
Language Based Techniques for
Systems Biology

Henrik Pilegaard

Kongens Lyngby 2007

IMM-PHD-2007-184



Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192



Summary

Process calculus is the common denominator for a class of compact, idealised,
domain-specific formalisms normally associated with the study of reactive con-
current systems within Computer Science. With the rise of the interaction-
centred science of Systems Biology a number of bio-inspired process calculi have
similarly been used for the study of bio-chemical reactive systems.

In this dissertation it is argued that techniques rooted in the theory and practice
of programming languages, language based techniques if you will, constitute a
strong basis for the investigation of models of biological systems as formalised
in a process calculus. In particular it is argued that Static Program Analysis
provides a useful approach to the study of qualitative properties of such models.

In support of this claim a number of static program analyses are developed for
Regev’s BioAmbients – a bio-inspired variant of Cardelli’s Ambient Calculus
that incorporates all features of Milner’s π-calculus:

The property of spatial reachability, which is related to the function of cellular
transport mechanisms, is addressed by two traditional Control Flow Analyses
(CFAs). The simpler of the two, a mono-variant analysis (0CFA), is context
insensitive, while the other, a poly-variant analysis (2CFA), is context-sensitive.
These analyses compute safe approximations to the set of spatial configurations
that are reachable according to a given model. This is useful in the qualitative
study of cellular self-organisation and, e.g., the effects of receptor defects or
drug delivery mechanisms.

The property of sequential realisability. which is closely related to the function of
biochemical pathways, is addressed by a variant of traditional Data Flow Anal-
ysis (DFA). This so-called ‘Pathway Analysis’ computes safe approximations to
the set of reaction sequences that is realisable according to given model. This



ii

is useful in the qualitative study of the metabolic pathways that emerge from a
group of connected biochemical agents.

Technically, these approaches are complementary, but the analyses all over-
approximate the set of run-time enabled reactions. This is used in an iterative
narrowing scheme that achieves considerable synergy between CFA and DFA,
and dramatically improves the results of both.

The specified analyses are proved correct with respect to the semantics of Bio-
Ambients, and their strength is illustrated by application to abstract models of
biological phenomena:

One is a model of the LDL degradation pathway, where it is shown that the
analyses are able to pinpoint the effects of certain genetic defects that are known
to be associated to cardiovascular disease.

The other is a model of genetic transcription that relies only on the π calculus
fragment of BioAmbients.

In both cases the analyses compute very precise estimates of the temporal struc-
ture of the underlying pathways; hence they are applicable across a family of
widely used bio-ware languages that descend from Milner’s Calculus of Com-
municating Systems.

The presented set of analyses constitutes a nice toolbox for the analysis of bi-
ological models. The individual tools range in complexity from low polynomial
to exponential, while the precision scales similarly. Thus, the toolbox may pro-
vide useful information at all stages of a models lifetime, including development,
where one is interested in frequent quick estimates, verification, and prediction,
where one is willing to wait longer for more precise estimates.



Resumè

Process kalkule fungerer som fællesbetegnelse for en klasse af kompakte ide-
laiserede domæne specifikke formalismer, der normal associeres med studiet af
reaktive systemer indendfor datalogien. I forbindelse med udviklingen af den
interaktionsorienterede videnskab, der nu kaldes systembiologi, er et antal biol-
ogisk inspirerede process kalkuler ligeledes blevet brugt som basis for studiet af
biokemiske reaktive systemer.

I denne afhandling argumenteres for at sprog-basserede teknikker, der har deres
rod i det teoretiske og praktiske fundament for programmeringssprog, udgør
et stærkt udgangspunkt for analysen af modeller af biologiske systemer, der
er formaliserede i en process kalkule. Særligt argumenteres der for, at statisk
program analyse er et nyttigt værktøj til studiet af de kvalitative egenskaber
ved s̊adanne modeller.

For at understøtte denne p̊astand er der udviklet en række analyser til Regevs
BioAmbients kalkule, der er en biologisk inspireret variant af Cardellis ambient
kalkule, some desuden indeholder Milners π kalkule.

De rumlige egenskaber ved modeller, der er relevante for de cellulære transport
mekanismer, angribes med to traditionelle kontrol flow analyser (CFA).Den sim-
pleste af de to - en mono-variant analyse - er ikke sensitiv overfor kontekst, men
den anden - en poly-variant analyse - er. De beregner begge sikre tilnærmelser
til mængden af spatielle konfigurationer, som ifølge modellen kan n̊as fra en
given starttilstand, Dette er nyttigt for det kvalitative studie af cellers selv-
organisering og, for eksempel, effekten af defekte receptorer eller medicinale
fremførings mekanismer.

De tidslige egenskaber ved modeller, der er relevante for biokemiske stier generelt,
angribes med en variant af traditionel data flow analyse (DFA). Denne s̊akaldte



iv

‘pathway analyse’ beregner sikre tilnærmelser til mængden af transitionssekvenser,
som ifølge modellen kan realiseres af et givent system.

Teknisk set er disse tilgange komplæmentære, men begge overaproksimerer
mængden af reaktioner som modellens dynamik tillader. Dette udnyttes i en
iterativ tilgang, som opn̊ar betydelig synergi mellem CFA og DFA og derved
markant forbedrer resultatet af begge.

Det bevises at analyserne er korrekte med hensyn til sprogets (BioAmbients)
formelle semantik og deres styrke illustreres ved brug p̊a abstrakte modeller af
biologiske fænomener:

Den ene modellerer den sekvens af biologiske operationer, der leder til optagelse
og nedbrydelse af Low Density Lipo-protein i den den eukaryotiske celle. Det
eftervises her, at analyserne er i stand til at udpege effekten af genetiske fejlkod-
ninger, der vides at være forbundet med hjerte-/kar-sygdomme.

Den anden modellerer genetisk transkription p̊a et meget abstrakt niveau, og
kun ved brug af π kalkule delen af BioAmbients sproget. Det faktum, at anal-
yserne i begge tilfælde er i stand til at uddrage meget præcise estimater af de
underliggende stiers tidslige struktur, viser at de kan bruges p̊a et spektrum af
biologisk inspirede kalkuler der stammer fra Milners Calculus of Communicating
Systems.

De udarbejdede analyser udgør en slagkraftig værktøjskasse til brug ved anal-
yse af modeller af biologigiske systemer. De individualle værktøjer spænder
kompleksitetsmæssigt fra lav polynomiel til eksponentiel kompleksitet, mens
præcisionen skallerer tilsvarende. Dermed kan værktøjskassen levere brugbar
information i alle faser af en models liv, lige fra udviklingsfasen, hvor man er in-
teresseret i hurtige estimater relativt ofte, over verfikationsfasen, til driftsfasen,
hvor man i højere grad er villig til at vente p̊a præcise estimater.



Preface

This dissertation was prepared at the department of Informatics and Math-
ematical Modelling, Technical University of Denmark, in partial fulfillment of
the requirements for acquiring the Ph.d. degree in engineering. The Ph.d. study
has been carried out under the supervision of Professor Flemming Nielson and
Professor Hanne Riis Nielson.

Acknowledgements. I am grateful to my supervisors, Flemming Nielson and
Hanne Riis Nielson, for their continuous support and guidance. Furthermore I
thank them, as well as the rest of the LBT group: Jörg Bauer, Han Gao,
Christoffer Rosenkilde Nielsen, Sebastian Nanz, Christian W. Probst, Terkel
Tolstrup, Ye Zhang, and Fan Yang, for providing an inspiring and motivating
working environment.

A special thanks goes to Terkel Tolstrup for being a good source of inspiration
and alternative viewpoints, as well as a good friend, both during our three
years of sharing an office and after. I also thank Terkel Tolstrup, Christoffer
Rosenkilde Nielsen, and Christian Probst for commenting on various fragments
of this dissertation.

I thank Professor Mila Majster Cederbaum and Verena Wolf, Univesität Mann-
heim, for enthusiastically welcoming me into their group and making the ar-
rangements for a visit that was, regrettably, cancelled for health related reason.

Finally, I am in debt to family and friends, especially Anette and Leonora – the
gems of my life, for their patience and support, without which I could not have
finished this dissertation.

Lyngby, July 2007

Henrik Pilegaard



vi



Contents

Summary i

Resumè iii

Preface v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Preliminary Conclusion . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . 8

I Setting the Scene 11

2 The Eukaryotic Cell 13

2.1 Cellular Information Processes . . . . . . . . . . . . . . . . . . . 14



viii CONTENTS

2.2 Cellular Organisation . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Modelling in Process Calculus 27

3.1 The BioAmbients Modelling Language . . . . . . . . . . . . . . . 28

3.2 Semantics of BioAmbients . . . . . . . . . . . . . . . . . . . . . . 38

3.3 CASE: Modelling the LDL Degradation Pathway . . . . . . . . . 44

3.4 CASE: Modelling Genetic Transcription . . . . . . . . . . . . . . 47

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Static Analysis Techniques 53

4.1 Order Theoretic Preliminaries . . . . . . . . . . . . . . . . . . . . 55

4.2 Monotone Frameworks . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Flow Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 70

II Analysing for Structural Properties 71

5 Well-formed Programs and Their Properties 73

5.1 Free Names and Identifiers . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Well-formed and Initial Programs. . . . . . . . . . . . . . . . . . 76

5.3 Substitution of Identifiers and Names. . . . . . . . . . . . . . . . 79

5.4 Properties of Programs . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS ix

6 Context Insensitive Control Flow Analysis 87

6.1 Concurrently Possible Capabilities . . . . . . . . . . . . . . . . . 88

6.2 Control Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 CASE: Analysing the LDL Degradation Pathway . . . . . . . . . 103

6.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 Context Sensitive Control Flow Analysis 109

7.1 The Spatial Shape of Static Scope . . . . . . . . . . . . . . . . . 111

7.2 Relevant Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3 Relevant Prefixes and Ambient Roles . . . . . . . . . . . . . . . . 118

7.4 Control Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 CASE: Analysing the LDL Degradation Pathway . . . . . . . . . 136

7.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 138

III Analysing for Causal Properties 141

8 Pathway Analysis 143

8.1 Extended Multisets . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2 Computing and Preserving Exposed Prefixes . . . . . . . . . . . 146

8.3 Constructing the Automaton . . . . . . . . . . . . . . . . . . . . 156

8.4 CASE: Analysing the LDL Degradation Pathway . . . . . . . . . 164

8.5 CASE: Analysing Genetic Transcription . . . . . . . . . . . . . . 165

8.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 166



x CONTENTS

9 An Iterative Analysis 169

9.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.2 CASE: Analysing the LDL Degradation Pathway . . . . . . . . . 172

9.3 CASE: Analysing Genetic Transcription . . . . . . . . . . . . . . 176

9.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 178

10 Conclusion 179

10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

10.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10.3 Conclusion and Further Work . . . . . . . . . . . . . . . . . . . . 182

A Variants of the LDL Degradation Pathway 185

A.1 The LDL Pathway with Normal Receptors . . . . . . . . . . . . . 186

A.2 The LDL Pathway with Defects in Exoplasmic Domain . . . . . 187

A.3 The LDL Pathway with Defects in Cytosolic Domain . . . . . . . 188

B Analysis Results for the LDL Degradation Pathway 189

B.1 Analysis Results for the 0CFA . . . . . . . . . . . . . . . . . . . . 190

B.2 Analysis Results for the 2CFA . . . . . . . . . . . . . . . . . . . . 194

B.3 Analysis Results for the Iterative 0CFA . . . . . . . . . . . . . . 199

B.4 Analysis Results for the Iterative 2CFA . . . . . . . . . . . . . . 202

C Analysis Results for Genetic Transcription 207

C.1 Ordinary 2CFA - One Gene . . . . . . . . . . . . . . . . . . . . . 208



CONTENTS xi

C.2 Iterative 2CFA - One Gene . . . . . . . . . . . . . . . . . . . . . 209

C.3 Ordinary 2CFA - Two Genes . . . . . . . . . . . . . . . . . . . . 210

C.4 Iterative 2CFA - Two Genes . . . . . . . . . . . . . . . . . . . . . 211



xii CONTENTS



List of Tables

3.1 The syntax of BioAmbients processes, P . . . . . . . . . . . . . . 35

3.2 Syntax of BioAmbients capabilities, M . . . . . . . . . . . . . . . 36

3.3 Heating relation, P ⇛ Q, on processes. . . . . . . . . . . . . . . . 39

3.4 The reaction relation, P
ℓ̃

−→ Q, on processes. . . . . . . . . . . . 41

3.5 Abstract model of the LDL degradation pathway. . . . . . . . . . 46

3.6 Abstract model of genetic transcription. . . . . . . . . . . . . . . 48

4.1 Maximal Fixed Point algorithm for Monotone Frameworks. . . . 63

4.2 Syntax of the Alternation-free Least Fixed Point Logic. . . . . . 68

4.3 Constraint generation algorithm for Flow Logics. . . . . . . . . . 69

5.1 Bound names, bn(M), and free names, fn(M), of capabilities M . 75

5.2 Free names, fnΓfn
(P ), of processes, P . . . . . . . . . . . . . . . . . 75

5.3 The free process identifiers, fpi(P ), of processes, P . . . . . . . . . 76



xiv LIST OF TABLES

5.4 Well-formedness, C ⊢Γfn
P , of a process, P , with respect to a set

of constants, C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Substitution, P [Q/X ], of a process Q for an identifier X in a
process P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Substitution, P [m/x], of a constant m for a name x in a process P . 80

6.1 Occurring capabilities, capΓcap
(P ), of a process P . . . . . . . . . . 88

6.2 Concurrently possible capabilities, CPΓcap,∆CP
(P ), of a process P . 89

6.3 The 0CFA acceptability judgement. . . . . . . . . . . . . . . . . . 93

6.4 0CFA closure conditions for movement. . . . . . . . . . . . . . . 95

6.5 0CFA closure conditions for communication. . . . . . . . . . . . . 97

6.6 0CFA constraint generation algorithm. . . . . . . . . . . . . . . . 103

7.1 Ambient roles, ambΓamb
(P ), occurring in a process, P . . . . . . . 111

7.2 Static scopes, SCPΓamb,∆SCP
(P ), of a process, P . . . . . . . . . . . 112

7.3 Free variables, fvΓfv
(P ), of a process P . . . . . . . . . . . . . . . . 115

7.4 Relevant variables, RVΓfv,Γcap,∆RV
(P ), of a process, P . . . . . . . . 115

7.5 Relevant prefixes and ambients, RPAΓcap,Γamb,∆RPA
(P ), of P . . . . . 119

7.6 2CFA acceptability judgement, (I,R,F) |=
։

µ P . . . . . . . . . . . 124

7.7 2CFA closure conditions for movement. . . . . . . . . . . . . . . 126

7.8 2CFA closure conditions for communication. . . . . . . . . . . . . 129

7.9 2CFA closure condition for propagation of variable bindings. . . . 131

7.10 Generation of 2CFA constraints. . . . . . . . . . . . . . . . . . . 135

8.1 Exposed capabilities, EΓE
[[P ]], of a process, P . . . . . . . . . . . 146



LIST OF TABLES xv

8.2 Generated capabilities, GΓE ,∆G
[[P ]], of a process, P . . . . . . . . 149

8.3 Killed capabilities, K∆K
[[P ]], of a process, P . . . . . . . . . . . . 152

8.4 Maximal Fixed Point algorithm for the Pathway Analysis. . . . . 158

8.5 Procedure, update(qs, ℓ̃, E), for updating states of pathway au-
tomata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.6 Procedure, clean-up(Q,W, δ), for eliminating dead states. . . . . . 161

9.1 Parameterised 0CFA clause generator for iteration. . . . . . . . . 170

9.2 Iterative analysis algorithm. . . . . . . . . . . . . . . . . . . . . . 171



xvi LIST OF TABLES



List of Figures

1.1 The goal of modelling based approaches. . . . . . . . . . . . . . . 2

2.1 Protein-protein interaction. . . . . . . . . . . . . . . . . . . . . . 15

2.2 DNA double helix. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Flow of information in biological systems. . . . . . . . . . . . . . 18

2.4 The transcription of genes [Jon07]. . . . . . . . . . . . . . . . . . 18

2.5 Post-transcriptional processing of pre-mRNA into mRNA. . . . . 19

2.6 Structure of the cell membrane. . . . . . . . . . . . . . . . . . . . 20

2.7 Structure of eukaryotic cells [Vil07a]. . . . . . . . . . . . . . . . . 22

2.8 LDL degradation pathway . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Communication styles of the BioAmbients calculus. . . . . . . . . 36

3.2 Movement styles of the BioAmbients calculus. . . . . . . . . . . . 36

3.3 Annotated LDL degradation pathway. . . . . . . . . . . . . . . . 44



xviii LIST OF FIGURES

4.1 The nature of approximation. . . . . . . . . . . . . . . . . . . . . 54

5.1 The hierarchy of notions that defines well-formedness. . . . . . . 74

6.1 0CFA closure condition for enter movement. . . . . . . . . . . . . 96

6.2 0CFA closure condition for local communication. . . . . . . . . . 98

6.3 0CFA analysis of normal receptor LDL pathway model. . . . . . 104

6.4 0CFA analysis of defect receptor LDL pathway models. . . . . . 105

7.1 Schematic view of eukaryotic cell. . . . . . . . . . . . . . . . . . . 122

7.2 2CFA closure condition for enter movement. . . . . . . . . . . . . 128

7.3 2CFA closure condition for local communication. . . . . . . . . . 130

7.4 2CFA analysis of normal receptor LDL pathway model. . . . . . 136

7.5 2CFA analysis of defect receptor LDL pathway models. . . . . . 137

8.1 Pathway analysis of normal receptor LDL model. . . . . . . . . . 164

8.2 Pathway analysis of defect receptor LDL models. . . . . . . . . . 165

8.3 Pathway analysis of genetic transcription model. . . . . . . . . . 166

9.1 Iteration of 0CFA and Pathway Analysis — normal receptors. . . 172

9.2 Iteration of 2CFA and Pathway Analysis — normal receptors. . . 173

9.3 Iteration of 0CFA and Pathway Analysis — exo-plasmic defects. 174

9.4 Iteration of 2CFA and Pathway Analysis — exo-plasmic defects. 174

9.5 Iteration of 0CFA and Pathway Analysis — cytosolic defects. . . 175

9.6 Iteration of 2CFA and Pathway Analysis — cytosolic defects. . . 175



LIST OF FIGURES xix

9.7 Iterative analysis — transcription of single gene. . . . . . . . . . 176

9.8 Iterative analysis — transcription of two genes. . . . . . . . . . . 177



xx LIST OF FIGURES



Chapter 1

Introduction

“How much broader our view of life would be if we could study it
through reducing glasses.”

— Louis Bolk

Throughout time the concept of life has been one of the most fundamental
mysteries of every human society. And, even though a great number of highly
motivated people, some of whom remarkably clever, have spend entire lifetimes
pondering the subject, it has remained elusive to us.

This might be about to change. The technological revolution of the last decades
has drastically accelerated the traditional reductionist bottom-up approach to
Life Sciences. As a result the bottlenecks of Life Sciences now lie beyond the
data acquisition phase, where massive amounts of data are now easily col-
lected by cell-wide measurements of transcriptomes, proteomes, metabolomes,
etc. [vSvdH04].

The first main insight spawned by these post-genomics approaches is that no
observable property of the cell emerges as a simple function of a single gene
or protein. Rather it has become evident that individual biochemical entities
merely enact roles within one or more elaborate clusters of entities that interact
cooperatively in a systematic manner in order to cause the observable behaviour.
Thus, the main challenge now is to identify and describe systems, rather than
individual molecules [vMJ+07].

This challenge has been accepted by the emerging science of Systems Biology,
which aims squarely for a holistic understanding of life. The basic tenet of
Systems Biology is that in order to understand life we must understand both



2 Introduction

Reality

Obse
rv

at
io

n

In
sig

ht

Result

Analysis
Model

Figure 1.1: The goal of modelling based approaches.

the qualitative and the quantitative aspects of the underlying systems [Kit02].

For a fraction of Systems Biology, known as Computational Biology – the area
where this dissertation contributes – the goal is the scenario depicted in Fig. 1.1,
where in vivo/in vitro experiments, such as those involved in drug development,
are carried out in silico. Basically, we hope to compute important properties
of the connectivity and self-organisation of systems from mathematical models
that incorporate our knowledge about the individual constituents and the com-
munication and self-organisation mechanisms that are available to them [van05].

An open issue in the modelling approach of Computational Biology is that
of representation. In recent years, however, it has become increasingly clear
that reactive systems, which have been studied intensively within the Computer
Science area of Concurrency Theory for 25 years, are in many ways similar to
the systems of biology. In both cases the systems of interest are composed from
collections of independent, yet somehow connected, agents, either primitive or
themselves systemic, the interactions of which give rise to the global behaviour
of the systems [RS02].

Thus it is hardly surprising that Process Calculi, a class of elegant algebraic
domain-specific modelling languages that has been tremendously successful in
the study of reactive systems, is now also widely applied, and studied, in the
context of Computational Biology [Reg03, Car05b, DL04, PQ04].

These languages are intensional rather than extensional; hence process calculus
models are operational in the manner of computer programs — a fact that might
become a crucial factor when making the step from drug discovery to drug design
[Car04]. Process calculi are also compositional in the sense that the properties
of a model emerges, in a well-understood manner, from the properties of the
immediate constituents and the method of composition [Mil99] — a feature
that is very desirable both from a modelling and analysis perspective. Finally,



3

while it is common for process calculi to focus on qualitative aspects, it is well-
understood how to integrate quantitative information [Hil96]. This can even be
done in a totally orthogonal manner, which enables a convenient separation of
concerns [Her02].

However, process calculi are also Turing complete, i.e., powerful to the point
where many, not to say most, interesting properties of models cannot be com-
puted within finite time and memory [Tur36] — a feature that is hardly ac-
ceptable to a research field like Systems Biology, which relies heavily on fully
automated analysis.

In order to circumvent this issue, computational biologists often defer to simu-
lation in favour of formal verification, e.g., [Reg03, PC04]. In a sense this is a
fairly direct approach to the investigation of models, as it relies on execution of
the underlying formal semantics. Usually, however, the method relies on sam-
pling, rather than exhaustive investigation, and hence it provides probabilities
rather than formal assurances.

Another option is to go the last mile and perform exhaustive simulation. This
is the approach of finite state Model Checking [CGP00], which often works well
for state spaces of moderate size, but, due to the so-called state space explosion,
becomes intractable for large state spaces and undecidable for infinite ones.
Thus, in the presence of complicated models this approach often fails to provide
formal assurances.

Abstraction is the key to such problems. This was realised decades ago within
the Computer Science area of Compiler Construction. Traditionally, optimising
compilers rely on the fully automatic, but approximative, approach of Static
Program Analysis in order to provide the assurances required in order to safely
optimise a program into another, more efficient program, while preserving the
desired extensional behaviour [NNH99]. The basic tenet of Static Program
Analysis is that a loss in precision often makes a property decidable. Thus,
the fundamental challenge of the approach is to achieve an appropriate balance
between efficiency and precision.

Main Thesis. This leads to the main thesis of this dissertation:

The approximative approach of Static Program Analysis can be used
to automatically decide biologically relevant properties of process
calculus expressions that model biological systems.

In principle, any property that can be used to pinpoint errors during model
development or predict the consequences of perturbations qualifies as interesting.



4 Introduction

For the purpose of this dissertation, however, the focus will be on the qualitative
aspects of the spatial and temporal structure of models.

1.1 Background

In order to investigate this thesis the dissertation combines the following three
elements:

An Object Domain. The object of interest to this dissertation is the eukary-
otic cell – the smallest living component of mammalian organisms – as well as
its various subsystems. This constitutes a homeostatic system with two main
features:

The cell is an amazingly flexible reactive system that quickly and precisely re-
sponds to a huge array of environmental stimuli. This ability is intimately
connected with a highly evolved information processing capability. The under-
lying processing plant is implemented by a set of tightly connected regulatory
networks.

The cell is a robust self-organising system that maintains an almost infallible
spatial separation between the components of external and, various, internal
environments. The underlying compartment system constitutes an elaborate
network of bio-membranes that define compartment boundaries. The essential
differences between the fluids of the various compartments are maintained by a
collection of transport networks.

These aspects emerge as high-level behaviours from highly connected systems
of interacting bio-chemical agents. Each of the networks comprises a number of
metabolic pathways that constantly produce, modify, and degrade bio-chemical
agents in a selective manner.

A Modelling Formalism. Process calculi have established themselves as
tools of choice for the modelling and analysis of concurrent and reactive sys-
tems. The use of process algebraic formalisms outside of traditional computing
contexts is a growing trend and, in particular, the emerging area of Systems
Biology has received a lot of attention from the process algebra community.

This dissertation commits to this movement by using a variant of the Bio-
Ambients calculus [RPS+04] as the basis for modelling and analysing sub-
cellular biological systems. The BioAmbients calculus is a descendant of the
CCS [Mil80] family that extends both the π calculus [Mil99] and the ambient



Contributions 5

calculus [CG00]. It retains a notion of spatial boundaries, called ambients, from
the ambient calculus, which allows for models that preserve the spatial struc-
ture of the bio-domain. Furthermore, a notion of interaction capabilities, in the
style of the synchronous π calculus, allows the modelling of biological reactions
between sub-systems.

Thus, the calculus is equally well suited for the modelling of regulatory networks,
cellular transport networks, and the underlying metabolic pathways.

A Formal Approach to Model Analysis. The notion of approximation is
pervasive in the application of mathematics in the analysis of real-world phenom-
ena. If a model is too strong, seemingly simple properties become intractable,
and, if it is too weak, the computable properties are of no interest. Thus, engi-
neers and scientists alike habitually walk the edge of Ockham’s razor and intro-
duce simplifying assumptions in order to strike sensible compromises between
the accuracy of estimates and the tractability of computation.

In the context of computer programs, however, such simplifying assumptions are
of no help as programs are normally intended to do exactly what the instruc-
tions describe. The solution proposed by Static Program Analysis [NNH99]
is to incorporate the approximation into the analysis techniques rather than
the models. The result is a set of techniques that systematically perform ap-
proximations in order to calculate some aspect of the behaviour of a model by
inspection, rather than execution, of the program code.

For this approach to work analyses are usually required to be 1) correct with
respect to the formal semantics, such that verification of a property implies
assurance, 2) exhaustive in order not to restrict the programmer, 3) fully au-
tomatic, in order to pose minimal requirements on the programmer, and 4)
efficient, in order to handle the complexity of more realistic models.

It is exactly this set of required features that makes the approach attractive in
the context of Computational Biology also.

1.2 Contributions

In this context this dissertation contributes a number of static analyses in sup-
port of the main thesis. It is proved that the specified analyses are both exhaus-
tive and correct with respect to BioAmbients models. Furthermore, it is shown
that the analyses admit the computation of best analysis results and thus are
implementable; all results presented in this dissertation have been automatically



6 Introduction

computed by working prototypes.

Mono-variant Control Flow Analysis. In accordance with the ordinary
approach of Flow Logic based program analysis, the first analysis is a context
insensitive or mono-variant Control Flow Analysis (0CFA [Shi88]) for the Bio-
Ambients language. The analysis aims to safely over-approximate the set of
spatial configurations that are reachable from a given model. In order to do so
it keeps track of the contents of ambients and their abilities for participating in
various interactions.

Thus, the focus of the approximation is on the spatial hierarchy established
by the nesting of ambient boundaries. The analysis takes the perspective that
a nesting hierarchy is a tree, but only approximates the shape of this tree by
a binary relation I between ambients and sub-ambients or capabilities, i.e.,
(a, b) ∈ I means that the ambient or capability b occurs inside the ambient a.

Analysis results are considered acceptable if the associated relations, within
the limited precision of the relational representation, a) faithfully represent the
initial configuration, and b) are closed with respect to conditions that mimic
the semantics. In this respect the approach is similar to Abstract Interpretation
[CC77].

Parts of this work were previously presented in [NNPdR07].

Poly-variant Control Flow Analysis. The second analysis is a context sen-
sitive or poly-variant Control Flow Analysis (2CFA [Shi88]) for the BioAmbients
language. The aims and means of the analysis are similar to those of the afore-
mentioned 0CFA.

However, where the 0CFA approximates trees in terms of a binary relation the
2CFA does it in terms of a quaternary relation, where (a, b, c, d) ∈ I means that
d is inside c, c is inside b, and b is inside a — or d is inside c in the context of
a, b.

This context information makes the analysis context sensitive, i.e., able to differ-
entiate between (sub-)configurations that are possible in different settings. Not
only does this, in itself, yield a more precise representation, but it also allows
for closure conditions that mimic the semantics much more closely.

Parts of this work were previously presented in [PNN06b].

Pathway Analysis. The CFA analyses safely approximate the set of spatial
configurations that may arise at run-time. In contrast they produce no infor-
mation about the sequential order of the transitions that lead to the recorded



Contributions 7

configurations.

This motivates the development of the third analysis: a flow sensitive Pathway
Analysis that aims to safely over-approximate the set of reaction sequences that
are realisable by a given model. In order to do so, it focuses on the notion of
exposed prefixes, i.e., the capability prefixes that might participate in the next
reaction.

Technically, this analysis resorts to techniques normally associated with classical
Data Flow Analysis [KU77]. The analysis takes the perspective that a state,
i.e., a process, is an extended multiset of exposed prefixes. It then computes
a (partially) Deterministic Finite Automaton, that safely approximates the set
of realisable transition sequences, by tracking how these multisets change when
reactions occur.

Parts of the work presented here have also been submitted as part of [PNN07].

Iterative Analysis. At first sight the two types of analyses are quite different:
The CFA analyses approximate the spatial structure of models, and, in contrast,
the Pathway Analysis approximates the temporal structure.

These differences, however, are not as profound as they might appear. Clearly,
the analyses are concerned with different aspects of the same thing, namely the
run-time behaviour of BioAmbients processes, and, regardless of the analysis
approach, this is closely related to the realisable reactions, i.e., the set of reac-
tions that might occur. Indeed, both the CFAs and the Pathway Analysis rely
on preliminary safe estimates of this set in order to improve precision, and both
of them compute new, safe – but smaller – estimates as part of the analysis
results.

Due to their inherent differences, the two types of analysis often produce differ-
ent estimates of the realisable reactions. This is used in an iterative narrowing
scheme that alternates the application of a CFA and the Pathway Analysis until
the estimate of realisable reactions reaches a fixed point.

While this is remarkably simple, it improves the precision of both CFAs and
Pathway Analysis dramatically.

This work has not been presented previously.

Case Studies. The analyses are evaluated in the context of two case studies
that address very different aspects of the eukaryotic cell.

The first case study deals with the internalisation of Low Density Lipo-protein,



8 Introduction

and is thereby related to cellular self-organisation. The associated model is fairly
concrete and emphasises the spatial features as well as the receptor dynamics
of the LDL degradation pathway. The modelled system is related to known
cardiovascular diseases; this plays a key role in the investigation of the model,
which is analysed with the full battery of static analyses.

The second case study deals with genetic transcription, and is thus related to
cellular information processing. The associated model is very abstract and relies
only on the π calculus fragment of BioAmbients. Due to the omission of spatial
properties the model is primarily investigated with the Pathway Analysis.

The former model and parts of the associated analytic investigation was previ-
ously treated in [PNN05]. The latter model is new.

1.3 Preliminary Conclusion

Can Static Analysis decide interesting properties of biological systems?

The conclusion, based on the work and results to be presented in the following, is
that yes, it can. The established battery of analyses, which ranges in complexity
from (low) polynomial to exponential, is able to precisely, and with increasing
accuracy, pinpoint the most essential aspects of the studied case models.

In particular, the analyses succeed in pinpointing the effects of certain genetic
defects, known to be associated with cardiovascular disease, from the model of
the LDL degradation pathway. Furthermore, the analyses are able to extract
very precise estimates of the metabolic pathways that emerge from both models;
a fact that indicates that the analyses are applicable across an entire family of
widely used bio-ware languages that descend from Milner’s CCS.

Thus the set of analyses presented in this dissertation constitutes a strong tool
that can both support the development of models and automate significant parts
of their post-modelling analysis. The former point in particular is supported by
the, subjective, practical modelling experiences of the author.

1.4 Dissertation Outline

The present dissertation contains ten chapters, of which this introductory chap-
ter is the first. The remaining nine chapters are organised into three parts:



Dissertation Outline 9

Part I is mainly concerned with background material.

Chapter 2 examines the main features of the eukaryotic cell – including the two
phenomena that are modelled and analysed in later chapters: the process of
genetic transcription and the LDL degradation pathway.

Chapter 3 explains the central notions of process calculi in a biological con-
text, and, in particular, the ’biological compartment as computational ambient’
abstraction of the BioAmbients modelling language. Furthermore, the chapter
presents the two case models to be analysed in later chapters.

Chapter 4 introduces some well established approaches to static analysis —
both the classical Monotone Frameworks approach to Data Flow Analysis and
the more recent Flow Logic approach to Control Flow Analysis.

Part II is concerned with the use of Control Flow Analysis (CFA) techniques
for approximating spatial properties of BioAmbients models.

Chapter 5 formalises some of the subtler concepts of the BioAmbients calculus
and defines a notion of well-formed programs.

Chapter 6 specifies a classic context-independent Control Flow Analysis (0CFA),
which safely over-approximates the set of reachable spatial configurations of any
well-formed BioAmbients program, and submits the model of the LDL degra-
dation pathway to analysis.

Chapter 7 presents a context-dependent Control Flow Analysis (2CFA), which
constitutes an improvement of the 0CFA, and submits the model of the LDL
degradation pathway to analysis.

Part III is concerned with the use of Data Flow Analysis (DFA) techniques for
approximating temporal properties of BioAmbients models.

Chapter 8 introduces the Pathway Analysis, a DFA that safely over-approximates
the set of realisable causal sequences of any well-formed BioAmbients program,
and submits both of the case models to analysis.

Chapter 9 shows how the developed CFAs and DFA can be combined into a
single iterative analysis and submits both of the case models to analysis.

Finally, Chapter 10 summarises, concludes, and presents the perspectives for
further work.



10 Introduction



Part I

Setting the Scene





Chapter 2

The Eukaryotic Cell

“It is astonishing to think that this remarkable piece of machinery,
which possesses the ultimate capacity to construct every living thing
that ever existed on Earth, from giant redwood to the human brain,
can construct all its own components in a matter of minutes and
weighs less than 10−16 grams. It is of the order of several thousand
million million times smaller than the smallest piece of functional
machinery ever constructed by man.”

— Michael Denton

In this chapter we review the main features of the eukaryotic cell. The goal is to
establish a rudimentary understanding of the biological domain. In order to fix
a universe of discourse for the later technical developments we shall primarily
be interested in the qualitative aspects of cellular information processes and
cellular transport. The material covered can be found in any good textbook on
the molecular biology of the cell, such as [AJL+02] or [LBZ+99], and contains
no original contributions.

We start, in Section 2.1, with a brief note on the nature of biochemical interac-
tions. Then we give an overview of cellular information processing and introduce
the underlying bio-chemical polymer plant. This material will help to appreciate
the basic molecule-as-reactive-process abstraction of later chapters. Finally, in
Section 2.2, we describe the organisational hierarchy of eukaryotic cells and dis-
cuss the underlying self-organising compartment technology. This material will
help to appreciate the more advanced compartment-as-computational-ambient
abstraction of later chapters.



14 The Eukaryotic Cell

2.1 Cellular Information Processes

The cell is a reactive system. This ability is intimately connected with a highly
evolved information processing capability. The underlying processing plant is
implemented by a highly connected system of interacting bio-polymers — the
class of polymers that are produced by living organisms.

Molecular Complementarity. The notion of molecular complementarity is
central in all chemical interactions. Like most relationships, the bonds formed by
atomic and molecular entities are based on the mutual satisfaction of interests.

Some of the formed relationships are very strong and may form stable molecules
from otherwise separate entities. This is the case for covalent bonds caused by
the sharing of electrons between atoms of complementary valence.

Other relationships are weaker and may form stable or less stable molecular
complexes. Ionic bonds are caused by electrostatic forces between atoms of
complementary charge, i.e., one is electronegative and the other electropositive.
Hydrogen bonds are caused by (weaker) electrostatic forces between an elec-
tronegative atom and an (eletropositive)) hydrogen atom bound in a dipolar
constellation to another electronegative atom. Finally, van der Waals interac-
tion is a weak unspecific attractive force between atoms in close proximity.

Water, the solvent of the cell, is an example of a dipole; it exhibits a small
positive charge near the hydrogen atoms and a small negative one near the
oxygen. The water solubility of molecules is determined by their electrochemical
properties: Charged molecules are generally soluble, whereas the solubility of
uncharged molecules is determined by their ability to form hydrogen bonds with
water molecules. Hydrophobic (water insoluble) molecules tend to associate
tightly when submerged in water. This is called the hydrophobic effect.

2.1.1 Bio-molecular Agents and their Interactions

For the small molecules typically found in ordinary solution chemistry it is easy
to predict the effects of these various forces. This is different, however, for bio-
molecular agents that are mostly long polymeric chains composed of smaller
monomeric units with individual electrochemical properties. The complicated
structure of these entities results in a very involved notion of molecular comple-
mentarity that induces a high degree of binding specificity. This is one of the
features that most distinguish biochemistry from typical solution chemistry.



Cellular Information Processes 15

Figure 2.1: Protein-protein interaction.

Three types of bio-polymers play a central role in cellular information processing:

Proteins. The proteins are the main actors of the cellular metabolism, i.e.,
the set of chemical reactions that occur in the living cell. They are sequences
of amino acids, i.e., simple acids consisting of a residue, an amino group, and a
carboxylate group. About 20 different amino acids occur in living organisms.

The properties of any protein are determined by the sequence of amino acids
from which it is composed. This sequence constitutes the primary structure of
the protein.

In turn, the properties of each individual amino acid are determined by its acid
residue, which may be non-polar, basic, acid, or uncharged polar. The diversity
of these properties allows non-trivial interaction patterns to emerge within the
primary structure. In particular, hydrogen bonds may form between certain
residues and cause stable localised foldings, such as α-helices, β-sheets, and
turns. The resulting spatial arrangements constitute the secondary structure of
the protein.

The properties of the resulting chain of secondary structure elements are largely
determined by the properties of the individual substructures. Some sections
may be hydrophilic (water soluble), and others hydrophobic. When submerged
in water, proteins seek the most stable conformation and invariably fold to
hide hydrophobic sections and expose the hydrophilic ones. This is an example
of the hydrophobic effect. Internal formation of strong or, more commonly,
weak bonds further stabilises the folded structures. The resulting 3-dimensional
conformations constitute the tertiary structure of the protein.

The properties of a protein that has folded into a stable conformation are deter-
mined by the resulting solvent-accessible surface. The physical and electrochem-
ical contours of the surface are characteristic for the protein. Two folded poly-
mers may exhibit surface areas of (nearly) complementary contour and these
binding sites then allow them to interact biochemically. If the binding sites



16 The Eukaryotic Cell

match well they allow the formation of many stabilising bonds. The molecules
then have a high affinity for one another and may form stable structures called
complexes or coordination compounds. The number and organisation of subunits
in such a compound constitutes the quaternary structure. If the interaction is a
brief reaction and the protein is a catalyst of change in the other molecule we
call it an enzyme. In contrast, if the protein is changed by the interaction we
call it a substrate.

DNA. Deoxyribonucleic Acids are the main carriers of cellular hereditary in-
formation. They are sequences of nucleotides, i.e., monomeric units consisting of
a base, a sugar, and one or more phosphate groups. In DNA the sugar is always
a deoxyribose and the bases are Adenine, Guanine, Cytosine, and Thymine.

Every cell has a repository of hereditary information stored in DNA. The small-
est unit of heredity is the gene. The collection of all genes present in a cell is
the genome and, under normal circumstances, this is an extremely stable entity.

Figure 2.2: DNA double helix [Jon07].

This stability owes to the structure of DNA. The polymer sequence is formed
as the sugar phosphates are linked up sequentially to form the backbone. From
this backbone the bases protrude as a sequence of stubs. The bases are prone to
the formation of hydrogen bonds between pairs (A-T and C-G). Thus, comple-
mentary strands can base-pair and link up in anti-parallel to form a very stable
duplex shaped like a double helix. Genetic information is invariably stored in
this form.

It is usual to represent DNA as strings over the corresponding four letter al-
phabet: A,C,G,T. The sequence is directional; one end is denoted by 5′ and the
other by 3′ – denotations that reveal the positions of recognisable terminators
on the sugar-ring of the first and last molecule synthesised, respectively. Thus,
DNA and RNA are invariably synthesised in the direction of 5′ → 3′, which is
called downstream. The opposite direction is upstream.



Cellular Information Processes 17

RNA. Ribonucleic Acids are the main facilitators of interaction between pro-
tein and DNA/RNA. They are nucleic acids where the sugar is a ribose and the
bases are adenine, cytosine, guanine, and Uracil.

Structurally, RNA is very similar to DNA. In contrast to DNA, however, it
mostly occurs as comparatively short single-stranded chains of nucleotides and,
due to the extra hydroxyl group of ribose, it is more prone to hydrolysis. Con-
sequently RNA is relatively unstable and tends to fold into more stable (3-
dimensional) conformations in order to stabilise. Folded RNA molecules often
forms mixed ribonucleoprotein (RNP) complexes with proteins.

Thus, RNA strands can act both as information carriers (coding RNA) and
functional units (non-coding RNA):

Coding RNA is synonymous with messenger RNA (mRNA). This type of mole-
cules carry transcripts of genes that encode proteins from the genome to the
ribosomes, where the proteins are produced in accordance with the transcribed
information.

The major types of non-coding RNA also play important roles in the transfer
of information from DNA to proteins. Ribosomal RNA (rRNA) molecules con-
stitute the main part of the ribosomes, the enzymes that read mRNA in order
to produce proteins. Two ribosomal ribonucleoproteins (rRNPs), known as the
large and the small subunit, respectively, form a functional ribosome. Transfer
RNA (tRNA) molecules are the adaptors that select and hold individual amino
acids in place for the ribosomal processing.

Other types of non-coding RNA serve in various regulatory capacities through-
out the information transfer process.

2.1.2 The Central Dogma

The Central Dogma of Molecular Biology, first pronounced by Crick in 1958
[Cri58], states that the molecular flow of information is from DNA via tran-
scription to RNA and from RNA via translation to protein(s). As shown in
Figure 2.3 there are known exceptions, but these are associated with abnormal
conditions.

CASE: Transcription of Genes. Each gene encodes either a set of protein
isoforms or a non-coding RNA string. The first step in actually producing these
entities is the transcription of the corresponding DNA into RNA.



18 The Eukaryotic Cell

Figure 2.3: Flow of information in biological systems.

Figure 2.4: The transcription of genes [Jon07].

The stretch of DNA that is the gene consists of two regions. The coding region
is what describes the actual product(s) and upstream from that is the promoter
region.

A number of enzymes are involved in the transcription process, which has three
phases: During initiation an RNA polymerase attaches at the promoter and
melts the DNA locally. During elongation the polymerase synthesises a primary
transcript RNA from the sense strand (the one that codes the gene) by chaining
of nucleoside tri-phosphates (NTPs). Finally, during termination the nascent
(growing) RNA strand and the polymerase are released from the DNA.

Transcription is heavily regulated. A number of regulatory regions, located in
the upstream or downstream area of the promoter, accommodate the binding
of transcription factors. These affect the affinity of the promoter for RNA
polymerase and may be activators or repressors, depending on their influence.



Cellular Organisation 19

Figure 2.5: Post-transcriptional processing of pre-mRNA into mRNA.

The gene usually contains both coding regions (exons) and non-coding regions
(introns). The introns are removed post-transcriptionally from the primary
transcript, called precursor mRNA (pre-mRNA), by a process called splicing.
Regulated variations in this process allows a single gene to code a family of
mRNA.

Translation of RNA. Translation begins when the small ribosomal subunit
assembles on the mRNA and seeks out a start codon. Once the start codon
is found the large subunit assembles and translation commences by stepwise
elongation. When a stop codon is encountered the subunits disassemble and
translation terminates.

Each elongation step consumes a tRNA molecule. At one end the tRNA has a
three-nucleotide sequence (anti-codon) that can base-pair to a matching three-
nucleotide fragment (codon) of mRNA. At the other end they have a binding
domain that matches one of the twenty available amino acid monomers. This
implicitly defines the genetic code.

Proteins are folded and subjected to various enzyme-induced modifications as
they emerge from the ribosome during translation.

2.2 Cellular Organisation

The cell is highly organised and robust due to an amazing capacity for self-
organisation. The underlying compartment system constitutes an elaborate
network of bio-membranes that define compartment boundaries and maintain
the essential differences between the inside fluid and the outside fluid.



20 The Eukaryotic Cell

Figure 2.6: Structure of the cell membrane [Vil07b].

2.2.1 Lipid Bi-layer Membranes

Bio-membranes are bi-layered sheets. As shown in Fig. 2.6 they are mainly com-
posed of amphiphatic lipid molecules and membrane proteins that perform free
lateral diffusion on the surface. As the two monolayers face different biochemical
environments their composition is different; hence the bi-layers are oriented.

Phospholipids. Phospholipids are the main constituents of bio-membranes.
They consist of a hydrophilic head and two hydrophobic tails made from fatty
acids. In order to hide their hydrophobic tails from polar molecules they spon-
taneously form self-healing spheres of bi-molecular sheets when submerged in
water.

Membrane lipids perform rapid lateral diffusion within the same mono-layer, or
leaflet. Thus, the bi-layer acts as a well-stirred 2-dimensional fluid. Transverse
diffusion, from one mono-layer to the other, is rare because the hydrophilic head
would have to penetrate the hydrophobic interior of the bi-layer.

Cholesterol. Cholesterol molecules usually intersperse the membrane lipids.
Their presence increases the rigidity of the membrane and also lowers the freez-
ing temperature by reducing the interaction between molecules. Careful regu-
lation of their prevalence allows a fine-grained control over the small molecule
permeability of membranes.

Membrane Proteins. Membranes are not just passive barriers. They provide
selective permeability and are generally sites of considerable metabolic activity.
The mediators of these functions are the membrane proteins.



Cellular Organisation 21

Transmembrane proteins consist of two functional domains that protrude on
either side of the membrane and are separated by a beta barrel (a stable forma-
tion comprising multiple β-sheets) or a number of regular α-helices that extend
through the membranal bi-layer.

Anchored membrane proteins are attached only to one leaflet of a membrane.
They are covalently bound to either a fatty acid or a phospholipid that is able
to embed in the leaflet itself, thereby acting as an anchor.

Peripheral membrane proteins are associated to membrane surfaces by non-
covalent interactions with membrane proteins or lipids. Such proteins usually
adhere only temporarily to the membrane, and often in a regulatory capacity.

Like the membrane lipids, the proteins move by lateral diffusion. As they are
richer in structure, however, they move considerably slower and never perform
transverse diffusion.

2.2.2 Cellular Organelles

The eukaryotic cell, which is shown in Fig. 2.7, is not a monolithic structure.
Rather it has elaborate internal structure in the form of membrane-bounded
organelles. The membrane of each organelle maintains a local environment that
is optimal for a set of highly specialised functions.

The most prominent compartment is the cell. It is bounded by the plasma mem-
brane, which separates the cytoplasm, where the organelles float in cytosol, from
the exoplasm. The outermost layer of the plasma membrane is the exoplasmic
leaflet, and the innermost layer the cytosolic leaflet. The cytosol is an important
site of metabolic activity. In particular this is where ribosomes translate mRNA
into protein.

The nucleus is where the genome is maintained and transcribed into RNA. It is
shielded by the nuclear envelope — a double-membrane penetrated by nuclear
pores that facilitate the extremely selective exchange of materials between the
nucleoplasm and the cytosol.

The endoplasmic reticulum (ER) has two parts: The Rough ER is involved in the
folding and stabilisation of proteins for the plasma membrane or secretion. It is
rough because the surface is studded with protein manufacturing ribosomes that
attach as soon as the nascent proteins prove to be destined for the membrane or
secretion. The smooth ER extends the rough ER and is involved in the synthesis
of fatty acids and phospholipids for the membranes.



22 The Eukaryotic Cell

Figure 2.7: Structure of eukaryotic cells [Vil07a].

The Golgi complex sorts and processes membrane-bound and secretory proteins,
and attaches molecular labels according to their transport destinations.

The lysosomes are the digestive units of the cell. They utilise enzymes to break
down macromolecules and also act as a waste disposal system.

The mitochondria are responsible for energy production by aerobic respiration.

The peroxisomes are responsible for selective enzymatic oxidation of proteins
and fatty acids.

Finally, vesicles are small, short lived, membrane-enclosed transport units that
transfer molecules between different compartments. Vesicles form as bubbles
that bud off the membrane of an existing compartment.

2.2.3 Cellular Transport

The most important function of the compartment membranes is to ensure the
stability and organisation of the cellular environment. In particular it is impor-
tant that the cellular environment is:

• electrochemically stable,



Cellular Organisation 23

• biochemically well-organised,

• and effectively separated from the outside environment.

These properties are ensured by a number of transport mechanisms that, col-
lectively, deal with all of these aspects.

Small Molecule Transport. The electrochemical stability of compartments
is primarily maintained by the selective permeability of small molecules, which
is implemented by a large class of transmembrane proteins.

Passive transport amounts to diffusion. Some gases may pass the membrane
by simple diffusion. Slightly larger molecules, i.e., various ions and even water,
pass by facilitated diffusion through molecular channels.

Active transport requires a source of energy. Molecular pumps hydrolyse ATP,
while molecular transporters use the power of electrochemical gradients.

Large Molecule Transport. The biochemical organisation of the cell is
maintained by the selective transport of large molecules, e.g., proteins, from
production site to deployment site, The central mechanism is that of protein
targeting. Every translated protein has one or more signal sequences, identify-
ing the appropriate deployment site, embedded in its amino acid chain. Each
such sequence is recognised by the transport machinery associated with the
corresponding destination.

