)
2 (5.1)

where si and sMPi are the elements of s and sMP respectively and P is the
length of the vectors.

64 Simulations on Artificial Data

In the literature EEG inverse methods are often evaluated in terms of local-
ization error, defined as the euclidean distance between the true source and
estimated source. In this definition lies the assumption that the number of
sources is known and for simulated data this is always the case. For equivalent
dipole localization, which was briefly explained in the introduction chapter, the
sources are represented by few equivalent dipoles (down to a single dipole). In
this method the localization is a crucial factor. In the approach here, distributed
source imaging, the localization error can be defined as the distance between the
maxima of the true and estimated sources. But in this definition lies also the
assumption that the number of active areas is known and the size of the esti-
mated area is not important. When testing on real data the number of sources,
or active areas, is not known, although some areas may be expected to be active.
Furthermore the size of the active are can also be important. Here we therefore
use the msq error as our main quality estimate since it unavoidably takes into
account the locations of active sources and the number of active sources. It can
however be noted that in the simulated examples to come the localization error
in terms of distance between maxima is usually very good.

5.1 Algorithm I

One of the main argument for starting the formulation of Algorithm I presented
in section 4.1.2 is that given an ill-posed linear model with additive noise the
method of least squares fails. This sets a benchmark for the initial testing, i.e.
the algorithm should perform better than the method of least squares. The first
simulations are therefore simple examples comparing the performance of the two
methods. For the sake of clarity lets rewrite the model

m = As + ǫ

where m is a vector of N measurements, A is the N × P lead-field matrix and
s is the vector of P sources to be estimated. The noise vector ǫ of length N
is Gaussian with zero mean. Remember that in the Bayesian framework of the
algorithm the prior and the likelihood are assumed Gaussian.

5.1 Algorithm I 65

True figure

5 10 15

2

4

6

8

10

12

14

16

Algorithm I

5 10 15

2

4

6

8

10

12

14

16

Method of least squares

5 10 15

2

4

6

8

10

12

14

16

Figure 5.1: Estimation of source figure using Algorithm I and the method of least
squares for a system with N = 246 and P = 256. The true source is plotted at
the top and the bottom two plots show that the algorithm performs much better
than the method of least squares.

5.1.1 Basic Toy Examples

Binary figure

In the first example the source distribution is clearly not Gaussian but it is
of interest to look at the example presented on figure 4.1 (page 33) where the
method of least squares clearly failed. The 246 × 256 matrix A is created by
drawing numbers from a Gaussian distribution with zero mean and standard
deviation 0.1. Added noise has standard deviation 0.01. Figure 5.1 shows the
different results for the algorithm and method of least squares, also plotted is the
true figure. The algorithm gives good results here even though the Gaussianity
of the prior is clearly broken.

66 Simulations on Artificial Data

0 10 20 30
0

20
−0.2

0

0.2

0.4

0.6

0.8

x

True source

y

M
ag

ni
tu

de

0 10 20 30
0

20
−0.2

−0.1

0

0.1

0.2

0.3

x

Algorithm I

y

Figure 5.2: Estimation of source for A matrix of dimensions 512 × 1024. The
true source is plotted on the left and the estimate from Algorithm I to the right.
In the estimate the pulse is visible.

Increased activity on Gaussian floor

Here the goal is to estimate a source which is a 2D pulse on Gaussian distributed
noise floor. The true source can be seen on the left graph on figure 5.2. This ex-
ample is more realistic in the sense that it is similar to if one would for example
like to detect activity on the motor cortex of subject when moving a limb. That
kind of activity one might expect to be a sudden localized increase in activity on
the cortex. Here the 32 × 32 grid could therefore represent the cortical surface
and the amplitudes represent the current magnitudes to be estimated. The lead-
field matrix A has dimensions 512× 1024 and is generated by drawing numbers
from a normal distribution with standard deviation of 0.1. Added measurement
noise is Gaussian with zero mean and standard deviation 0.1, giving SNR of
8.0dB. On the graph to the right on figure 5.2 the estimated source is plotted
and the pulse is clearly visible, it is also placed at the correct location in the grid.

But how Gaussian is the prior here? Looking at the true source figure one
would think that s is close to Gaussian but not exactly. Figure 5.3 shows a
histogram estimation of the distribution of s. Also plotted as a solid curve is a
Gaussian distribution with same mean and standard deviation as s. Comparing
the two distributions shows that s is not completely Gaussian. Although not
being Gaussian the algorithm converges as can be seen on figure 5.4. Finally lets
see how well equations 4.34 and 4.35 hold even though the source distribution
here is not Gaussian, we get for the sources (prior)

σ2
p(s) = 0.0053

1

α
= 0.0061

5.1 Algorithm I 67

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

s

p(
s)

Figure 5.3: Estimation of the distribution of s (histogram) compared with Gaus-
sian distribution of same mean and standard deviation (solid curve).

0 10 20 30 40 50 60
0

100

200

300
A is 512x1024

α

0 10 20 30 40 50 60
0

50

100

150

β

0 10 20 30 40 50 60
3.2

3.4

3.6

3.8

4
x 10

−3

m
sq

 e
rr

or

Iteration

Figure 5.4: Convergence of α and β over iterations. Also plotted is the mean
squared error of sMP over iterations. The stop threshold for the algorithm was
chosen ε = 10−3.

68 Simulations on Artificial Data

and for the measurement noise (likelihood)

σ2
p(m|s) = 0.0100

1

β
= 0.0091

The values are close to each other and pretty accurate given the normality
deviation in the source distribution. Figure 5.4 shows the convergence of α and
β over iterations. Also plotted is the mean squared error of the estimated source.

5.1.2 Evaluation of Algorithm I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

True − σ
p(s)

E
st

im
at

e
−

 α
−

1/
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

True − σ
p(m|s)

E
st

im
at

e
−

 β
−

1/
2

Figure 5.5: Estimated vs. true variance compared both for prior and likelihood.
Each value is calculated using 10 runs with errors bars respectively. When es-
timating the prior variance the likelihood standard deviation is set to 0.01 and
when estimating the likelihood the prior standard deviation is set to 1. That
gives similar range of SNR ratio for both tests (10 to 42dB for the α test and 6
to 38dB for the β test). According to equations 4.34 and 4.35 both graphs should
be a straight line. The matrix A is created by drawing numbers from a Gaussian
distribution with standard deviation 0.1 and the dimensions are N = P = 256.

There is a big unanswered question, given Gaussian prior and likelihood how well
does the algorithm perform? The best way to test this is to use equations 4.34
and 4.35. Plotting the estimated noise variance against the true value should
give a straight line. On figure 5.5 this is done for both α and β showing that
the values lie on a straight line implying good performance of the algorithm.
Here the values of the matrix A are drawn from a Normal distribution with
zero mean and 0.1 standard deviation. The error bars for the α values are not
visible because of their extremely small values. However the β error bars are
visible and they grow smaller as the variance decreases.

There are some limitations when the variance decreases. Figure 5.6 shows how

5.1 Algorithm I 69

the estimated value converges to a constant value as the variance decreases.
Furthermore it should be noted that this test was for a well-posed system of
dimensions N = 256 and P = 256 where the random matrix A was invertible
and non-singular. As the system becomes more ill-posed, i.e. P grows larger
than N , the convergence seen on figure 5.6 for the likelihood (graph to the right)
starts sooner and the slope on the curve to the right of figure 5.5 starts deviating
from unity. This means that the algorithm can under- or overestimate the noise.
The deviation is then proportional to the SNR ratio. This effect is shown for a
system with N = 256 and P = 1024 on figure 5.7. There we can see that in

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

True − σ
p(s)

E
st

im
at

e
−

 α
−

1/
2

10
−5

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

True − σ
p(m|s)

E
st

im
at

e
−

 β
−

1/
2

Figure 5.6: Logarithm of estimated vs. logarithm of true variance for a system
of dimensions N = 256 and P = 256. These curves show for low variances the
estimated value converges to a constant.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

True − σ
p(s)

E
st

im
at

e
−

 α
−

1/
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

True − σ
p(m|s)

E
st

im
at

e
−

 β
−

1/
2

Figure 5.7: Estimated vs. true variance compared for the prior and likelihood
distributions. Each value is calculated using 15 runs with errors bars respec-
tively. The system is ill-posed and the 256×1024 matrix A is created by drawing
numbers from a Gaussian distribution with standard deviation 0.1.

70 Simulations on Artificial Data

this case the noise is overestimated and the slope of the true vs. estimate curve
is less then unity with some additional bias. The bias can vary for different A

matrices and although in this case the noise is overestimated that is not the
case in general and for some systems the noise is underestimated. But the true
vs. estimate curve for the prior is still accurate for this more ill-posed system,
there are though a bit more fluctuations in the curve.

Using equation 4.30 the convergence of α and β can be plotted over the sur-
face defined by this equation. Figure 5.8 shows this for a well posed system of
dimensions N = 60 and P = 60. As the graph shows both values converge to
approximately 100, which is around the correct standard deviation values of 0.1
for both prior and likelihood. That also amounts to SNR around 0dB with the
random matrix A used in this example. But as was stated above the estimation
of β is more sensitive to the ill-posedness of the system. So what happens to the
surface on figure 5.8 as the system becomes more ill-posed? Figure 5.9 shows the
same graph but for a more ill-posed system, where N = 30 and P = 70. On this
figure it can be seen how flat the surface is in the β direction. The maximum is
therefore not as obvious as on the first graph and β does not converge as close
to the true value of 100. This is what happens as the system becomes more
ill-posed and also what happens as the SNR ratio becomes worse, although not
specifically shown here.

100
200

300
400

500
600

700
800

900
1000

100
200

300
400

500
600

700
800

900
1000
−150

−100

−50

0

50

αβ

ln
 p

(m
|α

,β
)

Figure 5.8: The log-probability ln p(m|α, β) as a function of α and β for a system
with N = 60 and P = 60. Also plotted on the contours in the bottom, with black
crosses on a dashed curve, is the convergence of α and β. The first point on the
convergence curve is located around α = 700 and β = 200 and as the iteration
progresses the α and β values converge to 100.

5.1 Algorithm I 71

200

400

600

800

1000

200

400

600

800

1000

−80

−60

−40

−20

0

20

40

αβ

ln
 p

(m
|α

,β
)

Figure 5.9: Same as figure 5.8 but for a more ill-posed system, here N = 30 and
P = 70. SNR = 0dB as on figure 5.8. Here β converges further from the true
value of 100.

72 Simulations on Artificial Data

5.1.3 Ill-conditioned 3 Sphere Head Model

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4
x 10

7

α

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2
x 10

4

β

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

Ite
ra

tio
ns

Time [ms]

Figure 5.10: Converged α and β values for each time index. Also plotted is the
number of iterations needed at each time index.

Until now the simulations have showed that the algorithm works and one has to
be careful when the Gaussian assumption for the prior is not met. Although the
matrix A has been ill-posed in these examples its dimensions have been lower
than is usually the case for real data. Now we take a look at a simulation using
a three concentric sphere head model. Spherical models were discussed in sec-
tion 3.4 and in section 3.5 the software package used for acquiring the forward
model, in the form of the lead field matrix A, was introduced. The 3 sphere
Berg BrainStorm routine is used for the modeling. Tesselation surfaces for an
imaginary subject are generated using a high density 256 channel EEG electrode
grid supplied with the BrainStorm software. And as described in section 3.5 the
Montreal Phantom head is warped to match the channel locations. Remember
that the sources are localized on the cortical surface with directions perpendicu-
lar to the surface. Solving the forward model equations gives the gain matrix A

with N = 256 and P = 10001. This matrix has condition number κ = 4.54×108

implying a very ill-conditioned matrix. Here the artificial data is some cortical
activity over a time period 100ms with time steps of 1ms. This data is similar
to the 2D pulse introduced above in the sense that there is some underlying cor-
tical activity which was generated using a Gaussian random number generator,
then around time 40ms there is increased activity on the surface. This increased
activity is located around the center when the cortex is viewed from the top.

5.1 Algorithm I 73

Algorithm I is run for each time instance giving a series of cortical activity.

The final values of α and β are plotted on figure 5.10 for each time instance.
Also plotted are the total number of iterations needed to reach the iteration
limit of ε = 10−3 (see eq. 4.33). From the graph showing α it can be seen
that around time 40 ms when the pulse comes in the estimated α values de-
crease because the source variance increases. It can be expected that the source
becomes less Gaussian distributed at this time. The β value oscillates around
10−4 which corresponds to the correct standard deviation value of 0.01 for the
added measurement noise. For the underlying Gaussian cortical activity present
before and after the pulse the estimated standard deviation from the α value
complies with the real value, i.e. both values are around 3.8 × 10−8. Finally
on figure 5.11 the true and estimated sources are plotted for two different time
indices. At time 10 ms there is some underlying activity and then at 40 ms the
pulse is at maximum amplitude, this is clearly visible from the figures and the
estimates resemble the true sources.

Figure 5.11: On the left the true source is plotted on the cortical surface at two
different time indices (10ms and 40ms) and on the right the estimated source is
plotted for comparison.

74 Simulations on Artificial Data

5.1.4 Discussion

The simulations presented using Algorithm I have revealed some basic properties
of the algorithm. Lets summarize some of the main points here. For well posed
square systems, where prior and likelihood distributions are accurately assumed
Gaussian distributed, the algorithm performed perfectly. Variance estimates
from hyperparameters were very good within a a lower limit boundary of of the
hyperparameters. This boundary does not cause any practical problems. For ill-
posed systems the noise estimate deviates a bit without causing too much errors,
in the sense that the algorithm still converges and produces useful results. Even
for very non-Gaussian source distributions Algorithm I estimates are usable and
performance is far better than the method of least squares.

5.2 Algorithm II 75

5.2 Algorithm II

Algorithm I is simple, easy to implement and converges fast. But for very sparse
and/or localized sources its performance decreases since the source distribution
is not Gaussian. Algorithm II was based on the ARD formulation and should in
theory be able to better detect sparse sources. There are however some issues
with Algorithm II. The number of parameters to be estimated is much larger
than in Algorithm I making its computation heavier and convergence therefore
slower. Here some examples and evaluations of Algorithm II will be presented.
These examples justify the expansions leading to Algorithms IIb, IIc and IId.

5.2.1 Evaluation of Algorithm II

The hyperparameters returned by Algorithm II should give the noise variance
and indication of relevance for each source. More precisely according to equa-
tion 4.61 the β value should give the inverse of the noise standard deviation,
as was also the case in Algorithm I. Equation 4.61 shows that each αk gives
the relevance of its corresponding source sk, i.e. if the source is zero αk should
approach infinity and if the source is active (non-zero) αk should be a finite num-
ber inversely proportional to the source magnitude. Figure 5.12 shows graphs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

True − σ
p(m|s)

E
st

im
at

e
−

 β
−

1/
2

A is 256x256

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

True − σ
p(m|s)

E
st

im
at

e
−

 β
−

1/
2

A is 256x256

Figure 5.12: Comparison of estimated and true noise variance when running Al-
gorithm II on a well-posed system of dimensions N = P = 256. Each estimate is
an average over 10 runs with the corresponding error bars. The source variance
is kept constant for all noise levels giving SNR ratio from approximately -10dB
to 22dB. The elements of the A matrix are drawn from a Gaussian distribution.
Ideally both graphs should be straight lines with unity slope. For low noise values
a saturation is present as the graph on the right shows.

76 Simulations on Artificial Data

of estimated vs. true noise for Algorithm II for a well posed square system
(N = P = 256). As the graph on the left shows there is an underestimation of
the noise which can result in overfitting. The graph to the right on the figure
shows saturation for low noise values as was also present in Algorithm I. Under-
estimation of noise becomes even worse as the system becomes more ill-posed
and gradually as P becomes larger than N the β estimate starts to approach
infinity so the only limiting factor on the magnitude of β is the number of iter-
ations.

This larger underestimation of noise and non-convergence of β for more ill-posed
systems was not as apparent in Algorithm I and motivated the construction of
Algorithm IIb, where the noise parameter β is first estimated using Algorithm
I and then the update equations for αk (k = 1, ..., P) and sMP from Algorithm
II are used. This gives a better estimate of the noise variance reducing the
possibility of overfitting. Figure 5.13 shows a simple test using Algorithm IIb
on an ill-posed system with N = 256 and P = 10201 and the A matrix created
as before by drawing numbers from a normal distribution. The dimensions here

0

50

100

0

50

100

0

0.2

0.4

0.6

0.8

True source

0

50

100

0

50

100

0

0.2

0.4

0.6

0.8

Algorithm IIb

Figure 5.13: True artificial source and the estimated source using Algorithm IIb
on a system with N = 256 and P = 10201. The SNR is set to 10dB and A is
created by drawing numbers from a normal distribution with standard deviation
of 0.1. Note that axis labeling has been omitted here. It should be clear that the
x- and y-axis represent the source space locations and the z-axis represents the
source magnitude. This will also be the case on similar figures presented later
in this chapter.

5.2 Algorithm II 77

are similar to the ones in the more realistic lead-field matrices, like the 3 sphere
used in Algorithm I simulations and the BEM models which will be used later
on. The only difference lies in the P dimension. For these simple 2D simula-
tions the square root of P is preferred to be a natural number so that a discrete√
P ×

√
P source grid can be formed. The true source on the left of figure 5.13

is a pulse on 2D plane, similar to one of the toy examples shown for Algorithm
I. On the right the estimated source from Algorithm IIb is shown and it closely
resembles the true source. Furthermore on figure 5.14 the convergence of some
parameters is shown. Two of the overall 10201 αk values are shown, α2 is con-
verging to infinity and α2 to a constant value, i.e. irrelevant and relevant classes
respectively. α1 is the smallest αk value and its corresponding source is the one
with the highest amplitude on figure 5.13. Finally it is worth noting that the
noise variance in this simulation is 4 × 10−3 and estimated noise variance from
the algorithm is slightly underestimated at 2 × 10−3.

0 50 100 150 200 250 300 350 400
0

20

40
A is 256x10201

α 1

0 50 100 150 200 250 300 350 400
0

5000

10000

α 2

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

β

0 50 100 150 200 250 300 350 400
0

5
x 10

−4

m
sq

 e
rr

or

Iteration

Figure 5.14: Convergence of Algorithm IIb, β is iterated 100 times using Algo-
rithm I and then the other parameters are iterated 400 times. Only two of the
total of 10201 αk values are shown, one converges toward infinity, irrelevant
class, and the other converges to a constant, relevant class. Also shown is the
mean squared error over iterations (msq error).

78 Simulations on Artificial Data

5.2.2 Inspection of Active Sets

0 50 100 150
0

2

4
x 10

−3

Iteration

m
sq

 e
rr

or

0 50 100 150
0

1000

A
ct

iv
e

se
ts

Algorithm II
Algorithm IIb
Algorithm IIc

Figure 5.15: Mean squared error plotted as a function of iteration when running
Algorithms II, IIb and IIc (blue curves). Also plotted on the graph is the number
of active sets over iterations for Algorithm IIc, shown as a dotted green curve
with y-axis to the right in the graph. The system is ill-posed with N = 256
and P = 1024. Number of iterations are 150 for all algorithms except when
estimating β in IIb and IIc then 100 iterations are used when running Algorithm
I.

