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Summary

The purpose of this project is to investigate the possibility of analyzing the
image data from a pan-European study of the elderly using neuromorphometry.
A description of the prevalent methods is given and their individual advantages
and disadvantages are analyzed. On the basis of this analysis a relatively new
method, tensor-based morphometry (TBM), which still has many unexplored
properties, is selected for further investigation.

To facilitate TBM analysis two frameworks are suggested — one for cross-
sectional analysis and one for longitudinal analysis. Both frameworks share
certain components: Registration, metric extraction, and statistical analysis.

The properties of the registration that are desirable for respectively the cross-
sectional and longitudinal studies are analyzed and an image registration is
applied.

Metrics for analyzing the registration results are described and the properties of
two metrics are investigated and the usefulness in different settings evaluated.

It is shown that some group differences are detectable using the described meth-
ods. The metrics are correlated with clinical data both cross-sectionally and
longitudinally.

Through the results it is concluded that the proposed framework of methods is
viable for neuromorphometry. Through the framework it is possible to detect
both general atrophy and pathologies in single subjects and differences between
subjects which can be correlated with clinical parameters.
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Resumé

Form̊alet med dette projekt er at undersøge muligheden for at analysere billed-
data fra et pan-europæisk studie af ældre mennesker ved brug af neuromor-
fometri. I denne rapport, gives en beskrivelse af de fremherskende metoder og
hver metodes fordele og ulemper analyseres. P̊a baggrund af dette udvælges en
relativt ny metode, tensor-baseret morfometri (TBM), til videre undersøgelser.

Til brug for TBM fremlægges to procedurer — en der kan bruges til kryds-
sektionel analyse, og en der kan anvendes til longitudinel analyse. Begge pro-
cedurer har visse komponenter til fælles: Registrering, metrik-ekstraktion og
statistisk analyse.

De egenskaber, der for registrering er ønskelige i forbindelse med henholdsvis
kryds-sektionelle og longitudinelle studier analyseres og registrering udføres.

Metrikker til analyse af registreringsresultaterne beskrives og egenskaberne for
to metrikker undersøges. Ydermere evalueres metrikkernes brugbarhed i forskel-
lige sammenhænge.

Det vises, at gruppeforskelle kan detekteres ved brug af de beskrevne metoder.
Metrikkerne korreleres med kliniske data, b̊ade kryds-sektionelt og longitudinelt.

Gennem resultaterne konkluderes det, at de fremlagte procedurer er anvendelige
til neuromorfometri. Gennem procedurerne er det muligt at detektere b̊ade
generel atrofi og patologier i enkelte individer, og forskelle imellem individer,
som kan korreleres med kliniske parametre.
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Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the M.Sc. degree in engineering.

The thesis deals with tensor-based morphometry (TBM), a method for measur-
ing differences and changes in the human brain. The main focus is on describing
the methods used in TBM and carrying out an analysis of a data set using the
methods.

Lyngby, August 2007

Simon Fischer and Peter Skovgaard Nielsen
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Chapter 1

Introduction

Since the introduction of neuroimaging techniques (MR and CT) in the 1970s
and 1980s an increasing number of studies have been made to investigate the
wealth of data that these techniques produce. Along with improvements in
imaging techniques, advances in computer technology have made increasingly
complex analyses of the generated data possible.

An area of interest has been the study of the changes that occur in the human
brain as we age and particularly the links between the physical pattern of aging
and the pattern of cognitive decline and stability.

In 2000 a pan-European initiative was taken with the purpose of studying the
aging population and their disabilities. The study, called Leukoaraiosis and Dis-
ability (LADIS), has the aim of evaluating Age-Related White Matter Changes
(ARWMC), also called Leukoaraiosis, as an independent determinant of transi-
tion to disability in the elderly population.

Participants in the LADIS study undergo a series of examinations that include
both clinical evaluations and MR scans.



2 Introduction

1.1 Problem statement

One of the centers participating in the LADIS study is the Danish Research
Centre for Magnetic Resonance (DRCMR). The DRCMR would like to inves-
tigate the possibility of analyzing the image data from the LADIS study using
neuromorphometry to evaluate atrophy and pathologies and correlate the results
with clinical measurements.

In this project, we examine the methods currently used for neuromorphometry,
select a suitable method and apply it to the LADIS data with the objective of
evaluating how well it is suited for measuring differences and changes in the
brain and for correlation with clinical measurements. This is done both cross-
sectionally and longitudinally.

1.2 Structure

This thesis will begin with some background information (chapter 2) summa-
rizing the basics of MRI, a description of the data made available to us through
the LADIS study, and a brief overview of brain anatomy.

An overview of the methods currently being used within the field of neuro-
morphometry will be given, one method will be chosen (chapter 3) and theory
behind it will be described in detail (chapters 4, 5). Following that the statis-
tical analysis tools that are used will be described (chapter 6). After this the
methods will be applied to the LADIS data set both cross-sectionally (chapter
7) and longitudinally (chapter 8) and the results will be discussed. The useful-
ness of TBM with regard to correlation with clinical data will be evaluated. A
conclusion with a discussion of the obtained results concludes the thesis.

The appendix includes code listings (E).



Chapter 2

Background

To facilitate an understanding of the background of this project, this chapter
briefly gives an overview of the basics of MRI, provides an overview of the LADIS
data, and gives the reader an introduction to basic brain anatomy.

2.1 Magnetic Resonance Imaging

The imaging process used when acquiring magnetic resonance images is fairly
complex. To get a better understanding of the process this section serves as a
brief introduction to the subject. For a more in-depth discussion the reader is
referred to [1].

2.1.1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive imaging technique used
primarily in medical settings to render images of the inside of the human body.
The basis of the current MRI techniques was developed during the mid 1970s.
In 1980 a demonstration of the imaging technique showed that a single image
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could be acquired in approximately five minutes. During the following six years
the imaging time was reduced to about five seconds.

One of the most obvious advantages of MRI and an important cofactor in its
popularity is that no ionizing radiation is used. In contrast other non-invasive
techniques like computed tomography (CT) and positron emission tomography
(PET) involves exposure to ionizing radiation. With regard to neuroimaging,
MRI’s strength lies in the fact that it is well suited for distinguishing soft tissues.

2.1.2 Basic concept

When hydrogen nuclei are placed in a static magnetic field their spin axis is
aligned with the magnetic field. The imaging process in MR works by exciting
the nuclei to alter their spin axes and observe the time it takes for them to
return to equilibrium. This makes the process especially well suited for imaging
soft tissues which have high and varying water content.

2.1.3 Imaging hardware

When the image is acquired the subject is positioned in the center of a huge
cylindrical magnet. An example of an MR scanner is shown in figure 2.1.

Figure 2.1: Siemens Magnetom Vision MR scanner

Besides the magnet the major components of an MR scanner is the gradient coil
and the RF system.
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2.1.4 Image properties

During the imaging process certain parameters, the echo time (TE) and the
repetition time (TR), are chosen to alter the characteristics of the image. Two
basic modes of operation result in the so-called T1-weighted and T2-weighted
images. The main difference between the two lies in the contrast of the imaged
tissue. Table 2.1 shows the values of TE and TR necessary to produce T1- and
T2-weighted images.

Weighting TR Value TE Value
T1 ≤ T1 << T2

T2 >> T1 ≥ T2

Table 2.1: Necessary TR and TE conditions to produce weighted images

In the brain, T1-weighting causes the nerve connections of white matter to ap-
pear bright, and the congregations of neurons of gray matter to appear less
bright, while cerebrospinal fluid (CSF) appears dark. With T2-weighting the
appearance of the tissue types is reversed, but at the same time the contrast
between white and gray matter is reduced.

2.1.5 Image artifacts

An image artifact is a feature in the image which is not present in the imaged
subject. Image artifacts can be the result of both improper operation and a
consequence of natural properties or processes of the human body. Table 2.2
summarizes the most frequent of these.

An example of image artifacts can be seen in figure 2.2.
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Artifact Cause
RF offset and quadra-
ture ghost

Failure of the RF detection circuitry

RF noise Failure of the RF shielding
Bo inhomogeneity Metal object distorting the Bo field
Gradient Failure in a magnetic field gradient
Susceptibility Objects in the FOV with a higher or

lower magnetic susceptibility
RF inhomogeneity Failure or normal operation of RF coil,

and metal in the anatomy
Motion Movement of the imaged object during

the sequence
Flow Movement of body fluids during the se-

quence
Chemical shift Large Bo and chemical shift difference

between tissues
Partial Volume Large voxel size
Wrap around Improperly chosen field of view
Gibbs ringing Small image matrix and sharp signal

discontinuities in an image

Table 2.2: Summary of the most frequent MRI artifacts.
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Figure 2.2: Example of artifacts in MR images: It can be seen that the noise
from the image acquisition varies a lot. In the left image a clear difference
between the white matter and the gray matter exists while the right image is
very noisy making it difficult to distinguish between the two tissue types. In
this case the artifact seems to be caused by motion of the subject during the
image acquisition.
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2.2 Data

The data for the this project is provided by the Danish Research Centre for
Magnetic Resonance (DRCMR). The DRCMR, located at Hvidovre Hospital
near Copenhagen, is one of the twelve centres participating in the LADIS study.

The centre has examined 63 subjects of which 51 completed the whole study. All
of the subjects have been followed over a period of three years with yearly clinical
and functional assessments. Furthermore, at the initial and final examinations
brain MR images are acquired.

The data provided to us by the DRCMR consists of MR images and clinical
measurements from the Danish subjects. Because of drop-outs only partial data
sets are available for some of the subjects.

The data represents a small subset of the entire LADIS set which contains 639
subjects.

2.2.1 MR images

The MR image data is composed of 50 images acquired at the initial examination
(baseline images) and 27 images acquired at the final examination (followup
images). All of the images are T1-weighted MP-RAGE MR 3D brain scans
with a spatial resolution of 1 × 0.997 × 0.977 mm3 resulting in images with
150 × 256 × 256 voxels (FOV = 150 × 250 × 250 mm3). The MR images were
acquired on a 1.5 Tesla Siemens Magnetom Vision scanner used with TR = 13.5
ms, TE = 7.0 ms, TI = 100 ms, flip angle = 15◦, and sagittal slice orientation.

Three 2D slices from a single 3D image volume can be seen in figure 2.3. The
images are shown in the conventional way where the right hemisphere is pictured
on the left side of the image and the left hemisphere on the right side. This is
also the convention that is used in the rest of this thesis.

2.2.2 Clinical measurements

When the subjects are enrolled in the LADIS study a vast amount of clinical
parameters are measured and recorded. These parameters can be split up into
three categories:
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Figure 2.3: From left to right: Sagittal view, coronal view, transverse view.

• Personal data

• Historical data

• Functional and clinical evaluation

2.2.2.1 Personal data

The personal data recorded includes a range of parameters. Among these are
age, sex, and race.

2.2.2.2 Historical data

Data is collected for determining the presence of the vascular risk factors and
co-morbid conditions (e. g. heart failure, migraine, alcohol consumption, and
cigarette smoking). The criteria for their definition and classification are listed
in [2].

2.2.2.3 Functional and clinical evaluation

The functional and clinical parameters recorded include the following:

• Standard vascular and neurologic examination
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• Functional status: Using the Instrumental Activities of Daily Living (IADL)
scale.

• Assessment of quality of life: Using the Euro-QoL 5D

• Cognitive assessment: Mini-Mental State Examination (MMSE), Stroop
test and Trail Making Test, part B.

• Evaluation of mood/depression: 15 item Geriatric Depression Scale (GDS-
15), Cornell Scale for depression in Dementia, checklist for DSM-IV criteria
for Major depressive episode, criteria for severity and psychotic features
for current major depressive episode, criteria for melancholic features.

• Motor assessment: Using the Short Physical Performance Battery (SPPB)
with slight modifications for evaluation of gait impairment in the elderly.
In addition two very simple measurements for gait and balance will be
performed.

2.3 Brain basics

Anatomically the human brain can be divided into three major areas: The
hindbrain (rhombencephalon), the midbrain (mesencephalon), and the forebrain
(prosencephalon). The hindbrain consists of the lower brain stem and cerebel-
lum, the midbrain forms the upper brain stem and surrounding areas, while
the forebrain, by far the largest part, consists of the two cerebral hemispheres
(making up the cerebrum) that are connected by the corpus callosum. Figure
2.4 shows some of these structures.

The cerebrum consists mainly of the cerebral cortex (gray matter) and the inter-
connecting nerve strings (white matter). The brain is suspended in cerebrospinal
fluid (CSF), a substance which is also found internally in the brain in the so-
called ventricles. The cerebral cortex is made up of ridges (gyri) separated by
furrows (sulci).

The cerebrum can be partitioned into four lobes: The frontal lobe, the parietal
lobe, the occipital lobe, and the temporal lobe (see figure 2.5). To a degree, the
lobes differ in which cognitive functions they perform.

The anatomy of brains from different subjects is on the large scale similar, but
as more and more detailed views are taken, the differences that exist become
clearer. This means that there does not necessarily exist a one to one corre-
spondence between all structures in two different brains, but that the overall
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Figure 2.4: Areas of the human brain.

Figure 2.5: Lobes of the human cerebrum: Frontal lobe (blue), parietal lobe
(yellow), occipital lobe (red), and temporal lobe (green).

structure is similar. For example, entities like the ventricles and deep sulci are
found in all brains, while the finer (secondary and tertiary) sulci differ.



Chapter 3

Neuromorphometry

Morphometry, in general, is the measurement of shapes and forms. Within the
field of neuroimaging, morphometry is applied to study both differences between
and changes within subjects’ brains.

In this chapter we explore the currently used methods within the field. The
purpose of this is to choose a method that is suited for studying the LADIS
data.

Once chosen, the method will be discussed in detail, and the specifics of our
implementation will be described.

3.1 Neuromorphometric methods

Several methods for human neuromorphometry, both manual and automatic,
are currently in use. The prevalent methods are:

• Model-based morphometry

• Voxel-based morphometry
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• Deformation-based morphometry

• Tensor-based morphometry

Each method differs fundamentally from the others with regard to the data that
they produce for further analysis.

3.1.1 Model-based morphometry

The idea behind model-based morphometry is to demarcate some region of
interest and let further analysis be performed on the obtained model. Both
manual and automatic approaches exist — the much used manual morphometry
is an example of a model-based morphometric approach.

Manual morphometry (MM) is an extension into the digital realm of the classical
direct measurement methods that have been in use since the 1920s. The basic
idea is to let an expert annotate some area of interest within the brain. Often
the annotation is done on separate 2D slices and gathered into a final 3D model.
The obtained 3D model can then be analyzed.

The main strength in MM lies in the ability to directly utilize the knowledge
and experience of the operator, thus eliminating the need for complex analysis
tools.

Because of the nature of the method, however, MM can be very time consum-
ing. Furthermore, because a human operator is involved, the reproducibility of
results can be varying, especially if more than one operator is employed.

Due to this, MM is most often used to measure morphology of specific regions
with limited size and clear boundaries, and as such is seldom used to measure
global brain morphology.

MM has been applied in numerous studies, among these are studies of the hip-
pocampus [3], infarctions [4], and the basal ganglia [5].

Summary:

+ Uses expert knowledge and experience directly

+ Comparatively simple to implement

+ Proven validity
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- Very time consuming

- Suffers from inter- and intra-operator variability

Often used for studying limited structures with clear boundaries

3.1.2 Voxel-based morphometry

The basic idea behind voxel-based morphometry (VBM), introduced in 1995 [6],
is to spatially normalize brain images (using both a linear and a low-dimensional
non-linear warp), extract a tissue type of interest (e.g. gray matter), and apply
some sort of smoothing. The result is an image that represents the concentration
of the chosen tissue type in each voxel.

Because VBM is highly automated, it is practically possible to use for measur-
ing global morphology. Another advantage is that reproducibility is increased
because of the elimination of the human operator. Moreover, VBM has had
time to mature and has proven its usefulness in a number of studies. It has also
become increasingly fast.

A disadvantage to VBM is that it relies on the ability of a spatial normalization
to map possibly fundamentally different brains into a common space. This is
to some degree alleviated by smoothing and segmentation. Furthermore, the
direct analysis of voxels makes VBM sensitive to changes in noise and imaging
parameters [7].

Examples of the use of VBM are many. Among these are studies of both gray
matter and white matter (e.g. [8]).

Summary:

+ Highly automated

+ Fast

+ Mature

- Needs a reliable spatial normalization algorithm to work

- Can be sensitive to noise and changes in imaging parameters

Often used for studying global morphology of certain tissue types
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3.1.3 Deformation-based morphometry

The basic idea behind deformation-based morphometry (DBM) is to map a
number of images (using both a linear and a high-dimensional non-linear warp)
into a common space and let further analysis be performed on the resulting
deformation fields.

One of the large advantages to DBM over VBM is that it allows analysis of
shape and position of brain structures. Furthermore, as VBM it allows global
analysis and is highly automated.

The fact that position is included in the result of DBM, can also be a disad-
vantage, however, because of the variability in general shape that exists within
different brains. In some types of studies the position of structures is relevant
while in others it is more useful only to measure size and shape. The speed of
DBM also suffers from the need for computing a high-dimensional non-linear
warp.

The inclusion of positional information has so far limited DBM’s use. An ex-
ample of a study using DBM can be found in [9].

Summary:

+ Highly automated

+ Allows for analysis of the shape and position of brain structures

- Includes possibly unwanted positional information

- Slow

Used for studying shape and position globally, regionally, or locally

3.1.4 Tensor-based morphometry

The basic idea behind tensor-based morphometry (TBM) is similar to that of
DBM, except that the product used in further analysis is the spatial derivatives
of the deformation field instead of the deformation field itself.

The advantage herein lies in the fact that information about shape and size can
be extracted directly from the partial derivatives, without including information
about position.
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As with DBM, speed is also an issue for TBM, because of the need for com-
puting a high-dimensional warp. The intermediate step of calculating spatial
derivatives also requires additional computational resources — both processor
time and memory.

TBM is still a relatively new technique compared to MM and VBM. This makes
it especially interesting to investigate the properties of the method.

Summary:

+ Highly automated

+ Allows for analysis of the shape of brain structures

+ Removes positional information from analysis

- Slow

- Resource demanding

Comparatively new and untested

Used for studying shape globally, regionally, or locally

3.1.5 Summary

Each of the methods described above have their strengths and weaknesses. From
our point of view, TBM is the most interesting of the methods, since the field of
TBM is still relatively new and has potential to reveal properties of neuromor-
phology that are not possible to measure using the more traditional methods
(manual morphometry and voxel-based morphometry).

For these reasons, TBM is the method we choose to apply to the LADIS data
set.
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3.2 Images

Before we proceed, it is useful to formalize a definition of what an image is. A
three-dimensional image can be viewed as a mapping that assigns every spatial
point (x, y, z) belonging to a compact set Ω ⊂ R3 a value I(x, y, z) ⊂ R.

For discrete images (such as MR images), Ω ⊂ Z3. This set defines the grid
points of the image. The collection of grid points forms a grid, G (see figure
3.1). Each volume element I(x, y, z) is called a voxel.

Figure 3.1: Image grid: Here x ⊂ [1; 15], y ⊂ [1; 26], and z ⊂ [1; 26]. I(x, y, z) is
shown in three planes.

These definitions will be used throughout the rest of the text.

3.3 Analysis frameworks

For the purpose of the studies we wish to perform, TBM needs to be integrated
into two larger analysis frameworks — one for cross-sectional analysis and one
for longitudinal analysis.
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3.3.1 Cross-sectional analysis

The purpose of a cross-sectional analysis is to evaluate differences between sub-
jects. The framework for the cross-sectional analysis consists of several steps:

1. Brain extraction on baseline images.

2. Spatial normalization of baseline images to a common reference.

3. Metric extraction from the results from 2.

4. Statistical analysis of results.

3.3.1.1 Brain extraction

To avoid influence from both the highly deformable soft tissue areas around the
brain and the skull, the part of the image that contains the brain needs to be
extracted from the rest of the image.

In this project we use the approach described in [10]. The process involves
several steps including filtering and segmentation. A detailed description of the
techniques used lies beyond the scope of this thesis. The used implementation
is found in the software package called BrainSuite2.

The result of the brain extraction procedure is an image volume where every-
thing but the cerebral white matter, gray matter and internal cerebrospinal fluid
has been masked out.

3.3.1.2 Spatial normalization

Spatial normalization is the process of mapping objects into a reference frame
such that features in one object (to some feature level) are aligned with the
corresponding features in the other objects.

Spatial normalization can be achieved by choosing a target object, finding a
transformation that maps one source object into the target object, and repeating
this for all of the objects.

In image analysis, finding a transformation that maps one image into another is
called registration. Formalized, the registration problem can be stated as finding
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a transformation T(G) : Z3 7→ Z3 of the image grid, that maps every feature in
a source image Isource into the corresponding features in a target image Itarget

such that

Itarget(x, y, z) ∼ Isource(T(x, y, z)).

The degree to which the images should be registered is decided by the intended
use of the result. The choice of this degree decides where information about the
difference between the images is stored: In the images or in the transformation.
At the extremes are two cases:

• T is the identity transformation and all difference information is stored in
the images.

• T establishes a one to one correspondence between all image elements and
all difference information is stored in the transformation.

In between these two extremes lie the registrations that are most often applied
for actual analysis. Examples are registrations that account only for global
movement (translation and rotation) and registrations that account for limited
plastic differences.

For cross-sectional tensor-based morphometry, it would seem most useful to
achieve a one to one correspondence between the images, since TBM involves
analyzing the transformation. In practice, however, this is not the case, both
because of the variability that exists between individual brains and because of
image artifacts such as noise.

A plethora of registration techniques exist. In chapter 4 a detailed description
of the methods we use for solving the registration problem for TBM is given.

For the three-dimensional registration problem solved in this project, the re-
sulting transformation T is a three-dimensional vector valued function over the
image volume.

3.3.1.3 Metric extraction

Having found an optimal (in a sense that pertains to TBM) registration, analysis
of the resulting transformation T can proceed.

For TBM this analysis requires calculation of the spatial derivative matrix of
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T. This is also called the Jacobian matrix J, and is defined as

J =


∂Tx

∂x
∂Tx

∂y
∂Tx

∂z
∂Ty

∂x
∂Ty

∂y
∂Ty

∂z
∂Tz

∂x
∂Tz

∂y
∂Tz

∂z


In practice using the Jacobian matrix directly is not feasible because it contains
information that is not easily interpretable. Instead of using the Jacobian matrix
directly, measures deriving from it are often used. These derivatives can be
simple, for example encoding only relative volume change, or more complex,
containing information about directional changes etc.

In chapter 5 a more detailed description of how we choose to extract metrics
from the Jacobian matrix is given.

The result of the calculations is a tensor field over the image volume that incor-
porates shape information.

3.3.1.4 Statistical analysis

When the desired information has been extracted from the transformation, sta-
tistical analysis of the data can proceed. The goals of the statistical analysis can
be manifold. Examples are analyses pertaining to the significance of detected
differences and building models that relate external factors (such as age) to the
differences.

There are many possible methods that can be used for the statistical analysis
of the tensor fields. These include establishing parametric maps, point-wise
regression and use of the general linear model.

In chapter 6 a description of the methods we use is given.

3.3.2 Longitudinal analysis

The second type of analysis is a longitudinal analysis where changes within
subjects are evaluated. Compared to the cross-sectional analysis, the framework
is somewhat more complicated:

1. Brain extraction on baseline images.
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2. Spatial normalization of baseline images to a common reference.

3. Spatial normalization of followup images to their corresponding baseline
image.

4. Transformation of the result from 3 into a common reference space using
the results from 2.

5. Calculation of spatial derivatives (or measures derived from them) of the
results from 4.

6. Statistical analysis of results.

To remove the effect that cross-sectional variability has on the longitudinal
analysis, the transformation from the cross-sectional analysis is reused in step
4.

