
Static Analysis of Concurrent Java
Programs

Toke Jansen Hansen & Bjarne Ørum Wahlgreen

Kongens Lyngby 2007
IMM-B.Sc-2007-11



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk



Summary

In this thesis we introduce an approach to static analysis of concurrent Java programs.
We analyze individual classes, to find any use of a class that breaks any thread-safety
conditions within the class. We present properties for class-wise thread-safety and
describe analyses capable of collecting adequate information to be able to detect
violations of these properties.

The result achieved, is the ability to analyse a class for thread-safety as an over-
approximation of how multiple threads may use the class and present the user with
warnings corresponding to violations. The tool developed is able to run as stand-alone
or integrated with Eclipse, where it generates markers for thread-safety violations in
the editor.



ii



Acknowledgements

First of all, we would like to thank our supervisor, Christian Probst, for agreeing
to supervise this project, suggested by ourselves. Christian has great knowledge of
program analysis and has guided us in choosing the right approaches and analyses to
be able to achieve our results. We also thank Christian for his great help in reading
and commenting the drafts of the thesis, which has been a great help in improving
the final version.

The project also relies on concurrency theory, that is a foundation to be able to an-
alyze a class for thread-safety properties. For this subject, Hans Henrik Løvengreen,
has been kind to help us, when questions regarding concurrency and thread safety
has come about, and we thank him for helping and pointing us in the right direction.

We would also like to thank the authors and developers of FindBugs, an analysis
framework which our analyses are based on, for making this tool available along with
an API and documentation. Without this tool, we could not have achieved the results
we do.

Finally, we thank our fellow student Nikolaj Dalgaard Tørring for good company in
the last couple of weeks before handing in this thesis.



iv



Contents

Summary i

Acknowledgements iii

1 Introduction 1

1.1 Motivation and Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Delimitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Program Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Concurrency Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Java Analysis Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 The Java Execution Model . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Java and Synchronization Primitives . . . . . . . . . . . . . . . . . . . 25



vi CONTENTS

2.6 Class-wise Thread Safety . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 The Analyses 39

3.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Points-To Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Lock Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Dominator Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.6 Concurrent Points-To Analysis . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Applying the Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Implementation 81

4.1 The Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Detecting Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Conclusion 91

5.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

List of Notation 94

Bibliography 99

A README 103



CONTENTS vii

B FindBugs XML 105

B.1 messages.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.2 findbugs.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C Test cases 109

C.1 LockTryFinally.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.2 ReaderWriterLocks.java . . . . . . . . . . . . . . . . . . . . . . . . . . 111

C.3 ExposedStateVariables.java . . . . . . . . . . . . . . . . . . . . . . . . 113

C.4 ReaderWriterDeadLock.java . . . . . . . . . . . . . . . . . . . . . . . . 114

C.5 PublicNonFinalDispatch.java . . . . . . . . . . . . . . . . . . . . . . . 116

C.6 DispatchTest.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.7 AssignmentCycles.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

C.8 ForLoopTest.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.9 PhiResolveTest.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

C.10 SynchronizedTests.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.11 ThisDeadlock.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.12 FieldAccess.java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

C.13 LockOnLocalVariable.java . . . . . . . . . . . . . . . . . . . . . . . . . 129

C.14 PublicFinalDispatch.java . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.15 GuardedVariable.java . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.16 SynchronizedMethod.java . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.17 LockOnNullReference.java . . . . . . . . . . . . . . . . . . . . . . . . . 133



viii CONTENTS



Chapter 1

Introduction

More and more focus is nowadays put into multi-threaded programming. However,
caution must be made to avoid, e.g., race conditions in concurrent software. This
project will focus on the Java programming language and aims at developing analyses
capable of statically verifying thread-safety of Java classes individually, so they may
be used safely in a multi-threaded environment.

1.1 Motivation and Purpose

The use of concurrency in applications is an increasing factor, and will be so for the
forseable future. Personal computers have moved rapidly from one processing core to
currently dual- and quad-cores, and the chip-producers are agreeing that a sustained
growth in processing cores will be the main factor in keeping up with Moores law
in the near future of processors. To benefit from the increase in the number of
processing cores, software must keep up with the pace and focus on concurrency,
to spread the workload on multiple processors. However, the discipline of writing
concurrent software requires special skills, that developers must learn and improve,
at least until new language technologies arise that may be able to infer automatic
concurrency to sequential programs. The latter has undertaken research for ages
without reaching usable results.

In Java among other languages, concurrency is supported, e.g., through the use of
threads. However, introducing threads in a program drastically increases develop-



2 Introduction

ment complexity, as synchronization issues must also be accounted for. These issues
have been known and researched extensively for many decades, introducing several
tools and analyses capable of verifying concurrent applications or models. Although
few tools have made it to the compile-time analyses performed by the Java compiler;
these tools are often too time consuming and increases too fast in computation com-
plexity with the number of concurrent threads. In the research projects presented
in [17, 19, 23], the general approach is based on identifying threads from the pro-
gram context. Other approaches have also been applied, e.g., the paper [22] discusses
a method for component-based concurrency testing of the readers-writer problem,
and combines static analysis with code inspection and dynamic testing, to do so. In
other research work [14], a model specification of concurrency is applied the program
source by annotating code with temporal logic expressions. This, however, rely on
the developers’ ability to express correct temporal logic representing the desired con-
current behavior and has to address the state-explosion problem, that model-based
exploration tools suffer from.

We take a different approach, by not identifying concurrent threads, but instead
to statically analyze a class from the point of view of a Strongest Possible Attacker
(onward referred to as SPA), that is, a person that will use the class in as many threads
he likes, using all visible constructs the class may provide, in any way. We identify
different unwanted synchronization scenarios found by our tool, e.g., deadlocks, raise
warnings and present them to the developer, just like many integrated development
environments (IDE’s) notify the developer on errors while writing programs. In our
case, the warnings are visualized in the widely adopted open source IDE, Eclipse.

A main purpose of our work, has been to develop the tool such that it proves as useful
and easily integratable in existing environments, like Eclipse, as a stand-alone tool or
even as extensions to a compiler. We develop the tool capable of analyzing a large set
of Java programs, using synchronized and java.util.concurrent.locks.Lock as
synchronization primitives, whereas java.util.concurrent.Semaphore and other
means of synchronization is left for future work.

One important aspect of our approach and a deviation from many projects on this
subject, is that we do not attempt to verify programs in their completely accurate be-
havior. Instead we over-approximate on the program behavior, according to the SPA
approach, which will analyze on every possible (mis)use of the class being analyzed to
reveal potential unwanted behavior. Our tool will warn the developer, which may or
may not react to the warning, according to his conviction about the actual program
behavior. The advantage of this approach is, that if our tool does not generate any
warnings, the analyzed class is thread-safe according to our specification of thread
safety, which is introduced later in section 2.6 page 29.