In section 4.2.6 it was introduced how inactive sets could be removed from the
model during the iteration of Algorithm IIb. This requires the definition of an
αk−max value, so that when αk exceeds this value it is removed from the model
along with its corresponding source. This threshold value is crucial, too low
and relevant sources are removed from the model and too high no sources are
removed from the model.

On figure 5.15 the mean squared error is plotted as a function of iteration
when running Algorithms II, IIb and IIc. Also plotted on the graph is the num-
ber of active sets over iterations for Algorithm IIc (green curve) with y-axis
labeled to the right. The system in this example is ill-posed with N = 256 and
P = 1024, smaller dimension for P is used here than was used in last section

5.2 Algorithm II 79

to speed up calculations since we are evaluating the effect of removing active
sets. Maximum αk value is chosen αk−max = 10αalgI , where αalgI is the α
value returned by Algorithm I. On the graph it can be seen how the number of
active sets decreases steeply just as the algorithm is about to converge speeding
up the final calculations. More interestingly the graph also shows the effect of
bad noise estimation. For ill-posed systems we remember that Algorithm II was

0

20

0

20

0

0.2

0.4

0.6

0.8

True source

0

20

0

20

0

0.2

0.4

0.6

0.8

Algorithm II

0

20

0

20

0

0.2

0.4

0.6

0.8

Algorithm IIb

0

20

0

20

0

0.2

0.4

0.6

0.8

Algorithm IIc

Figure 5.16: True source and source estimates for the example presented in
figure 5.15.

prone to making a bad estimate of β, and sometimes even blowing up toward
infinity. This was the main reason for formulating Algorithm IIb which, along
with Algorithm IIc, uses Algorithm I to estimate the noise. In the example the
true noise variance is σ2

ǫ = 4.04 × 10−3 and the estimated noise variances from
the three algorithms are listed in table 5.1. The noise estimate for Algorithm
II is far worse than for IIb and IIc as expected. On the graph on figure 5.15 it
can be seen how this causes the mean squared error to reach a minimum value
and then increase again before converging, i.e. there is some overfitting for Al-
gorithm II. There is also a slight overfitting for IIb and IIc but not as much
because the overestimation of the noise is far less. The true source and source

80 Simulations on Artificial Data

Algorithm Estimated σ2
ǫ

II 4.59 × 10−5

IIb 3.01 × 10−3

IIc 2.96 × 10−3

Table 5.1: Noise estimates returned by the three variants of Algorithm II.

estimates can be seen on figure 5.16. All algorithms return reasonable estimates
and the visual difference is not that great between the estimates.

Figure 5.17 shows the effect of having too low αk−max value. Its value is 100
times smaller than before which causes the early pruning of the model so the
algorithm hits a plateau before reaching the minimum error possible. Finally
we can conclude this section by noting that if it is guaranteed that αk−max is
not too low than as a major reduction in active sets becomes present the algo-
rithm has converged. Therefore if we could find some good criterion for choosing
αk−max the number of active sets could be used as a convergence indicator.

0 50 100 150
0

2

4
x 10

−3

Iteration

m
sq

 e
rr

or

0 50 100 150
0

1000

A
ct

iv
e

se
ts

Algorithm II
Algorithm IIb
Algorithm IIc

Figure 5.17: Same system as in previous example but the αk−max value is 100
times lower than before causing early pruning of the model. Algorithm IIc there-
fore stops iterating before reaching the minimum error.

5.2 Algorithm II 81

5.2.3 Ill-conditioned BEM Head Model

The examples so far have showed that the ARD algorithms work even for very
ill-posed systems. But when doing more realistic simulations using a 3 sphere
head model or a BEM head model the condition number of the lead field matrix
A becomes much higher. Section 3.4 gave an introduction on BEM head models
and in section 3.5 the software package used to calculate the head models was
described. The same BEM head model is used in all BEM sections of this chap-
ter. For the sake of reproducibility all details regarding this model are listed in
appendix C.1. The lead field matrix A for the BEM head model has dimensions
N = 256 and P = 10001. Its condition number is κ = 5.93 × 108. Its singular

50 100 150 200 250
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Singular value index

A
m

pl
itu

de

noisy A − cond = 7.0e+003
original A − cond = 5.9e+008

Figure 5.18: Singular values of lead field matrix A for a BEM head model plotted
with x’s. Also plotted are the singular values after adding Gaussian noise to A

from a distribution with zero mean and standard deviation of 0.1.

values are plotted on figure 5.18 showing how they span eight orders of magni-
tude. It is important here to note that in the examples presented in preceding
sections where the matrix A was created by drawing numbers from a normal
distribution the condition number is much less, e.g. for a random A of size
256 × 10001 with standard deviation 0.1 the condition number is around 1.38,
i.e. zero orders of magnitude compared to eight for the BEM model. The ex-
tremely high condition number for the BEM model causes the ARD algorithms
to give very poor results, rendering them useless in most cases.

Different tricks can be used to try and increase the condition number of the
model. The first one is adding some noise to A, the effect of doing so can be

82 Simulations on Artificial Data

seen on figure 5.18 where the singular values of A are plotted before and af-
ter adding Gaussian noise drawn from a distribution with standard deviation
of 0.1. Doing so increases the condition number significantly by five orders of
magnitude but even so the results from the ARD algorithms are poor (even if
the noisy matrix is also used for the forward calculations). Another trick is
removing all singular values that are below a certain threshold from the model,
e.g. removing all values to the right of the vertical line on figure 5.18 gives a
system with condition number of same magnitude as was achieved by adding
the noise. But as was the case with the noisy A the results are also poor when
removing singular values.

Since systems with condition numbers of magnitudes around 3 do not give good
results when using the ARD algorithms it is of interest to try and make a test
which gives an indication of how high the condition number can be so that
the ARD algorithms give satisfying results. This can be done by generating
arbitrary matrices A with condition numbers ranging from 0 to 8 order of mag-
nitude. Let A0 be the BEM lead field matrix (κ = 5.93 × 108) and An be the
matrix generated by drawing numbers from a normal distribution (κ = 1.38).
By mixing these two matrices a matrix A with a condition number ranging from
0 to 8 order of magnitude can be generated. E.g. the equation

A = qAn + (1 − q)A0

where 0 ≤ q ≤ 1 can be used to vary the condition number. Running tests for
systems of different condition number indicated that when the condition number
has order of magnitude 2 or higher the results become too poor to be considered
useful.

In general one would expect that the activity over the cortical surface to be
smooth, meaning that if a source is active then its neighboring sources are more
likely also to be active than other sources placed further away. The artificial
sources used so far in the simulations comply with this assumption. This leads to
an intuitive method, which was presented in section 4.2.7, to try and improve the
performance of the ARD algorithms. The method incorporates spatial smooth-
ing (low pass filtering) of the sources into the iteration procedure of Algorithm
IIb. Algorithm IId refers to Algorithm IIb with this smoothing feature added.
On figure 5.19 results are illustrated when this method is used on the BEM
system above above (κ = 5.93 × 108). Two values of q are tested, q = 0.4 and
q = 0.5, and the algorithm calculates 3000 iterations. SNR in this example is
10.3dB. The true source is on the bottom in the figure and the estimates on the
top. The location of the estimate is good but the cortical size is a bit small.
There is also a bit high amplitude in the estimates approx. 2 to 3 times higher
than the true amplitude, but overall the estimates are fairly good and incorrect
artifacts are so small that they are not visible on the figure. Finally we note
that the true noise variance is 2.4 × 10−9 and the estimated noise variance for

5.2 Algorithm II 83

Figure 5.19: Running Algorithm IId on a very ill-conditioned BEM head model.
True source is on the bottom figure and the algorithm estimate can be seen on
the two top figures for different q values (eq. 4.72). Namely the left figure has
q = 0.4 and the right figure has q = 0.5.

this example is 2.3 × 10−9, very close to the true value.

The factor q in the smoothing of Algorithm IId leads to the obvious task of
finding the optimum value of q, note that q = 1 gives Algorithm IIb. This de-
pends on the system properties, e.g. in our BEM model the number of nearest
neighbours for each source is varying and the average number of neighbours is
6. But for the 2D examples the number of neighbours 4 and constant. As has
also been noted the quality of the noise estimate influences how good the source
estimate is. Assuming good noise estimate we would expect that the dimensions
N×P and the number of neighbours would have the biggest influence on the op-
timum q. Figure 5.20 shows that q = 0.4 is the optimum value for a 2D example
system of dimensions 256× 1024 and for a more ill-posed system of dimensions
256×10201 the optimum q value is slightly higher. For the ill-conditioned BEM
example the same graph is plotted on figure 5.21 (see also figure 5.19 for more
details). The msq error improves as q decreases an the graph indicates an opti-
mum value of 0. The change in error is however very small below q = 0.6 and

84 Simulations on Artificial Data

0.1 0.2 0.3 0.4 0.5 0.6 0.7
5

6

7

8

9

10

11

12

13
x 10

−5

q

m
sq

 e
rr

or

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5
x 10

−5

q

m
sq

 e
rr

or

Figure 5.20: Mean square error for Algorithm IId as a function of q for a simple
2D surface example with dimensions 256×1024 on the left graph and 256×10201
on the right graph. q = 0.4 is the approximate optimum value for the smaller
system and q = 0.5 for the larger. SNR=10dB and iterations for β are 100,
for the other parameters iterations are 200 and 400 respectively. Noise standard
deviation estimates on the left are around 5.5 × 10−2 for all q values and the
true noise standard deviation is 6.4 × 10−2. On the right noise estimates are
around 2.1 × 10−2 and true noise is 6.5 × 10−2. Matrix A is created as before.

the ill-conditioned A most likely causes the error not to rise when we reach zero.
We therefore choose q usually between 0.4 and 0.5 in following sections where
Algorithm IId is used.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

−4

q

m
sq

 e
rr

or

0 0.1 0.2 0.3
1.8

2

2.2

2.4

x 10
−5

q

Figure 5.21: Mean square error for Algorithm IId as a function of q for on the ill-
conditioned BEM system (see also figure 5.19). There is a definite improvement
as q becomes smaller, and below 0.6 the msq error seems to converge. The
minimum is however in q = 0, but for obvious reasons we can not choose that
value and assume that the condition number of A could be the cause for the
error not to rise for q = 0.

5.2 Algorithm II 85

5.2.4 Effect of SNR

In the simulations so far the SNR has been fixed and usually in the range from
5 to 10dB. SNR plays a big role in the expected performance of the algorithms
and here the plan is to check the relationship between SNR and the msq error
for the ARD algorithms.

A simulation is done using A of dimensions 128 × 1024 where the matrix el-
ements are drawn from a normal distribution of standard deviation 0.1. ARD
Algorithm IIc with 400 iterations is used for faster calculations with αk−max
high enough so that the algorithm fully converges (see section 5.2.2 for more
details on Algorithm IIc). The mean square error value of the source estimates
is used as a measure of the quality of the estimate. Figure 5.22 shows a graph

−40 −30 −20 −10 0 10 20
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

SNR
dB

m
sq

 e
rr

or

Figure 5.22: Mean square error of source estimates as a function of SNR for a
system of dimensions 128 × 1024. A linear relationship is clearly present.

of the mean squared error (msq error) as a function of SNR indicating a linear
relationship between the two, i.e. the estimate from the ARD algorithms is di-
rectly proportional to the SNR. Figure 5.23 shows four plots of source estimates
for different SNR values. For SNR = 20dB the estimate is practically the same
as the true source, for SNR = 0dB the true source structure is visible in the
source estimate but there are large artifacts present. Below SNR = 0dB the
source estimates are very poor and far from providing useful information.

86 Simulations on Artificial Data

0

10

20

30

0
5

10
15

20
25

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

10

20

30

0
5

10
15

20
25

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SNR = 20dB

0

10

20

30

0
5

10
15

20
25

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SNR = 10dB

0

10

20

30

0
5

10
15

20
25

30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SNR = 0dB

Figure 5.23: Source estimates for different SNR values showing how much the
SNR ratio effects the results. The true source is shown in the top left corner,
estimate for SNR=20dB is practically equal to the true source.

5.2.5 Discussion

Simulations for Algorithm II have now been presented. The sources used were
specially suited for the ARD prior in the sense that they were sparse with few
active sources. Algorithm II therefore naturally outperformed Algorithm I for
these examples, although not specially shown here. Improvements of Algorithm
II were justified with the examples presented. It was shown how the noise
estimate from Algorithm II was worse than the noise estimate from Algorithm I,
thus Algorithm IIb uses the noise estimate from Algorithm I. Since the irrelevant
hyperparameters approach infinity when running Algorithm IIb (and II also) the
inactive sets were removed during iteration in Algorithm IIc. But one has to
be careful when choosing the removal threshold, too low threshold degrades the
performance. It was also shown how the noise estimate influences the quality
of the source estimate by comparing the msq error curves for Algorithms II,
IIb and IIc. Algorithm II msq error increased after reaching a minimum error
since its noise estimate was worse than for Algorithms IIb and IIc For realistic

5.3 Algorithm III 87

ill-conditioned A matrices spatial smoothing had to be added to the iteration
loop to get any useful results. Algorithm IId was therefore defined by adding a
low pass filter to Algorithm IIb.

5.3 Algorithm III

Algorithm III is not based on as solid theoretical framework as Algorithms
I and II. One can say that it is constructed from a mixture of two different
prior assumptions. The priors are however closely related and one would expect
that the estimates from Algorithm III to be very similar to the estimates from
Algorithm IId. In this section Algorithm III will be tested and more importantly
some tests will be done comparing all of the algorithms.

Figure 5.24: True source and the estimated source using Algorithms IIb, IId
(q = 0.4) and III on a system with N = 256 and P = 10201. The SNR is set to
10dB and A is created as in previous examples.

88 Simulations on Artificial Data

5.3.1 Evaluation of Algorithm III

The β hyperparameter returned by Algorithm III is estimated using Algorithm
I. We expect hyperparameters αk to convergence in a similar way as in Algo-
rithm II. If source sk is zero αk should approach infinity and if the source is
active (non-zero) αk should be a finite number inversely proportional to the
source magnitude.

Figure 5.24 shows a simple test using Algorithm III along with Algorithms
IIb and IId (q = 0.4) on an ill-posed system with N = 256 and P = 10201 and
the A matrix created as before by drawing numbers from a Normal distribu-
tion. The true source and estimates are labeled respectively on the figure. All
the source estimates closely resemble the true source but the low pass filtering
effect in Algorithm III is a bit strong reducing the area of the source. There
are more disturbances in the Algorithm IIb estimate than in the Algorithm IId
estimate as expected. The best estimate is from Algorithm IId. Noise variance

0 100 200 300 400 500 600
0

5

10
x 10

4 A is 256x10201

α 1

0 100 200 300 400 500 600
0

20

40

α 2

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

β

0 100 200 300 400 500 600
0

2

4
x 10

−4

m
sq

 e
rr

or

Iteration

Figure 5.25: Convergence of Algorithm III, β is iterated 100 times using Algo-
rithm I and then the other parameters are iterated 600 times. Only two of the
total of 10201 αk values are shown, one converges toward infinity, irrelevant
source, and the other converges to a constant, relevant source. Also shown is
the mean squared error over iterations (msq error).

5.3 Algorithm III 89

estimates are in all cases 4.4 × 10−4 and very close to the true noise variance
of 4.2 × 10−4. Finally on figure 5.25 the convergence of some parameters is
shown for Algorithm III. Two of the overall 10201 αk values are shown, α1 is
converging to infinity and α2 to a constant value, i.e. irrelevant and relevant
sources respectively. α2 is the smallest αk value and its corresponding source is
the one with the highest amplitude of the Algorithm III estimate on figure 5.13.

Algorithm III works as was expected, i.e. αk values are inversely proportional
to their corresponding sources like in Algorithm II, IIb, IIc and IId. The low
pass filtering effect is stronger than in Algorithm IId.

5.3.2 SNR Comparison for Algorithms

−30 −20 −10 0 10 20 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR
dB

m
sq

 e
rr

or

Alg. I
Alg. II
Alg. IIb
Alg. IId
Alg. III

Figure 5.26: Mean square error of source estimates as a function of SNR for
a system of dimensions 256 × 10201. All algorithms are compared here except
Algorithm IIc because it should give same results as Algorithm IIb, only with
reduced computation time. In Algorithm IId we choose q = 0.4 and iterations
are set to 100 (Alg. I) and 500 in all runs. The overall best performance is from
Algorithm IId since below -10dB no algorithm gives a usable source estimate.

A simulation is done using A of dimensions 256 × 10201 where the matrix ele-
ments are drawn from a normal distribution of standard deviation 0.1. Figure

90 Simulations on Artificial Data

5.26 shows a plot of the mean squared error as a function of SNR for Algo-
rithms I, II, IIb, IId and III. Algorithm IIc is not shown because the only
effective difference between IIc and IIb is computation time. Below SNR of
-10dB Algorithm III and Algorithm I perform best but unfortunately the es-
timates from all algorithms are useless for that low SNR. By useless we mean
that there is no detectable pulse at the right location in the estimate. On the
practical range above -10dB Algorithm IId performs best and we therefore say
that for this example it is the best choice. By initializing the hyperparameters
to 1 in Algorithm I the noise estimates are the same for all algorithms except
Algorithm IIb. The effect of different noise estimates is therefore minimum.

0
20

40
60

80
100

0

20

40

60

80

100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algIId SNR = 30dB

0
20

40
60

80
100

0

20

40

60

80

100

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algIII SNR = 30dB

Figure 5.27: Estimates from Algorithms IId and III for SNR=30dB. The IId
estimate is practically equal to the true source.

The source used in the test can be seen from the estimate of Algorithm IId on
figure 5.27. The poor performance of Algorithm I is understandable when the
source is inspected. This kind of sparse localized source is tailored to the ARD
and smoothing prior assumptions. Figures 5.28 and 5.29 show plots of source
estimates for SNR values of 0dB and 10dB. We can confidently conclude that
the overall best performance is from Algorithm IId but Algorithm III is better
than I, II, IIb and IIc. Algorithms IId and III give useful estimates down to
0dB, contrary to the others.

5.3 Algorithm III 91

0
20

40
60

80
100

0

20

40

60

80

100

−0.01

−0.005

0

0.005

0.01

0.015

algI SNR = 10dB

0
20

40
60

80
100

0

20

40

60

80

100

−0.1

0

0.1

0.2

0.3

0.4

algII SNR = 10dB

0
20

40
60

80
100

0

20

40

60

80

100

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algIId SNR = 10dB

0
20

40
60

80
100

0

20

40

60

80

100

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

algIII SNR = 10dB

Figure 5.28: Source estimates for SNR value of 10dB. Algorithm IIb is not shown
since the graph on figure 5.26 indicates that II and IIb have practically the same
performance. The worst performance is from Algorithm I, but looking closely at
the figure it can be seen that there is an increased activity in the estimate where
the true pulse should be located.

