
Analyzing Action Semantics

Kasper Svendsen

Kongens Lyngby 2007

IMM-BSc-2007-13

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary

Programmers usually assume that when they compile a program, the behavior
of the generated code corresponds to the semantics assigned to the program by
the programming language. However, writing a correct compiler, that generates
reasonably efficient code, is a difficult and expensive task. A lot of research has
therefore focussed on automatically generating complete compilers from formal
specifications of languages. In some cases, even with an accompanying proof of
correctness of the generated compiler.

In this thesis we develop a tool for analyzing semantic descriptions of program-
ming langauges, specified in a subset of the semantic description language, Ac-
tion Semantics. The purpose of the tool is to function as a component of a
compiler generator.

The tool implements two analyses: The first analysis is a type and termination
analysis, which annotates semantic descriptions with type information about
the values, that programs written in the described language can produce. The
second analysis analyzes the use of bindings in the languages specification, to
generate a bindings analysis for the source language.

Resumé

Programmører antager normalt, at n̊ar de compiler et program, s̊a opfører den
generede kode sig i overensstemmelse med den semantik, det p̊agældende pro-
gram tildeles af programmeringssproget. Men da det er svært og dyrt at skrive
en korrekt compiler der genererer hurtig kode, har en del forskning fokuseret
p̊a automatisk compiler-generering fra formelle specificationer af sprog. I nogle
tilfælde, med et tilhørende bevis for korrektheden af den generede compiler.

I denne rapport udvikler vi et værktøj til at analysere action semantics beskriv-
elser af programmeringssprog, udtrykt i en begrænset udgave af det semantiske
beskrivelsessprog: Action Semantics. Meningen er at værktøjet skal indg̊a som
en komponent i en compiler-generator.

Værktøjet implementerer to analyser: Den første analyse er en kombineret type
og terminerings-analyse. Den annoterer sprogspecifikationer med information
om typen p̊a værdierne, som programmer skrevet i det beskrevne sprog kan
give. Den anden analyse analyserer brugen af bindinger i sprogspecifikationer,
hvorfra den genererer en bindingsanalyse til det beskrevne sprog.

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring a
B.Sc. degree in engineering.

Lyngby, July 2007

Kasper Svendsen

Contents

Summary i

Resumé iii

Preface v

1 Introduction 1

1.1 Our work . 2

1.2 Thesis organization . 3

1.3 Typographical conventions . 4

2 Background 5

2.1 Action Semantics . 5

2.2 Action Notation . 6

2.3 Action Semantic Descriptions . 10

3 Analyzing Action Semantic Descriptions 15

3.1 Type and termination analysis 15

3.2 Binding analysis . 39

4 Discussion 59

5 Implementation 63

6 Conclusion 65

A Semantics of While and Action Notation 67

A.1 The While langauge . 67

A.2 The Action Notation language 68

B Action Semantic Description for the While language 73

Chapter 1

Introduction

The traditional way of writing a compiler is to structure the compiler into a
series of phases, each taking as input the output from the previous phase. The
figure below illustrates this with a simple compiler composed of three phases.
The first phase, syntactic analysis, translates the source program into an inter-
mediate representation. The second phase performs a semantical analysis on
the intermediate representation. The third phase translates the intermediate
representation into object code.

syntactic analysis semantic analysis code generation

source code object code

compiler

In most compilers, the syntactic analysis is generated automatically from a for-
mal specification of the language’s syntax, and the remaining phases are written
manually. Compiler generators are programs that take a formal specification of
the language’s syntax and semantics and automatically generates all the phases
of the compiler.

Manually writing a compiler is a difficult and expensive job; a lot of research has
therefore focused on automatic compiler generation. Despite this, automatically
generated compilers are typically inefficient compared to hand-written compilers
and/or generate less efficient code than hand-written compilers. As a result,
no automatically generated compiler has yet seen widespread use. However,
even though automatically generated compilers are inefficient compared to hand-
written compilers, it is certainly possible to imagine situations were they could
be useful:

• Language standardization and research: Being able to quickly realize a
language specification in the form of a slow prototype compiler would allow
for a much more exploratory based approach to programming language
research.

• High-assurance software: For critical high-assurance software, a provably
correct compiler that generates slow object code is preferable to a hand-
written unverified compiler which generates faster object code. For exam-
ple, the C source-code of the flight control software for the Airbus A340
has been proven to be free of run-time errors using static analysis tools.
However, as the verification was performed on the C source code, a buggy
compiler could still introduce run-time errors into the flight control soft-
ware object code.

1.1 Our work

Our work is best described by comparing it to some of the previous Action
Semantics based compiler generators. Figure 1.1 illustrates the idea of the
ACTRESS [3] and OASIS [14] compiler generators:1 they are composed of two
programs, one which takes the language specification, Lspec, of the language
L and generates a program Lactioneer , that takes programs in the language L,
denoted by PL, as input and gives the program’s denotation, Paction, as output.
Combined with a generic action compiler, this is a full compiler generator.

Since the same generic action compiler component is used in every generated
compiler, it has to be able to handle actions generated from any language spec-
ification, and preferably be able to generate efficient code for at least some of
these languages. To achieve this, the action compilers used in ACTRESS and
OASIS both perform a series of analyses and optimizations. However, since the
action compiler is independent of the source language, it might have to perform

1The OASIS compiler generator differs slightly from this figure, but the underlying idea is

the same.

compiler generator

PLLspec
actioneer
generator

Lactioneer

Paction
action

compiler
Pobject

Figure 1.1: The structure of the ACTRESS and OASIS compiler generators.

a lot of extra work analyzing actions, to determine something that is apparent
from the language specification. As a concrete example, imagine an imperative
language with statically scoped variables and procedures. Instead of analyzing
every single action to determine this property, it would be preferable to analyze
the language specification just once, when the compiler is generated.

Figure 1.2 illustrates how a compiler generator based on this idea could look.
The main component is the analysis generator, which takes as input a language
specification and an analysis specification, performs the given analysis on the
language and generates an analyzer and optimizer customized to the given lan-
guage, based on the results of the analysis of the language specification.

In this thesis, we will focus on the analysis generator component of Figure 1.2.

1.2 Thesis organization

The following chapter contains a short introduction to the limited version of
action notation that we have chosen to work with. In the third chapter, two
analyses for analyzing action semantic descriptions are developed: a type and
termination analysis and an analysis and accompanying algorithm for generating
a reaching bindings analysis for the source language.

The fourth chapter discusses the limitations of our analyses and possible solu-

tions. The fifth chapter gives a short overview of the implementation of the
analyses.

1.3 Typographical conventions

Throughout this document actions have been typeset in a bold italic font, e.g.,
provide 42, While statements in typewriter font, e.g., if s > 0 then s := 0,
and syntactic categories in a bold font, e.g., Action.

compiler
generator

PL

Lspec
actioneer
generator

Lactioneer Paction

analysis
generator

analysis
specification

Lanalyzer

Loptimizer
code

generator
Pobject

analysis
results

Figure 1.2: The structure of a compiler generator based on the idea of generating
a customized analyzer and optimizer from the language specification.

Chapter 2

Background

This chapter introduces the parts of action semantics and action notation that
is relevant for this thesis. The reader is assumed to be familiar with dataflow
analysis [11] and basic lattice and type theory [5, 12].

2.1 Action Semantics

Action semantics [8] is a framework for formally specifying the semantics of pro-
gramming languages. It was developed in the early 1990’s as a more pragmatic
alternative to the existing semantic formalisms such as operational, denota-
tional, and axiomatic semantics. It was designed to be able to describe the se-
mantics of realistic programming languages and to allow for greater re-usability
between language specifications [6].

Many of the existing semantic formalisms were less than ideal for specifying the
semantics of real-life languages: Both operational and denotational semantics
descriptions were plagued with problems of expressiveness, modularity and re-
usability [9, 12]. Language extensions and changes, for example, often required
changes to be made throughout the entire language specification.

Action semantics combines many of the concepts of operational and denotational

semantics. An action semantics description (abbreviated ASD) can be seen as a
form of denotational description, with actions as denotations, where the meaning
of a program is the meaning of the denotation of the program (i.e., the action for
the given program). The language used for specifying actions is called Action
Notation (abbreviated AN). To date, two versions of Action Notation have been
specified by the authors of Action Semantics, Action Notation 1 (AN-1) in 1992
and Action Notation 2 (AN-2) in 2000. AN-1 defined the semantics of actions
using the formalisms of Unified Algebras and Structural Operational Semantics
(SOS). AN-2 was developed as a smaller and simpler version of AN-1, defined
in Modular Structural Operational Semantics (abbreviated MSOS) without the
use of Unified Algebras.

Over the last 15 years quite a few compiler generators have been written using
Action Semantics and AN-1 as the specification language [e.g.., 3, 14], and at
least one compiler generator with Action Semantics and AN-2 as the specifica-
tion language [13]. The work in this thesis will focus on Action Semantics and
AN-2. Since the syntax and semantics of AN-2 has not yet been finalized, the
work will be based on the current version of AN-2, version 0.7.5.

2.2 Action Notation

The basic concept of Action Notation is that of an action. Superficially, actions
resemble expressions in an impure functional programming language: Action
Notation defines a number of basic actions and action combinators for combining
smaller actions into larger actions. Actions may be executed (performed in AN
terminology). When performed, an action can terminate normally, exception-
ally, failingly, or not terminate at all. On normal and exceptional termination,
actions produce data. Actions that terminate normally are said to give data and
actions that terminate exceptionally are said to raise data. Unlike expressions,
actions also take data as input, when performed. Actions also differ from most
existing languages in that bindings are first-class entities, which can be passed
around and manipulated like any other piece of data.

The actions of AN-2 are divided into the following five facets:

• Flow facet : contains actions for controlling the control and data flow.

• Declarative facet : contains actions for manipulating bindings.

• Reflective facet : contains actions for working with actions as data.

• Imperative facet : contains actions for manipulating the store.

• Interactive facet : contains actions for inter-process communication.

For the purposes of this thesis only a subset of the actions defined by Action
Notation will be used. This subset includes most of the flow, declarative and
imperative facets. The subset was chosen to be expressive enough to allow a
reasonable specification of the semantics of simple imperative languages, such as
the While language, which will be the main case-study throughout this thesis.
The abstract syntax of the subset of AN-2 that will be the subject of thesis is
shown in Figure 2.3, along with a very short description of what the different
actions do. To avoid writing too many parentheses, we will follow the AN-2
precedence convention, where all infix actions are assigned the same precedence
and associate to the left, and all prefix actions are assigned the same precedence,
such that infix actions have a lower precedence than prefix actions.

As a short introduction to AN-2, we discuss a few more AN concepts, and briefly
describe the operational behavior of the actions used in example shown in Figure
2.1, by showing how they are performed. For a more thorough introduction to
AN-2, see [7, 10].

As mentioned previously, actions always take data when they are performed,
and may produce data. Data is arbitrarily sized tuples of datums. Datums
are primitive values, i.e., natural numbers, truth-values, bindings, cells, and
tokens. It is possible to extend AN-2 with extra primitive values and associated
operations, using Data Notation. As the basic AN data types are sufficient to
describe the semantics of the While language, we will assume an unextended
version of AN.

Figure 2.1 shows a simple action, which counts up from one to five, eventually
giving the value five, when performed. The list below contains an informal
description of the operational behavior of each of the actions used in the example
action.

• provide d: Always terminates normally, giving the data d. It ignores the
data it was given. Note that the syntax for semantic values is overloaded;
the datum d is equivalent to the 1-tuple (d).

• copy: Always terminates normally, giving the data it was given.

• A1 then A2, A1 and A2, A1 exceptionally A2: The then,and, and
exceptionally actions control the control and data flow. When per-
formed, they all perform the action A1 with the given data and bind-
ings. Depending on how A1 terminates, the actions either perform A2 or
propagate the value given by A1. The table below describes when A2 is
performed and what data it is given, for each of the three actions:

Action A A2 is performed if A2 is performed with

then A1 terminated normally the data given by A1

and A1 terminated normally the original data
exceptionally A1 terminated exceptionally the original data

If A2 terminates exceptionally or failingly, all three actions propagate
the exception or failure. However, if A2 terminates normally, then and
exceptionally simply propagate the value given by A2, whereas and gives
the concatenation of the value given by A1 and A2 as its value.

In A1 c A2 where c is an action combinator, A1 is referred to as the first
sub-action and A2 as the second sub-action.

• give op: Performs the operation op on the given data, terminating nor-
mally with the result of the operation if the operation is defined and
terminating exceptionally with no data if it is not.

• check pred: Checks whether the predicate pred holds for the given data,
terminating normally with a 0-tuple if it holds and terminating exception-
ally with a 0-tuple if it does not.

• unfolding A,unfold: The unfolding and unfold actions allow for self-
reference. The action unfolding A is performed by executing the action A,
such that whenever unfold is encountered in A, the action A is performed
in place of unfold, with the data and bindings given to unfold. In case of
nested unfoldings, the innermost unfolding is used in place of unfold.

provide 1

then

unfolding (

provide 5 and copy then check = then provide 5

exceptionally

provide 1 and copy then give + then unfold

)

Figure 2.1: An example of an action, which, when performed, counts up from
one to five and terminates normally giving the value five.

To understand the behavior of the example action below, we start by looking at
the unfolding action. The first sub-action of the exceptionally action in the

body of the unfolding action, checks whether the identity predicate holds be-
tween the natural number five and the data it is given. If the predicate holds then
it gives the natural number five and if it does not hold it terminates exception-
ally. On exceptional termination, the second sub-action of the exceptionally

action is performed with the original data given to the unfolding action. The
second sub-action performs an addition operation on the natural number 1 and
the data it is given. If the data it is given is not a natural number, the sub-action
will terminate exceptionally raising a 0-tuple and this will be propagated to the
top-level. If the data it is given is a natural number, the body of the unfolding

is performed again, with the result of the addition operation. As the unfolding

action is first performed with the natural number 1, the action counts up from
1 to five and terminates normally giving the natural number five.

