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Abstract
Sparse coding is a well established principle for unsupervised learning. Traditionally, features are
extracted in sparse coding in speci�c locations, however, often we would prefer a shift invariant
representation. This paper introduces the shift invariant sparse coding (SISC) model. The model
decomposes an image into shift invariant feature images as well as a sparse coding matrix indicating
where and to what degree in the original image these features are present. The model is not only
useful, for analyzing shift invariant structures in image data, but also for analyzing the amplitude
spectrogram of audio signals since a change in pitch relates to a shift in a logarithmic frequency
axis. The SISC model is extended to handle data from several channels under the assumption
that each feature is linearly mixed into the channels. For image analysis this implies that each
feature has a �xed color coding for all locations. While for analysis of audio signals it means that
features have �xed spatial position. The model is overcomplete and we therefore invoke sparse
coding. The optimal degree of sparseness is estimated by an `L-curve'-like argument. We propose
to use the sparsity parameter that maximizes the curvature in the graph of the residual sum of
squares plotted against the number of non-zero elements in the sparse coding matrix. With this
choice of regularization, the algorithm can correctly identify components of non-trivial arti�cial as
well as real image and audio data. For image data, the algorithm identify relevant patterns and
the sparse coding matrix indicates where and to what degree these patterns are present. When
applied to music, the model can identify the harmonic structures of instruments, while the sparse
coding matrix accounts for the notes played.
Keywords: Sparse coding, shift invariance, 2D deconvolution, multiplicative updates, NMF,
L-curve.

1. Introduction
Sparse coding and the closely related independent component analysis (ICA) are well established
principles for feature extraction (Olshausen and Field, 2004; Olshausen, 1996; Hoyer, 2002; Eggert
and Korner, 2004; Olshausen and Field, 1997; Hyvärinen and Hoyer, 2001; Lee and Lewicki, 2002;
Hyvarinen et al., 2001; Hoyer and Hyvärinen, 2000). Olshausen and Field (2004) argue that the brain
might employ sparse coding since it allows for increased storage capacity in associative memories; it
makes the structure in natural signals explicit; it represents complex data in a way that is easier to
read out at subsequent level of processing; and it is energy e�cient. Thus, sparseness is a natural
constraint for unsupervised learning and sparse coding often results in parsimonious features.

Neurons in the inferotemporal cortex respond to moderately complex features, icon alphabets,
which are invariant to the position of the visual stimulus (Tanaka, 1996). Based on Tanaka's obser-
vation Hashimoto and Kurata (2000) formulated a model that estimates such shift invariant image
features. The resulting features are complex patterns rather than the Gabor-like features often ob-
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tained by sparse coding or ICA decomposition (Olshausen, 1996; Hyvärinen and Oja, 2000). These
shift invariant features can potentially constitute an icon alphabet.

It has also been demonstrated that sparse over-complete linear representations solve hard acoustic
signal processing problems (Asari et al., 2006). These results suggest that auditory cortex employs
sparse coding. Receptive �elds in auditory cortex often have broad and complex time-frequency
structure, and the auditory system uses a highly over-complete representation. The features in the
sparse over-complete representation are complex structures that form an �acoustic icon alphabet�.
Furthermore, infants can distinguish melodies regardless of pitch (Trehub, 2003), and since a change
of pitch relates to a shift on a logarithmic frequency axis, shift invariance appears a natural constraint
for audio signals modelling.

Thus, we �nd ample motivation for sparse coding with shift invariance as a starting point for
analysis of image and audio signals. We present our ideas in the context of image processing, but
we also brie�y include an example of their application to audio processing.