92 Simulations on Artificial Data

0
20

40
60

80
100

0

20

40

60

80

100

−0.01

−0.005

0

0.005

0.01

0.015

algI SNR = 0dB

0
20

40
60

80
100

0

20

40

60

80

100

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

algII SNR = 0dB

0
20

40
60

80
100

0

20

40

60

80

100

−0.1

0

0.1

0.2

0.3

0.4

algIId SNR = 0dB

0
20

40
60

80
100

0

20

40

60

80

100
−0.1

0

0.1

0.2

0.3

0.4

algIII SNR = 0dB

Figure 5.29: Source estimates for SNR value of 0dB. The superior performance
of Algorithms IId and III can be seen here.

5.3 Algorithm III 93

5.3.3 SNR Comparison with BEM

−20 −15 −10 −5 0 5 10 15 20
10

−25

10
−24

10
−23

10
−22

10
−21

10
−20

SNR
dB

m
sq

 e
rr

or

Alg. I
Alg. II
Alg. IIb
Alg. IId
Alg. III

Figure 5.30: Mean square error as a function of SNR for Algorithm I, II, IIb,
IId and III. The forward model is an ill-conditioned BEM model of dimensions
256 × 10001.

In section 5.2.3 there was a discussion on Algorithms II, IIb, IIc and IId when
running them using ill-conditioned BEM head models. The overall conclusion
from that section was that of all the ARD algorithms Algorithm IId was the
only one that gave good estimates. Algorithm III is an attempt to make a more
general implementation of Algorithm IId so comparing the two is of interest.
Here the same system and setup parameters (3000 iterations and q = 0.4 in
Alg. IId) will be used as in section 5.2.3 to test and compare all algorithms
on an ill-conditioned BEM head model. Algorithm I has a stop threshold of
10−3 and max iterations of 100. Figure 5.30 shows the estimate mean square
error as a function of SNR. Algorithm IIc was skipped from this test since the
only difference between Algorithm IIb and IIc is computation time. As previous
examples have indicated Algorithms II and IIb have poor performance when
using realistic forward models. Algorithm I has the best performance here with
Algorithms IId and III following closely. In table 5.2 the true noise variance is
compared with the estimated noise variance. The noise estimates from Algo-
rithm I are better than noise estimates from Algorithm II in all cases except for
SNR = −10dB. It can also be noted that the noise estimates are in all cases
good.

94 Simulations on Artificial Data

SNR True noise σ2
ǫ Estimated noise 1

β

Alg. I, IIb, IId, III Alg. II
-20dB 5.9 × 10−15 5.9 × 10−15 4.8 × 10−15

-10dB 5.9 × 10−16 6.6 × 10−16 5.3 × 10−16

0dB 5.9 × 10−17 5.5 × 10−17 3.9 × 10−17

10dB 5.9 × 10−18 6.0 × 10−18 4.5 × 10−18

20dB 5.9 × 10−19 5.6 × 10−19 4.0 × 10−19

Table 5.2: True noise variance and estimated noise variance for the tests shown
on figure 5.30. As expected the overall noise estimates from Algorithm II are
worse.

The true source used here, visualized on figure 5.31 is similar to the one from
section 5.3.2, i.e. a pulse with zero background activity. The only major dif-
ference between the tests here and in section 5.3.2 is the condition number of
the lead-field matrix A. This causes huge effect on the algorithms performances
and seriously degrades the estimates from all except Algorithm I. In previous
section Algorithm I had the worst overall performance but here it is the best.
The estimates from Algorithm IId and III are not far from the estimates from
Algorithm I but the much larger computational overhead of Algorithms IId and
III is hardly justifiable when their performance does not exceed Algorithm I,
which is much simpler and more robust. On figure 5.31 the estimates from all
algorithms at SNR = 0dB are plotted. These plots show how bad the estimates
from Algorithm II and IIb are. Estimates from Algorithm I, IId and III however
good.

5.3.4 Discussion

Evaluation of Algorithm III showed that it gives very similar results as Algo-
rithm IId but the performance of Algorithm IId is slightly better in general. The
computation of Algorithm III is a little bit more complicated than Algorithm
IId, one would therefore choose Algorithm IId over Algorithm III.

All algorithms were compared over a range of SNR both for a well-conditioned
and a realistic ill-conditioned lead-field matrix. The sources used were sparse
localized pulses with no background activity. These kind of sources should be
less suitable for Algorithm I. For the well-conditioned lead-field matrix Algo-
rithm IId had the best performance. But for the more realistic lead-field matrix
Algorithm I was the best.

5.3 Algorithm III 95

Figure 5.31: True source on the top left figure and algorithm estimates for SNR
of 0dB. Estimates of the different algorithms are labeled.

96 Simulations on Artificial Data

Chapter 6

Real Data Testing

After checking the performance of the algorithms in last chapter it is of interest
to try them on real EEG data recorded from a subjects scalp. Here real data
will be analyzed and inverse solutions presented. The dataset used is available
free for research purposes. In appendix D analysis of some sample data from
BrainStorm is also presented. It consists of 256 channel EEG recordings over
a 6s time period. Very little information on this data is supplied making the
validation of inverse solutions hard. Due to the lack of information this analysis
is presented in an appendix. It is worth noting that some nice inverse solutions
using Algorithms I and IId were obtained on that data. The estimates from
both algorithms complied in the sense that the same areas were active. The
only major difference was the more sparse estimate from Algorithm IId.

6.1 BCI Competition III Data

The data to be analyzed is from the BCI Competition III [34], a competition
held to validate signal processing and classification methods for Brain-Computer
Interfaces (BCIs). This competition is from 2004 and all the data from it is
available for research purposes. The datasets were divided into five different
classes where different practical BCI problems were addressed. Here dataset

98 Real Data Testing

IVa [35] from the competition will be use. Since the focus of this thesis is on the
EEG inverse problem the dataset is not used in the way it was intended for the
competition, namely classification, and only a small fraction of it will be ana-
lyzed. The data was recorded from five healthy subjects sitting in a comfortable
chair with arms resting on armrests. Visual cues were indicated for 3.5s and
during them the subject should perform a motor imagery. The process of visu-
alizing motor executions is known as motor imagery. Three possible imageries
presented were, left hand, right hand and right foot. Between presentations of
target cues the subject could relax for 1.75 to 2.25s. In the competition data
cues were only provided for right hand and right foot, so in this analysis the cue
is a motor imagery of a right hand or foot. This is important for reasons that
will become clear soon. Recordings were made using a 128 channel electrode
cap from Electro-Cap International Inc. (ECI) and 118 of them were measured.
The data is band-pass filtered between 0.05 and 200Hz and digitized at 1kHz.
Here a 100Hz down sampled version of the data is used.

6.2 Method

When analyzing real EEG data inverse solutions one has to be very careful.
The ill-posed nature of the problem which has been discussed many times so far
means that the number of possible solutions is very large. The large condition
number of the lead field matrix for realistic head shapes causes numerical prob-
lems and the quality of the tesselation surfaces for the subject must influence
the solution quality. The study here will be based on a paper by Qin et al. [36].
They performed motor imagery classification using source analysis on a data set
where following a resting period motor imagery cues were presented, i.e. a very
similar data set as the one used here. In the study the focus was on so called
mu rhythm which is caused by movement and also by motor imagery. This
rhythm is part of the alpha band, recorded over the sensory motor cortex, that
decreases or desynchronizes with movement and motor imagery. It is therefore
expected that at the start of a motor imagery there will be an event related
decrease in the mu rhythm in the brain region controlling the movement. Note
that the left side of the body is controlled by the right side of the brain and vice
versa. In our case the motor imagery is on the right side of the body meaning
the left motor cortex mu rhythm should be blocked but activity on the right
motor cortex should be anticipated.

The basic idea is to use frequency analysis to locate a decrease in the mu rhythm
of the data, which should happen at the start of the motor imagery. Having
located at which time the decrease happens we will solve the inverse problem
around the selected time. There we anticipate activity on the right side of the

6.3 Subject Forward Model 99

motor cortex, i.e. the area not controlling the motor imagery. Since the motor
imagery cues are visual we might also expect some activity in the visual cortex,
which is located on the back side of the brain.

6.3 Subject Forward Model

Figure 6.1: Channels and two of the head tesselation surfaces used for the BCI
data BEM calculations. On the left the channels are shown with respect to the
scalp, there are some minor intersections of channels and scalp causing some
channel locations to be slightly inside the scalp. The right figure shows the brain
tesselation surface and channels.

Since there was no subject head information with the data set the Montreal
Brain Phantom warping procedure from section 3.5 was used. But to do that
the 3D locations of the 118 electrodes are needed. Unfortunately the channel
locations were only given in 2D coordinates, like illustrated on figure 2.3 (page
12) for the 10-20 system. This kind of 2D map is not subject dependent and
only indicates the relative placements of electrodes to each other. This means
that we have no information on the subjects head structure. One could there-
fore argue that using a spherical head model here would be justifiable, but to
avoid leaving out parts of the brain a BEM head model will be used. A 3D
channel template is therefore needed, a kind of a ”channel location phantom”.
Oostenveld and Praamstra [17] have suggested an expansion of the 10-20 EEG
system as described in section 2.2. On Oostenveld’s webpage [18] he supplies
a computation of electrode locations on a realistic head surface. Using this
template the 2D channel locations supplied with the data could be matched
with Oostenveld’s template, picking out the appropriate channels to create a
3D channel location phantom for the data. Using this channel phantom the
Montreal Brain Phantom could be warped to match the channels, giving us

100 Real Data Testing

head tesselation surfaces for the forward model calculations. This head model
is a very crude estimation of a subjects head but should be enough for the
the analysis intended and introduced in the Method section above. Figure 6.1
shows the Montreal Brain Phantom warped to align with the phantom channels.

Section 3.4 gave an introduction on BEM head models and in section 3.5 the
BrainStorm software package used to calculate the head models was introduced.
For the sake of reproducibility all details regarding the BEM head model calcu-
lations here are listed in appendix C.2. The lead field matrix A for the BEM
head model has dimensions N = 118 and P = 10001. Its condition number is
κ = 2.35 × 108, i.e. very ill-conditioned.

0 1 2 3 4 5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−4

Time [s]

V
ol

ta
ge

 [V
]

Relax Motor imagery

Figure 6.2: Voltages of all 118 channels plotted on the same graph. The first
1.7s are a relax period and the last 3.5s are the motor imagery period. Solid
vertical line separates the two periods on the graph.

6.4 Results

Subject 2 from the dataset, marked al, is used. By visually inspecting the data
a time window is selected where no obvious increase in noise or abnormally high
voltage causing saturation in the measurements is present. Visual cues are in-
dicated for the subject to perform motor imageries for a period of 3.5s. For the
selected cue the subject should be visualizing right hand movement. Preceding
the cue there is a relax period of at least 1.75s, the selected time window for
this analysis is therefore 1.7s before the cue following the 3.5s period of motor

6.4 Results 101

imagery, giving a total time window of 5.2s. Figure 6.2 shows the EEG voltages
plotted on a single graph, relax and motor imagery periods are separated by a
solid vertical line.

The first goal is to show that there is a decrease in the mu rhythm, which
is located in the alpha band, during motor imagery. We therefore look at the
discrete Fourier transforms (DFT’s) of the EEG channels during relaxation and
during motor imagery. The Fourier transform gives information on the energy of
different frequency components in the signal, using DFT we can therefore com-
pare the energy difference before and during motor imagery. In appendix A.7
the DFT is explained further. Figure 6.3 shows the DFT squared amplitudes

Frequency [Hz]

C
ha

nn
el

s

9 10 11 12

20

40

60

80

100

120

140

160

180

200

220
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.3: Normalized squared DFT amplitudes of all channels during relax-
ation and motor imagery. The top half of the graph is during relaxation and
the bottom half during motor imagery, i.e. if k = 1, ..., 118 then channels k and
k+118 are the same channel namely before (k) and during (k+118) motor im-
agery. Frequency range shown is the alpha band (8-13Hz), where the mu rhythm
is located.

of all channels and gives a measure of the energy of different frequencies. The
top half of the figure is during relaxation and the bottom half is during motor
imagery. There is a clear reduction in energy during motor imagery indicating
a reduction in the mu rhythm. The next step is therefore to find at which time
the mu rhythm minimum is located. For that we use the spectrograms of the
channels. Spectrogram is the short-time Fourier transform of a signal and can
therefore be used as an estimate of the signal power over frequency and time.
More details on spectrograms is provided in appendix A.7. On figure 6.4 the
spectrograms of two channels are shown over the alpha band. One of them

102 Real Data Testing

8 9 10 11 12 13

1

1.5

2

2.5

3

3.5

4

4.5

Frequency [Hz]

Channel #55

T
im

e
[s

]

−150

−140

−130

−120

−110

−100

−90

8 9 10 11 12 13

1

1.5

2

2.5

3

3.5

4

4.5

Frequency [Hz]

Channel #102

T
im

e
[s

]

−150

−140

−130

−120

−110

−100

−90

0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.16s

Time [s]

R
el

at
iv

e
po

w
er

0 1 2 3 4 5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2.16s

Time [s]

R
el

at
iv

e
po

w
er

Figure 6.4: Two top figures show spectrograms of channels #55 and #102, note
that the amplitude scale is logarithmic. The minimum power in time is found
by integrating over frequencies, showing a minimum power at 2.16s.

(channel #55) is located over the motor cortex and the other (channel #102)
is placed on the back of the head. Those channels were chosen because of the
location and relative high mu activity respectively. We locate the minimum
power in time by integrating over the frequencies which gives a measure of the
alpha band power over time. This is shown for both channels on the two bot-
tom graphs of figure 6.4. The minimum power turns out to be located at 2.16s.
A rather wide Hamming window was used to calculate the spectrogram as the
reduced time length of the power signals on figure 6.4 indicates. The width of
the window determines how much is cut of from the start (0s) and end points
(5.2s) of the time dimension.

Since the motor cortex activity is assumed to be linked with the mu rhythm
located in the alpha band the data is filtered. A band pass filter with pass band
edges at 8Hz and 13Hz is used to filter out all but the alpha rhythm of the EEG
signals. Figure 6.5 shows the frequency response of the filter used. In the pass

6.4 Results 103

0 10 20 30 40
−10

−5

0

5
x 10

−6

Frequency [Hz]

P
ha

se
 [d

eg
re

es
]

0 10 20 30 40
−150

−100

−50

0

50

M
ag

ni
tu

de
 [d

B
]

6 8 10 12 14 16
−100

−50

0

Figure 6.5: Frequency response of the filter used to extract the alpha band from
the EEG signals.

band the gain is 0dB and the phase is 0 thus avoiding phase shift in the filtered
signal. The filtered EEG signals are then used for the inverse calculations.

Now some quite extensive pre-processing of the data is finished and inverse
calculations can be done using Algorithm I. The time period from 2.08s to 2.24s
is chosen, i.e. around the 2.16s minimum value found using the spectrograms.
Maximum number of iterations for the algorithm are set to 150 and the stop
threshold at 10−3 making the number of iterations at each time instance vary
only between 10 and 30 iterations. α and β converge nicely at all time instances
and never go toward infinity. Figure 6.6 shows source estimates from Algorithm
I for two different time slices, both brains on the figure have the right side turn-
ing down. On both estimates the activity is stronger on the right side of the
brain and the one on the left has a clear maximum close to the center. Other
activity on the front and back sides of the brain may be related to visual pro-
cessing in the visual cortex and frontal lobe. Taking brain activity at a single
time slice like this is not conclusive. On figure 6.7 the average activity over the
time period from 2.08s to 2.24s is shown. Furthermore only activities larger than
80% of the largest activity strength are plotted, i.e. only the strongest activity
is shown over the time period. This figure shows strong activity on the right
side of the brain in the vicinity of the motor cortex. A strong pulse was also
detected on the left side of the frontal lobe far away from the motor cortex. It
was thus discarded in our analysis and is not shown on the figure. Some activity
on the back side of the brain is also visible on the figure which may be related

104 Real Data Testing

to visual processing. But our focus is on the activity near the motor cortex.

Figure 6.6: Algorithm I estimates at times 2.10s and 2.19s. Right sides are
more active at both times.

Figure 6.7: Averaged Algorithm I estimates over the period from 2.08s to 2.24s
with only the strongest activities shown. Strong activity is spotted on the right
motor cortex (the yellow pulse). Left frontal lobe pulse was discarded and not
plotted and some activity on the left half (blue pulse) of the brain can be seen,
these extra activities may be related to visual processing.

6.5 Summary 105

6.5 Summary

Using frequency analysis methods a decrease in the mu rhythm was located in
time. This decrease was believed to be related to the subjects motor imagery
on the right side of his body. A time window was chosen around this mini-
mum. Using Algorithm I motor cortex activity was detected on the right side
of the brain. This finding complies with the literature since motor imageries
decrease the mu rhythm on the side which controls the movement. In our case
this means that the mu rhythm is decreased on the left side and then stronger
cortical activity is detected on the right side. Algorithm IId was also tested on
the data but it did not converge very good at all time indices. At some time
indices where convergence was good frontal and right temporal lobe activities
were mainly detected.

Further work with this could be to try to detect a difference between the right
hand and right foot motor imageries, e.g. with respect to the location of the
strongest activity on the cortex. If that can be done in a robust way a classifier
could be constructed and tested on the whole dataset.

106 Real Data Testing

Chapter 7

Conclusion

A Bayesian approach was used to solve the ill-posed EEG inverse problem. The
likelihood distribution describing the noise was assumed Gaussian in all cases.
Three different prior distributions were used. First a simple Gaussian prior
distribution was assumed. Iterative update equations were derived and used
to formulate Algorithm I. This algorithm estimates the sources and two hyper-
parameters. The hyperparameters describe the variances of the likelihood and
prior. The update equations were shown to return non-negative hyperparam-
eters. SVD and some simple linear algebra was used to numerically improve
Algorithm I. This formulation is equivalent to a Tikhonov regularizer where the
regularization parameter would be chosen as the ratio of the hyperparameters.