The actions of AN-2 are further divided into two levels, called Kernel AN-2 and
Full AN-2, depending on how the semantics of the actions have been defined.
Kernel AN-2 consists of all the actions that have been defined using Modular
SOS, while all the actions of Full AN-2 have been defined by reduction to Kernel
AN-2. Full AN-2 can thus be seen as a layer of syntactic sugar, which defines
a number of macros for various useful Kernel AN-2 actions. Figure 2.2 defines
the simplified macros of Kernel AN-2 used in this thesis.

• given A = give the data and A then check = exceptionally fail

• give the s bound to D =

give current bindings and provide D then give bound

then give the s

Figure 2.2: The Full AN-2 action abbreviations used in this thesis.

In the subset of action notation that will be considered in this thesis, only the
unfolding and unfold actions belong to Full AN-2. unfolding A reduces to an
action which performs the action A, after having bound the action A to a special
token unf. unfold reduces to an action which causes the action bound to the
special token unf to be performed, using the data and bindings given to unfold.
Both abbreviations thus makes use of the reflective facet of AN-2, which is not
part of the subset considered in this thesis, and have therefore been moved to
the Kernel AN-2 level instead and defined without the use of the reflective facet.

Appendix A.2 contains a natural semantics (NS) specification of the subset of
AN-2 that we will be analyzing. Besides the above mentioned differences, the
behavior of the A1 and A2 action has also been changed slightly: Instead of per-
forming A1 and A2 in parallel, A1 is always performed before A2 in A1 then A2.

The reasons that we have rewritten the specification from Modular SOS to NS
are:

• Interpreter : To familiarize myself with AN, I originally started out by
writing an interpreter for AN. A NS specification is immediately translat-
able into an interpreter.

• Proofs : Originally, I wanted to prove that one or more of the type systems
presented in this thesis was sound, using the proof assistant Coq [2, 4].
The natural semantics specification was easily formalizable in Coq as an
inductively defined predicate, whereas the Modular SOS specification was
not easily formalizable. Unfortunately, with more than 30 inference rules,
just proving that the inference system was deterministic took me several
hours, so I chose to spend time on developing more analyses instead of
attempting to formalize and prove a type system sound.

The evaluation judgments, which have the following form,

(a, δ, ξ, µ) ⊢ A→ (δ′, µ′)

says that action A produces the data δ′ and store µ′ when given the data δ
and performed with the bindings ξ, store µ and within the enclosing unfolding
a. When A is not within an unfolding, a is set to “−”. The labels normal d,
exceptional d and failed are used to represented normal data, exceptional data,
and failure, respectively.

2.3 Action Semantic Descriptions

The action semantic descriptions that we will be considering in this thesis, con-
sists of three modules:

• abstract syntax : contains a context-free grammar defining the abstract
syntax of the source language.

• semantic entities : contains a definition of the data types used by the
source language in terms of action notation data types and defines which
action notation data types are storable and bindable.

• semantic functions : contains a semantic function for each non-terminal
in the abstract syntax module, mapping strings derived from the given

A, A1, A2 ∈ Action, D ∈ Data, O ∈ DataOp, P ∈ DataPred

u, ui ∈ Datum, n ≥ 0, S ∈ Sort

Action ::= provide D gives constant data

copy copies given data

A1 then A2 composition

A1 and A2 composition

raise raises an exception

A1 exceptionally A2 exceptional composition

give O performs an operation on data

check P checks that data satisfies predicate

fail fails

A1 otherwise A2 alternative

give current bindings gives current bindings as data

A1 hence A2 scopes bindings

create allocates a cell

update stores data in cell

inspect reads data from cell

unfold performs current unfolded action

unfolding A allows for self-reference

Data ::= u | (u1, ..., un) datum singleton and tuple

Datum ::= n | b | t natural number, boolean and token

DataOp ::= + | − | ∗ arithmetic operations

binding singleton binding

overriding merge bindings

bound reference bindings

the S projection

DataPred ::= = | > identity and greater than predicate

Sort ::= cell | data | nat

bindings | bool

Figure 2.3: Action syntax.

non-terminal to actions. Each semantic function is defined as a set of se-
mantic productions, one for each rule of the given non-terminal, mapping
the syntax elements of the right-hand-side of the given rule to actions.
The right-hand-side of semantic productions will be referred to as its de-
notation. A semantic production has the form:

m[[p]] = A

where m is the identifier of the semantic function being defined, p is the
arguments of the production, and A an action. The syntax of the action
A is the syntax given in Figure 2.3, extended with semantic function calls.

In our implementation, the arguments, p, is a list of semantic variables
and strings. It does not support the use regular expressions to define the
parameters of semantic productions. Semantic function calls are further
limited to one argument. However, both of these restrictions are purely
restrictions in the implementation and neither of the two analyses depend
on these restrictions.

The following is an excerpt of the action semantic description of the While lan-
guage, from Appendix B. The two semantic productions are part of the defini-
tion of the semantic function, evala, for arithmetic expressions.

• evala[[N]] = provide N

• evala[[A1 + A2]] = evala[[A1]] and evala[[A2]] then give +

The semantic functions module also defines a mapping from identifiers to ab-
stract syntax non-terminals (either built-in non-terminals such as ident and
numeral or non-terminals defined in the abstract syntax module), this mapping
will be referred to as the variable environment and represented with the symbol
Γident. For the above example, N , A1 and A2 are variables ranging over nu-
merals and arithmetical expressions, respectively. All the examples of semantic
productions given in this report should be interpreted using the variable envi-
ronment of the While language, as defined in Appendix B, unless otherwise
stated.

A program’s denotation is the action that the appropriate semantic function
gives when applied to the given program. The denotation of the program 1 + 2,
with the above language definition, is thus provide 1 and provide 2 then give +.

The details of the syntax of action semantic specifications are not very inter-
esting, so we will ignore them and instead describe a few auxiliary functions to
extract the necessary information from an action semantic specification.

• The funcs function takes an action semantic description and gives the set
of identifiers of the semantic functions defined in the specification.

funcs : ASD→ P(FuncID)

• The prods function takes an action semantic description and a semantic
function identifier and gives a set containing a 2-tuple for every semantic
production defining that semantic function, where the first component is
the arguments to the semantic production and the second component is
the semantic production’s denotation.

prods : ASD→ FuncID→ P(FuncParams ×Action)

• The calls function takes an action and gives a set of 2-tuples, one for each
semantic function call, where the first component is the semantic function
identifier and the second the arguments to the call.

calls : Action→ P(FuncID× FuncParams)

So, using the action semantics description of While as an example, we have:

funcs(Lw) = {evala, evalb, exec}

prods(Lw, evala) = {(I, give the cell bound to I then inspect),

(N,provide N), ...}

calls(evala[[AE1]] and evala[[AE2]] then give +) = {(evala, AE1), (evala, AE2)}

where Lw denotes the action semantics description of the While language.

Several of the concepts, analyses, and problems discussed in this report are
accompanied with small example languages in the form of a few semantic pro-
ductions. Most of the example languages are extensions of the While language
and the semantic productions should be seen as an addition to the specification
given in Appendix B. The languages that are not extensions of While only
define the details necessary to illustrate the point of the example. Some of the
semantic productions given in the examples do not contain actions to handle
program failure correctly (i.e., on program failure they might terminate ex-
ceptionally, but the exceptional value could be caught, instead of crashing the
program), to avoid too much unimportant complexity in the examples.

Chapter 3

Analyzing Action Semantic

Descriptions

This chapter describes our work on analyzing action semantic descriptions. In
Section 3.1 we develop a type and termination analysis by combining ideas from
dataflow analysis [11] with the Cartesian-Product type inference algorithm [1].
In Section 3.2 we develop a binding analysis and an algorithm that generates
a reaching bindings analysis based on the results of the binding analysis. In-
terestingly, while the generated reaching bindings analysis works on the source
program, the analysis results are about the source program’s denotation.

3.1 Type and termination analysis

The first analysis is a combined type inference and termination analysis for
action semantic descriptions. The analysis annotates the denotation of all se-
mantic productions, and their sub-actions, with an over-approximation of the set
of types of all the values that all possible instantiations of the given action might
give, when performed. The analysis further annotates all denotations and their
sub-actions with information about whether they can terminate exceptionally
and/or failingly or neither.

While all actions in AN are well-defined, they can still terminate failingly or
exceptionally, on, say, type errors. Since actions that terminate exceptionally
raise data that can be trapped and processed at a later stage, the type analysis
thus has to keep track of raised data anyway. A type analysis can thus trivially
be extended to a termination analysis as well, by keeping track of which actions
that can terminate failingly.

In the context of this project, results from this analysis will primarily be used
as input to the latter analyses. Listed below are a few other potential uses for
this analysis, that are outside the scope of this project.

• CFGs : The results of the termination analysis are very useful for con-
structing more precise control-flow graphs of a given program’s denotation,
which is important for the accuracy of data-flow analyses.

• Debugging: This analysis, along with the latter analysis, can be helpful in
debugging action semantic descriptions. If the analysis results are wrong,
it might indicate an error in the action semantic description. Three errors
were revealed in the action semantic description for the While language,
by the analyses developed.

This section is divided into three sub-sections. In Section 3.1.1 we describe
our method for analyzing entire action semantics descriptions, without looking
at how individual semantic productions are analyzed, and formalize it in the
framework of data-flow analysis. In Section 3.1.2 and 3.1.3 we introduce two
type-inference algorithms for individual semantic productions. Both type infer-
ence algorithms are sound, however, only the second is guaranteed to terminate.

3.1.1 Iterative type analysis

Assuming that we are only interested in languages for which there exists an
infinite number of valid programs, which is certainly a reasonable assumption,
it is obviously impossible to simply generate all possible instantiations of all
semantic productions and run a type inference algorithm on them. However, we
can approximate the types of all possible instantiations by simply considering
all possible “type instantiations”. That is, we run the type inference algorithm
once for each possible combination of types that the semantic functions called
in the given semantic production might give when performed. Obviously, this
is only an improvement compared to analyzing all possible instantiations, if the
number of “type instantiations” is not infinite as well. For now, we will assume
that the number of “type instantiations” is finite, but we will return to this
problem.

An action A is said to be context neutral, if, when performed with the same
bindings and store, if it terminates, it always gives the same data and store,
irrespective of the data it is performed with, and if it does not terminate, that
it always “behaves” the same, irrespective of the data it is performed with. A
semantic production is said to be context neutral if all possible instantiations
of its denotation are context neutral. As an example, provide 42 is context
neutral because it always terminates normally giving the 1-tuple (42), while
provide 42 and copy is not context neutral as it always terminates normally
giving the 2-tuple (42, d), where d is the data the action was performed with.

For this analysis we restrict ourselves to ASDs in which all semantic productions
are context neutral, as this allows us to analyze semantic function calls in the
denotation of semantic productions independently of the context the semantic
function call appears. This allows us to treat the semantic function calls to m as
equivalent in provide 42 then m[[a]] and provide 42 and provide 17 then m[[a]],
independently of the fact that it is called with the 1-tuple (42) in the first action
and the 2-tuple (42, 17) in the second action. This restriction greatly reduces
the complexity of the type and termination analysis, and besides a few problems
with semantic production reuse, we have not encountered any problems with
expressiveness because of this restriction. Chapter 4 contains a discussion of
the reuse problem and an idea for a type analysis without this restriction.

We further introduce the following restrictions on the use of unfolds and
unfoldings.

• All unfold actions must be enclosed in an unfolding A action.

• All unfold actions must be tail-recursive.

• All unfolding A actions must be context neutral.

The first restriction is introduced to ensure that it is always possible to deter-
mine, from the language specification alone, what unfolding A action a given
unfold action refers to, which is not always possible without this restriction,
as illustrated below. The two remaining restrictions are not strictly necessary,
however, with these restrictions it is simpler to infer the types of unfolding

and unfold actions. The consequences of these restrictions on unfolding and
unfold actions and how to modify the analysis to get rid of these restrictions is
also discussed below.

Consider the following non-higher-order functional language that only supports
anonymous functions (i.e.., no named functions as our subset of AN does not
allow actions to be bound to tokens), such as the following lambda-calculus
inspired toy language:

• fun[[AE]] = evala[[AE]]

• fun[[BE]] = evalb[[BE]]

• fun[[(Y E)]] =

give current bindings and ((give the data bound to ” rec”)

and fun[[E]] then give binding)

then give overriding hence unfold

• fun[[if BE then E1 else E2]] =

evalb[[BE]] then (

(given true then fun[[E1]]) otherwise

(given false then fun[[E2]]))

• fun[[(λ I . E1) E2]] =

give current bindings and ((provide I and fun[[E2]]

then give binding) and (provide ” rec” and

provide I then give binding)

then give overriding) then give overriding

hence unfolding (fun[[E1]])

• fun[[let I = E1 in E2]] =

give current bindings and (provide I and fun[[E1]]

then give binding) then give overriding

hence fun[[E2]]

AE and BE denote arithmetic and boolean expressions, and E, E1, and E2

expression terms. The syntax for arithmetic and boolean expressions is borrowed
from the While language, along with the evala and evalb semantic functions.

The interesting feature of this language is that it supports anonymous recursion,
via the (Y E) expression. A lambda abstraction, (λ I . E1) E2, is evaluated by
evaluating E1 with the value of E2 bound to I. (Y E) causes the body of the
lambda abstraction currently being evaluated to be evaluated with the value of
E bound to its argument identifier, I. The following little example program
uses anonymous recursion to calculate the factorial of 10:

(λ x . if x = 1 then 1 else let y = (Y (x− 1)) in y ∗ x) 10

Since the unfold action in the denotation of the semantic production for (Y E)
is not within an unfolding action, we cannot determine which unfolding action

the unfold action refers to, from looking at the language specification alone.
Instead, we could either perform the analysis on concrete programs instead of
languages, or we could attempt to somehow “intelligently” determine that the
unfold always refers to the action unfolding (fun[[E1]]), where E1 is the body
of the inner-most lambda abstraction enclosing the (Y E) expression.