The methods used in each of the steps are the same as described for the cross-
sectional analysis.

3.4 Summary

In this chapter we have introduced a number of methods used in neuromor-
phometry, introduced key concepts, and selected a method (tensor-based mor-
phometry) for neuromorphometry that we will investigate. We have presented
two frameworks — one that will be used for a cross-sectional analysis and one
that will be used for a longitudinal analysis.

In the following chapters, the theory of the most important items in these frame-
works will be described. These items are

• Registration

• Metric extraction

• Statistical analysis
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Registration

As described in chapter 3, to perform a registration is to solve the problem
of finding a transformation that maps a set of features in one image into the
corresponding features in another image.

The transformation T : (x, y, z) 7→ (x′, y′, z′) which maps any point in the source
image Isource into its corresponding point in the target image Itarget is often
viewed as a combination of a global transformation and a local transformation:

T(x, y, z) = Tglobal(x, y, z) + Tlocal(x, y, z).

The two kinds of transformations will be described in the following sections.

4.1 Global transformation

The global transformation describes the overall transformation of the image and
can modelled as a combination of several linear transformations: Translation,
rotation, scaling and shearing.
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If the transformation is described only by a translation and a rotation, it is called
a rigid transformation and can be parameterized with 6 degrees of freedom (3
translations and 3 rotations).

A more general transformation is the affine transformation which also includes
scaling and shearing. The affine transformation is parameterized by 12 degrees
of freedom (rigid, 3 scalings, and 3 shears). For a point in three-dimensional
space written in homogeneous coordinates, the affine transformation can be
written as a matrix:

Tglobalaffine
(x, y, z) =


axx axy axz axw

ayx ayy ayz ayw

azx azy azz azw

0 0 0 1

 ·


x
y
z
1


An example of a global registration can be seen in figure 4.1. Details about the
global registration are found in [11].

Figure 4.1: Example of a global transformation in 2D. The blue ellipse is reg-
istered to the red star. After the transformation the two shapes are aligned
within the limits of an affine transformation.
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4.2 Local transformation

The global transformation only accounts for differences in position, rotation,
scale, and shear (see figure 4.1). To model the more local differences between
images a free-form deformation (FFD), which is a local non-rigid transforma-
tion, is needed. Usually a FFD is represented by a three-dimensional deformable
grid. Examples of 2D FFDs can be seen in figure 4.2.

Figure 4.2: Example of free-form deformations in 2D. The left FFD is well-
behaved while the right FFD appears to be in need of some constraints.

As figure 4.2 shows, FFDs often need behavioral restrictions or regularization
as it is called. As image registration is an ill-posed problem [12], the need for
regularization is twofold: To make the problem more well-posed and to make
sure that the deformation is reasonable in a sense pertaining to the registra-
tion problem at hand. Over the time a range of regularized FFDs have been
proposed:

• Elastic registration

• Fluid registration

• Diffuse registration

• Curvature registration

All of these regularized registrations are based on physical models that may or
may not be related to the actual changes that take place in the human brain. So
as not to limit the deformation to a physical model we choose to use a parametric
registration which is implicitly regularized. This FFD is based on the tensor
product B-spline approach proposed in [13] and [14].

4.2.1 B-splines

Before we describe what a tensor product B-spline is, it is useful to know some
of the desirable properties (in the context of image registration) of the cubic
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B-spline. The most important of these are [15]:

C2 continuity: With knot multiplicity 1, it is guaranteed that the curve
is C2 continuous in every point, which ensures smoothness and
differentiability (the red curve in figure 4.3).

Strong convex hull property: The curve lies within the convex hull
of the defining control points. This ensures better control of the
curve and thereby better regularization (the shaded area in figure
4.3).

Variation diminishing property: No straight line intersects a B-
spline curve more times than it intersects the curve’s control poly-
line. This prevent oscillations and thus giving better regularization
(the green line in figure 4.3).

Local modification property: When a control point is changed the
curve is only local modified (illustrated in figure 4.4).

Figure 4.3: Example of a cubic B-
spline. The blue connected points
are the control points of the B-spline
while the red curve is the corre-
sponding B-spline. The shaded area
depicts the strong convex hull prop-
erty and the green line shows the
variation diminishing property.

Figure 4.4: Same B-spline as figure
4.3 except that one control point is
moved. Notice that the B-spline is
only locally modified.

The idea is to deform the 3D image volume by manipulating an underlying 3D
mesh of control points for a so-called tensor-product B-spline. Let φi,j,k define
the (nx,ny,nz) mesh of control points, Φ, with spacing (δx,δy,δz). Then the local
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transformation can be written as the 3D tensor product of 1D cubic B-splines:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+lφj+mφk+n,

where i = bx/δxc − 1, j = by/δyc − 1, k = bz/δzc − 1, u = x/δx − i + 1,
v = y/δy− j +1, w = z/δz−k +1 and where Bl represent the lth basis function
of the B-spline:

B0(u) = (1− u)3/6
B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u + 1)/6
B3(u) = u3/6

An additional advantage of using this representation is that the derivatives of
the transformation are easily found simply by using the derivatives of the basis
functions in the evaluation of the B-splines:

B′
0(u) = −(1− u)2/2

B′
1(u) = (9u2 − 12u)/6

B′
2(u) = (−9u2 + 6u + 3)/6

B′
3(u) = u2/2

4.2.2 Multilevel

The spacing of the control points in the 3D mesh Φ regulates the level at which
the deformation takes place. A large control point spacing results in globally
non-rigid deformations while a dense control point mesh allows modelling of
very local deformations. By using a multilevel approach in which the resolution
of the control point mesh is increased we are thereby able to model both global
and more local differences.

The multiple resolutions of the control point mesh can be achieved in different
ways. One way is to start with a coarse mesh and subdivide it using appropri-
ate B-spline subdivision techniques, as described in [16]. Another approach is
to use a hierarchy (Φ1, . . . ,ΦL) of local deformation meshes as described in [17].
Multiresolution registration using this method is achieved by sequentially find-
ing the best local transformation, Tl

local, at each resolution level l, taking into
account the deformations found for coarser resolution levels. The final control
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point mesh and the associated local transformation is in this way given by the
sum of local transformations:

Tlocal(x, y, z) =
L∑

l=1

Tl
local(x, y, z)

Figure 4.5 shows the advantage of using multiresolution meshes. FFDs using a
single mesh resolution are locally not sufficiently pliant at low resolutions, while
they are badly regularized at higher resolutions [14].

�
�
�

�)

Folding

+ + =

Figure 4.5: 2D slices from 3D FFDs. The top pictures shows modelling us-
ing single mesh resolution while the bottom pictures shows the corresponding
modelling using multiresolution meshes.

In the optimization of the control points in order to maximize the two images’
similarities a vast amount of local minima exist. To set the focus on the essential
minima, a multilevel approach is also used with the image resolution in a coarse-
to-fine fashion. This will also yield a better regularization of the FFD. In figure
4.6 the multilevel approach of the image resolution is illustrated.
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Figure 4.6: Transverse slices of the image volume. The image resolution is
increased from left to right.
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4.2.3 Cost function

To find the optimal control point grid Φ it is necessary to define a similarity
measure to compare the images with. Several types of similarity measures have
been proposed over the time:

• Sum of squared differences (SSD)

• Correlation coefficient (CC)

• Mutual information (MI)

• Normalized mutual information (NMI)

A description of each of these and how to calculate them can be found in [18].
The purpose of the similarity measure is to evaluate how alike two images are.

In addition to the similarity measure it is reasonable to include a penalty term in
the cost function. The reason for doing this is to allow control of the behavior of
the FFD in such a way that it is adaptable to various contextual requirements.
If prior knowledge exists about the deformation which is to be modelled, the
transformation can be regularized by introducing a penalty term. The desired
properties of the FFD could be:

• Smoothness

• Volume preservation

• Topology preservation

The smoothness penalty can be introduced by computing the bending energy
of the 3D tensor product B-spline, while the volume and topology preservation
penalties use the Jacobian determinant in the penalty term. The penalty term,
P, for each of these are:

Smoothness:

Psmooth =
1
V

∫ X

0

∫ Y

0

∫ Z

0

[(
∂2T
∂x2

)2

+
(

∂2T
∂y2

)2

+
(

∂2T
∂z2

)2

+

2
(

∂2T
∂xy

)2

+ 2
(

∂2T
∂xz

)2

+ 2
(

∂2T
∂yz

)2]
dx dy dz,

where V denotes the volume of the image domain.
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Volume preservation:

Pvol =
X∑

x=0

Y∑
y=0

Z∑
z=0

abs (log (det (J(T(x, y, z)))))

where J is the Jacobian matrix a defined in section 3.3.1.3 on page 19.

Topology preservation:

Ptop =
X∑

x=0

Y∑
y=0

Z∑
z=0

F(x, y, z),

where

F =
{

10J 2 + 0.1J 2 − 2 if J < 0.3
0 else ,

where
J = det (J(T(x, y, z))).

By combining the similarity measure with the regularizing penalty term the
final cost function, C, is obtained:

C = −Similarity(Itarget, Isource(T(G))) + λ1Psmooth + λ2Pvol + λ3Ptop.

The optimal local transformation is now found by minimizing the cost function.
The minimization of the cost function is a combination of maximizing the sim-
ilarity between the two images while still fulfilling the desired transformation
property requirements. The weighting factors (λ1, λ2, λ3) define the tradeoff
between the two competing goals. Finding this optimum can be done using
numerical optimization methods (such as gradient descent). A discussion of
these methods lies beyond the scope of this thesis — the reader is referred to
for example [19] for more information.
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4.2.4 Pseudocode

The pseudocode for the registration can now be sketched. If IRES is the image
resolution, Φ the control point mesh, ΦRES the resolution of the control point
mesh, and C is the cost function, then the pseudocode can be written as:

DEFINE IRES,max

DEFINE ΦRES,max

SET IRES to IRES,min

SET ΦRES to ΦRES,min

WHILE ΦRES ≤ ΦRES,max

WHILE IRES ≤ IRES,max

optimize Φ to minimize C
increase IRES

END WHILE
increase ΦRES

END WHILE

The optimization of the global transformation and of the control point mesh
defining the tensor-product B-spline as described above has been implemented
by Daniel Rueckert in the Image Registration Toolkit (ITK), used under license
from Ixico Ltd. Following the registration of the two images, ITK outputs the
optimized control point mesh into a file.
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Metric extraction

As described in chapter 3, the goal of tensor-based morphometry is to extract
metrics that describe differences and changes in shape. In this chapter we de-
scribe two methods that can be used for extracting information about shape
from a transformation.

5.1 The Jacobian matrix

The measures used in TBM all derive from the spatial derivatives of the trans-
formation, the Jacobian matrix (as described in chapter 3). To reiterate, the
Jacobian J matrix of a three-dimensional transformation T is defined by

J =


∂Tx

∂x
∂Tx

∂y
∂Tx

∂z
∂Ty

∂x
∂Ty

∂y
∂Ty

∂z
∂Tz

∂x
∂Tz

∂y
∂Tz

∂z


The operation of calculating the Jacobian matrix J of a transformation T is
denoted J = J (T).

Given the transformation T, that has been found as described in chapter 4,
both local shape and orientation is encoded in J [20]. If we want to discount
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the orientation information, we can instead use only the Jacobian of the local
transformation Tlocal described in section 4.2.

Tlocal is represented entirely by a tensor product B-spline. Using this repre-
sentation of the local transformation gives us the advantage of being able to
calculate the Jacobian exactly according to the equations given in section 4.2.1.
The calculation of derivatives is implemented in the Matlab and C-functions
tbspline3 and tbspline3c (see appendix E, page 133).

Although information about shape can be found in the Jacobian, it is often not
sensible to use the Jacobian directly. The reason for this is that the Jacobian
is not very intuitive to interpret. Instead, measures deriving from the Jacobian
are used.

In this thesis we study two measures:

• Relative volumes

• Log-Euclidean metrics

5.2 Relative volumes

An intuitive way of representing shape information is to consider only relative
volumes. Relative volumes can be represented by

Vrelative = det (J + I)

where I is a 3× 3 identity matrix. Adding the identity matrix is done to ensure
that an identity deformation has Vrelative = 1. If Vrelative > 1, the volume of the
source is larger than the target and vice versa for Vrelative < 1. If Vrelative < 0,
the transformation has folded, resulting in a “negative” volume.

An advantage of using relative volumes is that they condense the information in
the Jacobian matrix to an easily interpretable single value, thus making further
analysis univariate.

The disadvantage of using the relative volumes is that much of the information
contained within the Jacobian matrix is discarded in the calculation. Only
the magnitude of the expansion or contraction is studied, while the anisotropy
and directional components are disregarded. For example, volume-preserving
deformations may not be recorded at all. As a very simple example of how
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much of the shape information is lost when calculating the relative volume, the
case where the eigenvalues of the J + I are λ1,2,3 = {1, 2, 0.5} is considered. In
this case the determinant of the matrix is 1, although the eigenvalues clearly
indicate shape change.

The extraction of the relative volume metric is implemented in the Matlab-
functions detconvertinter and detconvert (see appendix E, pages ?? and
??).

5.3 Log-Euclidean Metrics

In [21] and [22] a new method for TBM involving multivariate statistics on Log-
Euclidean transformed strain matrices is described. The strain matrix used in
this method is the right stretch tensor:

S = (JT J)
1
2

where (M)
1
2 denotes the matrix square root of the matrix M . For smooth

transformations, however, the strain matrices are constrained to the space of
positive definite matrices. This space does not form a vector space but a cone
in the space of matrices.

This means that ordinary multivariate statistical quantities such as the mean
can not be derived directly from the strain matrices. The statistical quantities
have to be constrained to lie on the manifold as well. The solution to this is
to transform to strain matrices from the manifold into a vector space. This
Log-Euclidean transformation can be obtained using the Hencky tensor, which
has many desirable properties [20]:

SLE = log(S),

where log is the matrix logarithm. As SLE in our case is a symmetric 3 × 3
matrix it has six unique elements. To simplify the further computations, the
matrices with six degrees of freedom can be represented as vectors with six
elements:

~SLE = (SLE1,1 , SLE2,2 , SLE3,3 ,
√

2SLE1,2 ,
√

2SLE1,3 ,
√

2SLE2,3)

Now ordinary multivariate statistics can be used directly on these vectors to
model their means and also their distribution about the mean using the covari-
ance matrix. The calculation of Log-Euclidean metrics is implemented in the
Matlab-functions leconvert and leconvertinter (see appendix E, pages ??
and ??).
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Chapter 6

Statistical analysis

In this chapter we present a number of statistical analysis methods that will be
used to analyze the TBM data. The reader is expected to be familiar with the
basic concepts of uni- and multivariate statistics.

The methods that are introduced have different purposes, from dimensionality
reduction, over differentiation between groups, to modelling.

6.1 Principal component analysis

Principal component analysis (PCA) is a technique that can be used to reduce
the dimensionality of multivariate data. PCA transforms data to a new coor-
dinate system where the greatest variance in the data comes to lie on the first
axis (the first principal component), the second greatest variance on the second
axis, and so on (see figure 6.1).

By finding this transformation, pruning out the least explaining components,
and transforming the data with it, the dimensionality of data can be reduced.
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Figure 6.1: An example of PCA. e1 and e2 form the basis of the transformed
coordinate system.

6.1.1 Definition

For a multidimensional, stochastic variable

X =

 X1

...
Xk


with the covariance matrix Σ we can find the eigenvalues λ1 ≥ . . . ≥ λk of Σ
with the corresponding eigenvectors p1, . . . ,pk. The ith principal axis of X is
then the direction of pi corresponding to the ith largest eigenvalue, while the
ith principal component of X is X’s projection Yi = p′

iX onto the ith principal
axis.

The principal components are uncorrelated and the variance of the ith compo-
nent is λi. Furthermore, the sum of the variance of the principal components is
equal to that of the original variables.

The first principal component is the linear combination of the original variables
with the largest variance and the ith principal component is the linear combi-
nation of the original variables that is uncorrelated with the i− 1 first principal
components with the largest variance.

From this it is clear that if we want the to reduce the original variables so that
at least V of the variance is accounted for, we can select the m first principal
components such that
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λ1 + . . . + λm

λ1 + . . . + λm + . . . + λi
≥ V

and project the original variables onto these components. This gives a new set
of observations, each with m variables.

6.2 Multivariate analysis of variance

In general, the purpose of analysis of variance (ANOVA) is to test for significant
differences between means of groups. It is often used to test whether one group
differs significantly from another with regard to a variable. When analyzing
multivariate data, using several ANOVA tests, one for each dependant variable,
can lead to problems. First, the dependant variables are likely to be correlated
with each other, making the results redundant and difficult to interpret. Second,
the odds of finding significant differences simply because of chance rises with
repeated use of the sample data.

Multivariate analysis of variance (MANOVA) is an extension of the univariate
ANOVA into multiple dimensions where these issues are addressed. MANOVA
transforms data to a new coordinate system where the separation between the
dependant variables is maximized. If there are only two groups, MANOVA is
equivalent to the Hotelling’s T2 test.

6.2.1 Hotelling’s T2

As an analogue to the t-test in one dimension, Hotelling’s T2 can be used to
investigate whether samples from two normal populations can be assumed to
have the same mean.

Having two independent stochastic variables X1, . . . ,Xn and Y1, . . . ,Ym where

Xi ∈ Np(µ,Σ)
Xi ∈ Np(ν,Σ),

we wish to test the null hypothesis H0 : µ = ν against H1 : µ 6= ν. Using



38 Statistical analysis

X̄ =
1
n

n∑
i=1

Xi

Ȳ =
1
m

m∑
i=1

Yi

S1 =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′

S2 =
1

m− 1

m∑
i=1

(Yi − Ȳ )(Yi − Ȳ )′

S =
(n− 1)S1 + (m− 1)S2

n + m− 2

and

T 2 =
nm

n + m
(X̄− Ȳ)′S1

−1(X̄− Ȳ)

the critical area for testing H0 against H1 at the significance level α is equal to

C = {x1, . . . ,xn,y1, . . . ,ym|
n + m− p− 1
(n + m− 2)p

t2 > F(p, n + m− p− 1)1−α}

where t2 is the observed value of T 2.

6.2.2 One-way MANOVA

One-way MANOVA is simply an extension of Hotelling’s T2 test to more than
two groups. In one-way MANOVA we have a single independent variable with
more than two levels (for example right-handed, left-handed and mixed-handed)
and multiple dependent variables, and wish to test whether or not the means of
the groups can be assumed to be equal.

Having k independent, normally distributed stochastic variables
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X11, . . . , X1n1

...
...

Xk1, . . . , Xknk

where Xij ∈ Np(µi,Σ), i = 1, . . . , k; j = 1, . . . , ni, we wish to test the null
hypothesis H0 : µ1 = . . . = µk against H1 : ∃i, j(µi 6= µj). With

T =
k∑

i=1

ni∑
j=1

(Yij − Ȳ)(Yij − Ȳ)′

W =
k∑

i=1

ni∑
j=1

(Yij − Ȳi)(Yij − Ȳi)′

B =
k∑

i=1

ni(Ȳi − Ȳ)(Ȳi − Ȳ)′

where (with n =
∑

i ni)

Ȳi =
1
ni

ni∑
j=1

Ȳij

Ȳ =
1
n

k∑
i=1

ni∑
j=1

Ȳij

the critical area for testing H0 against H1 at the significance level α is equal to

{y11, . . . , yknk
|det(W)

det(t)
≤ U(p, k − 1, n− k)α}

where t is the observed value of T. As mentioned, MANOVA also yields the
transformation of the dependent variables that maximizes the separation be-
tween groups — these are called the canonical components.
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6.3 Correlation analysis

In statistics correlation analysis is used to quantify the relationship between two
variables. A number of different coefficients are used for this. Two of the most
commonly used are Pearson’s correlation and Spearman’s ρ.

Pearson’s correlation reflects the degree of linear relationship between two vari-
ables. It ranges from -1 to +1 where a correlation of -1 means a perfect negative
linear relationship between the two variables and a correlation of +1 means a
perfect positive linear relationship. Pearson’s correlation is denoted by r when
computed in a sample. For a sample of n observations of x and y the correlation
coefficient is calculated as:

r =
1

n− 1

n∑
i+1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
,

where x̄ and ȳ are the sample means of x and y, and sx and sy are the sample
standard deviations.

To measure the significance of the correlation we can test the null hypothesis of
no correlation by converting the Pearson’s r to a normal distributed variable Z
by the transformation:

Z =
√

n− 3
2

ln
1 + r

1− r
.

Spearman’s ρ differs from Pearson’s correlation in that the computations are
done after the numbers are converted to ranks. This means that it does not
assume that the relationship between the variables is linear, nor does it make
any assumptions about the frequency distribution of the variables. This makes
Spearman’s ρ less sensitive to single outliers.

6.4 Multiple regression

Multiple regression is an extension of ordinary linear regression where only one
variable is used as an explanatory factor. If we instead have k explanatory
factors (x) and n observations of Y the model can be written as: Y1

...
Yn

 =

 1 x11 . . . xk1

...
...

...
1 x1n . . . xkn

 ·


α
β1

...
βk

 +

 ε1
...
εk
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or for short:
Y = xβ + ε

Under the assumption of ε ∈ N(0, σ2I) the least square estimate is:

β = (x′x)−1x′Y

When choosing a model it often becomes a problem to limit the number of
explanatory factors while still being able to describe the observations. A com-
monly used method for this is stepwise regression. By using this method we
are able to decide which factors are significant and should be included in the
model. The method uses an iterative approach, adding and removing dependent
variables from the regression model as they come in and out of significance. The
method is explained in figure 6.2.

Start with

constant term

Choose the variable 

whose partial correlation

with the depending

variable is the largest

STOP

Include this variable 

in the model

Is the variable 

significant

Is the

least significant

variable 

significant

Exclude this

variable from 

the modelYes

Yes

No

No

Figure 6.2: Flow chart for the stepwise regression method.

References: [23], [24].
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Chapter 7

Results: Cross-sectional study

Having presented the methods we intend to use for the studies, this chapter
puts the methods to use in the cross-sectional analysis of the LADIS data. For
the cross-sectional analysis, a set of 50 images is available.

To reiterate, the steps we take in the cross-sectional analysis are:

1. Brain extraction on baseline images.

2. Spatial normalization of baseline images to a common reference.

3. Metric extraction from the results from 2.

4. Statistical analysis of results.

7.1 Brain extraction

Running the automatic brain extraction on the baseline images results in image
volumes containing only gray matter, white matter, and internal cerebrospinal
fluid (see figure 7.1). Visual inspection of the extracted images shows that for
four of the volumes the automatic brain extraction has not succeeded. This
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Figure 7.1: Slices from a single MR image before brain extraction (a) and after
brain extraction (b).

has been corrected by means of manual intervention to yield a total of 50 brain
extracted images.

7.2 Spatial normalization between subjects

Having extracted the brains from the images, we can proceed with the spatial
normalization by registration. Several parameters have to be chosen for the
registration:

• Registration target

• Image filtering parameters



7.2 Spatial normalization between subjects 45

• Similarity measure

• Global transformation parameters

• Multi-level grid size

• Regularization parameters

7.2.1 Registration target

There are two obvious options for the target image during the registration: An
atlas or one of the source images.

An atlas is a mean image of several spatially normalized images. Advantages of
using an atlas for registration are that it provides a reference that captures gen-
eral variation of a population and that it often provides additional information
such as region labels, tissue labels, etc.

On the other hand, using an atlas stemming from a population that is very
different (in terms of brain morphology) from the source images, can introduce
a need for an overly unconstrained transformation during the registration. Fur-
thermore, because of natural variability between brains, an atlas tends to have
less defined edges between structures (see figure 7.2) compared to a source image
(see figure 7.1).