Automatic relevance determination (ARD) was used to form a prior distribu-
tion which assumes a more sparse sources space. With the ARD prior each
source was assigned a hyperparameter, i.e. the sources are assumed indepen-
dent of each other. The hyperparameters therefore indicate the relevance of
their sources. The number of hyperparameters equals the number of sources
plus the likelihood hyperparameter. The same approach was taken as for Al-
gorithm I to derive update equations. These equations formulated Algorithm
II. The update equation for the prior hyperparameters was quite compact and
using some detailed algebra the numerical complexity of it was reduced exten-
sively, this included deriving an equation to find only the necessary diagonal
elements of the inverse Hessian matrix. The update equation was shown to re-

108 Conclusion

turn positive values. The author has not found this update equation elsewhere
in the literature. Algorithm II also involved an update equation for the likeli-
hood hyperparameter. This equation was shown to return non-negative values
but its estimates were not as good as the ones from Algorithm I. That was the
main reason for formulating Algorithm IIb. Algorithm IIb was constructed in
the same way as Algorithm II except the likelihood hyperparameter was esti-
mated using Algorithm I, improving the noise estimate. Algorithm IIc included
further improvements by reducing the number of prior hyperparameters and
their corresponding sources during iteration. This could be done since hyperpa-
rameters representing irrelevant sources approach infinity. The final variant of
Algorithm II, called Algorithm IId, included a low-pass filtering on the sources.
This low-pass filtering was based on the assumption that neighbouring sources
are more likely to be active than ones placed further away from each other. The
main reason for adding the low-pass filter was poor performance of Algorithm
II, IIb and IIc when using realistic forward models.

Finally an attempt was made to incorporate spatial smoothing into the prior
distribution. This involved some detailed calculations leading to overly complex
equations for the hyperparameters. Formulating update equations for them
where non-negativity would be guaranteed was not attempted. Instead this
prior assumption was only used to estimate the sources and the hyperparame-
ters were estimated in the same way as in Algorithm IIb. This mixture of ARD
and a smoothing prior formulated Algorithm III. Algorithm III had similar per-
formance as Algorithm IId but did not outperform it.

Simulations were done to evaluate the algorithms. For sources with distribution
close to being Gaussian Algorithm I could locate a localized increased activity
on a Gaussian floor. For well-posed systems Algorithm I estimated source and
noise variances perfectly. But for extremely low variances the estimates con-
verged to a constant value, most likely due to the finite numerical resolution
in computer calculations. For ill-posed systems the noise estimate got worse,
usually underestimating the noise. The source distribution variance was accu-
rately predicted for ill-posed systems. The condition number of the lead field
matrix did not have considerable effect on the algorithm. Algorithm II noise
estimate was generally worse than the noise estimate from Algorithm I, but for
reasonably good SNR and well-conditioned lead field matrix its source estimate
was good. With improved noise estimate in Algorithm IIb the performance got
better. By removing irrelevant sources during iteration in Algorithm IIc the cal-
culation time decreased but it was shown that one would have to be careful not
to choose too low threshold value which controlled the removal boundary. For
ill-conditioned realistic lead field matrices Algorithms II, IIb and IIc gave very
poor results. Algorithm IId did however give useful results by locating sources
but loosing a bit much of their volume. Algorithm III worked very much like
Algorithm IId but for reasonable SNR values Algorithm IId performed better.

7.1 Future Work 109

SNR was shown to have a great effect. For well-conditioned lead-field matri-
ces Algorithm IId gave the best results and below 0dB all algorithm estimates
soon became useless. For realistic ill-conditioned lead field matrices Algorithm
I however performed best in general and only Algorithms IId and III came close
to its performance. We can therefore confidently conclude that the use of Al-
gorithm I must be preferred over the more complex ones when analyzing real
EEG recordings. It is robust, converges much faster than the others and gives
good estimates even when the source distribution is far from being Gaussian.

Real EEG scalp recordings were analyzed. Dataset IVa from the BCI Com-
petition III was used and a selected time period around a single motor imagery
was chosen. Detailed pre-processing revealed a time index where right motor
cortex activity was expected. This activity was confirmed by solving the inverse
problem around the selected time using Algorithm I. Inverse calculations were
also done using Algorithm IId but its estimate was too sparse, only showing
frontal and temporal lobe activities which were also present in the estimate
from Algorithm I. Some real data testing was also presented in appendix D
where Algorithm I and IId both converged nicely. Their source estimates were
very similar with the Algorithm IId estimate being more sparse.

Overall we can summarize that different algorithms were derived using Bayes
theorem. The simplest one, Algorithm I, based on a Gaussian distribution of
the source space had the best performance for realistic forward models. The
more complex algorithms, based on ARD, gave far better results than Algo-
rithm I for well-conditioned artificial forward models. To justify their use on
ill-conditioned realistic forward models some additional constraints or simplifi-
cations are needed to improve their source estimates.

7.1 Future Work

The inverse EEG problem is vast and can be divided into many different parts.
An introduction to the forward modeling was presented in the thesis. That part
of the EEG problem is a research field on its own. Forward model improvements
naturally improve inverse methods. The Bayesian approach to the inverse prob-
lem has great potential and there are many ways the framework presented here
can be extended or tackled differently. Here a short list of ideas is therefore
presented.

The first thing one thinks of is including a time index into the forward model, as
shown in equation 3.12. This would allow temporal smoothing to be added to
the model and noise estimation for each channel. Some computational overhead

110 Conclusion

would be expected.

Well suited EEG recordings for the initial tests of the Algorithms were hard
to come by. Testing the ARD algorithms on averaged evoked potential (EP)
data would be of interest since background brain activity should be averaged
out.

Adding some kind of smoothing into Algorithm I should give an algorithm very
similar to the LORETA method, with the advantage of automatically determin-
ing the regularization parameter.

Anatomical information could be included by labeling the different areas of
the cortex. This could provide additional grouping of sources which could be
added to the prior distribution. Non-anatomical grouping, possibly overlapping,
could also be included into the prior to produce more localized estimates.

Algorithm I could be used to locate the most active areas of the cortex. That
way a subset of the source space could be labeled and Algorithm IId run on the
subspace, giving a more localized solution. A too simplified approach to this
was attempted when analyzing the BCI data. Only a single one of the most
active areas was labeled and strong pulses were left out. Algorithm IId did not
give good estimates when run on this subset.

Constricting the source grid to the cortical surface is a good approximation
since most of the activity measured by EEG is from the surface. Some activ-
ity is however in deeper areas in the brain and in studies focusing on them it
is necessary to expand the source space to 3D coordinates inside the cortical
tesselation surface.

Appendix A

Mathematical Appendix

Here some mathematical details are presented. Some sections give additional
information on topics which were mentioned in the main text without giving a
detailed discussion. Other sections provide the details of some tedious calcula-
tions which are used in some of the derivations in the thesis. The first section
lists the main mathematical symbols used throughout the text.

112 Mathematical Appendix

A.1 Nomenclature

Here the most common symbols from the text are listed.

r Point in space
rq Dipole location
q Current dipole
Jp(r) Impressed/primary current
Jv(r) Volume current
σ Conductivity
E(r) Electric field
δ(r) Dirac delta function
Gi Volume i
Si Surface bounding volume Gi
V (r) Potential at a certain point
V 1(r) Single sphere surface potential
VM (r) Multishell surface potential
m(r) Scalp potential
m Vector of scalp potentials
N Dimension of m

s Vector of dipole magnitudes
P Dimension of s

A Lead-field matrix (gain matrix)
N × P Dimensions of A

ǫ Noise vector
p(·) Probability distribution
α Prior distribution hyperparameter
β Likelihood distribution hyperparameter
Es Decay function
Em Error function
σ2
ǫ Noise variance
σ2
p(m|s) Likelihood variance

σ2
p(s) Prior variance

H Hessian matrix
h′kk k-th diagonal element of the inverse Hessian
I Identity matrix
Λ Diagonal matrix of hyperparameters
Γ Diagonal matrix of hyperparameters

A.2 MEG Forward Model 113

A.2 MEG Forward Model

Magnetoencephalography (MEG) is related measurement technique to EEG. It
measures the magnetic field, B(r), outside the head volume using multichan-
nel SQUID (superconducting quantum interference device) gradiometers. Same
methods as used for EEG are used when solving the MEG inverse problem. EEG
and MEG are complementary and often used together. For detailed review on
MEG see [15].

Here we start in the same way as in section 3.2, i.e we know that the total
current density at each point in the head volume can be divided into two com-
ponents

J(r) = Jp(r) + Jv(r),

where Jp(r) is the primary current and Jv(r) is the passive current. Studies deal
with frequencies below 100 Hz allowing the physics to be described by using the
quasi-static approximation of Maxwell’s equations [21]. That means that the
electric field can be expressed with a scalar potential

E(r) = −∇V (r)

and then the current can be written as

J(r) = Jp(r) − σ(r)∇V (r),

Now the current flow J(rq) at location rq can be related to the magnetic field
B(r) at location r through the Biot-Savart law

B(r) =
µ0

4π

∫

G

J(rq) ×
r − rq

|r − rq|3
dv. (A.1)

This equation can be rewritten using the identity

r − rq

|r − rq|3
= −∇

(

1

|r − rq|

)

giving

B(r) = −µ0

4π

∫

G

J(rq) ×∇
(

1

|r − rq|

)

dv. (A.2)

Now lets use equation 3.3 for the current density, giving

B(r) = −µ0

4π

∫

G

(Jp(rq) − σ(rq)∇V (rq)) ×∇
(

1

|r − rq|

)

dv

=
µ0

4π

∫

G

Jp(rq) ×
r − rq

|r − rq|3
dv +

µ0

4π

∫

G

σ(rq)∇V (rq) ×∇
(

1

|r − rq|

)

dv.

114 Mathematical Appendix

If we assume the head consists of different regions (brain,skull,scalp, etc.) of
uniform and isotropic conductances, σi, we can write

B(r) = B0(r) +
µ0

4π

∑

i

∫

Gi

σi(rq)∇V (rq) ×∇
(

1

|r − rq|

)

dv (A.3)

where primary magnetic field B0(r) is only related to the primary current Jp(rq)

B0(r) =
µ0

4π

∫

G

Jp(rq) ×
r − rq

|r − rq|3
dv. (A.4)

This equation can be transformed from a volume integral to a surface integral,
but first lets look at an identity needed to do so. We can write

∇×∇
(

V

|r − rq|

)

= 0 = ∇×
(

∇ V

|r − rq|
+ V∇ 1

|r − rq|

)

= −∇V ×∇ 1

|r − rq|
+ ∇×

(

V∇ 1

|r − rq|

)

which gives

∇V ×∇ 1

|r − rq|
= ∇×

(

V∇ 1

|r − rq|

)

.

Using this identity along with Stoke’s theorem on the integral in equation A.3
gives

∫

Gi

σi(rq)∇V ×∇
(

1

|r − rq|

)

dv =

∫

Gi

∇× V∇
(

1

|r − rq|

)

dv

= −
∫

Si

V∇
(

1

|r − rq|

)

× ds

where Si is the surface bounding volume Gi. Now using boundary conditions of
continuous voltages and currents on an interface between regions of conductiv-
ities σ′ and σ′′, i.e.

V ′ = V ′′ and σ′δV ′/δn = σ′′δV ′′/δn on Si,

we get

B(r) = B0(r) − µ0

4π

∑

i

∫

Si

(σ′ − σ′′)V (rq)∇
(

1

|r − rq|

)

× dsi (A.5)

where σ′ and σ′′ are the conductivities of the inner and outer sides of Si respec-
tively, as illustrated on figure 3.2. From here on we assume that dsi is directed
from the primed region to the double primed. And at the external boundary
σ′′ = 0 (i.e. the air conductivity). The equation above states that if we know

A.3 Derivative and Hessian of L(s) 115

the primary current distribution, Jp, and the potential, V , on all surfaces we
can calculate the magnetic field, B(r), at location r. In the case of MEG mea-
surements then r is placed outside of the head surface. This also shows that to
solve the MEG forward model the potentials on all surfaces have to be known,
i.e. one also has to solve the EEG forward model presented in section 3.2.

A.3 Derivative and Hessian of L(s)

A.3.1 Two Hyperparameters Case, L(s, α, β)

Here the calculations leading to equation 4.18 will be given in more detail. They
are straight forward but tedious.

The goal is to calculate the derivative

∂

∂s
L(s) =

∂

∂s

(

β

2
|m − As|2

)

+
∂

∂s

(α

2
|s|2
)

.

Lets first take a look at the second term on the right side. We get

∂

∂s

(α

2
|s|2
)

=
α

2

∂

∂s

P
∑

i=1

s2i

=
α

2









∂
∂s1

∑P
i=1 s

2
i

...
∂
∂sP

∑P
i=1 s

2
i









=
α

2







2s1
...

2s2P







= αs.

And then the more involved part of calculating the first derivative on the right.
Using the notation

A =







a11 . . . a1P

...
. . .

...
sN1 . . . aNP






, s =







s1
...
sP






, m =







m1

...
mN







116 Mathematical Appendix

and some basic algebra gives

∂
∂s

(

β
2 |m − As|2

)

= β
2
∂
∂s

(

∑N
n=1(mn − an1s1 − an2s2 − ...− anP sP)2

)

= β
2

















∂
∂s1

(

∑N
n=1(mn − an1s1 − an2s2 − ...− anpsP)2

)

∂
∂s2

(

∑N
n=1(mn − an1s1 − an2s2 − ...− anpsP)2

)

...
∂
∂sP

(

∑N
n=1(mn − an1s1 − an2s2 − ...− anpsP)2

)

















= −β











∑N
n=1(mn − an1s1 − an2s2 − ...− anpsP)an1

∑N
n=1(mn − an1s1 − an2s2 − ...− anpsP)an2

...
∑N
n=1(mn − an1s1 − an2s2 − ...− anpsP)anP











= −β











∑N
n=1mnan1 −

∑N
n=1 an1(an1s1 + ...+ anP sP)

∑N
n=1mnan2 −

∑N
n=1 an2(an1s1 + ...+ anP sP)

...
∑N
n=1mnanp −

∑N
n=1 anP (an1s1 + ...+ anP sP)











= −β











m1a11 +m2a21 + ...mNaN1

m1a12 +m2a22 + ...mNaN2

...
m1a1P +m2a2P + ...mNaNP











+

β











a11(a11s1 + ...+ a1P sP) + ...+ aN1(aN1s1 + ...+ aNP sP)
a12(a11s1 + ...+ a1P sP) + ...+ aN2(aN1s1 + ...+ aNP sP)

...
a1P (a11s1 + ...+ a1P sP) + ...+ aNP (aN1s1 + ...+ aNP sP)











= −β
(

mTA
)T

+ β







a11 · · · aN1

...
. . .

...
a1P · · · aNP













a11s1 + a12s2 + ...+ a1P sP
...

aN1s1 + aN2s2 + ...+ aNP sP







= −β(ATm − ATAs).

Now summing the two derivatives gives

∂

∂s
L(s) = −β(ATm − ATAs) + αs. (A.6)

We are also interested in the Hessian matrix of L(s). Lets take a look at the
value in line l = 1, .., P and row k = 1, .., P of the Hessian and call it hlk, i.e.

hlk =
∂2L(s)

∂sl∂sk
= β

∂2Em
∂sl∂sk

+ α
∂2Es
∂sl∂sk

A.3 Derivative and Hessian of L(s) 117

where
∂2

∂sl∂sk
Em = a1la1k + a2la2k + ...+ aNlaNk

and
∂2

∂sl∂sk
Es =

{

1 if l = k
0 if l 6= k

Rewriting this to matrices gives

H = βATA + αI. (A.7)

A.3.2 ARD Case, L(s,Λ, β)

Here we want to find the derivative of

L(s, α, β) =
β

2
|m − As|2 +

1

2
sTΛs.

where L(s, α, β) is given in equation 4.47. From above we have

∂

∂s

(

β

2
|m − As|2

)

= −β(ATm − ATAs).

Then lets look at the other derivate needed

∂

∂s

(

1

2
sTΛs

)

=
1

2

∂

∂s

P
∑

i=1

αis
2
i

=
1

2









∂
∂s1

∑P
i=1 αis

2
i

...
∂
∂sP

∑P
i=1 αis

2
i









=
1

2







2α1s1
...

2αP s
2
P







=







α1s1
...

αP s
2
P







= Λs.

So now we have
∂

∂s
L(s) = −β(ATm − ATAs) + Λs. (A.8)

118 Mathematical Appendix

A.4 Derivative of ln det(H)

In section 4.2.1 following derivative is needed

∂

∂αk
ln det(H).

where the Hessian matrix H is

H = βATA + Λ

Its calculations are a bit tedious and therefore listed here in appendix for the
interested reader. We can write

∂

∂αk
ln det(H) = Tr

(

H−1 ∂

∂αk
H

)

.

Lets first look at

∂

∂αk
H =

∂

∂αk

(

βATA + Λ
)

=
∂

∂αk
Λ (A.9)

which is a matrix with elements dij where

dij =

{

1 if i = j = k
0 otherwise

If we now write the inverse of the Hessian as

H−1 =











h′11 h′12 · · · h′1P
h′21 h′22 · · · h′2P
...

...
. . .

...
h′P1 h′P2 · · · h′PP











we get

H−1 ∂

∂αk
H =






0

h′1k
...

h′Pk

0







which is a P × P matrix with zeros elements everywhere except in the k-th
column. Then finally we can write

∂

∂αk
ln det(H) = Tr












0

h′1k
...

h′Pk

0













= h′kk. (A.10)

A.5 Algorithm II - Multiplicity of αk−new 119

A.5 Algorithm II - Multiplicity of αk−new

The update equation for hyperparameters αk−new in Algorithm II is

αk,new =
1

s2k + h′kk
.

In the main text it is shown that αk,new > 0. The equation was formulated
from the derivative of the log-likelihood given by equation 4.55, rewritten here
for clarity

∂

∂αk
ln p(m|Λ, β) =

1

2αk
− s2k

2
− h′kk

2
.

Now lets formulate the update equation in a multiplicative way and show that
the result is the same as before. We write

αk,new = αk + ξ
∂E

∂αk

where E = ln p(m|Λ, β). Then

αk,new = αk + ξ

(

1

2αk
− s2k

2
− h′kk

2

)

= αk − ξ

(

s2k + h′kk
2

− 1

2αk

)

put

ξ =
αk

(s2k + h′kk)/2

then

αk,new = αk − αk +
αk

((s2k + h′kk)/2)

1

2αk

=
1

s2k + h′kk
(A.11)

which is the same as the update from Algorithm II.

120 Mathematical Appendix

A.6 Framework for Hyperparameters αk and β

Here we continue with the work from section 4.3 and derive equations that form
a framework for hyperparameters αk (k = 1, ..., P) and β in the case of a smooth-
ing prior distribution. The equations derived here are similar to the ones from
the ARD formulation (section 4.2.1) but include some tedious summations which
are very impractical for computer implementation and more importantly formu-
lating update equations for αk (k = 1, ..., P) where non-negativity is guaranteed
is hard. These were the main reasons for not using them when formulating
Algorithm III, they are however presented here for the interested reader and
possible future use.

Gaussian expansion of L(s) around the most probable value sMP is used.

L(s) = L(sMP) +
1

2
(s − sMP)TH(s − sMP).

The Hessian matrix is

H = ∇∇L(s,Λ, β)

= βATA + ∇∇
(

−1

2

P
∑

i=1

(αi + ψi)s
2
i

)

= βATA + Γ (A.12)

and the posterior distribution and normalization constant can be written (equa-
tions 4.22 and 4.23)

p(s|m) =
1

Z∗
L

exp

(

−L(sMP) − 1

2
(s − sMP)TH(s − sMP)

)

Z∗
L = exp(−L(sMP))(2π)P/2 det(H)−1/2.