It is our conviction, that too few concurrent analyses have made it from theory to
applied tools, that developers may benefit from. Therefore we shall not only concen-
trate on describing theory and abstract descriptions of the analyses, but emphasize
the implementation of the analyses.



1.2 Structure and Overview 3

1.2 Structure and Overview

In Chapter 2, we introduce main concepts that is the foundation of the work in
this project. This involves some insight into the disciplines of program analysis, more
specifically dataflow analysis and lattice theory. Then follows some basic concurrency
theory, which introduces the concepts of threads, processes, and how parallel and
concurrent execution may interleave according to the interleaving model, which is the
main model of concurrency applied in the analyses.

The chapter proceeds by describing a number of different analysis frameworks for Java
and continues with a description of the Java Execution Model. This introduces Java
bytecode and aspects of the Java Virtual Machine, which are technologies our analyses
depend on. Ongoing, the chapter then introduces the synchronization primitives
in Java, which are basically the constructs for achieving synchronization between
threads in Java and are constructs that our analyses must be aware of, to give proper
approximations of program behavior.

Finally, the chapter introduces the main guidelines for class-wise thread-safety in
Java, which defines the properties that our analyses target to investigate.

In Chapter 3, the analyses we have developed, are described in detail. To start
with, we document the approach that our tool follows in determining thread-safety
of Java classes. This leads to a derivation of the analyses we shall describe and the
interdependencies of these. First of all, we identify the need of a points-to analysis,
that is flow-sensitive and intra-procedural. This analysis first of all has the purpose
of making a lock analysis possible. The lock analysis shall determine which locks
are held at a given location, both with certainty and possibly. The points-to- and
lock analyses are the foundation of a concurrent points-to analysis. The concurrent
points-to analysis has the task of collecting points-to information from the points-to
analysis, which is merged into a set representing the information about what objects
may point to, when accounted for concurrent use of the class of interest. The merging
of information into the resulting concurrent points-to set is conditional on the locks
held at program points and a fourth analysis, the dominator analysis, which is a
prerequisite of the concurrent points-to analysis and depends on the points-to and
lock analyses. In Figure 1.1, the interdependency and order of the analyses applied
is illustrated.

Chapter 4 describes some details of how the analyses have been implemented in
Java, using FindBugs as analysis framework. The structure of the implementation
is sketched and the main challenges are mentioned and discussed. The chapter also
introduces the detectors that utilize the information our analyses compute to reveal
thread-safety violations on a class-wise level. The detectors are the actual instances
that reveal thread-safety violations and report them, however, they are small, simple
programs that collect and compare the information from the analyses to detect viola-
tions. The reporting of violations found by the detectors are integrated into Eclipse,



4 Introduction

Points-To Analysis

Lock Analysis

Dominator Analysis

Concurrent Points-To Analysis

Escape Analysis

Figure 1.1: The illustration shows the dependencies of the analyses we will apply.
The escape analysis is left for future work.

such that markers appear in the classes marked as target of the analyses describing
the kind of thread-safety violation.

To verify the implemented analyses, we have developed a testing framework, which
is described in the end of Chapter 4. The testing framework is based on JUnit,
that functionally tests a number of classes and compare output from the detectors
to expected output. The format outputted from the detectors is XML which allows
DOM-based comparison of the output and expected output.

Finally, our achievements and suggestions to future work is presented in Chapter 5.

1.3 Delimitation

Our tool will support analyses of classes using the synchronization primitives of-
fered by the synchronized construct, and classes extending java.util.concurrent
.locks.Lock, including readers-writer locks. However, we delimit this project not
to include the java.util.concurrent.locks.Semaphore synchronization primitive
in the analyses. Although, this mechanism is easy to integrate in future work, as it
does not introduce any differences to what regions of code that would be mutually
exclusive, based on the semaphores held. It requires to count the number of locks
held, which we already do take account for in the analyses.

We focus this project on the use of instance methods and instance variables, and do
not analyze static methods or variables. However, future work can extend the func-
tionality of our analyses to also support static methods and variables. The properties
that we state for class-wise thread-safety then also have to take static methods and
instance variables into account.



Chapter 2

Background

In this chapter we establish the foundation of theory concerning the analyses we
develop. The background theory is widespread from program analysis, lattice theory,
and concurrency theory to specific technologies in the Java Virtual Machine and
language constructs and mechanisms in the Java programming language. In the end
of this chapter, a foundation of principles concerning thread-safety regarding Java
classes is established. These properties are the main targets to be investigated by the
tool.

2.1 Program Analysis

In this project, our approach is to analyze classes statically, that means analyzing the
program without running it, in opposition to dynamic analysis, where the program
is executed and the change of values evaluated at runtime. Here we outline the static
analysis technique of dataflow analysis, which is the main technique of static analysis
we apply. Our outline is an deduction from the concepts covered thoroughly in [24].

2.1.1 Dataflow Analysis

Dataflow analysis is a static analysis technique which collects an approximation of
information of interest present at a given program point in a program. We shall



6 Background

call a unique program point a location in the following. It does so by traversing a
control flow graph (CFG), a graph representation of the program. A control flow
graph is a directed graph, where the nodes, called vertices and referred to as V , are
usually basic blocks - linear sequences of code without jumps and with jump targets
as the first instruction and jump instructions as the last. Edges, referred to as E,
represent the control flow - they connect the jump instructions to the jump targets
with conditions on the edges. The mathematical definition of such a graph can be
expressed:

〈V,E〉 where E ∈ V × V

As information may propagate differently through various parts of the CFG, the
information collected at a given program point may be undecidable at compile-time.
Therefore dataflow analyses are approximations on what information may or must
reach specific locations at runtime.
Dataflow analyses are often formulated as a set of dataflow equations for each node
in the CFG and calculating the output for each node, based on its input. An iterative
algorithm is then usually applied, to recalculate the dataflow equations as long as
information change. Consequently, the dataflow equations must be guaranteed to
reach a point where the information no longer changes, such that the dataflow analysis
eventually terminates. How this can be achieved, follows from concepts of lattice
theory, which dataflow analyses are based on.