−100 −50 0 50 100

−100

−50

0

50

100

Sagittal plane, −10.5 mm

y (mm)

z
 (

m
m

)

−50 0 50

−100

−50

0

50

100

Coronal plane, −0.5 mm

x (mm)

z
 (

m
m

)

−50 0 50

−100

−50

0

50

100

Transverse plane, 40.5 mm

x (mm)

y
 (

m
m

)

Figure 7.2: Image atlas: Three slices from the LONI LPBA40 atlas [25].

If a source image is used, it becomes important to choose a “normal” image
— that is, an image whose features to some degree resemble those of the rest
of the source images. If the target is chosen correctly, some of the population
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tendencies (e.g. enlarged ventricles) will already be partially modelled, leading
to the need for less unconstrained transformations.

Using a source image also has the advantage of providing an image with much
more well defined edges between structures. This can lead to larger effect sizes
in the later statistical analysis [26].

On the other hand, none of the additional information (such as labels) exists for
our source images. This can however be remedied by registering an atlas with
the label information to the chosen target and transforming the information into
target space.

To assist in the choice, we have performed trial registrations to both an atlas
and a subject image, and have concluded that the best choice is to use a subject
image as the target. The reason for this is that the achieved spatial normal-
izations are more consistent (due to the better defined structures in a subject
image).

For the above mentioned reasons, we choose to use one of the source images as
the target in the registration. After some consideration, subject number 2 was
chosen. This choice was based on image quality and a visual comparison with
other subjects. Furthermore, a labelled atlas was amenable to registration to
subject 2.

7.2.2 Image filtering

MR images are as mentioned in section 2.1.5 on page 5 affected by noise and
other artifacts from the image acquisition. While some of the artifacts are very
localized, others are more global.

To avoid that the registration models the noise in the images instead of the
differences between the subjects and the target, a preprocessing of the images
is necessary before the registration is initiated.

A simple but efficient way to remove the noise is to filter the images. How much
filtering is needed is a balance between the noise removal and preserving the
important features in the image. The images in figure 7.3 show different degrees
of filtering using a gaussian kernel.

The images show that the noise is insufficiently removed when using a gaussian
kernel with a FWHM of 0.5 mm. The noise in the image could potentially still
disturb the registration yielding incorrect results. On the other hand, using a
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Figure 7.3: Crops from the same single sagittal slice. (a): The image without
any filtering. The images shown in (b)-(d) are filtered using a gaussian kernel
with a FWHM of: (b) 0.5 mm, (c) 0.75 mm, (d) 1.0 mm.

FWHM of 1.0 mm seems to eradicate the fine details in the image. We choose
to filter with a gaussian kernel of FWHM 0.75 mm because it removes the noise
while still preserving details in the image. Tests show that it is necessary to
perform the filtering and that the chosen gaussian kernel width is appropriate.
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7.2.3 Similarity measure

When measuring the image similarity a range of similarity measures are available
(see section 4.2.3). The simplest and probably the most used of these is the sum
of squared differences (SSD). To use this measure, it is required that the same
tissue has the same image intensity across the images. One way to deal with
this is to apply a bias field correction to the images but this method also has
drawbacks [7].

However, bias field correction is only really necessary when the images are af-
fected by spatially varying intensity. By visual inspection of the images this
does not seem to be the case. The intensity difference between the images is on
a more general level. An example of this is shown in figure 7.4. Although the
difference is not very clear on the image, it is very evident when looking at the
histograms of the images (figure 7.5).
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Figure 7.4: Sagittal slices from two subjects. The general intensity level is
slightly lower in the right image than in the left.

Instead of using SSD we choose to use normalized mutual information (NMI) as
the similarity measure. NMI has several advantages. One is that it invariant to
the mentioned intensity differences. Additionally it has proven itself very pow-
erful in numerous applications and highly efficient in registration of neuroimages
[26].
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Figure 7.5: The histogram of the two brains depicted in figure 7.4. The blue
curve corresponds to the left image.

7.2.4 Global registration

When doing the global registration the multi-resolution approach (described in
section 4.2.2 on page 25) is especially useful. We find that three resolution
levels is sufficient to ensure that the registration finds the correct minimum in
the optimization.

To make sure that the following local registration has the best initial conditions
possible, an affine registration with 12 degrees of freedom is chosen. Since scaling
is a part of the affine registration there are three ways of doing the registration:

• Registration to the whole target head

• Registration to the target brain

• Registration to the target skull

The premise of the global registration is that “normal” brains have approxi-
mately the same relative size compared to the skull. The goal of the global
registration is then to remove the influence of differences in skull size while re-
taining differences in brain size that are to be captured by the ensuing local
registration.

If we registered to the target brain we would at the same time as removing the
influence of the size of the brain also eliminate the possibilities for detecting
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age-related atrophy in the later analysis. If the source was registered to the
whole target head, the result would be a combination of trying to match the
source brain to the target brain and the skull to the skull. This could change
from subject to subject without indication, thus rendering the results less useful.
Because of these reasons we choose to do the global registration to the target
skull.

An example of an affine registration is shown in figure 7.6.
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Figure 7.6: Affine registration: The source in (b) is registered to the target
in (a). The result is shown in (d). The difference between the target and the
source in shown in (c) before registration and in (e) after.

7.2.5 Multi-level grid

As mentioned in section 4.2.2 the spacing of the control points regulates the
level at which the deformation takes place. A coarse deformation grid leads
to registration of the large structures in the brain, e.g. ventricles and lobes,
while finer grids result in spatial normalization of the smaller structures, e.g.
the smaller gyri.
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In the cross-sectional registration we need to take the large variability of the
brains into account. Therefore it is necessary to initiate the registration with
the use of a very coarse grid. To accommodate this we choose a starting grid
spacing of 32 mm.

While it is possible to register the large structures in the brain, there is a limit
on how fine a registration is possible (per section 2.3). Unlike the deep fissures
which separate the lobes, the topology of the smaller sulci is very different
between brains [27]. In fact, the same secondary and tertiary sulci are not even
found in all subjects [28]. With that taken into consideration it does not make
sense to use a smaller grid size than 4 mm. The control point mesh hierarchy
we have chosen to use is visualized in figure 7.7.

Figure 7.7: Transverse slices of the image volume shown with grids with de-
creasing spacing. From left to right: 32 mm, 16 mm, 8 mm, and 4 mm.

7.2.6 Regularization parameters

The choice of regularization parameters has a large influence on the achieved
registration. As mentioned in chapter 4, we allow for three explicit types of
regularization using three different penalties: A smoothness penalty, a volume
penalty, and a topology penalty.

In the cross-sectional registration, objects with fundamentally different topolo-
gies are being registered. For this reason the topology preserving penalty is
not used. Also, since we actually expect that different subjects have varying
volumes of certain structures (and want to capture this in the registration), we
choose not to use the volume preserving penalty.
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Instead we choose to use only the smoothness preserving penalty. This is done
to ensure that the registration does not descend into minima that result in
unrealistic transformations.

The smoothness penalty is controlled by the parameter λ1. Because of the
nature of the multi-level grid approach, λ1 has to be chosen individually for
each grid spacing δΦ. We choose the parameter by performing registrations
with different values of λ1 and inspecting them visually (see figures 7.8 to 7.11).

The chosen parameter for each level is the one that allows the registration to
achieve the highest correspondence between brain structures while still repre-
senting “realistic” transformations without large overlaps etc.

Figure 7.8: Choosing λ1 for δΦ = 32 mm. From left to right: λ1 = 0, λ1 =
0.0001, λ1 = 0.005.

The chosen parameter set is listed in table 7.1.

δΦ (mm) λ1

32 0.0001
16 0.0001
8 0.0075
4 0.05

Table 7.1: Chosen values of λ1

These parameters are a good compromise between image similarity and trans-
formation smoothness, from the coarsest level modelling the global differences
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Figure 7.9: Choosing λ1 for δΦ = 16 mm. From left to right: λ1 = 0, λ1 =
0.001, λ1 = 0.005.

Figure 7.10: Choosing λ1 for δΦ = 8 mm. From left to right: λ1 = 0.002, λ1 =
0.0075, λ1 = 0.02.

to the finest level modelling detail differences (see figure 7.12). This effect can
more clearly be seen in difference images (see figure 7.13).
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Figure 7.11: Choosing λ1 for δΦ = 4 mm. From left to right: λ1 = 0.01, λ1 =
0.05, λ1 = 0.2.
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Figure 7.12: Step by step multi-level registration (subject 15 to subject 2). From
top left to bottom right: Source image, δΦ = 32 mm, δΦ = 16 mm, δΦ = 8 mm,
δΦ = 4 mm, target image. As the grid spacing decreases, the size of aligned
structures decreases.



56 Results: Cross-sectional study

−50 0 50

−100

−50

0

50

100

x (mm)

y
 (

m
m

)

−50 0 50

x (mm)

−50 0 50

Transverse plane, 27.8 mm

x (mm)

−50 0 50

x (mm)

−50 0 50

x (mm)

Figure 7.13: Step by step difference between registered image and target in
multi-level registration (subject 15 to subject 2). From left to right: Source
image, δΦ = 32 mm, δΦ = 16 mm, δΦ = 8 mm, δΦ = 4 mm. As the grid spac-
ing decreases, the transformation models smaller structures, leading to smaller
difference between the images.
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7.2.7 Registration results

The result of the registrations are the transformations that transform source
images into the target image (subject 2). We use several ways to ensure the
validity of the registrations:

• Visual inspection of transformed images

• Visual inspection of deformation grids

• Atlas building

7.2.7.1 Visual inspection of transformed images

The transformed images can be visually inspected to ensure that the registration
has succeeded (see figure 7.14). Difference images provide an additional way to
make sure that the images are correctly registered. Inspection of the images
shows that all the registrations are satisfactory.

7.2.7.2 Visual inspection of deformation grids

To ensure that the deformation grids represent plausible transformations, we
inspect the grids. This inspection shows that the grids are all well behaved. A
few examples can be seen in figure 7.15.

7.2.7.3 Atlas building

Another way of validating the results of the registration is to build an atlas. As
mentioned earlier, an atlas is a mean of several images — in this case registered
images. As we progress down through the grid spacing sizes, the atlas should
become increasingly well defined in decreasingly sized areas. This effect is seen
in figure 7.16. More images from the atlases can be seen in appendix B on pages
105 to 107.
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Figure 7.14: Registration of different subjects to target. From left to right:
Subject 1, subject 16, subject 56. From top to bottom: Images after global
registration, after local registration, difference compared to target.
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Figure 7.15: Deformation grids for registrations of different subjects to target.
From left to right: Subject 1, subject 16, subject 56.
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Figure 7.16: Transverse slice of atlas made from multi-level registration using
increasingly fine grid spacings. From left to right the atlas is built from: Source
images, globally registered images, locally registered images with δΦ = 32 mm,
δΦ = 16 mm, δΦ = 8 mm, δΦ = 4 mm. As the grid spacing decreases, the
transformation models smaller structures, leading to finer details being captured
in the atlas.
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7.3 Metric extraction

Using the control point fields from the registration, we can proceed to the metric
extraction step. For the cross-sectional data we choose only to use the relative
volume metric (and not the Log-Euclidean metrics). This choice is made because
we expect between subject differences to be so large that relative volumes give
enough information.

7.3.1 Relative volumes

As described in chapter 5 relative volumes can be used as a metric for differences.
Following calculation of the Jacobian matrix in every voxel in each volume, we
can generate complete volumes of containing relative volumes. A few examples
are seen in figure 7.17.
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Figure 7.17: Slices from volumes of relative volumes. Bright represents areas
which are larger in the source than in the target, and vice versa for dark areas.
From left to right: Subject 1, subject 16, subject 56. It is clear that subject 16
has a much larger ventricular area than the target (subject 2).

After calculating the relative volumes as described, we start by inspecting their
distribution and compare it to a simulated set to determine if the result is as
expected. Under the assumption that the elements of the Jacobian matrix are
normally distributed, the simulated values are generated as follows:
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|Vrelative,sim| = det

 N(0, σ) N(0, σ) N(0, σ)
N(0, σ) N(0, σ) N(0, σ)
N(0, σ) N(0, σ) N(0, σ)

 +

 1 0 0
0 1 0
0 0 1

,

where σ has been chosen to be 0.26. The difference between the simulated data
and the actual observations may be explained by the fact that the brain of
subject 2 is not a true “mean brain”. That taken into account the observed
data is as expected. The distributions are shown in 7.18.
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Figure 7.18: Histograms of relative volumes from all subjects except no. 2 along
with simulated values.

A number of analyses have shown that atrophy takes place in the white and gray
matter of the brain [29]. Since the degenerated matter has to be replaced by
something the result is that the amount of CSF increases. Because of this CSF
can be used as a measure of global brain atrophy. Figure shows the distribution
of the relative volumes separated into gray and white matter, and CSF.

A look at the distributions show that they cannot be assumed to be normal.
Normality is an important prerequisite for some of the statistical measures that
will be used later. As indicated in [20], the distributions of the relative volumes
can be expected to be more log-normally distributed. Transforming the data
with a logarithmic transformation should then yield data that is more normally
distributed. Histograms of the transformed data can be seen in figure 7.20.

Following the transformation, the data is much more normally distributed.
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Figure 7.19: Relative volumes from all subjects except no. 2, separated into
gray and white matter, and CSF.
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Figure 7.20: Logarithmically transformed relative volumes from all subjects
except no. 2, separated into gray and white matter and CSF.

7.4 Statistical analysis

In this section we give some examples of how the data from the information
extraction can be analyzed. In the cross-sectional analysis, the goal is to find
differences between subjects. For this, several approaches to the analysis are
possible:
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• Per voxel test

• Regional test

• Global test

• Group test

In addition to these tests, we can test for correlation with some of the clinical
measurements that are available from the LADIS study (age, BMI, etc.).

7.4.1 Per voxel test

In the per voxel test, each relative volume voxel is treated as a separate obser-
vation Vrel, and tested cross-sectionally across the 50 subjects for significance.
Under the assumption that in each voxel, across the subjects, the data is nor-
mally distributed, each voxel can be assigned a Z score and a p-value can be
found. Since we are interested in studying both significant expansions and con-
tractions, a two-sided test is employed.

For each subject this gives a volume containing the probability that for a given
relative volume voxel tells us how likely an outcome as or more extreme is to
have happened compared to the rest of the subjects (see figure 7.21).
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Figure 7.21: Significant differences in Vrel overlayed on normalized images. The
overlay shows p < 0.05 and p > 0.95 in blue and red respectively. From left to
right: Subject 1, subject 16, subject 56. It is clear that subject 1 has a large
significant expansion in the ventricles (the large red area in the center).

As we discovered in section 7.3.1, assuming that the determinants are normally
distributed may not be prudent. Transforming the relative volumes with a log-
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arithmic transformation results in more normally distributed data. Conducting
the per voxel test on the transformed data yields results that are less likely
to unfairly discount contraction effects. This effect can be seen in figure 7.22,
where expanding areas become less significant and contracting areas become
more significant.
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Figure 7.22: Significant differences in log(Vrel) overlayed on normalized images.
The overlay shows p < 0.05 and p > 0.95 in blue and red respectively. From left
to right: Subject 1, subject 16, subject 56. Compared to figure 7.21, the areas
with contractions are more significant, while the areas with expansions are less
significant.

Using direct voxelwise statistics on the relative volumes might not be a good
idea because of the uncertainties that exist in the spatial normalization. These
uncertainties can lead to small misalignments that result in falsely significant or
insignificant values. Additionally, the estimate of the mean and variance used
in the per voxel test are uncertain because of small sample sizes. Furthermore,
it might not always be interesting to know whether a single voxel is significant.

7.4.2 Regional test

To alleviate the problems with the voxelwise test, we can divide each brain
into a number of volumes of interest (VOIs) and for each of these compare a
compound measure cross-sectionally.

There is, however, one problem with this: We need to be able to divide each
volume into equivalent VOIs. One way of solving this problem is to let an expert
manually segment out areas of interest in each image. Another manner is to
register an atlas to each image and utilize the label information that is available
for the atlas. With a modification, the latter approach is the one we take.
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Instead of registering the atlas to each image, we choose to register the atlas
to the target image for the spatial normalization (i.e. subject 2). Since all the
other subjects are normalized to subject 2, we can use the label information
directly following the registration.

The atlas we use is the LONI Probabilistic Brain Atlas (LPBA40) [25] which was
generated by spatially aligning MRI scans of 40 healthy individuals, resulting
in a T1-weighted intensity atlas. Furthermore, each of the images were assigned
labels for several structures (approximately 50), allowing both maximum proba-
bility and label volumes to be constructed (see appendix C for a complete list of
labels). Unfortunately, the LPBA40 atlas does not provide labels for the entire
brain — large parts of both the white matter and cerebrospinal fluid are not
labelled at all. This limits the regional analysis to the labelled areas.

After registration of the intensity atlas to subject number 2, we use the label
volume to partition our images into VOIs. A slice from both the intensity
volume and the label volume is shown in figure 7.23.
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Figure 7.23: LPBA40 atlas after registration to subject 2. Intensity volume to
the left, label volume to the right.

Having partitioned every image into VOIs, we can proceed with the construction
of a compound measure that characterizes the relative volume change in each
VOI. We choose to calculate the mean of all relative volumes within each VOI.
This measure is effectively the relative volume of the VOI.

As in the per voxel test, we transform the data with a logarithmic transformation
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to approach normality. The result is volumes with p-values assigned to each label
(see figure 7.24).
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Figure 7.24: Significant differences in mean of regional log(Vrel) overlayed on
normalized images. The overlay shows p < 0.05 and p > 0.95 in blue and red
respectively. From left to right: Subject 1, subject 16, subject 56.

The tendencies from the voxelwise test are also evident in the regional test.

This is just one example of a regional approach to the tests. It might be benefi-
cial to use larger regions instead of the in some cases very small LPBA40 regions
— an example could be to divide the brain into lobes and perform the tests on
them instead.

7.4.3 Group test

The results of the two previous tests were maps that showed in what areas a
single subject was different from the rest of the subject. Another interesting
thing to study is whether TBM can reveal differences between groups. We
might, for example, expect there to be a general difference between males and
females.

Several grouping parameters are available from the LADIS data set. We select
three of these for analysis: Sex, handedness and Fazekas score. The Fazekas
score evaluates white matter lesions on a discrete scale [0, 1, 2, 3] — for the
subjects available to us, all the scores are between 1 and 3.

For each of these grouping parameters we wish to find out whether the regional
relative volumes can be used to differentiate one group from another. As de-
scribed in section 6.2 on page 37, this can be done using a one-way multivariate
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analysis of variance (MANOVA), where the null hypothesis is that the means
of the groups are equal to that of the others.

First, however, we reduce the data using principal component analysis (as de-
scribed in section 6.1 on page 35). Following PCA, linear combinations of the
data that represent 80% of the total variance in the data are chosen, resulting
in the first 13 principal components being used. After projecting the data onto
the selected principal components, we can conduct MANOVA for each of the
grouping parameters. Table 7.2 shows the p-values for the hypothesis that the
means lie in a space of dimension d = 0, 1, etc. From the table it can be inferred

Sex Handedness Fazekas
d p-value d p-value d p-value
0 0.0162 0 0.137 0 0.004
- - 1 0.356 1 0.487

Table 7.2: MANOVA results

that the means of males and females are most likely different (p = 0.0162). For
handedness the results indicate that there is no significant difference between
right, left and both-handers. This is perhaps to be expected since there are only
four left-handers and five both-handers in the group of 50. The p-values for the
Fazekas score indicate that the three groups are not discernable using the means
of the regional relative volumes. They are, however, unlikely to belong to only
one group (p = 0.004).

A projection of the data onto the first two canonical components (the linear
combinations that yield the largest separation between groups) can be seen in
figure 7.25.
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Figure 7.25: Data projected onto the first two canonical components from
MANOVA. Separation between groups can be seen in the male/female plot,
while it is less evident in the handedness and Fazekas score plots.
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7.4.4 Clinical correlation

Following the extraction of the relative volumes from the transformation it is
possible to compare these to the clinical parameters. Doing this enables us to
investigate the correlation between the atrophy and possible explanatory factors.

An intuitive way is to correlate the global differences with the most obviously
related parameters. As described in chapter 2 the LADIS study provides a large
number of clinical parameters. To limit the extent of the analysis and results,
we have chosen to use the following parameters:

• Age

• Systolic blood pressure (BPsys)

• Dialostic blood pressure (BPdia)

• Body mass index (BMI)

• Stroop test, form 2 (Stroop2s, s)

• Trail making, part A (Trail1s, s)

• Verbal fluency, VADAS-cog (Verbal)

• Gait Velocity (Walking speed m/s)

Atrophy can as mentioned be measured as loss of gray and white matter volume
but also as an increase of CSF volume. Combining these two measures provides
a single valued measure for atrophy. This combined measure may even reveal
information about atrophy only evident in either CSF or gray and white matter.
The combined measure A is calculated as the weighted mean:

A = w · µgw + (1− w) · (2− µcsf ),

where w is ratio of gray and white matter compared to CSF, and µgw and µcsf

are the relative volume of respectively gray and white matter, and CSF.

In figure 7.26 the three atrophy measures are shown versus the age of the pa-
tients. Additionally the result of a linear regression is shown. The top left figure
shows a small negative correlation between the relative volume of gray and white
matter, and age. A larger positive correlation between the relative volume of
CSF and age can be seen in the top right figure. Of the three measures the
largest magnitude of correlation is between the combined atrophy measure and
age. This negative correlation is shown in the bottom figure.
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These correlations are all as expected since they follow the theory that brain
atrophy is related to age.
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Figure 7.26: Scatter plot of age versus relative volumes of gray and white mat-
ter and CSF. The right figure shows the combined atrophy measure. Linear
regressions are shown with red lines.

To measure the degree of correlation two different measures are calculated: Pear-
son’s r and Spearman’s ρ as described in section 6.3.

Table 7.3 lists the correlations between the three atrophy measures and the
eight above mentioned parameters. Many of the parameters show significant
correlations while some of them (systolic and diastolic blood pressures) do not.

While some changes in the brain take place on a global level it is possible that
some changes only happen locally. Having the information from the registered
anatomical atlas available allows us to test this hypothesis by dividing the brain
into the lobes. The lobe volume is constructed by combining the appropriate
VOIs into the frontal, parietal, occipital, and temporal lobes (see appendix C).
These subvolumes only contain gray and white matter and not CSF.
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Clinical µgw µcsf Acombined

parameter Pearson Spearman Pearson Spearman Pearson Spearman

Age
r=−0.187 ρ=−0.194 r=0.414 ρ=0.407 r=−0.475 ρ=−0.453
p=2.02e-1 p=1.85e-1 p=3.40e-3 p=4.39e-3 p=7.41e-4 p=1.54e-3

BPsys
r=0.055 ρ=0.097 r=0.214 ρ=0.260 r=0.013 ρ=−0.040

p=7.13e-1 p=5.15e-1 p=1.48e-1 p=7.74e-2 p=9.30e-1 p=7.87e-1

BPdia
r=−0.055 ρ=−0.061 r=−0.210 ρ=−0.407 r=−0.475 ρ=−0.453
p=7.13e-1 p=6.82e-1 p=1.47e-1 p=2.00e-1 p=3.59e-1 p=5.16e-1

BMI
r=−0.475 ρ=−0.458 r=−0.135 ρ=−0.185 r=−0.479 ρ=−0.451
p=7.31e-4 p=1.21e-3 p=3.66e-1 p=2.12e-1 p=6.55e-4 p=1.45e-3

Stroop2s
r=−0.233 ρ=−0.153 r=0.097 ρ=0.117 r=−0.400 ρ=−0.343
p=1.15e-1 p=3.03e-1 p=5.12e-1 p=4.27e-1 p=5.92e-3 p=1.97e-2

Trail1s
r=−0.127 ρ=−0.255 r=0.471 ρ=0.450 r=−0.400 ρ=−0.575
p=3.96e-1 p=8.33e-2 p=6.38e-4 p=1.19e-3 p=4.40e-3 p=1.57e-4

Verbal
r=0.036 ρ=−0.021 r=−0.390 ρ=−0.422 r=0.398 ρ=0.325

p=8.11e-1 p=8.91e-1 p=6.74e-3 p=3.09e-3 p=6.18e-3 p=2.74e-2
Walking r=0.199 ρ=0.123 r=−0.297 ρ=−0.356 r=0.420 ρ=0.349
speed p=1.85e-1 p=4.17e-1 p=4.24e-2 p=1.41e-2 p=3.63e-3 p=1.73e-2

Table 7.3: Correlation coefficients between clinical parameters and relative vol-
ume of gray and white matter (µgw), CSF (µcsf ), and the combined atrophy
measure (Acombined). The shaded areas shows where the p-values for testing
the hypothesis of no correlation against the alternative that there is a non-zero
correlation is below 0.05.