Now the hyperparameters need to be estimated with the best generalization in
mind as was done in section 4.1.1. To find the most probable values for αk
(k = 1, ..., P) and β we evaluate

p(α1, ...αP , β|m) =
p(m|α1, ...αP , β)p(α1, ...αP , β)

p(m)
(A.13)

assuming a flat non-informative hyperprior p(α1, ...αP , β). That way maximiz-
ing p(α1, ...αP , β|m) can be done by maximizing the evidence p(m|α1, ...αP , β).

A.6 Framework for Hyperparameters αk and β 121

Using ZL = Z∗
L along with previously derived identities gives gives

p(m|α1, ...αP , β) =

∫

p(m|s, α1, ...αP , β)p(s|α1, ...αP , β)ds

=

∫

p(m|s, β)p(s|α1, ...αP ds

=

(

2π

β

)−N/2 P
∏

i=1

(αi + ψi)
1/2 exp(−L(sMP)) det(H)−1/2.

The natural logarithm of the evidence is then

ln p(m|α1, ...αP , β) = −N
2

ln
2π

β
+

1

2

P
∑

i=1

ln(αi + ψi) − L(sMP) − 1

2
ln det(H).

(A.14)
An identity for β which maximizes the log-evidence becomes exactly the same
as derived in section 4.2.1 and given by equation 4.58.

Next an identity for αk which maximizes the log-evidence is derived. Remember
that each ψk is a function of a subset of the set containing all αi except αk, i.e.
α1, ..., αk−1, αk+1, ..., αP (or equivalently in set notation {α1, ..., αP }\{αk}). We
then find the derivatives of the three αk dependent terms of the log-evidence.
The first one is

∂

∂αk

(

1

2

P
∑

i=1

ln(αi + ψi)

)

=
1

2









1

αk + ψk
+

∑

all ψj(αk)
j 6=k

1

nk(αj + ψj(αk))









.

(A.15)
And the second one

∂

∂αk
L(sMP) =

∂

∂αk

(

β

2
|m − As|2 +

1

2
sTΓs

)

=
∂

∂αk

(

1

2

P
∑

i=1

(αi + ψi)s
2
i

)

=
1

2









s2k +
∑

all ψj(αk)
j 6=k

∂

∂αk
ψj(αk)s

2
j









=
1

2









s2k +
∑

all ψj(αk)
j 6=k

s2j
nk









. (A.16)

122 Mathematical Appendix

Finally the third term

∂

∂αk

1

2
ln det(H) =

1

2
Tr

(

H−1 ∂

∂αk
H

)

where

∂

∂αk
H =

∂

∂αk

(

βATA + Γ
)

=
∂

∂αk
Γ

=
∂

∂αk









α1 + ψi 0
. . .

0 αP + ψP









≡ D

which is a diagonal matrix with elements dii where

dii =







1 if i = k
0 if i 6= k and ψ depends on αk
1
nk

if i 6= k and ψ not depends on αk)

Let h′ij be the elements of the inverse Hessian matrix H−1, then

1

2
Tr

(

H−1 ∂

∂αk
H

)

=
1

2









h′kk +
∑

all ψj(αk)
j 6=k

h′jj
nj









.

Taking all three terms together then gives

∂
∂αk

ln p(m|α1, ...αP , β) =

1
2

(

1
αk+ψk

− s2k − h′kk +
∑

all ψj(αk)
j 6=k

(

1
nk(αj−ψ(αk)) −

s2j
nk

− h′

jj

nj

)

)

. (A.17)

The resemblance to equation 4.55 in the ARD framework from section 4.2.1 is
obvious but finding the maximum by setting it equal to zero and formulating
an update equation where non-negativity of αk is maintained is not straight
forward here.

A.7 Fourier Transform 123

A.7 Fourier Transform

In chapter 6.1 the pre-processing of the data involves some spectral analysis
methods where the signals are warped into the frequency domain. Here the
definition of these methods are presented. For further details on these and
related methods a book by Mitra [37] can be recommended.

Discrete Fourier Transform (DFT)

Let x(n) be a discrete finite length sequence where 0 ≤ n ≤ N − 1. In the
context of this thesis the signal x(n) could represent a measured EEG channel
voltage sampled in time. The discrete Fourier transform (DFT) XDFT (k) of the
signal is then defined:

XDFT (k) =
N−1
∑

n=0

x(n)e−j2πkn/N , 0 ≤ k ≤ N − 1 (A.18)

where XDFT (k) is uniformly sampled on the ω-axis between 0 ≤ ω ≤ 2π at
ω = 2πk/N . XDFT (k) is therefore a finite length sequence in the frequency
domain of length N. Computer calculation of the DFT is generally obtained
using an algorithm called fast Fourier transform (FFT).

Spectrogram

The spectrogram, also know as the short-time Fourier transform (STFT), of a
finite length sequence x(n) is defined

XSTFT (k, n) =
R−1
∑

m=0

x(n−m)w(m)e−j2πkm/N , 0 ≤ k ≤ N − 1 (A.19)

where w(m) is a suitably chosen window function over the range 0 ≤ m ≤
R − 1 and N ≥ R. The spectrogram XSTFT (k, n) is therefore a function of
two variables namely the discrete time indices n and discrete equally spaced
frequencies ωk = 2πk/N .

124 Mathematical Appendix

Appendix B

Proposed Matlab
Implementations

Here are listed the Matlab implementations of the algorithms from the thesis
which were used for simulations and testing in chapters 5 and 6.

B.1 Algorithm I

1 function OUTPUT = algor i thmI (m,A, eps i l on , use_svd , maxIt , i n i tVa l ,
svdF i l e)

2 % OUTPUT = linearInverse (m,A,epsilon ,use_svd ,maxIt ,initVal ,svdFile)

3 % OUTPUT = linearInverse (m,A,epsilon ,use_svd ,maxIt ,initVal)

4 % OUTPUT = linearInverse (m,A,epsilon ,use_svd ,maxIt)

5 % OUTPUT = linearInverse (m,A,epsilon ,use_svd)

6 % OUTPUT = linearInverse (m,A,epsilon)

7 %

8 % INPUPS:

9 % m (N x 1 vector) - measured signals

10 % A (N x p matrix) - gain matrix

11 % epsilon - hyperparameter stop threshold

12 % use_svd - svd on/off

13 % maxIt - maximum number of iterations

14 % initVal - initial values of alpha and beta

15 % svdFile - file containing the SVD results for A

16 % OUTPUT: structure containing

126 Proposed Matlab Implementations

17 % alpha , beta - vectors showing convergence of hyperparameters

18 % sMP - vector with most probable s over iterations

19 %

20 % ---

21 % Author: Thorsteinn Mar Arinbjarnarson

22 % Created: 1/3 2007

23 % Changes: 9/3 2007 - rewritten to reduce memory need

24 % 7/4 2007 - svd(A,’econ ’) used instead of svd(A)

25 % 4/7 2007 - alpha and beta intialized to 1

26 % 31/7 2007 - pre -allocate memory

27 %

28 % Algoritm I

29 % Based on the Bayesian formulation of the linear

30 % inverse problem from my MSc thesis.

31 % With use_svd =0 the equations are implemented "directly"

32 % so the algorithm crashes for large systems (out of memory).

33 % With use_svd =1 singular value decomposition is used

34 % along with some additional tricks to minimize memory

35 % usage and speed up the calculations.

36 % ---

37 if nargin < 4
38 use_svd = 0 ;
39 maxIt = 100 ;
40 elseif nargin < 5
41 maxIt = 100 ; % default number of iterations

42 end

43
44 if nargin ~=6
45 alpha = 1 ; %rand;
46 beta = 1 ; %1e-1 * rand;

47 else

48 if length (i n i tVa l)==2
49 alpha = in i tVa l (1) ;
50 beta = in i tVa l (2) ;
51 else

52 alpha = 1 ; %rand;
53 beta = 1 ; %1e-1 * rand;

54 end

55 end

56 stop = 0 ;
57 i = 1 ;
58 [N, p] = size (A) ;
59
60 % pre -allocate memory

61 alpha_old = zeros (1 , maxIt+1) ;
62 beta_old = zeros (1 , maxIt+1) ;
63 sMP = zeros (p , maxIt) ;
64
65 alpha_old (i) = alpha ;
66 beta_old (i) = beta ;
67 if use_svd
68 tic

69 disp (’ S t a r t i ng ␣SVD␣ f o r ␣ a lg . ␣ I . . . ’)
70 AAT = A∗A’ ;
71 eigATA = eig (AAT) ; % eig(A’*A) = eig(A*A’)

B.1 Algorithm I 127

72 clear AAT
73 if nargin == 7
74 disp (’ . . . ␣ l oad ing ␣SVD␣from␣ f i l e ␣ . . . ’)
75 load (svdF i l e) ;
76 else

77 disp (’ . . . ␣ running ␣SVD␣ algor i thm␣ . . . ’)
78 [U,D,V] = svd (A, ’ econ ’) ;
79 end

80 diagDTD = diag (D) .^2 ;
81 DTUTm = D’∗U’∗m;
82 clear U D
83 toc

84 disp (’Done ! ! ! ’)
85 end

86
87 tic

88 disp (’ S t a r t i ng ␣ a lgor i thm␣ I ␣ i t e r a t i o n ␣ loop . . . ’)
89 while (~ stop)
90 i = i + 1 ;
91 if use_svd
92 d = diagDTD + (alpha/beta) ;
93 dInv = 1 ./d ;
94 clear d ;
95 idx = 1 : length (dInv) ;
96 dInv = sparse (idx , idx , dInv) ;
97 clear idx ;
98 tmpVal = dInv∗DTUTm;
99 sMP(: , i −1) = V∗tmpVal ;
100 clear dInv tmpVal
101 lambda = beta∗eigATA ;
102 else

103 sMP(: , i −1) = inv (A’∗A + alpha/beta ∗ eye (p)) ∗ A’ ∗ m;
104 lambda = eig (beta∗A’∗A) ;
105 end

106 gma = sum (lambda . / (lambda + alpha)) ;
107 Es = sum (sMP(: , i −1) .^2) /2 ;
108 Em = sum ((m−A∗sMP(: , i −1)) .^2) /2 ;
109 alpha = gma/(2∗Es) ;
110 beta = (N−gma) /(2∗Em) ;
111 alpha_old (i) = alpha ;
112 beta_old (i) = beta ;
113 diff = max ([abs (alpha_old (i)−alpha_old (i −1)) . . .
114 abs (beta_old (i)−beta_old (i −1))]) ;
115 if (diff<ep s i l o n | | i>maxIt) % stop criterion on

hyperparameters

116 stop = 1 ;
117 toc

118 disp (’Done ! ! ! ’)
119 end

120 end

121
122 OUTPUT. alpha = alpha_old (: , 1 : i) ; clear alpha_old
123 OUTPUT. beta = beta_old (: , 1 : i) ; clear beta_old
124 OUTPUT.sMP = sMP(: , 1 : i −1) ; clear sMP

128 Proposed Matlab Implementations

B.2 Algorithm II

1 function OUTPUT = a lgo r i thmI I (m,A, eps i l on , use_kv , maxIt , i n i tVa l)
2 % OUTPUT = algorithmII(m,A,epsilon ,use_kv ,maxIt ,initVal)

3 % OUTPUT = algorithmII(m,A,epsilon ,use_kv ,maxIt)

4 % OUTPUT = algorithmII(m,A,epsilon ,use_kv)

5 % OUTPUT = algorithmII(m,A,epsilon)

6 %

7 % INPUPS:

8 % m (N x 1 vector) - measured signals

9 % A (N x p matrix) - gain matrix

10 % epsilon - hyperparameter stop threshold , if negative

11 % use maxIt

12 % use_kv - Kailath Variant usage on/off

13 % maxIt - maximum number of iterations

14 % initVal - structure with initial values of alpha and

15 % beta (initVal.beta and initVal.beta)

16 % OUTPUT: structure containing

17 % alpha , beta - vectors showing convergence of hyperparameters

18 % sMP - vector with most probable s over iterations

19 %

20 % ---

21 % Author : Thorsteinn Mar Arinbjarnarson (MSc project - IMM/DTU)

22 % Created : 22/3 2007

23 % Modified: 29/3 2007 Kailath Variant used to improve algorithm

24 % 30/3 2007 beta update formula changed

25 % 3/4 2007 upper limit on beta set to 1e3*1/std(m)^2 and

26 % convergence criterion based on the min

27 % alpha value

28 % 27/4 2007 convergence criterion same as in algIIb ,

29 %

30 % Algoritm II

31 % Based on the ARD Bayesian formulation of the linear

32 % inverse problem from my MSc thesis.

33 % ---

34 disp (’ S t a r t i ng ␣ a lgor i thm␣ I I . . . ’)
35 if nargin < 4
36 use_kv = 0 ;
37 maxIt = 100 ;
38 elseif nargin < 5
39 maxIt = 100 ; % default number of iterations

40 end

41
42 [N, p] = size (A) ;
43
44 if nargin ~=6
45 dAlpha = rand (p , 1) ; % diagonal of the alpha matrix

46 sBeta = 1e−1 ∗ rand ; % scalar beta value

47 else

48 dAlpha = in i tVa l . alpha ;
49 sBeta = in i tVa l . beta ;
50 end

51 stop = 0 ;
52 i = 1 ;

B.2 Algorithm II 129

53 dAlpha_old (: , i) = dAlpha ;
54 sBeta_old (i) = sBeta ;
55
56 maxBeta = 1e3 ∗1/ std (m) ^2;
57 maxAlpha = 10 e6 ;
58
59 if ~use_kv
60 AtA = A’∗A;
61 end

62
63 disp (’ ␣␣ S ta r t i ng ␣Lambda␣and␣beta ␣ i t e r a t i o n ␣ loop . . . ’)
64 wh = waitbar (0 , ’ Running␣ a lgor i thm ’) ;
65 while (~ stop)
66 i = i + 1 ;
67 if use_kv
68 idx = 1 : length (dAlpha) ;
69 dInv = 1 ./ dAlpha ;
70 invLambda = sparse (idx , idx , dInv) ;
71 invNN = inv (speye (N) . / sBeta+A∗ invLambda∗A’) ;
72 clear idx dInv
73 T = (1/ sBeta) ∗ invLambda∗A’∗ invNN ;
74 sMP(: , i −1)=sBeta∗T∗m;
75 t r = sum (sum (sBeta∗T.∗A’ , 2)) ; % trace

76 clear T invLambda
77 Em = sum ((m−A∗sMP(: , i −1)) .^2) /2 ;
78 sBeta = (N−t r) /(2∗Em) ;
79 % sBeta = N /(2*Em+tr*(1/ sBeta));

80 if sBeta > maxBeta
81 sBeta = maxBeta ;
82 end

83 clear Em tr
84 hm_kk = calcHessDiag (A, invNN , dAlpha) ;
85 clear invNN
86 dAlpha = 1 . / (sMP(: , i −1).^2+hm_kk) ;
87 clear hm_kk
88 else

89 invHess = inv (sBeta∗AtA + sparse (diag (dAlpha))) ;
90 sMP(: , i −1) = (sBeta∗ invHess) ∗ A’ ∗ m;
91 Em = sum ((m−A∗sMP(: , i −1)) .^2) /2 ;
92 %tr = trace(invHess*AtA);

93 t r = trace (sBeta∗ invHess ∗AtA) ;
94 sBeta = (N−t r) /(2∗Em) ;
95 hm_kk = diag (invHess) ;
96 dAlpha = 1 . / (sMP(: , i −1).^2+hm_kk) ;
97 end

98
99 dAlpha_old (: , i) = dAlpha ;
100 sBeta_old (i) = sBeta ;
101
102 if ((i −2)−5 > 0) % at least 5 iterations!

103 idx = find (dAlpha_old (: , i)<maxAlpha) ;
104 diff = max (abs (dAlpha_old (idx , i)−dAlpha_old (idx , i −1))) ;
105 clear idx
106 else

107 diff = ep s i l o n +1;

130 Proposed Matlab Implementations

108 end

109 if eps i l on <0
110 stopCond = (i>maxIt) ;
111 else

112 stopCond = (diff<ep s i l o n | | i>maxIt (1)) ;
113 end

114 if stopCond
115 stop = 1 ;
116 disp (’Done ! ! ! ’)
117 end

118 wbRefresh (i −1, maxIt (1) ,wh)
119 end

120
121 OUTPUT. alpha = dAlpha_old ;
122 OUTPUT. beta = sBeta_old ;
123 OUTPUT.sMP = sMP;
124 close (wh)
125
126 % Sub -function to refresh waitbar

127 function wbRefresh (i t , max , handle)
128 set (handle , ’Name ’ , [num2str (i t) ’ ␣ i t e r a t i o n s ␣ o f ␣max␣ ’ num2str (max)])
129 r a t i o = i t /max ;
130 waitbar (r a t i o , handle)
131
132 % Sub -function to calculate only the diagonal

133 % elements of the hessian inverse matrix.

134 %

135 % Inputs:

136 % A - Gain matrix (N x p)

137 % invHH - matrix (N x N), i.e. inv(1/ beta*I+A*invLambda*A’)

138 % diagL - diagonal elements of Lambda (p x 1)

139 function h = calcHessDiag (AA,NN, diagL)
140 h = sum (AA’∗NN.∗AA’ , 2) ;
141 h = (1 . / diagL) .∗ (1 − h . / diagL) ;

B.3 Algorithm IIb 131

B.3 Algorithm IIb

1 function OUTPUT = algor i thmI Ib (m,A, eps i l on , use_kv , maxIt ,mag)
2 % OUTPUT = algorithmIIb(m,A,epsilon ,use_kv ,maxIt ,mag)

3 % OUTPUT = algorithmIIb(m,A,epsilon ,use_kv ,maxIt)

4 % OUTPUT = algorithmIIb(m,A,epsilon ,use_kv)

5 % OUTPUT = algorithmIIb(m,A,epsilon)

6 %

7 % INPUPS:

8 % m (N x 1 vector) - measured signals

9 % A (N x p matrix) - gain matrix

10 % epsilon - hyperparameter stop threshold , epsilon (1)

11 % for algI/beta and epsilon (2) for

12 % Lambda/algII

13 % if epsilon (2) <0 use maximum iterations

14 % use_kv - Kailath Variant usage on/off

15 % maxIt - maximum number of iterations ,

16 % can be a vector

17 % specifying for algI also

18 % mag - multiplication parameter for the max

19 % alpha value

20 % OUTPUT: structure containing

21 % alpha , beta - vectors showing convergence of hyperparameters

22 % sMP - vector with most probable s over iterations

23 %

24 % ---

25 % Author : Thorsteinn Mar Arinbjarnarson (MSc project - IMM/DTU)

26 % Created : 2/4 2007

27 % Modified: 23/4 2007 max values on alpha and beta ,

28 % convergence criterion changed

29 % 26/4 2007 subfunction h = calcHessDiag(AA ,NN ,diagL)

30 % rewritten

31 % 3/7 2007 ’initVal ’ and ’svdFile ’ inputs removed and

32 % ’mag ’ input added instead

33 %

34 % Algoritm IIb

35 % Based on the ARD formulation of the linear

36 % inverse problem from my MSc thesis.