2.1.1.1 Lattice Theory

A partially ordered set L = (S,v), consists of a set, S, and a partial ordering, v, a
binary relation over a set S, that respects the following conditions:

∀x ∈ S : x v x (Reflectivity)
∀x, y, z ∈ S : x v y ∧ y v z ⇒ x v z (Transitivity)
∀x, y ∈ S : x v y ∧ y v x ⇒ x = y (Antisymmetry)

Now, for the set X ⊆ S, we say that y ∈ S is an upper bound for X, written X v y,
if ∀x ∈ X : x v y. Similarly, y ∈ S is a lower bound for X, written y v X, if
∀x ∈ X : y v x. A least upper bound of a set X, written tX, is defined as:

X v tX ∧ ∀y ∈ S : X v y ⇒ tX v y

Likewise, the greatest lower bound for X, written uX, is defined as:

uX v X ∧ ∀y ∈ S : y v X ⇒ y v uX

When tX and uX exist for all X ⊆ S, they must be unique (follows from the
antisymmetry of v) and we call L a lattice. For a lattice L = (S,v), a greatest



2.1 Program Analysis 7

element can always be introduced as > = tS (a.k.a. top) and equivalently the least
element as ⊥ = uS (a.k.a. bottom). It is common in program analysis that t is
called the join operator and u the meet operator. We call a lattice containing unique
top and bottom elements a complete lattice, and write it as L = (S,v,t,u,⊥,>).

Monotone Functions. A function f : L1 → L2 between partially ordered sets
L1 = (S1,v1) and L2 = (S2,v2) is monotone if ∀x, y ∈ L1 : x v1 y ⇒ f(x) v2 f(y).
Notice that the operations t and u are monotone. The result of compositions of
monotone functions yields another monotone function.

Fixed Points. As we mentioned about dataflow analyses, we must ensure that
computations will terminate at some point, as a result of all information eventually
stabilizing. In practice, a result from lattice theory helps us achieve that this can
be accomplished. A fixed point of a function f → L × L on a complete lattice
L = (S,v,t,u,⊥,>) is an element x ∈ S such that f(x) = x. Tarski’s Fixed Point
Theorem states that this set is lower and upper bounded, given the function f is
monotone. The proof of this theorem can be reviewed in [24].

2.1.1.2 Lattices in Dataflow Analysis

In dataflow analysis we consider the information at a specific point in the CFG a
lattice. The information is calculated from the information of other nodes in the CFG,
usually either the information from input or output edges. When the information
calculated on a specific point in the CFG is dependent on the information from the
input edges, we say that the dataflow analysis is a forward dataflow analysis and,
when it depends on the information from the output edges, a backward dataflow
analysis. Depending on the combine operator, sometimes analyses are identified as
a must analysis when t is defined as the ∩ operator, or a may analysis when t is
defined as the ∪ operator. The characteristics of each is:

• May analyses calculate the information that may reach a certain destination.

• Must analyses calculate only the information that will definitely reach a certain
destination.

The functions that calculate the information flowing to and from a node, vi, can be
expressed as:

IN(vi) =
⊔

OUT (vn), where vn is a neighbor of vi

OUT (vi) = f`(IN(vi))



8 Background

⊔
is defined according to the type of the dataflow, e.g., t = ∪ for a may analysis.

However, the operator
⊔

need not necessarily to be either
⋃

or
⋂

(and thus, t = ∩
and t = ∪, respectively), as the type of analysis may require a custom operator,
which then will have to be defined specifically. The neighbors are either the immedi-
ate predecessors for a forward analysis, or the immediate successors for a backward
analysis. The function f`, called the transfer function, is based on the actual infor-
mation from the node.

These functions are monotone, and as a result of the fixed point theorem we know
the existence of a least fixed point. That means we can apply an iterative approach
that terminates when the output functions do no longer change on recomputations.

2.1.1.3 Interprocedural Analysis

Until now we have stated that dataflow analyses traverse a CFG. As already men-
tioned, CFGs are abstract representations of programs. In a language with procedure
calls, like methods in Java, CFGs are usually constructed for the body of each proce-
dure, where the linear sequences of code pieces without jumps make up the nodes, and
control flow edges are the conditions for jump instructions, pointing to jump targets
(or simply fall through). The dataflow analysis targets are then the CFGs for each
method in a program or class. Meanwhile, within one CFG, another procedure might
be invoked, and the analysis will have to analyze the CFG of the called method to
be able to compute the approximation of flow of information. This type of dataflow
analysis is called interprocedural analyses, in contrast to intraprocedural analysis,
where procedures either do not exist or do not effect the information the analysis
is computing. In the following, we present some of the concepts for interprocedural
analysis.

Control Flow and Procedures. To be able to approximate the information flow
after a given location in a CFG where a procedure invocation is performed, either
a context-insensitive analysis or a context-sensitive analysis may be carried out. A
context-insensitive approach collects all information possible from a CFG of a proce-
dure, independent on the calling context, e.g., which parameters are passed as argu-
ments. Of course this must approximate the arguments by using some abstraction, as
there is no way to analyze all possible arguments passed. The advantage is that the
dataflow analysis only has to be performed once for each procedure. Computation
results can then be combined into the calling context on procedure invocations. The
disadvantage is, that it does not approximate program behavior very well. Therefore,
another concept, context-sensitive analysis, comes handy. In context-sensitive analy-
sis, a set representing context information of some sort is computed through the CFG,
and is then passed on as initial analysis information, when a procedure invocation
requires another CFG to be analyzed. Thus a better approximation on the program
behavior is achieved, but at the cost of potentially recomputing information flow in



2.1 Program Analysis 9

the same method over and over again, with different context information parsed as
parameter. So a trade-off must be considered to balance efficiency and precision,
when choosing an appropriate approximation.

Flow-sensitivity versus Flow-insensitivity Up to now we have only considered
dataflow analyses flow-sensitive, meaning the computed information of interest has
been dependent on the exact order of the locations being analyzed. Sometimes, a
flow-insensitive approach can be a sufficient approximation for the information that
is the target of investigation. That means, the order in which locations are being
analyzed does not influence on the information being computed.

2.1.1.4 Intraprocedural Control Flow Analysis

The Java compiler transforms Java source code into bytecode, which is a low-level
intermediate representation of Java programs that serves as instructions for the Java
Virtual Machine. To be able to perform dataflow analysis on such a representation, it
is necessary to initially run an intraprocedural control flow analysis. It computes the
CFG of each procedure by grouping linear sequences of instructions without jumps
in nodes and create the flow relations between the nodes from the jump targets.

2.1.1.5 Static Single Assignment Form

For program analysis it can sometimes be convenient and more accurate to transform
the analyzed context into an intermediate representation called static single assign-
ment (SSA) form. The outcome of this transformation is that each variable is, at any
program location, assigned at most once. This reflects, that at runtime, variables will
have at most one definition at any location, despite different definitions on different
flows.