Non-secretory proteins are produced in the cytosol and subsequently trans-
ported to the lumen or membrane of an organelle. Nuclear Localisation Sig-
nals (NLSs), for example, are recognised by Nuclear Pore Complexes (NPCs)
that facilitate transport from cytosol to nucleoplasm. Other signals direct pro-
teins to the lumens or membranes of peroxisomes, or to the membranes or
sub-compartments of mitochondria.

RNA molecules are produced in the nucleoplasm and, if appropriate, subse-
quently transported to the cytosol. In order to be recognised and transported
by the NPCs they must form ribonucleoprotein complexes with proteins that
exhibit Nuclear Export Signals(NESs).

The Secretory Pathway. Secretory proteins are meant for deployment in, or
on membranes in contact with, exoplasmic solutions. Such solutions are rich in
entities that contain important metabolites but are potentially harmful. Thus,
many secretory proteins are hydrolases, i.e., enzymes that break down organic
compounds, and cannot be allowed to roam freely inside the cell.



24 The Eukaryotic Cell

Signal recognition particles recognise secretory proteins already during transla-
tion, and immediately associate them with the rough ER surface. Here they
are injected directly into either the membrane or the lumen of the rough ER by
co-translational translocation.

Once folded into the proper conformation within the ER the proteins are pack-
aged into anterograde vesicles and moved forward to the Golgi complex. Here
they are matured and sorted into vesicles according to their final destination,
which might be either the lysosome or the cell surface. Facilitating proteins are
continuously shipped back to the ER in retrograde vesicles.

Finally, once fully matured, the secretory proteins leave the Golgi complex in
vesicles. Some go to the plasma membrane, where they are secreted into the
exoplasm by exocytosis. Acid hydrolases, on the other hand, are deployed to
the lysosome, where they are used to break down organic compounds.

In the latter case the vesicle is coated with a double protein coat. The ac-
tual formation of the vesicle happens due to a coat of Clathrin particles, but
underneath this coat there is another, comprised of adopter protein complexes
(APs).

The Endocytic Pathway. The mechanism also facilitates receptor mediated
endocytosis, which is used by the cell to selectively subsume particles from the
exoplasm. The process is facilitated by specialised transmembranal receptor
proteins whose exoplasmic domains are able to ligate specific particles.

Meanwhile, and independent of this, clathrin particles continuously assemble on
the cytosolic side of the plasma membrane - thereby forcing it to form clathrin
coated pits that grow progressively deeper until released into the cytosol as
separate clathrin coated vesicles.

The diffusing receptors tend to associate with clathrin coated pits because their
intra-cellular domain binds to complementary adaptin (AP) molecules exposed
by the clathrin coat. Such associated receptors and the particles that they bind,
if any, are internalised when the coated vesicle is formed.

Once internalised, coated vesicles shred their clathrin coat and become early
endosomes. At this stage the subsumed particles are still ligated by the receptor
proteins. This changes, however, when the early endosome merges with a late
endosome. The acidic environment in this compartment makes the receptors
separate from the ligated particles.

From the late endosomes the receptor proteins are recycled to the plasma mem-
brane. The internalised particles, however, are transferred by vesicles to lyso-



Cellular Organisation 25

Figure 2.8: LDL degradation pathway. Copyright 2004 from Molecular Cell
Biology by Lodish et al [LBZ+99]. Reproduced by permission of W.H. Freeman
and Company/Worth Publishers.

somes where they are broken down into useful metabolites,

CASE: The LDL Degradation Pathway. The best known example of this
process is the LDL degradation pathway shown in Fig. 2.8. This is one mecha-
nism, by which the cell acquires the cholesterol required for membrane synthe-
sis. Transmembranal LDL receptors ligate LDL when the exoplasmic domain
encounters the ApoB binding site exposed by LDL particles. The cholesterol
is released when the tightly packed cholesteryl esters of the LDL particles are
hydrolysed in the lysosome [AJL+02, LBZ+99].



26 The Eukaryotic Cell

Related Diseases. It happens that the gene encoding the transmembranal
LDL receptor proteins somehow mutates. Sometimes these mutations are be-
nign, and they cause no particular problems. It may also happen, however, that
a mutation affects the coding of either the exoplasmic or the cytosolic binding
domain in an adverse way. Either case leads to transcription of transmembranal
receptor proteins that exhibit reduced affinity between the affected binding site
and the corresponding binding sites of the ordinary ligands.

When such a defect affects the extra-cellular part of the receptor, its ability to
bind LDL particles is reduced. In contrast, when the defect affects the intra-
cellular part of the receptor protein, it can bind but not internalise LDL parti-
cles. Both cases lead to abnormally high blood levels of LDL, which dramatically
increases the risk of the cardiovascular disease atherosclerosis. The resulting dis-
order is called familial hypercholesterolemia and is hereditary, as it propagates
with the mutated gene.

2.3 Concluding Remarks

The dogma, if you will, of Systems Biology is that we must understand both the
connectivity in systems and their self-organisation in order to understand biol-
ogy [vMJ+07]. Therefore this chapter has presented the main features of cellular
information processing and cellular transport. In the course of the presentation
we have identified two aspects, i.e., genetic transcription and receptor mediated
endocytosis of Low Density Lipo-protein, that we shall abstractly model and
subject to static analysis in later chapters.



Chapter 3

Modelling in Process Calculus

“By relieving the brain of all unnecessary work, a good notation
sets it free to concentrate on more advanced problems, and in effect
increases the mental power of the race.”

— Alfred North Whitehead

This chapter presents a variant of the BioAmbients calculus of Regev et al.
[RPS+04, Reg03, Car04], a sibling of Mobile Ambients (Cardelli and Gordon
[CG00]) designed to model biological systems. The material is intended to serve
multiple purposes. First of all it introduces the modelling formalism addressed
by the technical developments of later chapters. It also introduces the basic
concepts of process calculi, in particular a large family of languages that descend
from the Calculus of Communicating Systems [Mil89, Mil99, CG00]. And finally
it serves as an introduction to the ‘cells-as-computation’ abstraction that was
pioneered by Regev et al [RPS+04].

The BioAmbients calculus is very expressive and includes modelling primitives
for many essential aspects of the biological domain.

Firstly, the calculus preserves the notion of ambients as bounded, mobile, sites
of activity that may nest hierarchically. This provides an intuitive means for
modelling the chemically active membrane-bound compartments that are ubiq-
uitous in eukaryotic cells. In order to make this spatial abstraction operational,
the calculus incorporates a set of (co-)capabilities that allow processes to alter
the local nesting hierarchy.

Secondly, the calculus preserves the notion of channelled communication from
the π-calculus. This allows simpler biological entities (i.e., proteins, RNA, and



28 Modelling in Process Calculus

DNA) and their interaction networks to be modelled as networks of interact-
ing π-style processes. In order to make this part of the modelling formalism
operational in the context of the ambient-as-compartment abstraction the cor-
responding set of (co-)actions allows communication across ambient boundaries
as well as locally.

The resulting calculus is quite extensive in terms of modelling primitives. Also
the set of control structures for processes is slightly larger than what is tra-
ditionally studied for Mobile Ambients, including non-deterministic (external)
choice, as well as a general recursion construct, in the manner of CCS [Mil89].
This is needed in order to allow a precise modelling of biological phenomena.

What brings all of these elements together and completes the biological ab-
straction is a reaction semantics in the style of the Chemical Abstract Machine
[BB90]. The interpretation provided by this semantics is exactly the right one:
A BioAmbients model describes a chemical soup of reactive entities distributed
over some spatial configuration. Two such entities may react (synchronously)
if they are close to one another and exhibit molecular complementarity, i.e., ex-
pose reactive domains (modelled by prefixes) that are complementary in terms
of shape (channel name) and purpose (matching capability/co-capability).

The chapter is in five sections. We start in Section 3.1, by giving an informal
step-by-step introduction to a family of process calculi commonly used for the
modelling of biological systems. Here we shall consider a notion of simple reac-
tive processes in the style of CCS [Mil80], a notion of complex forming processes
in the style of π-calculus [Mil99], and, finally, the class of compartment forming
processes modelled by the BioAmbients calculus [RPS+04]. Then, in Section
3.2, we formalise the reaction semantics of the BioAmbients calculus. After this
we present a BioAmbients model of the LDL degradation pathway in Section
3.3 and a BioAmbients model of genetic transcription in Section 3.4. Finally, in
Section 3.5, we summarise and relate to other approaches.

3.1 The BioAmbients Modelling Language

3.1.1 Simple Reactive Processes

In order to gently introduce the analogy between chemical reagents and com-
putational reactive processes we start from the basics and consider a simple
language of concurrent reactive process expressions. Besides the omission of
internal actions this language is identical to Milner’s Calculus of Communicat-



The BioAmbients Modelling Language 29

ing Systems (CCS) [Mil80], and forms the core of the BioAmbients modelling
language.

As usual for process calculi the language incorporates two design elements:

Firstly, there is a set of primitives, each of which denotes the capability of per-
forming some basic biological activity, which we consider as atomic. In the case
of simple reactive processes the fundamental activity is to engage in reaction.
As described in the previous chapter, reaction in the bio-molecular domain is
primarily a matter of complementary physical shapes, the binding sites exposed
by molecules, coming sufficiently close to each other as shown in Fig. 2.1. In the
calculus we capture this by constants, n,m, that we pick from a denumerable
set, Const, and use as abstract representatives of the interactions such facili-
tated. The sites that participate in reactions are physical complements of one
another, i.e. if the one is convex then the other is concave. This leads to a notion
of simple capabilities for reaction, where n! and n? denote the complementary
binding sites that facilitate the interaction identified by n. Technically, we shall
use standard terminology and call n a channel to point out that n denotes an
(invisible) bond in the interaction topology of bio-chemical reactions.

Definition 3.1 (Simple Capabilities) A simple capability is an element of
the set defined by the following syntax:

M ∈ Cap ::= n! Reaction capability
| n? Reaction co-capability

where n ∈ Const. �

Secondly, there is a set of control structures that allow process expressions to be
composed from the primitives in various ways. Sequential process expressions
are the most basic of such compositions, and they are suitable for abstract
descriptions of isolated reactive entities such as, e.g., proteins.

Definition 3.2 (Sequential processes expressions) A sequential process is
an element of the set defined by the following syntax:

P ∈ Proc ::=
∑

i∈I M ℓi

i . Pi Summation (guarded choice)

| rec X. P Recursive process (defining X , rec X. P )
| X Process identifier

where I is any finite indexing set. We shall use P,Q,R and their primed or
sub-scripted variants (e.g., P ′) to denote process expressions.

Remark 3.3 (Labels) In preparation of the static analyses of later chapters
we attach a label, ℓi ∈ Lab, to each capability prefix, Mi. It shall merely serve
as a useful pointer into the process, and has no semantic significance. For any
concrete process, P , we shall assume that Lab is a finite set.



30 Modelling in Process Calculus

Notation 3.4 It is customary to write concrete k-way instances of summation,
i.e., |I| = k, as M1 . P1 + · · ·+ Mk . Pk. Two special cases emerge when k = 0 or
k = 1. They implicitly give rise to the following additional constructs:

P ∈ Proc ::= . . .
| 0 Inaction
| M ℓ . P Prefix

We shall often omit trailing occurrences of 0, i.e., simply write M rather than
M .0, when writing process expressions.

Definition 3.5 (Identifier binding) In rec X. P the displayed occurrence of
X is identifier binding, asserting that X , P , with scope P . An occurrence
of a process identifier Y in a process is bound if it is, or lies within the scope
of, a binding occurrence of Y . If not bound, Y is free. A process with no free
identifiers is identifier closed.

Notation 3.6 (Identifier substitution) We shall write P [Q/X ] for the sub-
stitution of Q for X in P , i.e., for the process that is as P except that every free
occurrence of the process identifier X is replaced by the process expression Q.

Remark 3.7 In the presence of recursive processes the operational definitions
of bound and free process identifiers as well as application of substitution are
not straightforward and we postpone the formal treatment until Chapter 5. �

Informally, the expressions carry the following meaning:

Inaction, 0, denotes a process that can do nothing. Technically, this is the
terminal process that is the end of all things (including recursive analysis).
Biologically, this is a system that is completely depleted of reactive entities; we
shall think of it merely as superfluous solvent, e.g., water, that may dissipate
by evaporation.

The prefix, M ℓ . P , denotes a process that is capable of participating in the
reaction identified by the capability M ; exercising M turns the process into the
continuation P . This corresponds to a biological entity, such as a protein, that
exposes a single binding site and is altered in some way by the corresponding
reaction.

The summation,
∑

i∈I M ℓi

i . Pi, generalises the prefix and, thus, denotes a pro-
cess that is capable of participating in any one of the k = |I| reactions identified
by the capabilities Mi. Again, exercising some Mj turns the process into the
corresponding continuation Pj ; the remaining capabilities and the correspond-
ing continuations disappear. This corresponds to a biological entity, such as a



The BioAmbients Modelling Language 31

protein, that exposes k distinct binding sites and is altered in some way when
one of them engages in reaction.

The recursive process, rec X. P , models recurrent behaviour. Technically, the
construct denotes a process that behaves as P [recX. P /X ]. Biologically, this
corresponds to entities that have cyclic behaviour. One example is an entity
rec X.M ℓ .X, such as an enzyme, that may participate in the same reaction –
identified by M – over and over. Another example, that of a stateful entity
rec X. (off? . on? . X + M ℓ . X), emerges if you allow the enzyme to be (often
temporarily) inhibited. More generally, the recursive process may be used to
model phenomena such as recycling, replication, or the unbounded supplies of,
e.g., nutrients associated with open systems.

Concurrent process expressions emerge when sequential (or concurrent) process
expressions are combined by parallel composition; they are suitable for abstract
descriptions of reactive systems such as, e.g., bio-chemical solutions.

Definition 3.8 (Concurrent processes) A concurrent process is an element
of the set defined by the following syntax:

P ∈ Proc ::= (n)P Name restriction
| P P Parallel composition

|
∑

i∈I M ℓi

i . Pi Summation (guarded choice)

| rec X. P Recursive process (defining X , rec X. P )
| X Process identifier

where I is any finite indexing set.

Definition 3.9 (Constant binding) In (n)P the displayed occurrence of the
constant n is binding with scope P . �

The language extends that of sequential process expressions. Informally the new
constructs carry the following meaning:

The parallel composition, P Q, denotes the concurrent composition of processes
P and Q. In the resulting reactice system reactions may occur between P and Q
if the one exposes a capability n! and the other the corresponding co-capability
n?. For example, the system n! . P ′ n? . Q′ may react and become P ′ Q′. If
P and Q are themselves reactive systems, reactions may occur in each of them
independently of the other. This corresponds to a chemical solution of reactive
entities.

Finally, in the name restriction, (n)P , the scope of the name n is restricted
to P . Technically, we may think of the name n as bound to some channel and



32 Modelling in Process Calculus

the knowledge of the particular association being private to the sub-system P .
Thus, two concurrent processes within P may react on n, but no process in P
can react on n with a process outside of P . Biologically, this corresponds to
a notion of confinement; in the context of concurrent process expressions the
correspondence is rather weak because it is not straightforward how to model
the dynamics of either physical confinements, such as compartments, or virtual
ones, such as complexes. In the former case n would simple correspond to a
type of reaction only taking place in a particular compartment, in the latter to
a reaction facilitated by binding sites that are exposed toward the interior of a
particular coordination compound only.

Remark 3.10 In the context of parallel composition the notion of replication
arises as a special case of the recursive process. Intuitively. rec X. P X denotes
a potentially unbounded supply of instances of P . This is usually written !P . �

3.1.2 Complex Forming Processes

In order to strengthen the analogy between chemical reagents and compu-
tational processes we now extend the language into one of complex forming
process expressions. Save the omission of internal actions and conditionals,
this language is identical to the π-calculus of Milner, Parrow, and Walker
[MPW92, Mil99, SW01, Par01]. Suitable for the modelling of biochemical enti-
ties and complexes it forms a powerful subset of the BioAmbients calculus.

Complex forming processes emerge when we allow names to be communicated
when reactions occur. This is embodied in the local communication capabili-
ties, a new set of primitives that subsumes the simple capabilities as a special
case. The definition relies on a notion of variables, p, q, that we pick from a
denumerable set, Var, and use as placeholders for the constants received during
communication. As we shall see, the syntax admits both constants and vari-
ables in many positions; hence it is common to refer to them simply as names,
x, y, and pick them from the denumerable set, Name, that is composed as the
disjoint union of constants and variables, i.e., Name = Const ⊎ Var.

Definition 3.11 (Local communication capabilities) By a local communi-
cation capability we shall understand an element of the set defined by the fol-
lowing syntax:

M ∈ Cap ::= x!{y} Local output capability
| x?{p} Local input (co-)capability

Definition 3.12 (Variable binding) In x?{p} . P the displayed occurrence of
the variable p is binding with scope P .



The BioAmbients Modelling Language 33

Definition 3.13 (Free and bound names) An occurrence of a name x in a
process is bound if it is, or lies within the scope of, a binding occurrence of x.
If not bound, x is free. A process with no free name is name closed.

Notation 3.14 (Name substitution) We shall write P [m/x] for the substi-
tution of the constant m for the name x in the process expression P , i.e., the
process that is as P except that every free occurrence of the name x is replaced
by the constant m.

Remark 3.15 Again, we postpone the operational definitions of bound and free
names until Chapter 5. �

As was the case for the simple capabilities, the local communication capabilities
only become operational when used for prefixing. Because of the involved name
passing, however, reactions are no longer symmetric activities between processes;
rather they require one of the involved processes to act as sender and the other
to act as recipient: The prefix n!{m} . P is a sender; it denotes a process that
is capable of participating in the reaction identified by n, and if this capability
is exercised the process shares its knowledge about the binding of m with the
reaction partner and continues as P . In a complementary fashion the prefix
n?{p} . Q is a recipient; it denotes a process that is capable of participating in
the reaction identified by n, and if this capability is exercised the process learns
about some name binding, e.g., m, that is then substituted for p throughout Q,
such that the process continues as Q[m/p] rather than Q.

Thus, the extension enables the passing of values from one entity to the other.
However, the main strength lies in the notion of scope extrusion that accom-
panies this ability. For example, in a system (m)n!{m} . P n?{p} . Q P ′ a
local communication reaction might occur such that in the resulting system
(m) (P Q[m/p]) P ′ the scope of m has been extruded to include both P and
Q[m/p], i.e., P and Q[m/p] now share the bond denoted by m, but it is not
shared by anyone else.

This can be used to model the biological notion of complexes — especially the,
often temporary, coordination compounds of molecular machineries that occur
in conjunction with, e.g., the transcription of genes or the translation of RNA.
These compounds often form in an ad-hoc manner in order to perform some non-
atomic piece of work, after which they disassemble again. The ad-hoc nature of
such a compound calls for individual modelling of their constituting components.
The fixed cooperation structure of the compound, however, requires the model
to enforce a temporary ’lock’ on the set of constituents throughout the lifetime
of a complex. This is exactly what scope extrusion and recursion provides.



34 Modelling in Process Calculus

Now, when a communication reaction takes place, e.g., in n!{m} . P n?{p} . Q,

then the result is defined in terms of a substitution P Q[m/p] of a constant for
a variable. If m is bound in Q, i.e., Q contains a sub-expression (m)Q′, then m
becomes spuriously bound by this binder if Q′ is of the form · · · p · · · .

This is called constant capture and, in order to avoid it, it is usual to demand
static scope and define a notion of α-equivalence that allows bound constants
to be freely changed.

Definition 3.16 (α-equivalence) A change of bound constants or α-renaming
within a process P is the replacement of a subterm (n)Q of P by (m)Q[m/n]
where m /∈ fn(Q). It is common to say that P and Q are α-equivalent, P ≡α Q,
if Q can be obtained from P by a finite number of changes of bound constants.

Remark 3.17 Communication is defined in terms of a substitution, P [n/x], of
a constant for a name, and α-equivalence is defined in terms of a substitution,
P [m/n], of a constant for a constant. In contrast we shall ensure in Chapter 5
that the need of substituting a variable for a variable or a process identifier for
a process identifier shall never arise; hence we define α-equivalence neither for
variables nor process identifiers.

Remark 3.18 (Canonical names) Many of the technical developments of
the following sections and chapters will rely on the ability to statically track the
names that occur in the processes of interest. Due to α-equivalence, however,
the direct syntactical representation of names is not stable under the seman-
tic relations; hence ordinary names are not suitable for carrying static analysis
information.

We solve this issue in the manner that is standard for Flow Logic based static
analysis, e.g., [NNP04, HJNN99, BDNN01]. We associate each name x with a
canonical name ⌊x⌋ ∈ Name and demand that α-renaming be disciplined, i.e.,
performed in such a way that canonical names are preserved, even when the
syntactical representations change. When N is a set of names we shall write
⌊N⌋ to denote the point-wise extension of ⌊x⌋. Similarly we extend the operator
to capabilities, i.e., ⌊M⌋ is M where every name is canonicalised, and processes,
i.e., ⌊P ⌋ is P where every name is canonicalised.

For any concrete process, P , we shall assume that Name, in contrast to Name,
is a finite set. And, like the ordinary names, this set is composed as the disjoint
union of the canonical constants, ⌊n⌋ ∈ C, and the canonical variables, ⌊p⌋ ∈ V,
i.e., Name = C ⊎ V.

In practice we are going to take Name ⊂ Name. In the case of variables, which
are not subject to α-conversion, it then suffices to choose ⌊p⌋ = p. In the case of



The BioAmbients Modelling Language 35

P ∈ Proc ::= (n)P Name restriction
| P µ Ambient boundary
| P P ′ Parallel composition

|
∑

i∈I M ℓi

i . Pi Summation (guarded choice)

| rec X. P Recursive process (defining X , rec X. P )
| X Process identifier

Table 3.1: The syntax of BioAmbients processes, P .

constants, however, we shall assume that each distinct constant, n, occurring in
the initial static program code gives rise to an equivalence class of constants rep-
resented by the corresponding canonical constant, ⌊n⌋. Disciplined α-renaming
then demands that the α-renaming process always picks the replacement name
from the equivalence class of the replaced name and that the corresponding α-
equivalence (Table 3.3) only holds when the bound names are indeed from the
same class. �

3.1.3 Compartment Forming Processes

As noted by Regev [Reg03] membrane bounded compartments may be modelled
as complex forming processes, but the underlying analogy is quite weak. Thus
she proposed a better alternative in the form of BioAmbients. In doing so she
proposed that compartment forming processes emerge from complex forming
processes, when you allow spatial boundaries to be explicitly modelled.

Definition 3.19 (BioAmbients processes) The set of BioAmbients process
expressions is defined by the syntax of Table 3.1.

Notation 3.20 We use the heavy brackets, and , to represent ambient bound-
aries; the ordinary brackets, [ and ], are reserved for the notion of substitution.

Remark 3.21 (Roles) In preparation for the static analyses of later chapters
we attach a role, µ ∈ Role, to each ambient boundary. It shall merely serve
as a useful pointer into the process, and has no semantic significance. For any
concrete process, P , we shall assume that Role is a finite set. �

This extends the language of complex forming processes with the ambient bound-
ary construct, P µ, which denotes a process P encapsulated by a spatial
boundary. There is an obvious correspondence to the biological concept of a
compartment, which is exactly a physical enclosure that creates a strong spatial
separation between inside and outside. In some instances, however, it is also



36 Modelling in Process Calculus

M ∈ Cap ::= Communication capabilities
x!{y} | x?{p} local communication

| x !{y} | x ?̂{p} parent to child communication
| x !̂{y} | x ?{p} child to parent communication
| x#!{y} | x#?{p} sibling to sibling communication

Movement capabilities
| enter x | accept x enter movement
| exit x | expel x exit movement
| merge– x | merge+ x merge movement

Table 3.2: Syntax of BioAmbients capabilities, M .

(a) local (b) parent to child (c) child to parent (d) sibling

Figure 3.1: Communication styles of the BioAmbients calculus.

useful for the modelling of ’hard’ compounds, i.e., complexes that are not formed
as temporary coordination compounds. Finally, it may model non-membranal,
enclosure forming, biological entities, such as the clathrin coats that force the
formation of internalisation vesicles by the plasma membrane (Section 2.2.3).

Definition 3.22 (BioAmbients capabilities) The set of BioAmbients capa-
bilities is defined by the syntax of Table 3.2. �

The pair x !{y}/x ?̂{p} causes parent to child communication, i.e., a process may
communicate a message to a process encapsulated by a neighbouring ambient
(Fig. 3.1(b)); this may correspond to a variety of receptor mediated interactions
where the co-action is perceived as a surface receptor of a compartment.

(a) enter (b) exit (c) merge

Figure 3.2: Movement styles of the BioAmbients calculus.



The BioAmbients Modelling Language 37

In contrast, the pair x !̂{y}/x ?{p} causes child to parent communication, i.e., a
process may communicate a message to a process that is a neighbour of its im-
mediately enclosing ambient (Fig. 3.1(c)); biologically this could e.g. correspond
to interaction between a component of a complex and a molecule neighbouring
the complex.

Finally, the pair x#!{y}/x#?{p} allows sibling to sibling communication, a pro-
cess within some ambient may communicate a message to a process located
within an ambient neighbouring the first (Fig. 3.1(d)); biologically this corre-
sponds, e.g., to receptor mediated interaction between a complex and a com-
partment, communication between components of different complexes, or inter-
compartment (e.g., hormonal) signalling.

In the case of movement capabilities the effect of reaction is that the local
hierarchy of nested ambients changes.

The effect of an interaction between enter x and accept x is that one ambient
enters a neighbouring one (Fig. 3.2(a)); biologically this corresponds, e.g., to
endocytosis where a compartment (selectively) subsumes another large entity.

The capabilities exit x and expel x cause one ambient to leave the immediately
enclosing one (Fig. 3.2(b)); this corresponds, e.g., to exocytosis where a com-
partment (selectively) secretes some matter.

Finally, merge+ x and merge– x simply make two neighbouring ambients merge
(Fig. 3.2(c)); this corresponds to fusion of biological compartments.

Example 3.23 Our running example shall be the following program, Peat, which

is inspired by the production of metabolites by catabolism of nutrients; as we shall

explain later it models how ’food particles’ (nutrients) may either be ignored, digested,

or emitted as secretion by the cell:

(rj) (ac) (rea) (RL)
( rec Z. expel rj1 . Z

( recY. ( reâ ?{rl}2 . expel rl3 . Y
+exit rj4 . Y
+enter ac5 . Y )

exit RL6 .0 nutrient ) food

rec S. ( rea !{RL}7 . S
+expel rj8 . S

+accept ac9 . S ) cell ) system

�



38 Modelling in Process Calculus

3.2 Semantics of BioAmbients

The notion of Reaction Semantics is inspired by Berry and Boudol’s Chemical
Abstract Machine [BB90], which pioneered the view that concurrent process
expressions are ‘really’ chemical solutions of reactive entities. These solutions
are heated and stirred by an invisible device, and entities may react if they
come close and exhibit molecular complementarity. Being extremely appealing,
this abstraction is now widely used in the context of process calculi. In partic-
ular, it is the traditional choice for ambient calculi. Thus, when conceiving of
BioAmbients, Regev [RPS+04, Reg03] gave the language a reaction semantics,
which ensures a high degree of coherence between the inherently (bio-)chemical
modelling domain and the operational model of the language.

It is custom to define a reaction semantics in terms of structural congruence, ≡,
and reaction, −→, both binary relations on processes. We shall diverge slightly
from this tradition and, following Berry and Boudol’s original proposal rather

closely, define the semantics in terms of heating, ⇛, and reaction,
ℓ̃

−→.

Definition 3.24 (Heating relation) The heating relation, ⇛, is the least bi-
nary relation on Proc that is inductively defined by the axioms and rules of
Table 3.3. When it holds between two process expressions P and Q, written
P ⇛ Q, it means that Q arises from P by any number of occurrences of

• insignificant syntactic restructuring (stirring, ≡),

• elimination of an inactive process (evaporation, ⇛),

• elimination of a useless restriction (diffusion, ⇛), and

• unfolding of a recursive process (catalysis, ⇛).

Remark 3.25 (Structural congruence) The ordinary structural congruence
relation, ≡, of BioAmbients [Reg03] is nearly fully embedded in the heating re-
lation, where we write ≡ for the conjunction of ⇛ and ⇚. However, we disallow
the random introduction of inactive processes and vacuous restrictions, and as-
sert that recursive processes can only be unfolded and not folded back.

Remark 3.26 (Unfolding of recursive processes) We use the heating re-
lation to unfold recursive processes. Another choice is usually associated with
Structural Operational Semantics of process calculi [Mil99], where it is custom
to have the following inference rule:

P [recX. P /X ]
α

−→ Q

rec X. P
α

−→ Q



Semantics of BioAmbients 39

Scope of restrictions:

h-sres (n) (m)P ≡ (m) (n)P

h-samb (n) ( P µ) ≡ (n)P µ

h-sext (n) (P Q) ≡ ((n)P ) Q if n /∈ fn(Q)

Reordering of parallel processes:

h-pcom P Q ≡ Q P

h-pass (P Q) R ≡ P (Q R)

Reordering of summands:

h-scom P + Q ≡ Q + P

h-sass (P + Q) + R ≡ P + (Q + R)

α-equivalence:

h-alph (n)P ≡ (m) (P [m/n]) if m 6∈ fn(P ) and ⌊n⌋ = ⌊m⌋

Evaporation and diffusion: Unfolding of recursive processes:

h-neva P 0 ⇛ P

h-rdif (n)0 ⇛ 0

h-urec rec X. P ⇛ P [recX. P /X ]

Reflexivity and transitivity:

h-refl P ⇛ P
h-tran

P ⇛ Q Q ⇛ R

P ⇛ R

Congruence:

h-cres
P ⇛ Q

(n)P ⇛ (n)Q
h-camb

P ⇛ Q

P µ ⇛ Q µ
h-cpar

P ⇛ Q

P R ⇛ Q R

h-csum
P ⇛ Q

M ℓ . P + R ⇛ M ℓ . Q + R

Table 3.3: The heating relation P ⇛ Q on processes. We write P ≡ Q when
both P ⇛ Q and P ⇚ Q.

This works fine in the presence of a reaction rule

P
α

−→ P ′ Q
α

−→ Q′

P Q
τ

−→ P ′ Q′

that allows two recursive processes to be simultaneously unfolded. In the pres-



40 Modelling in Process Calculus

ence of a reaction semantics, however, this does not work, and we delegate
unfolding to the heating relation in order to allow simultaneous unfolding. �

The heating relation serves both as a stirrer, cleaner, and catalyst, much like real
heat does to a real chemical solution. The rules and axioms have the following
meaning:

The rules for scope of restrictions ensure that a name restriction is (almost)
completely free to migrate in and out of ambient boundaries, parallel composi-
tions, other name restrictions. This guarantees that a name restriction cannot
spuriously block reactions, because sooner or later it will migrate out of the
way. Note, that together with α-conversion (application of h-alph) this axiom
implicitly captures the aforementioned notion of scope extrusion.

The rules for reordering of parallel processes make systems behave like multisets
of process expression, i.e. solutions of reactive entities. Similarly, the reordering
rules for summations make summations behave as (subordinate) multisets, i.e.,
dynamic entities that spin and thereby make their binding sites accessible from
all directions.

The notion of α-equivalence ensures that solutions are indistinguishable up to
disciplined changes of bound names. Thus the concrete representation of a
particular channel is immaterial, as long as the relevant reactive entities agree
on it.

The h-neva rule serves to eliminate inactive processes. This corresponds to
Berry and Boudol’s notion of inaction cleanup and biologically we shall think
of this as evaporation.

The h-rdif rule serves to eliminate useless restrictions. This corresponds to
Berry and Boudol’s notion of restriction cleanup and biologically we shall think
of this as diffusion or secretion of garbage.

The rule for unfolding of recursive processes unfolds a recursive definition once,
thereby releasing a single instance of the body into the system. This corresponds
to Berry and Boudol’s fixpoint rule and biologically we shall think of this as a
process that is catalysed by heating.

The rules for reflexivity and transitivity ensure that the heating of a system may
cause any number, that is zero or more, concrete stirring, cleaning or unfolding
actions. Note that symmetry of ≡ follows implicitly.

Finally, the rules for congruence ensure that the equivalence extends to all



Semantics of BioAmbients 41

Movement:

r-ent
(enter nℓ1 . P + P ′) P ′′ µ1 (accept nℓ2 . Q + Q′) Q′′ µ2

(ℓ1,ℓ2)
−→

P P ′′ µ1 Q Q′′ µ2

r-ext
(exit nℓ1 . P + P ′) P ′′ µ1 (expel nℓ2 . Q + Q′) Q′′ µ2

(ℓ1,ℓ2)
−→

P P ′′ µ1 Q Q′′ µ2

r-mrg
(merge– nℓ1 . P + P ′) P ′′ µ1 (merge+ nℓ2 . Q + Q′) Q′′ µ2

(ℓ1,ℓ2)
−→

P P ′′ Q Q′′ µ2

Communication:

r-l2l (n!{m}ℓ1 . P + P ′) (n?{p}ℓ2 . Q + Q′)
(ℓ1,ℓ2)
−→ P Q[m/p]

r-p2c
(n !{m}ℓ1 . P + P ′) (n ?̂{p}ℓ2 . Q + Q′) Q′′ µ (ℓ1,ℓ2)

−→
P Q[m/p] Q′′ µ

r-c2p
(n !̂{m}ℓ1 . P + P ′) P ′′ µ (n ?{p}ℓ2 . Q + Q′)

(ℓ1,ℓ2)
−→

P P ′′ µ Q[m/p]

r-s2s
(n#!{m}ℓ1 . P + P ′) P ′′ µ1 (n#?{p}ℓ2 . Q + Q′) Q′′ µ2

(ℓ1,ℓ2)
−→

P P ′′ µ1 Q[m/p] Q′′ µ2

Execution in context:

r-res
P

ℓ̃
−→ Q

(n)P
ℓ̃

−→ (n)Q
r-amb

P
ℓ̃

−→ Q

P µ ℓ̃
−→ Q µ

r-par
P

ℓ̃
−→ Q

P R
ℓ̃

−→ Q R

Stirring, cleaning, and catalysis:

r-aux
P ⇛ P ′ P ′ ℓ̃

−→ Q′ Q′ ⇛ Q

P
ℓ̃

−→ Q

Table 3.4: The reaction relation, P
ℓ̃

−→ Q, on processes.

relevant sub-expressions, i.e., two process expressions denote the same solution
if all sub-expressions denote the same sub-ordinate solutions.

Definition 3.27 (Reaction relation) The reaction relation is the least bi-
nary relation on Proc defined inductively by the axioms and rules of Table

3.4. When it holds between two processes P and Q, written P
ℓ̃

−→ Q where



42 Modelling in Process Calculus

ℓ̃ = (ℓ1, ℓ2) is a pair of labels, it means that P can evolve into Q by a single
movement or communication reaction involving two prefixes that are labelled ℓ1
and ℓ2, respectively.

Example 3.28 The semantics of the example program Peat is illustrated below:

1

2

3

4

6

5

7

8

system

cell food

nutrient

system

cell

food

nutrient

system

cell

food

nutrient

system

cell

food

nutrient

system

cell

foodnutrient

system

cell food

nutrient

system

cell

food

nutrient

system

cell

foodnutrient

rl=RL

(6,3)

(4,8)

(4,8)

(5,9)

(5,9)

(4,1)

(4,1)

(7,2)

(7,2)

rl=RL

The initial configuration is shown in frame 1 and here the tree structure reflects a

scenario where cell and food are siblings inside system and nutrient is a sub-ambient of

food. In this configuration (4, 1) can react to move food out of system and obtain the

stuck configuration of frame 2. Alternatively, (5, 9) can react to move food into cell

(frame 3). Then (4, 8) can react to move food back out of cell (frame 1 again), or (7, 2)

can react to bind the variable rl to the constant RL (frame 4). After that only (6, 3)

can react to move nutrient out of food (frame 5). Here (7, 2) may react to bind the

variable rl to the constant RL once more and thereby obtain the stuck configuration

of frame 8. Alternatively, (4, 8) can react to move food out of cell (frame 6). From

here (5, 9) may react to move food back into cell (frame 5). Alternatively, (4, 1) can

move food out of system and thereby obtain the stuck configuration of frame 7. �

Remark 3.29 (Semantic labels) The labels, ℓ, that we attach to the seman-

tic arrow,
ℓ̃

−→, have no semantic significance. They simply constitute an instru-

mentation that helps us define a collecting semantics,
L̃

−→⋆, i.e., the reflexive

transitive closure of
ℓ̃

−→, defined as follows:

P⋆
ε

−→⋆P⋆

P⋆
L̃

−→⋆P P
ℓ̃

−→ Q

P⋆
L̃ℓ̃
−→⋆Q

Thus, for a given derivation, P
L̃

−→⋆Q, the string L̃ constitutes a record, in the
form of a trace, of the transitions that have come to pass. We shall use this in



Semantics of BioAmbients 43

the sequel, when formulating our correctness results, and quite often we shall

write P⋆
L̃

−→⋆P
ℓ̃

−→ Q for a sequence of reactions that evolve an initial program
P⋆, first into P via the sequence L̃ of reactions, and then into Q via a final
reaction ℓ̃. �

The reaction relation constitutes our definition of the reactive behaviour of pro-
cesses. Every axiom has two ingredients. In the case of movement reactions the
local ambient hierarchy is changed and in the case of communication reactions
a constant is substituted for a variable in the receiving process. In both cases
the prefixes involved in the synchronising reaction are removed to leave room
for their continuations and summands are discarded.

The movement reactions are those of enter movement, exit movement, and merge
movement, defined by axioms r-ent, r-ext, and r-mrg, respectively, and they
enable the movement behaviours described in Section 3.1.3.

The communication reactions are those of local communication, parent to child
communication, child to parent communication, and sibling to sibling commu-
nication, defined by axioms r-l2l, r-p2c, r-c2p, and r-s2s, respectively, and
they enable the communication behaviours described in Section 3.1.3.

The rules for execution in context ensures that reactivity extends to all relevant
parts of the system. This asserts that sub-expressions of restrictions, ambients,
and parallel compositions are indeed reactive and, thus, denote subordinate
solutions.

Finally, the rule for cleaning, stirring, and catalysis allows systems to be stirred
and heated before and after reactions. This enables the view that reaction is a
relation on warm and well-stirred solutions rather than fixed algebraic expres-
sions.

Remark 3.30 (Unrestricted sums vs. guarded choice) Note that we omit
the unrestricted choice, P + Q, of the original language [Reg03] in favour of the
more conventional guarded sum,

∑

i∈I Mi . Pi. We do this because unrestricted
choice a) is difficult to handle in a reaction semantics in the presence of general
recursion [PNN06a], and b) seems to provide no essential extension of expressive
power. The point a) is of relevance to the developments in Chapter 8, where a
well-defined kill component is extremely difficult to specify in the presence of
unrestricted choice. �



44 Modelling in Process Calculus

Figure 3.3: Annotated LDL degradation pathway [LBZ+99].

3.3 CASE: Modelling the LDL Degradation Path-

way

We now turn to the modelling of the LDL degradation pathway (Section 2.2.3),
which is the first of our two case studies. Receptor mediated endocytosis is pri-
marily a transport scenario. It involves both transmembranal coordination and
compartment based transport; this is modelled by ambients that communicate
and move.

In accordance with Regev’s examples and guidelines we take the approach that



CASE: Modelling the LDL Degradation Pathway 45

each kind of physical compartment as well as each kind of multiprotein complex
should correspond to one ambient role. Thus, we have the following correspon-
dences:

• The LDL role models LDL particles.

• The EE role models early endosomes (true compartments).

• The LE role models late endosomes (true compartments).

• The CC role models clathrin coats (coating the EE in the coated vesicle).

• The LY SO role models lysosomes (true compartments).

• The CELL role models cells (true compartments).

• The XV role models transfer vesicles (true compartments).

• The CH role models cholesterol.

When we can do so without ambiguity, we will use the abbreviated ambient roles
also when referring to the biological entities that they model. As will be evident
from the explanation below, the model emphasises the receptor dynamics that
facilitates the initial LDL binding but ignores the details of receptor recycling.
Nonetheless this allows the analysis to highlight certain medical issues.

In Nature each compartment and reaction would be present in the thousands.
For the purposes of this dissertation, however, we are merely interested in qual-
itative information and, hence, it suffices for us to model a single representative
for each biological entity.

In Table 3.3 the LDL (described in LipoProtein) is initially located outside of
the CELL (described in Cell). Here it offers an ApoB signal via the channel
LDLrcpt that corresponds to the extra-cellular binding site of the transmem-
branal LDL receptor of the CELL.

At this stage the early endosome has not been formed yet. We model, however,
the membrane patch and the transmembranal LDL receptors, which are later
going to fold into the early endosome, as a process capable of evolving into the
EE ambient. As explained in Section 2.2.3, the clathrin coated early endosome
may be formed with or without bound LDL particles. We model this by a
summation that demands one of the following three binding scenarios to occur
before the EE ambient is released:



46 Modelling in Process Calculus

LipoProtein =
LDLrcpt#!{ApoB}1 . enter ApoB2 . enter ee3 . enter xv4 . proĉ ?{Hydr}5 .

( expel Hydr6 .0
exit Hydr7 .0 CH ) LDL

Endo =
enter AP223,16,9 . exit AP224,17,10 .merge– Le25,18,11 .0

EarlyEndo =
accept ee22,15 .Endo EE

ClathrinCoat =
EErcpt̂ ?{ap2}26 . accept ap227 . expel ap228 .0 CC

XferVesicle =
( accept xv31 .0

exit Le32 .merge– lyso33 .0 ) XV

LateEndo =
( merge+ Le29 . expel Le30 .0

XferVesicle ) LE

Lysosome =
merge+ lyso34 . proc !{hydr}35 .0 LY SO

Cell =
( ( EErcpt !{AP2}8 . Endo EE

+EErcpt !{AP2}12 . LDLrcpt#?{apob}13 . accept apob14 .EarlyEndo

+LDLrcpt#?{apob}19 . accept apob20 . EErcpt !{AP2}21 .EarlyEndo )
ClathrinCoat

LateEndo

Lysosome ) CELL

(LDLrcpt) (EErcpt) (ApoB) (AP2) (ee) (cc) (lyso) (xv)
(Le) (proc) (hydr) (ap2) (ap)

( LipoProtein Cell )

Table 3.5: Abstract model of the LDL degradation pathway.

1. The extra-cellular part LDLrcpt of the LDL receptor binds the ApoB
signal of the LDL thus forcing LDL to enter the CELL. Subsequently
the intra-cellular part EErcpt of the receptor is bound by the AP2 domain
exposed by the CC bound adaptin molecules.

2. The intra-cellular part EErcpt of the receptor is bound by the AP2 do-
main exposed by the CC bound adaptin molecules. Subsequently the
extra-cellular part LDLrcpt of the LDL receptor binds the ApoB signal
of the LDL thus forcing LDL to enter the CELL.

3. The intra-cellular part EErcpt of the receptor is bound by the AP2 do-
main of the CC and the extra-cellular part LDLrcpt is never bound.



CASE: Modelling Genetic Transcription 47

If the LDL is in place inside the CELL after the binding scenario it may enter
the EE otherwise not. Either way, the internalisation of the clathrin coated pit
may be completed by the EE entering the CC.

In Nature this internalisation process is atomic since the

CH LDL EE CC CELL

(or EE CC CELL) configuration arises instantaneously when the coated
vesicle is completed and internalised. By modelling this as a sequence of events
we are introducing modelling artifacts as is indeed a common phenomenon when
using process algebras for describing biological systems. Most importantly, for
the LDL to enter the EE we have to allow it into the CELL, which is bio-
logically unsound. Thus, we must keep in mind, when interpreting the analysis
results, that the EE must both enter and leave, the latter corresponding to the
internalised early endosome shredding its clathrin coat, the CC in order to enter
the CELL.

When released in the CELL the EE is able to merge with the LE. This releases
the LDL into the LE from where it may enter the XV . After the merge the
XV is free to leave the LE with, or without, the LDL cargo.

Finally, the XV may merge with the LY SO, thus releasing the LDL cargo into
its final destination where it may be hydrolysed into CH.

3.4 CASE: Modelling Genetic Transcription

In a similar manner we shall also fashion an abstract model of genetic tran-
scription (Section 2.1.2), which is the second of our case studies. Genetic tran-
scription is primarily a coordination scenario. It involves both the formation of
coordination compounds and recurrent behaviour; this is modelled by recursive
processes that coordinate within extruded scopes.

The resulting model has three components:

The genome is a collection of genes. Each gene repeatedly allows polymerase to
attach at the promoter and then transcribe the gene by reading the nucleotides of
the sequence one at a time. Hence, in the model we portray a gene as a recurrent
process genei where each recurrence corresponds to a complete transcription and
has three phases:

Initiation The gene supports the formation of coordination compounds by



48 Modelling in Process Calculus

gene1 =
rec G1. (g1) (b1) (d1)
tr!{g1}1 . g1!{b1}2 . g1!{a}3 .

( g1!{c}4 . ( g1!{a}5 . ( g1!{c}6 . b1!{d1}7 .G1
+b1?{d11}8 .G1 )

+b1?{d11}9 .G1 )
+b1?{d11}10 .G1 )

genome =
gene1

ATP =
rec A. ( a!{a}11 .0 A )

CTP =
rec C. ( c!{c}12 .0 C )

GTP =
rec G. ( g!{g}13 .0 G )

UTP =
rec U. ( t!{t}14 .0 U )

nTP =
( ATP CTP GTP UTP )

polymerase =
rec P. tr?{gene}15 . gene?{b}16 . rec X. ( gene?{p}17 . ( b!{d}18 .P

+p?{dp}19 .X )
+b?{dp}20 . ( 0 MRNA P ) )

(a) (c) (g) (t) (tr) (d)
( genome nTP polymerase )

Table 3.6: Abstract model of genetic transcription.

offering scope extrusion of the private channels gi and bi on the public
channel tr.

Elongation The gene supports a sequential ‘reading’ of its nucleotide sequence
by offering a sequence of corresponding communications on the channel
gi. At each step the gene is prepared for the coordination compound to
be broken up via a message on the private channel bi.

Termination If all nucleotides are ‘read’ the gene breaks up the coordination
compound by sending a message on the private channel b1.

Note that, in the concrete example, the genome is a collection of only a single
gene. As the BioAmbients syntax does not allow empty synchronising commu-
nications we use the di as dummy messages.

The cell provides a potentially unbounded supply of nucleoside tri-phosphates



CASE: Modelling Genetic Transcription 49

that provides the nucleotides for the growing messenger RNA. In the model
we capture this by replicating processes corresponding to each of the NTPs
in question. Each replica offers just a single interaction on a public channel
corresponding to the specific nucleotide. In the concrete model the nTP is
simply an unbounded collection of ATP, GTP, CTP, and UTP.

Polymerase is an enzyme that makes RNA copies of DNA templates. It repeat-
edly attaches to the promoter region of a (not specific) gene and then synthesises
a corresponding RNA replica by processing one nucleotide at the time. Here
we model the enzyme as a recurrent process, polymerase, where each major re-
currence, rec P. · · · , corresponds to a complete transcription and each minor
recurrence, rec X. · · · , corresponds to a single nucleotide. Thereby we achieve a
generic polymerase that will transcribe a gene of any length in three phases:

Initiation The polymerase forms a coordination compound with a gene by
engaging in interaction on the public channel tr. Here it receives two
private channels gene and b that allows it to coordinate specifically with
the gene in question.

Elongation The recursive (sub-)process, rec X. · · ·, either handles the next nu-
cleotide in two steps:

• First, the type of nucleotide is communicated from gene to poly-
merase via the private channel gene.

• Then, if too long time passes before a corresponding NTP turns
up, the polymerase breaks the coordination compound by sending
a signal on the private channel b and then recurs to its initial state,
(rec P. · · · ). Otherwise, the polymerase reacts with the NTP and
recurs to handle the next nucleotide (rec X. · · · ).

Termination Or the genetic sequence (ACAC in the concrete case) is fully
transcribed and the coordination compound is broken by a signal on b. The
polymerase then recurs to its initial state (rec P. · · · ) while, at the same
time, releasing a piece of messenger RNA corresponding to the transcribed
sequence.

Note that this model does not pay any attention to the cooperativity issues of
activators, inhibitors, genes, and polymerases. These issues, that are particu-
larly relevant to the initiation phase, have been treated in great detail by Kuttler
and Niehren [KN06] and also by Blossey, Cardelli, and Phillips [BCP06].

Also note that the model rests on the assumption that transcription may termi-
nate prematurely. This type of behaviour, however, does not seem to be frequent



50 Modelling in Process Calculus

in living systems; rather it seems to be connected with certain regulatory mech-
anisms that we shall not treat in detail. For our purposes the assumption simply
results in a model that is slightly more complex and, thus, constitutes a more
interesting subject of analysis in later chapters.