In many existing image feature extraction methods, the image is subdivided into patches, I(x, y),
of the same size as the desired features. The image patches are modeled as a linear combination
of feature images Ψd(x, y) (Olshausen, 1996; Lee and Lewicki, 2002; Hoyer and Hyvärinen, 2000;
Hyvärinen and Hoyer, 2001; Olshausen and Field, 1997; Hyvärinen and Oja, 2000)

I(x, y) ≈
∑

d

αdΨd(x, y). (1)

A drawback of this approach is that the extracted features depend on how the image is subdivided.
To overcome this problem, Hashimoto and Kurata (2000) propose a model which incorporates shift
invariance. Here, each image patch, I(x, y), is modelled by a linear combination of feature images,
Ψd, which can be translated based on the model

I(x, y) ≈
∑

d

αdΨd(x− ud, y − vd). (2)

Direct estimation of ud and vd by exhaustive search is time consuming, but by estimating these
parameters independently, the algorithm is computationally feasible (Hashimoto and Kurata, 2000).
Since the model only allows for one �xed translation, ud, vd, of each feature in each image patch, it
will not lead to a compact representation if a speci�c feature is present more than once within the
same patch. This is for example relevant when the image contains a repeated pattern which is not
aligned with the patches.

Transformation invariance is a generalization of shift invariance (Eggert et al., 2004; Wersing
et al., 2003). Here, the features are invariant to a pre-speci�ed set of linear operators, Tm

I(x, y) ≈
∑

d,m

αd,m(TmΨd)(x, y). (3)

These operators can account for more involved transformations within each patch such as scaling,
rotation, etc. The model we present in this paper incorporates only shift invariance, but it can be
generalized to rotational invariance.

The paper is structured as follows: First, we state our shift invariant sparse coding model and
give an algorithm for estimating its parameters. Then, we present a method to �nd the sparseness
parameter in the model based on evaluating the tradeo� between quality of �t and number of non-
zero elements in the sparse coding matrix. Next, we demonstrate how the model can identify the
components of synthetic data as well as capture important features of real images and music. Finally,
we discuss the properties of the model and the features which it extracts. A Matlab implementation
of the algorithm is available online (Mørup and Schmidt, 2007).
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2 SHIFT INVARIANT SPARSE CODING 3

2. Shift Invariant Sparse Coding
The model for shift invariant sparse coding is based on the following main ideas and observations

• Analysis is performed on the entire image without subdividing the image into patches.

• The estimation of the positions of the features in the image is handled by sparse coding rather
than exhaustive search.

• Shift invariance can be stated in terms of 2D-convolution of the feature and a code matrix,
which enables e�cient computation by the fast Fourier transform (FFT).

• Non-negativity constraints lead to a parts-based representation.

• The model can be generalized to multi-channel analysis such as color images and stereo/multi-
channel audio.

Formally, the SISC model can be stated as

X(x, y) ≈
∑

d,u,v

αd(u, v)Ψd(x− u, y − v), (4)

where X(x, y) is the entire image of size I × J , and the code, αd(u, v), is sparse, i.e., most of its
elements are zero. The image is modelled as a sum of 2-D convolutions of feature images, Ψd(x, y),
of size M1 ×M2 and codes, αd(u, v) of size K1 ×K2. If K1 = I and K2 = J the model allows for
each feature to be present at all possible positions in the image; however, because of the sparseness
of the code, only a small number of positions are active. For image data the sparse code will be the
full image while for audio data K1 < I.

Image and music data often contains several channels. In images channels can for example code
for color, i.e., the RGB or CMYK channels; for music, channels can for example represent stereo
or multiple channels recorded with an array of microphones. We extend the model to handle data
of more than one channel by assuming that the features have the same structure in each channel,
varying only in amplitude. For color image data, it means that the features have a speci�c color;
for audio data, it means that the sources are mixed linearly and instantaneously into the channels.
With this extension, the SISC model reads

Xc(x, y) ≈
∑

d

sc,d
∑
u,v

αd(u, v)Ψd(x− u, y − v). (5)

Without shift invariance, i.e. K1 = 1, K2 = J and with features of size M1 = I, M2 = 1, this model
corresponds to the PARAFAC model (Harshman, 1970; Carroll and Chang, 1970). Note, the model
has not previously been used for image analysis, however, we have previously used a model based
on equation (4) to separate music signals (Schmidt and Mørup, 2006). Also, similar models have
been used by (FitzGerald and Coyle, 2006; Smaragdis, 2004). However, none of the previous work
has been based on sparse coding.