For dataflow analyses, such a representation comes in handy, e.g., if the information
of interest (or context information) at a certain location should represent what a vari-
able definition is at that location. Without some sort of abstraction in the dataflow
analysis, different flows may reveal that the variable potentially points to several def-
initions. Using SSA form, we can be sure that the variable is at most assigned one of
the definitions at runtime, and for analyses were this information improves efficiency
or simplicity, we can abstract the dataflow information, such that it represents that
the variable definition is at most one amongst several. This is usually done by intro-
ducing so-called ϕ-functions, where each argument position of the function represents
a definition as the outcome of a specific program flow. Information can be brought
in the ϕ-function to represent the exact flow a certain definition is the result from,
by identifying flows and inserting definitions, such that the ith definition corresponds
to the flow identified by i. The ϕ-functions need not necessarily be implemented as



10 Background

functions, but may just be simple types mapping to arrays holding the possible set
of definitions.

2.1.1.6 Dominator Theory

For a directed graph G = 〈V,E〉, such as a CFG, we say that a node vd dominates a
node vi, if all paths to vi leads through the node vd. Mathematically written:

Dom(vo) = (vo)

Dom(vi) =

 ⋂
vn∈predecessors(vi)

Dom(vn)

 ⋃
(vi)

where v0 is the root node and vi 6= vn. A few definitions are suitable:

• A node vd strictly dominates a node vn if vd dominates vn and vd does not
equal vn.

• The immediate dominator of a node vn is the unique node that strictly domi-
nates vn, but does not strictly dominate any other node that strictly dominates
vn.

• The dominance frontier of a node vn is the set of all nodes vi such that vn

dominates a predecessor of vi, but vn does not strictly dominate vi.

The latter definition, dominance frontiers, can be utilized to compute the exact lo-
cations where ϕ-nodes should be inserted, when transforming into SSA form. The
reason why, is that from vi’s point of view, the set of all nodes vi in the dominance
frontier are the nodes at which other control flow paths that do not go through vi

make their earliest appearance, and thereby the dominance frontiers are the exact
locations, where different definitions may reach, thus the candidate locations for cre-
ation of ϕ-functions.

2.2 Concurrency Theory

A concurrent program can be defined as a program where multiple interacting compu-
tational tasks execute simultaneously. These tasks may be implemented as separate
programs, processes, or threads within a single program.

On many computer systems the tasks may execute in parallel, however true paral-
lelism is difficult to realize because that would require as many processors as the
number of running tasks. Parallelism is therefore often obtained by time-slicing one



2.2 Concurrency Theory 11

or more processors, where the operating system is in charge of scheduling the ex-
ecution of tasks. Tasks may also be distributed across a network and thereby be
executed on a remote host. A consequence of the way that tasks may be executed
is that one can never know when a task is scheduled for execution, which leads to a
general rule in concurrent programming:

The speed of execution of each task is unknown.

In non-trivial programs tasks may need to communicate with each other to share
information. The way that tasks communicate can be divided into the categories:

• Shared memory
The concept of shared memory means that tasks may access and share the same
memory. The communication between tasks is therefore done by altering some
shared variable that will become visible to other tasks at some later point. This
style of concurrent programming is often achieved through the use of threads
running within a single program. Because variables are shared, applications
that utilize threads often apply some form of locking to coordinate access to
shared variables and thereby to preserve program invariants. In Section 2.5 we
cover the synchronization primitives provided by the Java platform.

• Message parsing
The concept of message parsing allows tasks to communicate by exchanging
messages, where the exchange may be done both synchronously (blocking) or
asynchronously (non-blocking). There exists a number of models for model-
ing the behavior of systems using message parsing, e.g., rendezvous may be
used to model blocking implementations, in which the sender blocks until the
message is received. Implementing concurrency based on message parsing has
the advantage of being easier to reason about than shared memory, because
such implementations do not share address spaces. However, these suffer from
a higher overhead than implementations based on shared memory. Message
parsing is for example used by Unix processes that communicate using pipes.

What we call a “task” is in classic concurrency theory denoted by a “process”. A
process is defined as a distinguished program part that is to be executed indepen-
dently. In the sequel we will use the classical notation of a process.
We will now turn our attention to the modeling of concurrent systems.

2.2.1 Modeling Concurrent Behavior

Concurrent programs are said to be reactive because they express some activity rather
than the computation of a final result. Properties of a concurrent program can be
divided into two informal categories:



12 Background

• Safety properties
Properties that ensure that the program does nothing wrong.

• Liveness properties
Properties that ensure that the program makes progress. Parring Liveness
properties with the safety properties imply that the program does something
good.

In order to make it easier to model and prove various properties of concurrent systems,
different models have been developed. In this section we introduce two models usefull
for modelling concurrent behavior, namely the Petri Nets and the interleaving model.

Petri Nets. A Petri Net is a bipartite, directed graph that can be used to model
discrete distributed systems. This means that the model is not limited to concurrency
in computer systems, but can be used to model any kind of system where things may
happen simultaneously. A Petri Net consists of places, transitions, and arcs, where
the arcs connect places and transitions. Places in the net may contain zero or more
tokens, and a distribution of tokens over the places is called a marking.
A transition acts on input tokens by “firing”, meaning that the transition consumes
the token from its input places, performs some processing task, and places a specified
number of tokens into each of the output places belonging to the given transition.
The firing process is performed in a single, non-preemptible step, thus atomically.
A transition is enabled if it can fire, which is only possible if there are enough tokens
in every input place. Enabled transitions can fire at any time, and happens in a non-
deterministic manner, meaning that multiple transitions may fire simultaneously,
making Petri Nets usable for modeling concurrent behavior.

A Petri Net can be represented in mathematical terms of the tuple 〈P, T, F, M0,W 〉,
where:

P : Is a set of nodes called places.
T : Is a set of nodes called transitions, where P ∩ T = ∅.
F : Is a relation called a flow, where F ⊆ (P × T ) ∪ (T × P ).

M0 : Is a set of initial markings, with M0 : P → N
and ∀p ∈ P there are np ∈ N tokens.

W : Is a set of arc weights, with W : F → N+ which assigns each arc f ∈ F

some n ∈ N+that denotes how many tokens are consumed from a
place by a transition, or alternatively, how many tokens are produced
by a transition and put into a place.

The state of a Petri Net is represented as a vector M , where the initial state is given
by M0. If an enabled transition t is fired, the marking M evolves into M ′, where the



2.2 Concurrency Theory 13

ability for t to fire is denoted by M
t−→ M ′. Figure 2.1 shows an example of a Petri

Net where the state is given by MT = (1 1 0 0).

P1 P2

t1 t2 t3

P3 P4

Figure 2.1: An example of a Petri Net with initial state given by MT = (1 1 0 0).
Note that t2 may only fire if there is a token in both P1 and P2.