The restriction that unfold actions must be tail-recursive and unfolding ac-
tions context-neutral simplifies the type inference of unfolding actions: Since
the behavior of the unfolding is independent of the type of the data it is given,
we can determine the types of context neutral unfolding actions in a single
pass, by inferring the types of the body of the unfolding once. Whereas for non-
context neutral unfolding actions we might have to iterate until a fix-point is
reached, as the types of the data produced by the body of the unfolding might
depend on the type of the data it is given, as in the following action:

provide 1 then unfolding (

(give the nat then provide true then unfold) exceptionally

(give the bool then create))

Since unfold actions must be tail-recursive, we further know that the types
of the body of the unfolding is the union of the types of the non-recursive
branches of the unfolding (that is, unfold actions cannot give data of types
not given by one or more of the non-recursive branches of the body of the
enclosing unfolding).

Since semantic productions can further be recursive and mutually recursive,
the set of types of each semantic production is calculated iteratively, starting
with those that do not call any semantic functions, until a fix-point is reached.
To represent the dependencies between semantic productions, we introduce the
concept of a language construct graph (LCG) in Definition 3.1. Each seman-
tic function and semantic production in a given action semantic description is
represented as a node in its LCG. For each semantic function used in a given
semantic production, there is an edge from the function node to the production
node. For each production node there is an edge to its function node. A slightly
simplified LCG of the action semantic description of the While language is
shown in Figure 3.1.

Definition 3.1 A language construct graph (LCG) for an action semantic de-

scription L is a directed graph G = (V, E), where

V = funcs(L) ∪ {(id, p, a) | id ∈ funcs(L) ∧ (p, a) ∈ prods(L)(id)}

E = {((id, p, a), id) | id ∈ V ∧ (id, p, a) ∈ V }

∪ {(id, (id′, p, a)) | id ∈ V ∧ (id′, p, a) ∈ V ∧ ∃(m, a′) ∈ calls(a) : id = m}

The nodes that are members of funcs(L) are called function nodes and the
remaining nodes are called production nodes.

We can now define the type analysis as in Figure 3.2, in terms of a language
construct graph. The analysis uses the lattice (S,≤), where S is the set,

{E ∈ P(FuncID∗ × P(Type)) | ∀(m, T) ∈ E :

¬(∃(m′, T ′) ∈ E : m = m′ ∧ T 6= T ′)}

evala evalb

exec

evala[[I]]

evala[[N]]

evala[[A1 + A2]]

evalb[[not B]]

evalb[[A1 < A2]]

evalb[[true]]

exec[[skip]]

exec[[while B do S]]

exec[[if B then S1 else S2]]

exec[[I := A]]

exec[[S1 ; S2]]

Figure 3.1: Simplified Language Construct Graph for the action semantic de-
scription of the While language. Circles represent rule nodes; rounded boxes
represent production nodes.

and ≤ is the partial order,

L1 ≤ L2 iff ∀(r, T) ∈ L1 : ((∃T ′ : (r, T ′) ∈ L2) ∧ (∀(r, T ′) ∈ L2 : T ⊆ T ′))

FuncID∗ is the set of semantic function identifiers used in the language specifi-
cation that we are analyzing, and Type is the set of type terms used by the type
inference algorithms introduced in the following two sub-sections. This set is
defined in Figures 3.5 and 3.6 for the first and second type inference algorithm,
respectively. The reason we use the set S instead of P(FuncID∗ × P(Type)),
is that ≤ is not a partial order for the set P(FuncID∗ × P(Type)).

Neither of the resulting lattices satisfy the Ascending Chain condition, as they
both contain infinite ascending chains, such as the ones given below:

{(a, {exn((int))})} ≤ {(a, {exn((int)), exn(exn((int)))})} ≤ · · ·

{(a, {exn([int])})} ≤ {(a, {exn([int]), exn(exn([int]))})} ≤ · · ·

where a is a semantic function identifier from the language specification being
analyzed.

However, for the second type and termination analysis, the set of elements from
Type that the type inference algorithm is actually able to infer is finite, as
argued in Section 3.1.3, and since the FuncID∗ set is obviously finite, the set of
lattice elements that is actually used, is also finite. The “effective” lattice used
by the second type and termination analysis thus satisfies the Ascending Chain
condition.

Let A = {Si}i∈I be a family of elements of S and x be the lattice element,

{(m,
⋃

i∈I

{typs(m, Si)}) | m ∈ funcs(A)}

where

funcs(S) = {m | U ∈ S ∧ ∃T : (m, T) ∈ U}

typs(m, U) =

{

T if (m, T) ∈ U

∅ otherwise

Clearly, x is an upper bound for A, by the definition of ≤ and x. Let y be an
upper bound for A. By the definition of ≤, for every tuple (m, T) in one of
the Sis, y must contain a single tuple (m, T ′) and T ′ must satisfy T ⊆ T ′. If
(m, T) is a member of x, for some T , then at least one of the Sis must contain
a tuple (m, T ′) for some T ′ and thus y must contain a tuple (m, T ′′) for some

T ′′. For all the tuples (m, T) in x, if t ∈ T then there exists a tuple (m, T ′) in
one of the Sis such that t ∈ T ′, y must thus also contain a tuple (m, T ′′) such
that t ∈ T ′′. By the definition of ≤, we thus have that x ≤ y and x is thus a
least upper bound for {Si}i∈I . Since the Sis were arbitrary, every subset of S
has a least upper bound and the lattice (S,≤) is complete, with the least upper
bound operator:

⊔

A = {(m,
⋃

S∈A

{typs(m, S)}) | m ∈ funcs(A)}

For function nodes the TTAentry and TTAexit functions, defined in Figure 3.2,
gives the set of types of the values that all possible instantiations of the semantic
productions belonging to the given semantic function can produce. For produc-
tion nodes the TTAentry function gives a set of 2-tuples, one for each semantic
function called in the semantic production associated with the given node, where
the first component is the function identifier and the second component the cur-
rent type analysis information about the given semantic function, i.e., the set of
types of the values that all possible instantiations of the semantic productions
belonging to the given semantic function can produce. For production nodes
the TTAexit function gives a single 1-tuple, where the first component is the
function identifier of the semantic function that the semantic production asso-
ciated with the given node belongs to and the second component the current
analysis information about the given semantic production, i.e., the set of types
of the values that all possible instantiations of the given semantic production
can produce.

The type function, defined in Figure 3.3, is used to calculate the set of types of
the values that all possible instantiations a given semantic production can pro-
duce, given the current type analysis information about the semantic functions
called in the denotation of the semantic production. From the current analysis
information, it generates all possible type environments and invokes the type
inference algorithm with each of these type environments, giving the union of
the sets of types produced by the type inference algorithm. If the current anal-
ysis information, i.e., the set of types, for a semantic function/production is
empty, we currently know of no possible instantiations. Thus, if the current set
of types for any of the semantic functions called by the denotation of a semantic
production is empty, we cannot construct a type environment with which to
invoke the type inference algorithm, hence the two cases in the definition of the
TTAexit function for production nodes. The analysis results for specifications
in which the denotation of all semantic productions call a semantic function will
thus be an empty set of types for every semantic production, which is correct
in the sense that there exists no possible instantiations of finite length of any of
its semantic productions.

From the definition of ≤ we see that if L1 ≤ L2 then all the type environments
that can be generated from L1 can also be generated from L2. We thus have
that if L1 ≤ L2 then type(L1, a) ⊆ type(L2, a) for all actions a, provided L1

covers a, as defined by the binary covers predicate in Table 3.2.

Let L1 and L2 denote two elements of S such that L1 ≤ L2 and let p denote a
production node for a semantic production with the denotation a. Let L′

i denote
the value of TTAexit(p) calculated using Li as the value of TTAentry(p). If L1

covers a then clearly L2 also covers a, since L1 ≤ L2. If L1 does not cover a
then L′

1 = (id, ∅) and clearly L′
1 ≤ L′

2 by the definition of ≤. TTAexit is thus a
monotone function.

Since the lattice used is complete, the “effective” lattice used for the second type
inference algorithm satisfies the Ascending Chain condition and the transfer
function is monotone, we can use a work-list algorithm to iteratively calculate
a least fixed point of the TTAentry/TTAexit equations, and the iteration is

init : ASD→ P(FuncID× FuncParams ×Action)

TTAentry, TTAexit : (FuncID ∪ (FuncID× FuncParams ×Action))

→ P(FuncID× P(Type))

init(L) = {(m, p, a) | m ∈ funcs(L)

∧ (p, a) ∈ prods(L)(m) ∧ calls(a) = ∅}

TTAentry(id) =
⊔

{TTAexit((id, p, a)) | (id, p, a) ∈ V }

TTAentry((id
′, p, a)) =

⊔

{TTAexit(id) | id ∈ V ∧ (id, (id′, p, a)) ∈ E}

TTAexit(id) = TTAentry(id)

TTAexit((id, p, a)) =

{

(id, type(T, a)) if T covers a

(id, ∅) otherwise

where T = TTAentry((id, p, a)).

T covers a iff ∀(m, a′) ∈ calls(a) : ∃T ′ : T ′ 6= ∅ ∧ (m, T ′) ∈ T

Figure 3.2: Type and termination analysis.

type : P(FuncID× P(Type))×Action→ P(Type)

type′ : P(FuncID×Type)→ P(FuncID × FuncParams)

→ P(FuncID× P(Type))→ Action→ P(Type)

type(entry, a) = type′([])(calls(a))(entry)(a)

type′(Γ)(∅)(entry)(a) =

{

T if Γ, − ⊢T a : T

undef otherwise

type′(Γ)(calls)(entry)(a) =
⋃

{type′(Γ[m 7→ t])(calls \ (m, a′))(entry)(a)

| (m, a′) ∈ calls ∧ (m, T) ∈ entry ∧ t ∈ T }

Figure 3.3: A function for inferring the types of a semantic production.

guaranteed to terminate (for the second type and termination analysis).

Figure 3.4 contains a simplified version of the worklist algorithm used to actually
calculate the least fixed point of the TTAentry/TTAexit equations for a given
specification L with the LCG (V, E). Here TTAentry is a table mapping vertices
to the current type analysis information about the vertex and TTAexit the
function defined in Figure 3.2. The worklist, W , which is represented as a
set of edges, is used to keep track of what remains to be computed. Each edge,
(l, l′), in the worklist indicates that the entry information for node l has changed
requiring the entry information for l′ to be recomputed. Initially, every edge
is added to the worklist, then the algorithm starts selecting edges, (l, l′), from
the worklist at random, recalculating the exit information of l using the current
entry information. If the newly calculated exit information for l is greater than
the current entry information for l′, the entry information of l′ is updated and
all of l′’s outgoing edges are added to the worklist.

The worklist algorithm presented above obviously is not very efficient, because
of the random selection of edges from the worklist. The worklist algorithm we
have implemented is slightly more intelligent: it divides the LCG into strongly
connected components (SCCs), constructs a dependency graph for these SCCs,
sorts the vertices of the dependency graph in topological order and processes
each SCC in this order. Each SCC is processed using an algorithm very similar
to the one given above, the only difference being that the only edges added to

1 for each (l, l′) ∈ E
2 do W ←W ∪ {(l, l′)}
3 while W 6= ∅
4 do select an edge (l, l′) from W
5 W ←W \ {(l, l′)}
6 if TTAexit(l) 6≤ TTAentry(l

′)
7 then TTAentry(l

′)← TTAentry(l
′) ⊔ TTAexit(l)

8 for all (l′, l′′) ∈ E
9 do W ←W ∪ {(l′, l′′)}

Figure 3.4: The worklist algorithm.

the worklist are edges between vertices both members of the given SCC.

3.1.2 Type system 1

In this sub-section, the first type inference algorithm is introduced. This algo-
rithm has the unfortunate property, that when used with the type and termina-
tion analysis, the type and termination analysis does not always terminate. In
Section 3.1.3 we introduce a less precise version of this algorithm, which always
terminates.

The type inference algorithm is shown as an inference system in Tables 3.2
and 3.3. The type terms used in the algorithm are given as a grammar in
Figure 3.5. τd generates types for datums and τ generates types for data (i.e..,
datum tuples). The datum types are self-explanatory. The type of the n-tuple
(d1, ..., dn) is (t1, ..., tn), where ti is the type of datum di.

To enforce the context neutrality restriction on the denotation of semantic pro-
ductions and any unfoldings it might contain, with the type inference algorithm,
we introduce the “−” type for data that must not be able to affect the perfor-
mance of the given action. The type of the data given to A is set to “-” when
inferring the types of the body of unfolding A actions and when A is the
denotation of a semantic production.

A typing judgment of the form:

Γ, − ⊢T A : T

says that action A gives or produces types T in the type environment Γ. A type
environment is a finite mapping from semantic function identifiers (FuncID) to
a type (Type).

Most of the inference rules are straightforward, however, the T1-Unf1 rule
deserves a few comments: Since we require that unfolding actions must be
context-neutral and unfold actions tail-recursive, unfold actions can never give
values of types other than those given by the enclosing unfolding action’s non-
recursive branches. We can thus safely assign unfold actions the set of types
∅, as they do not contribute anything themselves to the types of the enclos-
ing unfolding action. After the analysis has been completed, all unfolds are
annotated with the types of the enclosing unfolding.