2.1 Non-negativity and Sparseness
We assume that the code, αd(u, v); the features, Ψd(x, y); and the channel mixing parameters, sc,d,
are non-negative. A non-negative representation is relevant when the data is non-negative: Since the
features cannot cancel each other, the �whole� is modeled as the sum of its �parts�, which often results
in easily interpretable features (Lee and Seung, 1999). Non-negativity is a natural constraint for
image data (Lee and Seung, 1999; Hoyer, 2002, 2004). For audio analysis based on the spectrogram
non-negativity is also useful (Smaragdis and Brown, 2003; Smaragdis, 2004; Wang and Plumbley,
2005; FitzGerald et al., 2005; Schmidt and Mørup, 2006).
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The sparseness of the code, αd(u, v), is needed for several reasons. First of all, the SISC model
is over-complete, i.e., the number of parameters is larger than the number of data points. Second,
the model is ambiguous if the data does not adequately span the positive orthant (Donoho and
Stodden, 2003). Third, the SISC model su�ers from a structural ambiguity, as image features
can be arbitrarily represented in αd(u, v) and Ψd(x, y) (see for example Figure 1). By imposing
sparseness, the over-complete representation can be resolved (Olshausen, 1996, 2003; Olshausen and
Field, 1997), and uniqueness is improved (Eggert and Korner, 2004; Hoyer, 2002, 2004).

2.2 Parameter Estimation
We derive an algorithm for estimating the parameters of the SISC model, based on a generalization of
the multiplicative updates for non-negative matrix factorization (NMF) (Lee and Seung, 1999, 2000;
Lee et al., 2002). We base our derivation on a quadratic distance measure, but it can be generalized
using other distance measures such as Bregman and Csiszár's divergence (Lee and Seung, 2000;
Cichocki et al., 2006; Dhillon and Sra, 2005).

We enforce sparsity using an L1-norm penalty on the code, similar to the approach of Eggert and
Korner (2004). The L1-norm is a good approximation to the L0-norm; i.e., it minimizes the number
of non-zero elements (Donoho, 2006), and it does so while preserving the convexity properties of the
cost-function. Note, in SISC model the optimization problem is convex in each of the variables, sc,d,
αd(u, v), and Ψd(x, y), when the other two parameter sets are �xed, however, the joint estimation
problem is not convex.

The cost function can be written as

C(θ) =
1
2

∑
c,x,y

(
Xc(x, y)− Lc(x, y)

)2 + β
∑

d,u,v

αd(u, v), (6)

where θ denotes all the parameters of the model, and

Lc(x, y) =
∑

d

s̃c,d
∑
u,v

αd(u, v)Ψ̃d(x− u, y − v), (7)

s̃c,d =
sc,d√∑
c′,d′ s

2
c′,d′

, and Ψ̃d(x, y) =
Ψd(x, y)√∑
x′,y′ Ψ

2
d(x′, y′)

. (8)

The normalization of sc,d and Ψd(x, y) is necessary to avoid trivially minimizing the L1-norm penalty
by letting the elements of αd(u, v) go to zero while the elements of sc,d and Ψd(x, y) grow accordingly.
The channel mixing, sc,d, we normalize across both features and channels, such that the relative
importance of the features is captured. This enables sc,d to �turn o�� excess components, which
results in a form of automatic model selection by pruning unimportant features.

To minimize the cost function, we derive a set of multiplicative update rules which provide a
simple yet e�cient way to estimate the model parameters. Alternatively, one could estimate the
parameters using another optimization method such as projected gradient (Lin, 2007). An attractive
property of multiplicative updates is that non-negativity is automatically ensured. When ∂θiC(θ)+

and ∂θiC(θ)− denote the positive and negative terms in the partial derivative of the cost function
with respect to θi, the multiplicative updates have the following form

θi ← θi

(
∂θiC(θ)−

∂θiC(θ)+

)γ
, (9)

A small constant ε is added to the denominator to avoid dividing by zero. By adding the same con-
stant to the numerator the overall gradient is unchanged. γ is an over-relaxation learning rate which
can be adaptively tuned (Salakhutdinov et al., 2003). Based on this, an algorithm for estimating
the parameters in the SISC model can be stated as follows
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1. Initialize sc,d, αd(u, v), and Ψd(x, y) with random uniform distributed numbers.