As already described, a transition t ∈ T can only fire if there exist enough tokens in
the input places. This we formalize as:

∀p ∈ P, f = (p, t) ∈ F : W (f) ≤ M(p)

Because of the conditions that are necessary for a transition to fire, many synchroniza-
tion mechanisms can easily be modelled by using Petri Nets. One of the strengths of
the Petri Net model is that many people find the graphical representation appealing.

Petri Nets were and are widely used to model concurrent systems. However they
suffer from an important limitation; they can model control flow but not data flow.

The interleaving model. By using the classical notion of a process, we can model
the execution of a process as a sequence of states that a program must go through. For
a given process we can model the program flow by using a finite or infinite sequence
of the form:

s0
a0−→ s1

a1−→ s2
a2−→ ...

Here s0 is the initial state and the a′is are actions. The execution of a0 will change the
state of the process from s0 to s1, etc. If the actions of a process are always executed
without any overlapping in time, the process is said to be a sequential process.

In the interleaving model, a concurrent program is considered to be composed of
two or more sequential processes. Because the actions in each of the sequential
processes may be executed overlapping in time, we introduce the concept of an atomic
action meaning that an action seen by other processes appears to be performed



14 Background

indivisibly, thus no other process will be able to detect any intermediary states during
its execution. This implies that if two or more actions are executed overlapping in
time, the resulting state would be the same as if the actions were executed in some
sequential order.
We now define the term mutually atomic, meaning a group of actions that overlap
in time has the same effect as if they were executed in some sequential order. A
concurrent program is said to have atomic actions if any selection of actions from
different processes are mutually atomic. In the interleaving model we assume that all
actions in processes have been chosen so that they are atomic, which is a nice property
because it allows us to model all executions of a program simply by taking all possible
interleavings of all possible sequences of actions of the processes. Even though the
property enables us to calculate all possible program executions, the computation
explodes as the number of interleavings in the processes increase.
By letting in denote the number of atomic actions in the n′th process, we can express
the total number of interleavings by:

(i1 · i2 · i3 · ... · in)!
i1! · i2! · i3! · ... · in!

In most cases there are simply to many interleavings in a concurrent program to make
a complete analysis based on these. Therefore when analyzing a concurrent program
using the interleaving model, some abstraction is usually needed in order to reduce
the state space.
In Java even a simple operation like i++ is not atomic, therefore the developer must
be aware of how the compiler transforms code in order to know what he can assert
being atomic. The i++ operation actually consists of three actions, namely reading
the value of i, increasing the value by one and finally storing the result in i. Figure
2.2 shows an example of a possible interleaving where processes, P1 and P2 increment
the same variable.



2.2 Concurrency Theory 15

tmp1 = i

tmp2 = i

tmp1 = tmp1 + 1

tmp2 = tmp2 + 1

i = tmp1

i = tmp2

P1 P2

Figure 2.2: Illustrates two processes, P1 and P2 incrementing a shared variable i,
without the necessary synchronization. If the initial value is i = 0, then the outcome
for the above interleaving will be i = 1, whereas other interleavings may result in
i = 2 alse.



16 Background

2.3 Java Analysis Frameworks

To be able to apply the analyses developed in this project, we shall benefit from
the existence of several analysis tools that are currently available for Java. We have
investigated several frameworks to understand their possibilities and how these could
support the analyses we shall develop. Rather early in our work we had to choose
among the tools, to be able to develop the analyses within the available time, and
therefore we were highly depending on making the right choice. Although we have
chosen only one framework, our analyses would probably have been possible to apply
based on one or more of the other tools presented. Common to all the frameworks is
that they are all implemented in Java. For our analyses we need to develop dataflow
analyses, and therefore we emphasize on the different frameworks’ ability to support
the development of custom dataflow analyses.

2.3.1 Soot

Soot[8, 17, 27, 26, 28] is a free analysis framework for Java that can be used to
analyze, optimize and transform Java source code and Java bytecode. The user can
choose between four intermediate representations of Java programs that the tool can
operate on:

• Baf. A streamlined representation of bytecode which is simple to manipulate.

• Jimple. A typed 3-address intermediate representation suitable for optimiza-
tion.

• Shimple. An SSA variation of Jimple.

• Grimp. An aggregated version of Jimple suitable for decompilation and code
inspection.

For more information on the workings of Soot in general you may inspect [17], where
Soot is applied with Jimple. Further information on the other intermediate represen-
tations can be found in [27, 26] and of course in the documentation of Soot [8].

Soot comes with a number of built-in analyses and an Eclipse plugin. Furthermore,
an external points-to analysis PADDLE [28] can be downloaded and installed, for
use with Soot. As already mentioned, Soot can operate on both Java source code
and Java bytecode. However, operating on Java source code only fully supports Java
1.4. As we strive to be able to apply the analyses on all current Java platforms, we
therefore decides not to use Soot on Java source code. But it still leaves the option
of operating on Java bytecode, as newer platforms of Java use the same bytecode
instructions as the previous platforms.



2.3 Java Analysis Frameworks 17

The documentation of Soot is mainly based on a collection of papers and a poor API
documentation, and we thought it was hard to get familiarized with. Also, Soot’s
source code is still based on Java 1.4 and therefore does not use generics, which we
would very much prefer - it diminishes a great deal of type casting and makes common
behaviors easier to generalize under common types.

Soot has a little awkward approach to raise warnings upon identifying violations
during an analysis. The analyses in Soot analyze Jimple code and upon violations
add tags to the Jimple code to represent the type of violation. Warnings are then not
raised until traversing the tagged Jimple code after the analysis finishes. To create
dataflow analyses in Soot, one must initially jimplify binary Java class files, that
means translate bytecode into the Jimple representation. Basically the jimplification
is an intraprocedural control flow analysis that comes built-in with Soot. Afterwards
the developer should take the following steps:

1. Create a class derived from Transformer. This class uses the dataflow analysis
to add tags to Jimple.

2. Create a class derived from FlowAnalysis. This class provides the flow func-
tions and provides the lattice functions.

3. Instantiate a FlowSet. This class is solely data for nodes in the lattice and does
not include any functionality to merge or copy data.

This abstraction somewhat resembles the theoretical dataflow abstractions, however
it is split up slightly different. Also Soot does not use the visitor pattern, so the
developer must do iterations over the AST abstractions on the respective levels.

As we were in the process of selecting a framework for our analyses, Soot did not
support metadata, such as runtime-visible annotations in the bytecode. However,
this functionality has been added in the recent (and long-anticipated) release of Soot.

Soot is distributed under the GNU Lesser General Public License[7] and can be
downloaded from [8].