3.5 Concluding Remarks

In this chapter we have introduced a variant of the BioAmbients calculus [Reg03,
RPS+04] that incorporates general recursion in the manner of CCS [Mil80] and
omits unrestricted choice in favour of guarded sum. The fundamental concepts
of the calculus were introduced in three stages: First the fragment of simple
reactive processes, which is strongly related to Milner’s CCS [Mil80]. Then
the fragment of complex forming processes, which is strongly related to the
π-calculus by Milner, Walker, and Parrow [MPW92, Mil99]. And, finally, com-
partment forming processes in the form of the full BioAmbients calculus, which
adds elements of Cardelli and Gordon’s Mobile Ambients [CG00], but in the
style of Levi and Sangiorgi’s Mobile Safe Ambients [LS03] where all progress is
a result of binary reactions rather than unary actions. One may observe that
the resulting three classes of process expression correspond to the three classes
of biological abstract machines identified by Cardelli [Car05a]:

The protein machine is concerned with Biochemical Networks, and seems to
be adequately modelled by the notion of simple reactive processes. This is
the view taken by Calder et al, who use the Performance Evaluation Process
Algebra (PEPA), which is basically a stochastic extension of simple reactive
processes, for the modelling and analysis of various signalling pathways [CGH06,
CGH05, CDGH06, CGHV06], and, especially, Danos and Krivine in their work
on formal biology in CCS [DK03]. Danos et al have made a few attempts at
capturing special properties of the biological domain by addressing them at a
more fundamental level: Reversible CCS aims to capture the concept of truly
reversible reactions [DK03, DK04]. The κ-calculus focuses on the notion of
complexation and its effect on the folding of proteins, in terms of exposure or
hiding of binding sites, [DL03a, DL03b, DL04].

The Gene Machine is concerned with Gene Regulatory Networks, and seems
to be adequately modelled by the notion of complex forming processes. This
view was pioneered by Regev et al [RSS01], who worked with Priami [PRSS01]
in order to base their BioSPI stochastic simulation tool on Priami’s Stochastic
version of the π-calculus [Pri96] coupled with Gillespie type rate estimations
[Gil77, Gil76]. Technically this line of work has prospered at the hands of Phillips
and Cardelli who have worked on graphical notations [PC05], simulation tools



Concluding Remarks 51

[PC04], and modelling methodologies (Blossey et al) [BCP06]. The modelling
efforts of Kuttler et al [KN06] have also led to technical extensions in the form of
concurrent objects [Kut07]. Priami and Quaglia et al have fashioned β-binders
[PQ04] – a calculus that combines features from the κ-calculus [DL04], the
stochastic π-calculus [Pri96], and the ambient calculus [CG00]. in a manner
that goes some way towards relinquishing the deterministic key-lock assumption
in favour of a more nuanced notion of affinity.

The Membrane Machine is concerned with Transport Networks, and seems to
be adequately modelled by the notion of membrane forming (BioAmbients) pro-
cesses – again a view that was pioneered by Regev et al [Reg03, RPS+04]. Other
alternatives have emerged. Most notably Cardelli’s Brane calculus [Car05b]
that quite accurately models biomembranes as oriented 2-dimensional surfaces
of bubbles that fuse and split. This model was simplified by Danos et al [DP04],
but features for the modelling of large molecules and complexes have only been
proposed quite recently [CP05]. A recent comparative analysis of BioAmbients
and Brane calculus concludes that, from a meta point of view the two calculi are
very similar [Ver07]. The β-binders [PQ04] also introduces a notion of boxed
enclosures. These enclosures, however, do not nest and move, which renders the
modelling of compartments less intuitive.



52 Modelling in Process Calculus



Chapter 4

Static Analysis Techniques

“It is the mark of an educated mind to rest satisfied with the degree
of precision which the nature of the subject admits, and not to seek
exactness where only an approximation is possible.”

— Aristotle

Most semantic properties of Turing complete languages, e.g., BioAmbients, that
can express any computable function, are undecidable, i.e., not generally com-
putable within finite time and memory. This is a consequence of Rice’s Theorem
[Ric53], and the most well known example is Turing’s famous halting problem
[Tur36].

Small-step operational semantics [Plo04] expresses the behaviour of programs
in terms of transition systems. In case the behaviour is finite we may compute
the corresponding transition system by exhaustive simulation and subsequently
check it for interesting properties. This is the approach of finite state Model
Checking [CGP00], which often works well for state spaces of moderate size,
but becomes intractable for large state spaces and undecidable for infinite ones.

In contrast, the basic tenet of Static Analysis [NNH99] is that a loss in preci-
sion often makes a property decidable, even for programs of infinite behaviour.
Rather than computing the exact behaviour of a program, as defined by the
semantics, a static analysis aims to compute an acceptable approximation to
the behaviour directly from the static program code.

Traditionally, this type of analysis has been developed and used in the construc-
tion of optimising compilers [ASU86], where static analysis estimates serve as
the basis of semantically safe program transformations. The design principles



54 Static Analysis Techniques

Universe

Exact Answer Over−approximation Under−approximation Unacceptable

over−approximation under−approximationThe exact world unacceptable

Figure 4.1: The nature of approximation.

that give static analyses their strength all owe to this heritage: Exhaustive – A
static analysis should apply to all programs. Infinite behaviour must be accept-
able. Correct – A static analysis should be safe with respect to the semantics.
As shown in (Fig. 4.1), approximations are safe only if strict. Implementable
– A static analysis should admit efficient implementations. Static analyses are
meant to be invoked often. Useful – A static analysis should be useful. This
generally requires a sensible compromise between the precision of the analysis
and its decidability and computational tractability.

It is customary to distinguish between static Data Flow Analysis [Kil72], where
one tracks how data moves through a collection of atomic computations, and
Control Flow Analysis [Shi88], where one tracks how the point of control tra-
verses a program. Traditionally, data flow properties have been the primary
study in the classic setting of imperative languages, and control flow properties
the primary study in the setting of functional languages. In process calculi,
however, it is difficult to make a clear distinction between data and control
structures. Thus, while it is often beneficial to approach process calculi with
control flow techniques [BDNN98, HJNN99, NNH02, NNPdR07, NNB04], we
shall be applying both control and data flow techniques to BioAmbients.

Classically there are two approaches to the design of static analyses. On the
one hand, the design is semantics directed if the specification is calculated
from a semantic specification; this is the approach of Abstract Interpretation
[CC77, CC79]. On the other hand, the design is semantics based if the analysis
information can be proved correct with respect to a semantic specification; this
is the approach of Monotone Frameworks [KU77], Flow Logic [NN02], and Type
Systems [Mil78]. As we shall see, the analyses specified in this dissertation are
all semantics based.

The chapter is in four sections. We start in Section 4.1 by briefly reviewing
basic order theory. Complete lattices, monotone functions, fixed points, and
Moore families are all key notions in static analysis. In Section 4.2 we go on
to introduce the central concepts of Monotone Frameworks. This is a classical
concept in static analysis, which originally emerged as a generalisation of Data
Flow Analysis. In Section 4.3 we turn to the main concepts of Flow Logic. This



Order Theoretic Preliminaries 55

is a relative modern concept in static analysis, which originally emerged as a
generalisation of Control Flow Analysis. Finally, in Section 4.4, we make some
concluding remarks.

4.1 Order Theoretic Preliminaries

In preparation for the analysis sections we now give a cursory introduction to
the notion of complete lattices, For a very detailed treatment of the subject, see
[DP02] or perhaps [Tay99], and for a more succinct introduction, see [NNH99].

Definition 4.1 (Partial order) A partial order (S,⊑) is a set S accompanied
by a binary relation ⊑ which is:

1. Reflexive: ∀s ∈ S : s ⊑ s

2. Transitive: ∀s, s′, s′′ ∈ S : s ⊑ s′ ∧ s′ ⊑ s′′ ⇒ s ⊑ s′′

3. Antisymmetric: ∀s, s′ ∈ S : s ⊑ s′ ∧ s′ ⊑ s ⇒ s = s′

Notation 4.2 When necessary, we shall use subscripts to disambiguate the
denotation of operators and e.g. write ⊑S rather than just ⊑. �

If S has an element s ∈ S such that ∀s′ ∈ S : s′ ⊒ s then this element is called
the least element of S and is denoted ⊥. Analogously, the greatest element of
S is an element s ∈ S such that ∀s′ ∈ S : s′ ⊑ s and is denoted ⊤. Generalising
this leads to the definition of upper bounds:

Definition 4.3 (Upper bound) For a partial order (S,⊑) and subset Y ⊆ S
the element s ∈ S is an upper bound of Y iff

∀s′ ∈ Y : s′ ⊑ s

Definition 4.4 (Least upper bound) For a partial order (S,⊑) and subset
Y ⊆ S the element s is a least upper bound (lub) of Y iff

1. s is an upper bound of Y , and

2. for every upper bound s′ of Y , s ⊑ s′.

Whenever Y ⊆ S has a lub we denote it by
⊔

Y . �

The binary least upper bound of s, s′ ∈ S is written s ⊔ s′.



56 Static Analysis Techniques

The converse notions of a lower bound and a greatest lower bound (glb) may be
defined similarly, and we write s ⊓ s′ for the binary glb of s, s′ ∈ S.

Definition 4.5 (Lattice) Any non-empty partial order (L,⊑) that has l ⊔ l′

and l ⊓ l′ for all l, l′ ∈ L, or equivalently
⊔

Y and
d

Y for all finite Y ⊆ L, is a
lattice.

Definition 4.6 (Complete lattice) Any non-empty partial order (L,⊑) that
has

⊔

Y and
d

Y for all Y ⊆ L is a complete lattice. �

Note that, if (L,⊑) is a complete lattice, then ⊥ =
⊔

∅ =
d

L is the least
element and ⊤ =

d
∅ =

⊔

L is the greatest element. Furthermore, Definitions
4.5 and 4.6 ensure that any finite lattice is complete.

Proposition 4.7 (Cartesian product) If (L1,⊑L1
) and (L2,⊑L2

) are both
complete lattices then so is the Cartesian product

(L1 × L2,⊑L1×L2
)

where the componentwise order is defined by

(l1, l2) ⊑L1×L2
(l′1, l

′
2) iff l1 ⊑L1

l′1 ∧ l2 ⊑L2
l′2

Proof See e.g. [NNH99]. �

Proposition 4.8 (Function space) If S is any set and (L,⊑L) is a complete
lattice then so is the function space

(S → L,⊑S→L)

where the pointwise order is defined by

f ⊑S→L g iff ∀s ∈ S : f(s) ⊑L g(s)

Proof See, e.g., [NNH99]. �

Definition 4.9 (Moore family) A subset, Y , of a complete lattice, ⊆ (L,⊑),
is a Moore family if it is closed under greatest lower bounds, i.e.,

∀Y ′ ⊆ Y :
d

Y ′ ∈ Y
�

Note that a Moore family always contains a least element,
d

Y , and a greatest
element,

d
∅ = ⊤L; thus it is never empty.

Definition 4.10 (Monotone function) A function, f : S1 → S2, between
partially ordered sets, (S1,⊑S1

) and (S2,⊑S2
), is monotone if



Order Theoretic Preliminaries 57

∀s, s′ : s ⊑S1
s′ ⇒ f(s) ⊑S2

f(s′)

�

Definition 4.11 (Chain) A subset, Y , of a partial order, (S,⊑), is a chain if
it is totally ordered, i.e.,

∀s, s′ ∈ Y : (s ⊑ s′) ∨ (s′ ⊑ s)

If Y is a finite subset then it constitutes a finite chain.

Definition 4.12 (Ascending chain condition) A partial order, (S,⊑), sat-
isfies the ascending chain condition if any ascending chain, {s1, s2, . . . , sn, . . .} ⊆
S, for which s1 ⊑ s2 ⊑ · · · ⊑ sn ⊑ · · · eventually stabilises, i.e.,

∃k ∈ N : sk = sk+1 = . . .
�

Note, that this condition is trivially satisfied by any finite partial order.

Definition 4.13 (Fixed point) Consider a monotone function, f : L → L,
on a complete lattice, (L,⊑). A fixed point of f is an element, l ∈ L, such that
f(l) = l. We write

Fix(f) = {l | f(l) = l}

for the set of such fixed points. �

Proposition 4.14 (Least fixed point) Any monotone function, f : L → L,
on a complete lattice, (L,⊑), has a unique least fixed point, LFP(f), defined
by:

LFP(f) =
⊔

i≥0 f i(⊥)

for which f(LFP(f)) = LFP(f).

Proof See, e.g., [NNH99]. �

Clearly, if L satisfies the ascending chain condition, then LFP(f) can be com-
puted in a finite number of iterations.



58 Static Analysis Techniques

4.2 Monotone Frameworks

Data Flow Analysis problems emerge when one tries to compute how data moves
through a collection of atomic computations. Monotone Frameworks constitute
a generalised approach to solving such problems. Originally invented as the
basis of safe transformations within optimising compilers they date back to the
work of Kam and Ullman [KU77], who generalised Kildall’s lattice theoretic
approach to Data Flow Analysis [Kil72]. For a thorough introduction to the
subject see Aho, Sethi, and Ullman [ASU86] or Nielson, Nielson, and Hankin
[NNH99].

Basic Concepts. Originally the notion of global Data Flow Analysis problems
arose in the context of imperative languages. In this context it is natural to think
of programs, P , as flow-graphs where the nodes denote so-called elementary
blocks and the edges denote flow of control. Generally, the notion of elementary
blocks depends on the language at hand. However, we shall think of them simply
as the least pieces of code that are of interest to the analysis problem and has
one entry point, one exit point, and no internal looping.

Example 4.15 Consider the following minimal imperative language:

x ∈ V variables
n ∈ C constants
ℓ ∈ Lab labels

a ::= x | n | · · · Arithmetic expressions

b ::= t | f | · · · Boolean expressions

S ::= Program Statements

[x:=a]ℓ assignment statement
| S1; S2 sequential statement

| while [b]ℓ do S loop statement

where the labelled entities [B]ℓ are the elementary blocks. In this context the factorial

program

Sfact = [y := x]1; [z := 1]2; while [y > 1]3 do ([z := z ∗ y]4; [y := y − 1]5); [y := 0]6

may be thought of as the flow-graph

[y := x]1 [z := 1]2 [y > 1]3
yes

no

[z := z ∗ y]4 [y := y − 1]5

[y := 0]6

�



Monotone Frameworks 59

The aim of a Monotone Framework is to approximate some interesting property
of the data flow of a given program. For this purpose it is useful to think of
the program as a transition system. The states correspond to the data flow
information available at the entry points of elementary blocks. The transitions
correspond to the effects of the elementary blocks on the information. In this
setting it is the information of the states that we seek to approximate.

Example 4.16 Consider Sfact of Example 4.15. In terms of data flow this program

might be seen as a non-deterministic transition system

q1
1 q2

2 q3
3

3

q4
4 q5

5

q6
6

where q1 is the initial state and each edge corresponds to the effect of the elementary

block of the same label. �

Property Space. In order to reason about this transition system we need a
representation of states. The corresponding universe of discourse is called a
property space.

It is customary to demand that the property space is a complete lattice

(L,⊑)

that satisfies the ascending chain condition. It should be designed such that
states of the transition system of interest correspond to elements of L. Further-
more, the least upper bound operation

⊔

associated with L must be suitable for
safely combining the effects of transitions whenever multiple transitions enter
the same state. The ascending chain condition helps to ensure that the Data
Flow approximation may be computed in a finite manner.

Transfer Function Space. We also need a representation of the effect of tran-
sitions. The corresponding universe of discourse is called a transfer function
space.

Here it is customary to demand that the transfer function space is a set of func-
tions

F = {f : L → L | f is monotonic}

that contains the identity function id and is closed under composition. It should
be designed such that the transitions of the transition system of interest corre-



60 Static Analysis Techniques

spond to elements of F . The monotonicity requirement helps to ensure that the
Data Flow approximation may be computed in a finite manner.

Monotone Framework. These two ingredients formalise a given Data Flow Anal-
ysis problem as a Monotone Framework.

It is normal to refer to the Monotone Framework of some global Data Flow
Analysis problem, A, as a triple

A = (L,
⊔

L, F )

consisting of a suitable property space, L, the corresponding least upper bound
operation,

⊔

L, and a suitable transfer function space, F .

If all functions f in F are required to be distributive, i.e., f(l1⊔l2) = f(l1)⊔f(l2),
the framework specialises to a distributive framework. This concept is somewhat
stronger as it often allows for more efficient algorithms [NNH99].

If furthermore the property space is restricted to

L = (P(D),⊑)

for some finite set D and ⊑=⊆ or ⊑=⊇, then the transfer function space can
invariably be restricted to

F = {f : L → L | ∃lk, lg ∈ L : f(l) = (l \ lk) ∪ lg}

and the framework further specialises to a bitvector framework.

Example 4.17 Consider the global Data Flow Analysis problem of Reaching Defi-
nitions:

RD: What definitions (assignments) may reach what basic blocks?

The goal of the corresponding analysis is to determine, for every program point, the
origin of every variable assignment that might be in effect when the point is reached.

The property space of interest, LRD, is the set of functions from finite subsets of
V to Lab?, where Lab? is the infinite set of labels Lab extended with ? (meaning
‘undefined’), i.e. LRD ⊂ P(V×Lab?). This is a complete lattice where

F

=
S

, ⊑=⊆,
⊥ = ∅.

In order to define the corresponding transfer function space we first define two helpful
functions. The generate function

genRD[x := a]ℓ = {(x, ℓ)}

genRD[b]ℓ = ∅



Monotone Frameworks 61

defines how elementary blocks contribute new information, and the kill function

killRD[x := a]ℓ = {(x, ?)} ∪ {(x, ℓ′) | (x, ℓ′) ∈ l}

killRD[b]ℓ = ∅

defines how elementary blocks invalidate old information. Now, let l ∈ L. Then

1. if x ∈ V and ℓ ∈ Lab then (λl.(l \ killRD[x := a]ℓ) ∪ genRD[x := a]ℓ) ∈ FRD,

2. if ℓ ∈ Lab then (λl.(l \ killRD[b]ℓ) ∪ genRD[b]ℓ) ∈ FRD,

3. (λl.l) ∈ FRD, and

4. if f1, f2 ∈ F then (f1 ◦ f2) ∈ FRD.

�

Instances. When a general Monotone Framework is confronted with a par-
ticular program, P⋆, of interest, a Data Flow Analysis emerges as a concrete
instance of the framework.

Such an instance comprises a number of elements:

• The property space (L,
⊔

)

• The transfer function space F

• A finite transition system (Q, q⋆, δ) where Q is the set of program points
in P⋆. δ is a labelled transition relation representing the flow-graph of P⋆,
and q⋆ is the (set of) distinguished entry point(s).

• An extremal value ι, to be associated with the entry point(s).

• A mapping f : Lab⋆ → F

where Lab⋆ is the set of labels actually occuring in P⋆.

It also gives rise to a set of constraints, A⊑, defined by:

A[qt] ⊒
⊔

{fℓ(A[qs]) | (qs, ℓ, qt) ∈ δ} ⊔ ιqt
q⋆

where

ιqt
q⋆

=

{

ι if qt ∈ q⋆

⊥ otherwise



62 Static Analysis Techniques

Example 4.18 Consider Sfact of Example 4.15. It yields the following instance of
RD:

L = P(Vfact × Lab
?
fact) ⊂ P(V × Lab

?)

F is as FRD but restricted to Vfact and Labfact

q⋆ = {q1}

Q = {q1, · · · , q6}

δ = {(q1, 1, q2), (q2, 2, q3), (q3, 3, q4), (q3, 3, q6), (q4, 4, q5), (q5, 5, q3)}

fℓ(l) = (l \ killl[B]ℓ) ∪ genl[B]ℓ where [B]ℓ is an elementary block of Sfact

ι = {(x, ?) | x ∈ Vfact}

RD
⊑ = {ι ⊑ RD[q1], (f2(RD[q2]) ⊔ f5(RD[q5])) ⊑ RD[q3],

f1(RD[q1]) ⊑ RD[q2], f3(RD[q3]) ⊑ RD[q4],

f3(RD[q3]) ⊑ RD[q6], f4(RD[q4]) ⊑ RD[q5]}

Note that P(Vfact × Lab?
fact) is finite, in contrast to P(V × Lab?), and hence the

instance satisfies the ascending chain condition. �

Remark 4.19 Note, that in the context of an imperative language the transi-
tion system (Q, q⋆, δ) is a priori fixed by the flow-graph, and only a solution,
A⋆ ∈ (Lab⋆ → L), to A⊑remains to be computed. As we shall see in Chapter
8, this is not necessarily the case for process calculi. �

Worklist Algorithm. The constraint system, A⊑(P ), derived from P con-
stitutes a declarative specification of the solution space. We are interested in
the most informative solution, A⋆, which emerges as the least fixed point of the
constraint system. In the terminology of Monotone Frameworks this is called
the Meet Over all Paths (MOP) and is sometimes hard to compute. In the
case of Distributive Frameworks, however, it coincides with the so-called Maxi-
mal Fixed Point (MFP), which is computed by the worklist algorithm shown in
Table 4.1.

Example 4.20 For Sfact the following result emerges as the MFP solution to RD⊑,
and we say that RDfact |= RD⊑(Sfact):

RDfact[q1] = {(x, ?), (y, ?), (z, ?)}

RDfact[q2] = {(x, ?), (y, 1), (z, ?)}

RDfact[q3] = {(x, ?), (y, 1), (z, 2), (y, 5), (z, 4)}

RDfact[q4] = {(x, ?), (y, 1), (z, 2), (y, 5), (z, 4)}

RDfact[q5] = {(x, ?), (y, 1), (y, 5), (z, 4)}

RDfact[q6] = {(x, ?), (y, 1), (z, 2), (y, 5), (z, 4)}

�



Monotone Frameworks 63

input : Instance ((L,F ), (Q, q⋆, δ), ι, f )

output : Least solution A⋆ such that A⋆ |= A⊑

method : Step 1: Initialisation of W and A

W = q⋆;
for all q in Q do

if q ∈ q⋆

then A[q] := ι
else A[q] := ⊥

Step 2: Iteration (updating W and A)
while W 6= ∅ do

select qs from W; W := W \ {qs};
for each (qs, ℓ, qt) in δ do

let l := fℓ(A[qs]) in
if l 6⊑ A[qt]
then (A[qt] := A[qt] ⊔ l; W := W ∪ {qt})

Step 3: Presenting the result
A⋆ := A

Table 4.1: Maximal Fixed Point algorithm for Monotone Frameworks.

Desirable Properties. A number of properties are desirable for a Monotone
Framework; hence their presence is subject to proof.

Termination. The analysis must be exhaustive and compute a result for all pro-
grams. We prove this property by showing that the worklist algorithm always
terminates. Here, this is ensured by the ascending chain property and mono-
tonicity, but in Chapter 8, where we define the so-called Pathway Analysis, we
shall have to prove termination.

Preservation of Solutions. The solutions produced by the worklist algorithm
must be preserved under the semantics. This can be proved by showing a result
of the following kind:

If A |= A⊑(P ) and P −→⋆Q then A |= A⊑(Q)

Intuitively, this expresses that analysis results remain valid as execution com-
mences, and, as we shall see, this is one of the most fundamental properties of
a static analysis.

Correctness. The solution, however, must also correctly capture the property of
interest.



64 Static Analysis Techniques

This might be a property related to, e.g., the memory state of semantic con-
figurations 〈P, s〉, in the manner of structural operational semantics [Plo04]. In
this case it is customary to define relation R ⊆ (Lab×L)×State that formally
captures the notion of correctness, i.e.,

If A |= A⊑(P ), AR s, and 〈P, s〉 −→⋆〈Q, s′〉 then A R s′

Alternatively, as is more common for process calculi equipped with a reduction
style semantics, it can be a property related to the sequence of events that lead
to a certain configuration P . In this case one often relies on a collecting seman-
tics, i.e., an instrumented version that keeps track of additional information that
pertains to the analysis. Thus, all configurations include a trace, tr ∈ Trace, of
such information, and we define a correctness relation, R ⊆ (Lab×L)×Trace.
Correctness of the analysis then follows from:

If A |= A⊑(P ), AR tr, and 〈P, tr〉 −→⋆〈Q, tr′〉 then A R tr′

Remark 4.21 Note that the collecting semantics of BioAmbients collects such

traces, in the sense that 〈P⋆, ε〉, and 〈P⋆, ε〉
L̃

−→⋆〈Q, L̃〉. We shall use this later
when formulating our correctness results. �

4.3 Flow Logic

Control Flow Analysis problems emerge when one tries to compute how focus of
control moves through a program. The initial conceptualisation of static Control
Flow Analysis dates back to work on interprocedural analysis and obtained
momentum with Shivers’ work on functional languages [Shi88], and was further
refined by Jagannathan [JW95]. In this context, and based on the view that, in
terms of flow, data and control are two sides of the same thing [NNH99], Flow
Logic was pioneered in the late 1990’s, by Nielson and Nielson [NN98, NN97,
NN02] as a unifying specification oriented approach to constraint based static
analysis.

Basic Concepts. The Flow Logic framework makes a clear distinction be-
tween the specification of an analysis and the computation of corresponding
analysis results. This approach allows the designer to focus on the specification
of analyses without making compromises dictated by implementation consid-
erations. The implementation phase is also simplified and improved, as the
implementor is always free to choose the best available tool — no particular



Flow Logic 65

tool or formalism is prescribed by the framework.

Analysis Domain. As for Monotone Frameworks, a Flow Logic specification is
based on a suitable universe of discourse, L. Here it is customary to follow the
approach of Monotone Frameworks and demand that L is a complete lattice.
However, the domain of a Flow Logic specification should be designed such that
elements correspond to global Control Flow Analysis information of the program
of interest. This is in contrast to the property space of a monotone framework,
which is designed such that the elements correspond to the Data Flow Analysis
information of individual program points (or states if you will) of the program
of interest,

Acceptability Judgement. Fundamentally, a Flow Logic specification is concerned
with the relationship between programs P ∈ lang and static analysis estimates
A ∈ L. This connection is captured by an acceptability judgement

A |= P

intended to hold precisely when A constitutes an acceptable analysis estimate
for P .

The judgement is defined by clauses; typically there is one clause for each syn-
tactic construct φ of lang and they take the form

A |= φ(· · ·Pi · · · ) iff
(some formula ϕ with A |= P ′

for various sub-programs P ′)

where ϕ is usually a formula in a suitable fragment of First Order Logic, fol.

Flow Logic. These ingredients formalise a given Control Flow Analysis problem
as a Flow Logic. Obviously the involved judgement relation “|=” has function-
ality

|=: (L × lang) → {true, false}

Generally, as we do not demand the specification to be syntax directed, i.e., for
each of the defining clauses that each P ′ occurring in ϕ is one of the Pi occurring
in φ(· · ·Pi · · · ), we have to define the meaning of “|=” by co-induction rather
than induction.

Thus, when formally assigning meaning to a Flow Logic specification, we do so
by regarding it as defining a functional

Q : ((L × lang) → {true, false}) → ((L × lang) → {true, false})

the greatest fixed point of which we take as the formal meaning.

However, when the specification is syntax directed the least and greatest fixed
points coincide, and hence “|=” is adequately defined by ordinary induction.



66 Static Analysis Techniques

In the terminology of Flow Logic, and by analogy to Structural Operational
Semantics [Plo04], we call such specifications compositional. Specifications that
are not syntax directed we call abstract.

Desirable Properties. For a setup like this to qualify as a Flow Logic it must
posses a number of desirable properties that we shall elaborate in the following:

Well-definedness. The analysis must be well-defined, i.e., for every combination
of P ∈ lang and A ∈ L, the acceptability of A as an analysis estimate for P is
unambiguously defined. This amounts to showing that “|=”, with functionality
as outlined above, constitutes a total function. In the case of a compositional
specification this is immediate to show by structural induction in P . In the case
of an abstract specification, however, the judgement is well-defined only if Q
constitutes a monotone functional over the complete lattice

((L × lang) → {true, false},⊑)

where the ordering ⊑ is given by:

Q1 ⊑ Q2 iff ∀(A, P ) : (Q1(A, P ) = true) ⇒ (Q2(A, P ) = true)

When this is the case the existence of a suitable greatest fixed point is guaranteed
by Tarski’s fixed point theorem.

Semantic Correctness. Intuitively, an analysis is semantically correct if analysis
estimates that are acceptable for a process P contain information about every
possible evolution of P that is allowed by the semantics. As Flow Logic is a
semantics based approach to static analysis this notion of correctness is usually
captured by a subject reduction result:

if A |= P and P −→ Q then A |= Q

which expresses that the acceptability of analysis estimates is preserved by the
reaction relation. That is, if A is an acceptable estimate for P , and the seman-
tics allows P to evolve into Q, then A is also acceptable for Q. This relies on
an auxiliary result for structural congruence:

if P ≡ Q then A |= P iff A |= Q

asserting that the acceptability of analysis estimates is invariant under the struc-
tural congruence.

Remark 4.22 Due to the directedness of ⇛ the latter becomes

if A |= P and P ⇛ Q then A |= Q

in our setup. �

Clearly, full semantic correctness, sometimes called semantic soundness follows
by the transitive closure of the subject reduction result, i.e.,



Flow Logic 67

if A |= P and P −→⋆Q then A |= Q

Occasionally, it is convenient to use a collecting semantics and formalise the
relationship, R ⊆ L×Trace, between analysis estimates and traces in order to
formulate correctness:

if A |= P,AR tr, and 〈P, tr〉 −→⋆〈Q, tr′〉, then A |= Q and AR tr′

Moore Family Property. Finally, it is desirable for every program, P , to actually
have an acceptable analysis estimate and, indeed, a unique least such. This is
the case if:

{A | A |= P} constitutes a Moore Family for all P

Recall that, trivially, a Moore family is never empty as it always contains a
greatest element

d
∅ = ⊤L, which is the trivial worst (i.e., least informative)

acceptable analysis estimate. In contrast it is also guaranteed to have a least
element A⋆ =

d
{A | A |= P}, which is the least admissible result under the

ordering ⊑L of L and, hence, the best (most informative) acceptable estimate.

Implementation. The implementation of a Flow Logic specification is en-
abled by a simple change of viewpoint: Intuitively, the acceptability judgement

A |= P iff ϕ

associates each program, P , with a formula, ϕ, such that an analysis estimate,
A, is acceptable for P if, and only if, A constitutes a model of ϕ. Thus, as long
as we are able to compute the appropriate ϕ the remaining task of finding a
suitable model, A, can be left to an auxiliary logical solver.

In the presence of an abstract Flow Logic specification this idea clearly breaks
down because ϕ is not necessarily finite for every given P . In the case of a
compositional Flow Logic specification, however, the finiteness of ϕ follows di-
rectly from the finiteness of the syntactic representation of P and the inductive
nature of the specification. If, furthermore, the specification is well-defined then
it defines a total function from programs P ∈ lang to formulae ϕ ∈ fol. And
when this is the case we shall refer to the Flow Logic specification of some global
Control Flow Analysis problem, A, as a binary predicate

A = FL(lang, fol).

The ALFP Logic. Clearly, the theoretical as well as practical properties of an



68 Static Analysis Techniques

term ::= c | x | f(term1, . . . , termk)

pre ::= R(term1, . . . , termk) | ¬R(term1, . . . , termk)
| term1 = term2 | term1 6= term2

| pre1 ∧ pre2 | pre1 ∨ pre2 | ∀x : pre | ∃x : pre

clause ::= R(x1, . . . , xk) | 1 | clause1 ∧ clause2

| pre =⇒ clause | ∀x : clause

Table 4.2: Syntax of the Alternation-free Least Fixed Point Logic.

analysis implementation depend on the formulae, ϕ, derived from programs, P ,
as well as the solver used for the computation of models.

In order to ensure nice properties, the Flow Logic specifications presented in
this dissertation are expressed using an extension of Horn clauses, known as
Alternation-free Least Fixed Point Logic (alfp) [NNS02]. This logic is presented
in Table 4.2, where we write x for variables, c for constants, f for function
symbols, R for predicates, term for terms, pre for preconditions, and clause for
clauses.

The clauses are interpreted over a universe U of ground terms. The semantics
is given in terms of satisfaction relations

(ρ, σ) |= pre and (ρ, σ) |= clause

that are defined in the standard way. Thus, ρ is an interpretation of predicate
symbols, σ is an interpretation of terms, and the clause, e.g., R(x1, . . . , xk is
interpreted according to the following rule:

(ρ, σ) |= R(x1, . . . , xk) iff (σx1, . . . , σx2) ∈ ρR

The logic has the nice feature that clauses with no free variables satisfy the
model intersection property, i.e., given an interpretation σ0 of the free variables
in a clause cl, the set of interpretations {ρ | (ρ, σ0) |= cl} constitutes a Moore
family [NNS02].

Note that in the presence of negation in preconditions the solvability of clauses
is subject to a notion of stratification, which is not relevant, however, in the
context of this dissertation.

As a matter of convenience we shall often use other mathematical notation to
write certain alfp constructs:



Flow Logic 69

INPUT : a Flow Logic FL(lang,alfp) and

a program P.

OUTPUT : an alfp formula ϕ such that A |= ϕ ⇔ A |= P .

METHOD : Set ϕ := A |= P

while ϕ contains A |= P ′

and there is a rule α iff β in FL

and a substitution θ

such that θα = A |= P ′

do replace A |= P ′ with θβ in ϕ.

Table 4.3: Constraint generation algorithm for Flow Logics.

• The predicates of alfp represent relations. For a such a relation R we
shall often write (x1, . . . , xk) ∈ R to denote the alfp atom R(x1, . . . , xk).

• When testing for intersection we often write R(x1, . . . , xi)∩R(y1, . . . , yi) 6=
∅ to denote ∃zj , . . . , zk : R(x1, . . . , xi, zj , . . . , zk)∧R(y1, . . . , yi, zj , . . . , zk).

• When expressing subset relationships we write R(x1, . . . , xi) ⊆ R(y1, . . . , yi)
to denote ∀zj , . . . , zk : R(x1, . . . , xi, zj , . . . , zk) ⇒ R(y1, . . . , yi, zj , . . . , zk).

Clause Generation. Algorithmically we capture the required change of view-
point in a clause generator that works largely as the chaotically iterative al-
gorithm outlined in Table 4.3. This procedure takes as input a Flow Logic
FL(lang,alfp) and a program P . And, from this, it produces an alfp clause,
the models of which are exactly the acceptable analysis estimates.

The best (i.e., least under the ordering of L) acceptable analysis estimate A⋆ for
P⋆ is the minimal model satisfying the generated clause. The model intersection
property of alfp guarantees that this can be unambiguously computed using a
fixed point engine like those of The Succinct Solver Suite [NNS+04].

Remark 4.23 Generally analyses implemented using the succinct solver ex-
hibit an asymptotic worst-case complexity that is of the order of O(nk+1), where
n is the size of the term universe, which is fixed for any given process, and k is
the maximal nesting depth of quantifiers in the generated clause.



70 Static Analysis Techniques

4.4 Concluding Remarks

In this chapter we have introduced two common approaches to Static Program
Analysis. These approaches originate from the analytic needs of two very dif-
ferent programming paradigms and thus differ in some respects.

Classically, Monotone Frameworks constitute a generalised approach to the Data
Flow Analysis problems of imperative languages – a setting where programs are
normally considered as flow-graphs. However, we have deliberately presented
the approach in a setting where programs are considered as labelled transition
systems. This sets the scene for Chapter 8, where we shall use the approach
to approximate the temporal structure, i.e., the underlying transition systems
defined by the semantics, of BioAmbients models.

Similarly, Flow Logic constitutes a generalised approach to the Control Flow
Analysis problems of functional languages – a setting where continuations are
data and the flow of control is predominantly decided at run-time, Here it has
traditionally been used to approximate the control flow structures of programs
in the context of dynamic dispatch. In Chapters 6 and 7 we shall similarly use
Flow Logic to approximate the spatial structure, i.e., the set of ambient induced
nesting hierarchies, that can arise dynamically from a BioAmbients model.

Throughout the technical developments we shall consistently take the approach
that is inherent in semantics based program analysis: In order to study proper-
ties of a program P⋆ we analyse the static snapshot given by the direct syntac-
tical representation of P⋆. However, we carefully define the analyses such that
the properties are “⊒-preserved” under heating and reaction and use this to es-
tablish the semantic soundness. In this manner we ensure that the information

learnt from the study of P⋆ in P⋆
L̃

−→⋆Q is also valid for Q.



Part II

Analysing for Structural

Properties





Chapter 5

Well-formed Programs and

Their Properties

“Well-typed programs don’t go wrong.”
— Robin Milner

This chapter introduces a notion of well-formed programs defined by a static
well-formedness condition in the manner of type systems [NNH99]. The presen-
tation largely covers material that is also covered in [PNN07].

When defining the syntax and semantics of BioAmbients in Chapter 3, we de-
liberately postponed the formal definition of several central notions, such as
the free names and identifiers of processes, identifier substitution, and name
substitution. This we did because many of these notions are complicated by
the presence of general recursion. In particular, it is important to enforce static
scope if α-equivalence is included in the structural congruence (heating) relation
[PV05]. There are three viable approaches to this:

One option is to define recursion via a notion of parametrised process constants

A(~p) , P

where fn(P ) ⊆ {~p} [Mil99]. However, this immediately turns seemingly simple
properties, such as free names, into fixpoint properties [NNP07].

Another option is to define α-equivalence and α-renaming for all entities that
risk capture, i.e., constants, variables, and process identifiers and then dynami-
cally enforce static scope. However, this results in quite complicated notions of



74 Well-formed Programs and Their Properties

C ⊢Γfn
P

fnΓfn
(P ) fpi(P )

Figure 5.1: The hierarchy of notions that defines well-formedness.

substitution that rely heavily on α-renaming and, hence, are computationally
quite involved [PV05].

The last option is to statically enforce a well-formedness condition that ensures
static scope at run-time. This is the option we shall pursue in the following and,
as we shall see, this choice simplifies the notions of substitution.

As always, the type of well-formed programs must be preserved by the semantics
and a complication arises in this context:

The decision procedure, C ⊢ P , associated with well-formedness turns out to
require knowledge about the free names of arbitrary sub-processes. This knowl-
edge can only be specified in a satisfactory manner if environments are used
to associate the free process identifiers with appropriate information. Thus,
we shall specify well-formedness in terms of notions that are parametrised on
environments as shown in Fig. 5.1.

The remainder of the chapter presents the required developments in more de-
tail. In Section 5.1 we define the notions of free names and identifiers. Then, in
Section 5.2, we specify the class of well-formed programs that is going to be the
focus of later developments. In 5.3 we define the notions of name and identifier
substitution for well-formed programs. In Section 5.4 we show a subject reduc-
tion result expressing that well-formedness is preserved by reaction. Finally, in
Section 5.5, we conclude.

5.1 Free Names and Identifiers

In the following we shall formalise the free names of a process. In doing so we
shall rely on the auxiliary definition of free and bound names of capabilities,
which is shown in Table 5.1.



Free Names and Identifiers 75

M enter x exit x merge– x x!{y} x#!{y} x !{y} x !̂{y}
bn(M) ∅ ∅ ∅ ∅ ∅ ∅ ∅
fn(M) {x} {x} {x} {x, y} {x, y} {x, y} {x, y}

M accept x expel x merge+ x x?{p} x#?{p} x ?̂{p} x ?{p}
bn(M) ∅ ∅ ∅ {p} {p} {p} {p}
fn(M) {x} {x} {x} {x} {x} {x} {x}

Table 5.1: Bound names, bn(M), and free names, fn(M), of capabilities M .

fnΓfn
((n)P ) = fnΓfn

(P ) \ {n}

fnΓfn
( P µ) = fnΓfn

(P )

fnΓfn
(P Q) = fnΓfn

(P ) ∪ fnΓfn
(Q)

fnΓfn
(
∑

i∈I

M ℓi

i . Pi) =
⋃

i∈I

(fn(Mi) ∪ fnΓfn
(Pi) \ bn(Mi))

fnΓfn
(rec X. P ) = fnΓfn [X 7→∅](P )

fnΓfn
(X) = Γfn(X)

Table 5.2: Free names, fnΓfn
(P ), of processes, P .

Free names. As customary we specify the set of free names, fnΓfn
(P ) ∈

P(Name), of a process, P , in terms of a recursive function that is defined as
shown in Table 5.2.

The function is parametrised on an environment, Γfn : Pid → P(Name), because
later, when defining higher level notions such as well-formedness, we shall some-
times use it to specify the free names of sub-expressions where process identifiers
occur free, e.g., a sub-process of the P in rec X. P . In this case the higher level
notion can only be correctly defined if Γfn is used to associate each free process
identifier, such as X, with the set of names occurring free in the corresponding
process body, P .

The definition is pretty straightforward. The interesting cases are those of re-
striction, (n)P , where the bound name n is subtracted from the set of free names
synthesised from the sub-process P , and summation,

∑

i∈I M ℓi

i . Pi, where the
free names are collected from all capabilities Mi and bound names are sub-
tracted, as appropriate, from the sets synthesised from the subterms Pi.

In the case of recursive processes, rec X. P , the corresponding bound process
identifier, X, is wiped from the environment. The associated information is no



76 Well-formed Programs and Their Properties

fpi((n)P ) = fpi(P )

fpi( P µ) = fpi(P )

fpi(P Q) = fpi(P ) ∪ fpi(Q)

fpi(
∑

i∈I

M ℓi

i . Pi) =
⋃

i∈I

fpi(Pi)

fpi(rec X. P ) = fpi(P ) \ {X}

fpi(X) = {X}

Table 5.3: The free process identifiers, fpi(P ), of processes, P .

longer needed because the present invocation of fnΓfn
has access to the full body,

P , of the recursive process. The latter suffices because a) we are computing a
set rather than a multiset, and b) every syntactic entity of interest must occur
in P in order to occur in rec X. P .

Clearly, if the process P of interest is identifier closed then the contents of Γfn

is irrelevant, i.e., fnΓfn
(P ) = fn[ ](P ) for any Γfn. This lead to the following

convention:

Convention 5.1 When P is known to be an identifier closed process it suffices
to write fn(P ) to denote the free names of P .

Free process identifiers. We now turn to the set of free process identifiers,
fpi(P ), of P , formally defined in Table 5.3. In this case no environment is
required because recursive processes are ’self-closed’, i.e., the substitution of a
process identifier always results in an identifier closed process.

The only interesting cases are those of the recursive process, rec X. P , and the
process identifier, X. In the former case X is subtracted from the set of free
process identifiers synthesised from the sub-process P because it is bound. In
the later case X is added to the set of free process identifiers.

5.2 Well-formed and Initial Programs.

The BioAmbients language is very expressive, but we do not consider all pro-
cesses equally acceptable. Some are unacceptable because they may cause name
or identifier capture; these are semantically ill-behaved. Some are unacceptable



Well-formed and Initial Programs. 77

wf-res
C ⊢Γfn

P

C ⊢Γfn
(n)P

if ⌊n⌋ ∈ C

wf-amb
C ⊢Γfn

P

C ⊢Γfn
P µ if fpi(P ) = ∅

wf-par
C ⊢Γfn

P C ⊢Γfn
P

C ⊢Γfn
P Q

wf-sum
∀i ∈ I : C ⊢Γfn

Pi

C ⊢Γfn

∑

i∈I

M ℓi

i . Pi

if
∀i ∈ I :
(⌊bn(Mi)⌋ ∩ C) = ∅

wf-rec
C ⊢Γfn

′ P

C ⊢Γfn
rec X. P

if X ∈ fpi(P ) ∧ Γfn
′ = Γfn[X 7→ fnΓfn [X 7→∅](P )] ∧ nocapΓfn

wf-pid C ⊢Γfn
X

where we write nocapΓfn
for

(∀(M ℓ . P ′) � P : X ∈ fpi(P ′) ⇒ ⌊bn(M)⌋ ∩ ⌊fnΓfn
(rec X. P )⌋ = ∅)

Table 5.4: Well-formedness, C ⊢Γfn
P , of a process, P , with respect to a set of

constants, C.

because they do not follow the conventions that ensure tractability of process
name spaces; these are hard to analyse statically.

Well-formed Processes. We are now going to formally define the set of
BioAmbients processes that we find acceptable. We shall say that a process P
is well-formed with respect to C if it satisfies the well-formedness predicate C ⊢Γfn

P , defined by the inference system of Table 5.4. The notion of well-formedness
captured by this definition encapsulates a number of important choices:

We require that processes observe the implicit typing requirements imposed by
the distinction between constants (in C) and variables (in V) in Name. The
rule wf-res ensures that names bound by restrictions are indeed in C. The
rule wf-sum ensures that names bound by prefixes are not in C.

We disallow infinite nesting of ambients. Technically, this kind of behaviour is
hard to handle in a static analysis [NNP04] and, since it has no biological rele-
vance either, we omit it from well-formed processes. The rule wf-amb ensures



78 Well-formed Programs and Their Properties

this by demanding that the P in P µ is process identifier closed. A similar
choice was made for Mobile Safe Ambients in [LS03].

We disallow useless recursive definitions. When the body P of a recursive defini-
tion rec X. P does not make direct use of the associated process identifier X, i.e.,
X /∈ fpi(P ), then the recursive definition is useless. The rule wf-rec handles
this by demanding that X ∈ fpi(P ).

Finally, we intend processes to have static scope, and hence we have to ensure
that identifier and name capture cannot occur. In the case of process identifiers
this is ensured by the fact that only the top-most recursive process can be un-
folded. In the case of constants we rely on disciplined α-conversion in order to
prevent capture. In the case of variables, however, we use the well-formedness
condition to ensure that a process, rec X. P , can only recur through a name
binder, e.g., P = · · · . n?{p}ℓ . · · · . X, if P has no free occurrence of the bound
name, i.e., p. This is ruled out by the nocap part of rule wf-rec and prevents
situations such as

n?{p}ℓ . · · · . rec X. · · · p · · · . n?{p}ℓ . · · · . X,

and

n?{p}ℓ . · · · . rec Y. · · · p · · · . rec X. · · ·Y n?{p}ℓ . · · · . X.

Convention 5.2 When P is known to be identifier closed it suffices to write
C ⊢ P , rather than C ⊢Γfn

P , for the well-formedness of P with respect to C. �

Programs. The well-formedness predicate gives us the means to distinguish
well-behaved processes. This allows us to formally define the notion of pro-
grams – the processes P⋆ that satisfy the predicate PRGC(P⋆) defined as the
conjunction of the following conditions:

• P⋆ is process identifier closed: fpi(P⋆) = ∅.

• P⋆ has free names only from the constants: ⌊fn(P⋆)⌋ ⊆ C.

• P⋆ is well-formed with respect to the constants: C ⊢ P⋆.

Convention 5.3 In the following we shall assume that all process expressions
considered are part of a (well-formed) program. �

Remark 5.4 (Initial Programs) As a matter of convenience we shall also
assume that programs, P⋆, subjected to static analysis, are initial in the sense
that they satisfy P⋆ = ⌊P⋆⌋, where ⌊P ⌋ is the process that is as P except that
every name x is replaced by the corresponding canonical name ⌊x⌋.



Substitution of Identifiers and Names. 79

((n)P )[Q/X ] =











(n)P [Q/X ] if n /∈ fn(Q)

(n′)P [n
′

/n][Q/X ] otherwise

where n′ /∈ (fn(Q)∪ fn(P )) ∧ ⌊n′⌋ = ⌊n⌋

( P µ)[Q/X ] = P µ

(P1 P2)[
Q/X ] = P1[

Q/X ] P2[
Q/X ]

(
∑

i∈I

M ℓi

i . Pi)[
Q/X ] =

∑

i∈I

M ℓi

i . Pi[
Q/X ]

(rec Y. P )[Q/X ] =

{

rec Y. P [Q/X ] if X 6= Y

rec Y. P otherwise

Y [Q/X ] =

{

Q if X = Y

Y otherwise

Table 5.5: Substitution, P [Q/X ], of a process Q for an identifier X in a process
P .

5.3 Substitution of Identifiers and Names.

We now turn to the formal definitions of substitution.

Substitution of Process Identifiers. We shall first define what it means
to substitute a process expression Q for a process identifier X in a process
expression P . As pointed out in Section 5.2 the risk of name or identifier capture
arises in conjunction with identifier substitution. As evident from the reaction
semantics of Section 3.2, however, a substitution, P [Q/X ], always arises from
the unfolding of the top-most recursive process; hence it is safe to assume that

• Q is the top-level recursive process that defines X, i.e., Q = rec X. Q′.

• Q is identifier closed, i.e., fpi(Q) = ∅,

• Q is a sub-process of a well-formed program, and hence C ⊢ Q, and

• P is a sub-process of Q, i.e., P ≺ Q or, equivalently, P � Q′.

This justifies the particularly simple definition of Table 5.5.

The substitution over restrictions is nearly the standard one, i.e., constant cap-
ture is avoided by α-renaming. The capture of variables is not possible because



80 Well-formed Programs and Their Properties

((n)P )[m/x] =



















(n)P [m/x] if n 6= x ∧ m 6= n

(n′)P [n
′

/n][m/x] if n 6= x ∧ m = n

where n′ /∈ ({n,m}∪ fn(P )) ∧ ⌊n′⌋ = ⌊n⌋

(n)P otherwise

( P µ)[m/x] = P [m/x] µ

(P1 P2)[
m/x] = P1[

m/x] P2[
m/x]

(
∑

i∈I

M ℓi

i . Pi)[
m/x] =

∑

i∈I

M ℓi

i [m/x] . P ′
i where P ′

i =

{

Pi[
m/x] if x /∈ bn(Mi)

Pi otherwise

(rec X. P )[m/x] = rec X. P [m/x]

X[m/x] = X

Table 5.6: Substitution, P [m/x], of a constant m for a name x in a process P .

of the separation of Name into C and V.

Similarly the substitution over summations is correctly defined because bn(Mi)∩
fnΓfn

(Q) 6= ∅ cannot be the case if X ∈ fpi(P ).

The substitution over ambients is correctly defined because fpi(P ) = ∅.

The substitution over recursive processes is correctly defined because Y /∈ fpi(Q)
due to fpi(Q) = ∅.

Finally, the substitution over process identifiers is straightforward to define.

Substitution of Names. We shall now go on to define what it means to
substitute a constant m for an arbitrary name x in a program P . As pointed
out in Section 3.1.2, name substitution can lead to name capture. In the context
convention 5.3, however, this is relevant only to constants; this facilitates the
definition of Table 5.6, which does not rely on α-conversion of variables.

The substitution over restrictions is defined in the standard way. In case of
constant capture we apply disciplined α-conversion in order to avoid the capture.