Additionally we can investigate if there are any differences in correlation with
regard to sex. An example of the correlation is shown in figure 7.27, where age
is plotted against the relative volume of the left and right occipital lobes. The
figure indicates that the regression coefficient is apparently different for men
and women.
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Figure 7.27: Scatter plot of age versus relative volumes of the occipital lobes.
Additionally the linear regressions are shown for both sexes together and sepa-
rately.
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Scatter plots for the three other lobes are shown in appendix D. Table 7.4
summarizes the correlation coefficients for the relationship between age and the
relative volumes of the lobes. Notice that the correlation is primarily present
for women and not in all of the lobes. This suggests that the hypothesis that
some changes in the brain are located locally, is correct.

Lobe
µgw (both sexes) µgw (men) µgw (women)

Pearson Spearman Pearson Spearman Pearson Spearman
Left r=−0.334 ρ=−0.338 r=−0.211 ρ=−0.271 r=−0.314 ρ=−0.336
frontal p=1.91e-2 p=1.81e-2 p=3.71e-1 p=2.47e-1 p=9.67e-2 p=7.48e-2
Right r=−0.280 ρ=−0.314 r=−0.081 ρ=−0.192 r=−0.313 ρ=−0.379
frontal p=5.10e-2 p=2.85e-2 p=7.35e-1 p=4.14e-1 p=9.87e-2 p=4.32e-2
Left r=−0.248 ρ=−0.264 r=−0.108 ρ=−0.005 r=−0.283 ρ=−0.312
parietal p=8.87e-2 p=7.01e-2 p=6.60e-1 p=9.86e-1 p=1.37e-1 p=9.93e-2
Right r=−0.418 ρ=−0.403 r=−0.190 ρ=−0.193 r=−0.522 ρ=−0.476
parietal p=3.83e-3 p=5.88e-3 p=4.37e-1 p=4.27e-1 p=5.22e-3 p=1.30e-2
Left r=−0.284 ρ=−0.236 r=0.020 ρ=0.042 r=−0.398 ρ=−0.324
occipital p=4.82e-2 p=1.03e-1 p=9.30e-1 p=8.59e-1 p=3.59e-2 p=9.29e-2
Right r=−0.267 ρ=−0.257 r=0.040 ρ=0.071 r=−0.301 ρ=−0.322
occipital p=6.65e-2 p=7.77e-2 p=8.68e-1 p=7.67e-1 p=1.19e-1 p=9.52e-2
Left r=−0.400 ρ=−0.407 r=−0.493 ρ=−0.444 r=−0.340 ρ=−0.347
temporal p=4.83e-3 p=4.39e-3 p=3.19e-2 p=5.85e-2 p=7.12e-2 p=6.59e-2
Right r=−0.469 ρ=−0.482 r=−0.342 ρ=−0.372 r=−0.510 ρ=−0.533
temporal p=7.68e-4 p=6.09e-4 p=1.52e-1 p=1.18e-1 p=4.73e-3 p=3.33e-3

Table 7.4: Correlation coefficients between age and the relative volume of gray
and white matter (µgw)

The correlation coefficients for the other seven clinical parameters are listed in
appendix D, where the same tendency to exhibit local changes is apparent. For
instance correlations with verbal fluency and walking speed seem to be restricted
to the temporal lobe. Others, such as BMI, are defined more globally. All of
the strong correlations are as expected with regard to their sign.

Having concluded that the differences in the brain are locally defined, we can
investigate if it is possible to narrow down the location of the differences even
further. This is done by using the VOIs in the LPBA40 atlas separately (ap-
pendix C).

Table 7.5 summarizes the most significant correlations with p < 0.001. The
table only lists the correlation coefficient for men and women together. As it
can be seen many strong correlations can be derived from the registrations.

Having observed that a significant correlation between the relative volumes and
the clinical parameters exists we can extend the modelling to multiple regression.

For this we will use the stepwise regression as described in section 6.4. In the
model only linear terms are included since the quadratic terms in general did
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Parameter
Label µgw (both sexes) Label µgw (both sexes)
ID Pearson Spearman ID Pearson Spearman

Age

23
r=−0.594 ρ=−0.587

65
r=−0.620 ρ=−0.606

p=2.67e-5 p=4.97e-5 p=2.61e-6 p=8.05e-6

81
r=−0.576 ρ=−0.561

83
r=−0.637 ρ=−0.621

p=6.61e-5 p=1.43e-4 p=2.52e-6 p=8.72e-6

84
r=−0.468 ρ=−0.473

164
r=−0.496 ρ=−0.483

p=7.97e-4 p=7.92e-4 p=5.25e-4 p=8.94e-4

BPsys 84
r=−0.537 ρ=−0.511
p=1.69e-4 p=3.88e-4

BMI

27
r=−0.473 ρ=−0.469

28
r=−0.469 ρ=−0.510

p=8.90e-4 p=1.02e-3 p=8.78e-4 p=2.52e-4

30
r=−0.722 ρ=−0.664

85
r=−0.491 ρ=−0.458

p=2.22e-8 p=6.66e-7 p=4.64e-4 p=1.22e-3

86
r=−0.569 ρ=−0.528

91
r=−0.519 ρ=−0.501

p=5.68e-5 p=2.32e-4 p=3.08e-4 p=5.40e-4

164
r=−0.535 ρ=−0.551
p=1.82e-4 p=1.05e-4

Stroop2s 27
r=−0.555 ρ=−0.402
p=9.18e-5 p=6.80e-3

Trail1s

65
r=−0.622 ρ=−0.507

86
r=−0.620 ρ=−0.606

p=3.01e-6 p=2.72e-4 r=−0.509 ρ=−0.498

88
r=−0.692 ρ=−0.514

92
r=−0.516 ρ=−0.514

p=2.82e-7 p=4.16e-4 p=2.07e-4 p=2.22e-4

101
r=−0.491 ρ=−0.454
p=3.96e-4 p=1.19e-3

Verbal 29
r=0.478 ρ=0.485

86
r=0.538 ρ=0.514

p=9.05e-4 p=7.37e-4 p=1.40e-4 p=3.06e-4

Walking speed

49
r=0.479 ρ=0.476

65
r=0.541 ρ=0.533

p=9.91e-4 p=1.09e-3 p=5.98e-5 p=8.03e-5

81
r=0.609 ρ=0.573

86
r=0.577 ρ=0.493

p=6.32e-5 p=2.12e-4 p=3.30e-5 p=5.75e-4

91
r=0.572 ρ=0.560

92
r=0.576 ρ=0.540

p=3.22e-5 p=5.14e-5 p=3.47e-5 p=1.27e-4

Table 7.5: Correlation coefficients clinical parameters and the relative volumes
(µgw) of VOIs from the LPBA40 atlas.

not yield significantly better results. This will also simplify the interpretation
of the resulting model.

First we establish a model for explaining the global atrophy as defined by the
combined measure. Which of the eight clinical parameters should be included is
decided by performing a stepwise regression. The result is, that age, BMI, and
the Trail making test yields an R2 of 0.41. The found model is:

Acombined = −3.18e-3 ·Age−−4.72e-3 · BMI−−6.50e-4 · Trail1s

The p-values for each of the parameters and for the model are listed in tabel 7.6.
This method is also applied to find a model for describing the relative volume
in each of the eight lobes. The result of this is listed in table 7.7.
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Parameter Acombined

Age 2.5401e-3
BMI 1.1958e-3
Trail1s 1.2947e-2
R2 0.41
adj. R2 0.36
p-value 4.05e-5

Table 7.6: p-values for the atrophy model.

Lobe
Left Right Left Right

Parameter frontal frontal parietal parietal
Age 3.6023e-3 5.9872e-3 4.2067e-2
BPsys 6.4132e-2 5.7342e-2
BPdia
BMI 4.4045e-4 4.8939e-3 1.6473e-2 7.9244e-2
Stroop2s
Trail1s 7.7186e-3
Verbal
Walking speed
R2 0.45 0.27 0.12 0.13
adj. R2 0.38 0.20 0.08 0.08
p-value 4.21e-5 3.61e-3 1.65e-2 4.25e-2

Left Right Left Right
Parameter occipital occipital temporal temporal
Age 3.3377e-2 7.9322e-2 5.7370e-3
BPsys 7.0199e-5
BPdia 7.5350e-2
BMI 2.3624e-2 6.0559e-2 3.0563e-3
Stroop2s 1.3102e-2
Trail1s 3.1888e-2 6.6140e-4
Verbal 6.3785e-3
Walking speed
R2 0.27 0.25 0.42 0.44
adj. R2 0.20 0.18 0.37 0.39
p-value 3.15e-3 6.20e-3 2.52e-5 1.27e-5

Table 7.7: p-values for the significant (p < 0.1) parameters and for the models
describing the relative volumes (µgw) of the lobes.

From this it can be concluded that it is possible to make a decent model for
some of the lobes while it is harder for others. It can also be derived that some
of the parameters, such as age and BMI, are more describing than other, e.g.
walking speed.

While a model can be made for describing the relative volumes by the clini-
cal parameters, the opposite approach is also possible (i.e. modelling clinical
parameters by relative volumes).
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If we want to model age we can try to describe this by the relative volume of the
lobes. This turns out, however, not to be a good model (R2 = 0.10). Instead we
use the 52 VOIs in the LPBA40 atlas as possible describing parameters. The
result of this is a model with 5 explanatory factors (as listed in tabel 7.4) and
R2 = 0.55.

Label ID Age
44 9.6290e-002
65 4.5140e-007
67 3.6921e-004
85 4.4948e-002
122 5.7232e-002
R2 0.55
adj. R2 0.49
p-value 8.57e-7

Table 7.8: p-values for the age model.

7.5 Summary and discussion

In this chapter we have analyzed the LADIS images and clinical data for 50
subjects cross-sectionally. This has been accomplished using the framework
presented in chapter 3. A brief summary and discussion of the key points follows.

7.5.1 Spatial normalization

We used the registration procedure outlined in chapter 4. The tensor B-spline
approach used is a partially implicitly regularized approach that does not rely
on a physical model for the registration. Using explicit regularization terms the
regularization can be modified to the accommodate specific requirements that
exist for the cross-sectional analysis. Because the registration has no physical
model as a basis, the need for explicit regularization terms necessitates some
parameter estimation.

The target for the registration was chosen to be one of the subjects.

The registration algorithm was able to capture the fundamental differences be-
tween subjects as visually inspected. At the same time, visual inspection showed
that the deformations represented feasible transformations. Because of funda-
mentally different topology between subjects, the registration was unable to
completely model differences in the finest brain structures, but the overall dif-
ferences were modelled.
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Artifacts were present in some of the images, however this seems to have affected
the registration only to a small degree. The choice of a preprocessing filtering
of the images appears to have been a good choice and has diminished the effect
of the artifacts on the registration.

Because of the mentioned characteristics of the registration method, it is our
opinion that it is well suited for registering one T1-weighted MR image to an-
other, thereby capturing differences between brains with the goal of performing
TBM.

7.5.2 Metric extraction

For the cross-sectional analysis, only the relative volume metric was employed.
This was done due to the fact that the differences are so large that we expect
the relative volume metric to be able to capture them in a satisfying manner.
Additionally, the relative volume metric is directly interpretable.

With this, an atlas was generated, confirming that the registration approach is
valid.

7.5.3 Statistical analysis

In the statistical analysis we have shown that TBM can be used to detect dif-
ferences between subjects. Voxelwise tests have shown very localized effects
that are to a degree affected by misalignments in the registration, despite the
implicit smoothing of the B-spline representation. Using regional tests we have
overcome this problem, however this provided less localized results.

Using a group test, we were able to examine differences in the mean of the
relative volume metric for three grouping parameters.

The achieved results were correlated with a selection of clinical parameters, of
which several showed significant correlation. For the global measures of differ-
ences in the volumes of CSF and gray/white matter, we observed the expected
relationships: The amount of gray/white matter decreased with age and vice
versa for CSF. Most of the clinical parameters exhibited correlation with a com-
bined global atrophy measure.

Some of the clinical parameters seemed to be more regionally correlated. This
suggests both that dividing the brain into volumes of interest and that the
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approach using an atlas to achieve this is valid.

Visual inspection of the data showed large variations. One can imagine numer-
ous reasons for this, and with a data set as small as the one we have worked with
it is to be expected. For example, the anatomical atlas that we use does not
provide direct functional information about the brain. If a more precise func-
tional mapping of the brains could be provided, improved results would likely
be seen.

The interpretation of the specific significant regional results are left to persons
with a background within medicine. As is often the case with statistical results,
causal inferences cannot necessarily be extracted from the results. This requires
more knowledge of the specific relationships between cause and effect and ideally
a controlled experiment.

We have shown models explaining both morphological changes with clinical
parameters and vice versa. With the number of observations and dependent
variables available to us, the results should be interpreted with some caution.
There is a risk of obtaining spuriously significant results. This could be corrected
for using several techniques (e.g. Bonferroni adjustment).

The modelling approach could be expanded to the so-called General Linear
Model, including both multiple independent and dependent variables, to gain
more insight into the relationships between the morphological differences and
external factors.



Chapter 8

Results: Longitudinal study

In this chapter we apply the the methods described in earlier chapters to a
longitudinal analysis of the LADIS data. The goal of the longitudinal analysis
is to gauge changes to each of the subjects and compare these changes cross-
sectionally.

To reiterate, the steps we take in the longitudinal analysis are:

1. Brain extraction on baseline images.

2. Spatial normalization of baseline images to a common reference.

3. Spatial normalization of followup images to their corresponding baseline
image.

4. Transformation of the result from 3 into a common reference space using
the results from 2.

5. Calculation of spatial derivatives (or measures derived from them) of the
results from 4.

6. Statistical analysis of results.
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Items 1 and 2 are already covered in chapter 7, so in this chapter we concentrate
on the steps that are unique or different for the longitudinal analysis.

For the longitudinal analysis only 27 image pairs are available. This is due to
data availability issues. It is also worth noting that the followup images are of a
generally worse quality than the baseline images, many of them exhibiting clear
signs of motion artifacts and general noise (see section 2.1.5 on page 5).

8.1 Spatial normalization within subjects

Having completed the preceding steps, we can proceed with the spatial normal-
ization by registration. Much of the registration process is similar to that of
the cross-sectional analysis. There are however a few key points that need to be
discussed.

8.1.1 Registration target

The target image is naturally one of the two that are available for each subject.
We choose to use the baseline image as the target. Doing this allows us to use
the already existing cross-sectional registrations described in chapter 7 to negate
the effects of between subject variability when comparing longitudinal changes
cross-sectionally (see section 8.2).

8.1.2 Image filtering and similarity measure

As in the cross-sectional analysis we choose to filter the images with a gaussian
kernel to achieve less influence from noise. Because we are working with the
same images the kernel width is chosen to be the same with a FWHM of 0.75
mm. For the same reasons as given in the cross-sectional analysis, we choose to
use NMI as the similarity measure.

8.1.3 Global registration

For the global registration it is important to choose which part of the images to
base the registration on. As for the cross-sectional registration, there are a few
obvious possibilities: Brain to brain, skull to skull, and head to head.



8.1 Spatial normalization within subjects 81

Because the registration is being performed within the same subjects, and the
skulls can be expected to remain the same size for these subjects, the skull to
skull registration is the natural choice.

A simple rigid registration is appropriate for the global registration — again
because the skulls of grown adults can be expected to remain the same over a
three year period and we wish to measure changes that might not be possible
to detect if a complete affine transformation (including scaling) was used.

As for the global registration between subjects, the multi-resolution approach is
well suited to ensure convergence to a global optimum.

8.1.4 Local registration

Unlike in the cross-sectional registration we can expect the brains of the subjects
to be very alike, since they are elderly subjects with completely developed brains.
On the other hand we can expect that smaller changes have taken place, which
means that the registration must be able model these small changes. For these
reasons we choose to use a single level deformation grid with a control point
spacing of 2 mm.

Furthermore, we expect that in general, topological changes will not occur (i.e.
no folding of tissue). Because of this, we choose to use only the topology pre-
serving penalty during the registration. The topology penalty is controlled by
the parameter λ3. We choose the parameter by performing registrations with
different values of λ3 and calculating the relative volumes over the entire defor-
mation field. If a field results in negative values of the relative volume (i.e. has
a fold), the corresponding λ3 is rejected, and a higher one is chosen. This is
repeated for a number of the images to ensure stability (see figure 8.1).

The value chosen for the registration is λ3 = 0.00025, which lies well above the
values where there are no longer any negative relative volumes. Choosing λ3

this high limits the pliability of the registration to a degree, but not more than
is acceptable.

8.1.5 Registration results

The result of the registrations are the transformations that transform each of
the followup images into the corresponding baseline image. The validity of the
registrations is verified by means of visual inspection of the transformed images
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Figure 8.1: Choosing λ3 for the within subject registration. Three followup
images have been registered to the corresponding baseline images with different
values of λ3. As λ3 increases, the magnitude of the smallest relative volume
decreases. The dashed vertical line shows the chosen value of λ3 = 0.00025.

and the deformation grids.

8.1.5.1 Visual inspection of transformed images

Since the differences within subjects are so small, it is not very easy to inspect
the images directly. Instead, we can inspect the difference between the baseline
image and the transformed followup image. Examples of this can be seen in
figure 8.2.

The inspection reveals some differences, but these are expected due to both
noise, the implicit regularization of the B-spline and the topology preserving
regularization. It is however clear that the transformation has to a high degree
been able to model the actual changes. For example, the large expansions in
the ventricular area of subject 1 have clearly been modelled.

8.1.5.2 Visual inspection of deformation grids

To ensure that the deformation grids represent plausible transformations, we
inspect the grids. This inspection shows that the grids are all well behaved (no
folds etc.). A few examples can be seen in figure 8.3.
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Figure 8.2: Registration of different subjects to target. Top row: Difference
images after global registration. Bottom row: Difference images after local
registration. From left to right: Subject 1, subject 16, subject 38.

Visual inspection reveals that all of the deformation grids are well behaved.

8.2 Metric extraction

For the longitudinal data we choose to use both the relative volume metric
and the Log-Euclidean metrics. This choice is made because we expect within
subject changes to be small and perhaps exhibit anisotropy, and as such the
relative volumes might not be sufficient to detect changes fully.

The longitudinal registration results can be analyzed using two different ap-
proaches: In the space of each baseline image or in the space of the target in
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Figure 8.3: Crop of deformation grids for registrations of different subjects to
target overlayed on the transformed images. From left to right: Subject 1,
subject 16, subject 38.

the cross-sectional analysis (subject 2). Each approach has its advantages and
disadvantages.

Extracting the information to baseline space has the advantage of preserving
spatial information about deformations, so that we can relate the information
directly to the subject image. However, taking this approach makes it impossible
to compare changes between subjects.

Extracting the information to the cross-sectional target space has the advantage
of normalizing the information to a common spatial frame, so that we can make
cross-sectional inferences about changes within subjects. This does however
introduce a need for transforming the within subject transformation, such that
it is difficult to spatially relate the changes to the subject images.

To ensure the best outcome of the longitudinal analysis, we take both ap-
proaches, choosing the appropriate one for specific tasks.

8.2.1 Extracting to baseline space

Since the longitudinal transformations exist in the space of the baseline images,
extracting the Jacobian to baseline space is equivalent to the extraction into
target space for the cross-sectional registrations.

Following calculation of the Jacobian matrix, both the relative volumes and the
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Log-Euclidean metrics can be extracted. For the relative volumes, this is done
in the same way as for the cross-sectional study. The idea is basically the same
for the Log-Euclidean metrics, except that the end result is a tensor field where
a six-dimensional vector is associated with every point in space.

8.2.2 Extracting to cross-sectionally normalized space

As described in the previous section, the transformations exist in the coordinate
space of the baseline images. To enable us to make cross-sectional inferences
on the longitudinal data, we can transform the transformations into the space
of baseline subject 2, using the transformations obtained in the cross-sectional
analysis.

The order in which we accomplish this is crucial to the precision of the results.
We could elect to first extract the Jacobians from the longitudinal transforma-
tions, and then transform these with the cross-sectional transformations. This
would, however, result in a need for interpolation, which in turn would lead
to lower precision in the results. A suitable interpolation algorithm would also
need to be chosen, and the correct choice is not trivially obvious.

Instead, we choose to transform a sampling grid located in the space of subject
2 into the space of each baseline image (using the cross-sectional transforma-
tions), and calculate the Jacobian of the longitudinal transformation in each
transformed grid point. Using the notation introduced in chapter 3, this be-
comes

Jtotal = J (Ttotal) = J (Tcross(Tlong)),

where Jtotal is in the same space as the cross-sectional target (subject 2). The
process is illustrated in figure 8.4.

Following this, both the relative volume metric and Log-Euclidean metric can
be extracted from the calculated Jacobians.

8.2.3 Distributions

After calculating the relative volumes as described, we start by inspecting their
distribution to evaluate the assumptions about normality that will be used in
the later analysis. First, we view histograms of both the raw data and the
logarithmically transformed data (figure 8.5).
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Figure 8.4: Transforming the within subject transformation into a common
space.

From the histograms it is not clear which is most normally distributed. Using
probability plots, we inspect this more closely (figure 8.6).

From the probability plots it is clear that the normal distribution is not a good
match. Although the plots show clear signs of tails when comparing to the
lognormal distribution, it is clearly more evenly distributed and as such a better
choice for the further analysis. Because of this, we choose to transform the raw
relative volume data with a logarithmic transformation, even though it will give
some falsely significant values in the later statistical analysis.

For the Log-Euclidean metrics, we can inspect the histogram of each of the six
vector components (figure 8.7).

The histograms all exhibit normal tendencies, making the assumptions in the
later statistical tests valid.

8.2.4 Building a change atlas

There are many ways to visualize the data collected in the information extrac-
tion. An intuitive way is to construct a change atlas — an atlas that captures the
“mean” change of the population. This can be done using the cross-sectionally
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Figure 8.5: Histograms of relative volumes.

normalized relative volume data. This reveals some useful results (see figure
8.8).

The most noticeable changes happen in the CSF of the ventricular system, where
a clear tendency for expansion is seen. To a lesser degree contractions in gray
and white matter can be seen, especially in the area surrounding the ventricles.
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Figure 8.6: Probability plot against the normal distribution (left) and lognormal
distribution (right).
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Figure 8.8: Three slices of a change atlas. The mean of the normalized volumes
of relative volumes of all 27 subjects. Blue indicates expansion, brown indicates
contraction.
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8.3 Statistical analysis

In this section we give some examples of how the data from the metric extraction
can be analyzed. As mentioned above, the goal is twofold: To find changes
within subjects and to compare these changes cross-sectionally. From the metric
extraction step two sets of data are available - one in baseline space and one in
cross-sectionally normalized space.

The difference might not be obvious, but there is a distinction in the results
that are achieved. The first will find areas of significant changes compared to
the general changes that happen in the same subject, while the second will find
areas of significant changes compared to the changes that happen in the same
area of all the subjects.

8.3.1 Data in baseline space

For the data in baseline space, we carry out a per voxel test. In the per voxel
test, each subject is tested individually for significant changes on the assumption
that the norm is that nothing happens within a subject brain. In this way,
statistics are calculated for the entire volume of a single subject, and each voxel
is tested using these statistics. This can be done both within the relative volume
framework and the Log-Euclidean framework.