Consider the While language extended with the semantic production below,
which defines a new language construct, (A1, A2), that gives the concatena-
tion of the data given by A1 and A2, where A1 and A2 are arithmetic ex-
pressions. The type produced by the semantic production for the arithmetic
expression N , where N is a numeral, is {(int)}, independent of the type en-
vironment used. At some point the type and termination analysis will thus
attempt to infer the type of (A1, A2), with a type environment of [evala[[A1]] 7→
(int), evala[[A1]] 7→ (int)] and infer the set of types {(int, int)}. At some
point it will thus attempt to infer the type of (A1, A2), with a type environ-
ment of [evala[[A1]] 7→ (int, int), evala[[A2]] 7→ (int)], inferring the set of types
{(int, int, int)}, and so on, never terminating.

• evala[[(A1, A2)]] = evala[[A1]] and evala[[A2]]

τ ::= (τd, ..., τd) | − tuple and ...

exn(τ) | fail exceptional values and failure

τd ::= nat | bool types for natural numbers and truth-values

bindings | token | cell types for bindings, tokens and cells

normal, failed, fail, exp : P(Type)→ P(Type)

fail(T) = {fail} ∩ T

exp(T) = {exn(τ) | exn(τ) ∈ T }

failed(T) = fail(T)∪ exp(T)

normal(T) = T \ failed(T)

Figure 3.5: Grammar of types for the first type and termination analysis.

n ∈ Nat, b ∈ Bool, t ∈ Token, di ∈ Datum

(TD1-Nat) ⊢ n : nat

(TD1-Bool) ⊢ b : bool

(TD1-Token) ⊢ t : token

(TD1-Num)
(id, {numeral}) ∈ Γident

⊢ id : nat

(TD1-Ident)
(id, {ident}) ∈ Γident

⊢ id : token

(TD1-Tuple)
∀i ⊢ Γ : diti

⊢ (d1, ..., dn) : (t1, ..., tn)

Table 3.2: Type rules for action data.

d ∈ Data, A ∈ Action

(T1-Provide) ⊢ Γ : dt
Γ, T ⊢T provide d : {t}

(T1-Copy)
T 6= −

Γ, T ⊢T copy : T

(T1-Then)

Γ, T ⊢T A1 : T ′,
∀t ∈ normal(T ′) : Γ, t ⊢T A2 : Tt,

T ′′ = ∪t∈normal(T ′)Tt ∪ failed(T ′)

Γ, T ⊢T A1 then A2 : T ′′

(T1-And)

Γ, T ⊢T A1 : T ′, Γ, T ⊢T A2 : T ′′,
T ′′′ = normal(T ′)× normal(T ′′) ∪ failed(T ′ ∪ T ′′)

Γ, T ⊢T A1 and A2 : T ′′′

(T1-Raise) Γ, T ⊢T raise : {exn(T)}

(T1-Excep)

Γ, T ⊢T A1 : T ′,
∀exn(t) ∈ T ′ : Γ, t ⊢T A2 : Tt,

T ′′ = ∪exn(t)∈T ′Tt ∪ normal(T ′) ∪ fail(T ′)

Γ, T ⊢T A1 exceptionally A2 : T ′′

(T1-Arith1)
T ∈ {+,−, ∗}, T = (nat, nat)

Γ, T ⊢T give @ : {nat}

(T1-Arith2)
T ∈ {+,−, ∗}, T 6= (nat, nat)

Γ, T ⊢T give @ : {exn(())}

(T1-Bind1)
T = (token, d) ∧ d ∈ bindable

Γ, T ⊢T give binding : {(bindings)}

(T1-Bind2)
T 6= (token, d) ∨ d 6∈ bindable

Γ, T ⊢T give binding : {exn(())}

Table 3.3: The first type system. Continues on the following page.

(T1-Bound1)
T = (bindings, token)

Γ, T ⊢T give bound : bindable

(T1-Bound2)
T 6= (bindings, token)

Γ, T ⊢T give bound : {exn(())}

(T1-Over1)
T = (bindings b, bindings b′)

Γ, T ⊢T give overriding : {(bindings)}

(T1-Over2)
T 6= (bindings b, bindings b′)

Γ, T ⊢T give overriding : {exn(())}

(T1-Proj1)
T = (cell)

Γ, T ⊢T give the cell : {(cell)}

(T1-Proj2)
T 6= (cell)

Γ, T ⊢T give the cell : {exn(())}

(T1-Proj3)
T = (bindings)

Γ, T ⊢T give the bindings : {(bindings)}

(T1-Proj4)
T 6= (bindings)

Γ, T ⊢T give the bindings : {exn(())}

(T1-Proj5)
T = (nat)

Γ, T ⊢T give the nat : {(nat)}

(T1-Proj6)
T 6= (nat)

Γ, T ⊢T give the nat : {exn(())}

(T1-Proj7) Γ, T ⊢T give the data : T

(T1-Check) Γ, T ⊢T check pred : {(), exn(())}

(T1-Fail) Γ, T ⊢T fail : {fail}

Table 3.3: The first type system. Continues on the following page.

(T1-Other1)

Γ, T ⊢T A1 : T ′, Γ, T ⊢T A2 : T ′′,
fail ∈ T ′, T ′′′ = (T ′ \ {fail})∪ T ′′

Γ, T ⊢T A1 otherwise A2 : T ′′′

(T1-Other2)
Γ, T ⊢T A1 : T ′, fail 6∈ T ′

Γ, T ⊢T A1 otherwise A2 : T ′

(T1-CurBin) Γ, T ⊢T give current bindings : {(bindings)}

(T1-Hence1)

Γ, T ⊢T A1 : T ′, T ′ = {(bindings)},
Γ, () ⊢T A2 : T ′′

Γ, T ⊢T A1 hence A2 : T ′′

(T1-Hence2)

Γ, T ⊢T A1 : T ′, Γ, () ⊢T A2 : T ′′,
bindings ∈ T ′, T ′ 6= {(bindings)},

T ′′′ = T ′′ ∪ {exn(())}

Γ, T ⊢T A1 hence A2 : T ′′′

(T1-Hence3)
Γ, T ⊢T A1 : T ′, (bindings) 6∈ T ′

Γ, T ⊢T A1 hence A2 : {exn(())}

(T1-Create1)
T ∈ storable

Γ, T ⊢T create : {unit}

(T1-Create2)
T 6∈ storable

Γ, T ⊢T create : {exn(())}

(T1-Update1)
T = (cell, T2), T2 ∈ storable

Γ, T ⊢T update : {unit}

(T1-Update2)
T = (T1, T2), (T1 6= cell ∨ T2 6∈ storable)

Γ, T ⊢T update : {exn(())}

(T1-Inspect1)
T = (cell)

Γ, T ⊢T inspect : storable

Table 3.3: The first type system. Continues on the following page.

(T1-Inspect2)
T 6= cell

Γ, T ⊢T inspect : {exn(())}

(T1-Unf1) Γ, T ⊢T [unfold]l : ∅

(T1-Unf2)
Γ, − ⊢T [A]l

′

: T ′

Γ, T ⊢T [unfolding [A]l
′

]l : T ′

(T1-Func)
T ′ = Γ(m[[args]])

Γ, T ⊢T [m[[args]]]l : T ′

Table 3.3: The first type system.

3.1.3 Type system 2

The termination problem of the previous type inference algorithm is caused by
the fact that the type system keeps track of the size of tuples and the type
of each component of tuples, meaning the set of types is infinite for semantic
productions that can be instantiated to produce tuples of arbitrary size. To
solve this problem we introduce a new type grammar, as seen in Figure 3.6,
which does not in general keep track of the size of tuples and the type of each
component of tuples. Instead we introduce distinct types for known tuples and
unknown tuples. Unknown tuples are tuples whose size we do not know, tuples
whose size is greater than n, and tuples for which we do not know the type of
one or more of its components. The only thing the type system records about
unknown tuples is the set of types its components might be. As the set of datum
types is finite, the set of unknown tuple types is also finite (it is the size of the
powerset of datum types). Known tuples are tuples whose size is smaller than
or equal to n, and for which we know the types of all its components. The set of
known tuple types is thus also finite (it is the size of the nth cartesian product
of the set of datum types) and since the inference rules given in Table 3.6 never
produces a set containing the type term exn(τ) where τ is exn(τ ′) for some τ ′,
the set of elements from Type that the type inference algorithm is able to infer
is finite.

The presentation given in Figure 3.6 is parameterized over n, and so is our imple-
mentation of the algorithm. For the purpose of analyzing the While language,
the analysis is precise enough with n set to two.

The type inference algorithm is shown as an inference system in Tables 3.5 and
3.6. Many of the inference rules are equivalent to the corresponding rules of the
inference system for the first inference algorithm. These rules have not been
reproduced in Tables 3.5 and 3.6.

The syntax for known tuples is [τd, ..., τd] to suggest that it is a list of datum
types. The syntax for unknown tuples is {τd, ..., τd} to suggest that it is a set of
datum types. So, for instance, the definition of concatenation (the @ function
in Figure 3.6) of two unknown tuples with sets of datum types T1 and T2 should
be understood as giving an unknown tuple with the set of datum types T1 ∪T2.

With the subset of action notation that we are considering in this thesis, tu-
ples of sizes greater than two are not useful, as our subset of action notation
only includes actions for storing and retrieving such tuples, but no actions for
manipulating them. However, as it does not cost much in precision to design
the analysis such that it could be extended with the give #i action – which
gives the i’th component of the tuple it is given – without requiring any major

changes, we have done so. With the inference rules given in Table 3.6, the sizes
of the tuples that are given the unknown tuple type are always greater than
two, however, with addition of the give #i action, this is no longer true. The
inference rules in Table 3.6 therefore do not rely on this assumption, and would
still be valid if the give #i action was added to our subset of action notation.

For the following analysis we need the ability to refer to the results of this
analysis for any action and sub-action analyzed. Since we further need to be
able to distinguish between multiple equivalent sub-actions, like say the two
provide 42 actions in provide 42 and provide 42, we assume each sub-action
has a unique label. [A]l denotes an action A labeled l. Furthermore, in
the following section we assume available a function, types, mapping labels to
the set of types produced by the action with the given label, and a function
onsf (l, B, B′) giving B if the action labeled l ever terminates normally and B′

if it always terminates non-normally and B ∪ B′ otherwise, and a predicate
canb(l) which is true when the action labeled l can produce bindings and false
otherwise.

Table 3.4 shows the types inferred by the type and termination analysis, using
the second type system, for each of the semantic productions of the While lan-
guage. The types inferred are as precise as possible, for the type systems used.

Production Types inferred

evala[[N]] {[nat]}
evala[[I]] {[nat], exn([])}
evala[[AE1 @ AE2]] where @ ∈ {+,−, ∗} {[nat], exn([])}

evalb[[true]], evalb[[false]] {[bool]}
evalb[[not BE]] {[bool], exn([])
evalb[[AE1 @ AE2]] where @ ∈ {=, >} {[bool], exn([])}

exec[[I := AE]] {[bindings], exn([])}
exec[[skip]] {[bindings]}
exec[[if BE then S1 else S2]] {[bindings], exn([])}
exec[[while BE do S]] {[bindings], exn([])}
exec[[S1; S2]] {[bindings], exn([])}

Table 3.4: The types inferred for the productions of the While language.

τ ::= [τd, ..., τd] known tuples

{τd, ..., τd} | − unknown tuples

exn(τ) | fail exceptional values and failure

τd ::= nat | bool types for natural numbers and truth-values

bindings | token | cell types for bindings, tokens and cells

tuple1(T, t, T ′) =











T ′ if T = [t]

T ′ ∪ {exn([])} if unknown T ∧ t ∈ T

{exn([])} otherwise

tuple2(T, t1, t2, T
′) =











T ′ if T = [t1, t2]

T ′ ∪ {exn([])} if unknown T ∧ t1 ∈ T ∧ t2 ∈ T

{exn([])} otherwise

unknown T iff T is an unknown tuple type

T1 × T2 = {τ @ τ ′ | τ ∈ T1 ∧ τ ′ ∈ T2}

[τ1, ..., τi] @ [τ ′
1, ..., τ

′
i] =

{

[τ1, ..., τi, τ
′
1, ..., τ

′
i] if i + i′ ≤ n

{τ1, ..., τi, τ
′
1, ..., τ

′
i} otherwise

[τ1, ..., τi] @ {τ ′
1, ..., τ

′
i} = {τ1, ..., τi, τ

′
1, ..., τ

′
i}

{τ1, ..., τi} @ [τ ′
1, ..., τ

′
i] = {τ1, ..., τi, τ

′
1, ..., τ

′
i}

{τ1, ..., τi} @ {τ ′
1, ..., τ

′
i} = {τ1, ..., τi, τ

′
1, ..., τ

′
i}

Figure 3.6: Grammar of types for the second termination analysis.

n ∈ Nat, b ∈ Bool, t ∈ Token, di ∈ Datum

(TD2-Nat) ⊢ n : nat

(TD2-Bool) ⊢ b : bool

(TD2-Token) ⊢ t : token

(TD2-Num)
(id, {numeral}) ∈ Γident

⊢ id : nat

(TD2-Ident)
(id, {ident}) ∈ Γident

⊢ id : token

(TD2-Tuple1)
i ≤ n, ∀k ∈ [1, i] ⊢ dk : tk

⊢ (d1, ..., di) : [t1, ..., ti]

(TD2-Tuple2)
i > n, ∀k ∈ [1, i] ⊢ di : ti,

⊢ (d1, ..., di) : {t1, ..., ti}

Table 3.5: Type rules for action data.

d ∈ Data, A ∈ Action

(T2-Arith)

T ∈ {+,−, ∗},
T ′ = tuple2(T, nat, nat, {[nat]})

Γ, T ⊢T give @ : T ′

(T2-Bind1)
T = [token, d] ∧ d ∈ bindable

Γ, T ⊢T give binding : {[bindings]}

(T2-Bind2)
T 6= [token, d] ∨ d 6∈ bindable

Γ, T ⊢T give binding : {exn([])}

(T2-Bound)
T ′ = tuple2(T, bindings, token, bindable)

Γ, T ⊢T give bound : T ′

(T2-Over)
T ′ = tuple2(T, bindings, bindings, bindings)

Γ, T ⊢T give overriding : T ′

(T2-Proj1)
T ′ = tuple1(T, cell, {[cell]})

Γ, T ⊢T give the cell : T ′

(T2-Proj2) Γ, T ⊢T give the data : T

(T2-Proj3)
T ′ = tuple1(T, bindings, {[bindings]})

Γ, T ⊢T give the bindings : T ′

(T2-Proj4)
T ′ = tuple1(T, nat, {[nat]})

Γ, T ⊢T give the nat : T ′

(T2-CurBin) Γ, T ⊢T give current bindings : {[bindings]}

(T2-Create1)
T ∈ storable

Γ, T ⊢T create : {[]}

Table 3.6: The second type system. Continues on the following
page.