2. Update channel mixing parameters.
� Ac,d =

∑
x,y

Xc(x, y)
∑
u,v

αd(u, v)Ψd(x− u, y − v),

� Bc,d =
∑
x,y

Lc(x, y)
∑
u,v

αd(u, v)Ψd(x− u, y − v),

� sc,d ← sc,d
Ac,d + sc,d

∑
c′,d′ sc′,d′Bc′,d′

Bc,d + sc,d
∑
c′,d′ sc′,d′Ac′,d′

,

� sc,d ← sc,d√∑
c′,d′ s

2
c′,d′

.

3. Update feature images.
� Ad(x, y) =

∑
c

sc,d
∑
u,v

Xc(u, v)αd(u− x, v − y),

� Bd(x, y) =
∑
c

sc,d
∑
u,v

Lc(u, v)αd(u− x, v − y),

� Ψd(x, y)← Ψd(x, y)
Ad(x, y) + Ψd(x, y)

∑
x′y′ Ψd(x′, y′)Bd(x′, y′)

Bd(x, y) + Ψd(x, y)
∑
x′y′ Ψd(x′, y′)Ad(x′, y′)

,

� Ψd(x, y)← Ψd(x, y)√∑
x′,y′ Ψ

2
d(x′, y′)

.

4. Update sparse code.
� Ad(u, v) =

∑
c

sc,d
∑
x,y

Xc(x, y)Ψd(x− u, y − v),

� Bd(u, v) =
∑
c

sc,d
∑
x,y

Lc(x, y)Ψd(x− u, y − v),

� αd(u, v)← αd(u, v)
Ad(u, v)

Bd(u, v) + β
.

5. Repeat from step 2 until convergence.

2.3 Estimation of the Sparsity Parameter
The sparsity parameter, β, is important to obtain good solutions to the sparse coding problem. A
good solution is one which is parsimonious in the sense that the data is well described by a small
number of components, i.e., a good trade-o� between the residual error and the sparsity of the code.

There are many di�erent approaches to making this trade-o� such as the L-curve (Hansen, 1992;
Lawson and Hanson, 1974), generalized cross-validation (Golub et al., 1979), a Bayesian approach
(Hansen et al., 2006), etc. Here, we base the selection of β on the concept of the L-curve. The
idea is to plot the norm of the regularization versus the residual norm, which gives a graphical
display of the compromise between regularization and residual error. An ad-hoc method for �nding
a good solution is to choose the point of maximum curvature, which corresponds to the �corner�
of the L-curve (Hansen, 1992). The L-curve was originally developed in connection with Tikhonov
regularization, but the idea generalizes well to L0-norm minimization. In the following, we plot
the reconstruction error ‖E‖2F =

∑
x,y,c(Xc(x, y) − Lc(X, y))2 against the L0-norm of the sparse

code matrix and choose the solution as the point of maximum curvature. Notice, we regularize the
problem by the L1-norm only because it mimics the behavior of the L0-norm (Donoho, 2006) without
introducing additional minima. Thus, we evaluate the quality of regularization by the L0-norm rather
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than the L1-norm. This has the bene�t that bias introduced by the L1-norm regularization leaves
the L0-norm una�ected. Consequently, potential improvements in the tradeo� are only achieved
when elements are turned o� (set to zero).

3. Experimental Results
We evaluated the algorithm on synthetic data as well as real image and music data. The convergence
criterion was to stop when the relative change in the cost function was less than 10−6 or at a
maximum of 1000 iterations.

3.1 Colored Letters Image
To illustrate the SISC algorithm, we created an image which conforms perfectly with the model. The
image contains six features; the letters A, E, I, O, U, and Y in di�erent colors and with a maximum
height and width of 12 pixels. The letters were placed at 400 randomly selected positions. The size
of the image is 224× 200× 3 (height×width×color channel) and the range of the data is [0, 255].

We then analyzed the image with the SISC algorithm. We used eight features of size 25 × 25
in the analysis to ensure that the generating features could be captured in the estimated features.
The L-curve method suggested that a value of β = 15 was appropriate. The analysis correctly
identi�ed the generating image features when β was chosen according to the L-curve method. The
right choice of sparsity was crucial in order to identify the features correctly. The result of the
analysis is illustrated in Figure 1.

3.2 Oriental Straw Cloth Image
Next, we evaluated the SISC algorithm on a black and white photograph of an oriental straw cloth
(Brodatz, 1966). The image displays a repeated weave pattern; its size is 201 × 201 and the range
is [0, 255].