The substitution over summations is simpler. Capture cannot occur in the
context of well-formed programs due to the separation of Name into C and V.
Of course, we define the associated notion of substitution over capability prefixes
M ℓi

i [m/x] such that bound variables p ∈ bn(Mi) are not subject to substitution.



Properties of Programs 81

The substitution over recursive processes is correctly defined. Due to the well-
formedness of P we are ensured that, in case x is a variable, then x occurs free
in P only if this cannot lead to capture. If x is a constant we rely on α-renaming
to avoid capture.

The substitution over process identifiers straightforward.

5.4 Properties of Programs

Later, when proving properties of the analyses, we shall rely on the well-formedness
conditions of programs. We can do this because programs evaluate into pro-
grams, i.e.,

If PRGC(P⋆) and P⋆
L̃

−→⋆P then PRGC(P )

In order to show this we shall first show a number of minor results.

Free Names. We start by showing some basic properties of free names:

Fact 5.5 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

fnΓfn
(P [Q/X ]) = fnΓfn [X 7→fnΓfn

(Q)](P )

=

{

fnΓfn[X 7→∅](P ) ∪ fnΓfn
(Q) if X ∈ fpi(P )

fnΓfn
(P ) otherwise

Proof The result follows by structural induction on P . In the case of restric-
tion we note that α-renaming ensures that the names bound in P cannot capture
the free names of Q. A similar property is ensured for summations as the well-
formedness condition demands that X ∈ fpi(P ) ⇒ (⌊bn(Mi)⌋ ∩ ⌊fn(Q)⌋ = ∅) for
all i, where we note that fpi(Q) = ∅ ⇒ (fnΓfn

(Q) = fn(Q)) for all Γfn. �

Fact 5.6 fnΓfn
(P [m/x]) =

{

(fnΓfn
(P ) \ {x}) ∪ {m} if x ∈ fnΓfn

(P )

fnΓfn
(P ) otherwise

Proof By structural induction on P . �



82 Well-formed Programs and Their Properties

Fact 5.7 If fpi(P ) = ∅ and C ⊢ P then both of the following hold:

1. If P ⇛ Q then fn(P ) = fn(Q).

2. If P
ℓ̃

−→ Q then fn(P ) ⊇ fn(Q).

Proof The proof of (1) proceeds by induction on the inference of P ⇛ Q. In
the case of h-alph we use Fact 5.6. In the case of h-urec we use Fact 5.5.

The proof of (2) follows by induction on the inference of P
ℓ̃

−→ Q, where we
use Fact 5.6 for the communication axioms and (1) in conjunction with the
induction hypothesis in the case of r-aux. �

Free Process Identifiers. We establish a similar result for the free process
identifiers:

Fact 5.8 If fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then fpi(Q) = ∅.

2. If P
ℓ̃

−→ Q then fpi(Q) = ∅.

Proof The proof of (1) follows by induction on the inference of p ⇛ Q.

The proof of (2) follows by straightforward induction on the inference of P
ℓ̃

−→ Q
using (1) in the case of r-aux. �

Well-formedness. A similar development is required for the higher level no-
tion of well-formedness with respect to C:

Fact 5.9 Assume Q = rec X. Q′ and fpi(Q) = ∅; if furthermore P ≺ Q then

C ⊢Γfn
P [Q/X ] ⇔

{

C ⊢Γfn
′ P ∧ C ⊢Γfn

Q if X ∈ fpi(P )

C ⊢Γfn
P otherwise

where Γfn
′ = Γfn[X 7→ fnΓfn [X 7→∅](Q)].

Proof The direction of ⇒ follows by structural induction on P . All but two
cases are straightforward:



Properties of Programs 83

In the case of name restriction we rely on Fact 5.11-(1), the induction hypothesis,
and the fact that α-conversion is disciplined.

The most interesting case is that of the recursive process. Here we have

C ⊢Γfn
(rec Y. P )[Q/X ]

and must show that, if X ∈ fpi(rec Y. P ) then

C ⊢Γfn
′ rec Y. P and (1)

C ⊢Γfn
Q (2)

where Γfn
′ = Γfn[X 7→ fnΓfn [X 7→∅](Q)], and C ⊢Γfn

rec Y. P otherwise. The latter
case is trivially true and we proceed to show the former, i.e. (1) and (2). We
have that

C ⊢Γfn
(rec Y. P )[Q/X ] ⇒

C ⊢Γfn
′′ P [Q/X ] (I)

∧ X ∈ fpi(P [Q/X ]) (II)

∧ (∀M ℓ . P ′ � P [Q/X ] : Y ∈ fpi(P ′) ⇒
⌊bn(M)⌋ ∩ ⌊fnΓfn

(rec Y. (P [Q/X ]))⌋ = ∅)
(III)

where Γfn
′′ = Γfn[Y 7→ fnΓfn [Y 7→∅](P [Q/X ])].

Knowing that X ∈ fpi(P ) we use the induction hypothesis on (I) to obtain

C ⊢Γfn
′′ P [Q/X ] ⇒ C ⊢Γfn

′′′ P (IV)

∧ C ⊢Γfn
′′ Q (V)

where Γfn
′′′ = Γfn

′′[X 7→ fnΓfn
′′ [X 7→∅](Q)]. Given that fpi(Q) = ∅ the goal (2) follows

from (V) and only (1) remains.

Now we observe that

C ⊢Γfn
′′′′ P (a)

∧ X ∈ fpi(P ) (b)

∧



∀M ℓ . P ′ � P : Y ∈ fpi(P ′) ⇒
⌊bn(M)⌋ ∩ ⌊fnΓfn

′(rec Y. P )⌋ = ∅



 (c)

⇒ C ⊢Γfn
′ (rec Y. P ) (1)

where Γfn
′′′′ = Γfn

′[Y 7→ fnΓfn
′ [Y 7→∅](P )]. Given that fpi(Q) = ∅ the goal (b) follows

from (II) and only (a) and (c) remain.

From (III) we get



84 Well-formed Programs and Their Properties

(∀M ℓ . P ′ � P [Q/X ] : Y ∈ fpi(P ′) ⇒
⌊bn(M)⌋ ∩ ⌊fnΓfn

(rec Y. (P [Q/X ]))⌋ = ∅)

Since fpi(Q) = ∅ and according to the definition of Γfn
′′′ this is the same as

(∀M ℓ . P ′ � P : Y ∈ fpi(P ′) ⇒
⌊bn(M)⌋ ∩ ⌊fnΓfn

′′′(P )⌋ = ∅)

However, it follows from simple calculations and Fact 5.5 that Γfn
′′′ = Γfn

′′′′ =
fnΓfn

′(rec Y. P ); hence (c) follows from (III) and (a) follows from (IV).

Finally, (1) follows from (a), (b), and (c), which concludes the proof of ⇒.

The proof of ⇐ follows by similar considerations. �

Fact 5.10 If C ⊢Γfn
P and ⌊m⌋ ∈ C then C ⊢Γfn

P [m/x]

Proof The proof proceeds by induction on the structure of P . In the case of
restrictions we use that α-renaming is disciplined. In the case of recursive pro-
cesses we rely on disciplined α-renaming to ensure that the separation between
free and bound names is preserved by the substitution. The remaining cases are
straightforward. �

Fact 5.11 If fpi(P ) = ∅ and C ⊢ P then the following both hold:

1. If P ⇛ Q then C ⊢ Q

2. If P
ℓ̃

−→ Q then C ⊢ Q

Proof (1) follows by induction on the inference of P ⇛ Q. In the case of h-

alph we rely on the fact that α-renaming is disciplined. In the case of h-urec

we use Fact 5.9. In case of h-camb we use Fact 5.8-(1) in conjunction with the
induction hypothesis. The remaining axioms are trivial and the remaining rules
follow by the induction hypothesis.

(2) follows by induction on the inference of P
ℓ̃

−→ Q. The axioms for movement
yield the desired result by simple calculation whereas the axioms for communi-
cation use Fact 5.10. In the case of r-amb we use Fact 5.8-(2) in conjunction
with the induction hypothesis. Finally, r-aux follows from (1), and the remain-
ing rules follow by application of the induction hypothesis. �

Lemma 5.12 (Subject reduction) If PRGC(P ) and P
ℓ̃

−→ Q then PRGC(Q).

Proof The result follows from Fact 5.11, Fact 5.7, and Fact 5.8. �



Concluding Remarks 85

Corollary 5.13 (Type soundness) Assume that P⋆ is a well-formed initial
program then:

If P⋆
L̃

−→⋆P
ℓ̃

−→ Q then PRGC(P ) and PRGC(Q).

Proof The result follows by induction of the length of the derivation sequence
L̃, where we use Fact 5.12 to establish the base case and, in conjunction with
the induction hypothesis, to establish the inductive step. �

5.5 Concluding Remarks

This chapter has introduced a notion of well-formed programs that can be stat-
ically checked and is invariant under reaction. This notion of well-formedness
helps us achieve simple definitions of substitution that rely on neither heavy use
of α-renaming [PV05] nor parametrised process constants [SW01, Cai04]. Fur-
thermore, well-formed programs do not exhibit behaviours, such as unbounded
nesting, that we find incompatible with the biological domain.

In the following chapters we shall (mostly) restrict our attention to the class
of well-formed processes. This helps us formulate and show the required cor-
rectness results; hence this is the class of programs for which we guarantee the
analyses to be correct. The running example and the two case models all qualify
as well-formed programs.



86 Well-formed Programs and Their Properties



Chapter 6

Context Insensitive Control

Flow Analysis

“Seek simplicity but distrust it.”
— Alfred North Whitehead

This chapter presents a context insensitive or mono-variant Control Flow Anal-
ysis (0CFA) for the BioAmbients language, and evaluates it by analysing the
LDL degradation pathway of Section 3.3. Much of the presented material was
previously covered in [NNPdR07].

The Control Flow Analysis is defined as a Flow Logic

0CFA = FL(BioAmbients,alfp)

that aims to safely over-approximate the set of spatial configurations that may
arise at run-time. Thus, the focus of the approximation is on the spatial hierar-
chy established by the nesting of ambient boundaries. More precisely, the result
of application of the analysis to a program P⋆ yields an over-approximation of

1. the set of roles and capabilities that might show up in each role and

2. the set of constants that might be bound to each variable.

The approach of the analysis bears some resemblance to abstract interpretation:
Analysis results are acceptable if they, within the limited precision of the analysis
domain,

1. faithfully represent the initial configuration and



88 Context Insensitive Control Flow Analysis

capΓcap
((n)P ) = capΓcap

(P )

capΓcap
( P µ) = capΓcap

(P )

capΓcap
(P Q) = capΓcap

(P ) ∪ capΓcap
(Q)

capΓcap
(
∑

i∈I M ℓi

i . Pi) =
⋃

i∈I({ℓi} ∪ capΓcap
(Pi))

capΓcap
(rec X. P ) = capΓcap[X 7→∅](P )

capΓcap
(X) = Γcap(X)

Table 6.1: Occurring capabilities, capΓcap
(P ), of a process P .

2. are closures with respect to a set of conditions that mimic the semantics.

In most cases the closure conditions contribute the bulk of the analysis infor-
mation and, hence, it is well worthwhile to be as precise as possible and limit
the scope of the closure conditions to the set of capabilities that actually have
a chance of becoming concurrently possible at run-time. This is captured by a
statically computed auxiliary relation CP⋆.

The chapter is in four sections. First, in Section 6.1, we define the auxiliary
relation CP⋆, and show that it constitutes a safe approximation to the set of
concurrently possible capabilities. Then, in Section 6.2, we specify the 0CFA
analysis as a Flow Logic, show that it is correct, and how to compute it. In
Section 6.3 we apply the 0CFA to the LDL degradation pathway in order to
both evaluate the analysis and obtain information about the pathway. Finally,
in Section 6.4 we summarise our findings.

6.1 Concurrently Possible Capabilities

For any given program, P⋆, the problem of deciding the precise set of capability
interactions that may come to pass is undecidable. From a semantic point
of view, however, two capabilities can react only if simultaneously present in
the same subordinate solution [BDPZ03]. In the following we shall use this
insight to compute a first crude approximation to the set of potential capability
interactions. This approximation will be useful later when we specify the 0CFA.

We start by defining the set of occurring capabilities, capΓcap
(P ) ∈ P(Lab),

of a process P as shown in Table 6.1. Like the free names of the previous
chapter, the set is parameterised on an environment, Γcap : Pid → P(Lab),
intended to associate each process identifier occurring free in P with the set
of capabilities occurring in the corresponding process body. The definition is



Concurrently Possible Capabilities 89

CPΓcap,∆CP
((n)P ) = CPΓcap,∆CP

(P )
CPΓcap,∆CP

( P µ) = CPΓcap,∆CP
(P )

CPΓcap,∆CP
(P Q) = CPΓcap,∆CP

(P ) ∪ CPΓcap,∆CP
(Q) ∪

(capΓcap
(P )×capΓcap

(Q)) ∪

(capΓcap
(Q)×capΓcap

(P ))

CPΓcap,∆CP
(
∑

i∈I M ℓi

i . Pi) =
⋃

i∈I(CPΓcap,∆CP
(Pi))

CPΓcap,∆CP
(rec X. P ) = CPΓcap[X 7→capΓcap[X 7→∅](P )],∆CP[X 7→∅](P )

CPΓcap,∆CP
(X) = ∆CP(X)

Table 6.2: Concurrently possible capabilities, CPΓcap,∆CP
(P ), of a process P .

straightforward — the associated function simply performs a recursive traversal
of process expressions. Each occurring prefix label is picked up as defined in the
case for guarded sums.

Intuitively, two capabilities can interact only if separated by a ‘ ’. Furthermore,
they cannot possibly interact if separated by a ‘+’ [BDPZ03]. We use these
insights to specify the set of concurrently possible capabilities, CPΓcap,∆CP

(P ), of
a BioAmbients process, P , as shown in Table 6.2. The set is parameterised on
two environments:

The environment Γcap helps in making the distinction between ‘ ’ and ‘+’. In

the case of a parallel composition, P Q, the auxiliary function capΓcap
() is used

to record that prefixes in the two branches may interact with one another. In
contrast, no such information is recorded for non-deterministic choice, P + Q,
i.e., summation.

The environment ∆CP : Pid → P(Lab×Lab) simply helps us define CPΓcap,∆CP
()

in such a way that it can be applied to sub-expressions that are not identifier
closed.

Thus, in the case of a recursive process, rec X. P , the environment Γcap is updated
to associate X with the capabilities occurring in P , whereas the environment
∆CP is updated to ensure that X is associated with no information.

Convention 6.1 When P is known to be identifier closed we write CP(P ),
rather than CP[ ],[ ](P ), to denote the concurrently possible capabilities of P .
When furthermore the subject of approximation is an initial program, P⋆, we
write CP⋆ for CP(P⋆). �

Example 6.2 For the running example Peat we obtain the relation CPeat shown be-



90 Context Insensitive Control Flow Analysis

low:

(ℓ1, ℓ2), (ℓ1, ℓ3), (ℓ1, ℓ4), (ℓ1, ℓ5), (ℓ1, ℓ6), (ℓ1, ℓ7), (ℓ1ℓ8), (ℓ1, ℓ9),

(ℓ2, ℓ1), (ℓ2, ℓ6), (ℓ2, ℓ7), (ℓ2, ℓ8), (ℓ2, ℓ9),

(ℓ3, ℓ1), (ℓ3, ℓ6), (ℓ3, ℓ7), (ℓ3, ℓ8), (ℓ3, ℓ9),

(ℓ4, ℓ1), (ℓ4, ℓ6), (ℓ4, ℓ7), (ℓ4, ℓ8), (ℓ4, ℓ9),

(ℓ5, ℓ1), (ℓ5, ℓ6), (ℓ5, ℓ7), (ℓ5, ℓ8), (ℓ5, ℓ9),

(ℓ6, ℓ1), (ℓ6, ℓ2), (ℓ6, ℓ3), (ℓ6, ℓ4), (ℓ6, ℓ5), (ℓ6, ℓ7), (ℓ6ℓ8), (ℓ6, ℓ9),

(ℓ7, ℓ1), (ℓ7, ℓ2), (ℓ7, ℓ3), (ℓ7, ℓ4), (ℓ7, ℓ5), (ℓ7, ℓ6),

(ℓ8, ℓ1), (ℓ8, ℓ2), (ℓ8, ℓ3), (ℓ8, ℓ4), (ℓ8, ℓ5), (ℓ8, ℓ6),

(ℓ9, ℓ1), (ℓ9, ℓ2), (ℓ9, ℓ3), (ℓ9, ℓ4), (ℓ9, ℓ5), (ℓ9, ℓ6)

As must be expected, this constitutes a crude over-approximation of the interactions

that may take place. �

Soundness of CP⋆. We shall now show that for any P⋆ the corresponding
CP⋆ constitutes a safe over-approximation, i.e.,

If P⋆
L̃

−→⋆P then CP⋆ ⊇ CP(P ).

The result rests on a number of minor results:

Fact 6.3 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

capΓcap
(P [Q/X ]) = capΓcap[X 7→capΓcap

(Q)](P )

=

{

capΓcap[X 7→∅](P ) ∪ capΓcap
(Q) if X ∈ fpi(P )

capΓcap
(P ) otherwise

Proof The proof proceeds by induction in the structure of P . �

Facts 6.4 If C ⊢ P and fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then capΓcap
(P ) ⊇ capΓcap

(Q)

2. If P
ℓ̃

−→ Q then capΓcap
(P ) ⊇ capΓcap

(Q)

Proof For (1) the proof proceeds by induction on the shape of the proof tree
establishing P ⇛ Q, using Fact 6.3 in the case of h-urec. For (2) the proof

proceeds by induction on the shape of the proof tree establishing P
ℓ̃

−→ Q, using
(1) to prove the property in the case of r-aux. �



Concurrently Possible Capabilities 91

Fact 6.5 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

CPΓcap,∆CP
(P [Q/X ]) =

{

CPΓ′
cap,∆CP[X 7→∅](P ) ∪ CPΓcap,∆CP

(Q) if X ∈ fpi(P )

CPΓcap,∆CP
(P ) otherwise

where Γ′
cap = Γcap[X 7→ capΓcap

(Q)].

Proof The proof proceeds by structural induction on P . In the cases of par-
allel compositions and recursive processes it uses Fact 6.3. �

Facts 6.6 If C ⊢ P and fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then (CPΓcap,∆CP
(P ) ⊇ CPΓcap,∆CP

(Q))

2. If P
ℓ̃

−→ Q then (CPΓcap,∆CP
(P ) ⊇ CPΓcap,∆CP

(Q))

Proof For (1) the proof proceeds by induction on the shape of the proof tree
establishing P ⇛ Q, using Fact 6.5 in the case of h-urec.

For (2) the proof proceeds by induction in the shape of the proof tree establishing

P
ℓ̃

−→ Q, using (1) in the case of r-aux. �

Corollary 6.7 (Subject reduction)

If PRGC(P ) and P
ℓ̃

−→ Q then CP(P ) ⊇ CP(Q). �

Finally this thread of reasoning leads to the sought result:

Lemma 6.8 (CP⋆ is semantically correct) Assume that P⋆ is a well-formed
initial program, then

if P⋆
L̃

−→⋆P
ℓ̃

−→ Q then CP⋆ ⊇ CP(P ) ⊇ CP(Q)

Proof The result follows by induction on the length of L̃. The base case
follows from Corollary 6.7, and the inductive step follows from the induction
hypothesis in conjunction with Corollaries 5.13 and 6.7. �



92 Context Insensitive Control Flow Analysis

6.2 Control Flow Analysis

We now turn to the task of approximating the set of spatial configurations that
may arise at run-time. For this purpose we shall specify a context independent
Control Flow Analysis (0CFA).

6.2.1 The Analysis Domain

For a given BioAmbients program P⋆ we want the analysis to specify the fol-
lowing three components:

• An approximation of the relevant name bindings:

R ⊆ V × C

where we write n ∈ R(p) or (p, n) ∈ R to assert the truth of predicate
R(p, n), i.e., that R records that the variable p might become bound to
the constant n.

• An approximation of the contents (ambients, prefixes) of ambients:

I ⊆ Role × (Role ∪ (Cap × Lab))

where we write µ ∈ I(µ′) or (µ′, µ) ∈ I (or, M ℓ ∈ I(µ′) or (µ′,M ℓ) ∈ I)
to denote the truth of predicate I(µ′, µ) (or I(µ′,M ℓ)), i.e., that I records
that an ambient of role µ (or a prefix M ℓ) might occur inside an ambient
of role µ′.

• An approximation of the pairs of capabilities that may react:

F ⊆ Lab × Lab

where we shall write (ℓ1, ℓ2) ∈ F to denote the truth of F(ℓ1, ℓ2), i.e., that
F records that prefixes labelled ℓ1 and ℓ2 might react.

The domain of the analysis is the direct product of those corresponding to
the three components. This clearly constitutes a complete lattice under the
component-wise subset ordering.

Remark 6.9 Note that in the context of a concrete program P⋆ the domain
specialises to a finite lattice over V⋆,C⋆,Role⋆,Cap⋆, and Lab⋆, which are all
finite sets. Hence all instances satisfy the ascending chain condition. �



Control Flow Analysis 93

(I,R,F) |=µ (n)P iff (I,R,F) |=µ P

(I,R,F) |=µ P µc iff µc ∈ I(µ) ∧ (I,R,F) |=µc P

(I,R,F) |=µ P Q iff (I,R,F) |=µ P ∧ (I,R,F) |=µ Q

(I,R,F) |=µ
∑

i∈I M ℓi

i . Pi iff ∀i ∈ I : (⌊Mi⌋ℓi ∈ I(µ) ∧
closure⌈Mi⌉ ∧ (I,R,F) |=µ Pi)

(I,R,F) |=µ rec X. P iff (I,R,F) |=µ P

(I,R,F) |=µ X iff true

Table 6.3: The 0CFA acceptability judgement.

6.2.2 The Acceptability Judgement

The acceptability judgement of the analysis takes the form

(I,R,F) |=µ P

and expresses that, when the sub-process P (of P⋆) is enclosed within an ambient
of role µ ∈ Role, then I, R, and F correctly capture the behaviour of P —
meaning that I approximates the contents that may occur in each ambient, R
the bindings of names that may take place, and F the capability pairs that may
react, as P evolves inside P⋆.

The judgement is specified in Table 6.3 and refers to Table 6.4 and Table 6.5
for specifications of the closure conditions, closure⌈M⌉, where ⌈M⌉ is as M but
with names replaced by ’·’. The specification is syntax directed, which makes
the 0CFA compositional in the terminology of Flow Logic.

The clauses of the definition carry the following meaning:

Name restriction: An analysis estimate (I,R,F) is acceptable for a process,
(n)P , located inside an ambient of role µ if, and only if, acceptable for the sub-
process P in µ. Avoiding further requirements helps us ensure that the analysis
is invariant under, rather than preserved by, the heating relation, even when
h-eva is destabilising the set of name restrictions.

Ambient boundary: An analysis estimate (I,R,F) is acceptable for a pro-
cess, P µc , located inside an ambient of role µ if, and only if,

• (µ, µc) ∈ I and

• (I,R,F) is acceptable for the sub-process P in µc.



94 Context Insensitive Control Flow Analysis

Parallel composition: An estimate (I,R,F) is acceptable for P Q in µ
if, and only if, acceptable for both P and Q in µ. Note that this makes the
acceptability conditions for parallel and choice appear identical. We leave it to
the auxiliary closure conditions, closure⌈M⌉, to ensure a differentiated treatment
of the two types of composition by using CP⋆.

Summation: An estimate (I,R,F) is acceptable for
∑

i∈I M ℓi

i . Pi in µ if, and
only if, for every i ∈ I it is the case that

• (µ,M ℓi

i ) ∈ I,

• the associated closure condition, closure⌈Mi⌉, is satisfied by (I,R,F), and

• (I,R,F) is acceptable for the associated sub-process Pi in µ.

Recursive process: An analysis estimate (I,R,F) is acceptable for rec X. P
in µ if, and only if, acceptable for the sub-process P in µ.

Process identifier: Any (I,R,F) is an acceptable analysis estimate for X in
µ, hence we ignore them.

This simple treatment of recursion is acceptable because:

• The well-formedness conditions ensure that no process identifier occurs
free inside an ambient; thus, it suffices to analyse the sub-process P (the
body) in the context where it is first defined.

• Furthermore, the flow-insensitivity of the CFA, i.e., that prefix sequences
are represented as sets rather than lists, ensures that a single inspection
of the body suffices.

6.2.3 The Closure Conditions

Acceptable 0CFA estimates take the dynamic behaviour of capabilities into ac-
count. This is ensured by a set of closure conditions that mimic, within the
limited precision of the analysis domain, the axioms of the reaction relation.
Acceptable estimates are closures with respect to these conditions: whenever an
estimate satisfies the pre-conditions it must also satisfy the conclusion.

In dealing with these requirements the conditions rely on the R component,
which records only the potential bindings of variables to names and does not
include any information about constants. In order to provide the required in-
formation about constant definitions we introduce a new relation



Control Flow Analysis 95

closureenter · = ∀µ, µ1, µ2, x, y, ℓ1, ℓ2 :
enter xℓ1 ∈ I(µ1) ∧ µ1 ∈ I(µ)∧
accept yℓ2 ∈ I(µ2) ∧ µ2 ∈ I(µ)∧
〈R〉(x) ∩ 〈R〉(y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ µ1 ∈ I(µ2) ∧ (ℓ1, ℓ2) ∈ F
closureaccept · = true

closureexit · = ∀µ, µ1, µ2, x, y, ℓ1, ℓ2 :
exit xℓ1 ∈ I(µ1) ∧ µ1 ∈ I(µ2)∧
expel yℓ2 ∈ I(µ2) ∧ µ2 ∈ I(µ)∧
〈R〉(x) ∩ 〈R〉(y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ µ1 ∈ I(µ) ∧ (ℓ1, ℓ2) ∈ F
closureexpel · = true

closuremerge– · = ∀µ, µ1, µ2, x, y, ℓ1, ℓ2 :
merge– xℓ1 ∈ I(µ1) ∧ µ1 ∈ I(µ)∧
merge+ yℓ2 ∈ I(µ2) ∧ µ2 ∈ I(µ)∧
〈R〉(x) ∩ 〈R〉(y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ I(µ1) ⊆ I(µ2) ∧ (ℓ1, ℓ2) ∈ F
closuremerge+ · = true

Table 6.4: 0CFA closure conditions for movement.

〈R〉 ⊆ Name × C

defined by the following closure condition:

completeR = (∀p,m : R(p,m) ⇒ 〈R〉(p,m)) ∧ (∀n : n ∈ C ⇒ 〈R〉(n, n))

This condition asserts that 〈R〉 contains everything that R does, and that 〈R〉
binds all constants to themselves. Thus 〈R〉 acts exactly like R with respect to
variable bindings but also acts as the identity on constants.

Movement Closures. The closure conditions for movement ensure that anal-
ysis estimates are only acceptable if they reflect the potential consequences of
movements that might take place at run-time. If, e.g., (I,R,F) implies that an
enter movement might become enabled in some ambient (role) µ (Fig. 6.1), i.e.,

• An enter and an accept capability might occur in sibling ambients:

enter xℓ1 ∈ I(µ1) ∧ µ1 ∈ I(µ)∧
accept yℓ2 ∈ I(µ2) ∧ µ2 ∈ I(µ)

• The corresponding prefixes might be concurrently possible:

(ℓ1, ℓ2) ∈ CP⋆



96 Context Insensitive Control Flow Analysis

I µ

µ1 µ2

enter nℓ1
1

R(n1)∩R(n2) 6=∅

accept nℓ2
2

=⇒

I µ

µ1 µ2

enter nℓ1
1

accept nℓ2
2

µ1

enter nℓ1
1

Figure 6.1: 0CFA closure condition for enter movement.

• The enter and accept capabilities might agree on a communication channel:

〈R〉(x) ∩ 〈R〉(y) 6= ∅

Remark 6.10 Note that the capabilities may reference the channel name di-
rectly, by using a constant, or indirectly, by using a variable. Both situations
are captured when the condition is expressed as a requirement of non-empty
intersection in 〈R〉 rather than R. �

Then (I,R,F) should reflect that:

• The moving ambient role µ1 might occur in an ambient of role µ2:

µ1 ∈ I(µ2)

• The corresponding capabilities, ℓ1 and ℓ2, might react:

(ℓ1, ℓ2) ∈ F

Communication Closures. The closure conditions for communication en-
sure that analysis estimates are only acceptable if they reflect the potential
consequences of communications that might take place at run-time. If, for ex-
ample, (I,R,F) implies that a local communication might become enabled in
some ambient (role) µ (Fig. 6.2):



Control Flow Analysis 97

closure·!{·} = ∀µ, x, y, z, p, ℓ1, ℓ2 :
x!{z}ℓ1 ∈ I(µ) ∧
y?{p}ℓ2 ∈ I(µ) ∧
〈R〉(x) ∩ 〈R〉(y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ 〈R〉(z) ⊆ R(p) ∧ (ℓ1, ℓ2) ∈ F
closure·?{·} = true

closure· !{·} = ∀µ, µ1, x, y, z, p, ℓ1, ℓ2 :
x !{z}ℓ1 ∈ I(µ) ∧
y ?̂{p}ℓ2 ∈ I(µ1) ∧ µ1 ∈ I(µ) ∧
〈R〉(x) ∩ 〈R〉(y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ 〈R〉(z) ⊆ R(p) ∧ (ℓ1, ℓ2) ∈ F
closure·ˆ?{·} = true

closure·ˆ!{·} = ∀µ, µ1, x, y, z, p, ℓ1, ℓ2 :
x !̂{z}ℓ1 ∈ I(µ1) ∧ µ1 ∈ I(µ) ∧
y ?{p}ℓ2 ∈ I(µ) ∧
〈R〉(x) ∩ 〈R〉(y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ 〈R〉(z) ⊆ R(p) ∧ (ℓ1, ℓ2) ∈ F
closure· ?{·} = true

closure·#!{·} = ∀µ, µ1, µ2, x, y, z, p, ℓ1, ℓ2 :

x#!{z}ℓ1 ∈ I(µ1) ∧ µ1 ∈ I(µ) ∧
y#?{p}ℓ2 ∈ I(µ2) ∧ µ2 ∈ I(µ) ∧
〈R〉(x) ∩ 〈R〉(y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ 〈R〉(z) ⊆ R(p) ∧ (ℓ1, ℓ2) ∈ F
closure·#?{·} = true

Table 6.5: 0CFA closure conditions for communication.

• A local input action and a local output action might occur in the same
context:

x!{z}ℓ1 ∈ I(µ) ∧ y?{p}ℓ2 ∈ I(µ)

• The corresponding prefixes might be concurrently possible:

(ℓ1, ℓ2) ∈ CP⋆

• The input and output actions might agree on a communication channel:

〈R〉(x) ∩ 〈R〉(y) 6= ∅

Then (I,R,F) should reflect that:



98 Context Insensitive Control Flow Analysis

I µ

n1!{m}ℓ1

R(n1)∩R(n2) 6=∅

n2?{p}
ℓ2 ⇒

I µ

n1!{m}ℓ1

R(m)⊆R(p)

n2?{p}
ℓ2

Figure 6.2: 0CFA closure condition for local communication.

• Any name that might become bound to z might become the object of the
communication and might thus become bound to p:

〈R〉(z) ⊆ R(p)

• The corresponding capabilities, ℓ1 and ℓ2, might react:

(ℓ1, ℓ2) ∈ F

Remark 6.11 Note that, while semantically z is always a constant, it may be
either a constant or a variable in the representation of (I,R,F). In contrast p
always denotes a variable. This is why the inclusion requirement is expressed
with 〈R〉 as the source and R as the target. �

Example 6.12 The best analysis estimate (Ieat,Reat,Feat) of the running example
Peat is shown below:

nutrient

cell

food

system

⊤

n R(n)

rl RL

Reat component

ℓ F(ℓ)

ℓ7 ℓ2
ℓ4 ℓ1, ℓ8
ℓ6 ℓ3
ℓ5 ℓ9

Ieat component Feat component



Control Flow Analysis 99

In the figure the contents of Ieat is presented graphically, while Reat and Feat are
presented as tables where last components are sorted into bins identified by first com-
ponents. In the graph the triple bordered node represents the super-environment, ⊤,
used as superscript in (Ieat,Reat,Feat) |=⊤ Peat, the double bordered nodes connected
by bold (black) edges represent the initial configuration (as specified by Table 6.3),
and the remaining (red) edges represent the system dynamics (as specified by Table
6.4, 6.5, and 6.2). The trees of the individual frames of Example 3.28 are all sub-trees
of these graphs.

Considering the semantics of Peat (Example 3.28) it should be clear that nutrients can

only be released from the food particles in the context of the cell. The analysis result,

however, exhibits poor precision and is not able to reach this conclusion. �

6.2.4 Properties of the 0CFA

We have now defined an acceptability judgement that specifies the notion of an
acceptable CFA estimate (I,R,F). It remains, to be shown that this judgement
does indeed specify a static analysis that is 1) well-defined, 2) sound with respect
to the semantics, and 3) implementable. This we shall do in the following.

Well-definedess. Due to the compositional nature of the specification the
first property is easy to establish:

Theorem 6.13 (Well-defined) The analysis judgement, (I,R,F) |=µ P , is
well-defined, i.e., for every pair, (I,R,F) and P , it unambiguously specifies
whether (I,R,F) is acceptable for P .

Proof The proof proceeds by straightforward structural induction on P . �

This means that we can always check an a priori given analysis estimate.

Semantic Correctness. In order to establish the second property we have
to show that the analysis is correct in the sense that the studied properties
are“⊒-preserved” under heating and reaction.

We shall find use for a minor fact regarding substitution and (I,R,F) |=µ P .

Fact 6.14 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

(I,R,F) |=µ P [Q/X ] ⇔

{

(I,R,F) |=µ P ∧ (I,R,F) |=µ Q if X ∈ fpi(P )

(I,R,F) |=µ P otherwise



100 Context Insensitive Control Flow Analysis

Proof The fact follows by structural induction on P , where the well-formed-
ness of P ensures that Q can only occur within µ. �

Now we can easily show that analysis acceptability is preserved under heating.

Lemma 6.15 If C ⊢ P and fpi(P ) = ∅ then the following holds:

If (I,R,F) |=µ P and P ⇛ Q, we have (I,R,F) |=µ Q.

Proof The proof proceeds by induction in the shape of the proof tree estab-
lishing P ⇛ Q. In the case of scope rules for name bindings the lemma trivially
holds because name restrictions are ignored by the analysis judgement. For the
congruence requirements the result follows from the induction hypothesis. In
the case of α-equivalence we have that if P ≡α Q then ⌊P ⌋ = ⌊Q⌋ and hence
(I,R,F) |=µ ⌊P ⌋ ⇔ (I,R,F) |=µ ⌊Q⌋ follows by referential transparency. Fi-
nally, in the case of unfolding of recursion the desired result follows directly
from Fact 6.14. �

To finally show the invariance under reaction we shall introduce an expansion of
I into the new relation I@R, which takes into account the bindings of variables
specified by the R component. This relation is defined as follows:

If M ℓ ∈ I(µ), x ∈ fn(M) and n ∈ 〈R〉(x) then M ℓ [n/x] ∈ I@R(µ).

where we remind that the involved names are, indeed, canonical.

This expansion satisfies a useful substitution property.

Fact 6.16 If ⌊n⌋ ∈ R(x) and (I,R,F) |=µ P then (I@R,R,F) |=µ P [n/x].

Proof The proof proceeds by structural induction on P . �

In this context we can show that the acceptability of analysis estimates is pre-
served under reaction in the following sense:

Lemma 6.17 If C ⊢ P and fpi(P ) = ∅ then, if furthermore CP(P ) ⊆ CP⋆ the
following holds:

If (I,R,F) |=µ P and P
ℓ̃

−→ Q then (I@R,R,F) |=µ Q and ℓ̃ ∈ F .

Proof The proof is by induction on the inference of reactions P
ℓ̃

−→ Q. In the
case of movement it suffices to expand both (I,R,F) |=⊤ P and (I,R,F) |=⊤ Q



Control Flow Analysis 101

using the definition of (I,R,F) |=µ P . In the case of communication we perform
a similar expansion and then obtain the desired result using Fact 6.16. The
remaining cases follow from the induction hypothesis and, in the case of r-aux,
uses Lemma 6.15. �

Corollary 6.18 (Subject reduction) Assume PRGC(P ) and CP(P ) ⊆ CP⋆;

if furthermore (I,R,F) |=µ P and P
ℓ̃

−→ Q then (I@R,R,F) |=µ Q and ℓ̃ ∈ F .
�

This means that an analysis estimate that is acceptable for a process P is also
acceptable for any process Q derived from it by a single reaction.

Analysis estimates are typically based on initial programs P⋆ related to Q

through a longer reaction sequence of the form P⋆
L̃

−→ ⋆P
ℓ̃

−→ Q. It is im-
mediate to show that I@R = (I@R)@R and hence we can state the overall
correctness result as follows:

Theorem 6.19 (Semantic correctness) Assume that P⋆ is a well-formed ini-

tial program, then (I,R,F) |=⊤ P⋆ and P⋆
L̃

−→⋆P entails (I@R,R,F) |=⊤ P
and L̃ ⊆ F .

Proof The corollary follows by induction on the length of L̃. The base
case holds vacuously. The inductive step is established using Corollary 6.17,
Corollary 5.13, the induction hypothesis, and the above insight. �

Intuitively, this asserts that an analysis estimate acceptable for P⋆ is acceptable
for any process Q derivable by a sequence of reactions.

Implementability. Having defined the notion of acceptable analysis esti-
mates and established their semantical soundness we shall now show that there
is always a best estimate and indicate how to compute it.

Recall from Section 4.3 that a Moore family results guarantees best estimates.
Here we write best to mean least with respect to the partial order of the analysis
domain:

(I1,R1,F1) ⊑ (I2,R2,F2) iff (I1 ⊆ I2) ∧ (R1 ⊆ R2) ∧ (F1 ⊆ F2)

In the context of this ordering we can prove the theorem:

Theorem 6.20 (Moore family (0CFA)) For any program P⋆ the set of ac-
ceptable analyses under |=µ constitutes a Moore family, i.e.,



102 Context Insensitive Control Flow Analysis

∀S′ ⊆ {(I,R,F) | (I,R,F) |=µ P⋆} :
d

S′ ∈ {(I,R,F) | (I,R,F) |=µ P⋆}.

Proof Assume that for some index set I and process P we have

∀i ∈ I : (Ii,Ri,Fi) |=
µ P

It then remains to be shown that
d

i∈I(Ii,Ri,Fi) |=
µ P

This follows by structural induction on P.

Case (n)P : Follows by the induction hypothesis.

Case P µ: Assume that ∀i ∈ I : (Ii,Ri,Fi) |=µ P µc . It follows that
µc ∈ Ii(µ) and (Ii,Ri,Fi) |=µc P for all i ∈ I. The induction hypothesis
ensures that

d
i∈I(Ii,Ri,Fi) |=

µ P and, since µc ∈ Ii(µ) for all i ∈ I, we
also have µc ∈

⋂

i∈I Ii(µ). The desired result
d

i∈I(Ii,Ri,Fi) |=µ P µ

follows directly.

Case P Q: follows from the induction hypothesis.

Case
∑

j∈J M
ℓj

j . Pj: Assume that ∀i ∈ I : (Ii,Ri,Fi) |=µ
∑

j∈J M
ℓj

j . Pj . It

follows that ∀j ∈ J : (⌊Mj⌋
ℓj ∈ Ii(µ) ∧ closure⌈Mj⌉ ∧ (Ii,Ri,Fi) |=µ Pj)

for all i ∈ I. As before,
d

i∈I(Ii,Ri,Fi) |=µ Pj for all j ∈ J follows by

the induction hypothesis, and ⌊Mj⌋ℓj ∈ (
⋂

i∈I Ii)(µ) for all j ∈ J follows
because the formula is universally quantified.

It remains to be shown that closure⌈Mj⌉ for all j ∈ J is satisfied byd
i∈I(Ii,Ri,Fi). This is done by case analysis on M , and we shall con-

sider the case for the enter capability:
Fix µ, µ1, µ2, x, y, ℓ1, ℓ2 such that

enter xℓ1 ∈ (
⋂

i∈I Ii)(µ1) ∧ µ1 ∈ (
⋂

i∈I Ii)(µ)∧
accept yℓ2 ∈ (

⋂

i∈I Ii)(µ2) ∧ µ2 ∈ (
⋂

i∈I Ii)(µ)∧
〈
⋂

i∈I Ri〉(x) ∩ 〈
⋂

i∈I Ri〉(y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

It then follows that µ1 ∈ Ii(µ2)∧ (ℓ1, ℓ2) ∈ Fi for all i ∈ I, and hence that
µ1 ∈ (

⋂

i∈I Ii)(µ2) ∧ (ℓ1, ℓ2) ∈ (
⋂

i∈I Fi). This concludes the case.

The remaining cases are similar.

Case rec X. P : follows from the induction hypothesis.

Case X: Holds vacuously.
�



CASE: Analysing the LDL Degradation Pathway 103

INPUT : a Flow Logic FL(BioAmbients,alfp) and

a BioAmbients process P⋆.

OUTPUT : an alfp formula ϕ such that (I,R,F) |= ϕ ⇔ (I,R,F) |=⊤ P⋆.

METHOD : Set ϕ := (
V

{CP⋆(ℓ1, ℓ2) | (ℓ1, ℓ2) ∈ CP⋆}) ∧

(
V

{C(x) | x ∈ C}) ∧

completeR∧

(I,R,F) |=⊤ P

while ϕ contains (I,R,F) |=µ P ′

and there is a rule α iff β in FL

and a substitution θ

such that θα = (I,R,F) |=µ P ′

do replace (I,R,F) |=µ P ′ with θβ in ϕ.

Table 6.6: 0CFA constraint generation algorithm.

Thus, trivially,
d
∅ = (⊤I ,⊤R,⊤F ), is always an acceptable analysis estimate

(the worst), and there is always a best estimate (I⋆,R⋆,F⋆) =
d
{(I,R,F) |

(I,R,F) |=µ P⋆}. As outlined in Section 4.3, we compute (I⋆,R⋆,F⋆) for a
given P⋆ by first deriving an alfp clause, ϕ, as shown in Table 6.6 and then
computing the least model using the Succinct Solver Suite [NNS+04, NNS02],
which then guarantees polynomial complexity.

6.3 CASE: Analysing the LDL Degradation Path-

way

In order to investigate our model of the LDL degradation pathway (3.3) we
shall now subject it to the 0CFA. The resulting (I,R,F) is only included in
Appendix B.1, but the corresponding ambient role containment hierarchy (I) is
shown graphically in Fig. 6.3.

Basically, the analysis results indicate that cholesterol (CH) might occur, in
the lumen of every modelled compartment. This is in sharp contrast to the fact
that CH can only really be released in the lumen of the lysosome (LY SO).
Thus, the result is almost maximally un-informative. Due to the nature of over-
approximation, however, we cannot guarantee that CH may actually reach the
lumens of the indicated compartments.



104 Context Insensitive Control Flow Analysis

XVLY SO

LE

CC

EE

CH

CELL

LDL

⊤

Figure 6.3: 0CFA applied to an LDL pathway with normal receptors. The spe-
cial ⊤ node with triple borders denotes the super-environment. The remaining
(double bordered) nodes represent ambients roles and the edges represent the
containment relation I. The bold black edges represent the system in its initial
state. The thinner red edges account for the dynamic evolution of the system.

6.3.1 Related Diseases

As mentioned in Section 2.2.3 familial hypercholesterolemia is caused by defects
in the genetic coding of the LDL receptor proteins.

When such a defect affects the exo-plasmic domain of the protein the receptor
is no longer able to bind an LDL particle. As mentioned in Section 3.3 this
corresponds to the model included in Appendix A.2. The corresponding 0CFA
result, (I,R,F), is reported in Appendix B.1.2, and the I relation, which is
shown graphically in Fig. 6.4(a), reveals that the cell can no longer internalise
LDL particles. It still internalises early endosomes (EE). Empty endosomes
may occur inside the clathrin coat (CC) within the CELL, but in this case
they carry no LDL cargo.

When the defect affects the intra-cellular part of the protein the receptor can
bind, but not internalise, LDL particles. This corresponds to the model included
in Appendix A.2. Unfortunately, the corresponding I relation, presented verba-



CASE: Analysing the LDL Degradation Pathway 105

XV

LY SO

LE

CC

EE

CH

CELL LDL

⊤

XVLY SO

LECC

EE

CH

CELL

LDL

⊤

(a) extra-cellular defects (b) intra-cellular defects

Figure 6.4: 0CFA analysis of defect receptor LDL pathway models.

tim in Appendix B.1.2 and shown graphically in Fig. 6.4(b), barely shows the
effect. In most aspects the graph is completely similar to the graph in Fig. 6.3,
which represents the normal receptor model. However, it conclusively shows
that the EE can never enter the CC. As this is a prerequisite of entering the
CELL we conclude that, in fact, the LDL cannot enter. But how do we then
explain the remaining spurious edges? Well, they occur due to a conspiracy of
two factors:

• The aforementioned modelling artifact (Section 3.3) allows EE to enter
CELL before entering the CC.

• The analysis is flow-insensitive, hence, the behaviour of the EE is analysed
identically regardless of the reactions that have passed before. Or, in other
words, the analysis does not care if the EE has passed through the CC
or not.

Still, these results are slightly more encouraging than the normal receptor result
would initially have us believe. In these particular cases the 0CFA is, just,
precise enough to indicate that the system, as modelled here, cannot perform
its normal function if severely perturbed.



106 Context Insensitive Control Flow Analysis

6.4 Concluding Remarks

The 0CFA presented in this chapter extends a tradition of CFAs for ambient
calculi that began with [HJNN99, NNHJ99]. In the biological branch of this tra-
dition the work reported here, largely that of [NNP04], emerged as an evolution
of the 0CFA presented in [NNPdR07].

The 0CFA presented in this chapter differs from that presented in [NNPdR07]
in two major respects:

In [NNPdR07] communication causes updates in both I and R. In this disser-
tation, however, we keep the binding information strictly confined to R, store
only representatives in I, and then expand these representatives “on the fly”.
This approach optimises with respect to space consumption, which has proven
a sensible strategy when using the Succinct Solver [NNS02]. In this context,
however, we must expand the I relation into (I@R,R) when formulating the
correctness result with respect to a substitution based reaction semantics.

In [NNPdR07] the closure conditions may match and fire any two capabilities
that might occur in the right positions of the ambient hierarchy. Here we take
inspiration from [BDPZ03] and use an auxiliary relation CP⋆ to impose a re-
striction; only capabilities that might be concurrently possible may be matched.

Furthermore, the 0CFA presented here also differs from the work originally
published in [NNP04] in a couple of respects:

In [NNP04] a relation similar to CP⋆ is used to control the application of the
closure conditions. At the time, however, it had not yet been realised that, in
the context of general recursion, CP⋆ is really a fixed point property. Here we
rectify this mistake by using an indexed hierarchy of functions, capΓcap

() and
CPΓcap,∆CP

(), to compute the necessary information.

In [NNP04] process identifiers are allowed to occur within ambient boundaries.
Hence, the developments of [NNP04] include a general mechanism for ensuring
that the corresponding body is analysed in all relevant contexts that may arise
dynamically. For the purpose of this dissertation we see no biological relevance
in allowing free process identifiers within ambient boundaries and, hence, this
development is not included.

There has previously been positive comments [NNPdR07][NNP04] regarding
the use of 0CFA for biological applications. However, the results of this chapter
seem to indicate, quite conclusively, that the presented 0CFA is too weak. The
analysis results of both the running example and, in particular, the LDL degra-



Concluding Remarks 107

dation pathway model exhibits poor precision, which emerges as spurious edges
in the corresponding graphical representations.

Reflecting upon this, it seems obvious that the observed imprecision owes to
lack of context and, to a lesser degree, flow information. This conclusion is what
originally motivated the context sensitive Control Flow Analysis presented in
the following chapter.



108 Context Insensitive Control Flow Analysis



Chapter 7

Context Sensitive Control

Flow Analysis

“From naive simplicity we arrive at more profound simplicity.”
— Albert Schweitzer

This chapter presents a context sensitive or poly-variant Control Flow Anal-
ysis (2CFA) for the BioAmbients language and evaluates it by analysing the
LDL degradation pathway of Section 3.3. Parts of the material was previously
published in [PNN06b].

The analysis uses two levels of context information and, like the 0CFA of the
previous chapter, it is defined as a Flow-Logic

2CFA = FL(BioAmbients,alfp)

that keeps track of the contents of ambients and their abilities for participat-
ing in various interactions and, thus, shares many characteristics with previous
analyses of Mobile Ambients [NNH02, NNB04, LM01, NNPdR07, NNP04]

The analysis is structurally similar to the 0CFA, but it adds several novel ele-
ments in order to increase precision:

First, the Control Flow Analysis is context sensitive, i.e., it approximates the
containment contexts of ambients, capabilities, and bindings and is thereby able
to differentiate between interactions that are possible in different settings. It has
been found that two enclosing ambient roles suffices for analysing fixed-structure
cellular models with simple intruders [PNN05]. This strikes a balance between
the classical approaches that completely ignore context [NNH02, NNPdR07] and



110 Context Sensitive Control Flow Analysis

the more complex shape analysis of [NN00].