(T2-Create2)
T 6∈ storable

Γ, T ⊢T create : {exn([])}

(T2-Update1)
T = [cell, d] ∧ d ∈ storable

Γ, T ⊢T update : {[]}

(T2-Update2)
T 6= [d1, d2] ∨ d1 6= cell ∨ d2 6∈ storable

Γ, T ⊢T update : {exn([])}

(T2-Inspect1)
T ′ = tuple1(T, cell, storable)

Γ, T ⊢T inspect : T ′

Table 3.6: The second type system.

3.2 Binding analysis

In this section we first develop an analysis which allows us to track how bind-
ings flow inside and between different language constructs, for some languages.
Subsequently, we develop an algorithm which takes the results of the binding
analysis and generates a reaching bindings analysis for the source language,
about a given program’s denotation.

To illustrate the analyses themselves and how they are useful, we start with a
simple example. Consider the two semantic productions from the action seman-
tic description of While – reproduced in Figure 3.7 – specifying the semantics
of statement sequencing and the if construct, respectively. From the type and
termination analysis of the previous section we know that statements either ter-
minate normally giving bindings or terminate exceptionally, raising a 0-tuple.
For the statement S1; S2 we can see that first S1 is executed using the current
bindings, then S2 is executed using the bindings given by S1, and that the bind-
ings given by S1; S2 are the bindings given by S2. Similarly for the if construct,
we see that first the boolean expression is evaluated using the current bindings,
and then either S1 or S2 is evaluated using the current bindings, and that the
bindings produced by the if construct is either the bindings produced by S1 or
the bindings produced by S2.

From these results we can for instance derive the following set equation tem-
plates, which allow us to analyze, which tokens might be bound before and after
the execution of the two language constructs. The entry function specifies the
tokens that might be bound before execution and the exit function the tokens

• exec[[S1; S2]] = exec[[S1]] hence exec[[S2]]

• exec[[if BE then S1 else S2]] =

evalb[[BE]] then (

(give true then exec[[S1]])

otherwise exec[[S2]])

Figure 3.7: The semantic productions of the While language for statement
sequences and if statements.

that might be bound after execution:

entry(exec[[S1]]) = entry(exec[[S1; S2]])

entry(exec[[S2]]) = exit(exec[[S1]])

exit(exec[[S1; S2]]) = exit(exec[[S2]])

entry(exec[[BE]]) = entry(exec[[if BE then S1 else S2]])

entry(exec[[S1]]) = entry(exec[[if BE then S1 else S2]])

entry(exec[[S2]]) = entry(exec[[if BE then S1 else S2]])

exit(exec[[if BE then S1 else S2]]) = exit(exec[[S1]]) ∪ exit(exec[[S2]])

Since the bindings used to perform S1 in S1; S2 are the bindings used to perform
S1; S2, the bindings that might be bound before the execution of S1 are the
bindings that might be bound before the execution of S1; S2. This is what the
first equation expresses. Likewise, the last equation expresses that the bindings
that might be bound after the execution of an if statement are the union of the
bindings that might be bound after the execution of the if statement’s branches.

From these equation templates we could for instance generate an analysis that
takes a source program and uses the equation templates derived for the source
language to generate a set of reaching bindings equations for the entire program
program and solve these equations.

The semantics of the assignment statement, I := AE, in While, specifies that
if a cell is already bound to the identifier I then that cell is updated with the
value of AE, otherwise a new cell is created with the value of AE and bound to
I. For the While language the solved reaching bindings equations could thus
be used to eliminate the action that checks whether a cell is already bound to I,
for those assignment statements where the reaching bindings equations do not
show that I might be bound before execution.

3.2.1 Binding flow analysis

The binding flow analysis is a type analysis, with a type system for tracking the
structure of the bindings used and produced by semantic productions. Unlike
the type and termination analysis presented before, where we were interested in
the types produced by all possible instantiations of semantic productions, here
we are interested in the bindings used and produced by semantic productions,
parametrized by the bindings used and produced by the semantic functions
called. We can therefore perform this analysis on each semantic production in-
dependently of each other, without having to iterate until a fix-point is reached,
as for the type and termination analysis.

To simplify the analysis, we impose a series of restrictions on the action seman-
tic descriptions that we are able to analyze. These restrictions only apply to
the semantic productions of those semantic functions where one or more of its
semantic productions manipulate bindings (i.e., if some sub-action of its deno-
tation produces bindings).

• Actions must not terminate exceptionally raising bindings and bindings
must not be bindable or storable. Without these restrictions (especially
the second one), much of the analysis would have to be delayed and per-
formed on concrete programs instead of language specifications. For ex-
ample, consider the While language extended with the following two
semantic productions.

– exec[[save I]] =

give current bindings and

(provide I and give current bindings

then give binding)

then give overriding

– exec[[S using I]] =

give the bindings bound to I hence exec[[S]]

then give current bindings

The first allows the current bindings to be bound to an identifier and the
second allows a statement to be executed using the bindings bound to
the given identifier. Since we are looking at each language construct in
isolation, we have no choice but to assume that any token could be bound
in the bindings bound to I in S using I, which would obviously yield
a useless analysis. Most of the analysis would have to be performed on
concrete programs to be useful for such languages.

With some extra work, the first restriction could be relaxed to allow the
raising of bindings within semantic productions, as long as they are always
caught again within the semantic production.

This first restriction has the unfortunate consequence that we for instance
cannot analyze the While language extended with the following two se-
mantic productions, which add the ability to throw and catch a primitive
form of exceptions. In general, this restriction means that we are unable
to analyze languages that support exceptions via AN’s exceptional data
and where the scoping rules of the language are such that the current
bindings at the point where the exception is thrown are needed where the
exception is caught.

– exec[[try S1 catch S2]] =

exec[[S1]] exceptionally copy hence exec[[S2]]

– exec[[throw]] = give current bindings then raise

For languages such as While , where variables do not have to be declared
before they can be assigned a value, it seems reasonable to expect that
variables which are initialized in S1 of try S1 catch S2 are accessible
in S2. This analysis will not be able to analyze such a language (if its
exceptions are implemented using exceptional values), as S2 has to be
performed with the current bindings at the point where the exception was
thrown in S1. However, languages where the current bindings at the point
where an exception is thrown are not used for anything (and therefore
not passed along as exceptional data) – like, say, a WHILE-like language,
without global variables, where all variables are local to a block, declared
via a block construct {V S}, where V is a variable declaration – can still
be analyzed.

• If [bindings] ∈ T , where T is the type of a semantic function, then the
type S of all its semantic productions must satisfy [bindings] ∈ S. If
[bindings] ∈ T , where T is the type of a semantic production or un-
folding, then T must satisfy T ⊂ {[bindings], fail, exn()}. All semantic
productions must further satisfy the following conditions, where T is the
type of the given semantic production:

– There must not exist n datum types, t1, ..., tn, where n > 1, such that
[t1, ..., tn] ∈ T , where one or more of the datum types is bindings.

– There must not exist n datum types, t1, ..., tn, such that {t1, ..., tn} ∈
T , where one of the datum types is bindings.

In effect, this means that the only way bindings are allowed to flow between
language constructs, are as 1-tuples, where the one tuple component is a
set of bindings.

The analysis could be extended to avoid these restrictions, however, these
restrictions simplified the implementation of the analysis and still allowed
us to analyze While, so we chose not to spend the time extending the
analysis.

One extension is to allow bindings to flow in n-tuples, where n can vary
for each semantic function. That is, all semantic productions belonging
to the a given semantic function must always produce tuples of size n and
such that it is always the same components of the tuple that are sets of
bindings. Consider, for instance, the While language extended with the
following two semantic productions:

– exec2[[I]] =

provide I and give current bindings

and give current bindings

– exec[[I]] = exec2[[I]] then give #2 and give #3

They are not very useful, but I could not think of any useful language
extensions to While to illustrate the point, so these will have to do. The
first production takes an identifier I and gives the tuple (I, b, b) where b are
the current bindings, and the second production calls the first production
with the given identifier I and gives the 2-tuple (d2, d3), where di is the
ith component of the tuple given by the action produced by the semantic
function call.

To be able to handle such languages correctly, the type system would
have to be extended to keep track of which component of the tuple given
by function calls, bindings given by function calls come from. The algo-
rithm that generates the entry/exit equations could then generate an exiti
equation for each component, i, of the n-tuples that the given semantic
production can produce, that is a set of bindings. For the above example
we would get the following equations:

exit2(exec2[[I]]) = entry(exec2[[I]])

exit3(exec2[[I]]) = entry(exec2[[I]])

exit1(exec[[I]]) = exit2(exec2[[I]])

exit2(exec[[I]]) = exit3(exec2[[I]])

The above extension could be extended even further, dropping all restric-
tions, expect that now no semantic productions can have unknown tuple
types among its types. Each semantic production would have to be an-
alyzed once for each “type instantiations” of its semantic function calls,
however, fix-point iteration would not be needed, as the “type instantia-
tions” could simply be generated from the results of the type and termina-
tion analysis. When the generated entry/exit equation templates are in-
stantiated for the entire program, some equations might refer to undefined
exiti equations – for example, if semantic productions sometimes produce
tuples containing bindings and other times produces bindings which does
not contain bindings, depending on instantiation – these should simply be
set to ∅. The analysis would still be correct, as each production would
have been analyzed once for each possible “type instantiations”, also the
ones where the type of the semantic function calls did not include any
bindings. However, the analysis would probably be very imprecise for
some languages.

• Tokens must neither be storable nor bindable. Again, this analysis is too
imprecise for languages which do not satisfy this condition. Consider the
While language extended with the following two semantic productions:

– exec[[I1 := I2]] =

give current bindings and

(provide I1 and provide I2 give binding)

then give overriding

– exec[[I ← A]] =

evala[[A]] and

(give the data bound to I)

then update

The first allows a token to be bound to another token, and the second
is a slightly modified assignment construct, which updates the cell bound
to the token bound to the given token, with the value of the arithmetic
expression. Without looking at a concrete program, all that we would be
able to say about the bindings produced by the first semantic production,
would be that any token could be bound.

• The denotation of semantic productions must not raise or give tokens.
Again, the reasoning is that if language constructs can give or raise tokens,
we cannot analyze language constructs individually, we have to look at how
they are combined.

• Finally, this analysis depends on the results of the type and termination
analysis, so the specification also has to satisfy all the restrictions from
the type and termination analysis.

The implementation of this analysis verifies that all the above conditions are
satisfies by the given specification, before running the analysis.

The type system used for this analysis – which is shown in Table 3.7 – is similar
to the type system used for the first type and termination analysis. The main
differences are the introduction of an other type for the values that we do not
care about and a way of tracking the structure of bindings. These differences
are discussed below.

• The bindings β type: The type for bindings, bindings β, has been ex-
tended with a parameter to specify the structure of the given bindings.
The parameter of binding terms should be interpreted as follows:

– entry: Represents the bindings used to perform the given semantic
production with.

– {t}: A singleton binding of token t.

– β1 + β2: The bindings produced by β2 overriding β1.

– given(a): The bindings given by action a, where a is a semantic
function call.

– unfentry(a): The current unfolding bindings.

– unfexit(a, (β1, ..., βn)): β1, ..., βn are the bindings produced by action
a, where a is an unfolding action.

The structure of the bindings produced by the if b then S1 else S2 con-
struct of While would for example be given(exec[[S1]]) and given(exec[[S1]])
and the bindings used to perform evalb[[b]], exec[[S1]], and exec[[S2]] would
be entry (i.e.., the bindings used to perform if b then S1 else S2).

• The other type: With this analysis we encounter the same problem of
tuples that we encountered with the type and termination analysis: some-
times we need to know the length and types of the components of tuples,
but at the same time we do not wish to discriminate against languages
that support tuples of arbitrary length.

Since we are only interested in bindings and tokens for this analysis, we
start by introducing a new type, other, to cover all other values than
bindings and tokens. To solve the problem of tuples of arbitrary length,
we change the interpretation of the other type to also cover an arbitrary
number of consecutive components in an n-tuple (including zero), where
none of the datums in these components are bindings or tokens. So for
instance the type [nat, nat, token, nat] from the first type system would
become (other, other, token, other) or (other, token, other). Every time an
action is assigned a type, the type is first reduced, so that it contains the
minimum number of others necessary to represent the original type. So, for
instance, (other, other, token, other) would reduce to (other, token, other).

This approach gives a reasonable approximation in all but the most patho-
logical cases. Consider for instance the While language extended with the
semantic production below. This language construct is obviously broken,
as it has no effect; it will always terminate normally giving the current
bindings. However, the analysis is not precise enough to notice that the
attempt to bind the value given by evala[[A]] to the identifier I will always
fail, as the type inferred for the value given to the give binding action
will be (token, other), leaving us unable to conclude that the action will
always terminate exceptionally. The analysis will therefore give the results
{{I}+ entry, entry} instead of the more accurate {entry}.