We analyzed the image with the SISC algorithm using four features of size 25× 25. The L-curve
method suggested using β = 250 (the values around β = 250 gave similar results), and based on
this, the analysis resulted in only one component, which corresponds well to what we would believe
to be the main pattern of the cloth. The result of the analysis is illustrated in Figure 2.

3.3 Brick House Image
Next, we performed a SISC analysis of a color photograph of a brick house. The image data was of
size 432× 576× 3 with range [0, 255].

The analysis captures components primarily corresponding to the brick wall, vertical lines in
window and fence, the sky, horizontal lines and the window grille, see Figure 3.

3.4 Single Channel Music
For the analysis of the amplitudes of the log-spectrogram of music signals the SISC-model should
theoretically display the u-th note at time v played by the d-th instrument in αd(u, v) while the
harmonic of the d-th instruments at relative frequency x at time lag (echo) y is captured by Ψd(x, y).
Ideally, sc,d captures the strength in which the d-th instrument is present in the c-th audio channel.

Presently, we will analyze the single channel music described in (Zhang and Zhang, 2005). The
analysis is based on the amplitude of the log-spectrogram of the music signal consisting of an organ
and a piccolo �ute mixed together. This data has previously been analyzed by Zhang and Zhang
(2005) using a harmonic structure model, i.e. by supervised learning the harmonic structure of
each instrument and then separate a mixed signal of the instruments using these learned structures.
Presently, we use the SISC algorithm unsupervised on the mixed signal of the two instruments to

6
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Figure 1: An eight component SISC analysis of an image of colored letters. Top: The original image,
the L-curve, and the energy in the sparse coding matrix of each feature for three choices
of β. Center: Result of the analysis for β = {1, 15, 75}. With too low sparsity, β = 1, the
image is perfectly reconstructed, but the features are not found correctly. For example,
the �A�-feature is simply a dot, and the �E�-feature corresponds to the upper or lower half
of the letter. With properly selected sparsity, β = 15, the data is perfectly reconstructed
and the features correspond to the generating features. With too high sparsity, β = 75,
only two of the letters are captured. Bottom: First component of the code corresponding
to the letter �A�. With too low sparsity, the structure of A is given in the code matrix
rather than in the feature. With properly selected sparsity, the code indicates where each
�A� is present while the structure of the �A� is captured in the feature. When imposing
too much sparsity the code matrix is forced to zero, and the �A� is pruned from the model.
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Figure 2: A four component SISC analysis of Brodatz D53, black and white photograph of oriental
straw cloth. Top: The Brodatz D53 photograph, the L-curve, and the energy of each
component in the sparse coding matrix for three choices of β. Center: Result of the
analysis for β = {1, 250, 10000}. With too low sparsity, β = 1, the image is perfectly
reconstructed, but the features are hard to interpret. With a properly selected sparsity,
β = 250, only one feature image is found. With too high sparsity, β = 10000, the code
is set to zero. Bottom: First component of the code. When the sparsity is selected
properly, the code is simply a grid of dots.

8
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Figure 3: An eight component SISC analysis of a color photograph of a brick house. Top: The
photograph of the house and the reconstructed image for β = 50. The model captures well
the main features of the original image. Center: The analysis results in �ve components,
which mainly correspond to the brick wall, vertical lines in window frames and fence, the
sky, horizontal lines, and the window grille. Below is the L-curve and the energy of the
sparse coding matrix of each feature. Bottom: Example of what each of the components
correspond to in the full image. Two of the components are shown; component one mainly
captures the brick wall while component �ve captures the window grille.
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both learn the harmonic structures of each instrument as well as which notes were played such that
the mixed signal can be separated by identifying what parts of the log spectrogram originates from
each instrument.

The music was sampled at 22 kHz and analyzed by a short time Fourier transform based on a
8192 point Hanning window with 50% overlap providing a total of 146 FFT frames. We grouped
the spectrogram into 373 logarithmically spaced frequency bins in the range of 50 Hz to 11 kHz
with 48 bins per octave, which corresponds to four bins per half tone. We chose M1 = 373 and
M2 = 4 while K1 = 97 covering 2 octaves, i.e. slightly more than the range of the notes played
(K2 = 146). As we were interested in identifying two components, a four component model was
�tted. The decomposition found extracted well the two instruments into separate components and
turned of the excess components, see Figure 4.