Second, the use of contexts means that extensive copying is delegated to the
closure conditions, and this offers multiple handles for controlling the precision:

Whenever two capabilities might match to cause an ambient movement then the
moving ambient, the relevant parts of its contents, and the relevant associated
variable bindings might also occur in some ‘new’ context. Here ‘relevant’ refers
to those that do not disappear due to non-deterministic choice when the move-
ment occurs. In the case of variable bindings this notion of relevance is formally
captured by an auxiliary relation RV⋆, that safely approximates the relevant
variables, and is used to control the copying of variable bindings within R that
occurs in conjunction with ambient movement. And, in the case of ambient
contents, by an auxiliary relation RPA⋆ that safely approximates the relevant
prefixes and ambients, and is used to control the copying of capabilities and
prefixes within I that occurs in conjunction with ambient movement.

Furthermore, whenever two capabilities might match to cause a communication
then all names that might be communicated might become bound, both in
the immediate context of the receiving capability, M ℓ , and in all relevant sub-
contexts. Here the relevant sub-contexts are the ambients that lie within the
static scope of the variable bound by M ℓ . This notion of relevance is formally
captured by an auxiliary relation SCP⋆, that safely approximates the spatial
shape of static scope, and is used to control the propagation of name bindings
into sub-contexts.

The chapter is in six sections. First, in Section 7.1, we define the auxiliary rela-
tion SCP⋆, and show that, for each variable, it constitutes a safe approximation
to the spatial shape of the corresponding static scope. In Section 7.2 we define
the auxiliary relation RV⋆, and show that it constitutes a safe approximation to
the set of relevant variables of each capability. Similarly, in Section 7.3, we define
the auxiliary relation RPA⋆, and show that it constitutes a safe approximation
to the set of relevant prefixes and ambients of each capability, Then, in Section
7.4, we specify the 2CFA analysis as a Flow Logic, show that it is correct, and
how to compute it. In Section 7.5 we apply the 2CFA to the LDL degradation
pathway in order to both evaluate the analysis and obtain information about
the LDL pathway. Finally, in Section 7.6 we summarise our findings.



The Spatial Shape of Static Scope 111

ambΓamb
((n)P ) = ambΓamb

(P )

ambΓamb
( P µ) = {µ} ∪ ambΓamb

(P )

ambΓamb
(P Q) = ambΓamb

(P ) ∪ ambΓamb
(Q)

ambΓamb
(
∑

i∈I

M ℓi

i . Pi) =
⋃

i∈I

ambΓamb
(Pi)

ambΓamb
(rec X. P ) = ambΓamb[X 7→∅](P )

ambΓamb
(X) = Γamb(X)

Table 7.1: Ambient roles, ambΓamb
(P ), occurring in a process, P .

7.1 The Spatial Shape of Static Scope

When defining the 2CFA in Section 7.4 we shall find it useful to have an a priori
given estimate of the spatial shape of static scopes, i.e., a relation that associates
every variable with the ambients where it might be in scope.

In order to specify the required information we shall first define the set of oc-
curring ambients, ambΓamb

(P ), of a process P . The set is defined in terms of
the recursive function of Table 7.1 and, as usual, it is parameterised on an envi-
ronment, Γamb : Pid → P(Role), used to associate process identifiers with sets
of ambient roles. The function performs a straightforward recursive descent in
order to simply accumulate the set of occurring ambient roles. Consequently,
the main case is that for the ambient boundary.

In this context we capture the spatial shape of the static scopes, SCPΓamb,∆SCP
(P ),

that occur in a process, P , by associating each occurring bound variable with
the set of ambient roles that occur in its static scope. This is captured by the
function shown in Table 7.2, which is parameterised on the aforementioned Γamb

environment as well as another environment, ∆SCP : Pid → P(V×Role), used to
associate process identifiers with spatial shapes of static scopes. The interesting
case is that of summation, where each variable occurring bound in a prefix,
M ℓi

i , is associated with the set of ambient roles occurring in the corresponding
continuation process Pi.

Convention 7.1 When P is known to be identifier closed we write SCP(P ),
rather than SCP[ ],[ ](P ), to denote the spatial shape of static scope of P . When
furthermore the subject of approximation is an initial program, P⋆, we write
SCP⋆ for SCP(P⋆). �



112 Context Sensitive Control Flow Analysis

SCPΓamb,∆SCP
((n)P ) = SCPΓamb,∆SCP

(P )

SCPΓamb,∆SCP
( P µ) = SCPΓamb,∆SCP

(P )

SCPΓamb,∆SCP
(P Q) = SCPΓamb,∆SCP

(P ) ∪ SCPΓamb,∆SCP
(Q)

SCPΓamb,∆SCP
(
∑

i∈I

M ℓi

i . Pi) =
⋃

i∈I

( (bn(Mi) × ambΓamb
(Pi)) ∪

SCPΓamb,∆SCP
(Pi) )

SCPΓamb,∆SCP
(rec X. P ) = SCPΓamb[X 7→ambΓamb[X 7→∅](P )],∆SCP[X 7→∅](P )

SCPΓamb,∆SCP
(X) = ∆SCP(X)

Table 7.2: Static scopes, SCPΓamb,∆SCP
(P ), of a process, P .

Soundness of SCP⋆. We shall now show that for any P⋆ the corresponding
SCP⋆ constitutes a safe over-approximation, i.e.,

if P⋆
L̃

−→⋆P then SCP⋆ ⊇ SCP(P )

The proof involves a number of minor results.

Fact 7.2 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

ambΓamb
(P [Q/X ]) = ambΓamb[X 7→ambΓamb[X 7→∅](Q)](P )

=

{

ambΓamb[X 7→∅](P ) ∪ ambΓamb
(Q) if X ∈ fpi(P )

ambΓamb[X 7→∅](P ) otherwise

Proof The result follows by structural induction on P . �

Facts 7.3 If C ⊢ P and fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then ambΓamb
(P ) ⊇ ambΓamb

(Q).

2. If P
ℓ̃

−→ Q then ambΓamb
(P ) ⊇ ambΓamb

(Q).

Proof The proof of (1) is by induction on the shape of the proof tree estab-
lishing P ⇛ Q. We use Fact 7.2 in the case of h-urec. The remaining axioms
are straightforward and the rules all follow from the induction hypothesis, and,
in the case of h-tran, the transitivity of ⊇.

The proof of (2) is by induction on the shape of the proof tree establishing



The Spatial Shape of Static Scope 113

P
ℓ̃

−→ Q. The axioms follow by calculation. The rules follow by the induction
hypothesis, using (1) in the case of r-aux. �

Fact 7.4 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

SCPΓamb,∆SCP
(P [Q/X ]) =

{

SCPΓ′
amb

,∆′
SCP

(P ) ∪ SCPΓamb,∆SCP
(Q) if X ∈ fpi(P )

SCPΓamb,∆SCP
(P ) otherwise

where Γ′
amb

= Γamb[X 7→ ambΓamb[X 7→∅](Q)] and ∆′
SCP

= ∆SCP[X 7→ ∅].

Proof The proof proceeds by structural induction in P . The base case and
most other cases are trivial. The most interesting case is that of summation
where, for each summand M ℓ . P , if X ∈ fpi(M ℓ . P ), then:

SCPΓamb,∆SCP
((M ℓ . P )[Q/X ]) = SCPΓamb,∆SCP

(M ℓ . P [Q/X ])

= bn(M ℓ) × ambΓamb
(P [Q/X ]) ∪

SCPΓamb,∆SCP
(P [Q/X ])

(by ind. hyp.) = bn(M ℓ) × ambΓamb
(P [Q/X ]) ∪

SCPΓamb[X 7→ambΓamb[X 7→∅](Q)],∆SCP[X 7→∅](P ) ∪

SCPΓamb,∆SCP
(Q)

(by Fact 7.2 & def. SCP) = SCPΓamb[X 7→ambΓamb[X 7→∅](Q)],∆SCP[X 7→∅](M
ℓ . P ) ∪

SCPΓamb,∆SCP
(Q).

In

the case of the recursive process we make similar use of Fact 7.2. �

Facts 7.5 If C ⊢ P and fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then SCPΓamb,∆SCP
(P ) ⊇ SCPΓamb,∆SCP

(Q).

2. If P
ℓ̃

−→ Q then SCPΓamb,∆SCP
(P ) ⊇ SCPΓamb,∆SCP

(Q).

Proof The proof of (1) follows by induction on the shape of the proof tree
establishing P ⇛ Q. Most axioms are straightforward. However, in the case
of h-urec we use Fact 7.4. The rules all follow from the induction hypothesis,
and, in the case of h-tran, transitivity of ⊇.

The proof of (2) proceeds by induction on the shape of the prooftree establishing

P
ℓ̃

−→ Q. Again, the axioms follow by straightforward calculation. The rules
mostly follow directly from the induction hypothesis, but, in the case of r-aux,
also depends on (1). �



114 Context Sensitive Control Flow Analysis

Corollary 7.6 (Subject reduction)

If PRGC(P ) and P
ℓ̃

−→ Q then SCP(P ) ⊇ SCP(Q). �

Finally, the sought result emerges as a special case of the following lemma:

Lemma 7.7 (Semantic correctness) Assume that P⋆ is a well-formed initial
program then:

If P⋆
L̃

−→⋆P
ℓ̃

−→ Q then SCP⋆ ⊇ SCP(P ) ⊇ SCP(Q).

Proof The result follows by induction on the length of the derivation sequence

P⋆
L̃

−→⋆P . The base case is given by Corollary 7.6 and the inductive step follows
from the induction hypothesis, Corollary 7.6, and Corollary 5.13. �

7.2 Relevant Variables

We shall also find use for a safe estimate of the variable bindings that remain
relevant after a reaction, i.e., a relation associating each capability with those
variables that do not disappear due to non-deterministic choice when the capa-
bility engages in reaction.

In order to specify this information we first need to formalise the free variables,
fvΓfv

(P ), of a process P . We capture this by the function shown in Table 7.3,
which, in contrast to the free names function used by the semantics, only consid-
ers variables. The associated environment, Γfv : Pid → P(V), associates process
identifiers with sets of free variables. The interesting information is collected in
the case of summation. The canonical version of each free name that occurs in
a prefix M ℓi

i , but not in the set of constants C, is collected. We are computing
an over-approximation and therefore the information synthesised from various
sub-expressions is combined by taking the union of the sets.

In this context we capture the relevant variables, RVΓfv,Γcap,∆RV
(P ), occurring

in a process, P , by associating each occurring capability label, ℓ, with the set
of variables that may occur either in parallel to, or sequentially after, ℓ. The
information is computed as shown in Table 7.4. Here Γfv is the environment
used by fvΓfv

(), Γcap the environment used by capΓcap
() (Section 6.1), and ∆RV :

Pid → P(Lab × V) is an environment that associates process identifiers with
relevant names estimates. We shall briefly examine the interesting cases:



Relevant Variables 115

fvΓfv
((n)P ) = fvΓfv

(P )

fvΓfv
( P µ) = fvΓfv

(P )

fvΓfv
(P Q) = fvΓfv

(P ) ∪ fvΓfv
(Q)

fvΓfv
(
∑

i∈I

M ℓi

i . Pi) =
⋃

i∈I

((⌊fn(Mi)⌋ \ C) ∪ (⌊fvΓfv
(Pi)⌋\⌊bn(Mi)⌋))

fvΓfv
(rec X. P ) = fvΓfv[X 7→∅](P )

fvΓfv
(X) = Γfv(X)

Table 7.3: Free variables, fvΓfv
(P ), of a process P .

RVΓfv,Γcap,∆RV
((n)P ) = RVΓfv,Γcap,∆RV

(P )

RVΓfv,Γcap,∆RV
( P µ) = RVΓfv,Γcap,∆RV

(P )

RVΓfv,Γcap,∆RV
(P Q) = RVΓfv,Γcap,∆RV

(P ) ∪ RVΓfv,Γcap,∆RV
(Q) ∪

(capΓcap
(P )×fvΓfv

(Q))∪(capΓcap
(Q)×fvΓfv

(P ))

RVΓfv,Γcap,∆RV
(
∑

i∈I

M ℓi

i . Pi) =
⋃

i∈I

(({ℓi} × fvΓfv
(Pi)) ∪ RVΓfv,Γcap,∆RV

(Pi))

RVΓfv,Γcap,∆RV
(rec X. P ) = RVΓfv[X 7→fvΓfv[X 7→∅](P )],

Γcap[X 7→capΓcap[X 7→∅](P )],
∆RV[X 7→∅]

(P )

RVΓfv,Γcap,∆RV
(X) = ∆RV(X)

Table 7.4: Relevant variables, RVΓfv,Γcap,∆RV
(P ), of a process, P .

• In the case of parallel composition, P Q, the union of two direct products
is recorded; the product of all capabilities of P (i.e., capΓcap

(P )) and all
free (canonical) variables of Q (i.e., fvΓfv

(Q)) – and vice versa.

• For each summand M ℓi

i . Pi of a summation the label ℓi is associated with
the free variables of the continuation Pi (i.e., fvΓfv

(Pi)).

• In the case of a recursive process, rec X. P , Γcap and Γfv are updated in order
to correctly associate X with, respectively, the set of labelled capabilities
and the set of free variables of P .

The function computes an over-approximation; hence the information emerging
from sub-expressions is combined by taking the union of the emerging sets.



116 Context Sensitive Control Flow Analysis

Example 7.8 For the running example Peat we get

RVPeat = {(ℓ2, rl)}

which in fact indicates that no names are relevant to any ambient movement. �

Convention 7.9 When P is known to be identifier closed we write RV(P ),
rather than RV[ ],[ ],[ ](P ), to denote the relevant variables of P . When further-
more the subject of approximation is an initial program, P⋆, we write RV⋆ for
RV(P⋆). �

Soundness of RV⋆. We shall now show that for any P⋆ the corresponding
RV⋆ constitutes a safe over-approximation, i.e.,

if P⋆
L̃

−→⋆P then RV⋆ ⊇ RV(P )

meaning that the relation RV⋆ correctly relates the label of each capability, M ℓ ,
occurring in P to all variables in P that might be relevant, i.e., those that do
not disappear because of non-deterministic choice when M ℓ engages in reaction.

The proof involves a number of minor results.

Fact 7.10 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

fvΓfv
(P [Q/X ]) = fvΓfv[X 7→fvΓfv[X 7→∅](Q)](P )

=

{

fvΓfv[X 7→∅](P ) ∪ fvΓfv
(Q) if X ∈ fpi(P )

fvΓfv[X 7→∅](P ) otherwise

Proof The result follows by induction in the structure of P . In the case of
summations we rely on the well-formedness of Q, and the fact that P is a sub-
process of Q, to ensure that the bound variables of P cannot capture the free
variables of Q. �

Facts 7.11 If C ⊢ P and fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then fvΓfv
(P ) ⊇ fvΓfv

(Q).

2. If P
ℓ̃

−→ Q then fvΓfv
(P ) ⊇ fvΓfv

(Q).

Proof The proof of (1) is by induction on the shape of the proof tree estab-
lishing P ⇛ Q. The base case is straightforward. In the case of h-urec we use
Fact 7.10. The remaining cases follow by the induction hypothesis.



Relevant Variables 117

The proof of (2) is by induction on the shape of the proof tree establishing

P
ℓ̃

−→ Q. In the cases of movement and communication axioms the result
follows by simple calculation. In the case of r-aux we use (1). The remaining
cases follow by the induction hypothesis. �

Fact 7.12 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

RVΓfv,Γcap,∆RV
(P [Q/X ]) =











RVΓ′
fv
,Γ′

cap,∆RV[X 7→∅](P ) ∪

RVΓfv,Γcap,∆RV
(Q) if X ∈ fpi(P )

RVΓfv,Γcap,∆RV
(P ) otherwise

where Γ′
fv

= Γfv[X 7→ fvΓfv[X 7→∅](Q)] and Γ′
cap = Γcap[X 7→ capΓcap[X 7→∅](Q)].

Proof The proof proceeds by structural induction on P . The base case is
simple. In the cases of parallel composition and recursive processes we rely on
Fact 6.3, Fact 7.10, and the induction hypothesis. In the case of summation we
only need Fact 7.10 and the induction hypothesis. The remaining cases follow
by the induction hypothesis. �

Facts 7.13 If C ⊢ P and fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then RVΓfv,Γcap,∆RV
(P ) ⊇ RVΓfv,Γcap,∆RV

(Q).

2. If P
ℓ̃

−→ Q then RVΓfv,Γcap,∆RV
(P ) ⊇ RVΓfv,Γcap,∆RV

(Q).

Proof The proof of (1) follows by induction on the shape of the proof tree
establishing P ⇛ Q. Most base cases are straightforward. In the case of h-

urec, however, we rely on Fact 7.12. In the case of h-cpar we use Fact 6.4-(1),
Fact 7.11-(1), and the induction hypothesis. In the case of h-csum we use 7.11-
(1) and the induction hypothesis. The remaining rules follow by the induction
hypothesis.

The proof of (2) proceeds by induction on the shape of the prooftree establishing

P
ℓ̃

−→ Q. The movement axioms follow by calculation. The communication
axioms likewise, but here we use the observation that e.g.

fvΓfn
(n!{n}ℓ . Q) = fvΓfn

(Q[m/p])

for all n,m ∈ C. In the case of r-par we use Fact 6.4-(2) and Fact 7.11-(2).
In the case of r-aux we use (1). The remaining rules follow by the induction
hypothesis. �



118 Context Sensitive Control Flow Analysis

Corollary 7.14 (Subject reduction)

If PRGC(P ) and P
ℓ̃

−→ Q then RV(P ) ⊇ RV(Q). �

Finally, the sought result emerges as a special case of the following lemma:

Lemma 7.15 (Semantic correctness) Assume that P⋆ is a well-formed ini-
tial program then:

If P⋆
L̃

−→⋆P
ℓ̃

−→ Q then RV⋆ ⊇ RV(P ) ⊇ RV(Q).

Proof The result follows by induction on the length of the derivation sequence

P⋆
L̃

−→ ⋆P . The base case is given by Corollary 7.14 and the inductive step
follows from the induction hypothesis, Corollary 7.14, and Corollary 5.13. �

7.3 Relevant Prefixes and Ambient Roles

As for variables we shall also be interested in the relevance of capabilities and
ambient roles when we specify the 2CFA. Thus we shall now specify a safe esti-
mate of the capabilities and ambients that remain relevant after a transition, i.e.,
a relation associating each capability prefix M ℓ with those capabilities and am-
bients that do not disappear due to non-deterministic choice when M ℓ engages
in reaction.

Thus the intuition behind the approximation is similar to that of the relevant
variables approximation and, as we shall see, the method is also similar. The
relevant prefixes and ambients, RPAΓcap,Γamb,∆RPA

(P ), of a process, P , is the set
specified by the function of Table 7.5. The environments Γcap and Γamb are as
before, but ∆RPA : Pid → P(Lab × Role) can be used to associate process
identifiers to sets of relevant prefixes and ambients. and we shall briefly examine
the intersting cases:

• In the case of parallel composition, P Q, the union of two direct products
is recorded; the product of all capability labels of P (i.e., capΓcap

(P )) and
all occurring prefixes and ambients of Q (i.e., ambΓamb

(Q) ∪ capΓcap
(Q)) –

and vice versa.

• For each summand M ℓi

i . Pi of a summation the label ℓi is paired with the
set of prefixes and ambients occurring in the continuation Pi.



Relevant Prefixes and Ambient Roles 119

RPAΓcap,Γamb,∆RPA
((n)P ) = RPAΓcap,Γamb,∆RPA

(P )

RPAΓcap,Γamb,∆RPA
( P µ) = RPAΓcap,Γamb,∆RPA

(P )

RPAΓcap,Γamb,∆RPA
(P Q) = RPAΓcap,Γamb,∆RPA

(P ) ∪ RPAΓcap,Γamb,∆RPA
(Q) ∪

(capΓcap
(P ) × (capΓcap

(Q) ∪ ambΓamb
(Q))) ∪

(capΓcap
(Q) × (capΓcap

(P ) ∪ ambΓamb
(P )))

RPAΓcap,Γamb,∆RPA
(
∑

i∈I

M ℓi

i . Pi) =
⋃

i∈I

( ({ℓi} × (capΓcap
(Pi) ∪ ambΓamb

(Pi))) ∪

RPAΓcap,Γamb,∆RPA
(Pi) )

RPAΓcap,Γamb,∆RPA
(rec X. P ) = RPAΓcap[X 7→capΓcap[X 7→∅](P )],

Γamb[X 7→ambΓamb[X 7→∅](P )],
∆RPA[X 7→∅]

(P )

RPAΓcap,Γamb,∆RPA
(X) = ∆RPA(X)

Table 7.5: Relevant prefixes and ambients, RPAΓcap,Γamb,∆RPA
(P ), of P .

• For a recursive process, rec X. P , Γcap and Γamb are updated in order to
correctly associate X with the set of capability labels and ambient roles,
respectively, of P .

Again, as the function defines an over-approximation it combines the informa-
tion emerging from sub-expression by taking the union of the computed sets.

Convention 7.16 When P is known to be identifier closed we write RPA(P ),
rather than RPA[ ],[ ],[ ](P ), to denote the relevant prefixes and ambients of P .
When furthermore the subject of approximation is an initial program, P⋆, we
write RPA⋆ for RPA(P⋆). �

Soundness of RPA⋆. We shall now show that for any P⋆ the corresponding
RPA⋆ constitutes a safe over-approximation, i.e.,

if P⋆
L̃

−→⋆P then RPA⋆ ⊇ RPA(P )

meaning that the relation RPA⋆ correctly relates the label of each capability
occurring in P to the labels of all capabilities and the roles of all ambients in
P that might be relevant to it, i.e., names that do not disappear because of
non-deterministic choice. The proof involves a few minor results.

Fact 7.17 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then



120 Context Sensitive Control Flow Analysis

RPAΓcap,Γamb,∆RPA
(P [Q/X ]) =











RPAΓ′
cap,Γ′

amb
,∆RPA[X 7→∅](P ) ∪

RPAΓcap,Γamb,∆RPA
(Q) if X ∈ fpi(P )

RPAΓcap,Γamb,∆RPA
(P ) otherwise

where Γ′
cap = Γcap[X 7→ capΓcap[X 7→∅](P )] and Γ′

amb
= Γamb[X 7→ ambΓamb[X 7→∅](P )].

Proof The proof proceeds by structural induction in P .The base case is
straightforward. In the case of parallel composition, summation, and recur-
sive processes we utilise the induction hypothesis in conjunction with Fact 6.3
and 7.2. The remaining cases follow by the induction hypothesis. �

Facts 7.18 If C ⊢ P and fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then RPAΓcap,Γamb,∆RPA
(P ) ⊇ RPAΓcap,Γamb,∆RPA

(Q).

2. If P
ℓ̃

−→ Q then RPAΓcap,Γamb,∆RPA
(P ) ⊇ RPAΓcap,Γamb,∆RPA

(Q).

Proof The proof of (1) follows by induction on the shape of the proof tree
establishing P ⇛ Q. Most of the axioms are straightforward. In the case of
h-urec, however, we use Fact 7.17. In the case of h-cpar and h-csum we use
the induction hypothesis in conjunction with Fact 6.4-(1) and Fact 7.3-(1). The
remaining rules follow from the induction hypothesis.

The proof of (2) proceeds by induction on the shape of the proof tree establishing

P
ℓ̃

−→ Q.The axioms all follow by toilsome calculation. In the case of r-par we
use the induction hypothesis in conjunction with Fact 6.4-(2) and Fact 7.3-(2).
In case of r-aux we use the induction hypothesis in conjunction with (2). The
remaining cases follow by the induction hypothesis. �

Corollary 7.19 (Subject reduction)

If PRGC(P ) and P
ℓ̃

−→ Q then RPA(P ) ⊇ RPA(Q). �

Finally, the sought result emerges as a special case of the following lemma:

Lemma 7.20 (Semantic correctness) Assume that P⋆ is a well-formed ini-
tial program then:

If P⋆
L̃

−→⋆P
ℓ̃

−→ Q then RPA⋆ ⊇ RPA(P ) ⊇ RPA(Q).



Control Flow Analysis 121

Proof The result follows by induction on the length of the derivation sequence

P⋆
L̃

−→ ⋆P . The base case is given by Corollary 7.19 and the inductive step
follows from the induction hypothesis, Corollary 7.19, and Corollary 5.13. �

7.4 Control Flow Analysis

Being both context and flow insensitive the 0CFA approach of the previous
chapter leads to highly imprecise analysis estimates. The 2CFA analysis of this
chapter is context sensitive: Whenever the analysis makes an entry into I or
R, corresponding to a semantic action that changes the system, it also records
the k ambients enclosing the site of change. This can be done in relations
I ⊆ Rolek × (Role ∪ (Cap × Lab)) and R ⊆ Rolek × Name × Name.

The parameter k is subject to conflicting interests and must be chosen with
care:

• On the one hand, for the analysis to be precise, k must be large enough to
locate all tracked entities uniquely in the ambient hierarchy of the model.

• On the other hand, for the analysis to be computationally efficient, k must
not be too large.

In terms of nesting, the eukaryotic cell, shown schematically in Fig. 7.1, is the
most complex entity of Molecular Biology. It contains a number of interior com-
partments called organelles. Some of these are nested structures with multiple
compartments within compartments.

The analysis is intended to distinguish compartments only up to their roles; all
lysosomes are the same. Thus, it is safe to assume that all roles are uniquely
placed within the nesting hierarchy of the cell, and hence that only the nesting
depth of ingested molecules are relevant to k.

No biological processes, except for certain cases of phagocytosis, i.e., the in-
gestion of large foreign bodies by macrophages, allow truly nested entities into
the living cell. Some biological processes, though, can only be modelled in
BioAmbients if non-nested entities are encoded as ambients; the running exam-
ple, Peat, and the LDL pathway model of Section 3.3 both rely on this type of
modelling.

Encodings normally require two levels of context (k = 2). Three layer encodings



122 Context Sensitive Control Flow Analysis

Figure 7.1: Schematic view of eukaryotic cell. Copyright 2002 from Molecular
Biology of the Cell by Alberts et al [AJL+02]. Reproduced by permission of
Garland Science/Taylor & Francis LLC.

(k = 3) seem contrived but may rarely be useful. Thus for the purpose of this
dissertation it is assumed that k = 3 is sufficient to analyse any single cell
system. We call the resulting analysis, which we shall specify in the following,
a 2CFA because the 0CFA of the previous chapter, where k = 1

2 , is used as the
baseline. Higher values of k may be required for the modelling of multicellular
systems, because different cell types contain similar compartments and the aim
is to distinguish between these. Of course the technical developments generalize
straightforwardly to any k, but using a clever naming scheme when modelling
might be a better option,

7.4.1 The Analysis Domain

Notation 7.21 In the following we shall write
։

µ to denote µgp, µp, µ and
→
µ to

denote µp, µ. �



Control Flow Analysis 123

The analysis specifies the following three components:

• A localised approximation of the relevant name bindings:

R ⊆ Role3 × V × C

where we write n ∈ R(
։

µ, p) or (
։

µ, p, n) ∈ R to assert the truth of predicate

R(
։

µ, p, n), i.e., that R records that the variable p may be bound to the

name n in the context of
։

µ .

• A localised approximation of the contents of ambients:

I ⊆ Role3 × (Role ∪ (Cap × Lab))

where we write µ′ ∈ I(
։

µ) or (
։

µ, µ′) ∈ I (or, M ℓ ∈ I(
։

µ) or (
։

µ,M ℓ) ∈ I)

to denote the truth of predicate I(
։

µ, µ′) (or I(
։

µ,M ℓ)), i.e., that I records

that an ambient of role µ′ (or a prefix M ℓ) may occur in the context of
։

µ .

• An approximation of the pairs of capabilities that may react:

F ⊆ Lab× Lab

where we shall write (ℓ1, ℓ2) ∈ F to denote the truth of F(ℓ1, ℓ2), i.e. that
F records that prefixes labelled ℓ1 and ℓ2 may react.

The domain of the 2CFA is then the direct product of those corresponding to the
three components, which constitutes a complete lattice under the component-
wise subset ordering.

7.4.2 The Acceptability Judgement

An acceptability judgement defines the set of acceptable 2CFA estimates. It
takes the form

(I,R,F) |=µgp,µp,µ P

and expresses that a 2CFA estimate (I,R,F) is acceptable for a (sub-)expres-
sion P (of P⋆) occurring in the context of µgp, µp, µ. This means that I approx-
imates the set of prefixes and ambient roles that might occur in each realisable
context, R approximates the bindings of names that might come into effect in
each realisable context, and F the prefix pairs that may react, as P evolves
inside P⋆.

The judgement is specified in Table 7.6 and refers to Table 7.7 and Table 7.8
for the specification of the closure conditions closure⌈M⌉, which ensure that ac-



124 Context Sensitive Control Flow Analysis

(I,R,F) |=
։

µ (n)P iff (I,R,F) |=
։

µ P

(I,R,F) |=µgp,
→
µ P µc iff µc ∈ I(µgp,

→
µ) ∧ (I,R,F) |=

→
µ,µc P

(I,R,F) |=
։

µ P P ′ iff (I,R,F) |=
։

µ P ∧ (I,R,F) |=
։

µ P ′

(I,R,F) |=
։

µ ∑

i∈I M ℓi

i . Pi iff ∀i ∈ I : (⌊M ℓi

i ⌋ ∈ I(
։

µ) ∧

(I,R,F) |=
։

µ Pi ∧ closure⌈Mi⌉)

(I,R,F) |=
։

µ rec X. P iff (I,R,F) |=
։

µ P

(I,R,F) |=
։

µ X iff true

Table 7.6: 2CFA acceptability judgement, (I,R,F) |=
։

µ P .

ceptable (I,R,F) correctly capture the dynamics of capabilities. Again, the
specification is syntax directed, making the 2CFA compositional in the termi-
nology of Flow Logic. The resulting recursive definition is intentionally similar
to that of the 0CFA.

The individual clauses of the specification carry the following meaning:

Name restriction: A 2CFA estimate (I,R,F) is acceptable for a process (n)P

occurring in the context of
։

µ if, and only if, acceptable for the sub-process P in

the context of
։

µ . Further requirements are avoided to ensure that the analysis
is invariant under the heating relation. The treatment of constants is deferred
to the closure conditions closure⌈M⌉ (where ⌈M⌉ is as M but with all names
replaced by ‘·’) defined in Section 7.4.3

Ambient boundary: An analysis estimate (I,R,F) is acceptable for a process

P µc , occurring in the context of µgp,
→
µ , if, and only if, I appropriately records

the location of µc, i.e., (µgp,
→
µ, µc) ∈ I and (I,R,F) is acceptable for P in the

context of
→
µ, µc.

Parallel composition: An estimate (I,R,F) is acceptable for P Q occurring

in the context of
։

µ if, and only if, acceptable for each of P and Q in the context

of
։

µ . It is left to the closure conditions, closure⌈M⌉, to ensure a differentiated
treatment of parallel composition and summation.

Summation: An estimate (I,R,F) is acceptable for
∑

i∈I M ℓi

i . Pi occurring



Control Flow Analysis 125

in the context of
։

µ if, and only, if for every i ∈ I it is the case that

• I records the location of the corresponding prefix, i.e., (
։

µ,M ℓi

i ) ∈ I,

• (I,R,F) is closed under the associated closure condition, closure⌈Mi⌉, and

• (I,R,F) is acceptable for the sub-process Pi in the context of
։

µ .

Recursive process: An analysis estimate (I,R,F) is acceptable for rec X. P

occurring in the context of
։

µ if, and only if, acceptable for P in the context of
։

µ .

Process identifier: any (I,R,F) is an acceptable analysis estimate for X in

the context of
։

µ .

Again, this treatment is correct because the analysis is flow-insensitive and the
well-formedness condition prevents free process identifiers from occurring within
ambients.

7.4.3 Closure Conditions

As for the 0CFA a set of closure conditions govern acceptability of analysis
estimates with respect to the dynamic behaviour of processes. Generally these
closure conditions follow the schema used for the 0CFA closures. However,
the specifications are somewhat more complex and in the following they are,
therefore, explained in detail.

As was the case for the 0CFA we introduce a new relation, 〈R〉, in order to pro-
vide the necessary information about constant definitions. Based on a binding
environment R this completion of R

〈R〉 ⊆ Role3 × Name × C

is defined by the closure condition

completeR = (∀
։

µ : R(
։

µ) ⊆ 〈R〉(
։

µ)) ∧

(∀
։

µ, ν, n : (
։

µ, ν) ∈ I ∧ n ∈ C ⇒ 〈R〉(
։

µ, n, n)) (7.1)

where ν ∈ (Role ∪ (Cap × Lab)). This asserts that 〈R〉 contains everything
that R does, and that 〈R〉 binds all constants to themselves in every realisable
non-empty context.



126 Context Sensitive Control Flow Analysis

closureenter · =
∀µgp, µp, µ, µ1, µ2, x, y, ℓ1, ℓ2 :

enter xℓ1 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ) ∧
accept yℓ2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ) ∧
〈R〉(µp, µ, µ1, x) ∩ 〈R〉(µp, µ, µ2, y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ µ1 ∈ I(µp, µ, µ2)∧
(∀ν : (ℓ1, ν) ∈ RPA⋆ ∧ (µp, µ, µ1, ν) ∈ I ⇒ (µ, µ2, µ1, ν) ∈ I) ∧
(∀ν, µ′ : (ℓ1, ν) ∈ RPA⋆ ∧ (µ, µ1, µ

′, ν) ∈ I ⇒ (µ2, µ1, µ
′, ν) ∈ I) ∧

(∀p : (ℓ1, p) ∈ RV⋆ ⇒ R(µp, µ, µ1, p) ⊆ R(µ, µ2, µ1, p)) ∧
(∀p, µ′ : (ℓ1, p) ∈ RV⋆ ⇒ R(µ, µ1, µ

′, p) ⊆ R(µ2, µ1, µ
′, p)) ∧

(ℓ1, ℓ2) ∈ F
closureaccept · = true

closureexit · =
∀µgp, µp, µ, µ1, µ2, x, y, ℓ1, ℓ2 :

exit xℓ1 ∈ I(µ, µ2, µ1) ∧ µ1 ∈ I(µp, µ, µ2) ∧
expel yℓ2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ) ∧
〈R〉(µ, µ2, µ1, x) ∩ 〈R〉(µp, µ, µ2, y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ µ1 ∈ I(µgp, µp, µ) ∧
(∀ν : (ℓ1, ν) ∈ RPA⋆ ∧ (µ, µ2, µ1, ν) ∈ I ⇒ (µp, µ, µ1, ν) ∈ I) ∧
(∀ν, µ′ : (ℓ1, ν) ∈ RPA⋆ ∧ (µ2, µ1, µ

′, ν) ∈ I ⇒ (µ, µ1, µ
′, ν) ∈ I) ∧

(∀p : (ℓ1, p) ∈ RV⋆ ⇒ R(µ, µ2, µ1, p) ⊆ R(µp, µ, µ1, p)) ∧
(∀p, µ′ : (ℓ1, p) ∈ RV⋆ ⇒ R(µ2, µ1, µ

′, p) ⊆ R(µ, µ1, µ
′, p)) ∧

(ℓ1, ℓ2) ∈ F
closureexpel · = true

closuremerge– · =
∀µgp, µp, µ, µ1, µ2, x, y, ℓ1, ℓ2 :

merge– xℓ1 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ) ∧
merge+ yℓ2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ) ∧
〈R〉(µp, µ, µ1, x) ∩ 〈R〉(µp, µ, µ2, y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ (∀ν : (ℓ1, ν) ∈ RPA⋆ ∧ (µp, µ, µ1, ν) ∈ I ⇒ (µp, µ, µ2, ν) ∈ I) ∧
(∀ν, µ′ : (ℓ1, ν) ∈ RPA⋆ ∧ (µ, µ1,mu′, ν) ∈ I ⇒ (µ, µ2, µ

′, ν) ∈ I) ∧
(∀ν, µ′, µ′′ : (ℓ1, ν) ∈ RPA⋆ ∧ (µ1, µ

′, µ′′, ν) ∈ I ⇒ (µ2, µ
′, µ′′, ν) ∈ I) ∧

(∀p : (ℓ1, p) ∈ RV⋆ ⇒ R(µp, µ, µ1, p) ⊆ R(µp, µ, µ2, p)) ∧
(∀p, µ′ : (ℓ1, p) ∈ RV⋆ ⇒ R(µ, µ1, µ

′, p) ⊆ R(µ, µ2, µ
′, p)) ∧

(∀p, µ′, µ′′ : (ℓ1, p) ∈ RV⋆ ⇒ R(µ1, µ
′, µ′′, p) ⊆ R(µ2, µ

′, µ′′, p)) ∧
(ℓ1, ℓ2) ∈ F

closuremerge+ · = true

Table 7.7: 2CFA closure conditions for movement.



Control Flow Analysis 127

Movement Closures. The 2CFA movement closures, specified in Table 7.7,
ensure that acceptable analysis estimates (I,R,F) are closed such as to safely
over-approximate the consequence of all movement reactions that might occur at
run-time. If, e.g., a 2CFA estimate (I,R,F) indicates that an enter movement

might become enabled in some context
։

µ , i.e.,

• An enter capability and an accept capability might occur in sibling con-
texts:

enter xℓ1 ∈ I(µp, µ, µ1) ∧ µ1 ∈ I(µgp, µp, µ) ∧
accept yℓ2 ∈ I(µp, µ, µ2) ∧ µ2 ∈ I(µgp, µp, µ)

• The corresponding prefixes might be concurrently possible:

(ℓ1, ℓ2) ∈ CP⋆

• The enter and accept actions might agree on the name of the communica-
tion channel:

〈R〉(µp, µ, µ1, x) ∩ 〈R〉(µp, µ, µ2, y) 6= ∅

As mentioned by Remark 6.10 this requires non-empty intersection in the
〈R〉 relation.

Then (I,R,F) should reflect that:

• The moving ambient (role) µ1 might occur in the context of µp, µ, µ2:

(µ1 ∈ I(µp, µ, µ2))

• The prefixes and ambient roles that are relevant to ℓ1 and might occur
in the originating context, µp, µ, µ1, might also occur in the new context,
µ, µ2, µ1:

(∀ν : (ℓ1, ν) ∈ RPA⋆ ∧ (µp, µ, µ1, ν) ∈ I ⇒ (µ, µ2, µ1, ν) ∈ I) ∧
(∀ν, µ′ : (ℓ1, ν) ∈ RPA⋆ ∧ (µ, µ1, µ

′, ν) ∈ I ⇒ (µ2, µ1, µ
′, ν) ∈ I)

Note that we have two contributions depending on whether we consider
the children or the grandchildren of µ1.

• The variables relevant to ℓ1 that might become bound in the originating
context, µp, µ, µ1, might also become bound in the new context, µ, µ2, µ1.
A similar update is needed for the relevant variables in a child µ′ of µ1:

(∀p : (ℓ1, p) ∈ RV⋆ ⇒ R(µp, µ, µ1, p) ⊆ R(µ, µ2, µ1, p)) ∧
(∀p, µ′ : (ℓ1, p) ∈ RV⋆ ⇒ R(µ, µ1, µ

′, p) ⊆ R(µ2, µ1, µ
′, p))

Again, note that we have two contributions depending on whether we
consider the children or the grandchildren of µ1.



128 Context Sensitive Control Flow Analysis

Figure 7.2: 2CFA closure condition for enter movement.

• The corresponding capabilities, ℓ1 and ℓ2, might react:

(ℓ1, ℓ2) ∈ F

As only the ambient hosting the enter capability moves, the corresponding ac-
cept capability does not cause similar updates.

Communication Closures. Similarly, the 2CFA communication closures,
specified in Table 7.8, ensure that acceptable analysis estimates (I,R,F) are
closed such as to safely over-approximate the consequence of all communication
reactions that might occur at run-time. If, e.g., a 2CFA estimate (I,R,F) in-

dicates that an local communication might become enabled in some context
։

µ ,
i.e.,

• A local input action and a local output action might occur in the same
context:

x!{z}ℓ1 ∈ I(
։

µ) ∧ y?{p}ℓ2 ∈ I(
։

µ)

• The corresponding prefixes might be concurrently possible in the sense
defined by the precomputed filter CP⋆ of Section 6.1:

(ℓ1, ℓ2) ∈ CP⋆

• The input and output actions might agree on the name of the communi-
cation channel:

〈R〉(
։

µ, x) ∩ 〈R〉(
։

µ, y) 6= ∅

Note here that Remark 6.10 about intersection testing in 〈R〉 still applies.



Control Flow Analysis 129

closure·!{·} , ∀
։

µ, x, y, z, p, ℓ1, ℓ2 :

x!{z}ℓ1 ∈ I(
։

µ) ∧

y?{p}ℓ2 ∈ I(
։

µ) ∧

〈R〉(
։

µ, x) ∩ 〈R〉(
։

µ, y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ 〈R〉(
։

µ, z) ⊆ R(
։

µ, p) ∧
(ℓ1, ℓ2) ∈ F ∧
propagateR

closure·?{·} , true

closure· !{·} , ∀µgp,
→
µ, µ1, x, y, z, p, ℓ1, ℓ2 :

x !{z}ℓ1 ∈ I(µgp,
→
µ) ∧

y ?̂{p}ℓ2 ∈ I(
→
µ, µ1) ∧ µ1 ∈ I(µgp,

→
µ) ∧

〈R〉(µgp,
→
µ, x) ∩ 〈R〉(

→
µ, µ1, y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ 〈R〉(µgp,
→
µ, z) ⊆ R(

→
µ, µ1, p) ∧

(ℓ1, ℓ2) ∈ F ∧
propagateR

closure·ˆ?{·} , true

closure·ˆ!{·} , ∀µgp,
→
µ, µ1, x, y, z, p, ℓ1, ℓ2 :

x !̂{z}ℓ1 ∈ I(
→
µ, µ1) ∧ µ1 ∈ I(µgp,

→
µ) ∧

y ?{p}ℓ2 ∈ I(µgp,
→
µ) ∧

〈R〉(
→
µ, µ1, x) ∩ 〈R〉(µgp,

→
µ, y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ 〈R〉(
→
µ, µ1, z) ⊆ R(µgp,

→
µ, p) ∧

(ℓ1, ℓ2) ∈ F ∧
propagateR

closure· ?{·} , true

closure·#!{·} , ∀µgp,
→
µ, µ1, µ2, x, y, z, p, ℓ1, ℓ2 :

x#!{z}ℓ1 ∈ I(
→
µ, µ1) ∧ µ1 ∈ I(µgp,

→
µ) ∧

y#?{p}ℓ2 ∈ I(
→
µ, µ2) ∧ µ2 ∈ I(µgp,

→
µ) ∧

〈R〉(
→
µ, µ1, x) ∩ 〈R〉(

→
µ, µ2, y) 6= ∅ ∧ (ℓ1, ℓ2) ∈ CP⋆

⇒ 〈R〉(
→
µ, µ1, z) ⊆ R(

→
µ, µ2, p) ∧

(ℓ1, ℓ2) ∈ F ∧
propagateR

closure·#?{·} , true

Table 7.8: 2CFA closure conditions for communication.



130 Context Sensitive Control Flow Analysis

µgp

µp

µ

x!{z}ℓ1

R(
։

µ,x)∩R(
։

µ,y) 6=∅

y?{p}ℓ2

⇒

µgp

µp

µ

x!{z}ℓ1

R(
։

µ,z)⊆R(
։

µ,p)

y?{p}ℓ2

Figure 7.3: 2CFA closure condition for local communication.

Then (I,R,F) should reflect that:

• Any name that might be bound to z might be the object of the commu-
nication and might thus be bound to p:

〈R〉(
։

µ, z) ⊆ R(
։

µ, p)

Note here that Remark 6.11 about propagation of bindings still applies.

• Any binding of p that might be made is valid, not only in the present

context of
։

µ , but also in any sub-context that is part of the static scope
of p:

propagateR

Remark 7.22 This closed formula is actually a closure condition in itself; it is
defined in Table 7.9 and explained in the following subsection. Invoking it here,
as a consequence of action closures, simply ensures that it has to be considered
only if at least one communication might take place.

Scope Propagation Closure. The scope propagation closure is structurally

similar the other closures, but it is simpler: For every context µgp,
→
µ and every

ambient role µc that, according to (I,R,F), might occur in it

µc ∈ I(µgp,
→
µ)

and, according to SCP⋆, might also lie within the shape of the static scope of



Control Flow Analysis 131

propagateR = ∀µgp,
→
µ, µc, p : µc ∈ I(µgp,

→
µ) ∧ µc ∈ SCP⋆(p) ⇒

R(µgp,
→
µ, p) ⊆ R(

→
µ, µc, p) (7.2)

Table 7.9: 2CFA closure condition for propagation of variable bindings.

some variable p

µc ∈ SCP⋆(p),

the estimate (I,R,F) is only acceptable if: every binding of p that might occur

in the context of µgp,
→
µ might also occur in the context of

→
µ, µc:

R(µgp,
→
µ, p) ⊆ R(

→
µ, µc, p)

As scoping is static this suffices for correctly propagating the localised envi-
ronment from ‘outside µc’ into ‘inside µc’ and, thus, ensures that all variable
bindings are recorded throughout static scope.

Example 7.23 The least fixed point analysis of the running example Peat gives rise
to the I and R components shown in the tables below.



132 Context Sensitive Control Flow Analysis

µgp µp µ I(
→
µ, µ)

⊤ ⊤ ⊤ food, system
⊤ ⊤ system cell, food, expel rjℓ1

⊤ ⊤ food enter acℓ5 , exit rjℓ4 , reâ ?{rl}ℓ2 , expel rlℓ3 , nutrient
⊤ system food nutrient, expel rlℓ3 , reâ ?{rl}ℓ2 , exit rjℓ4 , enter acℓ5

⊤ system cell nutrient, food, rea !{RL}ℓ7 , expel rjℓ8 , accept acℓ9

⊤ food nutrient exit RLℓ6

system food nutrient exit RLℓ6

system cell food enter acℓ5 , exit rjℓ4 , reâ ?{rl}ℓ2 , expel rlℓ3 , nutrient
cell food nutrient exit RLℓ6

T

system food

food cell

nutrient food nutrient

nutrient

nutrient

µgp µp µ p R(
→
µ, µ, p)

system cell food rl RL

ℓ F(ℓ)

5 9

6 3

4 1

4 8

7 2

Furthermore, the tree graph gives a graphical relation of the ambient part of the

containment relation I. The triple bordered node represents the super-environment,

the double bordered nodes connected by bold lines represent the initial configuration

(Table 7.6), and the remaining nodes represent the system dynamics (Tables 7.7, 7.8,

and 7.9). The trees of the individual frames of Example 3.28 are all sub-trees of this

figure. Note, that although the analysis is formally an over-approximation the result

is rather precise. �



Control Flow Analysis 133

7.4.4 Properties of the 2CFA

Having defined a judgement that specifies the set of acceptable 2CFA estimate
(I,R,F) we shall now show that it does indeed specify a static analysis that is
1) well-defined, 2) sound with respect to the semantics, and 3) implementable.
The required results are very similar to those established for the 0CFA and,
hence, the following will be brief.

Well-definedness. As the specification is syntax directed the acceptability
judgement is well-defined

Theorem 7.24 (Well-defined) The analysis judgement (I,R,F) |=
։

µ P is
well-defined.

Proof The proof proceeds by structural induction on P . �

Semantic Correctness. The analysis is correct as indicated by the following:

Fact 7.25 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

(I,R,F) |=
։

µ P [Q/X ] ⇔







(I,R,F) |=
։

µ P ∧ (I,R,F) |=
։

µ Q if X ∈ fpi(P )

(I,R,F) |=
։

µ P otherwise

Proof Put
։

µ for µ in the proof of Fact 6.14. �

Lemma 7.26 If C ⊢ P and fpi(P ) = ∅ then the following holds:

If (I,R,F) |=
։

µ P and P ⇛ Q then (I,R,F) |=
։

µ Q.

Proof The proof is by induction on the inference of P ⇛ Q and is similar
to that of Lemma 6.15. In the cases of h-alph the result follows by referen-
tial transparency because renaming is disciplined. The remaining axioms are
straightforward. In the case of h-urec the result follows from Fact 7.25. The
induction hypothesis and arduous calculation does the rest. �

Again, to show the invariance under reaction we introduce an expansion of I
into I@R, which takes into account the bindings of variables specified by the R
component:



134 Context Sensitive Control Flow Analysis

If M ℓ ∈ I(
։

µ), x ∈ fn(M), and n ∈ 〈R〉 then M ℓ [n/x] ∈ (I@R,R)(
։

µ).

which satisfies

Fact 7.27 If ⌊n⌋ ∈ R(x) and (I,R,F) |=
։

µ P then (I@R,R,F) |=
։

µ P [n/x].

Proof The proof proceeds by structural induction on P . �

In this context we can show that the acceptability of analysis estimates is pre-
served under reaction in the following sense:

Lemma 7.28 Assume C ⊢Γfn
P , if furthermore CP⋆ ⊇ CP(P ). SCP⋆ ⊇ SCP(P ).

RV⋆ ⊇ RV(P ), and RPA⋆ ⊇ RPA(P ) then the following holds:

If (I,R,F) |=
։

µ P and P
ℓ̃

−→ Q then (I@R,R,F) |=
։

µ Q and ℓ̃ ∈ F

.

Proof The proof proceeds by induction of the inference of P
ℓ̃

−→ Q. In the
case of movement axioms we compute by equational reasoning. In the case of
communication axioms we do the same and use Fact 7.27. In the case of r-

aux we use the induction hypothesis in conjunction with Lemma 7.26. The
remaining cases follow by the induction hypothesis. �

Corollary 7.29 (Subject reduction) Assume PRGC(P ); if furthermore CP⋆ ⊇
CP(P ). SCP⋆ ⊇ SCP(P ). RV⋆ ⊇ RV(P ), and RPA⋆ ⊇ RPA(P ) then the follow-
ing holds:

If (I,R,F) |=
։

µ P and P
ℓ̃

−→ Q then (I@R,R,F) |=
։

µ Q and ℓ̃ ∈ F .