2.3.2 BCEL

BCEL[3], the Byte Code Engineering Library, is, as the name suggests, a bytecode
engineering library. Basically, that means it operates on compiled Java classes (.class)
by inspecting bytecode instructions. The BCEL API can be divided into the following
categories:

1. Classes that describe “static” functionality of a Java class file, i.e., constraints
that reflect the class file format and are not intended for bytecode modifica-
tions. The classes enable to read and write class files from or to a file, which



18 Background

is especially useful for static analysis of Java classes from bytecode. One can
obtain methods, fields, etc. from the main datastructure called JavaClass.

2. Classes that enable modification of such JavaClass or Method objects, another
common datatype representing methods in a Java class. These classes can be
used for code injection or optimizations, e.g., stripping unnecessary instructions.

3. Examples and utilities.

Basically, what BCEL offers is datatypes for inspection of binary Java classes. It
does not come with analyses, such as dataflow, control flow or points-to analyses,
which makes it very little helpful for our purpose, as we would like to benefit from a
framework that offers such functionality.

BCEL is fairly well documented, but there has not been a lot of development for
the past few years, and a more recent project ASM has come to life, matching and
surpassing the functionality of BCEL.

For the purpose of dataflow analyses, BCEL does not come with any built-in ab-
stractions easing the process. That means one would have to create the necessary
abstractions, like an intraprocedural control flow analysis to create the CFGs, and
implement a visitor pattern for traversal.

BCEL is distributed under the Apache Software License[1] (open source) and can be
downloaded from [3].

2.3.3 ASM

ASM[2, 9] is a bytecode engineering library suited for static and dynamic optimiza-
tions and transformations of Java programs, operating on bytecode level. The static
analysis capabilities also suit it for static analysis of Java bytecode. The framework
is highly optimized and is rather small and fast, e.g., compared to BCEL, while offer-
ing similar functionalities. ASM analyses compiled class files directly, which means
arrays of bytes as classes are stored on disk and loaded in the Java Virtual Machine.
ASM is able to read, write, transform, and analyze compiled classes and does so by
using the visitor design pattern. In many ways ASM resembles BCEL, but focuses
more on compact size and speed, which is a core requirement for performing runtime
code transformations.

ASM comes with a number of basic built-in analyses, though fewer than Soot. For the
purpose of dataflow and control flow analyses it provides classes and interfaces that
can be implemented and extended to the desired behavior; a clear advantage over
BCEL, were one would have to implement the visitor pattern and the flow analysis.
ASM also comes with an Eclipse plugin that renders the bytecode generated from
your Java source files automatically while editing in Eclipse.



2.3 Java Analysis Frameworks 19

ASM is very well documented, via the API available at [2] and also trough the
thorough guide [9], which also explains the structure and workings of ASM under the
hood. Furthermore, ASM visits annotations [11] in the compiled classes and makes
these metadata available for the analyses, which is either a feature left undocumented
or (most likely) not present in BCEL.

To built up dataflow analyses with ASM, parts of the visitor patterns have to be
customized by the developer. First of all, ASM is primarily intended for bytecode
transformations, and it does not include abstractions for the flow of data - it simply
applies transformations or basic analyses independent of the program state. That
means it does not even have a datastructure representation of a CFG, which would
have to be implemented by the developer. Though, ASM does support this to be im-
plemented in a rather easy approach, as the basic type for dataflow analyses Analysis
is basically an intraprocedural control flow analysis. During the analysis, it calls the
methods newControlFlowEdge and newControlFlowExceptionEdge, which however
are left empty by default. To build up a CFG, one would extend the Analysis class
and override these methods, and a CFG could be constructed in whatever datastruc-
ture desired.

Comparing this to what we have seen Soot offers, leaves ASM lacking behind. The
next framework presented, FindBugs, has overcome this obstacle and implements
these higher level representations, but founded on both BCEL and ASM.

ASM is distributed under an open source license, specific for the tool, which can be
reviewed in [2].

2.3.4 FindBugs

FindBugs [4, 10, 13, 5, 6, 16, 22] is the last framework we have considered. FindBugs
is a tool that searches for bug patterns in Java bytecode, resembling ASM a lot in
the way it operates. As a matter of fact FindBugs uses both BCEL and ASM as
foundation for its analyses. FindBugs uses the visitor design pattern in the same
way ASM does, and the detectors are basically state machines, driven by the visited
instructions, that recognizes particular bugs.

The framework comes with many analyses built-in and classes and interfaces that
can be extended to build custom dataflow analyses, amongst others. Apart from
that, the framework contains a suite of detectors, that use the analyses to implement
the before mentioned state machines that make up bug detectors. The framework
operates on bytecode and comes with an intraprocedural control flow analysis that
transforms the analyzed bytecode into CFGs.

FindBugs has very good documentation, especially the API documentation stands
out. Although, it is not as well documented as ASM concerning the details of its
basic workings. As it uses the datatypes of both ASM and BCEL, the APIs of these



20 Background

tools have to be used in addition. Lots of recent projects have been using FindBugs
and guides of usage are easy to find.

Findbugs also comes with an Eclipse plugin, that based on the analyses chosen from
FindBugs notifies the user with bug descriptions on program locations where a bug
was detected. FindBugs does, consequently by using the ASM framework, support
metadata like annotations, so our intentions to use annotations for our analyses, can
be fulfilled with FindBugs as a framework.

For implementing of custom dataflow analyses the developer should take the following
steps:

1. Extend the interface DataflowAnalysis or any of its subclasses. This class
is responsible for all the flow functions and the block order, i.e. forward or
backward.

2. Create a class representing the fact passed through the flow functions and up-
dated appropriately to represent the information that may be desired at the
specific program locations. This class does not have to conform to any parent
type, which offers the developer great freedom of what is desired to represent
at individual program locations.

After specifying these classes, other analyses or detectors can be developed that in-
stantiate and run the particular dataflow analysis, which can then be queried about
the analysis results at specific program locations. These abstractions are in accor-
dance with theoretical dataflow abstractions, and allows for easy implementation of
custom operations for combining analysis information from different control flows.

FindBugs is distributed under the GNU Lesser General Public License [7] and can
be downloaded from [4].

2.3.5 Summary

In this project we develop different dataflow analyses, which we will ultimately im-
plement in Java. Amongst the frameworks here presented, Soot and FindBugs stand
out as the most feature-rich, meaning that they come with built-in dataflow analyses
and have good possibilities for extending classes to the desired behavior of custom
dataflow analyses. While ASM also offers some of these options, FindBugs is already
using ASM in its core, and is superior as it has dataflow analysis abstractions built-in.
BCEL is more or less ruled out, except for the fact that it is also the foundation for
FindBugs.