4. Discussion
From the simulated letter data set, see Figure 1, it was seen that the model identi�ed the correct
features of the data, namely the six letters and their respective positions in the sparse coding
matrices. The model also captured the prominent feature forming the pattern of the oriental straw
cloth , see Figure 2, as well as important features of the image of the house as seen in Figure 3. In
the analysis of audio data, the model correctly separated the music into features corresponding to
each instrument of the music as previously demonstrated in (Schmidt and Mørup, 2006). However,
by imposing sparseness we obtained the extra bene�t that all the harmonic structure is forced onto
Ψ such that the harmonics of each instruments can be directly read from Ψ whereas information on
what notes are played by the instruments, i.e., the scores, is captured in the sparse coding matrices
αd. A non-sparse model would have confounded the position of the harmonics both in Ψ and
αd as was the case in (Schmidt and Mørup, 2006), and consequently made the representation less
interpretable.

Although, the SISC model is highly overcomplete, the L1-norm regularization is able to re-
solve the ambiguity of the representation and to �nd the correct model order by turning o� excess
components. However, for identi�cation of the important features the choice of the regularization
parameter β is important. Too low values lead to ambiguous results while too large regularization
removed important features of the data. From the proposed L-curve approach a good value of β
could be found such that the important features of the data were identi�ed while excess compo-
nents turned o�. Hence, the L1-norm regularization worked as a method for automatic relevance
detection (ARD). We conclude that the value of β with the maximum curvature in the plot of the
reconstruction error against the L0-norm of the sparse coding matrices is very useful for the present
SISC model. This approach should also be used for other types of L1 constrained models such as
sparse NMF (Eggert and Korner, 2004; Hoyer, 2004) which corresponds to C = 1, K1 = 1, M2 = 1
as well as a wider range of sparse models. This is the topic of current work.

In the analysis of the mucic data, the SISC model assumes a constant timbre, i.e., no change
in the structure of the harmonics over pitch. Although, this is stated as reasonable in (Zhang and
Zhang, 2005) and is valid for the present data set in general the timbre changes considerably over
pitch (Nielsen et al., 2007). Thus, in general, each component is likely to work only within limited
changes of pitch.

The algorithm we derived was for non-negative decompositions. However, the derived gradients
can also be used for unconstrained optimization. Furthermore, the SISC algorithms can be con-
sidered an extension of the PARAFAC model to include 2D convolutive mixtures. Consequently,
the algorithm devised here gives both a single convolutive mixture, i.e. if M1 = I, K2 = J and
either M2 = 1 or K1 = 1 as proposed by (Smaragdis, 2004; FitzGerald and Coyle, 2006) and a 2D
convolutive mixture. Notice, that if bothM2 and K1 equal one the SISC algorithm becomes an algo-
rithm for sparse non-negative PARAFAC estimation. Furthermore, the developed model can easily
be extended to include more modalities and also to incorporate convolutive mixtures in these extra

10
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Figure 4: Analysis of the amplitude of the log-spectrogram of a music signal. Top The spectrogram
of an organ and piccolo respectively. Center: spectrogram of the mixed signal of the organ
and piccolo. Bottom: result obtained when analyzing the mixed spectrogram using a 4-
component single channel SISC model. From the L-curve, β = 50 was used (the values of
β just around β = 50 gave similar results). With this choice of β two components were
turned o�. The reconstructed spectrograms of the two remaining components correspond
well to the organ and piccolo respectively. Furthermore, the harmonics of each instruments
is given by Ψd to the left of the reconstructed spectrograms while the scores played is given
in αd shown above the reconstructed spectrogram.
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modalities, i.e., a model that is 3-D convolutive, 4-D convolutive etc. Consequently, the framework
used here is generalizable to a wide range of higher order data analysis.

Presently, the model was set in the context of image and music analysis. However, the 2D
deconvolution represents the data as shift invariant 2-D structures. Consequently, the algorithms
devised are more generally useful when data indeed can be represented as such structures. Future
work will focus on bridging the proposed model and the results obtained more closely to visual
and auditory information processing of the brain. Finally, the SISC model can be expanded to
incorporate other types of invariance and constraints than pure shifts. This will also be a focus in
future work.