– exec[[I ← A]] =

give current bindings and (provide I and evala[[A]] and

provide 42 then give binding) then give overriding

exceptionally give current bindings

The analysis itself is given as an inference system in Tables 3.9 and 3.10. A
typing judgment of the form,

T, ξ, η ⊢ A : (T ′, m)

should be interpreted as follows: Action A produces types T ′ when given a value
of type T and performed using the bindings ξ enclosed in the unfolding η. m
is a mapping from sub-actions of A (more specifically semantic function calls
and unfolding actions) to sets of β terms, of the bindings that the given action
could be performed with. This map will be referred to as a binding map. The
merge function, defined in Table 3.7, takes a set of binding maps S and merges
them into a new map. In the merged map, action a is mapped to the union of
the sets of binding parameter terms those maps in S which contains a mapping
for a maps a to.

Many of the inference rules, especially the inference rules for action combinators,
are very similar to the inference rules of the previous type inference algorithms,
however, a few, most notably the inference rules for unfold and unfolding, and
the actions that manipulated bindings, are quite interesting. These inference
rules are discussed below.

• B-Bind: The give binding action terminates exceptionally unless given
a 2-tuple consisting of a token and a bindable datum. If give binding is
given a value of type (other, token, other), then we have to assume that
it will produce a binding of the given token, as that type covers such
values as a 2-tuple where the first component is a token and the second
component a bindable datum. In general, the only conditions under which
we can be certain that give binding will not produce a binding, is if the
type T of the value given to give binding does not satisfy the following
two conditions:

– The first component of T that is not other must be token. The B-

Bind rule makes use of a trim function to specify this condition. The
trim function takes a type such as (other, token, other) and removes
all others from the tuple, giving (token) for this example.

– No 2-tuple where one of the components of the type is a token has a
0- or 1-tuple type, so the size of T must be at least 2.

a ∈ Action, t ∈ Token

τ ::= (τd, ..., τd) tuples

exn(τ) | fail

τd ::= other

bindings(β) a set of bindings

token(t) a token

β ::= entry entry bindings

{t} singleton binding

β + β overriding bindings

given(a) function call bindings

unfentry(a)

unfexit(a, (β, ..., β))

merge({m1, m2, ..., mn}) a =

{

∪i∈I mi(a) if I 6= ∅

undef otherwise

where I ⊆ n, such that ∀i ∈ I : a ∈ dom(mi) ∧ ∀i ∈ n \ I : a 6∈ dom(mi)

conv(a, [τ1, ..., τn]) =



























() if n = 0

(bindings(given(a))) if n = 1 ∧ τi = bindings

(other) if n > 0 ∧ ∀i : (τi 6= bindings
∧ τi 6= token)

undef otherwise

conv(a, {τ1, ..., τn}) =

{

(other) if ∀i : τi 6= bindings ∧ τi 6= tokens

undef otherwise

conv(a, exn(τ)) = exn(conv(a, τ))

conv(a, fail) = (fail)

Table 3.7: Grammar of types for the binding flow analysis.

• B-Unf1 and B-Unf2: As the restrictions that ensured that unfolds do
not contribute anything to the type of the enclosing unfolding also apply
to this analysis, we can disregard the types produced by unfolds. How-
ever, as the unfold causes the enclosing unfolding (η) to be performed
with the current bindings, a mapping is added from η to {ξ} (the current
bindings).

n ∈ Nat, b ∈ Bool, t ∈ Token, di ∈ Datum

(BA-Nat) ⊢ n : other

(BA-Bool) ⊢ b : other

(BA-Token) ⊢ t : token(t)

(BA-Num)
(id, {numeral}) ∈ Γident

⊢ id : other

(BA-Ident)
(id, {ident}) ∈ Γident

⊢ id : token(id)

(BA-Tuple)
∀i : ⊢ di : ti

⊢ (d1, ..., dn) : (t1, ..., tn)

Table 3.9: Type rules for action data.

(B-Provide) ⊢ d : t

T, ξ, η ⊢ [provide d]l : ({t}, [])

(B-Copy) T, ξ, η ⊢ [copy]l : ({T }, [])

(B-Then)

T, ξ, η ⊢ [A1]l
′

: (T ′, m′),

∀t ∈ normal(T ′) : t, ξ, η ⊢ [A2]l
′′

: (Tt, mt),
T ′′ = ∪t∈normal(T ′)Tt ∪ failed(T ′),

m′′ = merge({m′} ∪ {mt | t ∈ normal(T ′)})

T, ξ, η ⊢ [[A1]l
′

then [A2]l
′′

]l : (T ′′, m′)

(B-And)

T, ξ, η ⊢ [A1]l
′

: (T ′, m′),

T, ξ, η ⊢ [A2]l
′′

: (T ′′, m′′),
T ′ = normal(T ′)× normal(T ′′) ∪ failed(T ′ ∪ T ′′),

m′′′ = merge({m′, m′′})

T, ξ, η ⊢ [[A1]l
′

and [A2]l
′′

]l : (T ′, m′′′)

(B-Raise)

T = (τ1, ..., τn),
∀i ∈ [1, n] : ¬∃b : τi = bindings b

T, ξ, η ⊢ [raise]l : ({exn}, [])

(B-Excep)

T, ξ, η ⊢ [A1]l
′

: (T ′, m′),

∀exn(t) ∈ T ′ : t, ξ, η ⊢ [A2]l
′′

: (Tt, mt),
T ′′ = normal(T ′) ∪ fail(T ′) ∪ {Tt | exn(t) ∈ T ′},

m′′ = merge({m′} ∪ {mt | exn(t) ∈ T ′})

T, ξ, η ⊢ [[A1]l
′

exceptionally [A2]l
′′

]l : (T ′′, m′′)

(B-Give)

@ ∈ {+,−, ∗},
T ′ = onsf (l, {(other)}, {exn(())})

T, ξ, η ⊢ [give @]l : (T ′, [])

(B-Check)

@ ∈ {>, =},
T ′ = onsf (l, {T }, {exn(())})

T, ξ, η ⊢ [check @]l : (T ′, [])

Table 3.10: The binding flow analysis. Continues on the following
page.

(B-Proj1) T, ξ, η ⊢ [give the data]l : ({T }, [])

(B-Proj2)
@ ∈ {nat, bindings, cell}

T, ξ, η ⊢ give the @ : ({T, exn([])}, [])

(B-Bound)
T ′ = onsf (l, {(other)}, {exn(())})

T, ξ, η ⊢ [give bound]l : (T ′, [])

(B-Bind)
trim(T) = (token t, ...), |T | > 1

T, ξ, η ⊢ [give binding]l : ({(bindings {t})}, [])

(B-Over)
trim(T) = (bindings b, bindings b′)

T, ξ, η ⊢ [give overriding]l : ({(bindings (b + b′))}, [])

(B-CurBin) T, ξ, η ⊢ give current bindings : ({(bindings ξ)}, [])

(B-Hence1)

T, ξ, η ⊢ [A1]l
′

: (T ′, ,)
bins(T ′) 6= ∅ ∧ bins(T ′) = T ′,

∀bindings b ∈ bins(T ′) : other, b, η ⊢ [A2]l
′′

: (Tb, ,)
T ′′′ = ∪t∈bins(T ′)Tb

T, ξ, η ⊢ [[A1]l
′

hence [A2]l
′′

]l : (T ′′′, [])

(B-Hence2)

T, ξ, η ⊢ [A1]l
′

: (T ′, ,)
bins(T ′) = ∅ ∨ bins(T ′) 6= T ′,

∀bindings b ∈ bins(T ′) : other, b, η ⊢ [A2]l
′′

: (Tb, ,)
T ′′′ = ∪t∈bins(T ′)Tb ∪ {exn(⊥)}

T, ξ, η ⊢ [[A1]l
′

hence [A2]l
′′

]l : (T ′′′, [])

(B-Create)
T ′ = onsf (l, {(other)}, {exn(())})

T, ξ, η ⊢ [create]l : (T ′, [])

(B-Update)
T ′ = onsf (l, {()}, {exn(())})

T, ξ, η ⊢ [update]l : (T ′, [])

Table 3.10: The binding flow analysis. Continues on the following
page.

(B-Inspect)
T ′ = onsf (l, {(other)}, {exn(())})

T, ξ, η ⊢ [inspect]l : (T ′, [])

(B-Unf1)
m′ = [η 7→ ξ]

T, ξ, η ⊢ [unfold]l : (∅, m′)

(B-Unf2)

¬canb(η),

T, unfentry(l), [unfolding [A]l
′

]l ⊢ [A]l
′

: (T ′, m′),

m′′ = [[unfolding [A]l
′

]l 7→ ξ],
m′′′ = merge({m′, m′′})

T, ξ, η ⊢ [unfolding [A]l
′

]
′

: (T ′, m′)

(B-Unf3)

canb(η),

T, unfentry(l), [unfolding [A]l
′

]l ⊢ [A]l
′

: (T ′, m′),
T ′′ = {bindings unfexit(l, bins(T ′))} ∪ nbins(T ′),

m′′ = [[unfolding [A]l
′

]l 7→ ξ],
m′′′ = merge({m′, m′′})

T, ξ, η ⊢ [unfolding [A]l
′

]l : (T ′′, m′′′)

(B-Call)

T ′ = {conv([m[[args]]]l, τ) | τ ∈ type(l)},
m′ = [[m[[args]]]l 7→ ξ]

T, ξ, η ⊢ [m[[args]]]l : (T ′, m′)

Table 3.10: The binding flow analysis.

3.2.2 Reaching bindings

The next step is an algorithm which can take the results of the binding flow
analysis and generate a reaching bindings analysis, in the form of a set of equa-
tion templates for each language construct. These equation templates express
what tokens might be bound after performing the denotation of the given lan-
guage construct, in terms of the tokens that might have been bound before its
performance.

Most of the work is done by the binding flow analysis, its results simply have
to be presented as a series of equation templates. Table 3.11 defines a number
of functions for generating equation templates. The eqsexit function takes the
denotation of the semantic production p under analysis, an action a, where a is
a sub-action of p, and a binding type of the binding flow analysis, and generates
a set of exit equation templates corresponding to the given binding type. Sim-
ilarly, the eqsentry function generates entry equation templates corresponding
to the given binding type. Finally, the eqs function takes the denotation of a
semantic production a gives a set of entry/exit equation templates.

If the set of types for the given semantic production contains more than one
binding type, or one or more of the actions in the bindings map map to a set of
types containing more than one binding type, then the set of generated equation
templates will contain multiple equations with the same left hand side, which
needs to be combined into one equation. Consider for instance the if construct
of the While language. The bindings given by exec[[if b then S1 else S2]] are
either the bindings given by exec[[S1]] or the bindings given by exec[[S2]], so the
set of equation templates given by the eqs function would include the following
two:

exit(exec[[if b then S1 else S2]]) = exit(exec[[S1]])

exit(exec[[if b then S1 else S2]]) = exit(exec[[S2]])

The set of tokens that might be bound after exec[[if b then S1 else S2]] has been
performed is thus the union of the tokens that might be bound after exec[[S1]]
has been performed and the tokens that might be bound after exec[[S2]] has been
performed. We can thus rewrite the equation to:

exit(exec[[if b then S1 else S2]]) = exit(exec[[S1]]) ∪ exit(exec[[S2]])

Similarly, in general, equation templates with the same left hand side are rewrit-
ten to a single equation where the right hand side of the new equation is the
union of the right hand side of all the old equations.

The only interesting aspect of the eqsexit and eqsentry functions is how unfold-
ings that give bindings are handled. Figure 3.8 shows a graphical representation

eqsexit : Action×Action→ Binding→ P(BinEqs)

eqsexit(a, p)(entry) = {exit(a) = entry(p)}

eqsexit(a, p)(given(a′)) = {exit(a) = exit(a′)}

eqsexit(a, p)({t}) = {exit(a) = {t}}

eqsexit(a, p)(β1 + β2) = eqsexit(a, p)(β1) ∪ eqsexit(a, p)(β2)

eqsexit(a, p)(unfentry(a
′)) = {exit(a) = entry(a′)}

eqsexit(a, p)(unfexit(a
′, B)) = {exit(a) = exit(a′)}

∪ {eqsexit(a
′, p)(β) | β ∈ B}

eqsentry : Action×Action→ Binding→ P(BinEqs)

eqsentry(a, p)(entry) = {entry(a) = entry(p)}

eqsentry(a, p)(given(a′)) = {entry(a) = exit(a′)}

eqsentry(a, p)({t}) = {entry(a) = {t}}

eqsentry(a, p)(β1 + β2) = eqsentry(a, p)(β1) ∪ eqsentry(a, p)(β2)

eqsentry(a, p)(unfentry(a
′)) = {entry(a) = entry(a′)}

eqsentry(a, p)(unfexit(a
′, B)) = {entry(a) = exit(a′)}

∪ {eqsexit(a
′, p)(β) | β ∈ B}

eqs : Action→ P(BinEqs)

eqs(a) =
⋃

{eqsexit(a, a)(β) | β ∈ B} ∪
⋃

{eqsentry(a
′, a)(β) | β ∈ B′ ∧ (a′, B′) ∈ m}

where other, entry, p ⊢ p : (B, m)

Table 3.11: Functions for generating reaching bindings equation templates.

of the equation templates generated for unfoldings that produce bindings. The
set of types for these unfoldings include exactly one binding type of the form
unfexit(a, B), where a is the given unfolding and B the set of binding types
produced by the unfoldings non-recursive branches. The non-recursive branches
arrow represents the exit equation templates generated by both eqsexit and
eqsentry by recursively calling eqsexit for each of the binding types in B. As
mentioned in the previous sub-section, unfolds enclosed in an unfolding add
a mapping from the enclosing unfolding to the current bindings used to per-
form the unfold to the bindings map. The equation templates represented by
the recursive branches arrow are thus generated by the eqsentry function, when
entry equations are generated for mappings by the eqs function.

entry exit

unfolding A

non-recursive branches

recursive branches

Figure 3.8: Graphical representation of the equations generated for unfoldings
in general.