37 % Uses algortihm I to find beta , then using this beta

38 % values goes on to use algorithm II to find the

39 % diagonal matrix of alpha values.

40 % Note that the number of iterations for beta and alpha

41 % are therefore not necessarily the same.

42 % ---

43 disp (’ S t a r t i ng ␣ a lgor i thm␣ I Ib . . . ’)
44 if nargin < 4
45 use_kv = 0 ;
46 maxIt = 100 ;
47 elseif nargin < 5
48 maxIt = 100 ; % default number of iterations

49 end

50
51 [N, p] = size (A) ;
52

132 Proposed Matlab Implementations

53 if nargin < 6
54 mag = 100 ; % default value

55 end

56
57 if length (e p s i l o n) > 1
58 epsAlgI = ep s i l o n (1) ;
59 epsAlg I I = ep s i l o n (2) ;
60 elseif length (e p s i l o n) == 1
61 epsAlgI = ep s i l o n ;
62 epsAlg I I = ep s i l o n ;
63 end

64
65 dAlpha = rand (p , 1) ; % diagonal of the Lambda matrix init

66 algI_out = a lgor i thmI (m,A, epsAlgI , 1 , maxIt (1)) ;
67 sBeta = algI_out . beta (end) ; % scalar beta value

68 maxAlpha = algI_out . alpha (end) ∗mag ; % Set max alpha value ("

infinity ")

69
70 if length (maxIt)==2
71 maxIt (1) = maxIt (2) ;
72 end

73
74 % max sBeta criterion , same as is used in algorithm II

75 if sBeta > 1e3 ∗1/std (m)^2
76 sBeta = 1e3 ∗1/ std (m) ^2;
77 algI_out . beta (end) = sBeta ;
78 end

79 OUTPUT. beta = algI_out . beta ;
80
81 clear epsAlgI algI_out
82 stop = 0 ;
83 i = 1 ;
84 dAlpha_old (: , i) = dAlpha ;
85
86 if ~use_kv
87 AtA = A’∗A;
88 end

89
90 tic

91 disp (’ ␣␣ S ta r t i ng ␣Lambda␣ i t e r a t i o n ␣ loop . . . ’)
92 wh = waitbar (0 , ’ ␣␣Running␣ a lgor i thm ’) ;
93 while (~ stop)
94 i = i + 1 ;
95 if use_kv
96 idx = 1 : length (dAlpha) ;
97 dInv = 1 ./ dAlpha ;
98 invLambda = sparse (idx , idx , dInv) ;
99 invNN = inv (speye (N) . / sBeta+A∗ invLambda∗A’) ;

100 clear idx dInv
101 T = (1/ sBeta) ∗ invLambda∗A’∗ invNN ;
102 sMP(: , i −1)=sBeta∗T∗m;
103 clear T invLambda
104 hm_kk = calcHessDiag (A, invNN , dAlpha) ;
105 clear invNN
106 dAlpha = 1 . / (sMP(: , i −1).^2+hm_kk) ;

B.3 Algorithm IIb 133

107 clear hm_kk
108
109 % Check if max alpha value exceeded

110 idx = find (dAlpha>maxAlpha) ;
111 dAlpha (idx) = maxAlpha ;
112 clear idx
113 else

114 invHess = inv (sBeta∗AtA + sparse (diag (dAlpha))) ;
115 sMP(: , i −1) = (sBeta∗ invHess) ∗ A’ ∗ m;
116 hm_kk = diag (invHess) ;
117 dAlpha = 1 . / (sMP(: , i −1).^2+hm_kk) ;
118 end

119
120 dAlpha_old (: , i) = dAlpha ;
121
122 if ((i −2)−5 > 0) % at least 5 iterations!

123 idx = find (dAlpha_old (: , i)<maxAlpha) ;
124 diff = max (abs (dAlpha_old (idx , i)−dAlpha_old (idx , i −1))) ;
125 clear idx
126 else

127 diff = epsAlg I I +1;
128 end

129 if epsAlgII <0
130 stopCond = (i>maxIt (1)) ;
131 else

132 stopCond = (diff<epsAlg I I | | i>maxIt (1)) ;
133 end

134 if stopCond
135 stop = 1 ;
136 toc

137 disp (’Done ! ! ! ’)
138 end

139 wbRefresh (i −1, maxIt (1) ,wh)
140 end

141
142 OUTPUT. alpha = dAlpha_old ;
143 OUTPUT.sMP = sMP;
144 close (wh)
145
146 % Sub -function to refresh waitbar

147 function wbRefresh (i t , max , handle)
148 set (handle , ’Name ’ , [num2str (i t) ’ ␣ i t e r a t i o n s ␣ o f ␣max␣ ’ num2str (max)])
149 r a t i o = i t /max ;
150 waitbar (r a t i o , handle)
151
152 % Sub -function to calculate only the diagonal

153 % elements of the hessian inverse matrix.

154 %

155 % Inputs:

156 % A - Gain matrix (Nxp)

157 % invHH - matrix (NxN), i.e. inv (1/ beta*I+A*invLambda*A’)

158 % diagL - diagonal elements of Lambda (px1)

159 function h = calcHessDiag (AA,NN, diagL)
160 h = sum (AA’∗NN.∗AA’ , 2) ; % tkk

161 h = (1 . / diagL) .∗ (1 − h . / diagL) ;

134 Proposed Matlab Implementations

B.4 Algorithm IIc

1 function OUTPUT = a lgo r i t hmI I c (m,A, eps i l on , use_kv , maxIt ,mag)
2 % OUTPUT = algorithmIIc(m,A,epsilon ,use_kv ,maxIt ,mag)

3 % OUTPUT = algorithmIIc(m,A,epsilon ,use_kv ,maxIt)

4 % OUTPUT = algorithmIIc(m,A,epsilon ,use_kv)

5 % OUTPUT = algorithmIIc(m,A,epsilon)

6 %

7 % INPUPS:

8 % m (N x 1 vector) - measured signals

9 % A (N x p matrix) - gain matrix

10 % epsilon - hyperparameter stop threshold , epsilon (1)

11 % for algI/beta and epsilon (2) for

12 % Lambda/algII

13 % if epsilon (2) <0 use maximum iterations

14 % use_kv - Kailath Variant usage on/off

15 % NOTE: use_kv == 0 no longer supported

16 % maxIt - maximum number of iterations , can be a

17 % vector specifying for algI also

18 % mag - multiplication parameter for the max

19 % alpha value

20 % OUTPUT: structure containing

21 % alpha , beta - vectors showing convergence of hyperparameters

22 % sMP - vector with most probable s over iterations

23 % pv - vector with active sets over iterations

24 %

25 % ---

26 % Author : Thorsteinn Mar Arinbjarnarson (MSc project - IMM/DTU)

27 % Created : 1/5 2007

28 % Modified: 10/5 2007 - SVD and initVal inputs removed and

29 % mag input , which

30 % scales the maxAlpha value , added.

31 %

32 % Algoritm IIc

33 % Same as algorithm IIb but active set feature added ,

34 % meaning that inactive sets , where alpha_k

35 % has reached the maximum value , are removed from the model

36 % speeding up the calculations.

37 % ---

38
39 disp (’ S t a r t i ng ␣ a lgor i thm␣ I I c . . . ’)
40 if nargin < 4
41 use_kv = 0 ;
42 maxIt = 100 ;
43 elseif nargin < 5
44 maxIt = 100 ; % default number of iterations

45 end

46
47 [N, p] = size (A) ;

B.4 Algorithm IIc 135

48 p_true = p ;
49
50 if nargin < 6
51 mag = 100 ; % default value

52 end

53
54 if length (e p s i l o n) > 1
55 epsAlgI = ep s i l o n (1) ;
56 epsAlg I I = ep s i l o n (2) ;
57 elseif length (e p s i l o n) == 1
58 epsAlgI = ep s i l o n ;
59 epsAlg I I = ep s i l o n ;
60 end

61
62 dAlpha = rand (p , 1) ; % diagonal of the Lambda matrix init

63 %dAlpha = ones(p,1);

64 algI_out = a lgor i thmI (m,A, epsAlgI , 1 , maxIt (1)) ;
65 sBeta = algI_out . beta (end) ; % scalar beta value

66 maxAlpha = algI_out . alpha (end) ∗mag ; % Set max alpha value ("

infinity ")

67
68 beta_out = algI_out . beta ;
69 clear algI_out
70
71 if length (maxIt)==2
72 maxIt (1) = maxIt (2) ;
73 end

74
75 % max sBeta criterion , same as is used in algorithm II

76 if sBeta > 1e3 ∗1/ std (m)^2
77 sBeta = 1e3 ∗1/ std (m) ^2;
78 end

79
80 clear epsAlgI mag
81 stop = 0 ;
82 i = 1 ;
83 dAlphaE (: , i) = dAlpha ;
84 pv (i) = p ;
85
86 % if ~use_kv % Not supported anymore

87 % AtA = A’*A;

88 % end

89
90 tic

91 disp (’ ␣␣ S ta r t i ng ␣Lambda␣ i t e r a t i o n ␣ loop . . . ’)
92 wh = waitbar (0 , ’ ␣␣Running␣ a lgor i thm ’) ;
93 a c t i v e = 1 : p ; % vector that keeps track of active classes

94 while (~ stop)
95 i = i + 1 ;
96 if 1%use_kv
97 idx = 1 : length (dAlpha) ;
98 dInv = 1 ./ dAlpha ;
99 invLambda = sparse (idx , idx , dInv) ;
100 invNN = inv (speye (N) . / sBeta+A∗ invLambda∗A’) ;
101 clear idx dInv

136 Proposed Matlab Implementations

102 T = (1/ sBeta) ∗ invLambda∗A’∗ invNN ;
103 sMP=sBeta∗T∗m;
104 clear T invLambda
105 hm_kk = calcHessDiag (A, invNN , dAlpha) ;
106 clear invNN
107 dAlpha = 1 . / (sMP.^2+hm_kk) ;
108 clear hm_kk
109
110 % Check if max alpha value exceeded

111 k = find (dAlpha>=maxAlpha) ;
112 dAlpha (k) = maxAlpha ;
113 if length (k)>0
114 % Romove inactive sets.

115 % First some book keeping

116 for j =1:length (k)
117 idx = find (a c t i v e==k(j)) ;
118 a c t i v e (idx) = 0 ;
119 end

120 idx = find (a c t i v e==0) ;
121 for j =1:length (idx)
122 a c t i v e (idx (j) : end) = ac t i v e (idx (j) : end)−1;
123 end

124 % Now remove sources from model

125 % (i.e. reduce A, s and dAlpha)

126 idx = 1 : k (1)−1;
127 for j =1:length (k)−1 % create index vector for the

indices to keep

128 idx = [idx k (j)+1:k (j +1)−1];
129 end

130 idx = [idx k (end)+1:p] ;
131 % Remove from model

132 sMP = sMP(idx) ;
133 dAlpha = dAlpha (idx) ;
134 A = A(: , idx) ;
135 p = p−length (k) ;
136 end

137 % Expand model again for storing

138 idx = find (ac t ive >0) ;
139 sMPe (: , i −1) = zeros (p_true , 1) ;
140 sMPe(idx , i −1) = sMP;
141 dAlphaE (: , i) = repmat (maxAlpha , p_true , 1) ;
142 dAlphaE (idx , i) = dAlpha ;
143 pv (i) = p ;
144 clear k idx
145 else % Not supported anymore!

146 invHess = inv (sBeta∗AtA + sparse (diag (dAlpha))) ;
147 sMP(: , i −1) = (sBeta∗ invHess) ∗ A’ ∗ m;
148 hm_kk = diag (invHess) ;
149 dAlpha = 1 . / (sMP(: , i −1).^2+hm_kk) ;
150 end

151
152 if ((i −2)−5 > 0) % at least 5 iterations!

153 idx = find (dAlphaE (: , i)<maxAlpha) ;
154 diff = max (abs (dAlphaE(idx , i)−dAlphaE(idx , i −1))) ;
155 clear idx

B.4 Algorithm IIc 137

156 else

157 diff = epsAlg I I +1;
158 end

159 if epsAlgII <0
160 stopCond = (i>maxIt (1)) ;
161 else

162 stopCond = (diff<epsAlg I I | | i>maxIt (1)) ;
163 end

164 if stopCond
165 stop = 1 ;
166 toc

167 disp (’Done ! ! ! ’)
168 end

169 wbRefresh (i −1, maxIt (1) ,wh)
170 end

171
172 OUTPUT. alpha = dAlphaE ;
173 OUTPUT. beta = beta_out ;
174 OUTPUT.sMP = sMPe ;
175 OUTPUT. pv = pv ;
176 close (wh)
177
178 % Sub -function to refresh waitbar

179 function wbRefresh (i t , max , handle)
180 set (handle , ’Name ’ , [num2str (i t) ’ ␣ i t e r a t i o n s ␣ o f ␣max␣ ’ num2str (max)])
181 r a t i o = i t /max ;
182 waitbar (r a t i o , handle)
183
184 % Sub -function to calculate only the diagonal

185 % elements of the hessian inverse matrix.

186 %

187 % Inputs:

188 % A - Gain matrix (Nxp)

189 % invHH - matrix (NxN), i.e. inv (1/ beta*I+A*invLambda*A’)

190 % diagL - diagonal elements of Lambda (px1)

191 function h = calcHessDiag (AA,NN, diagL)
192 h = sum (AA’∗NN.∗AA’ , 2) ; % tkk

193 h = (1 . / diagL) .∗ (1 − h . / diagL) ;

138 Proposed Matlab Implementations

B.5 Algorithm IId

1 function OUTPUT = algor i thmI Id (m,A, eps i l on , maxIt , con , q ,mag , i r r I d c s)
2 % OUTPUT = algorithmIId(m,A,epsilon ,maxIt ,con ,q,mag ,irrIdcs)

3 % OUTPUT = algorithmIId(m,A,epsilon ,maxIt ,con ,q,mag)

4 %

5 % INPUPS:

6 % m (N x 1 vector) - EEG signals

7 % A (N x p matrix) - gain matrix (lead field matrix)

8 % epsilon - hyperparameter stop threshold , epsilon (1)

9 % for algI/beta and epsilon (2) for

10 % Lambda/algII if epsilon (2) <0 use maximum

11 % iterations

12 % maxIt - maximum number of iterations ,

13 % can be a vector

14 % specifying for algI also

15 % con - connectivity of sources , used for low pass

16 % filtering

17 % q - q factor for avg filter

18 % mag - multiplication factor for max alpha value

19 % irrIdcs - indices to non -relevant alpha ’s which are

20 % forced to infinity

21 % OUTPUT: structure containing

22 % dAlpha , beta - matrix and vector showing convergence of

23 % hyperparameters

24 % sMP - matrix with most probable s over iterations

25 % pv - vector with active sets over iterations

26 %

27 % ---

28 % Author : Thorsteinn Mar Arinbjarnarson (MSc project - IMM/DTU)

29 % Created : 15/5 2007

30 % Modified: 28/6 2007 ’q’ added to inputs and connectivity support

31 % for 2D tests

32 % 13/7 2007 ’irrIdcs ’ input added , specifies indices to

33 % non -relevant alpha ’s that are set to infinity

34 % 27/7 2007 use active sets to reduce computation time

35 %

36 % Algoritm IId

37 % Based on algorithm IIb with LP filtering on sMP during

38 % iteration (averaging window).

39 % ---

40 disp (’ S t a r t i ng ␣ a lgor i thm␣ I Id . . . ’)
41
42 [N, p] = size (A) ;
43 p_true = p ;
44
45 if nargin < 7
46 mag = 100 ; % default value

47 end

48
49 if length (e p s i l o n) > 1
50 epsAlgI = ep s i l o n (1) ;
51 epsAlg I I = ep s i l o n (2) ;
52 elseif length (e p s i l o n) == 1

B.5 Algorithm IId 139

53 epsAlgI = ep s i l o n ;
54 epsAlg I I = ep s i l o n ;
55 end

56
57 dAlpha = rand (p , 1) ; % diagonal of the Lambda matrix init

58 algI_out = a lgor i thmI (m,A, epsAlgI , 1 , maxIt (1)) ;
59 sBeta = algI_out . beta (end) ; % scalar beta value

60 maxAlpha = algI_out . alpha (end) ∗mag ; % Set max alpha value ("

infinity ")

61
62 if length (maxIt)==2
63 maxIt (1) = maxIt (2) ;
64 end

65
66 % max sBeta criterion , same as is used in algorithm II

67 if sBeta > 1e3 ∗1/ std (m)^2
68 sBeta = 1e3 ∗1/ std (m) ^2;
69 OUTPUT. beta = sBeta ;
70 else

71 OUTPUT. beta = algI_out . beta ;
72 end

73
74 % pre -allocate memory

75 dAlphaE = zeros (p , maxIt (2)+1) ;
76 sMPe = zeros (p , maxIt (2)) ;
77 pv = zeros (maxIt (2) +1 ,1) ;
78
79 clear epsAlgI
80 stop = 0 ;
81 i = 1 ;
82 dAlphaE (: , i) = dAlpha ;
83 pv (i) = p ;
84 idxFu l l = 1 : p ;
85
86 disp (’ S t a r t i ng ␣ a l g I I d ␣ i t e r a t i o n ␣ loop . . . ’)
87 wh = waitbar (0 , ’ ␣␣Running␣ a lgor i thm ’) ;
88 a c t i v e = 1 : p ; % vector that keeps track of active classes

89 while (~ stop)
90 i = i + 1 ;
91 idx = 1 : length (dAlpha) ;
92 dInv = 1 ./ dAlpha ;
93 invLambda = sparse (idx , idx , dInv) ;
94 invNN = inv (speye (N) . / sBeta+A∗ invLambda∗A’) ;
95 clear idx dInv
96 T = (1/ sBeta) ∗ invLambda∗A’∗ invNN ;
97 sMP=sBeta∗T∗m;
98
99 % Low pass filtering over whole surface

100 sMPfull = zeros (p_true , 1) ;
101 sMPfull (i dxFu l l) = sMP;
102 sMPfull = l pF i l t (sMPfull , con , q) ;
103 sMP = sMPfull (idxFul l , 1) ;
104
105 clear T invLambda
106 hm_kk = calcHessDiag (A, invNN , dAlpha) ;

140 Proposed Matlab Implementations

107 clear invNN
108 dAlpha = 1 . / (sMP.^2+hm_kk) ;
109 clear hm_kk
110
111 % force out some selected sources in first iteration run

112 if nargin==8 && i==2
113 dAlpha (i r r I d c s) = maxAlpha+1;
114 end

115 % Check if max alpha value exceeded

116 k = find (dAlpha>=maxAlpha) ;
117 dAlpha (k) = maxAlpha ;
118
119 if length (k)>0 % Romove inactive sets.