�

And, finally, as I@R = (I@R)@R we can state the overall correctness result
as follows:

Theorem 7.30 (Semantic correctness) Assume that P⋆ is a well-formed ini-

tial program, then (I,R,F) |=⊤ P⋆ and P⋆
L̃

−→⋆P entails (I@R,R,F) |=⊤ P
and L̃ ⊆ F .

Proof The theorem follows by induction on the length of the derivation
sequence and uses Corollary 7.29, Corollary 5.13, the induction hypothesis, and
the above insight to establish the inductive step. �



Control Flow Analysis 135

INPUT : a Flow Logic FL(BioAmbients, fol) and

a BioAmbients process P⋆.

OUTPUT : a fol formula ϕ such that (I,R,F) |= ϕ ⇔ (I,R,F) |=⊤ P⋆.

METHOD : Set ϕ := (
V

{CP⋆(ℓ1, ℓ2) | (ℓ1, ℓ2) ∈ CP⋆}) ∧

(
V

{SCP⋆(p, µ) | (p, µ) ∈ SCP⋆}) ∧

(
V

{RV⋆(ℓ, p) | (ℓ, p) ∈ RV⋆}) ∧

(
V

{RPA⋆(ℓ, ν) | (ℓ, ν) ∈ RPA⋆}) ∧

(
V

{C⋆(n) | n ∈ C⋆})∧

completeR∧

(I,R,F) |=⊤ P⋆

while ϕ contains (I,R,F) |=
։

µ
P ′

and there is a rule α iff β in FL

and a substitution θ

such that θα = (I,R,F) |=
։

µ
P ′

do replace (I,R,F) |=
։

µ
P ′ with θβ in ϕ.

Table 7.10: Generation of 2CFA constraints.

Implementability. Obviously the set of acceptable analysis estimates consti-
tutes a Moore Family :

Theorem 7.31 (Moore family (2CFA)) For any program, P⋆, the set of ac-

ceptable analyses under |=
։

µ is a Moore family, i.e.,

∀S′ ⊆ {(I,R,F) | (I,R,F) |=
։

µ P⋆} :
d

S′ ∈ {(I,R,F) | (I,R,F) |=
։

µ P⋆}.

Proof The proof proceeds by structural induction in P and is similar to that
for the 0CFA. �

Recall, from Chapter 4, that a Moore family is never empty and is also guar-

anteed to have a least element (I⋆,R⋆,F⋆) =
d
{(I,R,F) | (I,R,F) |=

։

µ

P⋆}, which is the most informative acceptable estimate. The computation of
(I⋆,R⋆,F⋆) is made possible by a clause generation algorithm as outlined in
Table 7.10. In order to compute (I⋆,R⋆,F⋆) for a given P⋆ we use the con-
straint generator to produce a suitable ϕ and then compute the least model
using the Succinct Solver Suite [NNS+04]. Again, this implementation strategy
guarantees polynomial complexity, but the degree is higher than for the 0CFA.



136 Context Sensitive Control Flow Analysis

⊤

CELL

LY SO LE

XV

XVCC

EE

EE

LDL

LDLLDL

LDL

LDLLDL

LDL

LDL

CH

CHCH

CHCH CH

CH

CH

CH

Figure 7.4: 2CFA analysis of normal receptor LDL pathway model. The special
⊤ node with triple borders represents the super-environment, The other nodes
represent ambient roles and the edges represent the containment relation I.
The nodes with double borders connected with bold (black) edges represent the
system in its initial state. The remaining (red) nodes and edges account for the
dynamic evolution of the system.

7.5 CASE: Analysing the LDL Degradation Path-

way

We now continue our investigation of the LDL pathway model by subjecting it
to the 2CFA. The resulting (I,R,F) is only included in Appendix B.2.1, but
the I relation is depicted graphically in Fig. 7.4.

At first look the analysis result appears remarkably more precise than the cor-
responding 0CFA result of the previous chapter. Formally, this is an over-
approximation - but the picture depicts exactly the behaviour that we expect
the normal receptor LDL model to exhibit. In particular, we notice that choles-
terol (CH) might be released only in the lumen of the lysosome (LY SO), which
is essential.

Note that the graph indicates that LDL might float freely in the cytosol (the



CASE: Analysing the LDL Degradation Pathway 137

⊤

CELL

LY SO LE

XV

XVCC

EE

EE

LDL

CH

⊤

CELL

LY SO LE

XV

XVCC EE

LDLLDL

LDL

LDLLDL

LDL

LDL

CH

CH

CHCH CH

CH

CH

CH

(a) extra-cellular defects (b) intra-cellular defects

Figure 7.5: 2CFA analysis of defect receptor LDL pathway models.

top-level fluid of the CELL). This is the modelling artifact noted in Section 3.3
appearing again. Also note that the LDL can occur inside an un-coated early
endosome (EE) after the clathrin coat (CC) has been shredded; in this case the
double bordered EE node represents both the initial configuration and a later
stage of evolution.

7.5.1 Related Diseases

Fig. 7.5(a) shows the effect of disabling the exo-plasmic binding site of the LDL
receptor. This corresponds to the model of Appendix A.2 and the analysis
result is presented verbatim in Appendix B.2.2. As the graph reveals, the cell
can no longer internalise LDL particles. The internal part of the pathway still
works; hence the cell still internalises early endosomes, but only empty ones
(EE may occur inside CC, but it carries no LDL cargo). In fact, the pathway
processes the endosomes right up to the point where transfer vesicles merge with
the lysosome (XV might occur inside CELL). Intuitively, this is exactly the
expected result.

Similarly, Fig. 7.5(b) shows the effect of disabling the cytosolic binding site
of the LDL receptor. This corresponds to the model of Appendix A.3 and the
analysis result is presented verbatim in Appendix B.2.3. We expect the receptor
protein to be able to bind LDL particles, but internalisation of early endosomes



138 Context Sensitive Control Flow Analysis

should fail. In contrast to before, however, the analysis fails to capture this.
It appears that the clathrin coating process is simply skipped and the EE is
internalised directly. This is similar to the failure we observed for the 0CFA
analysis. Fortunately the 2CFA is much more precise, and we can now see the
problem: The modelling artifact allows the LDL into the cytosol, where it can
enter the EE. Since the analysis is completely flow insensitive it fails to capture
that the EE can only merge with the late endosome LE after it has been clad
by, and subsequently shredded, the CC.

7.6 Concluding Remarks

The 2CFA presented in this chapter extends the tradition of CFAs that spawned
the 0CFA of the previous chapter [NNH02, NNB04, LM01, NNPdR07, NNP04].
In particular, precision has been increased by incorporating context in the man-
ner of 2CFA and by using auxiliary information produced by four separate static
analyses:

As for the 0CFA of the previous chapter a safe approximation to the concur-
rently possible prefixes, CP⋆, is used to impose a restriction on the scope of the
closure conditions. We only compute the closure of semantic actions that are not
impossible because the involved capabilities are separated by non-deterministic
choice. A safe approximation to the spatial shape of static scope, SCP⋆, is used
to ensure that name bindings are only propagated into sub-context that might
actually be part of the static scope of the corresponding bound variables.

A safe approximation to the relevant variables, RV⋆, is used to restrict the
copying of name bindings (in R) that is demanded by the closure conditions for
ambient movement. Only the bindings of variables that do not disappear due
to non-deterministic choice are copied to the new location.

Finally, a safe approximation to the relevant prefixes and ambients, RPA⋆. is
used to achieve a similar restriction on the copying of prefixes and ambients (in
I) that is demanded by the closure conditions for movement.

These relations all emerge as fix-point properties; hence the information is com-
puted by a hierarchy of indexed functions



Concluding Remarks 139

SCP⋆ RPA⋆ RV⋆ CP⋆

SCPΓamb,∆SCP
() RPAΓcap,Γamb,∆RPA

() RVΓfv,Γcap,∆RV
() CPΓcap,∆CP

()

ambΓamb
() capΓcap

() fvΓfv
()

Compared to the original presentation in [PNN06b] these functions have been
refactored in this dissertation, such that the hierarchy is more natural. Also, the
scope approximation is now sound, which, unfortunately, it was not in [PNN06b].

The results obtained by applying the 2CFA to both the running example Peat and
the LDL pathway model show a very clear improvement over the 0CFA of the
previous chapter; due to the spatial separation of contexts the resulting graphs
are both easier to understand and much more precise. Still, however, the result
obtained from the LDL pathway with cytosolic receptor defects is disappointing.
Here, the 2CFA quite simply falls short because it is flow-insensitive, and there
are two possible responses to this problem:

One can take the engineers approach and fashion a model that is easier to
analyse, e.g., by incorporating explicit synchronisation points. In [PNN05] this
approach was used to good effect for a simpler version of the 2CFA.

Fundamentally, however, one should apply Ockham’s Razor and always keep
models as pure as possible. This is the approach we advocate by specifying a
flow-sensitive analysis in the following chapter.



140 Context Sensitive Control Flow Analysis



Part III

Analysing for Causal

Properties





Chapter 8

Pathway Analysis

“Any important disease whose causality is murky, and for which
treatment is ineffectual, tends to be awash in significance.”

— Susan Sontag

This chapter presents a flow sensitive Pathway Analysis that given a model, P⋆,
computes a safe approximation to the set of, possibly infinite, reaction sequences
that, according to P⋆, may occur. The analysis is evaluated in the context of
both the LDL degradation pathway model of Section 3.3 and the transcription
model of Section 3.4. Some of the presented material has been submitted as
part of [PNN07].

When developing the Pathway Analysis our focus shall be on the notion of
exposed prefixes. Intuitively, the exposed prefixes of a process (or state) are
those that might participate in the next reaction. Consider, for example, the
system configuration

P = (n!{m}ℓ1 .m?{q}ℓ2 . P + .?{.}ℓ3 . Q) n?{p}ℓ4 .m?{q}ℓ2 . R

where we write ‘.’ for an arbitrary name. Here there is one exposed occurrence
of each of the prefixes n!{m}ℓ1 , .?{.}ℓ3 , and n?{p}ℓ4 . Due to their syntactic
positions relative to one-another, the exposed prefixes, n!{m}ℓ1 and n?{p}ℓ4 ,

enable a reaction, P
(ℓ1,ℓ4)
−→ Q, such that the resulting configuration,

Q = m?{q}ℓ2 . P m?{q}ℓ2 . R,

only has two occurrences of m?{q}ℓ2 as exposed prefixes,

Thus, for the purposes of the analysis, we shall abstractly characterise system
configurations (or states) by their extended multisets of exposed prefixes. We



144 Pathway Analysis

then develop the desired automaton by tracking how these multisets evolve when
reactions occur. This is complicated by the fact that a reaction may cause some
exposed prefixes to disappear, and others to emerge.

Technically, we will turn to the Monotone Frameworks (Section 4.2), normally
associated with Data Flow Analysis, in order to deal with this. In doing so, we
shall attach transfer functions to the reactions of processes. Corresponding to
a forward Data Flow Analysis [NNH99], these transfer functions will compute
how the extended multisets of exposed prefixes are transformed as reactions
occur. Much akin to Bitvector Frameworks (Section 4.2) our transfer functions
will take the simple form

fstate(E) = (E\killstate) ∪ genstate.

However, we shall need to generalise the developments to extended multisets,
rather than the simple powersets usually associated with bitvector frameworks.

As opposed to the Flow Logic (Section 4.3) approach of the previous chapters
the approach of Monotone Frameworks offers no convenient separation between
specification and implementation. Thus, once we have defined the notion of
exposed prefixes and the corresponding transfer functions, we shall turn to the
issue of implementation and define a suitable worklist algorithm.

Given a program P⋆ the idea is to construct a Finite Automaton such that
the potentially infinite transition system of P⋆ is faithfully represented within
the states and transitions of the automaton. As outlined in Section 4.2, the
computed automaton will take the form

(Q⋆, q⋆, δ⋆,E⋆)

where Q⋆ is a set of states, q⋆ the initial state, δ⋆ a transition relation, and E⋆

a vector of extended multisets corresponding to the states. It will emerge from
the construction that the resulting automaton is partially deterministic.

The chapter will be in six sections. First we introduce the notion of extended
multisets in Section 8.1. Then, in Section 8.2, we specify the transfer functions
associated with the Pathway Analysis. In 8.3 we define a worklist algorithm
for the analysis. Then we turn to the case studies. First we analyse the LDL
pathway model in Section 8.4, and then the transcription model in Section 8.5.
Finally, in Section 8.6, we summarise our findings.



Extended Multisets 145

8.1 Extended Multisets

We define an extended multiset, M, as an element of the domain

M = Lab → (N ∪∞)

which is equipped with an ordering ≤M defined by:

M ≤M M′ iff ∀ℓ : M(ℓ) ≤ M′(ℓ) ∨ M′(ℓ) = ∞

The domain (M,≤M) constitutes a complete lattice where the constants and
operations corresponding to ⊥,⊤,⊓,⊔ are defined as follows:

⊥M is defined by:

∀ℓ : ⊥M(ℓ) = 0

⊤M is defined by:

∀ℓ : ⊤M(ℓ) = ∞

minM is defined by:

(M minM M′)(ℓ) =











min{M(ℓ),M′(ℓ)} if M(ℓ) ∈ N ∧ M′(ℓ) ∈ N

M(ℓ) if M′(ℓ) = ∞

M′(ℓ) otherwise

maxM is defined by:

(M maxM M′)(ℓ) =

{

max{M(ℓ),M′(ℓ)} if M(ℓ) ∈ N ∧ M′(ℓ) ∈ N

∞ otherwise

Furthermore we define addition and subtraction on multisets as follows:

+M is defined by:

(M +M M′)(ℓ) =

{

M(ℓ) + M′(ℓ) if M(ℓ) ∈ N ∧ M′(ℓ) ∈ N

∞ otherwise

−M is defined by:

(M −M M′)(ℓ) =



















M(ℓ) − M′(ℓ) if M(ℓ) ∈ N ∧ M(ℓ) ≥ M′(ℓ)

0 if M′(ℓ) ∈ N ∧ M(ℓ) < M′(ℓ)

0 if M(ℓ) ∈ N ∧ M′(ℓ) = ∞

∞ otherwise

In particular note that ∞−∞ is intended to give ∞ in order to ensure that the
transfer function defined in Section 8.2.3 is always a correct over-approximation.



146 Pathway Analysis

EΓE
[[ (n)P ]] = EΓE

[[P ]]
EΓE

[[ P µ ]] = EΓE
[[P ]]

EΓE
[[P1 P2 ]] = EΓE

[[P1 ]] +M EΓE
[[P2 ]]

EΓE
[[
∑

i∈I M ℓi

i . Pi ]] =
∑

Mi∈I
⊥M[ℓi 7→ 1]

EΓE
[[ rec X. P ]] = LFP(λE. EΓE [X 7→E][[P ]])

= EΓE [X 7→⊥M][[P ]] ⊲⊳M EΓE [X 7→EΓE [X 7→⊥M][[ P ]]][[P ]]

EΓE
[[X ]] = ΓE(X)

(M ⊲⊳M M′)(ℓ) =

{

M(ℓ) if M(ℓ) = M′(ℓ)

∞ otherwise

Table 8.1: Exposed capabilities, EΓE
[[P ]], of a process, P .

8.2 Computing and Preserving Exposed Prefixes

Using the extended multisets we shall now define the concept of exposed prefixes.
We formalise this as a function,

E⋆[[]] : Proc → M,

intended to capture the following intuition: For an identifier closed process, P ,
the expression E⋆[[P ]] (ℓ) denotes the number of distinct occurrences of ℓ that

might participate in the next reaction, P
ℓ̃

−→ Q.

Recall that our focus is not just a given process P , but on all processes that
may arise by heating of P ; in particular those that arise by the unfolding of
recursion. In order to appropriately address this issue we use the parameterised
function EΓE

[[ ]], shown in Table 8.1, when computing the exposed prefixes. The
environment ΓE : Pid → M is a mapping that is used to associate each free
process identifier with an extended multiset of exposed prefixes. It is needed in
order to support the least fixed point computation that is required for computing
the exposed prefixes of recursive processes; it simply unfolds the recursion until
no further exposed prefixes arise from doing so.

It is obvious that the naive computation may not terminate because (M,≤M)
admits infinite ascending chains. However, it turns out that we are justified in
recasting the computation in terms of the expansion operator, ⊲⊳M, defined in
Table 8.1, which ensures termination in two iterations. We refer to [NN08] for
a formal proof of this result, but provide an informal argument below.

Informally, it is easy to see that, if a process identifier X occurs un-guarded in



Computing and Preserving Exposed Prefixes 147

the body of rec X. P , e.g., in rec X. (X P ), then the exposed prefixes of P will
have infinitely many occurrences and the naive computation of the fixed point
never terminates. However, it is also the case that, the number of exposed pre-
fixes will grow in every iteration, only if the X is indeed unguarded. Obviously,
two iterations suffice in order to determine this kind of behaviour.

Besides this technicality, the function EΓE
[[ ]] performs a rather straightforward

recursive descent into processes; it uses the addition operation of extended mul-
tisets in order to calculate the total number of exposed prefixes, i.e., those that
might participate in the next reaction. As should be evident from the case
concerning summations, only the top-most prefixes contribute and the result is
obtained by addition of their multiplicities.

Finally, the desired function, E⋆[[]] , is defined by:

E⋆[[P ]] = E[ ][[P ]]

Convention 8.1 In the case of initial programs, P⋆, we shall use the distin-
guished symbol E⋆ to denote E⋆[[P⋆]] . �

Example 8.2 The result Eeat of subjecting the program Peat to the exposed capa-
bility analysis is shown below:

Eeat = ⊥M [1 7→ 1, 2 7→ 1, 4 7→ 1, 5 7→ 1, 6 7→ 1, 7 7→ 1, 8 7→ 1, 9 7→ 1]

One may observe that exactly one copy of every capability – except for 3, which is not

exposed – is exposed. �

Correctness of EΓ[[P ]]. Intuitively, correctness of EΓ[[P ]] means (i) that it is
invariant under heating and (ii) that it correctly captures the prefixes that may
be involved in the first reaction step. We start by showing the usual substitution
result:

Fact 8.3 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

EΓE
[[P [Q/X ] ]] = EΓE [X 7→EΓE

[[ Q ]]][[P ]]

Proof This is easily shown by structural induction on P . �



148 Pathway Analysis

And then we go on to show the main result:

Lemma 8.4 If C ⊢ P and fpi(P ) = ∅ then both of the following hold:

1. If P ⇛ Q then EΓE
[[Q ]] ≤M EΓE

[[P ]]

2. If P
(ℓ1,ℓ2)
−→ Q then ℓ1 ∈ dom(EΓE

[[P ]]) and ℓ2 ∈ dom(EΓE
[[P ]])

Proof The proof of the first part is by induction on the inference of P ⇛ Q.
Most cases are trivial. However, in the case of unfolding of recursion we use
Fact 5.11, that LFP (λE. EΓE [X 7→E][[P ]]) is indeed a fixed point, and Fact 8.3.

The second part follows by induction on the inference of P
ℓ̃

−→ Q. The result
is immediate for the axioms and in the case of r-aux we make use of the first
part of the lemma. The remaining rules follow from the induction hypothesis. �

Corollary 8.5 If PRGC(P ) and P ⇛ Q then EΓE
[[Q ]] ≤M EΓE

[[P ]] and further-

more, if P
(ℓ1,ℓ2)
−→ Q then ℓ1 ∈ dom(EΓE

[[P ]]) and ℓ2 ∈ dom(EΓE
[[P ]]). �

8.2.1 Generated Prefixes

In preparation for the transfer function, we shall define a notion of generate
functions,

G⋆[[]] : Proc → T,

where elements of type

T = (Lab → M)

are mappings from labels into extended multisets. The intuition intended is the

following: For a process, P , such that P
(ℓ1,ℓ2)
−→ Q, the expression G⋆[[P ]] (ℓ1)(ℓ)

denotes a safe (over-) approximation to the number of occurrences of ℓ that may
become exposed in Q due to the involvement of ℓ1 in the transition from P .
Whenever G⋆[[P ]] (ℓ1)(ℓ) = m and G⋆[[P ]] (ℓ2)(ℓ) = n, we write G⋆[[P ]] ((ℓ1, ℓ2))(ℓ)
to denote G⋆[[P ]] (ℓ1)(ℓ) + G⋆[[P ]] (ℓ2)(ℓ) = m + n.

The domain T is a straightforward extension of M, and the constants ⊥T,⊤T

are defined as expected. The associated operations, ≤T, minT, maxT, +T, and −T,
are all defined as point-wise extensions of the corresponding operators on M.
For example, ≤T is defined by:

T1 ≤T T2 iff ∀ℓ : T1(ℓ) ≤M T2(ℓ)



Computing and Preserving Exposed Prefixes 149

GΓE ,∆G
[[ (n)P ]] = GΓE ,∆G

[[P ]]

GΓE ,∆G
[[ P µ ]] = GΓE ,∆G

[[P ]]

GΓE ,∆G
[[P1 P2 ]] = GΓE ,∆G

[[P1 ]] maxT GΓE ,∆G
[[P2 ]]

GΓE ,∆G
[[
∑

i∈I

M ℓi

i . Pi ]] = MAXTi∈I(⊥T[ℓi 7→ EΓE
[[Pi ]]] maxT GΓE ,∆G

[[Pi ]])

GΓE ,∆G
[[ rec X. P ]] = LFP(λG. GΓE [X 7→EΓE

[[ recX. P ]]],∆G [X 7→G][[P ]])

= GΓE [X 7→EΓE
[[ recX. P ]]],∆G [X 7→⊥T][[P ]]

GΓE ,∆G
[[X ]] = ∆G(X)

Table 8.2: Generated capabilities, GΓE ,∆G
[[P ]], of a process, P .

Once more, we have to take the unfolding of recursion into account when com-
puting the generate function. For this, we use the parameterised recursive pro-
cedure GΓE ,∆G

[[ ]] defined in Table 8.2. Here ΓE : Pid → M is as before, i.e., a
mapping that associates an extended multiset with each free process identifier,
and ∆G : Pid → T is a mapping that associates a mapping from labels into
extended multisets with each free process identifier. We use the ΓE environ-
ment to ensure that the number of prefixes exposed in a given continuation is
computed correctly, that is, in the case of rec X. P , ΓE is used to appropriately
associate X with the multiset of prefixes, EΓE

[[ rec X. P ]], exposed by the recur-
sion construct. The ∆G environment, on the other hand, is used to support the
fixed point computation required for rec X. P — much like the ΓE environment
of E⋆[[]] .

The interesting case is that of the guarded sum construct,
∑

i∈I M ℓi

i . Pi. It

is straightforward to see that every guard, M ℓi

i , generates all of the prefixes
exposed by the corresponding continuation, Pi. However, each distinct ℓ may
have several occurrences in a process, P , and, as we are aiming for a safe over-
approximation, we must take this into account. We do so by ensuring that the
results obtained for sub-expressions are combined using maxT. This ensures that
the computed GΓE ,∆G

[[P ]] is a safe over-approximation, in the sense that, for
every ℓ, GΓE ,∆G

[[P ]](ℓ) safely over-approximates every multiset generated by a
specific occurrence of ℓ in P — even if labels are not unique.

In the case of the recursion construct, however, we have to unfold the recursion
until no further information arises from doing so. This amounts to the least
fixed point computation shown in Table 8.2. Again, the termination of the naive



150 Pathway Analysis

computation is endangered, because (T,≤T) admits infinite ascending chains.
As formally proved in [NN08], however, the computation actually stabilises after
a single iteration, which justifies the alternative formulation of Table 8.2.

The desired function G⋆[[]] is defined by:

G⋆[[P ]] = G[ ],[ ][[P ]]

Convention 8.6 In the case of initial programs, P⋆, we shall use the distin-
guished symbol G⋆ to denote G⋆[[P⋆]] . �

Example 8.7 The result, Geat, of subjecting the program Peat to the generated ca-
pability analysis is shown below:

Geat = ⊥T [ 1 7→ ⊥M [1 7→ 1],
2 7→ ⊥M [3 7→ 1],
3 7→ ⊥M [2 7→ 1, 4 7→ 1, 5 7→ 1],
4 7→ ⊥M [2 7→ 1, 4 7→ 1, 5 7→ 1],
5 7→ ⊥M [2 7→ 1, 4 7→ 1, 5 7→ 1],
7 7→ ⊥M [7 7→ 1, 8 7→ 1, 9 7→ 1],
8 7→ ⊥M [7 7→ 1, 8 7→ 1, 9 7→ 1],
9 7→ ⊥M [7 7→ 1, 8 7→ 1, 9 7→ 1]]

Labels mapped to ⊥M are left out in the enumeration of the multisets. �

Correctness of GΓE ,∆G
[[P ]]. Due to the different role that GΓE ,∆G

[[ ]] plays
in the transfer function, the correctness of GΓE ,∆G

[[P ]] is slightly more involved
than was the case for EΓE

[[P ]]. As usual, substitution possesses nice properties:

Fact 8.8 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

GΓE ,∆G
[[P [Q/X ] ]] =
{

GΓE [X 7→EΓE
[[ Q ]]],∆G [X 7→⊥T][[P ]] maxT GΓE ,∆G

[[Q ]] if X ∈ fpi(P )

GΓE [X 7→EΓE
[[ Q ]]],∆G [X 7→⊥T][[P ]] otherwise

(8.1)

Proof The result is shown by structural induction on P . �

And, surely, the safety of the approximation, GΓE ,∆G
[[P ]], must be preserved

under heating:



Computing and Preserving Exposed Prefixes 151

Lemma 8.9 If C ⊢ P and fpi(P ) = ∅ then the following holds:

If P ⇛ Q then GΓE ,∆G
[[Q ]] ≤T GΓE ,∆G

[[P ]].

Proof The proof is by induction on the inference of P ⇛ Q. When showing
the lemma for h-urec we use Fact 5.11, Fact 8.8, and that
LFP(λG. GΓE [X 7→EΓE

[[ recX. P ]]],∆G [X 7→G][[P ]]) is indeed a fixed point. In the case

of h-csum we use Lemma 8.4-(1).

The remaining axioms follow by simple calculations and the rules by the induc-
tion hypothesis. �

Finally, we must show that the safety of the approximation is preserved under
reduction. This amounts to the following ’local’ subject reduction result:

Lemma 8.10 If C ⊢ P and fpi(P ) = ∅ then the following holds:

If P
ℓ̃

−→ Q then GΓE ,∆G
[[Q ]] ≤T GΓE ,∆G

[[P ]].

Proof The proof is by induction on the shape of the inference of P
ℓ̃

−→
Q. The axioms follow by straightforward calculation using that GΓE ,∆G

[[P ]] =
GΓE ,∆G

[[P [n/p] ]] and EΓE
[[P ]] = EΓE

[[P [n/p] ]] in the case of communication.

For the rule using the structural congruence we use Lemma 8.9. The remaining
rules follow by the induction hypothesis. �

Corollary 8.11 If PRGC(P ) and P
ℓ̃

−→ Q then GΓE ,∆G
[[Q ]] ≤T GΓE ,∆G

[[P ]]. �

8.2.2 Killed Prefixes

As the last component of the transfer function we shall also define a notion of
kill functions,

K⋆[[]] : Proc → T,

the intention of which is the following: For a process, P , such that P
(ℓ1,ℓ2)
−→ Q, the

expression K⋆[[P ]] (ℓ1)(ℓ) denotes a safe (under-)approximation to the number of
occurrences of ℓ that are no longer exposed in Q because of the involvement of ℓ1
in the transition from P . Whenever K⋆[[P ]] (ℓ1)(ℓ) = m and K⋆[[P ]] (ℓ2)(ℓ) = n,
we write K⋆[[P ]] ((ℓ1, ℓ2))(ℓ) to denote K⋆[[P ]] (ℓ1)(ℓ) + K⋆[[P ]] (ℓ2)(ℓ) = m + n.



152 Pathway Analysis

K∆K
[[ (n)P ]]env = K∆K

[[P ]]
K∆K

[[ P µ ]] = K∆K
[[P ]]

K∆K
[[P1 P2 ]] = K∆K

[[P1 ]] minT K∆K
[[P2 ]]

K∆K
[[
∑

i∈I M ℓi

i . Pi ]] = MINTi∈I(⊤T[ℓi 7→ M ] minT K∆K
[[Pi ]])

where M = +Mj∈I(⊥M[ℓj 7→ 1])
K∆K

[[ rec X. P ]] = LFP(λK.K∆K[X 7→K][[P ]])
K∆K

[[X ]] = ∆K(X)

Table 8.3: Killed capabilities, K∆K
[[P ]], of a process, P .

The unfolding of recursion also complicates the computation of kill information,
and therefore we use the parameterised function K∆K

[[ ]], defined in Table 8.3,
for the computation. Here, the environment ∆K : Pid → T serves as a mapping
that associates a mapping from labels into extended multisets with each free
process identifier. Similar to before, it is used to support the fixed point com-
putation required for rec X. P . Note, that we do not need a ΓE environment,
because the definition of K∆K

[[ ]] does not rely on EΓE
[[ ]].

Again, the interesting case is that of guarded sum constructs,
∑

i∈I M ℓi

i . Pi. It
is straightforward to see that every guard of such a construct kills exactly one
occurrence of each guard in the construct, including itself. It is still the case,
however, that each distinct ℓ may have several occurrences in a process P . We
ensure the safety of the computed under-approximation by combining the results
obtained for sub-expressions using minT. As a consequence, the computed K∆K

[[ ]]
is always a safe approximation – in the sense that, for every ℓ, K∆K

[[P ]](ℓ) safely
under-approximates every multiset killed by a specific occurrence of ℓ in P –
even when labels are not unique.

As usual, the recursion construct requires a fixed point computation where un-
folding is performed until no further information arises from doing so. This
amounts to the least fixed point computation shown in Table 8.3, which is guar-
anteed to terminate because T admits no infinite descending chains.

Again, the desired function, K⋆[[]] , is defined by:

K⋆[[P ]] = K[ ][[P ]]

Convention 8.12 In the case of initial programs, P⋆, we shall use the distin-
guished symbol K⋆ to denote K⋆[[P⋆]] . �

Example 8.13 The result, Keat, of subjecting the program Peat to the killed capa-
bility analysis is shown below:



Computing and Preserving Exposed Prefixes 153

Keat = ⊤T [ 1 7→ ⊥M [1 7→ 1],
2 7→ ⊥M [2 7→ 1, 4 7→ 1, 5 7→ 1],
3 7→ ⊥M [3 7→ 1],
4 7→ ⊥M [2 7→ 1, 4 7→ 1, 5 7→ 1],
5 7→ ⊥M [2 7→ 1, 4 7→ 1, 5 7→ 1],
6 7→ ⊥M [6 7→ 1],
7 7→ ⊥M [7 7→ 1, 8 7→ 1, 9 7→ 1],
8 7→ ⊥M [7 7→ 1, 8 7→ 1, 9 7→ 1],
9 7→ ⊥M [7 7→ 1, 8 7→ 1, 9 7→ 1]]

�

Correctness of K∆K
[[P ]]. Besides of being an under- rather than an over-

approximation, the correctness of K∆K
[[P ]] is rather similar to that of GΓE ,∆G

[[P ]].
We have the usual substitution property:

Fact 8.14 Assume Q = rec X. Q′ and C ⊢ Q; if furthermore fpi(Q) = ∅ and
P ≺ Q then

K∆K
[[P [Q/X ] ]] =

{

K∆K[X 7→⊥T][[P ]] minT K∆K
[[Q ]] if X ∈ fpi(P )

K∆K[X 7→⊥T][[P ]] otherwise

Proof The result follows by structural induction on P . �

Then we must ensure that the safety of the approximation is preserved by heat-
ing:

Lemma 8.15 If C ⊢ P and fpi(P ) = ∅ then the following holds:

If P ⇛ Q then K∆K
[[P ]] ≤T K∆K

[[Q ]].

Proof The proof is by induction on the inference of P ⇛ Q. In the case
of h-urec we use Fact 5.11, that LFP(λK. K∆K[X 7→K][[P ]]) is indeed a fixed
point, and Fact 8.14. The remaining axioms follow by simple calculations and
the rules by the induction hypothesis. �

Also, we must show that the safety of the approximation is preserved under
reduction:

Lemma 8.16 If C ⊢ P and fpi(P ) = ∅ then the following holds:

If P
ℓ̃

−→ Q then K∆K
[[P ]] ≤T K∆K

[[Q ]].



154 Pathway Analysis

Proof The proof is by induction on the shape of the inference of P
ℓ̃

−→
Q. The axioms follow by straightforward calculation using that K∆K

[[P ]] =
K∆K

[[P [n/p] ]] in the case of communication.

In the case of r-aux we use Lemma 8.15. The remaining rules follow by the
induction hypothesis. �

Corollary 8.17 If PRGC(P ) and P
ℓ̃

−→ Q then K∆K
[[P ]] ≤T K∆K

[[Q ]]. �

8.2.3 The Transfer Function

In the classical Bit Vector Frameworks (Section 4.2) transfer functions take the
form:

fblock(E) = (E\killblock) ∪ genblock

In the case of a forward analysis, E is the information holding at the entry to
the elementary block, block, killblock is the information invalidated by block, and
genblock is the information created by block.

We follow this template when defining the transfer functions of our setup. How-
ever, for us, transitions serve the role of basic blocks. Thus, E is the extended
multiset of exposed prefixes characterising some state P where a transition,

P
ℓ̃

−→ Q, might be enabled for some Q, K⋆[[P ]] (ℓ̃) is the extended multiset of
prefixes that is guaranteed to be disabled by the transition, and G⋆[[P ]] (ℓ̃) is the
extended multiset of prefixes that might be enabled by the transition. Thus the
transfer function takes the form:

transferP,ℓ̃(E) = (E −M K⋆[[P ]] (ℓ̃)) +M G⋆[[P ]] (ℓ̃)

Given a multiset of exposed prefixes, E, the transfer function computes, for an
a priori given process, P , and transition, ℓ̃, a safe over-approximation to the set
of prefixes exposed after the transition.

Correctness of the Transfer Function. The following result states that
this transfer function provides a safe approximation to the exposed actions of
the process that results from the transition:

Theorem 8.18 (Subject reduction) If C ⊢ P and fpi(P ) = ∅ then the fol-
lowing holds:



Computing and Preserving Exposed Prefixes 155

If P
ℓ̃

−→ Q then (E⋆[[Q]] ≤M transferP,ℓ̃(E⋆[[P ]] )).

Proof The proof is by induction of the inference of P
ℓ̃

−→ Q. We have the
following cases:

Case r-ent:
Writing lhs for

(enter nℓ1 . P + P ′) P ′′ µ1 (accept nℓ2 . Q + Q′) Q′′ µ2

we observe that

E⋆[[P ]] ≤M G⋆[[enter nℓ1 . P + P ′]] (ℓ1) ≤M G⋆[[lhs]] (ℓ1)

and

E⋆[[Q]] ≤M G⋆[[accept nℓ2 . Q + Q′]] (ℓ2) ≤M G⋆[[lhs]] (ℓ2).

Similarly we have

K⋆[[lhs]] (ℓ1) ≤M K⋆[[enter nℓ1 . P + P ′]] (ℓ1) ≤M E⋆[[enter nℓ1 . P + P ′]]

and

K⋆[[lhs]] (ℓ2) ≤M K⋆[[accept nℓ2 . Q + Q′]] (ℓ2) ≤M E⋆[[accept nℓ2 . Q + Q′]] .

By calculation we get

E⋆[[P ]] +M E⋆[[P
′′]] +M E⋆[[Q]] +M E⋆[[Q

′′]]

≤M (E⋆[[enter nℓ1 . P + P ′]] +M E⋆[[P
′′]] −M E⋆[[enter nℓ1 . P + P ′]] +M E⋆[[P ]] )

+M (E⋆[[accept nℓ2 . Q + Q′]] +M E⋆[[Q
′′]] −M E⋆[[accept nℓ2 . Q + Q′]] +M E⋆[[Q]] )

≤M (E⋆[[lhs]] −M K⋆[[lhs]] (ℓ1, ℓ2)) +M G⋆[[lhs]] (ℓ1, ℓ2) (8.2)

which is exactly the desired result. The remaining axioms follow by similar
reasoning.

Case r-res:
In this case the proof follows from the induction hypothesis as names are ignored
by the Pathway Analysis.

Case r-amb:
Again the proof is by the induction hypothesis as ambients are ignored by the
Pathway Analysis.

Case r-par:
It follows from the induction hypothesis that

E⋆[[Q]] ≤M (E⋆[[P ]] −M K⋆[[P ]] (ℓ̃)) +M G⋆[[P ]] (ℓ̃).

Furthermore we have

K⋆[[P R]] (ℓ̃) ≤M K⋆[[P ]] (ℓ̃)



156 Pathway Analysis

and

G⋆[[P ]] (ℓ̃) ≤M G⋆[[P R]] (ℓ̃)

so that

E⋆[[Q]] ≤M (E⋆[[P ]] −M K⋆[[P ]] (ℓ̃)) +M G⋆[[P ]] (ℓ̃)

≤M (E⋆[[P ]] −M K⋆[[P R]] (ℓ̃)) +M G⋆[[P R]] (ℓ̃)

Thus we may calculate

E⋆[[Q R]] = E⋆[[Q]] +M E⋆[[R]]

≤M (E⋆[[P ]] −M K⋆[[P R]] (ℓ̃)) +M G⋆[[P R]] (ℓ̃) +M E⋆[[R]]

= ((E⋆[[P ]] +M E⋆[[R]] ) −M K⋆[[P R]] (ℓ̃)) +M G⋆[[P R]] (ℓ̃)

= (E⋆[[P R]] −M K⋆[[P R]] (ℓ̃)) +M G⋆[[P R]] (ℓ̃)

which finishes the case.

Case r-aux:
This case is straightforward because the safety of E⋆[[]] ,G⋆[[]] , and K⋆[[]] is pre-
served by heating due to Lemmas 8.4, 8.9, and 8.15. �

Corollary 8.19 (Subject reduction)

If PRGC(P ) and P
ℓ̃

−→ Q then E⋆[[Q]] ≤M transferP,ℓ̃(E⋆[[P ]] ). �

Finally, we establish the semantic soundness of the transfer function as a straight-
forward corollary of the following theorem:

Theorem 8.20 (Semantic correctness)

P⋆
L̃

−→⋆P
ℓ̃

−→ Q ⇒ (E⋆[[Q]] ≤M transferP⋆,ℓ̃(E⋆[[P ]] )).

Proof This follows by induction on the length of L̃. The base case follows
from Corollary 8.19. The inductive step is established using Corollaries 8.10,
8.16, 8.19, and 5.13. �

This shows that the approximation is safe for all reaction sequences that may
arise from an initial program, P⋆.

8.3 Constructing the Automaton

We now turn to the pragmatics of calculating the finite automata that are the
goals of the Pathway Analysis. Given a program, P⋆, the idea is to construct



Constructing the Automaton 157

a finite automaton, such that the potentially infinite transition system of P⋆ is
faithfully represented within the states and transitions of the automaton. The
computed automaton will have the following components:

• A set, Q⋆, of states. Each state, q, is associated with an extended multiset,
E⋆[q], and is intended to represent all processes, P , for which E⋆[[P ]] ≤M

E⋆[q].

• An initial state, q⋆ ∈ Q⋆, associated with the corresponding set, E⋆, of
exposed prefixes.

• A transition relation, δ⋆, containing transitions, qs
(ℓ1,ℓ2)
=⇒ qt, reflecting that

in the state qs, two prefixes, labelled ℓ1 and ℓ2, respectively, may react and
give rise to the new state qt.

We shall refer to this automaton as (Q⋆, q⋆, δ⋆,E⋆).

It will emerge from the construction that the resulting automaton is partially

deterministic, in the sense that, if qs
ℓ̃

=⇒ q1 and qs
ℓ̃

=⇒ q2 then q1 = q2. This
suffices for our purposes, and hence we shall not make the effort of adding a fail
state in order to obtain a deterministic finite automaton.

8.3.1 The Worklist Algorithm

Motivated by Monotone Frameworks (Section 4.2) the heart of the computation
is an iterative worklist algorithm that computes a least solution to the framework
instance given as input. It simply starts out from the initial state and constructs
the automaton by adding more and more states and transitions.

The algorithm, which is defined in Table 8.4, computes over four data structures:

• A set, Q, of states.

• A vector, E, of associated multisets of exposed capabilities.

• A worklist, W ⊆ Q, of states that have yet to be processed.

• A set, δ, of transitions valid for the current automaton.

The algorithm is initialised in line (1) and (2). First the start state, q⋆, and



158 Pathway Analysis

input : Instance (q⋆, E⋆,F⋆)

output : Least solution (Q⋆, q⋆, δ⋆,E⋆)

such that (Q⋆, q⋆, δ⋆,E⋆) |= pathway(P⋆)

method : Step 1: Initialisation of Q,W, δ, and E

(1) Q := {q⋆}; E[q⋆] := E⋆;
(2) W := {q⋆}; δ := ∅;

Step 2: Iteration (updating Q,W, δ, and E)
(3) while W 6= ∅ do
(4) select qs from W; W := W\{qs};

(5) for each ℓ̃ ∈ enabled(E[qs]) do
(6) let E = transferP⋆,ℓ̃(E[qs])

(7) in update(qs, ℓ̃, E)

Step 3: Presenting the result
(Q⋆, q⋆, δ⋆,E⋆) := (Q, q⋆, δ,E)

Table 8.4: Maximal Fixed Point algorithm for the Pathway Analysis.

associated multiset, E⋆, of prefixes exposed by P⋆ are added to the otherwise
empty Q and E. Then the start state, q⋆, is added to the worklist and the
current set of transitions, δ, is set to the empty set.

Line (3) defines the iterative loop, which inspects the worklist until it is finally
empty. In every iteration, line (4) selects and removes a state, qs, from the
worklist. The set of reactions potentially causing transitions out of qs is then
computed, using the procedure call enabled(E[qs]), in line (5). The correspond-
ing procedure is defined in Subsection 8.3.2 and will yield a set of pairs, i.e.,
enabled(E[qs]) ⊆ E[qs]×E[qs]. For each potential reaction, ℓ̃, an extended multi-
set, E, denoting the corresponding next state, is computed in line (6) by a call,
transferP⋆,ℓ̃(E[qs]), to the transfer function of Section 8.2.

Finally, in line (7), the automaton is updated to reflect the new transition using
a call, update(qs, ℓ̃, E), to the update procedure defined in Section 8.3.3. As we
shall see, it is crucial for termination that this update is performed in a way
such that Q remains finite. In order to ensure this, we shall enable extensive
reuse of states, using a clever way of comparing them, and, only if we fail in
finding a suitable preexisting state do we add a new one.



Constructing the Automaton 159

8.3.2 Enabled Reactions

Writing E = E[q] for the extended multiset associated with some state, q, we
use the procedure enabled(E) to compute the set of potential reactions of q. If
ℓ1 ∈ dom(E) and ℓ2 ∈ dom(E) then the pair (ℓ1, ℓ2) may be enabled in q if the
corresponding prefixes

1. match in the sense that one is complementary to the other, and

2. may be concurrently possible.

Inspecting the definition of F⋆ for either one of the CFAs of the previous chap-
ters, it becomes clear that F⋆ precisely captures the intuitions suggesting (1)
and (2).This leads to estimating the set of enabled transitions simply by taking
the pairs in F⋆ where both of the two capabilities are exposed in the present
state:

enabled(E) = {(ℓ1, ℓ2) | (ℓ1, ℓ2) ∈ F⋆ ∧ ℓ1 ∈ dom(E) ∧ ℓ2 ∈ dom(E)}

Correctness of enabled. The function, enabled, constructed in this way, is
correct in the sense that it safely over-approximates the set of enabled transi-
tions:

Lemma 8.21 If P⋆
L̃

−→⋆P
ℓ̃

−→ Q and E⋆[[P ]] ≤M E then ℓ̃ ∈ enabled(E).

Proof The lemma follows from Theorem 6.19 and Lemma 8.5. �

8.3.3 Updating Data Structures

When updating the data structures with a newly computed transition we must
do it in such a way that the resulting automaton stays finite and the construction
terminates.

The corresponding procedure, update(qs, ℓ̃, E), is defined in Table 8.5, where
the parameters qs, ℓ̃, and E denote a transition labelled ℓ̃ from state qs to a
(potentially new) state characterised by E that is to be added to the automaton.
The procedure does the following:

The line (1) first checks whether a suitable state is already present in the au-
tomaton. Here, we enforce a partitioning of states according to the domains of
their corresponding multisets of exposed capabilities; two states, q1 and q2, are
identified if dom(E[q1]) = dom(E[q2]). If a suitable state, q, exists it is used as



160 Pathway Analysis

(1) if some q ∈ Q with dom(E[q]) = dom(E)
(2) then qt := q
(3) else select qt from outside Q; Q := Q ∪ {qt}; E[qt] := ⊥M;
(4) if ¬(E ≤M E[qt])
(5) then E[qt] := E[qt] ∇M E; W := W ∪ {qt}

(6) δ := (δ\{(qs, ℓ̃, q) | q ∈ Q}) ∪ {(qs, ℓ̃, qt)};
(7) clean-up(Q,W, δ)

Table 8.5: Procedure, update(qs, ℓ̃, E), for updating states of pathway automata.

the target state of the new transition in line (2). Otherwise a fresh state, qt,
is inserted into the automaton, and the corresponding entry in E initialised to
⊥M in line (3).

Then, in line (4), it is checked whether the multiset, E[qt], corresponding to the
target state, already includes the information contributed by E. If this is not the
case the information is updated using a widening operator, ∇M : M × M → M

(see, e.g., [NNH99]), described below, and qt is added to the worklist in line (6).
The widening operator is defined by

(M1 ∇M M2)(ℓ) =











M1(ℓ) if M2(ℓ) ≤ M1(ℓ)

M2(ℓ) if M1(ℓ) = 0 ∧ M2(ℓ) > 0

∞ otherwise

and guarantees that new information is added to the pre-existing in a manner
that stabilises after finitely many iterations and still ensures that M1 maxM M2≤M

M1 ∇M M2.

In line (7) the new transition, (qs, ℓ̃, qt), is added to the automaton, while the
pre-existing transition(s) out of qs along ℓ̃ is removed as the destination may no
longer be correct. This may leave some states unreachable, and, in line (8), a
suitable clean-up procedure, defined in the following section, is invoked in order
to ensure that these are removed.

Remark 8.22 (Complexity) It is clear that the worst-case complexity of the
Pathway Analysis depends on the maximal number of states, as well as the num-
ber of transitions leaving each state. Thus, controlling the size of the automaton
is one way of controlling the complexity of the algorithm. The partitioning of
states, enforced by the check dom(E[q]) = dom(E) in line (1), asserts this kind
of control. It is, of course, possible to devise other such granularity functions
that result in higher or lower complexity and precision.

Another handle to control the complexity is the widening. Here, we interpret



Constructing the Automaton 161

Qreach := {q⋆} ∪ {q | ∃n,∃q1, · · · , qn : (q⋆, · · · , q1) ∈ δ ∧ · · · ∧ (qn, · · · , q) ∈ δ};

Q := Q ∩ Qreach;

W := W ∩ Qreach;

δ := δ ∩ (Qreach × (Lab × Lab) × Qreach)

Table 8.6: Procedure, clean-up(Q,W, δ), for eliminating dead states.

growing numbers of exposed prefixes as a sign of infinite behaviour and go to
⊤M immediately upon detecting such behaviour. One could, of course, make
other choices, e.g., in order to separate the first k steps of a recurrent behaviour.

However, in this dissertation we shall not investigate any of these options. �

Cleaning Up

The cleanup procedure, shown in Table 8.6, simply computes the set of states,
Qreach, that is reachable from the start state, q⋆, and uses this to restrict the set
of states, Q, the set of transitions, δ, and the worklist, W, by intersection.

Example 8.23 Applying the Pathway Analysis to Peat we obtain the result shown
below. Comparing to Fig. 3.28 this corresponds to the exact behaviour that arises
from collapsing frames 1,2, and 3 into one and 5, 6, and 7 into one. In each of these
cases it is not possible to distinguish the states corresponding to the collapsed frames
because the multisets of globally exposed reaction capabilities are the same.

q_0 q_1 q_2 q_3

(4,8)
(4,8) (4,1)
(4,1) (5,9)
(5,9)

(7,2)(7,2) (6,3)

�



162 Pathway Analysis

8.3.4 Correctness of the Algorithm

Intuitively, the outlined worklist algorithm is correct if it terminates producing a
finite partially deterministic automaton able to faithfully simulate all transition
sequences of the program P⋆ of interest.

We address these issues separately starting with termination, where the follow-
ing result holds:

Lemma 8.24 (Termination) The worklist algorithm always terminates.

Proof Clearly, for any program P⋆ the algorithm operates over a finite set,
Lab⋆, of labels. Now let us consider a possibly non-terminating execution.Note
that Q as well as E[·] grow in a non-decreasing manner.

The set {dom(E[q]) | q ∈ Q} grows in a non-decreasing manner and since
dom(E) ⊆ Lab⋆ the value of the set must eventually stabilise. After this the
test in line 1) of Table 8.5 will always succeed and the production of new states
in line 3) will cease. Thus Q stabilises.

The vector (E[q])q∈Q grows in a non-decreasing manner, but due to the proper-
ties of the widening it must eventually stabilise, thereby stopping the growth of
W.

From this point on lines (4-7) of Table 8.4 will decrease the size of W by one
in every iteration. Eventually W will be empty and hence the algorithm will
terminate. �

We then turn to the correctness of the format of the output. Here we have:

Lemma 8.25 The worklist algorithm always produces a partially deterministic
automaton.