As a simple example, consider the while-construct of the While language. It
has the binding types {unfexit(unfolding(...), {unfentry(unfolding(...))}} and
the bindings map:

[unfolding(...) 7→ {entry, exec[[S]]},

exec[[S]] 7→ {unfentry(unfolding(...))},

evalb[[b]] 7→ {unfentry(unfolding(...))}]

Figure 3.9 illustrates the equation templates generated based on these binding
types and this binding map.

Table 3.12 defines a reaching bindings analysis for the While language, as a
standard kill/gen data-flow analysis over the complete lattice (P(V ar∗),⊆),
where V ar∗ is the set of variables used in the program being analyzed. P∗ is
the program being analyzed, stm is a function that takes a label and gives the
statement with the given label (we assume statements are uniquely labeled),
flow is a function that takes a statement and gives the set of edges of the

statements control-flow graph, and init is a function that takes a statement,
S, and gives the label of the statement that the entry node of the control-flow
graph for S represents. The init and flow functions are defined as you would
expect, so we will not go into detail. As an example, for if statements they are
defined as follows:

init(if [BE]l then S1 else S2) = l

f low(if [BE]l then S1 else S2) = flow(S1) ∪ flow(S2)

∪ {(l, init(S1)), (l, init(S2))}

because the the boolean condition is executed before S1 and S2, followed by
either S1 or S2.

Compared to the automatically generated reaching bindings analysis for the
While language, they are equivalent, in the sense that the RDentry and RDexit

equations one would obtain by instantiating the equations given in Table 3.12,
are exactly the same equations as the equations obtained from instantiating
the equation templates from the generated analysis, except that the generated
analysis also has entry equations for arithmetic and boolean expressions. The
only difference is the presentation of the analysis; all of the information about
the flow of bindings in the template equations for the while and if statement,
and statement sequences is implicitly defined via the flow function in Table
3.12.

As a simple example of how to use the generated reaching bindings analysis,

exec[[S]]

evalb[[b]]

entry exit

exec[[while b do S]]

entry

exit

entry

Figure 3.9: Graphical representation of the equations generated for the while-
construct of the While language.

consider the following While program,

a := 10; while a > 1 do a := a− 1

First, we recursively traverse the abstract syntax tree, instantiating the reach-
ing bindings equation templates associated with the given abstract syntax node,
for each abstract syntax node encountered. Then we add the entry equation
entry(m[[P]]) = ∅, where P is the source program and m the semantic func-
tion that maps programs of the source language to actions, since no tokens are
bound in the initial bindings. Lastly, we determine the least fixed point of the
equations. The solved equations are the result of the analysis; the solved entry
and exit functions specify the tokens that might before and after each language
construct is executed, respectively.

For the above example we would thus start by instantiating the reaching bind-
ings equation templates for the statement sequence, S1; S2, where S1 is a := 10
and S2 is while a > 1 do a := a− 1, giving the equations,

entry(exec[[S1]]) = entry(exec[[S1; S2]])

entry(exec[[S2]]) = exit(exec[[S1]])

exit(exec[[S1; S2]]) = exit(exec[[S2]])

Continuing down the abstract syntax tree of the program, we obtain the follow-

genRB([I := AE]l) = {I}

genRB() = ∅

RBentry(l) =

{

∅ if l = init(P)
⋃

{RDexit(l
′) | (l, l′) ∈ flow(P∗)} otherwise

RBexit(l) = RDentry(l) ∪ genRB(stm(l))

Table 3.12: Reaching bindings analysis for While, presented as a kill/gen data-
flow analysis.

ing equations for the whole program:

entry(exec[[S0]]) = ∅

entry(exec[[S1]]) = entry(exec[[S0]])

entry(exec[[S2]]) = exit(exec[[S1]])

exit(exec[[S0]]) = exit(exec[[S2]])

entry(evala[[10]]) = entry(exec[[S1]])

exit(exec[[S1]]) = {a} ∪ entry(exec[[S1]])

entry(exec[[S5]]) = exit(exec[[a := a− 1]]) ∪ entry(exec[[S2]])

entry(evalb[[a > 1]]) = entry(exec[[S5]])

entry(exec[[a := a− 1]]) = entry(exec[[S5]])

exit(exec[[S5]]) = entry(exec[[S5]])

exit(exec[[S2]]) = exit(exec[[S5]])

entry(evala[[a− 1]]) = entry(exec[[a := a− 1]])

exit(exec[[a := a− 1]]) = {a} ∪ entry(exec[[a := a− 1]])

where S0 is a := 10; while a > 1 do a := a− 1 and S5 is unfolding (evalb[[a >
1]] then ...).

Solving these equations for the least fixed point, either by hand or using a set
constraint solver, we find the following solution:

entry(exec[[S0]]) = ∅

entry(exec[[S1]]) = ∅

exit(exec[[S1]]) = {a}

entry(exec[[S2]]) = {a}

entry(evala[[10]]) = ∅

entry(exec[[S5]]) = {a}

entry(evalb[[a > 1]]) = {a}

entry(exec[[a := a− 1]]) = {a}

exit(exec[[S5]]) = {a}

exit(exec[[S1]]) = {a}

exit(exec[[S2]]) = {a}

entry(evala[[a− 1]]) = {a}

exit(exec[[a := a− 1]]) = {a}

which is as one would expect it to be.

Chapter 4

Discussion

In this chapter we discuss a few of the limitations of the analyses developed and
discuss possible solutions.

• Type and termination analysis: The type and termination analysis im-
poses two types of restrictions on action semantic descriptions, it imposes
context neutrality on semantic productions so that semantic function calls
can be analyzed independently of the context in which they appear, and
it imposes a few conditions on unfoldings to simplify the analysis of un-
foldings.

One of the annoying consequences of the context neutrality condition is
that it prevents useful types of abstraction and reusability in action se-
mantic descriptions. Consider, for instance, the following semantic pro-
ductions in which the operand applied to two arithmetic expressions has
been abstracted out of the evala production, instead of having an evala
production for each operand as in the While specification:

– op[[+]] = give +

– op[[−]] = give −

– op[[∗]] = give ∗

– evala[[A1opA2]] = evala[[A1]] and evala[[A2]] then op[[op]]

Since the op productions do not satisfy the context neutrality condition,
the type and termination analysis is unable to analyze this specification.
In this particular case, since there is only a finite – and quite small –
number of possible instantiations of the op production, we could solve it
with a pre-processor which replaced the four productions above with three
instantiated versions of the evala production, one for each operand.

Another solution is of course to design a type and termination analy-
sis without the restriction of context neutrality for semantic productions.
Here is an untested idea for such an analysis: We extend the type system
such that a type term now has the form τ0 → {τ1, ..., τn} where the τis
are type terms of the second type and termination analysis, with the in-
terpretation that given data of type τ0 the data it gives has type τ1 or τ2,
etc. τ0 is further allowed to be a wildcard, i.e., *, if the type of the data
it is given does not affect the performance of the given action. The types
of an action is extended to be a 2-tuple where the first component is a set
of the type terms described above and the second component is the set of
types for the data given if the action is performed with data whose type
does not match the τ0 of any of the types given in the type set.

The types of an action is inferred by traversing it bottom-up, assigning
types to the leaves of the tree directly and by merging the types of the
sub-actions for action combinators. As a simple example, give + actions
are assigned the types ({[int, int] → {[int]}}, {exn([])}), and so on for
the rest of the leaf actions. Similarly, for A1 and A2, where A1 and A2

both has the type ({∗ → {[int]}}, ∅) – as would be the case for arith-
metic constants – A1 and A2 would get the type ({∗ → {[int, int]}}, ∅).
However, it quickly becomes complex to the types of sub-actions for ac-
tion combinators. For instance A1 and A2, where A1 has the types
({[bool] → {[int, int], [bool]}, [int] → {[bool], exn([])}}, {exn([int])}) and
A2 the type ({[bool]→ {[int]}}, {exn([])}), is assigned the types ({[bool]→
{[int, int, int], [bool, int]}, [int] → {exn([])}}, {exn([int]), exn([])}). Se-
mantic function calls are handled the same way as in the original type
and termination analysis, the type of function calls is given by the type
environment.

• Bindings analysis : This analysis impose quite a lot of restrictions on the
action semantic descriptions that they analyze. Some of these restrictions
are necessary to allow each language construct to be analyzed indepen-
dently without ending up in situations where for instance all that we can
say about a given language construct is that any token might be bound
in the bindings that it produces, which is useless as a reaching bindings
analysis.

In general, this problem is hard to avoid without having to resort to per-
forming most of the analysis on concrete programs instead of languages.

A partial solution might be to allow the language designer to provide
information about common combinations of language constructs or pro-
vide sample programs which could be analyzed to determine common
combinations of language constructs. As a simple example, consider the
While language extended with the following language constructs:

– exec[[save I]] =

give current bindings and

(provide I and give current bindings

then give binding)

then give overriding

– exec[[S using I]] =

give the data bound to I hence exec[[S]]

then give current bindings

The first allows the current bindings to be bound to an identifier and the
second allows a statement to be performed using the bindings bound to
the given identifier. As discussed in the binding flow analysis section, we
are unable to say anything intelligent about what tokens might be bound
in the bindings used to perform S in S using I, if we, as we currently
do, analyze each language construct independently. However, if these two
constructs were commonly combined to form statements, say, of the form
save I; S1 using I; S2 using I, we could analyze the denotation of this
statement as a whole, which would allow us to correctly determine which
bindings that would be used to perform S1 and S2.

Chapter 5

Implementation

This chapter briefly introduces the tool developed, which implements the analy-
ses described. The tool is accessed through a web-interface, allowing the user to
enter an action semantic description and an abstract syntax tree of a program in
the given language. Upon submitting this information, all the analyses are per-
formed on the language. If the language specification satisfied the restrictions
for the binding flow analysis, a set of bindings equations is further generated
for the given source program, from the results of the reaching bindings analysis.
The tool can be accessed online at http://www.kaspersv.dk/asd.

The implementation of the analyses follows the presentation given here quite
closely; for the inference systems it is to a large extend possible to identify the
few lines of code corresponding to each inference rule. Each analysis has been
implemented as an OCaml module. The table below identifies each of these
modules.

Analysis Module

Second type and termination analysis ASDType
Binding flow and reaching bindings analysis ASDBindings

Besides these modules, the code-base consists of the following modules:

• ASDSyntax : Defines the data-types used to represent action semantic
descriptions and defines a few auxiliary functions for manipulating these.

• ASDLexer, ASDParser : A lexer and parser for action semantic descrip-
tions.

• ASTLexer, ASDParser : A lexer and parser for a very simple language for
specifying abstract syntax trees.

• ASDPrinter, Misc: Defines functions for pretty printing actions, types,
abstract syntax trees, etc., and various common auxiliary functions.

• CFGraph: Defines an abstract data-structure for directed graphs, along
with a few convenient functions used by the work-list algorithm, such as
generating a graph with a node for each strongly connected component
(SCC) in the original graph and edges for connected SCC.

• Analysis : Defines a signature for specifying dataflow analyses and a func-
tion for performing a dataflow analysis, using a standard work-list algo-
rithm.

• ASDCFG: Defines a data-structure for constructing Language Construct
Graphs (LCGs) and a function for generating a LCG from a semantic
description.

• ASD : Defines a number of functions for performing elementary sanity-
checks on ASDs.

The web-interface is also written in OCaml as a CGI module which plugs directly
into the Apache web-server. Besides OCaml, the tool has the following external
dependencies,

• Menhir : A more advanced parser generator for OCaml than the standard
ocamlyacc.

• OcamlGraph: An OCaml library which defines a number of useful data-
structures for graphs, along with lots of useful algorithms, such as travers-
ing the nodes of a graph in topological order and for computing the
strongly connected components of a graph.

• Apache, mod caml : A web-server and an OCaml interface for writing CGI
scripts for this webserver.

• Graphviz : A graph layout program, used to create a graphical represen-
tation of the results of the type and termination analysis.

Chapter 6

Conclusion

Previous action semantics based compiler generators [eg., 3, 14] compile pro-
grams by first converting them to actions, which are then compiled with a
generic action compiler. In this thesis we have explored the idea of analyzing
action semantic descriptions, with the purpose of generating language specific
action compilers optimized for the given language. Two analyses have been
developed, a type and termination analysis, and an analysis and accompanying
algorithm for generating a reaching bindings analysis for the source language.

Our approach to analyzing action semantic descriptions is based on the idea
of analyzing each language construct independently of the context in which it
is used. The two analyses developed using this approach works very well for
the While language. However, for both analyses it was necessary to impose
restrictions on action semantic descriptions, to ensure that the analyses are able
to analyze language constructs independently, without becoming unacceptably
imprecise. Unfortunately, some languages of interest do not satisfy these re-
strictions.

In the case of the While language, the type and termination analysis is as
precise as possible, given the type system used, and the generated reaching
bindings analysis is equivalent in precision to the reaching bindings data-flow
analysis for the While language, derived by hand.