120 % First some book keeping

121 for j =1:length (k)
122 idx = find (a c t i v e==k(j)) ;
123 a c t i v e (idx) = 0 ;
124 end

125 idx = find (a c t i v e==0) ;
126 for j =1:length (idx)
127 a c t i v e (idx (j) : end) = ac t i v e (idx (j) : end)−1;
128 end

129 % Now remove sources from model

130 % (i.e. reduce A, s and dAlpha)

131 idx = 1 : k (1)−1;
132 for j =1:length (k)−1 % create index vector for the indices

to keep

133 idx = [idx k (j)+1:k (j +1)−1];
134 end

135 idx = [idx k (end)+1:p] ;
136 % Finally remove from model

137 sMP = sMP(idx) ;
138 dAlpha = dAlpha (idx) ;
139 A = A(: , idx) ;
140 p = p−length (k) ;
141 end

142
143 % Expand model again for storing

144 idxFu l l = find (ac t ive >0) ;
145 sMPe (: , i −1) = zeros (p_true , 1) ;
146 sMPe(idxFul l , i −1) = sMP;
147 dAlphaE (: , i) = repmat (maxAlpha , p_true , 1) ;
148 dAlphaE (idxFul l , i) = dAlpha ;
149 pv (i) = p ;
150 clear k idx
151
152 if ((i −2)−5 > 0) % at least 5 iterations!

153 idx = find (dAlphaE (: , i)<maxAlpha) ;
154 diff = max (abs (dAlphaE(idx , i)−dAlphaE(idx , i −1))) ;
155 clear idx
156 else

157 diff = epsAlg I I +1;
158 end

159 if epsAlgII <0
160 stopCond = (i>maxIt (1)) ;

B.5 Algorithm IId 141

161 else

162 stopCond = (diff<epsAlg I I | | i>maxIt (1)) ;
163 end

164 if stopCond
165 stop = 1 ;
166 toc

167 disp (’Done ! ! ! ’)
168 end

169 wbRefresh (i −1, maxIt (1) ,wh)
170 end

171
172 OUTPUT. dAlpha = dAlphaE (: , 1 : i) ; clear dAlphaE ;
173 OUTPUT.sMP = sMPe (: , 1 : i −1) ; clear sMPe ;
174 OUTPUT. pv = pv (1 : i) ;
175 close (wh)
176
177 % Sub -function to refresh waitbar

178 function wbRefresh (i t , max , handle)
179 set (handle , ’Name ’ , [num2str (i t) ’ ␣ i t e r a t i o n s ␣ o f ␣max␣ ’ num2str (max)])
180 r a t i o = i t /max ;
181 waitbar (r a t i o , handle)
182
183 % Sub -function to calculate only the diagonal

184 % elements of the hessian inverse matrix.

185 %

186 % Inputs:

187 % A - Gain matrix (Nxp)

188 % invHH - matrix (NxN), i.e. inv (1/ beta*I+A*invLambda*A’)

189 % diagL - diagonal elements of Lambda (px1)

190 function h = calcHessDiag (AA,NN, diagL)
191 h = sum (AA’∗NN.∗AA’ , 2) ; % tkk

192 h = (1 . / diagL) .∗ (1 − h . / diagL) ;
193
194 % Low pass filter sMP using an averaging window

195 % s_in - sMP input

196 % con_in - connectivity cell array

197 % q_in - q factor for avg window

198 % s_out - lp filterted sMP

199 function s_out = l pF i l t (s_in , con_in , q_in)
200 s_out = s_in ;
201 for m=1:length (con_in)
202 s_out (m) = q_in∗ s_in (m) + . . .
203 ((1−q_in) /length (s_in (con_in{m}))) ∗ sum (s_in (con_in{

m})) ;
204 end

142 Proposed Matlab Implementations

B.6 Algorithm III

1 function OUTPUT = a l go r i t hmI I I (m,A, eps i l on , maxIt ,mag , vertconn)
2 % OUTPUT = algorithmIII(m,A,epsilon ,maxIt ,mag)

3 % OUTPUT = algorithmIII(m,A,epsilon ,maxIt)

4 % OUTPUT = algorithmIII(m,A,epsilon)

5 %

6 % INPUPS:

7 % m (N x 1 vector) - measured signals

8 % A (N x p matrix) - gain matrix

9 % epsilon - hyperparameter stop threshold ,

10 % if negative use maxIt

11 % maxIt - maximum number of iterations

12 % mag - multiplication constant to set maxAlpha

13 % value (typical val. beween 0.1 and 100)

14 % vertconn - connectivity of the sources

15 % OUTPUT: structure containing

16 % beta , dAlpha - vectors showing convergence of hyperparameters

17 % sMP - vector with most probable s over iterations

18 %

19 % ---

20 % Author : Thorsteinn Mar Arinbjarnarson (MSc project - IMM/DTU)

21 % Created : 27/6 2007

22 %

23 % Algoritm III

24 % Spatially smoothing prior to estimate sMP and same update

25 % equations as in algorithm IIb to estimate hyperparameters .

26 % ---

27 disp (’ S t a r t i ng ␣ a lgor i thm␣ I I I . . . ’)
28 if nargin < 4
29 maxIt = 100 ;
30 end

31 [N, p] = size (A) ;
32 if nargin < 5
33 mag = 100 ;
34 end

35 if length (e p s i l o n) > 1
36 epsAlgI = ep s i l o n (1) ;
37 epsAlg I I = ep s i l o n (2) ;
38 elseif length (e p s i l o n) == 1
39 epsAlgI = ep s i l o n ;
40 epsAlg I I = ep s i l o n ;
41 end

42
43 % initalize hyperparameters alpha_k

44 dAlpha = ones (p , 1) ;
45 algI_out = l i n e a r I n v e r s e (m,A, epsAlgI , 1 , maxIt (1)) ;
46 sBeta = algI_out . beta (end) ;
47 maxAlpha = algI_out . alpha (end) ∗mag ; % Set max alpha value ("

infinity ")

48
49 if length (maxIt)==2
50 maxIt (1) = maxIt (2) ;
51 end

B.6 Algorithm III 143

52
53 % max sBeta criterion , same as is used in algorithm II

54 if sBeta > 1e3 ∗1/ std (m)^2
55 sBeta = 1e3 ∗1/ std (m) ^2;
56 end

57
58 OUTPUT. beta = algI_out . beta ;
59 clear epsAlgI algI_out
60
61 stop = 0 ;
62 i = 1 ;
63 dAlpha_old (: , i) = dAlpha ;
64
65 wh = waitbar (0 , ’ Running␣ a lgor i thm ’) ;
66 while (~ stop)
67 i = i + 1 ;
68 idx = 1 : length (dAlpha) ;
69 p s i = ca l cP s i (vertconn , dAlpha) ;
70 dInv = 1 . / (dAlpha+ps i) ;
71 invGamma = sparse (idx , idx , dInv) ;
72 invNN = inv (speye (N) . / sBeta+A∗invGamma∗A’) ;
73 clear dInv
74 T = (1/ sBeta) ∗invGamma∗A’∗ invNN ;
75 sMP = sBeta∗T∗m;
76 clear T invGamma invNN
77 dInv = 1 . / (dAlpha) ;
78 invLambda = sparse (idx , idx , dInv) ;
79 invNN = inv (speye (N) . / sBeta+A∗ invLambda∗A’) ;
80 clear invLambda
81 hm_kk = calcHessDiag (A, invNN , dAlpha) ;
82 clear invNN idx
83 dAlpha = 1 . / (sMP.^2+hm_kk) ;
84 clear hm_kk
85 idx = find (dAlpha>maxAlpha) ;
86 dAlpha (idx) = maxAlpha ;
87 clear idx
88
89 sMPm(: , i −1) = sMP;
90 dAlpha_old (: , i) = dAlpha ;
91
92 if ((i −2)−5 > 0) % at least 5 iterations!

93 idx = find (dAlpha_old (: , i)<maxAlpha) ;
94 diff = max (abs (dAlpha_old (idx , i)−dAlpha_old (idx , i −1))) ;
95 clear idx
96 else

97 diff = epsAlg I I +1;
98 end

99 if epsAlgII <0
100 stopCond = (i>maxIt) ;
101 else

102 stopCond = (diff<epsAlg I I | | i>maxIt (1)) ;
103 end

104 if stopCond
105 stop = 1 ;
106 disp (’Done ! ! ! ’)

144 Proposed Matlab Implementations

107 end

108 wbRefresh (i −1, maxIt (1) ,wh)
109 end

110
111 OUTPUT. dAlpha = dAlpha_old ;
112 OUTPUT.sMP = sMPm;
113 close (wh)
114
115 % Sub -function to refresh waitbar

116 function wbRefresh (i t , max , handle)
117 set (handle , ’Name ’ , [num2str (i t) ’ ␣ i t e r a t i o n s ␣ o f ␣max␣ ’ num2str (max)])
118 r a t i o = i t /max ;
119 waitbar (r a t i o , handle)
120
121 % Sub -function to calculate only the diagonal

122 % elements of the hessian inverse matrix.

123 %

124 % Inputs:

125 % A - Gain matrix (Nxp)

126 % invHH - matrix (NxN), i.e. inv(1/ beta*I+A*invLambda*A’)

127 % diagL - diagonal elements of Lambda (px1)

128 function h = calcHessDiag (AA,NN, diagL)
129 h = sum (AA’∗NN.∗AA’ , 2) ;
130 h = (1 . / diagL) .∗ (1 − h . / diagL) ;
131
132 % Sub -function to calculate the psi parameters.

133 %

134 % Inputs:

135 % con - connectivity of source tessellation surface

136 % alphas - alpha_k values (dAlpha)

137 function cPs i = ca l cP s i (con , a lphas)
138 l = length (con) ;
139 cPs i = zeros (l , 1) ;
140 for m=1:length (con)
141 j = con{m} ;
142 alpha_p = alphas (j) ;
143 n_p = zeros (length (j) , 1) ;
144 for k=1:length (j)
145 n_p(k) = length (con{ j (k) }) ;
146 end

147 cPs i (m) = sum (alpha_p ./n_p) ;
148 end

149 clear l n_p alpha_p j m

Appendix C

BEM Head Model Details

The main focus of the thesis are EEG inverse methods but the forward model
plays a role in the inverse calculations. For the sake of reproducibility this
appendix provides details on BEM head models used in the simulations and
testing chapters.

C.1 256 Channel BEM

Tesselation surfaces for an imaginary subject are generated using a high density
256 channel EEG electrode grid supplied with the BrainStorm software. And
as described in section 3.5 the Montreal Phantom head is warped to match
the channel locations. The sources are localized on the cortical surface with
directions perpendicular to the surface. Number of EEG channels is N = 256
and the number of discretized source locations on the cortex surface is P =
10001, the resulting lead field matrix A therefore has dimensions 256 × 10001.
The warped phantom surfaces used for the BEM modeling are the scalp, outer
skull, inner skull (or equivalently CSF) and finally the cortex to place the sources
on. Linear collocations BEM method is used. Other setup information details
are listed in the following Matlab scrip. Some minor modifications were done
to the BrainStorm function that does the actual forward model calculations

146 BEM Head Model Details

(bst_headmodeler.m) regarding naming of files and path locations of saved files.
The algorithm itself was not modified.

BEMheadModel.m

1 % function BEMheadModel

2 % ---

3 % Author : Thorsteinn Mar Arinbjarnarson (DTU/IMM - MSc project)

4 % Created: 12/2 2007

5 % Modified: 16/4 2007 - use BrainStorm DB structure

6 %

7 % Script that creates a head model using BEM

8 % (boundary element method) for the BrainStorm EGI demo data.

9 % ---

10 % BrainStorm m-files used:

11 % - headmodeler_gui .m

12 % - bst_headmodeler .m

13 % ---

14 [userDB idx] = setDBpath () ;
15
16 OPTIONS. HeadModelFile = [userDB(idx) . STUDIES ’ /EGIdemo_BEM’] ;
17 OPTIONS. ImageGridFi le = ’ Defau l t ’ ;
18 OPTIONS.Method = { ’ eeg_bem ’ } ; % method: BEM

19 OPTIONS. HeadModelName = ’BEM’ ;
20 OPTIONS. Verbose = 1 ;
21 OPTIONS. Scalp . FileName = [userDB (idx) .SUBJECTS ’ /

EGIdemo_warped_4layer_tess . mat ’] ;
22 OPTIONS. Scalp . iGr id = 3 ; % Head Compartments; Scalp: warpedScalp

23 OPTIONS. Cortex . FileName = [userDB(idx) .SUBJECTS ’ /
EGIdemo_warped_4layer_tess . mat ’] ;

24 OPTIONS. Cortex . iGr id = 4 ; % Head Compartments; Cortex:

warpedWhiteMatter

25 OPTIONS.EEGRef = ’Cz ’ ; % EEG reference: Cz

26 OPTIONS.BEM. I n t e r p o l a t i v e = 0 ; % Non -Interpolative or

interpolative

27 OPTIONS.BEM. checksu r f = 1 ; % Align surfaces: On/Off

28 OPTIONS.BEM. Bas i s = ’ l i n e a r ’ ; % ’linear ’ or ’constant ’

29 OPTIONS.BEM. Test = ’ Co l l o ca t i on ’ ; % Test: ’Collocation ’ or ’

Galerkin ’

30 OPTIONS.BEM.NVertMax = 1000 ; % Decimate envelopes down to

31 OPTIONS.BEM. ISA = 1 ; % Insulated skull approach: On

32 OPTIONS.BEM. ForceXferComputation = 0 ; % Recompute trancfer matrices

Yes/No

33 OPTIONS.BEM. EnvelopeNames {1} .TessName = ’warpedCSF ’ ; % ordered

envelopes: warpedCSF , warpedSkull , warpedScalp

34 OPTIONS.BEM. EnvelopeNames {1} . Tes sF i l e = [userDB(idx) .SUBJECTS ’ /
EGIdemo_warped_4layer_tess ’] ;

35 OPTIONS.BEM. EnvelopeNames {2} .TessName = ’ warpedskul l ’ ;
36 OPTIONS.BEM. EnvelopeNames {2} . Tes sF i l e = [userDB(idx) .SUBJECTS ’ /

EGIdemo_warped_4layer_tess ’] ;
37 OPTIONS.BEM. EnvelopeNames {3} .TessName = ’ warpedscalp ’ ;

C.2 118 Channel BEM 147

38 OPTIONS.BEM. EnvelopeNames {3} . Tes sF i l e = [userDB(idx) .SUBJECTS ’ /
EGIdemo_warped_4layer_tess ’] ;

39 OPTIONS. SourceModel = −1; % Source model: Current dipole

40 OPTIONS. VolumeSourceGrid = 0 ; % Volume source grid: on/off

41 OPTIONS. VolumeSourceGridSpacing = 2 ; % 2cm is the default value

42 OPTIONS. ChannelFi le = [userDB (idx) . STUDIES ’ /EGIdemo_channel . mat ’] ;
43 OPTIONS. ChannelType = ’EEG’ ;
44
45 % OPTIONS.TessFileComment is a cell array of length ntess (number

46 % of tess files). kth cell contains a nsurf (number of surfaces in

47 % kth tess file) by two array. First column is the index of the

48 % tess file in OPTIONS.TessellationFile and second column is the

49 % index of the surface in the Comment field of the Tess file.

50 OPTIONS. TessFileComment{1} = [1 1 ; 1 2 ; 1 3 ; 1 4] ;
51 OPTIONS. TessFileComment{2} = [2 1 ; 2 2 ; 2 3 ; 2 4] ;
52 OPTIONS.MEGMethods = { ’meg_sphere ’ ’meg_os ’ ’meg_bem ’ } ;
53 OPTIONS.MEGMethodsLabel = { ’ S i ng l e ␣Sphere ’ ’ Overlapping ␣Spheres ’ ’

BEM’ } ;
54 OPTIONS. EEGMethods = { ’ eeg_sphere ’ ’ eeg_3sphere ’ ’ eeg_3sphereBerg

’ ’ eeg_os ’ ’ eeg_bem ’ } ;
55 OPTIONS. EEGMethodsLabel = { ’ S i ng l e ␣Sphere ’ ’3− s h e l l ␣Sphere ’ ’3−

s h e l l ␣Sphere ␣ (BERG) ’ ’ Overlapping ␣ Spheres ’ ’BEM’ } ;
56
57 [G,OPTIONS2] = bst_headmodeler_mod (OPTIONS) ;
58 move f i l e (’ ∗ . bin ’ , userDB (idx) . STUDIES) % move all data files to the

same folder

C.2 118 Channel BEM

Here the details are listed for the BEM head model used in section 6.3 for
analysis of the BCI data. As noted in the section just referenced there are
118 channels and the tesselation surfaces for the head were generated from the
Montreal Brain Phantom. The sources are localized on the cortical surface
with directions perpendicular to the surface. Number of EEG channels is N =
118 and the number of discretized source locations on the cortex surface is
P = 10001, the resulting lead field matrix A therefore has dimensions 118 ×
10001. The warped phantom surfaces used for the BEM modeling are the scalp,
outer skull, inner skull (or equivalently CSF) and finally the cortex to place the
sources on. Linear collocations BEM method is used and other setup information
is listed in the following Matlab scrip. Some minor modifications were done
to the BrainStorm function that does the actual forward model calculations
(bst_headmodeler.m) regarding naming of files and path locations of saved files.
The algorithm itself was not modified.

148 BEM Head Model Details

BEMheadModelBCI.m

1 % function BEMheadModelBCI

2 % ---

3 % Author : Thorsteinn Mar Arinbjarnarson (DTU/IMM - MSc project)

4 % Created: 9/7 2007

5 %

6 % Build a BEM head model for the BCI dataset.

7 % This script does the same as ’BEMheadModel.m’ does for the

8 % EGIdemo dataset.