8.3.1.1 Relative volumes

For each of the subjects, statistics (mean and standard deviation) are calculated,
and every voxel is assigned a Z score and a p-value according to these statistics.
The result is, for each subject, a volume of p-values that indicates how likely
the change in each voxel is to have happened compared to the changes in all the
other voxels of the same subject.

Figure 8.9 shows an example of a baseline and followup image from one subject
where a significant change has taken place during the period between the base-
line and the followup assessment. The morphological change is captured by the
registration procedure and the volume of p-values is calculated (see figure 8.10).
Although the area around the infarction is found to be significant the result is
quite noisy and scattered and the effects are not very evident.
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Figure 8.9: The left image shows the baseline data from subject 1 and the
corresponding followup image and shown in the middle. The right image is a
crop of the followup image focused on the significant change. Notice the cortical
infarction (the black spot that has appeared in the followup image at (-30, 35)).

0.95

0.96

0.97

0.98

0.99

1

0

0.01

0.02

0.03

0.04

0.05

p
−

v
a
lu

e
s

Transverse plane

x (mm)

y
 (

m
m

)

−50 0 50

−100

−50

0

50

100

0.95

0.96

0.97

0.98

0.99

1

0

0.01

0.02

0.03

0.04

0.05

p
−

v
a
lu

e
s

Transverse plane

x (mm)

y
 (

m
m

)

−60 −40 −20 0
0

10

20

30

40

50

60

70

80

90

100

Figure 8.10: Left image: The deformation grid shown together with the trans-
formed image. Middle image: Significant differences in log(Vrel) overlayed on
the transformed image. The overlay shows p < 0.05 and p > 0.95 in blue and
red respectively. Right image: Crop of the middle image.

8.3.1.2 Log-Euclidean metrics

To improve this result, we employ the Log-Euclidean metrics. To calculate the
p-values as we did in the relative volume framework we use the Hotelling T 2

statistics using the mean and covariance matrix of the six-dimensional Log-
Euclidean vectors. This reduces the data to one-dimensional sizes. By a log-
arithmic transformation the distribution becomes approximately normal (see
figure 8.11). This is implemented in the Matlab script makelestats.m (see
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appendix E, page 120).
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Figure 8.11: (a): The distribution of the T 2-values. (b): The distribution of
the logarithmic transformed T 2-values. (c): Normal probability plot of the
logarithmic transformed T 2-values.

In contrast to the relative volume, values smaller than the mean no longer repre-
sents contraction. In the Log-Euclidian framework they represent that nothing
happens. This means that the test for significant changes is one-sided and not
two-sided as in the relative volume framework. Applying this multivariate sta-
tistical test to the example above gives different results (see figure 8.12) Because
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Figure 8.12: Left image: Significant differences in using the Log-Euclidean
framework overlayed on the transformed image. Right image: Crop from of
left image. The overlay shows p > 0.9. Compare this to figure 8.10

of the increased significance of previously insignificant values the area around
the infarction appears as one connected component. The morphological change
becomes very clear using this method.

To further investigate the differences between the Log-Euclidean framework and
the relative volume framework two more cases are studied: Subject 11 and 22.
As subject 1 these two subjects exhibit large changes in the selected areas.
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Figure 8.13: Crop from transverse slice in subject 11. The left image shows
the baseline data and the right shows the followup. Notice the periventricular
infarction (the black extension of the ventricle at (20, 20) of the followup image).
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Figure 8.14: Left image: The deformation grid shown together with the trans-
formed image. Middle image: p-values using the relative volume framework.
Right image: p-values using the Log-Euclidean framework.

As can be seen in both the image and to some degree in the overlayed defor-
mation grid a large change has occurred. The relative volume framework does
not capture this very well. In contrast the morphological change is detected as
significant by the Log-Euclidean framework.
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Subject 22
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Figure 8.15: Crop from transverse slice in subject 22. The left image shows the
baseline data and the right shows the followup. Notice the major infarction at
(-30, 40) in the followup image and the enlargement of the ventricles.
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Figure 8.16: Left image: The deformation grid shown together with the trans-
formed image. Middle image: p-values using the relative volume framework.
Right image: p-values using the Log-Euclidean framework.

In this case both the image and the deformation grid also show a clear change,
however, the captured effects are different between the two frameworks. The
relative volume framework seems to capture the expansion of the ventricles well
while being unable to detect the infarction. Using the Log-Euclidean framework
both the infarction and the expansion of the ventricles are detected.
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8.3.2 Cross-sectionally aligned data

For the cross-sectionally aligned data, two analyses are carried out:

• Per voxel test

• Regional test

In addition to these tests, we can test for correlation with some of the clinical
measurements that are available from the LADIS study (age, BMI, etc.).

8.3.2.1 Per voxel test

In the per voxel test, each relative volume voxel is treated as a separate observa-
tion Vrel, and is tested cross-sectionally across the 27 subjects for significance.
Under the assumption that in each voxel, across the subjects, the data is log-
normally distributed (as investigated in section 8.2), each voxel can be assigned
a Z score and a p-value can be found. Since we are interested in studying both
significant expansions and contractions, a two-sided test is employed.

For each subject this gives a volume containing the probability that for a given
relative volume voxel tells us how likely an outcome as or more extreme is to
have happened compared to the rest of the subjects (see figure 8.17).
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Figure 8.17: Significant changes in log(Vrel) overlayed on normalized images.
The overlay shows p < 0.05 and p > 0.95 in blue and red respectively. From left
to right: Subject 1, subject 16, subject 38.

The results seem somewhat noisy. Due to the fact that the within subject
changes are quite small and localized, the noise could be an artifact from the
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between subject normalization. A small shift in the location of a voxel can result
in a large change in a p-value because the calculation of the p-value is based on
the assumption that every corresponding voxel is spatially coinciding.

For the above reason, we elect not to use the Log-Euclidean metric for this test,
since it is unlikely to yield less noisy results.

8.3.2.2 Regional test

To alleviate the problems with the voxelwise test, we can (as for the cross-
sectional analysis) divide the brain into a number of VOIs, and for each of these
compare the mean relative volume cross-sectionally.

As for the cross-sectional analysis, the LPBA40 atlas is used to partition the
images into VOIs. For details on how the partitioning is accomplished, see
section 7.4.2 on page 65. Example results are shown in figure 8.18. It is obvious
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Figure 8.18: Significant changes in regional log(Vrel) overlayed on normalized
images. The overlay shows p < 0.05 and p > 0.95 in blue and red respectively.
From left to right: Subject 1, subject 16, subject 38.

that the noise is reduced, however it is difficult to compare the result directly
to the per voxel test because of the influence of the third dimension. The maps
do however give a good indication of areas where changes have happened.

8.4 Clinical correlation

As we did in the analysis of the cross-sectional registrations we can correlate the
data from the longitudinal registrations with the clinical parameters. We now
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correlate the clinical parameters with the morphological changes within each
subject as opposed to the cross-sectional analysis where we correlated clinical
parameters with differences between subjects.

A number of options for which parameters should be chosen are available: The
baseline parameters, the followup parameters, the difference between the base-
line and followup parameters, etc. An intuitive choice is to select the difference
between the baseline and followup parameters. This way we can correlate the
changes in the brain with the changes in the clinical parameters. For the eight
parameters we have chosen, however, this is not feasible for all of them.

When the clinical parameters are measured during the third year followup ses-
sion it is the fourth time the patients are evaluated. This means that the subjects
are familiar with the tests compared to the baseline evaluations. For example
the mean of the walking speed has increased during the three years. This is
certainly not to be expected for elderly subjects.

To get a meaningful parameter measure that represents the period over which
the longitudinal changes has taken place we calculate the mean of the baseline
and the followup assessment. The means of these parameters are then correlated
with the global atrophy. The result of this is summarized in table 8.1.

Clinical µgw µcsf Acombined

parameter Pearson Spearman Pearson Spearman Pearson Spearman

Age
r=0.100 ρ=0.045 r=−0.101 ρ=−0.034 r=0.106 ρ=0.037

p=6.21e-1 p=8.25e-1 p=6.18e-1 p=8.68e-1 p=6.00e-1 p=8.56e-1

BPsys
r=−0.094 ρ=−0.193 r=0.436 ρ=0.458 r=−0.248 ρ=−0.337
p=6.42e-1 p=3.35e-1 p=2.31e-2 p=1.64e-2 p=2.13e-1 p=8.53e-2

BPdia
r=−0.015 ρ=−0.054 r=0.360 ρ=0.321 r=−0.156 ρ=−0.150
p=9.42e-1 p=7.90e-1 p=6.50e-2 p=1.02e-1 p=4.36e-1 p=4.54e-1

BMI
r=−0.038 ρ=0.051 r=−0.186 ρ=−0.202 r=0.056 ρ=0.096
p=8.50e-1 p=7.99e-1 p=3.53e-1 p=3.11e-1 p=7.83e-1 p=6.33e-1

Stroop2s
r=−0.491 ρ=−0.403 r=0.269 ρ=0.197 r=−0.444 ρ=−0.357
p=1.47e-2 p=5.06e-2 p=2.04e-1 p=3.57e-1 p=2.96e-2 p=8.69e-2

Trail1s
r=−0.264 ρ=−0.105 r=0.133 ρ=0.039 r=−0.226 ρ=−0.088
p=1.92e-1 p=6.08e-1 p=5.18e-1 p=8.50e-1 p=2.67e-1 p=6.69e-1

Verbal
r=0.357 ρ=0.369 r=−0.246 ρ=−0.244 r=0.344 ρ=0.368

p=6.72e-2 p=5.82e-2 p=2.16e-1 p=2.21e-1 p=7.87e-2 p=5.87e-2
Walking r=−0.208 ρ=−0.155 r=0.354 ρ=0.306 r=−0.291 ρ=−0.223
speed p=3.08e-1 p=4.50e-1 p=7.62e-2 p=1.29e-1 p=1.49e-1 p=2.74e-1

Table 8.1: Correlation coefficients between the mean of the clinical baseline
and the followup parameters, and relative volume changes of gray and white
matter (µgw), CSF (µcsf ), and the combined atrophy measure (Acombined). The
correlation coefficients, r, with a magnitude > 0.25 is shaded in addition to the
p-values < 0.05

Only a few correlations turn out to be significant (p < 0.05). This may be due
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to the decreased number of subjects in the longitudinal analysis (27 vs. 50 in
the cross-sectional analysis) combined with a large variance of the parameters.

In the correlation between CSF and blood pressure a positive correlation is
found. For the combined atrophy measure a negative correlation with the stroop
parameter and a positive correlation with the verbal parameter is found. All of
these result is according to what could be expected. More surprising is it that
a negative correlation between atrophy and walking speed is found.

As for the cross-sectional analysis we can subdivide the brain volume into lobe
volumes to inspect if this can reveal additional information. In general the result
of doing this is that no significant correlations are found. The few significant
correlations found might as well have been obtained by chance because of the
high number of correlation tests rather than because of actual correlation.

8.5 Discussion

In this chapter we have analyzed the LADIS images and clinical data longitu-
dinally. This has been accomplished using the framework presented in chapter
3. A brief summary and discussion of the key points follows.

8.5.1 Spatial normalization

As for the cross-sectional analysis, the tensor product B-spline approach was
taken to the registration problem. Due to the expected changes we have chosen
to use a explicit regularizer that ensures topology preservation. To ensure that
the registration was not overregularized, we chose the penalty parameter as low
as possible. However, because of the resulting non-monotonicity as a function of
the penalty parameter, we had to choose a relatively large regularizing penalty.
Despite this, the registration was able to sufficiently model the observed changes.

Due to the implicit regularization of the tensor product B-spline approach very
sharp and localized changes are not fully modelled.
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8.5.2 Metric extraction

Two approaches to extracting the Jacobian were presented, one where the results
were located in the baseline space of each subject and one where all of the results
were spatially normalized to one of the subjects. Each has its uses — the former
can be used to accurately gauge changes in one subject, while the latter can be
used to conduct cross-sectional change comparisons.

The magnitude and shape of the changes that are expected longitudinally are
such that we chose to investigate both the relative volume metric and the Log-
Euclidean metric.

With the relative volume metric, we constructed a change atlas, showing where
contractions and expansions are most likely to happen. The atlas confirms the
validity of both the registration approach and the relative volume metric in
showing a general tendency for expansion in the ventricular system.

8.5.3 Statistical analysis

In the statistical analysis we have shown that TBM can be used to detect changes
within subjects. In baseline subject space, we compared changes voxelwise to the
general changes within the same subject. Doing this enabled us to locate areas
showing significant changes. In this context, the Log-Euclidean approach was
better at capturing significant changes (e.g. infarctions). In the Log-Euclidean
framework it was possible to detect changes even when the deformation appar-
ently did not fully model the change. A drawback to the Log-Euclidean metric
is that it is not as intuitively interpretable as the relative volume metric.

For the between subject analysis we showed that the voxelwise test yielded very
noisy results, that were influenced by both the low number of subjects and the
possible small misalignments from the cross-sectional registration. This was to
a large degree alleviated by the use of regional testing.

The achieved results were correlated with a selection of clinical parameters.
Some of these showed correlation, however most of the correlations were not
significant. The lack of correlation is likely to be caused by the comparatively
low number of subjects that was analyzed. Because of the lack of significant
correlations, we elected not to study more complex models to avoid obtaining
spuriously significant models.
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Chapter 9

Conclusion

The purpose of this project has been to investigate the possibility of analyzing
the image data from the pan-European LADIS study using neuromorphome-
try. We have described the prevalent methods and analyzed their individual
advantages and disadvantages. On the basis of this analysis we have selected a
relatively new method, tensor-based morphometry (TBM), which still has many
unexplored properties.

To facilitate TBM analysis two frameworks have been suggested — one for cross-
sectional analysis and one for longitudinal analysis. Both frameworks share
certain components: Registration, metric extraction, and statistical analysis.

For the registration, both a global method based on an affine transformation
and a local free form deformation method based on an explicitly and implicitly
regularized tensor product B-spline have been described. This approach was
selected to avoid basing the registration on a physical model which might have
introduced undesirable properties in the resulting deformation.

The properties of the registration that are desirable for respectively the cross-
sectional and longitudinal studies have been analyzed. The registration method
has been adapted to satisfy each of these requirement sets and applied success-
fully to each study type. The registration method has proven itself sufficiently
robust to prevalent MRI artifacts. From the cross-sectional registrations an
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atlas has been constructed.

Two different metrics for analyzing the registration results have been chosen and
described: Relative volumes and Log-Euclidean metrics. The relative volume
metric is easily interpretable as it reduces the available information to a single
value describing contractions and expansions. This, however, also removes shape
information (e.g. anisotropy). The Log-Euclidean metric preserves this infor-
mation while remaining in a vector space where ordinary multivariate statistics
can be used for analysis.

The properties of each of the metrics have been investigated and the usefulness
in different settings evaluated. Compared to the relative volume metric, the
Log-Euclidean metric results in better detection of neuromorphological changes.
From the relative volume metric a change atlas has been constructed.

We have shown that differences between the sexes are possible to detect using the
described methods, while other grouping parameters (e.g. handedness) revealed
no significant separation.

The relative volume metric has been correlated with clinical data in a number of
ways, both in the cross-sectional and longitudinal study. The largest and most
significant correlations were observed in the cross-sectional analysis, while the
longitudinal analysis revealed less decisive results.

Through the results we conclude that the proposed framework of methods is
viable for neuromorphometry. Through the framework it is possible to detect
both general atrophy and pathologies in single subjects and differences between
subjects which can be correlated with clinical parameters.

It would be interesting to apply the proposed frameworks to the complete LADIS
data set. We expect that doing this would reveal much more significant corre-
lations with clinical data and that more useful and revealing models could be
established.

Of further interest could be the use of others metrics in the framework. The
best choice of a metric is likely to depend on the developmental process that is
being analyzed.
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LADIS criteria

A.1 Inclusion criteria

• Age between 65 and 84

• Changes of cerebral subcortical white matter on CT/MRI, of any degree,
from mild to severe according to the categorization into the 3 severity
classes of the Fazekas et al.’s scale [30]

• No or mild disability as assessed by the Instrumental Activities Daily
Living (IADL) scale [31], (IADL score =1 in all the items or =1 in all the
items except one > 1)

• Presence of a regularly contactable informant

A.2 Exclusion criteria

• Subjects likely prone to drop-out in relation to the presence of severe
illnesses (cardiac, hepatic, or renal failure, neoplastic, or other relevant
systemic disease) possibly interfering with follow-up assessment

• Severe unrelated neurological diseases
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• Leukoencephalopathies revealed by brain imaging, that turn out to be of
non-vascular origin (immunologic- demyelinating, metabolic, toxic, infec-
tious)

• Severe psychiatric disorders

• Inability to give informed consent

• Inability or refusal to undergo cranial MRI scanning
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Atlas images
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Figure B.1: Atlas made from source images.
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Figure B.2: Atlas made from globally registered images.
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Figure B.3: Atlas made from locally registered images with a grid spacing of 32
mm.
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Figure B.4: Atlas made from locally registered images with a grid spacing of 16
mm.
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Figure B.5: Atlas made from locally registered images with a grid spacing of 8
mm.
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Figure B.6: Atlas made from locally registered images with a grid spacing of 4
mm.
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Appendix C

LPBA40 labels

ID Area Lobe
0 unlabeled -

21 left superior frontal gyrus Frontal
22 right superior frontal gyrus Frontal
23 left middle frontal gyrus Frontal
24 right middle frontal gyrus Frontal
25 left inferior frontal gyrus Frontal
26 right inferior frontal gyrus Frontal
27 left precentral gyrus Frontal
28 right precentral gyrus Frontal
29 left middle fronto orbital gyrus Frontal
30 right middle fronto orbital gyrus Frontal
31 left lateral fronto orbital gyrus Frontal
32 right lateral fronto orbital gyrus Frontal
33 left gyrus rectus Frontal
34 right gyrus rectus Frontal
41 left postcentral gyrus Parietal
42 right postcentral gyrus Parietal
43 left superior parietal gyrus Parietal
44 right superior parietal gyrus Parietal
45 left supramarginal gyrus Parietal
46 right supramarginal gyrus Parietal
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47 left angular gyrus Parietal
48 right angular gyrus Parietal
49 left precuneus Parietal
50 right precuneus Parietal
61 left superior occipital gyrus Occipital
62 right superior occipital gyrus Occipital
63 left middle occipital gyrus Occipital
64 right middle occipital gyrus Occipital
65 left inferior occipital gyrus Occipital
66 right inferior occipital gyrus Occipital
67 left cuneus Occipital
68 right cuneus Occipital
81 left superior temporal gyrus Temporal
82 right superior temporal gyrus Temporal
83 left middle temporal gyrus Temporal
84 right middle temporal gyrus Temporal
85 left inferior temporal gyrus Temporal
86 right inferior temporal gyrus Temporal
87 left parahippocampal gyrus Temporal
88 right parahippocampal gyrus Temporal
89 left lingual gyrus -
90 right lingual gyrus -
91 left fusiform gyrus Temporal
92 right fusiform gyrus Temporal

101 left insular cortex -
102 right insular cortex -
121 left cingulate gyrus -
122 right cingulate gyrus -
161 left caudate -
162 right caudate -
163 left putamen -
164 right putamen -
181 cerebellum -
182 brainstem -
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Cross-sectional correlations in
the lobes
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Figure D.1: Correlation between age and the relative volumes of the frontal
lobes.
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Figure D.2: Correlation between age and the relative volumes of the parietal
lobes.
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Figure D.3: Correlation between age and the relative volumes of the temporal
lobes.
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Lobe
µgw (both sexes) µgw (men) µgw (women)

Pearson Spearman Pearson Spearman Pearson Spearman
Left r=0.069 ρ=0.082 r=−0.030 ρ=0.032 r=0.226 ρ=0.205
frontal p=6.40e-1 p=5.76e-1 p=9.01e-1 p=8.94e-1 p=2.39e-1 p=2.85e-1
Right r=0.092 ρ=0.045 r=0.010 ρ=−0.194 r=0.210 ρ=0.167
frontal p=5.29e-1 p=7.57e-1 p=9.66e-1 p=4.12e-1 p=2.75e-1 p=3.86e-1
Left r=−0.081 ρ=−0.021 r=−0.310 ρ=−0.163 r=0.061 ρ=0.095
parietal p=5.83e-1 p=8.87e-1 p=1.96e-1 p=5.04e-1 p=7.52e-1 p=6.26e-1
Right r=−0.024 ρ=−0.053 r=−0.033 ρ=−0.118 r=0.003 ρ=0.014
parietal p=8.69e-1 p=7.20e-1 p=8.88e-1 p=6.10e-1 p=9.88e-1 p=9.43e-1
Left r=−0.068 ρ=−0.057 r=−0.071 ρ=−0.206 r=−0.001 ρ=0.050
occipital p=6.52e-1 p=7.01e-1 p=7.67e-1 p=3.84e-1 p=9.96e-1 p=8.05e-1
Right r=0.102 ρ=0.118 r=0.117 ρ=0.126 r=0.178 ρ=0.156
occipital p=4.97e-1 p=4.29e-1 p=6.33e-1 p=6.07e-1 p=3.66e-1 p=4.29e-1
Left r=−0.041 ρ=−0.004 r=−0.002 ρ=0.141 r=−0.079 ρ=−0.055
temporal p=7.80e-1 p=9.79e-1 p=9.94e-1 p=5.54e-1 p=6.85e-1 p=7.77e-1
Right r=−0.316 ρ=−0.225 r=−0.462 ρ=−0.223 r=−0.215 ρ=−0.226
temporal p=2.89e-2 p=1.24e-1 p=4.65e-2 p=3.60e-1 p=2.63e-1 p=2.39e-1

Table D.1: Correlation coefficients between blood pressure (systolic) and the
relative volume of gray and white matter (µgw).