5. conclusion
This paper introduced the Shift Invariant Sparse Coding (SISC) model. The SISC circumvents the
need to patch data, handles shift invariance by sparse coding rather than resorting to exhaustive
search, is e�ciently calculated through the fast Fourier transform (FFT), and generalizes to multi-
channel analysis. We demonstrated how the model is useful in estimation of shift invariant features
of image and music signals and proposed a method to estimate the optimal degree of sparseness based
on the L-curve approach. The algorithm can be downloaded from (Mørup and Schmidt, 2007).

Appendix A. Derivation of the algorithms
In the following derivation of the algorithm for SISC the derivative of a given element of Lc with
respect to a given element of αd(u, v) and Ψd(x, y) and sc,d is needed:

∂Lc(x, y)
∂Ψd′(x′, y′)

=

∂
∑

d

sc,d
∑
u,v

αd(u, v)Ψd(x− u, y − v)

∂Ψd′(x′, y′)
= sc,d′αd′(x− x′, y − y′),

∂Lc(x, y)
∂αd′(u′, v′)

=

∂
∑

d

sc,d
∑
u,v

αd(u, v)Ψd(x− u, y − v)

∂αd′(u′, v′)
= sc,d′Ψd′(x− u′, y − v′),

∂Lc(x, y)
∂sc′,d′

=

∂
∑

d

sc,d
∑
u,v

αd(u, v)Ψd(x− u, y − v)

∂sc′,d′
=
∑
u,v

αd′(u, v)Ψd′(x− u, y − v).

Furthermore, the derivatives of s̃c,d and Ψ̃(x, y) is needed for the normalization when imposing
sparseness on α:

∂s̃c′,d′

∂sc′,d′
=

∂
sc′,d′
‖S‖F

∂sc′,d′
=

1
‖S‖F − sc

′,d′
∑

c,d

sc,d
‖S‖3F

,

∂Ψ̃d′(x′, y′)
∂Ψd′(x′, y′)

=
∂Ψd′ (x

′,y′)
‖Ψd′‖F

∂Ψd′(x′, y′)
=

1
‖Ψd′‖F −Ψd′(x′, y′)

∑
x,y

Ψd′(x, y)
‖Ψd′‖3F

Where ‖S‖F =
√∑

c,d s
2
c,d and ‖Ψd‖F =

√∑
x,y Ψd(x, y)2. The gradient of the cost functions can

be derived by di�erentiation by parts, for instance we �nd when di�erentiating the least squares cost
function with respect to Ψd′(x′, y′)

∂CLS
∂Ψd′(x′, y′)

= −
∑
x,y,c

(Xc(x, y)− Lc(x, y))
∂Lc(x, y)

∂Ψ̃d′(x′, y′)

∂Ψ̃d′(x′, y′)
∂Ψd′(x′, y′)

. (10)

12
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The updates are �nally found using the approach of multiplicative updates, i.e. splitting the gradient
into positive and negative terms and setting positive terms in the denominator and negative in the
nominator, see section 2.2.

Appendix B. Convergence
In the following the convergence of the algorithm for γ = 1 without normalization of Ψd and S will
be given, thus for the algorithm without sparseness. Although no proof is given for the convergence
including normalization we never experienced divergence of the algorithm proposed for γ = 1. Had
the algorithm diverged the step size parameter in the multiplicative update, γ, could have been
tuned such that the algorithm would keep decreasing the cost-function, see also section 2.2.

The proof is based on the use of an auxiliary function and follows closely the proof for the
convergence of the regular NMF algorithm by Lee and Seung (2000). Brie�y stated, an auxiliary
function G to the function F is de�ned by: G(α, αt) ≥ F (α) and G(α, α) = F (α). If G is an
auxiliary function then F is non-increasing under the update α = arg minαG(α, αt).