Our choice of framework has been very influenced by the documentation and our
ability to familiarize with the framework. Here Soot really fell behind, as it seems
very poorly documented and help and examples were not easy to find. The framework



2.4 The Java Execution Model 21

seems very complex in its structure, although it does seem to come with lots of useful
built-in analyses. Another disadvantage of Soot is that it introduces a new language,
Jimple, on which the analyses are run, and the developer will have to get familiarized
with this language. On the other hand, in FindBugs the developer will have to
get familiarized with bytecode, which has more than 200 instructions, compared to
Jimples approximately 15 instructions. However, we think that we could benefit
more from introducing ourselves to bytecode, than to learn a language only specific
to Soot and with no further applications. FindBugs also has a greater flexibility in
the choice of fact representation in a custom dataflow analysis, than Soot, which
dictates manners of the facts as it must derive from a certain fact interface.

All in all we have set our decision on the FindBugs analysis framework, which we
shall utilize to built our analyses upon.

2.4 The Java Execution Model

Because many aspects of concurrent programming are closely related to the way that
the Java Virtual Machine (JVM) executes code and interacts with the native platform,
a good understanding of the execution model is necessary in order to perform a correct
analysis.

The JVM is a stack based virtual machine that is one of the cornerstones in the Java
platform. The JVM provides the developer with an instruction set common on all
platform which makes the “code once, run anywhere” philosophy possible. The JVM
in it self does not know anything about the Java language because all it needs to do,
is to provide an architecture capable of executing programs that can be expressed
within the Java language. This means that the JVM can be used as a platform for
many other languages as long as the semantics of a program in the given language
can be expressed in bytecode.

In Java code is executed inside threads, where each thread has its own execution stack
which is composed of frames. A frame represents a method invocation and every time
a method is invoked, a new frame is pushed onto the stack. When a thread exits
a method, either by returning or as a consequence of an unhandled exception, the
frame on top of the stack is popped, revealing the frame belonging to the calling
method where program execution should continue.

Each frame consists of two parts: a local variable part and an operand stack part.
Local variables within a frame can be accessed in any order, whereas the operand
stack, as the name implies, is a stack of values that are used as operands by bytecode
instructions. This means that values in the stack can only be accessed in a LIFO1

order. One should not confuse the operand stack and the threads execution stack:
Each frame in the execution stack has its own operand stack.

1LIFO is the abbreviation of “last in first out”.



22 Background

The size of the local variables and the operand stack depends on the method that the
given frame belongs to. These sizes are computed at compile time, and are stored
along with the bytecode instructions in the compiled classes. As a consequence, at
run time, all frames belonging to a given method will have a fixed size.
When a frame is created, it is initialized with an empty stack, and its local variables
are initialized with the target object this (for non-static methods) and the method’s
arguments. The operand stack and the local variables can hold any Java value, except
long and double, these values are 64 bit and therefore require two 32 bit slots. This
will in many cases complicate the management of local variables because one cannot
be sure that the i′th argument is stored in the i′th locale variable.

As stated earlier the JVM executes bytecode instructions. Each instruction is made
of an opcode that identifies the instruction and a fixed number of arguments.

• The opcode is an unsigned byte value which limits the instruction set of JVM to
a maximum of 256 different instructions. At the time of writing not all opcodes
are used, meaning that there is room for adding new instructions to the JVM.
Valid opcodes can be identified by a mnemonic symbol making the instruction
easier to remember. For example the opcode 0xC2 is identified by the mnemonic
symbol MONITORENTER.

• The arguments are static values that define the precise behavior of the instruc-
tion. Instruction arguments are given just after the opcode and should not be
confused with instruction operands: argument values are statically known at
compile time and are stored in the compiled code, whereas the operand values
come from the operand stack and are therefore first known at runtime.

Instructions can be divided into two categories: A small set of instructions which are
used for transferring values between the local variables and the operand stack. The
other instructions only act on the operand stack as they pop some values from the
stack, compute a result based on these values, and push the result back on to the
stack.

The bytecode instructions ILOAD, LLOAD, FLOAD, DLOAD and ALOAD are used to read
a local variable and push its value on the operand stack. All these instructions take
an index i as an argument which is the local variable index. The ILOAD instruction is
used to load a boolean, byte, char, short or int local variable. The LLOAD, FLOAD
and DLOAD instructions are used to load a long, float and double, respectively,
where the LLOAD and DLOAD loads the value at index i and i + 1, as they consume 64
bit. Finally the ALOAD instruction is used for loading a non-primitive value, namely
object and array references.
For each of these LOAD instructions there exists a matched STORE instruction used to
pop a value from the operand stack and store it in a local variable designated by its
index i.



2.4 The Java Execution Model 23

The LOAD and STORE instructions are typed to ensure that no illegal conversion is
done. An ISTORE 1 followed by a ALOAD 1 is illegal because the stored value is
loaded using a different type. If such conversion was allowed, e.g., which is is in C, it
would be possible to store an arbitrary memory address in a local variable, and then
turn it into an object reference, which makes encapsulation impossible. It is however
perfectly legal to overwrite a local value with a given type with a value of another
type. Note that this means that the type of a local variable may change at runtime.

The other instructions than the ones described above, work on the operand stack
only. Below we have categorized these remaining instructions:

• Stack
These instructions are used to manipulate the values on the stack. The POP
instruction pops the value on top of the stack. The DUP instruction duplicates
the top value on the stack by pushing the top value on to the stack. Finally, the
SWAP instruction pop the two upper values and push then back on the operand
stack in reverse order.

• Constants
The constant instructions are used to push a constant value on the operand
stack. ACONST_NULL pushes the null value, ICONST_0 pushes the int value 0,
FCONST_0 pushes the float value 0 and DCONST_0 pushes the double value 0.
The BIPUSH b pushes the byte with value b, SIPUSH s pushes the short value
s and LDC c pushes an arbitrary int, float, long, double, String or class
constant c on the operand stack.

• Arithmetic and logic
These instructions are used to pop numeric values from the operand stack,
combine them, and push a result back on to the stack. None of the instructions
take any arguments but work purely on the operand stack. The instructions:
xADD, xSUB, xMUL, xDIV and xREM correspond to +, -, *, / and %, where x is
either I, L, F or D. Furthermore there exist instructions corresponding to <<,
>>, >>>, |, & and ^, for int and long values.

• Casts
These instructions are used to cast a value with a given type to another type,
which is done by popping a value from the stack, converting the type, and
pushing the result back on the stack. There exists instructions corresponding to
the cast expressions found in Java. I2F, F2D, L2D, etc. convert numeric values
from one numeric type to another. The CHECKCAST t instruction converts a
reference value to the type t.

• Objects
This category deals with the creation of objects, locking them, testing their
type, etc.