Lobe
µgw (both sexes) µgw (men) µgw (women)

Pearson Spearman Pearson Spearman Pearson Spearman
Left r=0.071 ρ=0.033 r=−0.039 ρ=−0.121 r=0.217 ρ=0.213
frontal p=6.30e-1 p=8.22e-1 p=8.69e-1 p=6.11e-1 p=2.58e-1 p=2.67e-1
Right r=0.085 ρ=−0.045 r=−0.028 ρ=−0.290 r=0.209 ρ=0.103
frontal p=5.63e-1 p=7.57e-1 p=9.06e-1 p=2.16e-1 p=2.76e-1 p=5.97e-1
Left r=−0.103 ρ=−0.112 r=−0.392 ρ=−0.452 r=0.115 ρ=0.195
parietal p=4.82e-1 p=4.43e-1 p=8.75e-2 p=4.56e-2 p=5.52e-1 p=3.10e-1
Right r=0.042 ρ=−0.030 r=−0.034 ρ=−0.184 r=0.132 ρ=0.127
parietal p=7.72e-1 p=8.40e-1 p=8.84e-1 p=4.24e-1 p=5.02e-1 p=5.21e-1
Left r=0.018 ρ=−0.038 r=−0.115 ρ=−0.229 r=0.186 ρ=0.182
occipital p=9.08e-1 p=8.01e-1 p=6.40e-1 p=3.45e-1 p=3.53e-1 p=3.65e-1
Right r=0.165 ρ=0.129 r=−0.059 ρ=−0.158 r=0.454 ρ=0.472
occipital p=2.51e-1 p=3.72e-1 p=8.01e-1 p=4.93e-1 p=1.33e-2 p=9.76e-3
Left r=−0.073 ρ=−0.042 r=−0.092 ρ=−0.029 r=−0.053 ρ=0.038
temporal p=6.19e-1 p=7.77e-1 p=7.01e-1 p=9.04e-1 p=7.87e-1 p=8.44e-1
Right r=−0.258 ρ=−0.191 r=−0.487 ρ=−0.333 r=−0.108 ρ=−0.041
temporal p=7.63e-2 p=1.93e-1 p=3.45e-2 p=1.64e-1 p=5.78e-1 p=8.32e-1

Table D.2: Correlation coefficients between blood pressure (diastolic) and the
relative volume of gray and white matter (µgw.)
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Lobe
µgw (both sexes) µgw (men) µgw (women)

Pearson Spearman Pearson Spearman Pearson Spearman
Left r=−0.398 ρ=−0.383 r=−0.690 ρ=−0.660 r=−0.239 ρ=−0.147
frontal p=4.67e-3 p=6.54e-3 p=5.42e-4 p=1.50e-3 p=2.21e-1 p=4.53e-1
Right r=−0.334 ρ=−0.341 r=−0.602 ρ=−0.651 r=−0.233 ρ=−0.169
frontal p=2.03e-2 p=1.78e-2 p=4.95e-3 p=2.40e-3 p=2.32e-1 p=3.89e-1
Left r=−0.426 ρ=−0.406 r=−0.632 ρ=−0.586 r=−0.310 ρ=−0.270
parietal p=2.30e-3 p=3.84e-3 p=2.12e-3 p=6.14e-3 p=1.08e-1 p=1.64e-1
Right r=−0.433 ρ=−0.454 r=−0.596 ρ=−0.621 r=−0.328 ρ=−0.338
parietal p=2.12e-3 p=1.19e-3 p=4.36e-3 p=3.28e-3 p=9.47e-2 p=8.49e-2
Left r=−0.421 ρ=−0.449 r=−0.573 ρ=−0.594 r=−0.381 ρ=−0.365
occipital p=3.23e-3 p=1.53e-3 p=8.31e-3 p=6.72e-3 p=4.99e-2 p=6.19e-2
Right r=−0.308 ρ=−0.308 r=−0.467 ρ=−0.414 r=−0.362 ρ=−0.348
occipital p=2.93e-2 p=2.98e-2 p=3.29e-2 p=6.31e-2 p=5.36e-2 p=6.51e-2
Left r=−0.482 ρ=−0.494 r=−0.583 ρ=−0.611 r=−0.456 ρ=−0.441
temporal p=6.10e-4 p=4.13e-4 p=8.76e-3 p=6.52e-3 p=1.48e-2 p=1.97e-2
Right r=−0.398 ρ=−0.402 r=−0.636 ρ=−0.675 r=−0.264 ρ=−0.238
temporal p=4.64e-3 p=4.18e-3 p=1.95e-3 p=1.06e-3 p=1.75e-1 p=2.23e-1

Table D.3: Correlation coefficients between BMI and the relative volume of gray
and white matter (µgw).

Lobe
µgw (both sexes) µgw (men) µgw (women)

Pearson Spearman Pearson Spearman Pearson Spearman
Left r=−0.255 ρ=−0.266 r=0.052 ρ=−0.106 r=−0.331 ρ=−0.155
frontal p=8.02e-2 p=6.74e-2 p=8.32e-1 p=6.66e-1 p=7.97e-2 p=4.21e-1
Right r=−0.209 ρ=−0.218 r=0.150 ρ=−0.106 r=−0.292 ρ=−0.107
frontal p=1.54e-1 p=1.37e-1 p=5.39e-1 p=6.66e-1 p=1.24e-1 p=5.80e-1
Left r=−0.129 ρ=−0.138 r=0.039 ρ=−0.067 r=−0.129 ρ=−0.059
parietal p=3.87e-1 p=3.56e-1 p=8.77e-1 p=7.91e-1 p=5.06e-1 p=7.62e-1
Right r=−0.386 ρ=−0.374 r=−0.472 ρ=−0.367 r=−0.296 ρ=−0.265
parietal p=8.83e-3 p=1.14e-2 p=5.56e-2 p=1.47e-1 p=1.26e-1 p=1.73e-1
Left r=−0.408 ρ=−0.325 r=0.148 ρ=0.094 r=−0.596 ρ=−0.414
occipital p=5.42e-3 p=2.95e-2 p=5.57e-1 p=7.11e-1 p=1.04e-3 p=3.20e-2
Right r=−0.368 ρ=−0.289 r=0.041 ρ=0.099 r=−0.424 ρ=−0.286
occipital p=1.00e-2 p=4.62e-2 p=8.66e-1 p=6.88e-1 p=2.18e-2 p=1.33e-1
Left r=−0.261 ρ=−0.284 r=0.000 ρ=0.008 r=−0.476 ρ=−0.536
temporal p=7.37e-2 p=5.06e-2 p=1.00e+0 p=9.74e-1 p=9.11e-3 p=2.74e-3
Right r=−0.524 ρ=−0.487 r=−0.419 ρ=−0.465 r=−0.541 ρ=−0.469
temporal p=1.84e-4 p=6.07e-4 p=8.37e-2 p=5.20e-2 p=2.98e-3 p=1.17e-2

Table D.4: Correlation coefficients between the Stroop test (form2) and the
relative volume of gray and white matter (µgw).
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Lobe
µgw (both sexes) µgw (men) µgw (women)

Pearson Spearman Pearson Spearman Pearson Spearman
Left r=−0.409 ρ=−0.495 r=−0.301 ρ=−0.345 r=−0.464 ρ=−0.547
frontal p=3.92e-3 p=3.51e-4 p=2.11e-1 p=1.48e-1 p=1.13e-2 p=2.12e-3
Right r=−0.258 ρ=−0.284 r=−0.146 ρ=−0.051 r=−0.305 ρ=−0.341
frontal p=7.37e-2 p=4.76e-2 p=5.40e-1 p=8.30e-1 p=1.08e-1 p=7.06e-2
Left r=−0.149 ρ=−0.289 r=−0.114 ρ=−0.114 r=−0.163 ρ=−0.316
parietal p=3.08e-1 p=4.43e-2 p=6.33e-1 p=6.31e-1 p=3.98e-1 p=9.53e-2
Right r=−0.141 ρ=−0.236 r=−0.147 ρ=−0.339 r=−0.121 ρ=−0.084
parietal p=3.39e-1 p=1.06e-1 p=5.36e-1 p=1.43e-1 p=5.39e-1 p=6.71e-1
Left r=−0.305 ρ=−0.200 r=−0.393 ρ=−0.189 r=−0.232 ρ=−0.107
occipital p=3.31e-2 p=1.68e-1 p=7.80e-2 p=4.12e-1 p=2.34e-1 p=5.87e-1
Right r=−0.334 ρ=−0.360 r=−0.227 ρ=−0.182 r=−0.393 ρ=−0.414
occipital p=2.85e-2 p=1.77e-2 p=3.65e-1 p=4.70e-1 p=5.22e-2 p=3.98e-2
Left r=−0.331 ρ=−0.378 r=−0.306 ρ=−0.427 r=−0.346 ρ=−0.331
temporal p=2.17e-2 p=8.04e-3 p=2.02e-1 p=6.85e-2 p=6.59e-2 p=7.90e-2
Right r=−0.576 ρ=−0.522 r=−0.585 ρ=−0.575 r=−0.571 ρ=−0.489
temporal p=4.23e-5 p=2.81e-4 p=1.36e-2 p=1.56e-2 p=1.87e-3 p=9.69e-3

Table D.5: Correlation coefficients between the Trail making (part A) and the
relative volume of gray and white matter (µgw).

Lobe
µgw (both sexes) µgw (men) µgw (women)

Pearson Spearman Pearson Spearman Pearson Spearman
Left r=0.168 ρ=0.199 r=−0.231 ρ=−0.247 r=0.367 ρ=0.356
frontal p=2.54e-1 p=1.75e-1 p=3.42e-1 p=3.07e-1 p=5.94e-2 p=6.83e-2
Right r=0.100 ρ=0.120 r=−0.350 ρ=−0.313 r=0.321 ρ=0.319
frontal p=5.03e-1 p=4.23e-1 p=1.42e-1 p=1.93e-1 p=9.58e-2 p=9.77e-2
Left r=0.041 ρ=0.036 r=−0.010 ρ=−0.079 r=0.081 ρ=0.065
parietal p=7.89e-1 p=8.14e-1 p=9.69e-1 p=7.56e-1 p=6.88e-1 p=7.48e-1
Right r=0.071 ρ=0.052 r=0.091 ρ=0.053 r=0.067 ρ=0.084
parietal p=6.45e-1 p=7.35e-1 p=7.20e-1 p=8.35e-1 p=7.41e-1 p=6.77e-1
Left r=0.174 ρ=0.108 r=0.051 ρ=−0.199 r=0.318 ρ=0.243
occipital p=2.54e-1 p=4.82e-1 p=8.40e-1 p=4.29e-1 p=1.06e-1 p=2.23e-1
Right r=0.063 ρ=0.061 r=0.101 ρ=−0.085 r=0.086 ρ=0.048
occipital p=6.82e-1 p=6.88e-1 p=6.91e-1 p=7.38e-1 p=6.70e-1 p=8.12e-1
Left r=0.410 ρ=0.365 r=0.317 ρ=0.132 r=0.500 ρ=0.466
temporal p=3.79e-3 p=1.09e-2 p=1.86e-1 p=5.90e-1 p=5.78e-3 p=1.07e-2
Right r=0.477 ρ=0.384 r=0.382 ρ=0.217 r=0.565 ρ=0.469
temporal p=6.10e-4 p=7.08e-3 p=1.07e-1 p=3.73e-1 p=1.42e-3 p=1.02e-2

Table D.6: Correlation coefficients between verbal fluency (VADAS cog.) and
the relative volume of gray and white matter (µgw).
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Lobe
µgw (both sexes) µgw (men) µgw (women)

Pearson Spearman Pearson Spearman Pearson Spearman
Left r=0.204 ρ=0.155 r=0.193 ρ=0.154 r=0.221 ρ=0.137
frontal p=1.96e-1 p=3.28e-1 p=4.29e-1 p=5.28e-1 p=3.11e-1 p=5.32e-1
Right r=0.130 ρ=0.014 r=0.089 ρ=−0.013 r=0.163 ρ=0.044
frontal p=4.11e-1 p=9.29e-1 p=7.18e-1 p=9.57e-1 p=4.58e-1 p=8.40e-1
Left r=0.276 ρ=0.197 r=0.168 ρ=0.091 r=0.334 ρ=0.309
parietal p=5.77e-2 p=1.80e-1 p=4.91e-1 p=7.10e-1 p=7.61e-2 p=1.03e-1
Right r=0.256 ρ=0.229 r=0.105 ρ=0.083 r=0.382 ρ=0.380
parietal p=7.05e-2 p=1.21e-1 p=6.60e-1 p=7.26e-1 p=5.13e-2 p=5.06e-2
Left r=0.224 ρ=0.152 r=0.191 ρ=0.113 r=0.284 ρ=0.213
occipital p=1.31e-1 p=3.09e-1 p=4.19e-1 p=6.36e-1 p=1.51e-1 p=2.86e-1
Right r=0.146 ρ=0.124 r=−0.142 ρ=−0.196 r=0.311 ρ=0.294
occipital p=3.58e-1 p=4.33e-1 p=5.62e-1 p=4.22e-1 p=1.48e-1 p=1.74e-1
Left r=0.406 ρ=0.399 r=0.289 ρ=0.154 r=0.481 ρ=0.456
temporal p=4.59e-3 p=5.43e-3 p=2.45e-1 p=5.42e-1 p=8.27e-3 p=1.29e-2
Right r=0.598 ρ=0.557 r=0.562 ρ=0.382 r=0.625 ρ=0.600
temporal p=1.13e-5 p=5.77e-5 p=1.89e-2 p=1.31e-1 p=2.88e-4 p=5.84e-4

Table D.7: Correlation coefficients between walking speed and the relative vol-
ume of gray and white matter (µgw).
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Code listings

Listing E.1: areastat.m

1 % Scr i p t f o r e x t r a c t i n g metr ics from r e g i s t r a t i o n s

2

3 det=1; %Set to 1 f o r Jacobian determinants and to 0 fo r Log−
Euc l id ian

4 l obe s =1; %Set to 1 f o r s u bd i v i s i on in to l o b e s and to 0 i f LPBA

zones

5 cross=0; %Set to 1 f o r cross−s e c t i o n a l and to 0 fo r l o n g i t u d i n a l

6 i f cross

7 f d i r = ’z:/dofs/inter/gmwm/’ ;

8 else

9 f d i r = ’z:/dofs/intra/gmwm/’ ;

10 end

11 f i l e s = dir ( [ f d i r , ’det\whole \*. mat’ ] ) ;

12 i f l obe s

13 load z : / a t l a s 0 2 / l obe s . mat

14 b r a i n l a b e l s=lobe s ;

15 l a b e l s =1:8 ;

16 else

17 load z : / a t l a s 0 2 / b r a i n l a b e l s . mat

18 load z : / a t l a s / a r e a l a b e l s . mat
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19 end

20

21 i f det

22 mdet = zeros ( length ( l a b e l s ) , 1 ) ;

23 s tddet = zeros ( length ( l a b e l s ) , 1 ) ;

24 meanarea = zeros ( length ( l a b e l s ) , length ( f i l e s ) , 1 ) ;

25 else

26 mle = zeros ( [ 6 length ( l a b e l s ) ] ) ;

27 c l e = zeros ( [ 6 6 length ( l a b e l s ) ] ) ;

28 meanarea = zeros ( length ( l a b e l s ) , length ( f i l e s ) , 6 ) ;

29 end

30

31 for r=1: length ( l a b e l s )

32 fpr intf ( ’%d\n’ , l a b e l s ( r ) )

33 i f det

34 l abe lda tade t = [ ] ;

35 else

36 l a b e l d a t a l e = [ ] ;

37 end

38 for s=1: length ( f i l e s )

39 fpr intf ( ’%s\n’ , f i l e s ( s ) . name)

40 %load , and anatomical s o r t the data

41 i f det

42 load ( s t r c a t ( f d i r , ’det/whole/’ , f i l e s ( s ) . name) )

43 meanarea ( r , s )=mean(d( b r a i n l a b e l s==l a b e l s ( r ) ) ) ;

44 l abe lda tade t = [ l abe l da tade t ; d ( ( b r a i n l a b e l s==l a b e l s ( r )

)&d˜=0) ] ;

45 else

46 load ( s t r c a t ( f d i r , ’le/whole/’ , f i l e s ( s ) . name) )

47 labe ldata l e t emp=l e ( repmat ( ( b r a i n l a b e l s==l a b e l s ( r ) )&l e

( : , : , : , 1 ) ˜=0 ,[1 1 1 6 ] ) ) ;

48 labe ldata l e t emp=reshape ( labe ldata le temp , length (

l abe ldata l e t emp ) /6 ,6) ;

49 l a b e l d a t a l e = [ l a b e l d a t a l e ; l abe ldata l e t emp ] ;

50 meanarea ( r , s , : )=reshape (mean( l abe ldata l e t emp ) , [ 1 1 6 ] ) ;

51 end

52 end

53 i f det

54 mdet ( r ) = mean( l abe l da tade t ) ;

55 s tddet ( r ) = cov ( l abe l da tade t ) ;

56 md = mdet ( r ) ;

57 stdd = stddet ( r ) ;



119

58 %save the data

59 i f l obe s

60 save ( sprintf ( ’%sdet/lobes /%03d.mat’ , f d i r , l a b e l s ( r ) ) , ’

labeldatadet ’ , ’md’ , ’stdd’ ) ;

61 else

62 save ( sprintf ( ’%sdet/zones /%03d.mat’ , f d i r , l a b e l s ( r ) ) , ’

labeldatadet ’ , ’md’ , ’stdd’ ) ;

63 end

64 else

65 mle ( : , r ) = mean( l a b e l d a t a l e ) ;

66 c l e ( : , : , r ) = cov ( l a b e l d a t a l e ) ;

67 ml = mle ( : , r ) ;

68 c l = c l e ( : , : , r ) ;

69 %save the data

70 i f l obe s

71 save ( sprintf ( ’%sdet/lobes /%03d.mat’ , f d i r , l a b e l s ( r ) ) , ’

labeldatale ’ , ’mle’ , ’stdd’ ) ;

72 else

73 save ( sprintf ( ’%sdet/zones /%03d.mat’ , f d i r , l a b e l s ( r ) ) , ’

labeldatale ’ , ’ml’ , ’cl’ ) ;

74 end

75 end

76 end

77 %save the s t a t i s t i c s

78 i f det

79 save ( ’z:/dofs/intra/gmwm/det/zones/stats.mat’ , ’mdet’ , ’stddet ’ ,

’meanarea ’ ) ;

80 else

81 save ( ’z:/dofs/intra/gmwm/le/zones/stats.mat’ , ’mle’ , ’cle’ , ’

meanarea ’ ) ;

82 end
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Listing E.2: makelestats.m

1 %Scr i p t f o r making the p r o b a b i l i t y volumes us ing Log−Eucl idean

s t a t i s t i c s

2

3 %%

4 %Make the d i s t r i b u t i o n o f Log−Eucl ideans

5 f i l e s = dir ( ’z:\dofs\intra\gmwm\le\whole \*. mat’ ) ;

6 l e s = [ ] ;

7 for i =1: length ( f i l e s )

8 fpr intf ( ’%d ’ , i )

9 load ( [ ’z:\dofs\intra\gmwm\le\whole\’ , f i l e s ( i ) . name ] ) %( from

l e c on v e r t .m)

10 letemp=l e ( repmat ( l e ( : , : , : , 1 ) ˜=0 ,[1 1 1 6 ] ) ) ;

11 letemp=reshape ( letemp , length ( letemp ) /6 ,6) ;

12 l e s =[ l e s ; letemp ] ;

13 end

14 fpr intf ( ’\n’ )

15 meanle = mean( l e s ) ;

16 cov l e = cov ( l e s ) ;

17

18 %%

19 %Make the d i s t r i b u t i o n o f Ho te l l i ng ’ s T−square s t a t i s t i c s .

20 t sq s=zeros ( length ( l e s ) , 1 ) ;

21 for i =1: s ize ( l e s , 1 )

22 t sq s ( i )=( l e s ( i , : )−meanle ) / cov l e ∗( l e s ( i , : )−meanle ) ’ ;

23 end

24 meantsq=mean( log ( t s q s ) ) ;

25 s td t sq=std ( log ( t s q s ) ) ;

26

27 %%

28 %Transform the Log−Eucl idean volume to p−va lue s v ia Hote l l i ng ’ s T−
square

29 %s t a t i s t i c

30 %For whole volumes :

31 f i l e s = dir ( ’z:\dofs\intra\gmwm\le\whole \*. mat’ ) ;

32 for f =1: length ( f i l e s )

33 load ( [ ’z:\dofs\intra\gmwm\le\whole\’ , f i l e s ( f ) . name ] ) %( from

l e c on v e r t .m)

34 pvol=zeros ( [ 7 5 128 128 ] ) ;

35 for i =1: s ize ( l e , 1 )

36 for j =1: s ize ( l e , 2 )

37 for k=1: s ize ( l e , 3 )
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38 i f ( l e ( i , j , k , 1 ) ˜=0)

39 l e t=squeeze ( l e ( i , j , k , : ) ) ;

40 %Calcu la t e T−squared s t a t i s t i c s

41 tsq=( l e t ’−meanle ) / cov l e ∗( l e t ’−meanle ) ’ ;

42 %Transform in to normal d i s t r i b u t i o n

43 Z=(log ( t sq )−meantsq ) / s td t sq ;

44 pvol ( i , j , k )=normcdf (Z) ;

45 end

46 end

47 end

48 fpr intf ( ’%d ’ , i )

49 end

50 fpr intf ( ’\n’ )

51 save ( [ ’z:\dofs\intra\gmwm\le\whole\pvols\’ , f i l e s ( f ) . name ] , ’pvol

’ )

52 end

53

54 %%

55 %Make the d i s t r i b u t i o n o f Ho te l l i ng ’ s T−square s t a t i s t i c s f o r

volumes

56 %subd i v i ded in to l o b e volumes :

57 %Load the mean and cov o f each o f the l o b e volumes

58 load z :\ do f s \ i n t r a \gmwm\ l e \ l obe s \ s t a t s %( from ar ea s t a t s .m)

59 f i l e s = dir ( ’z:\dofs\intra\gmwm\le\lobes \*. mat’ ) ; %( from ar ea s t a t s .

m)

60 for f =1: length ( f i l e s )−1

61 fpr intf ( ’%d ’ , f )

62 load ( [ ’z:\dofs\intra\gmwm\le\lobes\’ , f i l e s ( f ) . name ] ) %( from

l e c on v e r t .m)

63 t sq s = zeros ( length ( l a b e l d a t a l e ) , 1 ) ;

64 for i =1: s ize ( l ab e l d a t a l e , 1 )

65 t sq s ( i )=( l a b e l d a t a l e ( i , : ) ’−mle ( : , f ) ) ’/ c l e ( : , : , f ) ∗(

l a b e l d a t a l e ( i , : ) ’−mle ( : , f ) ) ;

66 end

67 meantsq ( f )=mean( log ( t s q s ) ) ;

68 s td t sq ( f )=std ( log ( t s q s ) ) ;

69 end

70 fpr intf ( ’\n’ )

71 save z :\ do f s \ i n t r a \gmwm\ l e \ l obe s \ t s q s t a t s meantsq s td t sq

72

73

74 %%
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75 %Transform the Log−Eucl idean volume to p−va lue s v ia Hote l l i ng ’ s T−
square

76 %s t a t i s t i c .

77 %For volumes subd i v i ded in to l o b e volumes :

78 %Load the mean and cov o f each o f the Log−Eucl idean l o be volumes

79 load z :\ do f s \ i n t r a \gmwm\ l e \ l obe s \ s t a t s %( from ar ea s t a t s .m)

80 %Load the mean and cov o f the t−squared d i s t r i b u t i o n o f each o f the

l o b e volumes

81 save z :\ do f s \ i n t r a \gmwm\ l e \ l obe s \ t s q s t a t s

82 %Load the volume conta in ing the po s i t i on o f the e i g h t l o b e l a b e l s

83 load z : / a t l a s 0 2 / l obe s . mat

84 f i l e s = dir ( ’z:\dofs\intra\gmwm\le\whole \*. mat’ ) ; %( from l e c on v e r t

.m)

85 for f =1: length ( f i l e s )

86 load ( [ ’z:\dofs\intra\gmwm\le\whole\’ , f i l e s ( f ) . name ] ) %( from

l e c on v e r t .m)

87 pvol=zeros ( [ 7 5 128 128 ] ) ;

88 for i =1: s ize ( l e , 1 )

89 for j =1: s ize ( l e , 2 )

90 for k=1: s ize ( l e , 3 )

91 i f ( l e ( i , j , k , 1 )&&lobe s ( i , j , k ) )

92 lobe=lobe s ( i , j , k ) ;

93 l e t=squeeze ( l e ( i , j , k , : ) ) ;

94 %Calcu la t e T−squared s t a t i s t i c s

95 tsq=( l e t−mle ( : , l obe ) ) ’/ c l e ( : , : , l obe ) ∗( l e t−mle

( : , l obe ) ) ;

96 %Transform in to normal d i s t r i b u t i o n

97 Z=(log ( t sq )−meantsq ( lobe ) ) / s td t sq ( lobe ) ;

98 pvol ( i , j , k )=normcdf (Z) ;

99 end

100 end

101 end

102 fpr intf ( ’%d ’ , i )

103 end

104 fpr intf ( ’\n’ )

105 save ( [ ’z:\dofs\intra\gmwm\le\lobes\pvols\’ , f i l e s ( f ) . name ] , ’pvol

’ )

106 end

107

108 %%

109 %Make the d i s t r i b u t i o n o f Ho te l l i ng ’ s T−square s t a t i s t i c s f o r

volumes
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110 %subd i v i ded in to LPBA volumes :

111 %Load the mean and cov o f each o f the LPBA volumes

112 load z :\ do f s \ i n t r a \gmwm\ l e \ zones \ s t a t s %( from ar ea s t a t s .m)

113 f i l e s = dir ( ’z:\dofs\intra\gmwm\le\zones \*. mat’ ) ; %( from ar ea s t a t s .

m)

114 for f =1: length ( f i l e s )−1

115 fpr intf ( ’%d ’ , f )

116 load ( [ ’z:\dofs\intra\gmwm\le\zones\’ , f i l e s ( f ) . name ] ) %( from

l e c on v e r t .m)

117 t sq s = zeros ( length ( l a b e l d a t a l e ) , 1 ) ;

118 for i =1: s ize ( l ab e l d a t a l e , 1 )

119 t sq s ( i )=( l a b e l d a t a l e ( i , : ) ’−mle ( : , f ) ) ’/ c l e ( : , : , f ) ∗(

l a b e l d a t a l e ( i , : ) ’−mle ( : , f ) ) ;

120 end

121 meantsq ( f )=mean( log ( t s q s ) ) ;

122 s td t sq ( f )=std ( log ( t s q s ) ) ;

123 end

124 fpr intf ( ’\n’ )

125 save z :\ do f s \ i n t r a \gmwm\ l e \ zones \ t s q s t a t s meantsq s td t sq

126

127 %%

128 %Transform the Log−Eucl idean volume to p−va lue s v ia Hote l l i ng ’ s T−
square

129 %s t a t i s t i c .