Proof We prove the claim by showing that

∀(q1, ℓ̃1, q
′
1), (q2, ℓ̃2, q

′
2) ∈ δ : q1 = q2 ∧ ℓ̃1 = ℓ̃2 ⇒ q′1 = q′2

is an invariant at line (4) of Table 8.4. It is maintained due to the construction
of δ in line (6) of Table 8.5. �

Finally, we address the correctness of the contents of the output. We will show
this by a simulation result. We shall say that a state q, denoting the exposed



Constructing the Automaton 163

capabilities E, represents a process, P , whenever P ⊲ E where

P ⊲ E iff E⋆[[P ]] ≤M E

Using this we can state:

Lemma 8.26 If PRGC(P ), P ⇛ Q and P ⊲ E then Q ⊲ E.

Proof This follows from Corollary 8.5. �

Now the following result shows that a single step in the semantics is correctly
simulated by the automaton:

Theorem 8.27 The worklist algorithm produces a finite automaton, (Q, q0, δ,E),
such that, if

P ⊲ E[q] and P
ℓ̃

−→ Q,

then there exists a unique q′ ∈ Q, such that

Q ⊲ E[q′] and (q, ℓ̃, q′) ∈ δ.

Proof Consider the last time, t0, that the state q was removed from W in
line (4) of Table 8.4. Now let E0 denote the corresponding values of the data
structures such that E0[q] = E[q] and hence P ⊲ E0[q].

It follows from P
ℓ̃

−→ Q, Lemma 8.21, and the fact that enabled is monotonic,
that ℓ̃ ∈ enabled(E0[q]) and, hence, that ℓ̃ is selected for consideration in line (5)
of Table 8.4. By Theorem 8.18 line (6) then produces E such that Q ⊲ E.

Following line (7) of Table 8.4 it is immediate that lines (1-3) of Table 8.5
identify a state, q′, and that lines (4-6) yield (q, ℓ̃, q′) ∈ δ1 and E ≤M E1[q

′],
where δ1 and E1 denote the corresponding new data structures.

As this is the last iteration over q there will be no further calls of update(q, ℓ̃, ...).
Thus, line (8) of Table 8.6 will not remove (q, ℓ̃, q′) from δ at a later stage.
Clearly, the values of E[·] grow in a non-decreasing manner, and, writing δ and
E for the final values of the data structures, we have (q, ℓ̃, q′) and E ≤M E1[q

′]≤M

E[q′], which completes the proof.

Uniqueness of q′ follows from Lemma 8.25. �



164 Pathway Analysis

q_0 q_1

q_2

q_3

q_24

q_4

q_5

q_6

q_7

q_8

q_9

q_10

q_11

q_12

q_22

q_13

q_14

q_15

q_16 q_17

q_18

q_19

q_20

q_21 q_23 q_25
q_26 q_27

q_28

q_29

q_30

q_31

q_32(1, 19)

(8, 26)

(12, 26)

(2, 20)

(9, 27)

(1, 13)

(10, 28)

(2, 14)

(11, 29)

(3, 15)

(16, 27)

(16, 27)

(17, 28)

(17, 28)

(18, 29)

(18, 29)

(32, 30)

(32, 30)

(32, 30)

(33, 34)

(33, 34)

(33, 34)

(35, 5) (7, 6)

(21, 26) (3, 22)

(23, 27)

(23, 27)

(24, 28)

(24, 28)

(4, 31)
(4, 31)

(4, 31)

(4, 31)

(4, 31)

(4, 31)

(4, 31)

(4, 31)(4, 31)

(25, 29)
(25, 29)

Figure 8.1: Pathway analysis of normal receptor LDL model.

We may define the reflexive and transitive closure of δ inductively as follows:

(q⋆, ε, q⋆) ∈ δ⋆

(q⋆,Λ, q) ∈ δ⋆ (q, ℓ̃, q′) ∈ δ

(q⋆,Λℓ̃, q′) ∈ δ⋆

This allows us to state the following corollary:

Corollary 8.28 The worklist algorithm produces a finite automaton, (Q, q⋆, δ,E),
such that, if

P⋆
Λ

−→⋆P,

then there exists a q ∈ Q, such that

P ⊲ E[q] and (q⋆,Λ, q) ∈ δ⋆. �

Proof The result follows straightforwardly by induction on the length of Λ. �

This shows that arbitrary reaction sequences are correctly simulated by the
automaton.

8.4 CASE: Analysing the LDL Degradation Path-

way

When subjecting the normal receptor LDL pathway model to Pathway Analysis
we obtain the result shown in Fig. 8.2, independently of the particular CFA
used to produce the auxiliary relation F⋆.

The resulting automaton clearly exhibits the transitions that might lead to the
configurations identified by the 2CFA analysis. However, some of the exhib-
ited transitions are spurious, false positives that cannot really take place. In



CASE: Analysing Genetic Transcription 165

q_0

q_1

q_2

q_3 q_4 q_5 q_6 q_7(8, 26)

(12, 26)

(9, 27) (10, 28) (11, 29) (32, 30) (33, 34)

(a) extra-cellular defects

q_0 q_1 q_2
(1, 19) (2, 20)

(b) intra-cellular defects

Figure 8.2: Pathway analysis of defect receptor LDL models.

particular, only one of the transitions labelled (4, 31), corresponding to LDL
entering the XV , is actually possible, namely the one going from state 16 into
state 17. This is because the EE must merge with the LE before LDL can
enter the XV . Every other occurrence of (4, 31) can be attributed to the fact
that the Pathway Analysis incorporates no context information. Consequently,
the states 11, 13, 15, 28, 30, and 32 are analysis artifacts, i.e., states that are not
reachable in practice, and the state 20 is actually a dead end.

8.4.1 Related Diseases

When the LDL pathway model that incorporates exo-plasmic receptor defects
is subjected to Pathway Analysis we obtain the pathway automaton shown in
Fig. 8.2(a). It is evident that the internalisation of EE still works completely
as intended. Only the extracellular binding capacity is affected. This result
contains no surprises.

In the case of cytosolic defects we obtain the pathway automaton shown in
Fig. 8.2(b). Here we see that the receptor protein can ligate an LDL particle,
but the steps that correspond to internalisation, i.e., LDL entering EE, cannot
occur. Note in particular, that only the steps associated with the aforementioned
modelling artifact might occur. The remaining steps, leading to the rather wild
over-approximation of Fig. 7.5(b), cannot occur.

8.5 CASE: Analysing Genetic Transcription

We now turn to the examination of the abstract model of genetic transcription
that was presented in Section 3.1.2. When subjecting this model to Pathway
Analysis we obtain the pathway automaton shown in Fig. 8.3, regardless of the
CFA used for computing F⋆.

The result is rather imprecise, and in more than one way:



166 Pathway Analysis

q_0

q_1
q_2

q_3

q_4

q_5

q_6

q_7

q_8
q_9

q_10

q_11

q_12

q_13

q_14

q_15 q_16

(1, 15)
(2, 16)

(3, 17)

(18, 10) (4, 17)

(18, 9) (5, 17)

(18, 8)
(6, 17)

(7, 19)

(11, 19)

(11, 19)

(11, 19)

(11, 19)

(12, 19)
(12, 19)

(12, 19)

(12, 19)

(7, 20)

(11, 20)

(11, 20)

(11, 20)

(11, 20)

(11, 20)

(11, 20)

(12, 20)

(12, 20)

(12, 20)

(12, 20)

(12, 20)

(12, 20)

Figure 8.3: Pathway analysis of genetic transcription model.

First of all, the system is not expected to have dead end states. Indeed, inspec-
tion reveals that the edges (12, 20), (11, 20), (7, 19) are analysis artifacts, and, if
this is taken into account, the model seems quite reasonable.

Secondly, the edges (11, 19), (12, 19), corresponding to the attachment of actual
nucleotides, always appear in pairs. This is adequately explained by the fact
that the Pathway Analysis does not take the binding of names into account.

8.6 Concluding Remarks

The CFAs of the previous chapters are mainly concerned with the spatial prop-
erties of reachable configurations. In contrast, the Pathway Analysis focuses
on the causal properties of the realisable transition sequences. Given a model,
P⋆, the Pathway Analysis computes a finite, partially deterministic, automaton
that safely over-approximates the set of, possibly infinite, sequential behaviours
that are realisable by P⋆.

In aims and scope the Pathway Analysis is superficially related to previous
occurrence counting analyses of ambient calculi [HJNN99, LM04, GL05]. How-
ever, the Pathway Analysis counts capability prefixes, rather than ambients,
and, technically, it resorts to an adaptation of classical Monotone Frameworks
[KU77, NNH99], rather than Abstract Interpretation. Thus, the analysis ex-
tends a line of work on data flow related analyses for the CCS family of process
calculi [NN06, NN08].

Pathway automata model system configurations by extended multisets of ex-
posed prefixes, The dynamic nature of processes is captured by transfer functions
in the manner of classical Bit-vector Frameworks. These functions determine
how extended multisets grow and shrink as prefixes react. A worklist algorithm



Concluding Remarks 167

computes the final automaton. It expands the state space iteratively until no
new states arises by application of the transfer functions.

The practical value of the Pathway Analysis is, in part, determined by its com-
putational complexity. As presented here the algorithm is exponential, but the
presented algorithm is remarkably flexible in this respect. Three mechanisms in
total are used to control the tradeoff between precision and termination prop-
erties of the algorithm:

Firstly, the analysis counts and hence a notion of widening, in the manner of
Abstract Interpretation [CC77, CC79, NNH99], helps to ensure termination in
the presence of infinite multiplicities.

Secondly, the F⋆ relation, computed by either of the previously presented CFAs,
is used to bound the number of enabled transitions explored by the algorithm.

Finally, an equivalence function on states is used to decide whether a computed
state is new or constitutes an update to an already existing state. The only such
equivalence explored in this dissertation is equality for dom(E), but in practice
a variety of functions may be used – as long as they are finitary, stable, and
injective in the terminology of [NN08]. A fine-grained equivalence is likely to
generate fairly precise analysis results at a high complexity. A coarser equiva-
lence relation will give more approximative analysis results at a lower (perhaps
even low polynomial) complexity.

Analysis results obtained in the context of the two ongoing case studies are
promising, but also indicate viable avenues of improvement:

When applied to the normal receptor LDL pathway model of Section 3.3 the
analysis retrieves an automaton that quite clearly identifies the interaction se-
quences that constitute the pathway. There are a few spurious edges. These
analysis artifacts owe to the fact that the analysis does not take context infor-
mation into account. The results obtained from the defect receptor models are
also promising. In the case of exoplasmic defects the resulting pathway automa-
ton basically accounts for the findings of the CFAs. But, in the case of cytosolic
defects, the pathway automaton excludes the interactions that might lead to
the wild over-approximations observed in the corresponding CFA results. The
obtained result is invariant with respect to the CFA used to produce F⋆.

When applied the transcription model of Section 3.4 the analysis retrieves an
automaton that exhibits the overall behaviour of the transcription process, i.e.
a step-wise elongation procedure that may be interrupted at any point, should
the required metabolites not materialise. Again, however, the result contains
analysis artifacts that are clearly connected to the fact that the analysis does



168 Pathway Analysis

not take the binding of names into account.

As this model is flat, in the sense that it does not model spatial structure, it is
not surprising that the obtained result is also invariant with respect to the CFA
used for producing F⋆. This is in contrast to the LDL pathway result, where
one might have hoped that 2CFA would lead to better F⋆ estimates.

Technically, the two analysis approaches are complementary — one is context
sensitive and considers the bindings of names, while the other is flow-sensitive
but ignores bindings and context. This is evident in the results, which seem to
indicate that an iterative positive-negative feedback loop between the two anal-
yses would improve the precision of both; an idea that immediately motivates
the developments of the following chapter.



Chapter 9

An Iterative Analysis

“It’s performance-based. It’s systemic. Not just an item here or
there. It comes together as a system and operates better. The end
is greater than the sum of the parts.”

— Jim Folkman

This chapter presents a iterative analysis for the BioAmbients language. The
analysis is evaluated in the context of both the LDL degradation pathway of
Section 3.3 and the transcription model of Section 3.4. None of the presented
material has previously been covered.

At first sight the two types of analysis presented in the previous chapters are
quite different. The CFA analyses of Chapter 6 and 7 approximate the set of
reachable spatial configurations. In contrast, the Pathway Analysis of Chapter 8
approximates the set of realisable causal sequences. These differences, however,
are not as profound as they might appear. Clearly, the analyses are all concerned
with different aspects of the same thing, namely the run-time behaviour of
BioAmbients processes, and, whichever way you put it, this is closely related to
the set of reactions that might occur.

The Pathway Analysis already takes avantage of this by using the F⋆ relation,
produced by either of the CFA analyses, as a safe approximation to the set
of run-time enabled reactions. The Pathway Analysis further refines this first
estimate internally, when computing the set of enabled transitions, because
in each state only capabilities with a positive number of occurrences can be
enabled. This is evident in the Pathway Analysis result for the LDL pathway
(Section 8.4), where δ⋆ does not contain all members, ℓ̃, of F⋆. As δ⋆ is formally
an over-approximation it is safe to conclude that the unused members of F⋆



170 An Iterative Analysis

INPUT : a Flow Logic FL(BioAmbients,alfp),

a BioAmbients process P⋆, and

A safe estimate, CP, of the concurrently possible capabilities.

OUTPUT : an alfp formula ϕ such that

(I,R,F) |= ϕ ⇔ (I,R,F) |=⊤ P⋆.

METHOD : Set ϕ := (
V

{CP⋆(ℓ1, ℓ2) | (ℓ1, ℓ2) ∈ CP}) ∧

(
V

{C(n) | n ∈ C}) ∧

completeR∧

(I,R,F) |=⊤ P

while ϕ contains (I,R,F) |=µ P ′

and there is a rule α iff β in FL

and a substitution θ

such that θα = (I,R,F) |=µ P ′

do replace (I,R,F) |=µ P ′ with θβ in ϕ.

Table 9.1: Parameterised 0CFA clause generator for iteration.

cannot take place.

In the following we take advantage of this observation, and show how a simple
iterative analysis can improve on the previous results.

The chapter contains fours sections. In Section 9.1 we present the iterative
analysis and state some correctness results. Then, in Section 9.2, we apply it to
the LDL pathway model in order to obtain evaluation data. In Section 9.3 we
apply it to the transcription model. Finally, in Section 9.4, we summarise our
findings.

9.1 Analysis

In the following we shall develop an iterative approach to CFA and Pathway
Analysis. In doing so, we pursue the idea that both types of analysis should, of
course, only consider the least set of reactions that is known to safely approxi-
mate the true set of run-time enabled reactions.

The Pathway Analysis is already parameterised on a safe estimate F⋆ of the
run-time enabled reactions, and, in order to specify the iterative analysis, we



Analysis 171

INPUT : a BioAmbients process P⋆.

OUTPUT : (I⋆,R⋆,F⋆) and (Q⋆, q⋆, δ⋆,E⋆) such that

(I⋆,R⋆,F⋆) |=
⊤ P⋆, (Q⋆, q⋆, δ⋆, E⋆) |= pathway(P⋆), and

F⋆ = {ℓ̃ | ∃q1, q2 : (q1, ℓ̃, q2) ∈ δ⋆}

METHOD : ϕ0 := genConstraints(CFA, P⋆, CP⋆);

(I,R,F) := solve(ϕ0);

(Q, q⋆, δ, E) := pathway(P⋆,F);

CP := {ℓ̃ | ∃q1, q2 : (q1, ℓ̃, q2) ∈ δ};

while F 6= CP do

ϕ := genConstraints(CFA, P⋆, CP);

(I,R,F) := solve(ϕ);

(Q, q⋆, δ, E) := pathway(P⋆,F);

CP := {ℓ̃ | ∃q1, q2 : (q1, ℓ̃, q2) ∈ δ};

(I⋆,R⋆,F⋆) := (I,R,F);

(Q⋆, q⋆, δ⋆, E⋆) := (Q, q⋆, δ, E)

Table 9.2: Iterative analysis algorithm.

shall parameterise the CFAs in a similar way. The basic idea is to pipe the set of
reactions contained in δ⋆ back into the CFA as a refined version of the estimate,
CP⋆, of concurrently possible capabilities. This requires a modification of the
CFA clause generators. In the case of 0CFA the resulting clause generator is
shown in Table 9.1, and the 2CFA can be similarly modified.

In this context the iterative analysis for BioAmbients is defined as shown in
Table 9.2, where CFA can be either the 0CFA or the 2CFA. The algorithm starts
by computing an ordinary CFA, followed by an ordinary Pathway Analysis, in
order to obtain first estimates for F and CP. If these sets are not equal this
computation is repeated until they are.

Lemma 9.1 (Termination) The algorithm terminates.

Proof The CFA ensures that F ⊆ CP and the Pathway Analysis ensures that
{ℓ̃ | ∃q1, q2 : CP ⊆ F}; hence each iteration either shrinks the estimate of run-
time enabled reactions or the algorithm terminates. As P(Lab⋆ × Lab⋆) does
not admit infinite descending chains the algorithm will eventally terminate. �

Theorem 9.2 (Soundness) The outputs, (I⋆,R⋆,F⋆) and (Q⋆, q⋆, δ⋆,E⋆), con-
stitute safe approximations in the manner of Theorems 6.19, 7.30, and 8.28.



172 An Iterative Analysis

XVLY SO

LE

CC

EE

CH

CELL

LDL

⊤

q_0 q_1

q_2

q_3

q_24

q_4

q_5

q_6

q_7

q_8

q_9

q_10

q_11

q_12

q_22

q_13

q_14

q_15

q_16 q_17

q_18

q_19

q_20

q_21 q_23 q_25
q_26 q_27

q_28

q_29

q_30

q_31

q_32(1, 19)
(8, 26)

(12, 26)

(2, 20)

(9, 27)

(1, 13)

(10, 28)

(2, 14)

(11, 29)

(3, 15)

(16, 27)

(16, 27)

(17, 28)

(17, 28)
(18, 29)

(18, 29)
(32, 30)

(32, 30)

(32, 30)

(33, 34)

(33, 34)

(33, 34)

(35, 5) (7, 6)
(21, 26) (3, 22)

(23, 27)

(23, 27)

(24, 28)

(24, 28)
(4, 31)(4, 31)

(4, 31)
(4, 31)

(4, 31)

(4, 31)

(4, 31)

(4, 31)(4, 31)

(25, 29)(25, 29)

Figure 9.1: Iteration of 0CFA and Pathway Analysis — normal receptors.

Proof This follows directly from the fact that each F and CP of the descending
chain are formally over-approximations. �

9.2 CASE: Analysing the LDL Degradation Path-

way

We now conclude our examination of the LDL pathway model by subjecting it
to the iterative analyses outlined in the previous section.

We start by applying the 0CFA and the Pathway Analysis iteratively to the
normal receptor LDL model. This yields the containment graph and the path-
way automaton shown in Fig. 9.1. Here we experience no difference from the
results previously obtained by the ordinary 0CFA (Section 6.3) and the ordi-
nary pathway analysis (both based on 0CFA and 2CFA in Section 8.4). The
corresponding 0CFA analysis estimates, presented verbatim in Appendix B.1.1



CASE: Analysing the LDL Degradation Pathway 173

⊤

CELL

LY SO LE

XV

XVCC

EE

EE

LDL

LDLLDL

LDL

LDLLDL

LDL

LDL

CH

CHCH

CHCH CH

CH

CH

CH

Figure 9.2: Iteration of 2CFA and Pathway Analysis — normal receptors.

and Appendix B.3.1, are identical.

We then go on to apply the 2CFA and the Pathway Analysis iteratively to the
normal receptor model. This yields the containment graph shown in Fig. 9.2 and
we abstain from showing the related pathway automaton, as it is identical to that
shown in Fig. 9.1. Again, there is no observable difference between the shown
graph and the previous result for the ordinary 2CFA (Section 7.5). Indeed, the
corresponding 2CFA analysis estimates, presented verbatim in Appendix B.2.1
and Appendix B.4.1, are identical.

From these observations we conclude that both the 0CFA and 2CFA results are
as precise as possible for this particular model, and, hence, that the 2CFA is
vastly more informative than the 0CFA. In the context of the previous exami-
nations this is unsurprising.

9.2.1 Related Diseases

We now turn to revisit the disease related models, turning first to the issue of
defect exo-plasmic binding sites. When the corresponding model is subjected to



174 An Iterative Analysis

XV

LY SO

LE

CC

EE

CH

CELL LDL

⊤

q_0

q_1

q_2

q_3 q_4 q_5 q_6 q_7(8, 26)

(12, 26)

(9, 27) (10, 28) (11, 29) (32, 30) (33, 34)

Figure 9.3: Iteration of 0CFA and Pathway Analysis — exo-plasmic defects.

⊤

CELL

LY SO LE

XV

XVCC

EE

EE

LDL

CH

q_0

q_1

q_2

q_3 q_4 q_5 q_6 q_7(8, 26)

(12, 26)

(9, 27) (10, 28) (11, 29) (32, 30) (33, 34)

Figure 9.4: Iteration of 2CFA and Pathway Analysis — exo-plasmic defects.

iterative application of 0CFA and Pathway Analysis we obtain the containment
graph and pathway automaton shown in Fig. 9.3. At first sight the result looks
identical to those previously obtained by the 0CFA (Section 6.3), but inspection
of the corresponding analysis results, printed verbatim in Appendices B.1.2 and
B.3.2, shows that the number of reactions considered by the iterative 0CFA
result is less than half of that considered by the ordinary 0CFA result. As
shown in Fig. 9.4, this result basically repeats itself for the 2CFA, also for the
verbatim analysis results in Appendices B.2.2 and B.4.2.

We then turn to the model of defect cytosolic binding sites. When this model is
subjected to iterative application of 0CFA and Pathway Analysis we obtain the



CASE: Analysing the LDL Degradation Pathway 175

XV

LY SO LE CC EE

CH

CELL

LDL

⊤

q_0 q_1 q_2
(1, 19) (2, 20)

Figure 9.5: Iteration of 0CFA and Pathway Analysis — cytosolic defects.

⊤

CELL

LY SO LE

XV

CC EE LDL

LDL

CH

CH

q_0 q_1 q_2
(1, 19) (2, 20)

Figure 9.6: Iteration of 2CFA and Pathway Analysis — cytosolic defects.

containment graph and pathway automaton shown in Fig. 9.5. This result shows
a remarkable improvement over the result previously obtained by the ordinary
0CFA (Section 6.3). It is now easy to see that cytosolic defects also cripple
the system and prevent LDL particles from being internalised. The exo-plasmic
domain of the receptor might still ligate LDL particles, but the internal binding
sites cannot adhere to the clathrin coat that forms around the coated pit and
shapes the early endosome. Hence, the LDL particles cannot be internalised,
and the occurrence of LDL in the cytosol is caused by the previously mentioned
modelling artifact. The corresponding analysis results can be found in Appendix
B.1.3 and B.3.3. Again, the iterative application of 2CFA, shown in Fig. 9.6
exhibits a similar improvement (see Appendix B.2.3 and B.4.3).



176 An Iterative Analysis

q_0

q_1 q_2

q_3
q_4

q_5
q_6

q_7 q_8 q_9

q_10

(1, 15)
(2, 16)

(3, 17)

(18, 10) (4, 17)

(18, 9) (5, 17)

(18, 8)
(6, 17) (11, 19)(11, 19)

(11, 19)

(11, 19)

(12, 19)(12, 19)

(12, 19)

(12, 19)

(7, 20)

Figure 9.7: Iterative analysis — transcription of single gene.

9.3 CASE: Analysing Genetic Transcription

To complete the examination of the case studies we now return to the transcrip-
tion model of Section 3.1.3. The result of iterative application of any CFA and
Pathway Analysis is the pathway automaton shown in Fig. 9.7.

It is immediate to see that this result is much more precise than the correspond-
ing automaton of the previous chapter. In particular, all of the spurious edges
and dead end states have disappeared, and the transcription process is now
plain to see; the two first transitions orchestrate the coordination compound
comprising the gene and the polymerase. This is followed by four elongation
steps, where first the next nucleotide of the sequence is read from the gene
(single edge forward), and then either a suitable nucleotide tri-phosphate is
ligated (double edge forward, one for each possible nTP) or the transcription
is terminated prematurely (backedge to start state). After four such rounds
transcription is terminated normally, and the coordination compound is broken
(backedge to start state).

The one remaining imprecision is that the analysis cannot distinguish the par-
ticular nTP that is ligated in any of the elongation steps. This is no surprise as
the Pathway Analysis does not take name bindings into account.

Due to the lack of information regarding name bindings crosstalk is inevitable
when, e.g., more than one gene is available for transcription. Hence, we cannot
expect the analysis to scale very well. Unfortunately this suspicion is confirmed
by the analysis result shown in Fig. 9.8, which is obtained by iterative analysis of
a two-gene transcription system. Due to the locking of coordination compounds,
we expect the transcription of one gene to terminate, before transcription of
the other commences. Thus, intuitively, the corresponding pathway automaton
would simply be two separate one-gene automata, but this is not the case.



CASE: Analysing Genetic Transcription 177

q_0

q_1

oHud
r

q_2

yItJv
z

q_3

PxBO
R

q_4

rajtR
Z

q_5
dbSA

L

q_6

rY21
Xp

F9yIH
9

q_21

YmO
iH1

q_22

rY21
Xp

F9yIH
9

pEfK
Gs

q_7
lZ2jP

Z
egw1

n9

q_8

yItJv
z

q_9

seLo
T

q_10

rY21
Xp

F9yIH
9

q_51

rajtR
Z

q_53

pxeX
K

yOoj
f

q_11
lZ2jP

Z
egw1

n9

q_12

yItJv
z

q_13

nAG0
N

q_14

rY21
Xp

F9yIH
9

q_58

rajtR
Z

q_59
yboE

R

d8RP
i

q_15
lZ2jP

Z
egw1

n9

q_16

yItJv
z

q_17
PKW

Vk

q_18

rY21
Xp

F9yIH
9

q_64

rajtR
Z

q_11
7

p5Px
3

q_19

f2YK
A

q_20

lZ2jP
Z

egw1
n9

q_15
0

yItJv
z

rY21
Xp

F9yIH
9

utpA
8

q_86

rY21
Xp

F9yIH
9

rZlr7
g

q_23
lZ2jP

Z
egw1

n9

q_24

oHud
r

q_25

tZ9rF
H

q_26

rY21
Xp

F9yIH
9

PxBO
R

q_12
6

YXO
ynC

NGtE
Fj

q_27

lZ2jP
Z

egw1
n9

q_28

oHud
r

q_29

s4M6
zs

q_30

rY21
Xp

F9yIH
9

q_12
2

PxBO
R

q_12
3

PSN
lEa

GmtS
MR

q_31
lZ2jP

Z

egw1
n9

q_32

oHud
r

q_33
rY21

Xp

F9yIH
9

q_34

VK8X
I7

q_11
8

PxBO
R

q_11
9

Xpm
fJW

q_35

oHud
r

ney0
PR

q_36
lZ2jP

Z

egw1
n9

q_37

PxBO
R

q_38

APTl
ht

tKjEh
b

q_54
rY21

Xp

F9yIH
9

q_39

dbSA
L

q_40
rY21

Xp

F9yIH
9

q_41

VK8X
I7

Zr4yh

q_42

tKjEh
b

q_43

rY21
Xp

F9yIH
9

GmtS
MR

pEfK
Gs

q_14
7

lZ2jP
Z

egw1
n9

ney0
PR

q_45
lZ2jP

Z

egw1
n9

q_44

yItJv
z

q_46

PxBO
R

q_47
rajtR

Z

tKjEh
b

q_14
1

dbSA
L

q_14
2

rY21
Xp

F9yIH
9

q_48
dbSA

L

q_49

NV50
wo

q_50

rY21
Xp

F9yIH
9

Zr4yh
q_13

9

YmO
iH1

q_14
0

rY21
Xp

F9yIH
9

q_52

pEfK
Gs

lZ2jP
Z

egw1
n9

lZ2jP
Z

egw1
n9

q_56

dbSA
L

q_13
7

YmO
iH1

q_13
8

rY21
Xp

F9yIH
9

oHud
r

q_55

seLo
T

NV50
wo

q_57

rY21
Xp

F9yIH
9

q_11
4

oHud
r

yOoj
f

lZ2jP
Z

egw1
n9

pEfK
Gs

lZ2jP
Z

egw1
n9

q_60

seLo
T

q_61

YmO
iH1

q_62

rY21
Xp

F9yIH
9

NV50
wo

q_11
5

nAG0
N

q_11
6

rY21
Xp

F9yIH
9

yOoj
f

lZ2jP
Z

egw1
n9

rZlr7
g

pEfK
Gs

q_63

lZ2jP
Z

egw1
n9

q_65

seLo
T

q_66

tZ9rF
H

q_67
rY21

Xp

F9yIH
9

YmO
iH1

q_10
8

nAG0
N

q_10
9

rY21
Xp

F9yIH
9

rZlr7
g

yOoj
f

q_69

lZ2jP
Z

egw1
n9

NGtE
Fj

pEfK
Gs

q_68
lZ2jP

Z
egw1

n9

s4M6
zs

q_70
seLo

T

q_71
rY21

Xp

F9yIH
9

tZ9rF
H

q_73

nAG0
N

q_74
rY21

Xp
F9yIH

9

NGtE
Fj

yOoj
f

q_72
lZ2jP

Z

egw1
n9

q_76

nAG0
N

q_77

s4M6
zs

q_78
rY21

Xp

F9yIH
9

rZlr7
g

d8RP
i

q_75
lZ2jP

Z

egw1
n9

tZ9rF
H

q_10
2

PKW
Vk

q_11
1

rY21
Xp

F9yIH
9

NGtE
Fj

d8RP
i

q_80

lZ2jP
Z

egw1
n9

GmtS
MR

yOoj
f

q_79
lZ2jP

Z

egw1
n9

q_81

nAG0
N

q_82
rY21

Xp
F9yIH

9

q_83

VK8X
I7

s4M6
zs

q_84

PKW
Vk

q_85
rY21

Xp

F9yIH
9

GmtS
MR

d8RP
i

q_10
5

lZ2jP
Z

egw1
n9

ney0
PR

yOoj
f

q_95
lZ2jP

Z
egw1

n9

f2YK
A

NGtE
Fj

q_87
lZ2jP

Z

egw1
n9

q_88

yItJv
z

utpA
8

q_89

s4M6
zs

q_90
rY21

Xp
F9yIH

9

q_92
rajtR

Z

f2YK
A

GmtS
MR

q_91
lZ2jP

Z

egw1
n9

utpA
8

q_93

rY21
Xp

F9yIH
9

q_94

VK8X
I7

utpA
8

YmO
iH1

q_10
3

rY21
Xp

F9yIH
9

ney0
PR

f2YK
A

q_96

lZ2jP
Z

egw1
n9

tKjEh
b

q_97

nAG0
N

q_98
rY21

Xp
F9yIH

9

utpA
8

tKjEh
b

q_10
0

rY21
Xp

F9yIH
9

ney0
PR

d8RP
i

q_99

lZ2jP
Z

egw1
n9

tKjEh
b

PKW
Vk

q_10
1

rY21
Xp

F9yIH
9

f2YK
A

rZlr7
g

q_10
4

lZ2jP
Z

egw1
n9

utpA
8

tZ9rF
H

q_10
6

rY21
Xp

F9yIH
9

PKW
Vk

VK8X
I7

q_10
7

rY21
Xp

F9yIH
9

d8RP
i

q_11
0

lZ2jP
Z

egw1
n9

YmO
iH1

q_11
2

PKW
Vk

q_11
3

rY21
Xp

F9yIH
9

f2YK
A

lZ2jP
Z

egw1
n9

PxBO
R

d8RP
i

lZ2jP
Z

egw1
n9

NV50
wo

q_13
1

PKW
Vk

q_13
2

rY21
Xp

F9yIH
9

dbSA
L

q_12
0

s4M6
zs

q_12
1

rY21
Xp

F9yIH
9

Zr4yh

q_12
9

rY21
Xp

F9yIH
9

q_13
0

VK8X
I7

GmtS
MR

lZ2jP
Z

egw1
n9

dbSA
L

q_12
4

tZ9rF
H

q_12
5

rY21
Xp

F9yIH
9

Zr4yh

q_12
7

s4M6
zs

q_12
8

rY21
Xp

F9yIH
9

NGtE
Fj

lZ2jP
Z

egw1
n9

Zr4yh

q_14
8

tZ9rF
H

q_14
9

rY21
Xp

F9yIH
9

GmtS
MR

lZ2jP
Z

egw1
n9

lZ2jP
Z

egw1
n9

q_14
4

ney0
PR

q_13
3

f2YK
A

q_13
4

lZ2jP
Z

egw1
n9

rY21
Xp

F9yIH
9

q_13
5

NV50
woutpA
8

NV50
wo

q_13
6

rY21
Xp

F9yIH
9

lZ2jP
Z

egw1
n9

rZlr7
g

lZ2jP
Z

egw1
n9

rZlr7
g

lZ2jP
Z

egw1
n9

ney0
PR

pEfK
Gs

q_14
3

lZ2jP
Z

egw1
n9

tKjEh
b

seLo
T

q_14
5

rY21
Xp

F9yIH
9

rY21
Xp

F9yIH
9

q_14
6

Zr4yh

lZ2jP
Z

egw1
n9

seLo
T

VK8X
I7

q_15
1

rY21
Xp

F9yIH
9

NGtE
Fj

lZ2jP
Z

egw1
n9

rajtR
Z

bwzD
O

Figure 9.8: Iterative analysis — transcription of two genes. The figure is not in-
tended for reading. Rather, it illustrates the combinatorial blow-up that emerges
in the presence of spurious cross-talk between similar subsystems.



178 An Iterative Analysis

9.4 Concluding Remarks

The main contribution of this chapter is a simple idea that, to a large extent,
reconciles the otherwise orthogonal analyses of previous chapters. These anal-
yses all take as input a safe estimate of the set of run-time enabled reactions
and produce as output a more precise estimate that remains safe. Thus, to ob-
tain the best possible estimate we simply iterate, alternating CFA and Pathway
Analysis until the estimate stabilises. This approach is somewhat related to the
distinction that is made in Data Flow Analysis between faint and dead variables
[NNH99], but, in our case, facilitates analysis refinement rather than program
optimisation.

The case studies show that the approach works quite well, in particular for pro-
totypical examples. This positive outcome owes to the profound difference in
the approaches of CFA and Pathway Analysis. The former combines context
sensitivity with binding information in order to approximate the set of enabled
prefixes, whereas the latter relies solely on flow-sensitivity. The outlined itera-
tive approach achieves synergy between these features.

However, the study of genetic transcription also shows that, even for the iter-
ative approach, the Pathway Analysis does not scale in the presence of models
that exhibit several similar pathways. Due to the lack of appropriate name bind-
ing information the analysis simply cannot distinguish between the pathways.
Consequently, the results are obfuscated by cross-talk.

Similarly, the study of the LDL degradation pathway shows that the Path-
way Analysis would benefit from the incorporation of context information. The
obtained result exhibits several spurious edges corresponding to capabilities re-
acting ‘out of context’.

In contrast, the iterative CFA results are remarkably precise. Of course, 2CFA
is much more informative than 0CFA, but both exhibit good results. And, while
CFA does not seem to offer much information about flat models, such as the
genetic transcription model, they still prove very useful to the iterative analysis.



Chapter 10

Conclusion

“I never do last words. They always seem so final.”
— Laurell K. Hamilton

In this dissertation we have investigated the use of Static Program Analysis
techniques in conjunction with BioAmbients process expressions that model
sub-cellular biological systems. Our main thesis was that

The approximative approach of Static Program Analysis can be
used to automatically decide biologically relevant properties of pro-
cess calculus expressions that model biological systems.

Where by interesting properties we mean anything that can be used to either
pinpoint errors during model development or predict the consequences of per-
turbations. For the purpose of this dissertation, however, we have focused on
the reachability of spatial configurations, a property related to the operation of
the secretory pathway, and the realisability of sequential behaviours, a property
related to the operation of cellular pathways in general.

The aim of this chapter is to evaluate our findings with respect to the above
thesis. In order to do this we start in Section 10.1 by briefly summing up
the work that has been contributed in support of the thesis. In Section 10.2 we
gloss over the main findings. Then, in Section 10.3, we discuss how the obtained
results reflect upon the thesis and discuss a number of research ideas that would
further elaborate on and support the thesis.



180 Conclusion

10.1 Contributions

In order to support the thesis we have contributed a number of technical devel-
opments:

• We have formalised a variant of the BioAmbients language. The pro-
posed variant incorporates a general recursion construct in the manner of
the Calculus of Communicating Systems [Mil80] and discards unrestricted
non-deterministic choice in favour of guarded sums (Chapter 3).

• The introduction of general recursion complicates many aspects of the
technical developments. We have resolved these issues for a class of well-
formed initial programs (Chapter 5).

• In order to analyse for structural/spatial properties we have adapted the
traditional 0CFA (mono-variant Control Flow Analysis) approach of Flow
Logic into a space efficient analysis that for any BioAmbients program,
P⋆, safely approximates the set of reachable configurations by a single
tree (Chapter 6).

• Being dissatisfied with the resulting 0CFA we have made a further adap-
tation that incorporates context in the manner of 2CFA and relies on mul-
tiple auxiliary minor analyses in order to significantly extend the 0CFA
approach (Chapter 7).

• To further analyse for causal/temporal properties we have adapted the
classical approach of Monotone Frameworks into a ‘Pathway Analysis’
that for any BioAmbients program, P⋆, safely approximates the set of
realisable transition sequences by a finite automaton (Chapter 8).

• Finally, we have devised an iterative algorithm that, to a certain extent,
achieves synergy between the context sensitivity of the Control Flow Anal-
yses and the flow sensitivity of the Pathway Analysis, thereby improving
the results of both (Chapter 9).

We have proved that the specified analyses are both exhaustive and correct
with respect to BioAmbients programs. Furthermore we have shown that the
analyses admit the computation of best analysis results and, hence, that they
can be implemented; all results presented throughout the dissertation have been
automatically computed by working prototype implementations.



Evaluation Results 181

10.2 Evaluation Results

What remains to be discussed is the issue of usefulness, which, in turn, is closely
related to the tradeoff between precision and efficiency that is inherently present
in all static analyses [NNH99]. Throughout the dissertation we have evaluated
each of the analyses by applying it to a number of variations on two small case
studies:

Genetic transcription is the process by which genetic information is tran-
scribed into mRNA molecules. The process involves the formation of
a temporary coordination compound (complex) that comprises several
molecules but operates as a single unit. We have subjected abstract mod-
els comprising an RNA polymerase, a supply of nucleotide tri-phosphate,
and either a single or two genes to Pathway Analysis (Section 8.5) and
iterative analysis (Section 9.3).

The LDL degradation pathway is a prototypical receptor mediated endo-
cytic pathway. The pathway may fail due to defects in the genetic coding
of crucial receptor binding sites. High cholesterol and cardiovascular dis-
eases are well-known pathological indications associated with such failure.
We have subjected abstract models of both normal and defect systems
to control flow (Section 6.3 and Section 7.5), pathway (Section 8.4), and
iterative analysis (Section 9.2).

The simplest, and computationally least expensive, analysis is the 0CFA. This
simplicity, however, is paid in terms precision. The 0CFA is generally too weak
to clearly expose interesting properties in an intelligible manner. In our studies
of the LDL degradation pathway (Section 6.3) the analysis does detect serious
perturbations, but in all cases the results exhibit many analysis artifacts.

The complexity of the 2CFA analysis is somewhat higher. Correspondingly,
the results exhibit very few analysis artifacts and, in many cases, they seem to
capture the exact set of reachable spatial configurations (Section 7.5). Somewhat
surprisingly, however, the 2CFA does not do significantly better than the 0CFA
in pinpointing the effects of receptor related perturbations of the LDL pathway
model. Due to the higher precision of the 2CFA, however, we are now able to
see that this inadequacy owes to the lack of flow-sensitivity in the CFAs.

The Pathway Analysis, as it is presented in Chapter 8, constitutes another in-
crease in complexity and exhibits an asymptotic worst-case complexity that is
exponential in the size of the computed automaton. This complexity is not
inherent as particular choices of widening operators and equivalence relations



182 Conclusion

can be used to trade precision for efficiency (Section 8.3.3). The results are
quite precise. In particular, the effects of receptor related perturbations of the
LDL pathway model are pinpointed very precisely. In fact, the analysis result
for the normal LDL pathway model (Section 8.4) is good enough to pinpoint
the causal relationship between all of the events depicted in Fig. 2.8 while ex-
hibiting only a few analysis artifacts. These artifacts arise because the analysis
does not incorporate context information (Section 8.4). In the case of the gene
transcription model the analysis result is also informative, but here we see more
analysis artifacts (Section 8.5). These artifacts owe to crosstalk, between seem-
ingly unrelated capability prefixes, that occurs because the analysis does not
include name binding information.

These findings are supported by the iterative analysis strategy of Chapter 9.
Here the context and name binding information tracked by a CFA analysis
influences the Pathway Analysis and, in turn, the flow information tracked by the
Pathway Analysis influences the CFA analysis. The improvement is immediate:
In the case of receptor related perturbations of the LDL pathway model both
of the CFAs now pinpoint the effects very precisely (Section 9.2). And, in the
case of genetic transcription, the Pathway Analysis becomes much more precise
and exhibits nearly no analysis artifacts (Section 9.3). The iterative Pathway
Analysis results for the ordinary LDL pathway model, on the other hand, is not
improved. This owes to the very indirect nature of the mutual influence. This
also explains the rather poor result obtained for the 2-gene transcription model
(Section 9.3), which seems to indicate that, presently, the iterative strategy does
not scale well to systems with multiple similar pathways.

10.3 Conclusion and Further Work

In order to finally conclude on the thesis we return to the central question: Can
static analysis decide interesting properties of models of biological systems?

Our claim, based on the outlined results, is that yes, it can. The established
battery of analyses, which ranges in complexity from (low) polynomial to expo-
nential, is able to accurately, and with increasing precision, pinpoint the most
essential aspects of the studied case models.

Based on these results we conjecture that the set of analyses presented in this
dissertation constitutes a strong tool that can both support the development of
prototypical models and automate significant parts of their post-modelling anal-
ysis. Beyond the presented results the former point, in particular, is supported
by our, subjective, practical modelling experiences.



Conclusion and Further Work 183

Further Work The presented results are very promising. The single sour
grape in our basket of attractive fruits is the fact that the analysis package
does not maintain the high precision when models grow. Fortunately, the above
reflections on the matter reveals a number of key points that may be addressed
by further research in order to improve on this:

Flow Sensitive Control Flow Analysis The results clearly indicate that
the Control Flow Analyses would benefit from the inclusion of flow-sensitivity
[BC05]. In terms of complexity vs. precision, a set of flow sensitive CFAs,
independent of the expensive Pathway Analysis, would cover the middle ground
between the present CFAs and the Pathway Analysis, and thus be a worthwile
extension of the present analysis package. An auxiliary flow-relation, in the
vein of the relevant name estimate of Section 7.2, and localised per-label name
binding estimates would likely be required.

Name Tracking Pathway Analysis It is also quite clear that the Pathway
Analysis would benefit from the inclusion of name binding information. Again,
using the CFAs to obtain such information is clearly not the best way. Rather
it would be prudent for the Pathway Analysis itself to track the bindings of
names, much in the manner of the CFAs. This type of analysis is already being
investigated in [NN07], and it seems that an integration with the present Path-
way Analysis would be straightforward. In terms of complexity we note that,
even though more information is considered in order to make the analysis more
precise, the average complexity might well decline as the increased precision
would, most likely, lead to fewer transitions in the pathway automaton.

Context Sensitive Pathway Analysis Another way to improve the Pathway
Analysis would be to include context information in the manner of e.g. 2CFA.
Primarily, this appears to be a necessary precondition for meaningful Pathway
Analysis of elaborate cellular systems, where many processes are completely
separated by physical barriers. It would also add another dimension to the it-
erative analysis strategy of Chapter 9 as the contextualised Pathway Analysis
and the 2CFA would be able to exchange contextualised, rather than the present
flat, information about realisable reactions. However, as a contextualised Path-
way Analysis is likely to be computationally quite expensive, the alternative
option – incorporating contextualised name binding information directly into
the Pathway Analysis – may constitute a more worthwhile pursuit.

Post-analysis Data Mining For large models all of the presented, and indeed
all of the above suggested, static analyses are likely to compute quite overwhelm-
ing analysis estimates that are beyond human interpretation. Thus it would be
obvious to supplement the analyses with a tool-set for post-analysis data-mining.
In particular, the idea of using model checking techniques, based on, e.g., Com-
putation Tree Logic, for analysing the always finite pathway automata is quite



184 Conclusion

obvious. A more risky, but potentially interesting, endeavour would be to use
model checking related techniques for guiding the computation of the Pathway
Analysis, thereby a priori restricting the universe of interest [Säı00]. Dually,
the analysis information may be used to direct the model checking of the model
itself, which perhaps, in turn, could lead to another iterative approach [BV01].

Stochastic Pathway Analysis Clearly, the Pathway Analysis is somehow re-
lated to the state space aggregation algorithms used by the stochastic process
algebra community [GHR01, BSW06]. Thus, one could ask if the Pathway
Analysis could somehow be used to simplify stochastic models? Well, a di-
rect coupling seems infeasible – the effect of the various approximations on the
stochastic information is rather unpredictable. In the vein of the suggestions of
the previous paragraph, however, it may be possible to use pathway automata
for guiding stochastic model checking [FSCR04].

Other Modelling Languages Finally, one can take a fundamentally different
approach and try to influence the precision of the analyses by choosing another
modelling formalism. The benefit would be to obtain a cleaner model of, e.g.,
transport pathways, in the case of Brane calculus, thereby avoiding some analy-
sis artifacts. This is feasible. On the one hand, it would be a large undertaking,
and the analysis artifacts would most likely just “move” to another aspects of
the model. But on the other hand, a recent study comparing BioAmbients and
Brane calculus leads to optimism as the calculi exhibit more similarities than
differences [Ver07].



Appendix A

Variants of the LDL

Degradation Pathway



186 Variants of the LDL Degradation Pathway

A.1 The LDL Pathway with Normal Receptors

LipoProtein =
LDLrcpt#!{ApoB}1 . enter ApoB2 . enter ee3 . enter xv4 . proĉ ?{Hydr}5 .

( expel Hydr6 .0
exit Hydr7 .0 CH ) LDL

Endo =
enter AP223,16,9 . exit AP224,17,10 .merge– Le25,18,11 .0

EarlyEndo =
accept ee22,15 .Endo EE

ClathrinCoat =
EErcpt̂ ?{ap2}26 . accept ap227 . expel ap228 .0 CC

XferVesicle =
( accept xv31 .0

exit Le32 .merge– lyso33 .0 ) XV

LateEndo =
( merge+ Le29 . expel Le30 .0

XferVesicle ) LE

Lysosome =
merge+ lyso34 . proc !{hydr}35 .0 LY SO

Cell =
( ( EErcpt !{AP2}8 . Endo EE

+EErcpt !{AP2}12 . LDLrcpt#?{apob}13 . accept apob14 .EarlyEndo

+LDLrcpt#?{apob}19 . accept apob20 . EErcpt !{AP2}21 .EarlyEndo )
ClathrinCoat

LateEndo

Lysosome ) CELL

(LDLrcpt) (EErcpt) (ApoB) (AP2) (ee) (cc) (lyso) (xv)
(Le) (proc) (hydr) (ap2) (ap)

( LipoProtein Cell )



187

A.2 The LDL Pathway with Defects in Exoplas-

mic Domain

LipoProtein =
LDLrcp#!{ApoB}1 . enter ApoB2 . enter ee3 . enter xv4 . proĉ ?{Hydr}5 .

( expel Hydr6 .0
exit Hydr7 .0 CH ) LDL

Endo =
enter AP223,16,9 . exit AP224,17,10 .merge– Le25,18,11 .0

EarlyEndo =
accept ee22,15 .Endo EE

ClathrinCoat =
EErcpt̂ ?{ap2}26 . accept ap227 . expel ap228 .0 CC

XferVesicle =
( accept xv31 .0

exit Le32 .merge– lyso33 .0 ) XV

LateEndo =
( merge+ Le29 . expel Le30 .0

XferVesicle ) LE

Lysosome =
merge+ lyso34 . proc !{hydr}35 .0 LY SO

Cell =
( ( EErcpt !{AP2}8 . Endo EE

+EErcpt !{AP2}12 . LDLrcpt#?{apob}13 . accept apob14 .EarlyEndo

+LDLrcpt#?{apob}19 . accept apob20 . EErcpt !{AP2}21 .EarlyEndo )
ClathrinCoat

LateEndo

Lysosome ) CELL

(LDLrcpt) (LDLrcp) (EErcpt) (ApoB) (AP2) (ee) (cc) (lyso)
(xv) (Le) (proc) (hydr) (ap2) (ap)

( LipoProtein

Cell )



188 Variants of the LDL Degradation Pathway

A.3 The LDL Pathway with Defects in Cytosolic

Domain

LipoProtein =
LDLrcpt#!{ApoB}1 . enter ApoB2 . enter ee3 . enter xv4 . proĉ ?{Hydr}5 .