Appendix A

Semantics of While and

Action Notation

A.1 The While langauge

AExp ::= x | n | ae1 + ae2

BExp ::= true | false | not be | ae1 = ae2

Stm ::= x | skip | s1; s2 | if be then s1 else s2 | while be do s

(WEA-Const) e ⊢a n→ n

(WEA-Add)
e ⊢a ae1 → n1, e ⊢a ae2 → n2, n = n1 + n2

e ⊢a ae1 + ae2 → n

(WEA-Ident)
e(x) = n

e ⊢a x→ n

(WEB-True) e ⊢b true→ true

(WEB-False) e ⊢b false→ false

(WEB-Eq-T)
e ⊢a ae1 → n1, e ⊢a ae2 → n2, n1 = n2

e ⊢b ae1 = ae2 → true

(WEB-Eq-F)
e ⊢a ae1 → n1, e ⊢a ae2 → n2, n1 6= n2

e ⊢b ae1 = ae2 → false

(WE-Assign)
e ⊢a ae→ n, e′ = e[x→ n]

e ⊢w x := ae→ e′

(WE-Skip) e ⊢w skip→ e

(WE-Seq)
e ⊢w s1 → e′, e′ ⊢w s2 → e′′

e ⊢w s1; s2 → e′′

(WE-If-T)
e ⊢b be→ true, e ⊢w s1 → e′

e ⊢w if be then s1 else s2 → e′

(WE-If-F)
e ⊢b be→ false, e ⊢w s2 → e′

e ⊢w if be then s1 else s2 → e′

(WE-While-T)

e ⊢b be→ true, e ⊢w s→ e′,
e′ ⊢w while be do s→ e′′

e ⊢w while be do s→ e′′

(WE-While-F)
e ⊢b be→ false

e ⊢w while be do s→ e

A.2 The Action Notation language

The predicates bindable and storable are true if and only if the given datum is
bindable or storable, respectively.

(AE-Const) (a, δ, ξ, µ) ⊢ provide d→ (normal d, µ)

(AE-Copy) (a, δ, ξ, µ) ⊢ copy→ (normal δ, µ)

(AE-Give1)
@ ∈ {+,−, ∗}, δ = (int n1, int n2), n = n1 @ n2

(a, δ, ξ, µ) ⊢ give @→ (normal (int n), µ)

(AE-Give2)
@ ∈ {+,−, ∗}, δ 6= (int n1, int n2)

(a, δ, ξ, µ) ⊢ give @→ (exceptional (), µ)

(AE-Give3)
δ = (token t, d), bindable(d), ξ′ = [t 7→ d]

(a, δ, ξ, µ) ⊢ give binding→ (normal (bindings ξ′), µ)

(AE-Give4)
δ 6= (token t, d) ∨ ¬bindable(d)

(a, δ, ξ, µ) ⊢ give binding→ (exceptional (), µ)

(AE-Give5)
δ = (bindings b, bindings b′), ξ′ = b[b′]

(a, δ, ξ, µ) ⊢ give overriding→ (normal ξ′, µ)

(AE-Give6)
δ 6= (bindings b, bindings b′)

(a, δ, ξ, µ) ⊢ give overriding→ (exceptional (), µ)

(AE-Give7)
δ = (bindings b, token t), d = b(t)

(a, δ, ξ, µ) ⊢ give bound→ (normal (d), µ)

(AE-Give8)
δ 6= (bindings b, token t) ∨ b(t) = undef

(a, δ, ξ, µ) ⊢ give bound→ (exceptional (), µ)

(AE-Give9) (a, δ, ξ, µ) ⊢ give the data→ (normal δ, µ)

(AE-Give10)
δ = (nat n)

(a, δ, ξ, µ) ⊢ give the nat→ (normal δ, µ)

(AE-Give11)
δ 6= (nat n)

(a, δ, ξ, µ) ⊢ give the nat→ (exceptional (), µ)

(AE-Give12)
δ = (bool b)

(a, δ, ξ, µ) ⊢ give the bool→ (normal δ, µ)

(AE-Give13)
δ 6= (bool b)

(a, δ, ξ, µ) ⊢ give the bool→ (exceptional (), µ)

(AE-Give14)
δ = (bindings b)

(a, δ, ξ, µ) ⊢ give the bindings→ (normal δ, µ)

(AE-Give15)
δ 6= (bindings b)

(a, δ, ξ, µ) ⊢ give the bindings→ (exceptional (), µ)

(AE-Give16)
δ = (cell c)

(a, δ, ξ, µ) ⊢ give the cell→ (normal δ, µ)

(AE-Give17)
δ 6= (cell c)

(a, δ, ξ, µ) ⊢ give the cell→ (exceptional (), µ)

(AE-Check1)
δ = (d1, d2), d1 = d2

(a, δ, ξ, µ) ⊢ check =→ (normal (), µ)

(AE-Check2)
δ 6= (d1, d2) ∨ d1 6= d2

(a, δ, ξ, µ) ⊢ check =→ (exceptional (), µ)

(AE-Check3)
δ = (int n1, int n2), n1 > n2

(a, δ, ξ, µ) ⊢ check > → (normal (), µ)

(AE-Check4)
δ 6= (int n1, int n2) ∨ n1 6> n2

(a, δ, ξ, µ) ⊢ check > → (exceptional (), µ)

(AE-Then1)

(a, δ, ξ, µ) ⊢ A1 → (normal v1, µ′),
(v1, ξ, µ′, A2) ⊢ → (δ′′, µ′′)

(a, δ, ξ, µ) ⊢ A1 then A2 → (δ′′, µ′′)

(AE-Then2)
(a, δ, ξ, µ) ⊢ A1 → (exceptional v, µ′)

(a, δ, ξ, µ) ⊢ A1 then A2 → (exceptional v, µ′)

(AE-Then3)
(a, δ, ξ, µ) ⊢ A1 → (failed, µ′)

(a, δ, ξ, µ) ⊢ A1 then A2 → (failed, µ′)

(AE-And1)

(a, δ, ξ, µ) ⊢ A1 → (normal v1, µ′),
(a, v1, ξ, µ′) ⊢ A2 → (normal v2, µ′′)

(a, δ, ξ, µ) ⊢ A1 and A2 → (normal v1 @ v2, µ′′)

(AE-And2)

(a, δ, ξ, µ) ⊢ A1 → (normal v1, µ′),
(a, v1, ξ, µ′) ⊢ A2 → (exceptional v2, µ′′)

(a, δ, ξ, µ) ⊢ A1 and A2 → (exceptional v2, µ′′)

(AE-And3)

(a, δ, ξ, µ) ⊢ A1 → (normal v1, µ′),
(a, v1, ξ, µ′) ⊢ A2 → (failed, µ′′)

(a, δ, ξ, µ) ⊢ A1 and A2 → (failed, µ′′)

(AE-And4)
(a, δ, ξ, µ) ⊢ A1 → (exceptional v, µ′)

(a, δ, ξ, µ) ⊢ A1 and A2 → (exceptional v, µ′)

(AE-And5)
(a, δ, ξ, µ) ⊢ A1 → (failed, µ′)

(a, δ, ξ, µ) ⊢ A1 and A2 → (failed, µ′)

(AE-Excep1)
(a, δ, ξ, µ) ⊢ A1 → (normal v, µ′)

(a, δ, ξ, µ) ⊢ A1 exceptionally A2 → (normal v, ξ′)µ′

(AE-Excep2)

(a, δ, ξ, µ) ⊢ A1 → (exceptional v, µ′),
(v, µ′, A2, →) ⊢ (δ′′, µ′′)

(a, δ, ξ, µ) ⊢ A1 exceptionally A2 → (δ′′, µ′′)

(AE-Excep3)
(a, δ, ξ, µ) ⊢ A1 → (failed, µ′)

(a, δ, ξ, µ) ⊢ A1 exceptionally A2 → (F, µ′)

(AE-Raise) (a, δ, ξ, µ) ⊢ raise→ (exceptional δ, µ)

(AE-Fail) (a, δ, ξ, µ) ⊢ fail→ (failed, µ)

(AE-Other1)
(a, δ, ξ, µ) ⊢ A1 → (normal v, µ′)

(a, δ, ξ, µ) ⊢ A1 otherwise A2 → (normal v, µ′)

(AE-Other2)
(a, δ, ξ, µ) ⊢ A1 → (exceptional v, µ′)

(a, δ, ξ, µ) ⊢ A1 otherwise A2 → (exceptional v, µ′)

(AE-Other3)

(a, δ, ξ, µ) ⊢ A1 → (failed, µ′),
(a, δ, ξ, µ′) ⊢ A2 → (δ′′, µ′′)

(a, δ, ξ, µ) ⊢ A1 otherwise A2 → (δ′′, µ′′)

(AE-CurBin) (a, δ, ξ, µ) ⊢ give current bindings→ (normal ξ, µ)

(AE-Cre1)
δ = (d), storable(d), cell c, µ(c) = undef

(a, δ, ξ, µ) ⊢ create→ (normal c, µ[c→ d])

(AE-Cre2)
δ 6= (d) ∨ ¬storable(d)

(a, δ, ξ, µ) ⊢ create→ (exceptional (), µ)

(AE-Up1)
δ = (cell c, d), storable(d)

(a, δ, ξ, µ) ⊢ update→ (normal (), µ[c→ d])

(AE-Up2)
δ 6= (cell c, d) ∨ ¬storable(d)

(a, δ, ξ, µ) ⊢ update→ (exceptional (), µ)

(AE-Ins1)
δ = cell c, d = µ(c)

(a, δ, ξ, µ) ⊢ inspect→ (normal (d), µ)

(AE-Ins2)
δ 6= cell c

(a, δ, ξ, µ) ⊢ inspect→ (exceptional (), µ)

(AE-Unfing)
(unfolding A, δ, ξ, µ) ⊢ A→ (δ′, µ′)

(a, δ, ξ, µ) ⊢ unfolding A→ (δ′, µ′)

(AE-Unfold)
(a, δ, ξ, µ) ⊢ a→ (δ′, µ′)

(a, δ, ξ, µ) ⊢ unfold→ (δ′, µ′)

Appendix B

Action Semantic Description

for the While language

Abstract Syntax

• ArithExp ::= Ident | Numeral | ArithExp + ArithExp

ArithExp−ArithExp | ArithExp ∗ArithExp

• BoolExp ::= true | false | not BoolExp

ArithExp = ArithExp | ArithExp > ArithExp

• Stm ::= Ident := ArithExp | skip | Stm; Stm

if BoolExp then Stm else Stm

while BoolExp do Stm

Semantic Functions

• evala[[]] : ArithExp→ Action

• evalb[[]] : BoolExp→ Action

• exec[[]] : Stm→ Action

Semantic Entities

• datum ::= integer | boolean

• bindable ::= cell

• storable ::= integer

Semantic Equations

AE, AE1, AE2 : ArithExp; BE : BoolExp; I : Ident; N : Numeral; S, S1, S2 :
Stm;

Arithmetic Expressions

• evala[[I]] = give the cell bound to I then inspect

• evala[[N]] = provide N

• evala[[AE1 + AE2]] = evala[[AE1]] and evala[[AE2]] then give +

• evala[[AE1 −AE2]] = evala[[AE1]] and evala[[AE2]] then give −

• evala[[AE1 ∗AE2]] = evala[[AE1]] and evala[[AE2]] then give ∗

Boolean Expressions

• evalb[[true]] = provide true

• evalb[[false]] = provide false

• evalb[[not BE]] = evalb[[BE]] then ((given true then provide false)

otherwise provide true)

• evalb[[AE1 = AE2]] =

evala[[AE1]] and evala[[AE2]] then (check =

then provide true exceptionally provide false)

• evalb[[AE1 > AE2]] =

evala[[AE1]] and evala[[AE2]] then (check >

then provide true exceptionally provide false)

Statements

• exec[[I := AE]] =

evala[[AE]] then (

(give the cell bound to I and copy then update

then give current bindings)

exceptionally

(give current bindings and (provide I and (evala[[AE]]

then create) then give binding) then give overriding))

• exec[[skip]] = give current bindings

• exec[[S1; S2]] = exec[[S1]] hence exec[[S2]]

• exec[[if BE then S1 else S2]] =

evalb[[BE]] then (

(give true then exec[[S1]])

otherwise exec[[S2]])

• exec[[while BE do S]] =

unfolding (

evalb[[BE]] then (

(given true then exec[[S]] hence unfold)

otherwise give current bindings))

Bibliography

[1] Ole Agesen. The Cartesian Product Algorithm. In ECOOP’95 Conference
Proceedings. Springer-Verlag, 1995.

[2] Yves Bertot and Pierre Castéran. Coq’Art: Interactive Theorem Prov-
ing and Program Development. Texts in Theoretical Computer Science.
Springer, 2004.

[3] Deryck F. Brown, Hermano Moura, and David A. Watt. ACTRESS: an
Action Semantics Directed Compiler Generator. In R. Heldal, C. K. Holst,
and P. L. Wadler, editors, Functional Programming, Glasgow 1991: Pro-
ceedings of the 1991 Workshop, Portree, UK, pages 51–55. Springer-Verlag,
1992.

[4] The Coq proof assistant website. http://coq.inria.fr/.

[5] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, second edition, 2002.

[6] Kyung-Goo Doh. Action Semantics: A Tool for Developing Programming
Languages. Technical report, The University of Aizu, 1993.

[7] Søren B. Lassen, Peter D. Mosses, and David A. Watt. AN-2: Revised
Action Notation: Informal Summary. Draft Version 0.7.4, September 2000.

[8] Peter D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1992.

[9] Peter D. Mosses. Theory and Practice of Action Semantics. Technical
report, University of Aarhus, 1996.

[10] Peter D. Mosses. AN-2: Revised Action Notation: Syntax and Semantics.
Draft Version 0.7.5, March 2001.

[11] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer-Verlag, 2005.

[12] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[13] Tijs van der Storm. Implementing Actions. Master’s thesis, Universiteit
van Amsterdam, 2003.

[14] Peter Ørbæk. OASIS: An Optimizing Action-based Compiler Generator.
In Peter Fritzon, editor, Proceedings of the 1994 Conference on Compiler
Construction, pages 1–15. Springer-Verlag, April 1994.

	Summary
	Resumé
	Preface
	1 Introduction
	1.1 Our work
	1.2 Thesis organization
	1.3 Typographical conventions

	2 Background
	2.1 Action Semantics
	2.2 Action Notation
	2.3 Action Semantic Descriptions

	3 Analyzing Action Semantic Descriptions
	3.1 Type and termination analysis
	3.2 Binding analysis

	4 Discussion
	5 Implementation
	6 Conclusion
	A Semantics of While and Action Notation
	A.1 The While langauge
	A.2 The Action Notation language

	B Action Semantic Description for the While language