130 %For volumes subd i v i ded in to l o b e volumes :

131 %Load the mean and cov o f each o f the Log−Eucl idean l o be volumes

132 load z :\ do f s \ i n t r a \gmwm\ l e \ zones \ s t a t s %( from ar ea s t a t s .m)

133 %Load the mean and cov o f the t−squared d i s t r i b u t i o n o f each o f the

l o b e volumes

134 save z :\ do f s \ i n t r a \gmwm\ l e \ zones \ t s q s t a t s

135 %Load the volume conta in ing the po s i t i on o f the 52 LPBA l a b e l s

136 load z : / a t l a s 0 2 / b r a i n l a b e l s . mat

137 %Load a vec tor conta in ing the index o f the 52 LPBA l a b e l s

138 load z : / a t l a s / a r e a l a b e l s . mat

139 f i l e s = dir ( ’z:\dofs\intra\gmwm\le\whole \*. mat’ ) ;

140 for f =1: length ( f i l e s )

141 load ( [ ’z:\dofs\intra\gmwm\le\whole\’ , f i l e s ( f ) . name ] ) %( from

l e c on v e r t .m)

142 pvol=zeros ( [ 7 5 128 128 ] ) ;

143 for i =1: s ize ( l e , 1 )

144 for j =1: s ize ( l e , 2 )

145 for k=1: s ize ( l e , 3 )
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146 i f ( l e ( i , j , k , 1 )&&b r a i n l a b e l s ( i , j , k ) )

147 b l=l a b e l s==b r a i n l a b e l s ( i , j , k ) ;

148 l e t=squeeze ( l e ( i , j , k , : ) ) ;

149 %Calcu la t e T−squared s t a t i s t i c s

150 tsq=( l e t−mle ( : , b l ) ) ’/ c l e ( : , : , b l ) ∗( l e t−mle ( : , b l )

) ;

151 %Transform in to normal d i s t r i b u t i o n

152 Z=(log ( t sq )−meantsq ( b l ) ) / s td t sq ( b l ) ;

153 pvol ( i , j , k )=normcdf (Z) ;

154 end

155 end

156 end

157 fpr intf ( ’%d ’ , i )

158 end

159 fpr intf ( ’\n’ )

160 save ( [ ’z:\dofs\intra\gmwm\le\zones\pvols\’ , f i l e s ( f ) . name ] , ’pvol

’ )

161 end
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Listing E.3: dofread.m

1 function [ a f f i n e sz g r i d d e l t a o f f s e t dx dy dz a c t i v e ] = dofread (

fname )

2 %DOFREAD Read ITK dof f i l e

3 % [ a f f i n e sz g r i d d e l t a o f f s e t dx dy dz a c t i v e ] = dofread ( fname)

4 % fname : Path to . dof f i l e

5 % a f f i n e : S t ruc t conta in ing the a f f i n e trans format ion

6 % sz : S i ze o f con t ro l po in t g r i d

7 % gr i d d e l t a : Spacing o f con t ro l po in t s

8 % o f f s e t : O f f s e t o f con t ro l po in t s

9 % dx , dy , dz : Control po in t d i sp lacements in x , y , and z

10 % ac t i v e : Act ive con t ro l po in t s

11

12 f i d = fopen ( fname , ’r’ , ’ieee -be’ ) ;

13 fseek ( f i d , 20 , ’bof’ ) ;

14 a f f s i z e = fread ( f i d , 1 , ’int32 ’ ) ;

15 a f f i n e = s t r u c t ( ’tx’ , 0 , ’ty’ , 0 , ’tz’ , 0 , . . .

16 ’rx’ , 0 , ’ry’ , 0 , ’rz’ , 0 , . . .

17 ’sx’ , 100 , ’sy’ , 100 , ’sz’ , 100 , . . .

18 ’xx’ , 0 , ’xy’ , 0 , ’xz’ , 0) ;

19 fseek ( f i d , 24 , ’bof’ ) ;

20 a f f i n e . tx = fread ( f i d , 1 , ’float64 ’ ) ; a f f i n e . ty = fread ( f i d , 1 , ’

float64 ’ ) ; a f f i n e . tz = fread ( f i d , 1 , ’float64 ’ ) ;

21 a f f i n e . rx = fread ( f i d , 1 , ’float64 ’ ) ; a f f i n e . ry = fread ( f i d , 1 , ’

float64 ’ ) ; a f f i n e . rz = fread ( f i d , 1 , ’float64 ’ ) ;

22 i f a f f s i z e == 12

23 a f f i n e . sx = fread ( f i d , 1 , ’float64 ’ ) ; a f f i n e . sy = fread ( f i d , 1 ,

’float64 ’ ) ; a f f i n e . sz = fread ( f i d , 1 , ’float64 ’ ) ;

24 a f f i n e . xx = fread ( f i d , 1 , ’float64 ’ ) ; a f f i n e . xy = fread ( f i d , 1 ,

’float64 ’ ) ; a f f i n e . xz = fread ( f i d , 1 , ’float64 ’ ) ;

25 end

26 fseek ( f i d , 24+8∗ a f f s i z e +8, ’bof’ ) ;

27 sz = f l i p l r ( fread ( f i d , 3 , ’int32’ ) ’ ) ;

28 fseek ( f i d , 24+8∗ a f f s i z e +8+60, ’bof’ ) ;

29 g r i dd e l t a = fread ( f i d , 3 , ’float64 ’ ) ;

30 o f f s e t = fread ( f i d , 3 , ’float64 ’ ) ;

31 fseek ( f i d , 24+8∗ a f f s i z e +8+108, ’bof’ ) ;

32 A = fread ( f i d , 3∗prod ( sz ) , ’float64 ’ ) ;

33 perm = [3 2 1 ] ;

34 dx = f l i pd im ( permute ( reshape (A( 1 : 3 : prod ( sz ) ∗3−2) , sz ) , perm) , 2) ;

35 dy = f l i pd im ( permute ( reshape (A( 2 : 3 : prod ( sz ) ∗3−1) , sz ) , perm) , 2) ;

36 dz = f l i pd im ( permute ( reshape (A( 3 : 3 : prod ( sz ) ∗3) , sz ) , perm) , 2) ;
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37 A = fread ( f i d , prod ( sz ) , ’int32 ’ ) ;

38 a c t i v e = f l i pd im (˜ permute ( reshape (A, sz ) , perm) , 2) ;

39 sz = f l i p l r ( sz ) ;

40 fc lose ( f i d ) ;
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Listing E.4: detconvert.m

1 function detconvert ( do f i n t e r , do f in t ra , s l i c e o u t , szsample , mask ,

wholeout )

2 %DETCONVERT Convert dof f i l e s ( from ITK) in to r e l a t i v e volumes

3 % detconver t ( do f in t e r , do f in t ra , s l i c e ou t , szsample , mask ,

wholeout )

4 % do f i n t e r : The cross−s e c t i o n a l r e g i s t r a t i o n

5 % do f i n t r a : The l o n g i t u d i n a l r e g i s t r a t i o n

6 % s l i c e o u t : f i l ename fo r r e s u l t i n g volume in sepera t e s l i c e s

7 % szsample : The sample s i z e ( s i z e o f r e s u l t i n g volume )

8 % mask : The image mask

9 % wholeout : f i l ename fo r r e s u l t i n g volume

10

11 % Read the t rans format ions ( re turns b−s p l i n e con t ro l po in t

d isp lacement v e c t o r s )

12 [ a f f i n e i n t e r s z i n t e r g r i d d e l t a i n t e r o f f s e t i n t e r ph i x i n t e r ph i y i n t e r

ph i z i n t e r ] = dofread ( d o f i n t e r ) ;

13 [ a f f i n e i n t r a s z i n t r a g r i d d e l t a i n t r a o f f s e t i n t r a ph ix in t r a ph iy in t r a

ph i z i n t r a ] = dofread ( do f i n t r a ) ;

14 % Reverse the y−ax i s

15 ph i y i n t e r = −ph i y i n t e r ;

16 ph iy in t r a = −ph iy in t r a ;

17 % The a f f i n e trans format ion matrix

18 a f f ma t i n t e r = spm matrix ( [ a f f i n e i n t e r . tx −a f f i n e i n t e r . ty

a f f i n e i n t e r . t z −a f f i n e i n t e r . rx /180∗pi −a f f i n e i n t e r . ry /180∗pi −
a f f i n e i n t e r . r z /180∗pi a f f i n e i n t e r . sx /100 a f f i n e i n t e r . sy /100

a f f i n e i n t e r . sz /100 −tan ( a f f i n e i n t e r . xx∗pi /180) tan ( a f f i n e i n t e r .

xz∗pi /180) −tan ( a f f i n e i n t e r . xy∗pi /180) ] ) ;

19

20 % Mesh gr i d f o r the con t ro l po in t s

21 [ x y z ] = ndgrid ( linspace (0 , g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1) ,

s z i n t e r (1 ) ) , linspace (0 , g r i d d e l t a i n t e r (2 ) ∗( s z i n t e r (2 )−1) , s z i n t e r

(2 ) ) , linspace (0 , g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1) , s z i n t e r (3 ) ) ) ;

22 ph i x i n t e r = x + ph ix i n t e r ;

23 ph i y i n t e r = y + ph iy i n t e r ;

24 ph i z i n t e r = z + ph i z i n t e r ;

25 % Mesh gr i d f o r the con t ro l po in t s

26 [ x y z ] = ndgrid ( linspace (0 , g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1) ,

szsample (1 ) ) , linspace (0 , g r i d d e l t a i n t e r (2 ) ∗( s z i n t e r (2 )−1) ,

szsample (2 ) ) , linspace (0 , g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1) ,

szsample (3 ) ) ) ;

27 % Convert cross−s e c t i o n a l B−s p l i n e con t ro l po in t s in to ac tua l
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dispacements

28 [ dxi dyi dz i ] = tb sp l i n e 3 ( ph ix in te r , ph iy in te r , ph i z i n t e r , x , y , z ,

g r i d d e l t a i n t e r , [ 0 0 0 ] ) ;

29 fpr intf ( ’tbspline3c nr. 1\n’ )

30

31 %Do the a f f i n e trans format ion

32 x2 = reshape ( dxi , szsample )−g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1) /2 ;

33 y2 = reshape ( dyi , szsample )−g r i d d e l t a i n t e r (2 ) ∗( s z i n t e r (2 )−1) /2 ;

34 z2 = reshape ( dzi , szsample )−g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1) /2 ;

35 for r=1: szsample (1 )

36 for s=1: szsample (2 )

37 for t=1: szsample (3 )

38 temp = a f f ma t i n t e r ∗ [ x2 ( r , s , t ) y2 ( r , s , t ) z2 ( r , s , t )

1 ] ’ ;

39 x2 ( r , s , t ) = temp (1) ;

40 y2 ( r , s , t ) = temp (2) ;

41 z2 ( r , s , t ) = temp (3) ;

42 end

43 end

44 end

45 vec = [ g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1)/2 , g r i d d e l t a i n t e r (2 ) ∗(

s z i n t e r (2 )−1)/2 , g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1)/2 , 1 ] ’ ;

46 x2 = x2 + vec (1 ) ;

47 y2 = y2 + vec (2 ) ;

48 z2 = z2 + vec (3 ) ;

49

50 % Convert the l o n g i t u d i n a l B−s p l i n e con t ro l po in t s in to B−s p l i n e

51 % de r i v a t i v e s in a t l a s space ( cross−s e c t i o n a l r e g i s t r e r e d )

52 [ adxdx adydx adzdx]= tb sp l i n e 3 ( ph ix int ra , ph iy int ra , ph i z in t ra , x2 ,

y2 , z2 , g r i dd e l t a i n t r a , [ 1 0 0 ] ) ;

53 fpr intf ( ’tbspline3c nr. 2\n’ )

54 [ adxdy adydy adzdy]= tb sp l i n e 3 ( ph ix int ra , ph iy int ra , ph i z in t ra , x2 ,

y2 , z2 , g r i dd e l t a i n t r a , [ 0 1 0 ] ) ;

55 fpr intf ( ’tbspline3c nr. 3\n’ )

56 [ adxdz adydz adzdz ]= tb sp l i n e 3 ( ph ix int ra , ph iy int ra , ph i z in t ra , x2 ,

y2 , z2 , g r i dd e l t a i n t r a , [ 0 0 1 ] ) ;

57 fpr intf ( ’tbspline3c nr. 4\n’ )

58

59 dxdx = reshape ( adxdx , szsample ) / g r i d d e l t a i n t r a (1 ) +1;

60 dxdy = reshape ( adxdy , szsample ) / g r i d d e l t a i n t r a (1 ) ;

61 dxdz = reshape ( adxdz , szsample ) / g r i d d e l t a i n t r a (1 ) ;

62 dydx = reshape ( adydx , szsample ) / g r i d d e l t a i n t r a (2 ) ;
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63 dydy = reshape ( adydy , szsample ) / g r i d d e l t a i n t r a (2 ) +1;

64 dydz = reshape ( adydz , szsample ) / g r i d d e l t a i n t r a (2 ) ;

65 dzdx = reshape ( adzdx , szsample ) / g r i d d e l t a i n t r a (3 ) ;

66 dzdy = reshape ( adzdy , szsample ) / g r i d d e l t a i n t r a (3 ) ;

67 dzdz = reshape ( adzdz , szsample ) / g r i d d e l t a i n t r a (3 ) +1;

68 d = zeros ( szsample ) ;

69 for r=1: szsample (1 )

70 fpr intf ( ’%d\n’ , r )

71 for s=1: szsample (2 )

72 for t=1: szsample (3 )

73 % The Jacobian matrix

74 temp = [ dxdx ( r , s , t ) dxdy ( r , s , t ) dxdz ( r , s , t ) ; . . .

75 dydx ( r , s , t ) dydy ( r , s , t ) dydz ( r , s , t ) ; . . .

76 dzdx ( r , s , t ) dzdy ( r , s , t ) dzdz ( r , s , t ) ] ;

77 d( r , s , t )=det ( temp) ;

78 end

79 end

80 d( r , : , : ) = d( r , : , : ) .∗mask( r , : , : ) ;

81 i f ˜isempty ( s l i c e o u t )

82 d2 = d( r , : , : ) ;

83 save ( sprintf ( ’%02s_%03d.mat’ ,matout , r ) , ’d2’ ) ;

84 end

85 end

86 i f ˜isempty ( wholeout )

87 save ( wholeout , ’d’ ) ;

88 end
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Listing E.5: leconvert.m

1 function l e c onve r t ( do f i n t e r , do f in t ra , s l i c e o u t , szsample , mask ,

wholeout )

2 %LECONVERT Convert dof f i l e s ( from ITK) in to Log−Eucl idean

volumes

3 % l e c on v e r t ( do f in t e r , do f in t ra , s l i c e ou t , szsample , mask ,

wholeout )

4 % do f i n t e r : The cross−s e c t i o n a l r e g i s t r a t i o n

5 % do f i n t r a : The l o n g i t u d i n a l r e g i s t r a t i o n

6 % s l i c e o u t : f i l ename fo r r e s u l t i n g volume in sepera t e s l i c e s

7 % szsample : The sample s i z e ( s i z e o f r e s u l t i n g volume )

8 % mask : The image mask

9 % wholeout : f i l ename fo r r e s u l t i n g volume

10

11 % Read the t rans format ions ( re turns b−s p l i n e con t ro l po in t

d isp lacement v e c t o r s )

12 [ a f f i n e i n t e r s z i n t e r g r i d d e l t a i n t e r o f f s e t i n t e r ph i x i n t e r ph i y i n t e r

ph i z i n t e r ] = dofread ( d o f i n t e r ) ;

13 [ a f f i n e i n t r a s z i n t r a g r i d d e l t a i n t r a o f f s e t i n t r a ph ix in t r a ph iy in t r a

ph i z i n t r a ] = dofread ( do f i n t r a ) ;

14 % Reverse the y−ax i s

15 ph i y i n t e r = −ph i y i n t e r ;

16 ph iy in t r a = −ph iy in t r a ;

17 % The a f f i n e trans format ion matrix

18 a f f ma t i n t e r = spm matrix ( [ a f f i n e i n t e r . tx −a f f i n e i n t e r . ty

a f f i n e i n t e r . t z −a f f i n e i n t e r . rx /180∗pi −a f f i n e i n t e r . ry /180∗pi −
a f f i n e i n t e r . r z /180∗pi a f f i n e i n t e r . sx /100 a f f i n e i n t e r . sy /100

a f f i n e i n t e r . sz /100 −tan ( a f f i n e i n t e r . xx∗pi /180) tan ( a f f i n e i n t e r .

xz∗pi /180) −tan ( a f f i n e i n t e r . xy∗pi /180) ] ) ;

19

20 % Mesh gr i d f o r the con t ro l po in t s

21 [ x y z ] = ndgrid ( linspace (0 , g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1) ,

s z i n t e r (1 ) ) , linspace (0 , g r i d d e l t a i n t e r (2 ) ∗( s z i n t e r (2 )−1) , s z i n t e r

(2 ) ) , linspace (0 , g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1) , s z i n t e r (3 ) ) ) ;

22 ph i x i n t e r = x + ph ix i n t e r ;

23 ph i y i n t e r = y + ph iy i n t e r ;

24 ph i z i n t e r = z + ph i z i n t e r ;

25 % Mesh gr i d f o r the con t ro l po in t s

26 [ x y z ] = ndgrid ( linspace (0 , g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1) ,

szsample (1 ) ) , linspace (0 , g r i d d e l t a i n t e r (2 ) ∗( s z i n t e r (2 )−1) ,

szsample (2 ) ) , linspace (0 , g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1) ,

szsample (3 ) ) ) ;
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27 % Convert cross−s e c t i o n a l B−s p l i n e con t ro l po in t s in to ac tua l

dispacements

28 [ dxi dyi dz i ] = tb sp l i n e 3 ( ph ix in te r , ph iy in te r , ph i z i n t e r , x , y , z ,

g r i d d e l t a i n t e r , [ 0 0 0 ] ) ;

29 fpr intf ( ’tbspline3c nr. 1\n’ )

30

31 %Do the a f f i n e trans format ion

32 x2 = reshape ( dxi , szsample )−g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1) /2 ;

33 y2 = reshape ( dyi , szsample )−g r i d d e l t a i n t e r (2 ) ∗( s z i n t e r (2 )−1) /2 ;

34 z2 = reshape ( dzi , szsample )−g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1) /2 ;

35 for r=1: szsample (1 )

36 for s=1: szsample (2 )

37 for t=1: szsample (3 )

38 temp = a f f ma t i n t e r ∗ [ x2 ( r , s , t ) y2 ( r , s , t ) z2 ( r , s , t )

1 ] ’ ;

39 x2 ( r , s , t ) = temp (1) ;

40 y2 ( r , s , t ) = temp (2) ;

41 z2 ( r , s , t ) = temp (3) ;

42 end

43 end

44 end

45 vec = [ g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1)/2 , g r i d d e l t a i n t e r (2 ) ∗(

s z i n t e r (2 )−1)/2 , g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1)/2 , 1 ] ’ ;

46 x2 = x2 + vec (1 ) ;

47 y2 = y2 + vec (2 ) ;

48 z2 = z2 + vec (3 ) ;

49

50 % Convert the l o n g i t u d i n a l B−s p l i n e con t ro l po in t s in to B−s p l i n e

51 % de r i v a t i v e s in a t l a s space ( cross−s e c t i o n a l r e g i s t r e r e d )

52 [ adxdx adydx adzdx]= tb sp l i n e 3 ( ph ix int ra , ph iy int ra , ph i z in t ra , x2 ,

y2 , z2 , g r i dd e l t a i n t r a , [ 1 0 0 ] ) ;

53 fpr intf ( ’tbspline3c nr. 2\n’ )

54 [ adxdy adydy adzdy]= tb sp l i n e 3 ( ph ix int ra , ph iy int ra , ph i z in t ra , x2 ,

y2 , z2 , g r i dd e l t a i n t r a , [ 0 1 0 ] ) ;

55 fpr intf ( ’tbspline3c nr. 3\n’ )

56 [ adxdz adydz adzdz ]= tb sp l i n e 3 ( ph ix int ra , ph iy int ra , ph i z in t ra , x2 ,

y2 , z2 , g r i dd e l t a i n t r a , [ 0 0 1 ] ) ;

57 fpr intf ( ’tbspline3c nr. 4\n’ )

58

59 dxdx = reshape ( adxdx , szsample ) / g r i d d e l t a i n t r a (1 ) +1;

60 dxdy = reshape ( adxdy , szsample ) / g r i d d e l t a i n t r a (1 ) ;

61 dxdz = reshape ( adxdz , szsample ) / g r i d d e l t a i n t r a (1 ) ;
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62 dydx = reshape ( adydx , szsample ) / g r i d d e l t a i n t r a (2 ) ;

63 dydy = reshape ( adydy , szsample ) / g r i d d e l t a i n t r a (2 ) +1;

64 dydz = reshape ( adydz , szsample ) / g r i d d e l t a i n t r a (2 ) ;

65 dzdx = reshape ( adzdx , szsample ) / g r i d d e l t a i n t r a (3 ) ;

66 dzdy = reshape ( adzdy , szsample ) / g r i d d e l t a i n t r a (3 ) ;

67 dzdz = reshape ( adzdz , szsample ) / g r i d d e l t a i n t r a (3 ) +1;

68 l e = zeros ( [ szsample 6 ] ) ;

69 for r=1: szsample (1 )

70 fpr intf ( ’%d\n’ , r )

71 for s=1: szsample (2 )

72 for t=1: szsample (3 )

73 % The Jacobian matrix

74 temp = [ dxdx ( r , s , t ) dxdy ( r , s , t ) dxdz ( r , s , t ) ; . . .

75 dydx ( r , s , t ) dydy ( r , s , t ) dydz ( r , s , t ) ; . . .

76 dzdx ( r , s , t ) dzdy ( r , s , t ) dzdz ( r , s , t ) ] ;

77 % Transform in to Log−Eucl idean space

78 temp = logmd ( sqrtmd ( temp ’∗ temp) ) ;

79 l e ( r , s , t , : ) = [ temp (1 , 1 ) temp (2 , 2 ) temp (3 , 3 ) . . .