9 % ---

10 dbName = ’BCIdata ’ ;
11 [userDB idx] = setDBpath (dbName) ;
12
13 OPTIONS. HeadModelFile = [userDB(idx) . STUDIES ’ /BCIdata_BEM ’] ;
14 OPTIONS. ImageGridFi le = ’ Defau l t ’ ;
15 OPTIONS.Method = { ’ eeg_bem ’ } ; % method: BEM

16 OPTIONS. HeadModelName = ’BEM’ ;
17 OPTIONS. Verbose = 1 ;
18 OPTIONS. Scalp . FileName = [userDB (idx) .SUBJECTS ’ /

BCI_warped_4layer_tess . mat ’] ;
19 OPTIONS. Scalp . iGr id = 3 ; % Head Compartments; Scalp: warpedScalp

20 OPTIONS. Cortex . FileName = [userDB(idx) .SUBJECTS ’ /
BCI_warped_4layer_tess . mat ’] ;

21 OPTIONS. Cortex . iGr id = 4 ; % Head Compartments; Cortex:

warpedWhiteMatter

22 %OPTIONS.EEGRef = ’Cz ’; % avg ref used , not Cz

23 OPTIONS.BEM. I n t e r p o l a t i v e = 0 ; % Non -Interpolative or

interpolative

24 OPTIONS.BEM. checksu r f = 1 ; % Align surfaces: On/Off

25 OPTIONS.BEM. Bas i s = ’ l i n e a r ’ ; % ’linear ’ or ’constant ’

26 OPTIONS.BEM. Test = ’ Co l l o ca t i on ’ ; % Test: ’Collocation ’ or ’

Galerkin ’

27 OPTIONS.BEM.NVertMax = 1000 ; % Decimate envelopes down to

28 OPTIONS.BEM. ISA = 1 ; % Insulated skull approach: On

29 OPTIONS.BEM. ForceXferComputation = 0 ; % Recompute trancfer matrices

Yes/No

30 OPTIONS.BEM. EnvelopeNames {1} .TessName = ’warpedCSF ’ ; % ordered

envelopes: warpedCSF , warpedSkull , warpedScalp

31 OPTIONS.BEM. EnvelopeNames {1} . Tes sF i l e = [userDB(idx) .SUBJECTS ’ /
BCI_warped_4layer_tess ’] ;

32 OPTIONS.BEM. EnvelopeNames {2} .TessName = ’ warpedskul l ’ ;
33 OPTIONS.BEM. EnvelopeNames {2} . Tes sF i l e = [userDB(idx) .SUBJECTS ’ /

BCI_warped_4layer_tess ’] ;
34 OPTIONS.BEM. EnvelopeNames {3} .TessName = ’ warpedscalp ’ ;
35 OPTIONS.BEM. EnvelopeNames {3} . Tes sF i l e = [userDB(idx) .SUBJECTS ’ /

BCI_warped_4layer_tess ’] ;
36 OPTIONS. SourceModel = −1; % Source model: Current dipole

37 OPTIONS. VolumeSourceGrid = 0 ; % Volume source grid: on/off

38 OPTIONS. ChannelFi le = [userDB (idx) . STUDIES ’ /BCI_channel . mat ’] ;
39 OPTIONS. ChannelType = ’EEG’ ;
40
41 % OPTIONS.TessFileComment is a cell array of length ntess (number

42 % of tess files). kth cell contains a nsurf (number of surfaces in

C.2 118 Channel BEM 149

43 % kth tess file) by two array. First column is the index of the

44 % tess file in OPTIONS.TessellationFile and second column is the

45 % index of the surface in the Comment field of the Tess file.

46 OPTIONS. TessFileComment{1} = [1 1 ; 1 2 ; 1 3 ; 1 4] ;
47 OPTIONS. TessFileComment{2} = [2 1 ; 2 2 ; 2 3 ; 2 4] ;
48 OPTIONS.MEGMethods = { ’meg_sphere ’ ’meg_os ’ ’meg_bem ’ } ;
49 OPTIONS.MEGMethodsLabel = { ’ S i ng l e ␣Sphere ’ ’ Overlapping ␣Spheres ’ ’

BEM’ } ;
50 OPTIONS. EEGMethods = { ’ eeg_sphere ’ ’ eeg_3sphere ’ ’ eeg_3sphereBerg

’ ’ eeg_os ’ ’ eeg_bem ’ } ;
51 OPTIONS. EEGMethodsLabel = { ’ S i ng l e ␣Sphere ’ ’3− s h e l l ␣Sphere ’ ’3−

s h e l l ␣Sphere ␣ (BERG) ’ ’ Overlapping ␣ Spheres ’ ’BEM’ } ;
52
53 [G,OPTIONS2] = bst_headmodeler_mod (OPTIONS) ;
54 move f i l e (’ ∗ . bin ’ , userDB (idx) . STUDIES) % move all data files to the

same folder

150 BEM Head Model Details

Appendix D

High Density EEG Data
Analysis

In the BEM simulations in chapter 5 a head model was created from the Mon-
treal Brain Phantom using a 256 channel EEG grid from a subject. This channel
grid was supplied with the BrainStorm software. Some sample EEG recordings
are also available for these channels. Very little information is however supplied
with the data making it hard for one to evaluate the quality of inverse calcula-
tions. Here this data will be analyzed using Algorithms I and IId. The main
analysis will be with regards to the algorithms, i.e. do they converge nicely
and does Algorithm IId give a more sparse representation of the Algorithm I
estimate. The data is a single epoch of an event related potential, some event
suggestions will therefore be put forth in the end. This can however not be
validated since no such information for the data is available.

152 High Density EEG Data Analysis

D.1 Results

Forward modeling for the subject is described in appendix C.1. The lead field
matrix A is of dimensions 256 × 10001 and very ill-conditioned. On figure D.1
all the EEG channel recordings are plotted. The sampling frequency is 250Hz
and the length is 6s. The time starts at -0.5s and ends at 5.5s, we therefore
assume at time 0s the subject is either stimulated in some way or is signaled to
do something requiring mental brain activity. As the simulations in chapter 5

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

8
x 10

−6

Time [s]

V
ol

ta
ge

 [V
]

t = 0.4s

Figure D.1: 6s of 256 channel EEG recordings plotted on the same axis over a
time period of 6s.

indicated then Algorithm I requires far less number of iterations than the other
algorithms. Running it for all time indices can be done in a reasonable amount
of time, e.g. on 64 bit dual core AMD computer with 2GB of RAM running
on Linux the run time was 20 to 30 minutes. This was done and watching the
cortex activity as a movie over the whole time range showed activity on the
frontal lobe, temporal lobes, motor cortex and and some minor activity at the
back of the brain. Maximum number of iterations were set as 150 and the stop
threshold as ε = 10−3. Figure D.2 shows the final α and β values at each time
and the number of iterations used. Note that α and β values are scaled because
before running the algorithm the measurements were scaled to avoid numerical
errors. This figure shows that the maximum 150 iterations are rarely used.
Inspecting the inverse solutions for all time instances showed regular pulses on

D.1 Results 153

0 1 2 3 4 5
0

2000

4000

6000

α

0 1 2 3 4 5
0

0.005

0.01

β

0 1 2 3 4 5
0

50

100

150

Ite
ra

tio
ns

Time [ms]

Figure D.2: Final α and β values at each time and the number of iterations used
when running Algorithm I for all time instances. α and β are scaled.

0 5 10 15 20 25 30 35 40
0

200

400

600

800

α

0 5 10 15 20 25 30 35 40
0

2

4

6

8
x 10

−3

β

Iteration

0 1000 2000 3000 4000 5000
0

5

10
x 10

4

α 1

0 1000 2000 3000 4000 5000
0

2

4

α 2

0 1000 2000 3000 4000 5000
0

5

10
x 10

4

α 3

0 5 10 15 20 25 30 35 40
0

0.005

0.01

β

Iteration

Figure D.3: Convergence of hyperparameters for Algorithm I on the left and
Algorithm IId on the right. Three αk (k = 1, ..., 10001) are shown for Algorithm
IId.

the motor cortex with some underlying activity mentioned above. On figure
D.3 convergence of Algorithm I and IId at time t = 0.4s is plotted. Figure D.4
shows the inverse solution of Algorithm I at time 0.4s. This time index was
chosen for its high overall activity. From the top view of the brain large activity
is clear in the center, possibly linked with motor activity. Frontal lobe and right
temporal lobe also show activity, some small activity is also visible at the back
of the brain.

154 High Density EEG Data Analysis

Figure D.4: Algorithm I source estimate at time 0.4s. Top image to the left
views the cortex from the front and the one to the right views it from the back.
Bottom figure views it from the top.

D.1 Results 155

Algorithm IId was also run at time 0.4s, for comparison, with maximum iter-
ations of 150 for β and 5000 for the other parameters. Stop threshold for β
estimate was set as 10−3 and no threshold was used for the other parameters,
i.e. the maximum 5000 iterations were used. The low pass filtering factor from
equation 4.72 was chosen as 0.4. The algorithm converged nicely and on figure
D.5 its estimate can be seen. It is a more sparse representation of the estimate
from Algorithm I and shows only the strongest activities.

Figure D.5: Algorithm IId source estimate at time 0.4s. Top image to the left
views the cortex from the front and the one to the right views it from the back.
Bottom figure views it from the top.

156 High Density EEG Data Analysis

D.2 Summary

Inverse calculations were done on high density EEG data supplied with the
BrainStorm software package. Running Algorithm I for all time instances in-
dicated strong pulses centered around the top of the cortical surface. These
pulses could possibly be linked with motor activity in the subject. Background
activity was located in the frontal part of the brain (right temporal lobe and
frontal lobe) along with minor activity at the back of the brain. Algorithm
IId was run on a selected time slice where similar activity as from Algorithm
I was strong. The estimate from Algorithm IId complied with the one from
Algorithm I showing only the strongest activities and being more sparse than
the Algorithm I estimate.

Bibliography

[1] S. Baillet, J. C. Mosher and R. M. Leahy, “Electromagnetic Brain mapping,”
IEEE Signal Processing Magazine, Nov. 2001, pp. 14-30.

[2] G. Demoment, ”Image Reconstruction and Restoration: Overview of Com-
mon Estimation Structures and Problems,” IEEE Transaction on Acoustics,
Speech, and Signal Processing, vol. 37, no. 12, 1989.

[3] R. D. Pascual-Marqui, C. M. Michel and D. Lehmann, ”Low resolution elec-
tromagnetic tomography: a new method for localizing electrical activity in
the brain,” International Journal of Psychophysiology, 18:49-65, 1994.

[4] R. D. Pascual-Marqui, ”Standardized low resolution brain electromagnetic
tomography (sLORETA): technical details,” Methods & Findings in Experi-
mental & Clinical Pharmacology, 24D:5-12 2002.

[5] M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and
M. Kawato, ”Hierarchical Bayesian estiamtion for MEG inverse problem,”
NeuroImage, vol. 23, 2004.

[6] D. Wipf, R. Ramírez, J. Palmer, S. Makeig, and B Rao, ”Analysis of Em-
pirical Bayesian Methods for Neuroelectromagnetic Source Localization,” To
appear in B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19, MIT Press, 2007.

[7] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press. 1995.

[8] C. M. Bishop, Pattern Recognition and Machine Learning. Springer. 2006

158 BIBLIOGRAPHY

[9] D. J. C. MacKay, ”Bayesian interpolation,” Neural Computation 4 (3), pp.
415-447, 1992.

[10] D. J. C. MacKay, ”A Practical Bayesian Framework for Backprop Net-
works,” Neural Computation 4 (3), pp. 448-472, 1992.

[11] R. M. Neal, Bayesian Learning for Neural Networks. Springer. 1996.

[12] M. E. Tipping, ”Sparse Bayesian Learning and the Relevance Vector Ma-
chine,” J. of Machine Learning Research 1, vol. 1, pp. 211-244, 2001.

[13] P. L. Nunez and R. Srinivasan, Electric Fields of the Brain - The Neuro-
physics of EEG. Oxford University Press. 2006.

[14] S. J. Williamson and L. Kaufman, “Biomagnetism,” Journal of Magnetism
and Magnetic Materials 22, pp. 129-201, 1981.

[15] M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila and O.V.Lounasmaa,
“Magnetoencephalography - Theory, Instrumentation, and Applications ot
Noninvasive Studies of the Working Human Brain,” Reviews of Modern
Physics, vol. 65, no. 2, April 1993.

[16] M. Mørup, ”Analysis of Brain Data - Using Multi-Way Array Models on
the EEG,” Informatics and Mathematical Modelling, Technical University of
Denmark, DTU, 2005.

[17] R. Oostenveld and P. Praamstra, ”The five percent electrode system for
high-resolution EEG and ERP measurements,” Clin Neurophysiol, 112:713-
719, 2001.

[18] R. Oostenveld, webpage
http://oostenveld.net/
http://oase.uci.ru.nl/˜roberto/index.php/electrode/

[19] EasyCap - EEG Recording Caps and Realated Products,
http://www.easycap.de/easycap/

[20] D. B. Geselowitz, “On Bioelectric Potentials in an Inhomogeneous Volume
Conductor,” Biophysical Journal, vol. 7, 1967.

[21] D. B. Geselowitz, “On the Magnetic Field Generated Outside an Inhomo-
geneous Volume Conductor by Internal Current Sources,” IEEE Trans. on
Magnetics, vol. mag-6, no.2, June 1970.

[22] J. Sarvas, “Basic Mathematical and Electromagnetic Concepts of the Bio-
magnetic Inverse Problem,” Phys. Med. Biol., vol. 32, no. 1, pp. 11-22, 1987.

BIBLIOGRAPHY 159

[23] J. C. Mosher, R. M. Leahy and P. S. Lewis, ”EEG and MEG: Forward
Solutions for Inverse Mehtods,” IEEE Trans. Biomed. Eng., vol. 47, pp. 1347-
1355, 2000.

[24] J. J. Ermer, J. C. Mosher, S. Baillet adn R. M. Leahy, ”Rapidly recom-
putable EEG forward models for realistic head shapes,” Phys. Med. Biol., 46,
pp. 1265-1281, 2001.

[25] S. Baillet, J. C. Mosher and R. M. Leahy, ”BrainStorm beta release: a
Matlab software package for MEG signal processing and source localization
and visualization,” Neuroimage, vol. 11, pp. S915, 2000.
(http://neuroimage.usc.edu/brainstorm/)

[26] D. W. Shattuck and R. M. Leahy, ”BrainSuite: An Automated Cortical
Surface Identification Tool,” Medical Image Analysis, 6(2):129-42, June 2002.
(http://brainsuite.usc.edu/)

[27] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J.
Holmes and A. C. Evans, ”Design and construction of a realistic digital brain
phantom,” IEEE Trans. Med. Imag., vol. 17, no. 3, pp. 463-468, June 1998.

[28] F. Darvas, J. J. Ermer, J. C. Mosher, R. M. Leahy, ”Generic head models for
atlas-based EEG source analysis,” Human Brain Mapping, 27 (2): 129-143,
2006.

[29] V. S. Vladimirov, Equations of Mathematical Physics. Marcel Dekker, New
York, USA. 1971.

[30] W. A. Strauss, Partial Differential Equations - An Introduction. Wiley &
Sons, USA. 1992.

[31] K. B. Petersen and M. S. Pedersen, The Matrix Cookbook. Technical Uni-
versity of Denmark, February 10th 2007.

[32] C. R. Johnson, ”Positive Definite Matrices,” American Mathematical
Monthly, vol. 77, no. 3, pp. 259-264, March 1970.

[33] R. V. V. Vidal, Creativity and Participative Problem Solving - The Art and
the Science. Technical University of Denmark, 2006.
(http://www2.imm.dtu.dk/˜vvv/CPPS/)

[34] B. Blankertz, K. R. Müller, D. Krusienski, G. Schalk, J. R. Wolpaw, A.
Schlögl, G. Pfurtscheller, J. R. Millán, M. Schröder and N. Birbaumer, ”The
BCI competition III: Validating alternative approachs to actual BCI prob-
lems,” IEEE Trans. Neural Sys. Rehab. Eng., 14(2):153-159, 2006.

160 BIBLIOGRAPHY

[35] B. Blankertz, G. Dornhege, M. Krauledat, G. Curio and K.-R.
Müller, ”The non-invasive Berlin Brain-Computer Interface: Fast ac-
quisition of effective performance in untrained subjects,” NeuroImage,
2007. (doi:10.1016/j.neuroimage.2007.01.051. to appear, available, e.g., at
http://ida.first.fhg.de/bbci/#publications)

[36] L. Qin, L. Ding and B. He, ”Motor imagery classification by means of source
analysis for brain-computer interface applications,” Journal of Neural Eng.,
vol. 1, issue 3, pp. 135-141, 2004.

[37] S. K. Mitra, Digital Signal Processing - A Computer Based Approach.
Mcgraw-Hill College. 2002

	Summary
	Preface
	Acknowledgements
	1 Introduction
	1.1 Ill-conditioned vs. Ill-posed
	1.2 Signal-to-noise ratio (SNR)
	1.3 Thesis Overview

	2 Electroencephalography (EEG)
	2.1 The Human Brain
	2.2 EEG Basics

	3 Forward Model
	3.1 Current Distribution and Dipoles
	3.2 Forward Model Integral Equations
	3.3 Algebraic Formulation
	3.4 Head Models
	3.4.1 Spherical
	3.4.2 BEM

	3.5 BrainStorm
	3.5.1 Phantom

	4 The Linear Inverse Problem
	4.1 Bayesian Formulation
	4.1.1 Framework for Hyperparameters and
	4.1.2 Algorithm I for Parameter Estimation
	4.1.3 Performance Evaluation
	4.1.4 Algorithm Improvements

	4.2 Automatic Relevance Determination (ARD)
	4.2.1 Framework for Hyperparameters bold0mu mumu MacKay2, Neal, Tipping and
	4.2.2 Algorithm II for Parameter Estimation
	4.2.3 Performance Evaluation
	4.2.4 Numerical Issues
	4.2.5 Algorithm IIb
	4.2.6 Active Sets (Algorithm IIc)
	4.2.7 Low Pass Filtering (Algorithm IId)

	4.3 Smoothing Prior
	4.3.1 Algorithm III for Parameter Estimation

	4.4 Summary

	5 Simulations on Artificial Data
	5.1 Algorithm I
	5.1.1 Basic Toy Examples
	5.1.2 Evaluation of Algorithm I
	5.1.3 Ill-conditioned 3 Sphere Head Model
	5.1.4 Discussion

	5.2 Algorithm II
	5.2.1 Evaluation of Algorithm II
	5.2.2 Inspection of Active Sets
	5.2.3 Ill-conditioned BEM Head Model
	5.2.4 Effect of SNR
	5.2.5 Discussion

	5.3 Algorithm III
	5.3.1 Evaluation of Algorithm III
	5.3.2 SNR Comparison for Algorithms
	5.3.3 SNR Comparison with BEM
	5.3.4 Discussion

	6 Real Data Testing
	6.1 BCI Competition III Data
	6.2 Method
	6.3 Subject Forward Model
	6.4 Results
	6.5 Summary

	7 Conclusion
	7.1 Future Work

	A Mathematical Appendix
	A.1 Nomenclature
	A.2 MEG Forward Model
	A.3 Derivative and Hessian of L(s)
	A.3.1 Two Hyperparameters Case, L(s,,)
	A.3.2 ARD Case, L(s,bold0mu mumu Geselowitz2,)

	A.4 Derivative of lndet(H)
	A.5 Algorithm II - Multiplicity of k-new
	A.6 Framework for Hyperparameters k and
	A.7 Fourier Transform

	B Proposed Matlab Implementations
	B.1 Algorithm I
	B.2 Algorithm II
	B.3 Algorithm IIb
	B.4 Algorithm IIc
	B.5 Algorithm IId
	B.6 Algorithm III

	C BEM Head Model Details
	C.1 256 Channel BEM
	C.2 118 Channel BEM

	D High Density EEG Data Analysis
	D.1 Results
	D.2 Summary