Essentially following the proof of the least squares NMF updates of Lee and Seung (2000), we
start by de�ning:

F (α) =
1
2

∑
x,y,c

(Xc(x, y)− Lc(x, y))2

Notice that F is just the regular least square cost function CLS . De�ne the vector αa as αa =
αd(u, v). This vector is simply a vectorization of α where a indexes all combinations of d, u and v.
The gradient vector ∇Fa and Hessian matrix Qa,b found by di�erentiating F with respect to the
element αd(u, v) and αd′(u′, v′) denoted by a and b, gives:

∇Fa =
∂CLS

∂αd′(u′, v′)
= −

∑
x,y,c

(Xc(x, y)− Lc(x, y)) sc,d′Ψd′(x− u′, y − v′)

Qa,b =
∂F (α)2

∂αd′(u′, v′)∂αd(u, v)
=

∑
x,y,c

sc,dΨd(x− u, y − u)Ψd′(x− u′, y − v′)sc,d′

Since F (α) is a quadratic function it is completely described by a second order Taylor expansion
here expressed in terms of α as:

F (α) = F (αt) + (α− αt)T∇F (αt) +
1
2

(α− αt)TQ(α− αt)

Now let K(αt) be a diagonal matrix de�ned by

K(αt)ab = δab(Qαt)a/(αt)a.

Further, de�ne the auxiliary function

G(α, αt) = F (αt) + (α− αt)∇F (αt) +
1
2

(α− αt)TK(αt)(α− αt).

Clearly G(α, α) = F (α). Finding G(α, αt) ≥ F (αt) corresponds to

(α− αt)T(K(αt)−Q)(α− αt) ≥ 0

This requires the matrix (K(αt)−Q) to be positive semide�nite (Lee and Seung, 2000).
The rest of the proof follows closely the convergence proof of the regular NMF (Lee and Seung,

2000). De�ne the matrix Ma,b(αt) = αta(K(αt)−Q)a,bαtb. This is just a re-scaling of the elements
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in (K(αt)−Q). Then (K(αt)−Q) is semi-positive de�nite if and only if M is

νtMν =
∑

ab

νtaMa,bνb

=
∑

ab

νta(αta(δab(Qαt)a/(αt)a −Q)a,bαtb)νb

=
∑

ab

αtaQa,bα
t
bν

2
a − νaαtaQαtbνb

=
∑

ab

Qa,bα
t
aα

t
b(

1
2
ν2
a +

1
2
νtb − νaνb)

=
1
2

∑

ab

Qa,bα
t
aα

t
b(νa − νb)2 ≥ 0

all that is left to prove is that minimizing G yield the least square updates

∂G(α, αt)
∂α

= 0⇔ α = αt −K(αt)−1∇F (αt)⇔ αa = αta −
(αt)a

(Qαt)a
∇F (αt)a. (11)

Changing the indexing a to be of the parameters d, u, and v, we get

(Qαt)a =
∑
x,y,c

sc,dΨd(x−u, y−v)
∑

u′,v′,d′
Ψd′(x−u′, y−v′)sc,d′αtd′(u′, v′) =

∑
x,y,c

sc,dΨd(x−u, y−v)Ltc(x, y).

Where Ltc(x, y) =
∑
d sc,d

∑
u,v α

t
d(u, v)Ψd(x− u, y − v). Consequently

αd(u, v) = αtd(u, v) +
αtd(u, v)

∑
x,y,c sc,dΨd(x− u, y − v)(Xc(x, y)− Ltc(x, y))∑
x,y,c sc,dΨd(x− u, y − v)Ltc(x, y)

= αtd(u, v)

∑
x,y,c sc,dΨd(x− u, y − v)Xc(x, y)∑
x,y,c sc,dΨd(x− u, y − v)Ltc(x, y)

,

which concludes the proof. When imposing sparseness the convergence of the α update is easily
proven for L1 de�ning K(αt)a,b = δa,b

(Qαt)a+β
αta

as proposed by Hoyer (2002) for regular NMF in the
above. The convergence of the Ψ update can be similarly derived interchanging the roles of Ψ and
α in the above. The convergence of the S update follows by restating the problem as regular NMF
by vectorizing the images indexed by pixel row and column x and y into the new index q(x, y), i.e.
Xc,q(x,y) =

∑
d sc,dZq(x,y),d where Zq(x,y),d =

∑
u,v Ψd(x− u, y − v)αd(u, v).
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