80 sqrt (2 ) ∗temp (1 , 2 ) sqrt (2 ) ∗temp (1 , 3 )

sqrt (2 ) ∗temp (2 , 3 ) ] ;

81 end

82 end

83 l e ( r , : , : , : ) = l e ( r , : , : , : ) .∗ repmat (mask ( r , : , : ) , [ 1 1 1 6 ] ) ;

84 i f ˜isempty ( s l i c e o u t )

85 l e 2 = l e ( r , : , : , : ) ;

86 save ( sprintf ( ’%02s_%03d.mat’ ,matout , r ) , ’le2’ ) ;

87 end

88 end

89 i f ˜isempty ( wholeout )

90 save ( wholeout , ’le’ ) ;

91 end
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Listing E.6: tbspline3.m

1 function [ dx dy dz ] = tb sp l i n e 3 ( phix , phiy , phiz , x , y , z , de l ta ,

d i f f )

2 %TBSPLINE3 Converts tensor B−s p l i n e con t ro l po in t g r i d in to b−
s p l i n e mesh

3 % phix , phiy , ph i z : B−s p l i n e con t ro l po in t s in each d i r e c t i on

4 % x , y , z : Grid de f i n i n g the sample po in t f o r the tensor B−s p l i n e

con t ro l po in t g r i d

5 % de l t a : Spacing f o r tensor B−s p l i n e con t ro l po in t g r i d

6 % d i f f : Vector d e f i n i n g the d i r e c t i o n s to d i f f e n t i a t e in

7 % dx , dy , dz : Tensor B−s p l i n e eva lua t ed in x , y , and z

8

9 % Pad the array in order to e l im ina t e boundary e f f e c t s

10 sz = s ize ( phix ) ;

11 [ phix2 phiy2 phiz2 ] = ndgrid ( linspace(−de l t a (1 ) ∗2 , d e l t a (1 ) ∗( sz (1 )

+1) , sz (1 )+4) , linspace(−de l t a (2 ) ∗2 , d e l t a (2 ) ∗( sz (2 )+1) , sz (2 )+4) ,

linspace(−de l t a (3 ) ∗2 , d e l t a (3 ) ∗( sz (3 )+1) , sz (3 )+4) ) ;

12 phix2 ( 3 :end−2 ,3:end−2 ,3:end−2)=phix ;

13 phiy2 ( 3 :end−2 ,3:end−2 ,3:end−2)=phiy ;

14 phiz2 ( 3 :end−2 ,3:end−2 ,3:end−2)=phiz ;

15 i f d i f f (1 )

16 phix = padarray ( phix , [ 2 2 2 ] , 0 , ’both’ ) ;

17 else

18 phix = phix2 ;

19 end

20 i f d i f f (2 )

21 phiy = padarray ( phiy , [ 2 2 2 ] , 0 , ’both’ ) ;

22 else

23 phiy = phiy2 ;

24 end

25 i f d i f f (3 )

26 phiz = padarray ( phiz , [ 2 2 2 ] , 0 , ’both’ ) ;

27 else

28 phiz = phiz2 ;

29 end

30 % Convert the B−s p l i n e con t ro l po in t s (C− f i l e )

31 [ dx dy dz ] = tb sp l i n e 3 c ( phix , phiy , phiz , x , y , z , de l ta , d i f f ) ;
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Listing E.7: tbspline3c.c

1 #include "mex.h"

2 #include <math . h>

3

4 double B(double , int , int ) ;

5

6 void mexFunction ( int nlhs , mxArray ∗ plhs [ ] , int nrhs , const mxArray

∗prhs [ ] )

7 {
8 double ∗phix , ∗phiy , ∗phiz , ∗x , ∗y , ∗z , ∗ de l ta , ∗ de r i v ;

9 int ∗ sa , sn , sx , sy , sz , ∗ sphi , sphix , sphiy , sphiz , d1 , d2 , d3

, I , J , K;

10 mxArray ∗ resxA , ∗ resyA , ∗ reszA ;

11 double ∗ resx , ∗ resy , ∗ r e s z ;

12 int r , s , t , l , m, n , i , j , k , idx1 , idx2 ;

13 double u , v , w, r e s ;

14

15 /∗B−s p l i n e con t ro l po in t s in each d i r e c t i on ∗/
16 phix = mxGetPr( prhs [ 0 ] ) ;

17 phiy = mxGetPr( prhs [ 1 ] ) ;

18 phiz = mxGetPr( prhs [ 2 ] ) ;

19

20 /∗Grid de f i n i n g the sample po in t f o r the tensor B−s p l i n e

con t ro l po in t g r i d ∗/
21 x = mxGetPr( prhs [ 3 ] ) ;

22 y = mxGetPr( prhs [ 4 ] ) ;

23 z = mxGetPr( prhs [ 5 ] ) ;

24

25 /∗ d e l t a : Spacing f o r tensor B−s p l i n e con t ro l po in t g r i d ∗/
26 de l t a = mxGetPr( prhs [ 6 ] ) ;

27 /∗ der i v : Vector d e f i n i n g the d i r e c t i o n s to d i f f e n t i a t e in ∗/
28 de r i v = mxGetPr( prhs [ 7 ] ) ;

29 d1 = der i v [ 0 ] ;

30 d2 = der i v [ 1 ] ;

31 d3 = der i v [ 2 ] ;

32

33 /∗Number o f dimensions in sampling g r i d ∗/
34 sn = mxGetNumberOfDimensions ( prhs [ 3 ] ) ;

35 /∗The s i z e o f the sampling g r i d ∗/
36 sa = mxGetDimensions ( prhs [ 3 ] ) ;

37 sx = sa [ 0 ] ;

38 sy = sa [ 1 ] ;
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39 sz = sn > 2 ? sa [ 2 ] : 1 ;

40

41 /∗ Si ze o f t ensor B−s p l i n e con t ro l po in t g r i d ∗/
42 sph i = mxGetDimensions ( prhs [ 0 ] ) ;

43 sphix = sph i [ 0 ] ;

44 sphiy = sph i [ 1 ] ;

45 sph i z = sph i [ 2 ] ;

46

47 /∗ I n i t i a l i z e matr ices f o r the r e s u l t ∗/
48 resxA = mxCreateDoubleMatrix ( sx∗ sy∗ sz , 1 ,mxREAL) ;

49 resyA = mxCreateDoubleMatrix ( sx∗ sy∗ sz , 1 ,mxREAL) ;

50 reszA = mxCreateDoubleMatrix ( sx∗ sy∗ sz , 1 ,mxREAL) ;

51 re sx = mxGetPr( resxA ) ;

52 re sy = mxGetPr( resyA ) ;

53 r e s z = mxGetPr( reszA ) ;

54

55 /∗ Evaluate tensor product B−s p l i n e in sample g r i d ∗/
56 for ( r = 0 ; r < sx ; r++)

57 {
58 for ( s = 0 ; s < sy ; s++)

59 {
60 for ( t = 0 ; t < sz ; t++)

61 {
62 idx1 = r + s ∗ sx + t ∗ sy∗ sx ; /∗ Index o f sampling

po in t ∗/
63 i = ( ( int ) f l o o r ( x [ idx1 ] / de l t a [ 0 ] ) ) − 1 ;

64 j = ( ( int ) f l o o r ( y [ idx1 ] / de l t a [ 1 ] ) ) − 1 ;

65 k = ( ( int ) f l o o r ( z [ idx1 ] / de l t a [ 2 ] ) ) − 1 ;

66 u = x [ idx1 ] / de l t a [ 0 ] − ( i + 1) ;

67 v = y [ idx1 ] / de l t a [ 1 ] − ( j + 1) ;

68 w = z [ idx1 ] / de l t a [ 2 ] − ( k + 1) ;

69 for ( l = 0 ; l <= 3 ; l++)

70 {
71 I = i + l ;

72 i f ( I < −2)

73 {
74 I = −2;

75 }
76 else i f ( I >= sphix − 2)

77 {
78 I = sphix − 3 ;

79 }
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80 for (m = 0 ; m <= 3 ; m++)

81 {
82 J = j + m;

83 i f ( J < −2)

84 {
85 J = −2;

86 }
87 else i f ( J >= sphiy − 2)

88 {
89 J = sphiy − 3 ;

90 }
91 for (n = 0 ; n <= 3 ; n++)

92 {
93 K = k + n ;

94 i f (K < −2)

95 {
96 K = −2;

97 }
98 else i f (K >= sph iz − 2)

99 {
100 K = sph iz − 3 ;

101 }
102 /∗ Tensor product o f b a s i s func t i on

va lue s ∗/
103 r e s = B(u , l , d1 ) ∗ B(v , m, d2 ) ∗ B(w,

n , d3 ) ;

104 idx2 = ( I+2) + (J+2)∗ sphix + (K+2)∗
sphiy ∗ sphix ;

105 /∗ Store the r e s u l t ∗/
106 re sx [ idx1 ] += ( r e s ∗ phix [ idx2 ] ) ;

107 re sy [ idx1 ] += ( r e s ∗ phiy [ idx2 ] ) ;

108 r e s z [ idx1 ] += ( r e s ∗ phiz [ idx2 ] ) ;

109 }
110 }
111 }
112 }
113 }
114 }
115 p lhs [0 ]= resxA ;

116 p lhs [1 ]= resyA ;

117 p lhs [2 ]= reszA ;

118 n lhs =3;
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119 return ;

120 }
121

122 /∗ B−s p l i n e b a s i s f unc t i ons ∗/
123 double B(double u , int l , int d)

124 {
125 switch (d)

126 {
127 case 0 :

128 switch ( l )

129 {
130 case 0 :

131 return (1−u)∗(1−u)∗(1−u) /6 ;

132 case 1 :

133 return (3∗u∗u∗u − 6∗u∗u + 4) /6 ;

134 case 2 :

135 return (−3∗u∗u∗u + 3∗u∗u + 3∗u + 1) /6 ;

136 case 3 :

137 return u∗u∗u/6 ;

138 }
139 case 1 :

140 switch ( l )

141 {
142 case 0 :

143 return −(1−u)∗(1−u) /2 ;

144 case 1 :

145 return (9∗u∗u − 12∗u) /6 ;

146 case 2 :

147 return (−9∗u∗u + 6∗u + 3) /6 ;

148 case 3 :

149 return u∗u/2 ;

150 }
151 case 2 :

152 switch ( l )

153 {
154 case 0 :

155 return 1 − u ;

156 case 1 :

157 return 3∗u − 2 ;

158 case 2 :

159 return −3∗u + 1 ;

160 case 3 :
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161 return u ;

162 }
163 }
164 mexWarnMsgTxt( "Illegal parameters in basis function evaluation.

" ) ;

165 return 0 ;

166 }
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Listing E.8: detconvertinter.m

1 function de t c onve r t i n t e r ( do f i n t e r , s l i c e o u t , szsample , mask ,

wholeout )

2 %DETCONVERTINTER Convert dof f i l e s ( from ITK) in to r e l a t i v e

volumes

3 % de t c on v e r t i n t e r ( do f in t e r , s l i c e ou t , szsample , mask , wholeout )

4 % do f i n t e r : The cross−s e c t i o n a l r e g i s t r a t i o n

5 % s l i c e o u t : f i l ename fo r r e s u l t i n g volume in sepera t e s l i c e s

6 % szsample : The sample s i z e ( s i z e o f r e s u l t i n g volume )

7 % mask : The image mask

8 % wholeout : f i l ename fo r r e s u l t i n g volume

9

10 % Read the trans format ion ( re turns b−s p l i n e con t ro l po in t

d isp lacement v e c t o r s )

11 [ a f f i n e i n t e r s z i n t e r g r i d d e l t a i n t e r o f f s e t i n t e r ph i x i n t e r ph i y i n t e r

ph i z i n t e r ] = dofread ( d o f i n t e r ) ;

12 % Reverse the y−ax i s

13 ph i y i n t e r=−ph i y i n t e r ;

14 % Mesh gr i d f o r the con t ro l po in t s

15 [ x y z ]=ndgrid ( linspace (0 , g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1) , szsample

(1 ) ) , linspace (0 , g r i d d e l t a i n t e r (2 ) ∗( s z i n t e r (2 )−1) , szsample (2 ) ) ,

linspace (0 , g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1) , szsample (3 ) ) ) ;

16 % Convert the cross−s e c t i o n a l B−s p l i n e con t ro l po in t s in to B−s p l i n e

d e r i v a t i v e s

17 [ adxdx adydx adzdx]= tb sp l i n e 3 ( ph ix in te r , ph iy in te r , ph i z i n t e r , x , y

, z , g r i d d e l t a i n t e r , [ 1 0 0 ] ) ;

18 fpr intf ( ’tbspline3c nr. 1\n’ )

19 [ adxdy adydy adzdy]= tb sp l i n e 3 ( ph ix in te r , ph iy in te r , ph i z i n t e r , x , y

, z , g r i d d e l t a i n t e r , [ 0 1 0 ] ) ;

20 fpr intf ( ’tbspline3c nr. 2\n’ )

21 [ adxdz adydz adzdz ]= tb sp l i n e 3 ( ph ix in te r , ph iy in te r , ph i z i n t e r , x , y

, z , g r i d d e l t a i n t e r , [ 0 0 1 ] ) ;

22 fpr intf ( ’tbspline3c nr. 3\n’ )

23

24 adxdx = reshape ( adxdx , szsample ) / g r i d d e l t a i n t e r (1 ) +1;

25 adxdy = reshape ( adxdy , szsample ) / g r i d d e l t a i n t e r (1 ) ;

26 adxdz = reshape ( adxdz , szsample ) / g r i d d e l t a i n t e r (1 ) ;

27 adydx = reshape ( adydx , szsample ) / g r i d d e l t a i n t e r (2 ) ;

28 adydy = reshape ( adydy , szsample ) / g r i d d e l t a i n t e r (2 ) +1;

29 adydz = reshape ( adydz , szsample ) / g r i d d e l t a i n t e r (2 ) ;

30 adzdx = reshape ( adzdx , szsample ) / g r i d d e l t a i n t e r (3 ) ;

31 adzdy = reshape ( adzdy , szsample ) / g r i d d e l t a i n t e r (3 ) ;
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32 adzdz = reshape ( adzdz , szsample ) / g r i d d e l t a i n t e r (3 ) +1;

33 d = zeros ( szsample ) ;

34 for r=1: szsample (1 )

35 fpr intf ( ’%d\n’ , r )

36 for s=1: szsample (2 )

37 for t=1: szsample (3 )

38 % The Jacobian matrix

39 temp = det ( [ adxdx ( r , s , t ) adxdy ( r , s , t ) adxdz ( r , s , t ) ; . . .

40 adydx ( r , s , t ) adydy ( r , s , t ) adydz ( r , s , t ) ;

. . .

41 adzdx ( r , s , t ) adzdy ( r , s , t ) adzdz ( r , s , t )

] ) ;

42 d( r , s , t )=det ( temp) ;

43 end

44 end

45 d( r , : , : ) = d( r , : , : ) .∗mask( r , : , : ) ;

46 i f ˜isempty ( s l i c e o u t )

47 d2 = d( r , : , : ) ;

48 save ( sprintf ( ’%02s_%03d.mat’ , s l i c e o u t , r ) , ’d2’ ) ;

49 end

50 end

51 i f ˜isempty ( wholeout )

52 save ( wholeout , ’d’ ) ;

53 end
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Listing E.9: leconvertinter.m

1 function l e c o n v e r t i n t e r ( do f i n t e r , s l i c e o u t , szsample , mask ,

wholeout )

2 %LECONVERTINTER Convert dof f i l e s ( from ITK) in to Log−Eucl idean

volumes

3 % l e c o n v e r t i n t e r ( do f in t e r , s l i c e ou t , szsample , mask , wholeout )

4 % do f i n t e r : The cross−s e c t i o n a l r e g i s t r a t i o n

5 % s l i c e o u t : f i l ename fo r r e s u l t i n g volume in sepera t e s l i c e s

6 % szsample : The sample s i z e ( s i z e o f r e s u l t i n g volume )

7 % mask : The image mask

8 % wholeout : f i l ename fo r r e s u l t i n g volume

9

10 % Read the trans format ion ( re turns b−s p l i n e con t ro l po in t

d isp lacement v e c t o r s )

11 [ a f f i n e i n t e r s z i n t e r g r i d d e l t a i n t e r o f f s e t i n t e r ph i x i n t e r ph i y i n t e r

ph i z i n t e r ] = dofread ( d o f i n t e r ) ;

12 % Reverse the y−ax i s

13 ph i y i n t e r=−ph i y i n t e r ;

14 % Mesh gr i d f o r the con t ro l po in t s

15 [ x y z ]=ndgrid ( linspace (0 , g r i d d e l t a i n t e r (1 ) ∗( s z i n t e r (1 )−1) , szsample

(1 ) ) , linspace (0 , g r i d d e l t a i n t e r (2 ) ∗( s z i n t e r (2 )−1) , szsample (2 ) ) ,

linspace (0 , g r i d d e l t a i n t e r (3 ) ∗( s z i n t e r (3 )−1) , szsample (3 ) ) ) ;

16 % Convert the cross−s e c t i o n a l B−s p l i n e con t ro l po in t s in to B−s p l i n e

d e r i v a t i v e s

17 [ adxdx adydx adzdx]= tb sp l i n e 3 ( ph ix in te r , ph iy in te r , ph i z i n t e r , x , y

, z , g r i d d e l t a i n t e r , [ 1 0 0 ] ) ;

18 fpr intf ( ’tbspline3c nr. 1\n’ )

19 [ adxdy adydy adzdy]= tb sp l i n e 3 ( ph ix in te r , ph iy in te r , ph i z i n t e r , x , y

, z , g r i d d e l t a i n t e r , [ 0 1 0 ] ) ;

20 fpr intf ( ’tbspline3c nr. 2\n’ )

21 [ adxdz adydz adzdz ]= tb sp l i n e 3 ( ph ix in te r , ph iy in te r , ph i z i n t e r , x , y

, z , g r i d d e l t a i n t e r , [ 0 0 1 ] ) ;

22 fpr intf ( ’tbspline3c nr. 3\n’ )

23

24 adxdx = reshape ( adxdx , szsample ) / g r i d d e l t a i n t e r (1 ) +1;

25 adxdy = reshape ( adxdy , szsample ) / g r i d d e l t a i n t e r (1 ) ;

26 adxdz = reshape ( adxdz , szsample ) / g r i d d e l t a i n t e r (1 ) ;

27 adydx = reshape ( adydx , szsample ) / g r i d d e l t a i n t e r (2 ) ;

28 adydy = reshape ( adydy , szsample ) / g r i d d e l t a i n t e r (2 ) +1;

29 adydz = reshape ( adydz , szsample ) / g r i d d e l t a i n t e r (2 ) ;

30 adzdx = reshape ( adzdx , szsample ) / g r i d d e l t a i n t e r (3 ) ;

31 adzdy = reshape ( adzdy , szsample ) / g r i d d e l t a i n t e r (3 ) ;
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32 adzdz = reshape ( adzdz , szsample ) / g r i d d e l t a i n t e r (3 ) +1;

33

34 l e = zeros ( [ szsample 6 ] ) ;

35 for r=1: szsample (1 )

36 fpr intf ( ’%d\n’ , r )

37 for s=1: szsample (2 )

38 for t=1: szsample (3 )

39 % The Jacobian matrix

40 temp = [ adxdx ( r , s , t ) adxdy ( r , s , t ) adxdz ( r , s , t ) ; . . .

41 adydx ( r , s , t ) adydy ( r , s , t ) adydz ( r , s , t ) ; . . .

42 adzdx ( r , s , t ) adzdy ( r , s , t ) adzdz ( r , s , t ) ] ;

43 temp = logmd ( sqrtmd ( temp ’∗ temp) ) ;

44 % Transform in to Log−Eucl idean space

45 l e ( r , s , t , : ) = [ temp (1 , 1 ) temp (2 , 2 ) temp (3 , 3 ) temp

(1 , 2 ) temp (1 , 3 ) temp (2 , 3 ) ] ;

46 end

47 end

48 l e ( r , : , : , : ) = l e ( r , : , : , : ) .∗ repmat (mask ( r , : , : ) , [ 1 1 1 6 ] ) ;

49 i f ˜isempty ( s l i c e o u t )

50 l e 2 = l e ( r , : , : , : ) ;

51 save ( sprintf ( ’%02s_%03d.mat’ , s l i c e o u t , r ) , ’le2’ ) ;

52 end

53 end

54

55 i f ˜isempty ( wholeout )

56 save ( wholeout , ’le’ ) ;

57 end
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Listing E.10: logmd.m

1 function L = logmd (M)

2 % L = logmd (M)

3 % Matrix logar i thm of a d i a g ona l i z a b l e matrix M.

4 [ v d ] = eig (M) ;

5 L = v∗diag ( log (diag (d) ) ) /v ;

Listing E.11: sqrtmd.m

1 function S = sqrtmd (M)

2 % S = sqrtmd (M)

3 % Matrix square root o f a d i a g ona l i z a b l e matrix M.

4 [ v d ] = eig (M) ;

5 S = v∗diag ( sqrt (diag (d) ) ) /v ;
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Listing E.12: makemanovaanalysis.m

1 load data/malefemale . mat

2 load data/ l e f t r i g h t . mat

3 load data/ fa z eka s . mat

4 load pareas

5 a r e avo l s = a r eavo l s ( : , 2 : end−2) ; % Remove removed areas

6 [ p s l ] = princomp ( a r eavo l s ) ; % Perform p r i n c i p a l component

ana l y s i s

7 lcum = cumsum( l ) /max(cumsum( l ) ) ;

8 % Find p r i n c i p a l components where at l e a s t 95% variance i s

exp la ined

9 maxcomp = find ( lcum > . 8 , 1) ;

10 % Projec t data onto the chosen p r i n c i p a l components

11 varimaxed = ar eavo l s ∗ p ( : , 1 : maxcomp) ;

12 % Perform MANOVA male/ female

13 [ dmf pmf stat smf ] = manova1 ( varimaxed , M) ;

14 % Perform MANOVA r i g h t / l e f t / both−handed

15 [ dr lb pr lb s t a t s r l b ] = manova1 ( varimaxed , L + R∗2 + B∗3) ;

16 % Perform MANOVA 1/2/3 Fazekas score

17 [ d faz pfaz s t a t s f a z ] = manova1 ( varimaxed , f a z ) ;

18

19 % Plot r e s u l t s

20 figure , hold on

21 plot ( s tat smf . canon (M, 1 ) , s tat smf . canon (M, 2 ) , ’xb’ , ’LineWidth ’ , 2) ;

22 plot ( s tat smf . canon (F, 1 ) , s tat smf . canon (F, 2 ) , ’or’ , ’LineWidth ’ , 2) ;

23 t i t l e ( ’Sex’ )

24 legend ( ’Male’ , ’Female ’ )

25 box on

26

27 % Plot r e s u l t s

28 figure , hold on

29 plot ( s t a t s r l b . canon (R, 1 ) , s t a t s r l b . canon (R, 2 ) , ’xb’ , ’LineWidth ’ , 2) ;

30 plot ( s t a t s r l b . canon (L , 1 ) , s t a t s r l b . canon (L , 2 ) , ’or’ , ’LineWidth ’ , 2) ;

31 plot ( s t a t s r l b . canon (B, 1 ) , s t a t s r l b . canon (B, 2 ) , ’*g’ , ’LineWidth ’ , 2) ;

32 t i t l e ( ’Handedness ’ )

33 legend ( ’Right ’ , ’Left’ , ’Both’ )

34 box on

35

36 % Plot r e s u l t s

37 figure , hold on

38 plot ( s t a t s f a z . canon ( f a z ==1,1) , s t a t s f a z . canon ( f a z ==1,2) , ’xb’ , ’

LineWidth ’ , 2) ;
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39 plot ( s t a t s f a z . canon ( f a z ==2,1) , s t a t s f a z . canon ( f a z ==2,2) , ’or’ , ’

LineWidth ’ , 2) ;

40 plot ( s t a t s f a z . canon ( f a z ==3,1) , s t a t s f a z . canon ( f a z ==3,2) , ’*g’ , ’

LineWidth ’ , 2) ;

41 t i t l e ( ’Fazekas score’ )

42 legend ( ’1’ , ’2’ , ’3’ )

43 box on
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