( expel Hydr6 .0
exit Hydr7 .0 CH ) LDL

Endo =
enter AP223,16,9 . exit AP224,17,10 .merge– Le25,18,11 .0

EarlyEndo =
accept ee22,15 .Endo EE

ClathrinCoat =
EErcp̂ ?{ap2}26 . accept ap227 . expel ap228 .0 CC

XferVesicle =
( accept xv31 .0

exit Le32 .merge– lyso33 .0 ) XV

LateEndo =
( merge+ Le29 . expel Le30 .0

XferVesicle ) LE

Lysosome =
merge+ lyso34 . proc !{hydr}35 .0 LY SO

Cell =
( ( EErcpt !{AP2}8 . Endo EE

+EErcpt !{AP2}12 . LDLrcpt#?{apob}13 . accept apob14 .EarlyEndo

+LDLrcpt#?{apob}19 . accept apob20 . EErcpt !{AP2}21 .EarlyEndo )
ClathrinCoat

LateEndo

Lysosome ) CELL

(LDLrcpt) (EErcpt) (EErcp) (ApoB) (AP2) (ee) (cc) (lyso)
(xv) (Le) (proc) (hydr) (ap2) (ap)

( LipoProtein

Cell )



Appendix B

Analysis Results for the LDL

Degradation Pathway



190 Analysis Results for the LDL Degradation Pathway

B.1 Analysis Results for the 0CFA

B.1.1 The normal LDL Pathway

µ I(µ)
LY SO CH,LDL,merge– lyso33,

exit Le32, accept xv31,merge+ lyso34, proc !{hydr}35

XV CH,LDL, accept xv31,
exit Le32,merge– lyso33

LE CH,LDL,merge– Le25,
exit AP224, enter AP223, accept ee22,
merge– Le18, exit AP217, enter AP216,
accept ee15,merge– Le11, exit AP210,
enter AP29,merge+ Le29, expel Le30,XV

CC EE,XV ,LE,
EErcpt̂ ?{ap2}26, accept ap227, expel ap228

EE CH,LDL, enter AP29,
exit AP210,merge– Le11, accept ee15,
enter AP216, exit AP217,merge– Le18,
accept ee22, enter AP223, exit AP224,merge– Le25

CELL CH,LDL,EErcpt !{AP2}8,
EE,EErcpt !{AP2}12, LDLrcpt#?{apob}13,
accept apob14, LDLrcpt#?{apob}19, accept apob20,
EErcpt !{AP2}21, CC,XV ,
LE,LY SO

CH exit Hydr7

LDL LDLrcpt#!{ApoB}1, enter ApoB2, enter ee3,
enter xv4, proĉ ?{Hydr}5, expel Hydr6, CH

TOP CH,LDL,CELL



191

n R(n)
ap2 AP2
apob ApoB
Hydr hydr

ℓ F(ℓ)
33 34
32 30
21 26
12 26
9 27
10 28
11 29
16 27
17 28
18 29
23 27
24 28
25 29
8 26
7 6
35 5
4 31
3 22, 15
2 20, 14
1 19, 13



192 Analysis Results for the LDL Degradation Pathway

B.1.2 The LDL Pathway with Defects in Exoplasmic Do-

main

µ I(µ)
LY SO merge– lyso33, exit Le32, accept xv31,

merge+ lyso34, proc !{hydr}35

XV accept xv31, exit Le32,merge– lyso33

LE merge– Le25, exit AP224, enter AP223,
accept ee22,merge– Le18, exit AP217,
enter AP216, accept ee15,merge– Le11,
exit AP210, enter AP29,merge+ Le29,
expel Le30,XV

CC EE,XV ,LE,
EErcpt̂ ?{ap2}26, accept ap227, expel ap228

EE enter AP29, exit AP210,merge– Le11,
accept ee15, enter AP216, exit AP217,
merge– Le18, accept ee22, enter AP223,
exit AP224,merge– Le25

CELL EErcpt !{AP2}8, EE,EErcpt !{AP2}12,
LDLrcpt#?{apob}13, accept apob14, LDLrcpt#?{apob}19,
accept apob20, EErcpt !{AP2}21, CC,
XV ,LE,LY SO

CH exit Hydr7

LDL LDLrcp#!{ApoB}1, enter ApoB2, enter ee3,
enter xv4, proĉ ?{Hydr}5, expel Hydr6, CH

TOP LDL,CELL

n R(n)
ap2 AP2

ℓ F(ℓ)
33 34
32 30
21 26
12 26
9 27
10 28
11 29
16 27
17 28
18 29
23 27
24 28
25 29
8 26



193

B.1.3 The LDL Pathway with Defects in Cytosolic Do-

main

µ I(µ)
LY SO CH,LDL,merge– lyso33,

exit Le32, accept xv31,merge+ lyso34, proc !{hydr}35

XV CH,LDL, accept xv31,
exit Le32,merge– lyso33

LE CH,LDL,merge– Le25,
exit AP224, enter AP223, accept ee22,
merge– Le18, exit AP217, enter AP216,
accept ee15,merge– Le11, exit AP210,
enter AP29,merge+ Le29, expel Le30,XV

CC EErcp̂ ?{ap2}26, accept ap227, expel ap228

EE CH,LDL, enter AP29,
exit AP210,merge– Le11, accept ee15,
enter AP216, exit AP217,merge– Le18,
accept ee22, enter AP223, exit AP224,merge– Le25

CELL CH,LDL,EErcpt !{AP2}8,
EE,EErcpt !{AP2}12, LDLrcpt#?{apob}13,
accept apob14, LDLrcpt#?{apob}19, accept apob20,
EErcpt !{AP2}21, CC,XV ,
LE,LY SO

CH exit Hydr7

LDL LDLrcpt#!{ApoB}1, enter ApoB2, enter ee3,
enter xv4, proĉ ?{Hydr}5, expel Hydr6, CH

TOP CH,LDL,CELL

n R(n)
apob ApoB
Hydr hydr

ℓ F(ℓ)
33 34
32 30
11 29
18 29
25 29
7 6
35 5
4 31
3 22, 15
2 20, 14
1 19, 13



194 Analysis Results for the LDL Degradation Pathway

B.2 Analysis Results for the 2CFA

B.2.1 The normal LDL Pathway

µgp µp µ I(µgp, µp, µ)

CELL LE XV merge– lyso33, exit Le32, accept xv31,

LDL,

CELL LE LDL enter xv4, proĉ ?{Hydr}5, expel Hydr6,

CH,

CELL CC EE exit AP224, merge– Le25, exit AP217,

merge– Le18, exit AP210, merge– Le11,

LDL,

CELL EE LDL enter xv4, proĉ ?{Hydr}5, expel Hydr6,

CH,

CELL XV LDL proĉ ?{Hydr}5, expel Hydr6, CH,

CELL LY SO LDL proĉ ?{Hydr}5, expel Hydr6, CH,

CELL LDL CH exit Hydr7,

⊤ CELL LY SO proc !{hydr}35, merge+ lyso34, accept xv31,

LDL, CH,

⊤ CELL LE XV , expel Le30, merge+ Le29,

LDL,

⊤ CELL CC expel ap228, accept ap227, EErcpt̂ ?{ap2}26,

EE,

⊤ CELL EE merge– Le25, exit AP224, enter AP223,

accept ee22, merge– Le18, exit AP217,

enter AP216, accept ee15, merge– Le11,

exit AP210, enter AP29, LDL,

⊤ CELL XV accept xv31, merge– lyso33, LDL,

⊤ CELL LDL enter ee3, enter xv4, proĉ ?{Hydr}5,

expel Hydr6, CH,

⊤ LDL CH exit Hydr7,

⊤p ⊤ CELL LY SO, LE, XV ,

CC, EErcpt !{AP2}21, accept apob20,

LDLrcpt#?{apob}19, accept apob14,

LDLrcpt#?{apob}13, EErcpt !{AP2}12, EE,

EErcpt !{AP2}8, LDL,

⊤p ⊤ LDL CH, expel Hydr6, proĉ ?{Hydr}5,

enter xv4, enter ee3, enter ApoB2,

LDLrcpt#!{ApoB}1,

⊤gp ⊤p ⊤ CELL, LDL,

CC EE LDL enter xv4, proĉ ?{Hydr}5, expel Hydr6,

CH,

LE XV LDL proĉ ?{Hydr}5, expel Hydr6, CH,

LE LDL CH exit Hydr7,

EE LDL CH exit Hydr7,

XV LDL CH exit Hydr7,

LY SO LDL CH exit Hydr7,



195

µgp µp µ p R(µgp, µp, µ, p)

⊤ CELL CC ap2 AP2,

⊤p ⊤ CELL apob ApoB,

CELL LY SO LDL Hydr hydr,

CELL LY SO CH Hydr hydr,

LY SO LDL CH Hydr hydr,

ℓ F(ℓ)

2 20

2 14

7 6

35 5

4 31

3 22

3 15

1 19

1 13

8 26

9 27

10 28

11 29

16 27

17 28

18 29

23 27

24 28

25 29

12 26

21 26

32 30

33 34



196 Analysis Results for the LDL Degradation Pathway

B.2.2 The LDL Pathway with Defects in Exoplasmic Do-

main

µgp µp µ I(µgp, µp, µ)

CELL LE XV merge– lyso33, exit Le32, accept xv31,

CELL CC EE exit AP224, merge– Le25, exit AP217,

merge– Le18, exit AP210, merge– Le11,

⊤ CELL LY SO proc !{hydr}35, merge+ lyso34, accept xv31,

⊤ CELL LE XV , expel Le30, merge+ Le29,

⊤ CELL CC expel ap228, accept ap227, EErcpt̂ ?{ap2}26,

EE,

⊤ CELL EE merge– Le25, exit AP224, enter AP223,

accept ee22, merge– Le18, exit AP217,

enter AP216, accept ee15, merge– Le11,

exit AP210, enter AP29,

⊤ CELL XV accept xv31, merge– lyso33,

⊤ LDL CH exit Hydr7,

⊤p ⊤ CELL LY SO, LE, XV ,

CC, EErcpt !{AP2}21, accept apob20,

LDLrcpt#?{apob}19, accept apob14,

LDLrcpt#?{apob}13, EErcpt !{AP2}12, EE,

EErcpt !{AP2}8,

⊤p ⊤ LDL CH, expel Hydr6, proĉ ?{Hydr}5,

enter xv4, enter ee3, enter ApoB2,

LDLrcp#!{ApoB}1,

⊤gp ⊤p ⊤ CELL, LDL,

µgp µp µ p R(µgp, µp, µ, p)

⊤ CELL CC ap2 AP2,

ℓ F(ℓ)

8 26

9 27

10 28

11 29

16 27

17 28

18 29

23 27

24 28

25 29

12 26

21 26

32 30

33 34



197

B.2.3 The LDL Pathway with Defects in Cytosolic Do-

main

µgp µp µ I(µgp, µp, µ)

CELL LE XV merge– lyso33, exit Le32, accept xv31,

LDL,

CELL LE LDL enter xv4, proĉ ?{Hydr}5, expel Hydr6,

CH,

CELL EE LDL enter xv4, proĉ ?{Hydr}5, expel Hydr6,

CH,

CELL XV LDL proĉ ?{Hydr}5, expel Hydr6, CH,

CELL LY SO LDL proĉ ?{Hydr}5, expel Hydr6, CH,

CELL LDL CH exit Hydr7,

⊤ CELL LY SO proc !{hydr}35, merge+ lyso34, accept xv31,

LDL, CH,

⊤ CELL LE XV , expel Le30, merge+ Le29,

LDL,

⊤ CELL CC expel ap228, accept ap227, EErcp̂ ?{ap2}26,

⊤ CELL EE merge– Le25, exit AP224, enter AP223,

accept ee22, merge– Le18, exit AP217,

enter AP216, accept ee15, merge– Le11,

exit AP210, enter AP29, LDL,

⊤ CELL XV accept xv31, merge– lyso33, LDL,

⊤ CELL LDL enter ee3, enter xv4, proĉ ?{Hydr}5,

expel Hydr6, CH,

⊤ LDL CH exit Hydr7,

⊤p ⊤ CELL LY SO, LE, XV ,

CC, EErcpt !{AP2}21, accept apob20,

LDLrcpt#?{apob}19, accept apob14,

LDLrcpt#?{apob}13, EErcpt !{AP2}12, EE,

EErcpt !{AP2}8, LDL,

⊤p ⊤ LDL CH, expel Hydr6, proĉ ?{Hydr}5,

enter xv4, enter ee3, enter ApoB2,

LDLrcpt#!{ApoB}1,

⊤gp ⊤p ⊤ CELL, LDL,

LE XV LDL proĉ ?{Hydr}5, expel Hydr6, CH,

LE LDL CH exit Hydr7,

EE LDL CH exit Hydr7,

XV LDL CH exit Hydr7,

LY SO LDL CH exit Hydr7,

µgp µp µ p R(µgp, µp, µ, p)

⊤p ⊤ CELL apob ApoB,

CELL LY SO LDL Hydr hydr,

CELL LY SO CH Hydr hydr,

LY SO LDL CH Hydr hydr,



198 Analysis Results for the LDL Degradation Pathway

ℓ F(ℓ)

2 20

2 14

7 6

35 5

4 31

3 22

3 15

1 19

1 13

11 29

18 29

25 29

32 30

33 34



199

B.3 Analysis Results for the Iterative 0CFA

B.3.1 The normal LDL Pathway

µ I(µ)

LY SO CH, LDL, merge– lyso33,
exit Le32, accept xv31, merge+ lyso34, proc !{hydr}35

XV CH, LDL, accept xv31,
exit Le32, merge– lyso33

LE CH, LDL, merge– Le25,
exit AP224, enter AP223, accept ee22,
merge– Le18, exit AP217, enter AP216,
accept ee15, merge– Le11, exit AP210,
enter AP29, merge+ Le29, expel Le30, XV

CC EE, XV , LE,
EErcpt̂ ?{ap2}26, accept ap227, expel ap228

EE CH, LDL, enter AP29,
exit AP210, merge– Le11, accept ee15,
enter AP216, exit AP217, merge– Le18,
accept ee22, enter AP223, exit AP224, merge– Le25

CELL CH, LDL, EErcpt !{AP2}8,
EE, EErcpt !{AP2}12, LDLrcpt#?{apob}13,
accept apob14, LDLrcpt#?{apob}19, accept apob20,
EErcpt !{AP2}21, CC, XV ,
LE, LY SO

CH exit Hydr7

LDL LDLrcpt#!{ApoB}1, enter ApoB2, enter ee3,
enter xv4, proĉ ?{Hydr}5, expel Hydr6, CH

TOP CH, LDL, CELL

n R(n)

ap2 AP2
apob ApoB
Hydr hydr

ℓ F(ℓ)

33 34
32 30
21 26
12 26
9 27
10 28
11 29
16 27
17 28
18 29
23 27
24 28
25 29
8 26
7 6
35 5
4 31
3 22, 15
2 20, 14
1 19, 13



200 Analysis Results for the LDL Degradation Pathway

B.3.2 The LDL Pathway with Defects in Exoplasmic Do-

main

µ I(µ)

LY SO merge– lyso33, exit Le32, accept xv31,
merge+ lyso34, proc !{hydr}35

XV accept xv31, exit Le32, merge– lyso33

LE merge– Le25, exit AP224, enter AP223,
accept ee22, merge– Le18, exit AP217,
enter AP216, accept ee15, merge– Le11,
exit AP210, enter AP29, merge+ Le29,
expel Le30, XV

CC EE, XV , LE,
EErcpt̂ ?{ap2}26, accept ap227, expel ap228

EE enter AP29, exit AP210, merge– Le11,
accept ee15, enter AP216, exit AP217,
merge– Le18, accept ee22, enter AP223,
exit AP224, merge– Le25

CELL EErcpt !{AP2}8, EE, EErcpt !{AP2}12,
LDLrcpt#?{apob}13, accept apob14, LDLrcpt#?{apob}19,
accept apob20, EErcpt !{AP2}21, CC,
XV , LE, LY SO

CH exit Hydr7

LDL LDLrcp#!{ApoB}1, enter ApoB2, enter ee3,
enter xv4, proĉ ?{Hydr}5, expel Hydr6, CH

TOP LDL, CELL

n R(n)

ap2 AP2

ℓ F(ℓ)

33 34
32 30
12 26
9 27
10 28
11 29
8 26



201

B.3.3 The LDL Pathway with Defects in Cytosolic Do-

main

µ I(µ)

LY SO merge+ lyso34, proc !{hydr}35

XV accept xv31, exit Le32, merge– lyso33

LE merge+ Le29, expel Le30, XV
CC EErcp̂ ?{ap2}26, accept ap227, expel ap228

EE enter AP29, exit AP210, merge– Le11,
accept ee15, enter AP216, exit AP217,
merge– Le18, accept ee22, enter AP223,
exit AP224, merge– Le25

CELL LDL, EErcpt !{AP2}8, EE,
EErcpt !{AP2}12, LDLrcpt#?{apob}13, accept apob14,
LDLrcpt#?{apob}19, accept apob20, EErcpt !{AP2}21,
CC, LE, LY SO

CH exit Hydr7

LDL LDLrcpt#!{ApoB}1, enter ApoB2, enter ee3,
enter xv4, proĉ ?{Hydr}5, expel Hydr6, CH

TOP LDL, CELL

n R(n)

apob ApoB

ℓ F(ℓ)

2 20
1 19



202 Analysis Results for the LDL Degradation Pathway

B.4 Analysis Results for the Iterative 2CFA

B.4.1 The normal LDL Pathway

µgp µp µ I(µgp, µp, µ)

CELL LE XV merge– lyso33, exit Le32, accept xv31,

LDL,

CELL LE LDL enter xv4, proĉ ?{Hydr}5, expel Hydr6,

CH,

CELL CC EE exit AP224, merge– Le25, exit AP217,

merge– Le18, exit AP210, merge– Le11,

LDL,

CELL EE LDL enter xv4, proĉ ?{Hydr}5, expel Hydr6,

CH,

CELL XV LDL proĉ ?{Hydr}5, expel Hydr6, CH,

CELL LY SO LDL proĉ ?{Hydr}5, expel Hydr6, CH,

CELL LDL CH exit Hydr7,

⊤ CELL LY SO proc !{hydr}35, merge+ lyso34, accept xv31,

LDL, CH,

⊤ CELL LE XV , expel Le30, merge+ Le29,

LDL,

⊤ CELL CC expel ap228, accept ap227, EErcpt̂ ?{ap2}26,

EE,

⊤ CELL EE merge– Le25, exit AP224, enter AP223,

accept ee22, merge– Le18, exit AP217,

enter AP216, accept ee15, merge– Le11,

exit AP210, enter AP29, LDL,

⊤ CELL XV accept xv31, merge– lyso33, LDL,

⊤ CELL LDL enter ee3, enter xv4, proĉ ?{Hydr}5,

expel Hydr6, CH,

⊤ LDL CH exit Hydr7,

⊤p ⊤ CELL LY SO, LE, XV ,

CC, EErcpt !{AP2}21, accept apob20,

LDLrcpt#?{apob}19, accept apob14,

LDLrcpt#?{apob}13, EErcpt !{AP2}12, EE,

EErcpt !{AP2}8, LDL,

⊤p ⊤ LDL CH, expel Hydr6, proĉ ?{Hydr}5,

enter xv4, enter ee3, enter ApoB2,

LDLrcpt#!{ApoB}1,

⊤gp ⊤p ⊤ CELL, LDL,

CC EE LDL enter xv4, proĉ ?{Hydr}5, expel Hydr6,

CH,

LE XV LDL proĉ ?{Hydr}5, expel Hydr6, CH,

LE LDL CH exit Hydr7,

EE LDL CH exit Hydr7,

XV LDL CH exit Hydr7,

LY SO LDL CH exit Hydr7,



203

µgp µp µ p R(µgp, µp, µ, p)

⊤ CELL CC ap2 AP2,

⊤p ⊤ CELL apob ApoB,

CELL LY SO LDL Hydr hydr,

CELL LY SO CH Hydr hydr,

LY SO LDL CH Hydr hydr,

ℓ F(ℓ)

2 20

2 14

7 6

35 5

4 31

3 22

3 15

1 19

1 13

8 26

9 27

10 28

11 29

16 27

17 28

18 29

23 27

24 28

25 29

12 26

21 26

32 30

33 34



204 Analysis Results for the LDL Degradation Pathway

B.4.2 The LDL Pathway with Defects in Exoplasmic Do-

main

µgp µp µ I(µgp, µp, µ)

CELL LE XV merge– lyso33, exit Le32, accept xv31,

CELL CC EE exit AP210, merge– Le11,

⊤ CELL LY SO proc !{hydr}35, merge+ lyso34, accept xv31,

⊤ CELL LE XV , expel Le30, merge+ Le29,

⊤ CELL CC expel ap228, accept ap227, EErcpt̂ ?{ap2}26,

EE,

⊤ CELL EE merge– Le25, exit AP224, enter AP223,

accept ee22, merge– Le18, exit AP217,

enter AP216, accept ee15, merge– Le11,

exit AP210, enter AP29,

⊤ CELL XV accept xv31, merge– lyso33,

⊤ LDL CH exit Hydr7,

⊤p ⊤ CELL LY SO, LE, XV ,

CC, EErcpt !{AP2}21, accept apob20,

LDLrcpt#?{apob}19, accept apob14,

LDLrcpt#?{apob}13, EErcpt !{AP2}12, EE,

EErcpt !{AP2}8,

⊤p ⊤ LDL CH, expel Hydr6, proĉ ?{Hydr}5,

enter xv4, enter ee3, enter ApoB2,

LDLrcp#!{ApoB}1,

⊤gp ⊤p ⊤ CELL, LDL,

µgp µp µ p R(µgp, µp, µ, p)

⊤ CELL CC ap2 AP2,

ℓ F(ℓ)

8 26

9 27

10 28

11 29

12 26

32 30

33 34



205

B.4.3 The LDL Pathway with Defects in Cytosolic Do-

main

µgp µp µ I(µgp, µp, µ)

CELL LE XV merge– lyso33, exit Le32, accept xv31,

CELL LDL CH exit Hydr7,

⊤ CELL LY SO proc !{hydr}35, merge+ lyso34,

⊤ CELL LE XV , expel Le30, merge+ Le29,

⊤ CELL CC expel ap228, accept ap227, EErcp̂ ?{ap2}26,

⊤ CELL EE merge– Le25, exit AP224, enter AP223,

accept ee22, merge– Le18, exit AP217,

enter AP216, accept ee15, merge– Le11,

exit AP210, enter AP29,

⊤ CELL LDL enter ee3, enter xv4, proĉ ?{Hydr}5,

expel Hydr6, CH,

⊤ LDL CH exit Hydr7,

⊤p ⊤ CELL LY SO, LE, CC,

EErcpt !{AP2}21, accept apob20, LDLrcpt#?{apob}19,

accept apob14, LDLrcpt#?{apob}13, EErcpt !{AP2}12,

EE, EErcpt !{AP2}8, LDL,

⊤p ⊤ LDL CH, expel Hydr6, proĉ ?{Hydr}5,

enter xv4, enter ee3, enter ApoB2,

LDLrcpt#!{ApoB}1,

⊤gp ⊤p ⊤ CELL, LDL,

µgp µp µ p R(µgp, µp, µ, p)

⊤p ⊤ CELL apob ApoB,

ℓ F(ℓ)

2 20

1 19



206 Analysis Results for the LDL Degradation Pathway



Appendix C

Analysis Results for Genetic

Transcription



208 Analysis Results for Genetic Transcription

C.1 Ordinary 2CFA - One Gene

µgp µp µ I(µgp, µp, µ)

⊤gp ⊤p ⊤ MRNA, b?{dp}20, p?{dp}19,

b!{d}18, gene?{p}17, gene?{b}16,

tr?{gene}15, t!{t}14, g!{g}13,

c!{c}12, a!{a}11, b1?{d11}10,

b1?{d11}9, b1?{d11}8, b1!{d1}7,

g1!{c}6, g1!{a}5, g1!{c}4,

g1!{a}3, g1!{b1}2, tr!{g1}1,

µgp µp µ p R(µgp, µp, µ, p)

⊤gp ⊤p ⊤ gene g1,

⊤gp ⊤p ⊤ b c, a, b1,

⊤gp ⊤p ⊤ dp c, a, d1,

⊤gp ⊤p ⊤ p c, a, b1,

⊤gp ⊤p ⊤ d11 d,

ℓ F(ℓ)

18 8

18 9

18 10

7 19

7 20

2 17

2 16

3 17

3 16

4 17

4 16

11 19

11 20

5 17

5 16

12 19

12 20

6 17

6 16

1 15



209

C.2 Iterative 2CFA - One Gene

µgp µp µ I(µgp, µp, µ)

⊤gp ⊤p ⊤ MRNA, b?{dp}20, p?{dp}19,

b!{d}18, gene?{p}17, gene?{b}16,

tr?{gene}15, t!{t}14, g!{g}13,

c!{c}12, a!{a}11, b1?{d11}10,

b1?{d11}9, b1?{d11}8, b1!{d1}7,

g1!{c}6, g1!{a}5, g1!{c}4,

g1!{a}3, g1!{b1}2, tr!{g1}1,

µgp µp µ p R(µgp, µp, µ, p)

⊤gp ⊤p ⊤ gene g1,

⊤gp ⊤p ⊤ p c, a,

⊤gp ⊤p ⊤ dp c, a, d1,

⊤gp ⊤p ⊤ b b1,

⊤gp ⊤p ⊤ d11 d,

ℓ F(ℓ)

18 8

18 9

18 10

7 20

2 16

3 17

4 17

11 19

5 17

12 19

6 17

1 15



210 Analysis Results for Genetic Transcription

C.3 Ordinary 2CFA - Two Genes

µgp µp µ I(µgp, µp, µ)

⊤gp ⊤p ⊤ MRNA, b?{dp}30, p?{dp}29,

b!{d}28, gene?{p}27, gene?{b}26,

tr?{gene}25, t!{t}24, g!{g}23,

c!{c}22, a!{a}21, b2?{d21}20,

b2?{d21}19, b2?{d21}18, b2!{d2}17,

g2!{c}16, g2!{a}15, g2!{c}14,

g2!{a}13, g2!{b2}12, tr!{g2}11,

b1?{d11}10, b1?{d11}9, b1?{d11}8,

b1!{d1}7, g1!{c}6, g1!{a}5,

g1!{c}4, g1!{a}3, g1!{b1}2,

tr!{g1}1,

µgp µp µ p R(µgp, µp, µ, p)

⊤gp ⊤p ⊤ gene g2, g1,

⊤gp ⊤p ⊤ b c, a, b2, b1,

⊤gp ⊤p ⊤ dp c, a, d2, d1,

⊤gp ⊤p ⊤ p c, a, b2, b1,

⊤gp ⊤p ⊤ d21 d,

⊤gp ⊤p ⊤ d11 d,

ℓ F(ℓ)

7 29

7 30

2 27

2 26

3 27

3 26

4 27

4 26

5 27

5 26

6 27

6 26

1 25

28 8

28 9

28 10

28 18

28 19

28 20

17 29

17 30

12 27

12 26

13 27

13 26

14 27

14 26

21 29

21 30

15 27

15 26

22 29

22 30

16 27

16 26

11 25



211

C.4 Iterative 2CFA - Two Genes

µgp µp µ I(µgp, µp, µ)

⊤gp ⊤p ⊤ MRNA, b?{dp}30, p?{dp}29,

b!{d}28, gene?{p}27, gene?{b}26,

tr?{gene}25, t!{t}24, g!{g}23,

c!{c}22, a!{a}21, b2?{d21}20,

b2?{d21}19, b2?{d21}18, b2!{d2}17,

g2!{c}16, g2!{a}15, g2!{c}14,

g2!{a}13, g2!{b2}12, tr!{g2}11,

b1?{d11}10, b1?{d11}9, b1?{d11}8,

b1!{d1}7, g1!{c}6, g1!{a}5,

g1!{c}4, g1!{a}3, g1!{b1}2,

tr!{g1}1,

µgp µp µ p R(µgp, µp, µ, p)

⊤gp ⊤p ⊤ gene g2, g1,

⊤gp ⊤p ⊤ b c, a, b2, b1,

⊤gp ⊤p ⊤ dp c, a, d2, d1,

⊤gp ⊤p ⊤ p c, a, b2, b1,

⊤gp ⊤p ⊤ d21 d,

⊤gp ⊤p ⊤ d11 d,

ℓ F(ℓ)

7 29

7 30

2 27

2 26

3 27

3 26

4 27

4 26

5 27

5 26

6 27

6 26

1 25

28 8

28 9

28 10

28 18

28 19

28 20

17 29

17 30

12 27

12 26

13 27

13 26

14 27

14 26

21 29

21 30

15 27

15 26

22 29

22 30

16 27

16 26

11 25



212 Analysis Results for Genetic Transcription



Bibliography

[AJL+02] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith
Roberts, and Peter Walter. Molecular Biology of The Cell. Garland
Science, 4th edition, 2002.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles,
techniques, and tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1986.

[BB90] Gerard Berry and Gerard Boudol. The chemical abstract machine. In
POPL ’90: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 81–94, New York, NY,
USA, 1990. ACM Press.

[BC05] Chiara Braghin and Agostino Cortesi. Flow-sensitive leakage analysis in
mobile ambients. Electr. Notes Theor. Comput. Sci., 128(5):17–25, 2005.

[BCP06] Ralf Blossey, Luca Cardelli, and Andrew Phillips. A compositional ap-
proach to the stochastic dynamics of gene networks. Transactions in
Computational Systems Biology, 3939:99–122, 2006.

[BDNN98] Chiara Bodei, Pier Paolo Degano, Flemming Nielson, and Hanne Riis
Nielson. Control flow analysis for the π-calculus. In CONCUR 1998 –
Concurrency Theory, volume 1466 of Lecture Notes in Computer Science,
pages 84–98. Springer, 1998.

[BDNN01] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Niel-
son. Static analysis for secrecy and non-interference in networks of pro-
cesses. In Proceedings of Parallel Computing Technologies, volume 2127
of Lecture Notes in Computer Science, pages 27–41, 2001.

[BDPZ03] Chiara Bodei, Pier Paolo Degano, Corrado Priami, and Nicola Zannone.
An enhanced cfa for security policies. In Proc. of the Workshop on Issues
on the Theory of Security (WITS’03), 2003.



214 BIBLIOGRAPHY

[BSW06] Hauke Busch, Werner Sandmann, and Verena Wolf. A numerical ag-
gregation algorithm for the enzyme-catalyzed substrate conversion. In
Corrado Priami, editor, Proc. of Computational Methods in Systems Bi-
ology (CMSB’06), volume 4210 of Lecture Notes in Computer Science,
pages 298–311. Springer, 2006.

[BV01] Guillaume Brat and Willem Visser. Combining static analysis and model
checking for software analysis. In Proc. of Proceedings of the 16th IEEE
international conference on Automated software engineering (ASE’01),
page 262, Washington, DC, USA, 2001. IEEE Computer Society.

[Cai04] Luis Caires. Behavioral and spatial observations in a logic for the pi-
calculus. In Igor Walukiewicz, editor, Proceedings of 7th International
Conference on Foundations of Software Science and Computation Struc-
tures (FOSSACS’04), volume 2987 of Lecture Notes in Computer Science.
Springer, 2004.

[Car04] Luca Cardelli. Bioware languages. In Andrew Herbert and Karen S.
Jones, editors, Computer Systems: Theory, Technology, and Applications
- A Tribute to Roger Needham, Monographs in Computer Science, pages
59–65. Springer, 2004.

[Car05a] Luca Cardelli. Abstract machines of systems biology. Transactions on
Computational Systems Biology, III:145–168, 2005.

[Car05b] Luca Cardelli. Brane calculi. In Vincent Danos and Vincent Schachter,
editors, Proc. of Computational Methods in Systems Biology (CMSB’04),
volume 3082 of Lecture Notes in Computer Science, pages 257–280.
Springer, 2005.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a unified
lattice model for static analysis of programs by construction or approx-
imation of fixpoints. In POPL’1977: Proc. of the 4th ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, pages
238–252. ACM Press, 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In POPL’1979: Proc. of the 6th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages, pages 269–282.
ACM Press, 1979.

[CDGH06] Muffy Calder, Adam Duguid, Stephen Gilmore, and Jane Hillston.
Stronger computational modelling of signalling pathways using both con-
tinuous and discrete-state methods. In Corrado Priami, editor, Proc. of
Computational Methods in Systems Biology (CMSB’06), volume 4210 of
Lecture Notes in Computer Science, pages 63–77. Springer, 2006.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical
Computer Science, 240(1):177–213, 2000.

[CGH05] Muffy Calder, Stephen Gilmore, and Jane Hillston. Automatically deriv-
ing ODEs from process algebra models of signalling pathways. In Gor-
don Plotkin, editor, Proc. of Computational Methods in Systems Biology
(CMSB’05), pages 204–215, April 2005.



BIBLIOGRAPHY 215

[CGH06] Muffy Calder, Stephen Gilmore, and Jane Hillston. Modelling the influ-
ence of RKIP on the ERK signalling pathway using the stochastic process
algebra PEPA. In Transactions on Computational Systems Biology VII,
volume 4230 of Lecture Notes in Computer Science. Springer, 1–23 2006.

[CGHV06] Muffy Calder, Stephen Gilmore, Jane Hillston, and Vladislav
Vyshemirsky. Formal methods for biochemical signalling pathways. In
BCS, 2006. To appear.

[CGP00] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Check-
ing. MIT Press, January 2000.

[CP05] Luca Cardelli and Sylvain Pradalier. Where membranes meet complexes.
In Proc. of BioConcur’05, 2005.

[Cri58] Francis Henry Compton Crick. The biological replication of macro-
molecules. In Proceedings of the 12th Symposia of the Society for Ex-
perimental Biology, pages 138–163, New York, 1958. Academic Press.

[DK03] Vincent Danos and Jean Krivine. Formal molecular biology done in CCS-
R. In Proc. of BioConcur’03, Electronic Notes in Theoretical Computer
Science. Elsevier, 2003.

[DK04] Vincent Danos and Jean Krivine. Reversible communicating systems. In
CONCUR 2004 – Concurrency Theory, volume 3170 of Lecture Notes in
Computer Science, pages 292–307. Springer, September 2004.

[DL03a] Vincent Danos and Cosimo Laneve. Core formal molecular biology. In
Proc. of the 12th ESOP, volume 2618 of Lecture Notes in Computer Sci-
ence, pages 308–318. Springer, 2003.

[DL03b] Vincent Danos and Cosimo Laneve. Graphs for core molecular biology. In
Proc. of Computational Methods in Systems Biology (CMSB’03), volume
2602 of Lecture Notes in Computer Science, pages 34–46. Springer, 2003.

[DL04] Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoretical
Computer Science, 325(1):69–110, 2004.

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, April 2002.

[DP04] Vincent Danos and Sylvain Pradalier. Projective brane calculus. In Proc.
of Computational Methods in Systems Biology (CMSB’04), 2004.

[FSCR04] Francois Fages, Sylvain Sollman, and Nathalie Chabrier-Rivier. Modelling
and querying interaction networks in the biochemical abstract machine
biocham. Journal of Biological Physics and Chemistry, 4:64–73, 2004.

[GHR01] Stephen Gilmore, Jane Hillston, and Marina Ribaudo. An efficient algo-
rithm for aggregating PEPA models. Software Engineering, 27(5):449–
464, 2001.

[Gil76] Daniel T. Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. Journal of Com-
putational Physics, 22:403–434, 1976.

[Gil77] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical re-
actions. The Journal of Physical Chemistry, 81(25):2340–2361, 1977.



216 BIBLIOGRAPHY

[GL05] Roberta Gori and Francesca Levi. A new occurrence counting analysis for
bioambients. In Proceedings of Asian Symposium on Programming Lan-
guages and Systems, volume 3780 of Lecture Notes in Computer Science,
pages 381–400, 2005.

[Her02] Holger Hermanns. Interactive Markov Chains and the Quest for Quanti-
fied Quality, volume 2428 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 2002.

[Hil96] Jane Hillston. A Compositional Approach to Performance Modelling. PhD
thesis, 1996.

[HJNN99] René R. Hansen, Jacob G. Jensen, Flemming Nielson, and Hanne Riis
Nielson. Abstract interpretation of Mobile Ambients. In SAS’99: Proc. of
the 6th International Static Analysis Symposium, volume 1694 of Lecture
Notes in Computer Science, pages 135–148, 1999.

[Jon07] Mike Jones. Flow of information in biological systems. Original
Work by Mike Jones for Wikipedia, January 2007. Licensed un-
der the Creative Commons Attribution ShareAlike License v. 2.5:
http://creativecommons.org/licenses/by-sa/2.5.

[JW95] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow
analysis in higher-order languages. In POPL ’95: Proceedings of the 22nd
ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 393–407, New York, NY, USA, 1995. ACM Press.

[Kil72] Gary Arlen Kildall. Global expression optimization during compilation.
PhD thesis, 1972.

[Kit02] Hiroaki Kitano. Systems biology: a brief overview. Science,
295(5560):1662–1664, March 2002.

[KN06] Céline Kuttler and Joachim Niehren. Gene regulation in the pi-calculus:
simulating cooperativity at the lambda switch. Transactions on Compu-
tational Systems Biology VII, 4230:24–55, 2006.

[KU77] John B. Kam and Jeffrey D. Ullman. Monotone Data Flow Analysis
frameworks. Acta Informatica, 7(3):305–317, 1977.

[Kut07] Céline Kuttler. Modeling bacterial gene expression in a stochastic pi-
calculus with concurrent objects. PhD thesis, University of Lille 1, 2007.

[LBZ+99] Harvey Lodish, Arnold Berk, S. Lawrence Zipursky, Paul Matsudaira,
David Baltimore, and James E. Darnell. Molecular Cell Biology. W.H.
Freeman and Company, 4th edition, 1999. Fig. ?? reprinted with the
permission of the publisher.

[LM01] Francesca Levi and Sergio Maffeis. An abstract interpretation framework
for analysing Mobile Ambients. In SAS’2001: Proc. of the 8th Inter-
national Static Analysis Symposium, volume 2126 of Lecture Notes in
Computer Science, pages 395–411. Springer, 2001.

[LM04] Francesca Levi and Sergio Maffeis. On abstract interpretation of mobile
ambients. Information and Computation, 188(2):179–240, 2004.



BIBLIOGRAPHY 217

[LS03] Francesca Levi and Davide Sangiorgi. Mobile safe ambients. ACM Trans-
actions on Programming Languages and Systems (TOPLAS’03), 25(1):1–
69, 2003.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348–375, December 1978.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

[Mil99] Robin Milner. Communicating and Mobile Systems: The π-Calculus.
Cambridge University Press, 1999.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of Mobile
processes (I and II). Information and Computation, 100(1):1–77, 1992.

[NN97] Hanne Riis Nielson and Flemming Nielson. Infinitary Control Flow Anal-
ysis: a collecting semantics for closure analysis. In POPL’1997: Proc. of
the 24th ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages, pages 332–345, 1997.

[NN98] Hanne Riis Nielson and Flemming Nielson. Flow logics for constraint
based analysis. In Proc. of the 7th International Conference on Com-
piler Construction (CC’98), volume 1383 of Lecture Notes in Computer
Science, pages 109–127. Springer, 1998.

[NN00] Hanne Riis Nielson and Flemming Nielson. Shape analysis for mobile
ambients. In POPL’00: Proc. of the 27th ACM SIGPLAN-SIGACT sym-
posium on Principles of Programming Languages, pages 142–154. ACM
Press, 2000.

[NN02] Flemming Nielson and Hanne Riis Nielson. Flow Logic: a multi-
paradigmatic approach to static analysis. In The Essense of Computation:
Complexity, Analysis, Transformation, volume 2566 of Lecture Notes in
Computer Science, pages 223–244. Springer, 2002.

[NN06] Hanne Riis Nielson and Flemming Nielson. Data Flow Analysis for CCS.
In Thomas Reps and Mooly Sagiv, editors, Festschrift for Reinhard Wil-
helm, volume 4444 of Lecture Notes in Computer Science. Springer, 2006.

[NN07] Hanne Riis Nielson and Flemming Nielson. A flow-sensitive analysis of
privacy properties. In Proceedings of the 20th IEEE Computer Security
Foundations Symposium, 2007. To Appear.

[NN08] Hanne Riis Nielson and Flemming Nielson. A Monotone Framework for
CCS. under revision for Computer Languages, Systems & Structures,
2008.

[NNB04] Hanne Riis Nielson, Flemming Nielson, and Mikael Buchholtz. Security
for mobility. In FOSAD 2001/2002 Tutorial Lecture Notes, volume 2946
of Lecture Notes in Computer Science, pages 207–265. Springer, 2004.

[NNH99] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999.



218 BIBLIOGRAPHY

[NNH02] Flemming Nielson, Hanne Riis Nielson, and René R. Hansen. Validating
firewalls using Flow Logics. Theoretical Computer Science, 283(2):381–
418, 2002.

[NNHJ99] Flemming Nielson, Hanne Riis Nielson, René R. Hansen, and Jacob G.
Jensen. Validating firewalls in Mobile Ambients. In CONCUR 1999 –
Concurrency Theory, volume 1664 of Lecture Notes in Computer Science,
pages 463–477. Springer, 1999.

[NNP04] Hanne Riis Nielson, Flemming Nielson, and Henrik Pilegaard. Spatial
analysis of BioAmbients. In SAS’04: Proc. of the 11th International
Static Analysis Symposium, volume 3148 of Lecture Notes in Computer
Science, pages 69–83, 2004.

[NNP07] Flemming Nielson, Hanne Riis Nielson, and Henrik Pilegaard. What
is a free name in a process algebra? Information Processing Letters,
103(5):188–194, 2007.

[NNPdR07] Flemming Nielson, Hanne Riis Nielson, Corrado Priami, and Debora S.
da Rosa. Control flow analysis for BioAmbients. In Proceedings of the
First Workshop on Concurrent Models in Molecular Biology (BioConcur
2003), volume 180 of Electronic Notes in Theoretical Computer Science,
pages 65–79, 2007., 2007.

[NNS02] Flemming Nielson, Hanne Riis Nielson, and Helmuth Seidl. A succinct
solver for ALFP. Nordic Journal of Computing, 9:335–372, 2002.

[NNS+04] Flemming Nielson, Hanne Riis Nielson, Hongyan Sun, Mikael Buchholtz,
René Rydhof Hansen, Henrik Pilegaard, and Helmuth Seidl. The suc-
cinct solver suite. In Proc. of Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’04), volume 2988 of Lecture Notes in
Computer Science, pages 251–265. Springer, 2004.

[Par01] Joachim Parrow. An introduction to the π-calculus. In Bergstra, Ponse,
and Smolka, editors, Handbook of Process Algebra, pages 479–543. Else-
vier, 2001.

[PC04] Andrew Phillips and Luca Cardelli. A correct abstract machine for the
stochastic pi-calculus. In Bioconcur’04. Electronic Notes in Theoretical
Computer Science, August 2004.

[PC05] Andrew Phillips and Luca Cardelli. A graphical representation for the
stochastic pi-calculus. In Proc. of Bioconcur’05, August 2005.

[Plo04] Gordon D. Plotkin. A structural approach to operational semantics. Jour-
nal of Logic and Algebraic Programming, 60-61:17–139, 2004.

[PNN05] Henrik Pilegaard, Flemming Nielson, and H. R. Nielson. Static analysis
of a model of the LDL degradation pathway. In Gordon D. Plotkin,
editor, Proc. of Computational Methods in Systems Biology (CMSB’05).
University of Edinburgh, April 2005.

[PNN06a] Henrik Pilegaard, Flemming Nielson, and Hane Riis Nielson. Active eval-
uation contexts for process algebra. In Proceedings of Structural Opera-
tional Semantics, 2006. To appear.



BIBLIOGRAPHY 219

[PNN06b] Henrik Pilegaard, Flemming Nielson, and Hanne Riis Nielson. Context
dependent analysis of bioambients. In Francesco Ranzato, editor, Pro-
ceedings of the 1st International Workshop on Emerging Applications of
Abstract Interpretation, 2006.

[PNN07] Henrik Pilegaard, Flemming Nielson, and Hanne Riis Nielson. Pathway
analysis for bioambients. Submitted for publication, 2007.

[PQ04] Corrado Priami and Paola Quaglia. Beta binders for biological interac-
tions. In Proc. of Computational Methods in Systems Biology (CMSB’04),
Lecture Notes in Bioinformatics. Springer, 2004.

[Pri96] Corrado Priami. Stochastic pi-calculus with general distributions. In Proc.
of the 4th Int. Workshop on Process Algebras and Performance Modelling
(PAPM’96), 1996.

[PRSS01] Corrado Priami, Aviv Regev, Ehud Shapiro, and William Silvermann. Ap-
plications of a stochastic name-passing calculus to representation and sim-
ulation of molecular processes. Information Processing Letters, 80(1):25–
31, 2001.

[PV05] Catuscia Palamidessi and Frank D. Valencia. Recursion vs replication in
process calculi: Expressiveness. Bulletin of the European Association of
Theoretical Computer Science, 87:105–125, 2005.

[Reg03] Aviv Regev. Computational Systems Biology: A Calculus for Biomolecu-
lar Knowledge. PhD thesis, Tel Aviv University, 2003.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematics Society,
74:358–366, 1953.

[RPS+04] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and
Ehud Shapiro. BioAmbients: An abstraction for biological compartments.
Theoretical Computer Science, 325(1):141–167, September 2004.

[RS02] Aviv Regev and Ehud Shapiro. Cells as computation. Nature, 419(6905),
September 2002.

[RSS01] Aviv Regev, William Silverman, and Ehud Shapiro. Representation and
simulation of biochemical processes using the π-calculus process algebra.
In Proc. of Pacific Symposium on Biocomputing (PSB 2001), pages 459–
470, 2001.

[Säı00] Hassen Säıdi. Model checking guided abstraction and analysis. In SAS’00:
Proc. of the 7th International Static Analysis Symposium, volume 1824 of
Lecture Notes in Computer Science, pages 377–396, London, UK, 2000.
Springer-Verlag.

[Shi88] Olin Shivers. Control flow analysis in scheme. In PLDI ’88: Proceedings of
the ACM SIGPLAN 1988 conference on Programming Language design
and Implementation, pages 164–174, New York, NY, USA, 1988. ACM
Press.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.



220 BIBLIOGRAPHY

[Tay99] Paul Taylor. Practical Foundations of Mathematics (Cambridge Studies
in Advanced Mathematics). Cambridge University Press, May 1999.

[Tur36] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
2(42):230–265, 1936.

[van05] Jan vanderGreef. Systems biology, connectivity and the future of
medicine. In IEE Proc. Systems Biology, volume 152, pages 174–178,
2005.

[Ver07] Cristian Versari. A core calculus for a comparative analysis of bio-
inspired calculi. In Proc. of 16th European Symposium on Programming
(ESOP’07), 2007. To Appear.

[Vil07a] Mariana Ruiz Villarreal. Cell illustration. Part of Wikimedia Commons,
April 2007. Released into Public Domain.

[Vil07b] Mariana Ruiz Villarreal. Cell membrane illustration. Part of Wikimedia
Commons, January 2007. Released into Public Domain.

[vMJ+07] Jan vanderGreef, S. Martin, P. Juhasz, A. Adourian, T. Plasterer, E. R.
Verheij, and R. N. McBurney. The art and practice of systems biology
in medicine: Mapping patterns of relationships. Journal of Proteome
Research, 2007.

[vSvdH04] Jan vanderGreef, Paul Stroobant, and Rob van der Heijden. The role
of analytical sciences in medical systems biology. Current Opinion in
Chemical Biology, 8:559–565, 2004.


	Summary
	Resumè
	Preface
	1 Introduction
	1.1 Background
	1.2 Contributions
	1.3 Preliminary Conclusion
	1.4 Dissertation Outline

	I Setting the Scene
	2 The Eukaryotic Cell
	2.1 Cellular Information Processes
	2.2 Cellular Organisation
	2.3 Concluding Remarks

	3 Modelling in Process Calculus
	3.1 The BioAmbients Modelling Language
	3.2 Semantics of BioAmbients
	3.3 CASE: Modelling the LDL Degradation Pathway
	3.4 CASE: Modelling Genetic Transcription
	3.5 Concluding Remarks

	4 Static Analysis Techniques
	4.1 Order Theoretic Preliminaries
	4.2 Monotone Frameworks
	4.3 Flow Logic
	4.4 Concluding Remarks


	II Analysing for Structural Properties
	5 Well-formed Programs and Their Properties
	5.1 Free Names and Identifiers
	5.2 Well-formed and Initial Programs.
	5.3 Substitution of Identifiers and Names.
	5.4 Properties of Programs
	5.5 Concluding Remarks

	6 Context Insensitive Control Flow Analysis
	6.1 Concurrently Possible Capabilities
	6.2 Control Flow Analysis
	6.3 CASE: Analysing the LDL Degradation Pathway
	6.4 Concluding Remarks

	7 Context Sensitive Control Flow Analysis
	7.1 The Spatial Shape of Static Scope
	7.2 Relevant Variables
	7.3 Relevant Prefixes and Ambient Roles
	7.4 Control Flow Analysis
	7.5 CASE: Analysing the LDL Degradation Pathway
	7.6 Concluding Remarks


	III Analysing for Causal Properties
	8 Pathway Analysis
	8.1 Extended Multisets
	8.2 Computing and Preserving Exposed Prefixes
	8.3 Constructing the Automaton
	8.4 CASE: Analysing the LDL Degradation Pathway
	8.5 CASE: Analysing Genetic Transcription
	8.6 Concluding Remarks

	9 An Iterative Analysis
	9.1 Analysis
	9.2 CASE: Analysing the LDL Degradation Pathway
	9.3 CASE: Analysing Genetic Transcription
	9.4 Concluding Remarks

	10 Conclusion
	10.1 Contributions
	10.2 Evaluation Results
	10.3 Conclusion and Further Work

	A Variants of the LDL Degradation Pathway
	A.1 The LDL Pathway with Normal Receptors
	A.2 The LDL Pathway with Defects in Exoplasmic Domain
	A.3 The LDL Pathway with Defects in Cytosolic Domain

	B Analysis Results for the LDL Degradation Pathway
	B.1 Analysis Results for the 0CFA
	B.2 Analysis Results for the 2CFA
	B.3 Analysis Results for the Iterative 0CFA
	B.4 Analysis Results for the Iterative 2CFA

	C Analysis Results for Genetic Transcription
	C.1 Ordinary 2CFA - One Gene
	C.2 Iterative 2CFA - One Gene
	C.3 Ordinary 2CFA - Two Genes
	C.4 Iterative 2CFA - Two Genes