24 Background

The NEW type instruction is used to push a new object with the given type
on the operand stack. The MONITORENTER objectref and MONITOREXIT
objectref instructions both pop an object from the operand stack, and respec-
tively requests and releases the lock on the object. Note that if the objectref
is null a NullPointerException will be thrown.

• Fields
Field instructions are used to read or write the value of a field.
GETFIELD owner name desc pops an object reference from the operand stack,
and pushes the value of its name field. PUTFIELD owner name desc pops a
value and an object reference, and stores the value in its name field. In both
cases the object must be type owner and its field must be type desc. The
GETSTATIC and PUTSTATIC are instructions that work in a similar way but for
static fields.

• Methods
The instructions INVOKEINTERFACE, INVOKESPECIAL, INVOKESTATIC,
INVOKEVIRTUAL are used for invoking a method or a constructor. Common for
all these instructions are that they pop as many values as there are method
arguments, plus the value for the target object, and they push the result of the
method invocation on to the operand stack.

• Arrays
These instructions are used to read and write values in arrays. The xALOAD
instruction pop an index and an array, and pushes the value of the array

element at this index on the operand stack. The xASTORE instruction pop a
value, an index and an array, and store the value at that index in the array.
For both instructions x can be I, L, F, D, A, B, C or S.

• Jumps
Jump instructions are used to jump to a arbitrary instructions if some condition
is true, or simply unconditionally. The Java primitives: if, for, do, while
, break and continue are represented in bytecode using jump instructions.
For example the instruction IFEG label pops an int value from the operand
stack, and jumps to the instruction with the given label and the popped value is
0, otherwise execution continues normally to the next instruction. There exist
many variations of jump instructions, but their mnemonic symbols makes it easy
to reason about the behavior, like IFNE and IFGE. The switch primitive in Java
is however represented in bytecode using the TABLESWITCH and LOOKUPSWITCH
instructions.

• Return
Finally the xRETURN and RETURN instructions are used to terminate execution
within a given method and to return its result to the caller. The RETURN
instruction are used in case where a method return void, and xRETURN are used
in all other cases, where x can be A, D, F, I or L.



2.5 Java and Synchronization Primitives 25

Not all the instructions that the JVM support have been described in the above
items, but the reader should by now have gained enough knowledge about the JVM
instruction set to understand the following chapters. For more information consult
the JVM specification [21].

2.5 Java and Synchronization Primitives

In a multi-threaded program, several threads execute simultaneously in a shared
address space, which means that state variables may be shared between threads.
In order to classify a piece of code as being thread-safe, it must function correctly
during simultaneous execution by multiple threads. This means that no matter how
the threads interleave, the semantics of the program should be deterministic from
the developers’ point of view, and therefore concurrent programs must be correctly
synchronized to avoid counterintuitive behaviors.

The target of our analyses will be the Java programming language. As already
mentioned, we shall not identify threads in our analyses. Instead we will identify
synchronization primitives in the class being analyzed and compute the necessary
information for our analyses based on the synchronization primitives. Java provides
multiple synchronization primitives, but in this project we will mainly focus on the
following:

2.5.1 Monitors

In the early seventies Edsger Dijkstra, Per Brinch-Hansen, and C.A.R. Hoare devel-
oped the idea of a monitor, an object that would protect data by enforcing single
threaded access, meaning that only one thread would be allowed to execute code
within the monitor at one time.

Java provides the synchronized primitive which reassembles the monitor idea in
many ways2, and we will in the following denote the synchronized primitive as a
monitor. In the classical monitor approach, the monitor object contains a lock which
is taken by the given thread that enters the monitor. If a thread tries to enter the
monitor and the lock is already taken the thread is simply blocked. The semantics of
the monitor pattern ensures that the given thread exits the monitor before returning
the lock to the monitor object, so that no to threads can never be within the monitor
object at once. Java monitors are at bit more flexible, as they allow to use any object
as a monitor lock, and like the classical monitor approach only one thread at a time
can execute code within the monitor.

2In bytecode the instructions used when entering/exiting a synchronized region is even called
“monitorenter” and “monitorexit”.



26 Background

A thread in the classical monitor approach can exit a monitor either by returning
from the given method or by waiting on a condition queue. Waiting threads can
then be woken up, by another thread notifying the condition queue. In early style
monitor implementations, notifying a condition queue caused a waiting thread to
receive the lock and run immediately. Because implementations that guarantee such
semantics suffer from a high overhead, newer implementations first hand over the
lock to a waiting thread, when the notifying thread exits the monitor. Java supports
the later kind of semantics with a few twists, through the use of the wait, notify
and notifyAll primitives. One interesting thing introduced in Java 1.5, is the

ability for threads to wake up without being notified, interrupted or timed out, a
so-called spurious wakeup. Therefore one should always test if a thread that reenter
the monitor, is allowed to proceed execution, otherwise it should continue waiting.
Listing 2.1 illustrates how one can accommodate spurious wakeups.

1 synchronized (obj) {
2 while (<condition does not hold >) obj.wait(timeout);
3 ... // Perform action appropriate to condition .
4 }

Listing 2.1: Illustrates how one can accommodate spurious wakeups, by surrounding
the wait method call.

In Java a thread may exit the scope of a monitor in the same ways as a thread may
exit the classical monitor, furthermore an exception can be thrown within the scope
of the monitor, which may or may not make the thread exit the monitor, depending
on whether the exception is caught within the monitor. The semantics will in all cases
ensure that a given thread cannot leave the scope of a monitor without releasing the
lock.

Finally one should note that monitors are reentrant, meaning that a thread holding
a given lock belonging to a given monitor, can enter the same monitor over and over
again, this kind of semantics therefore allow recursive calls to be performed while
holding a specific lock. If monitors were not reentrant the example in Listing 2.2
would deadlock, assuming the boolean expression evaluates true.

1 synchronized method () {
2 // Determine if recursion should continue
3 if (<condition does hold >) method ();
4 }

Listing 2.2: Illustrates the advantage of reentrant monitors. If Java monitors were
not reentrant, a recursive method call like the one above, would deadlock, assuming
that the boolean expression evaluates true.



2.5 Java and Synchronization Primitives 27

2.5.2 Locks

Another mechanism that Java provides for communicating between threads is the so
called Lock. The concept of the Lock was introduced in Java 1.5 as a part of the
java.util.concurrent package, which provides the developer with a nice toolbox
for constructing multi-threaded programs. Probably, the most interesting thing about
the lock is that it offers far greater flexibility than the monitor in terms of design of
a critical region. This is due to the fact that the synchronized primitive is a part of
the Java grammar which enforces the developer to define the scope of the monitor,
whereas the lock is implemented as an object and therefore does not suffer from
these grammar constraints. This enables the developer to construct locked regions
that intersect, whereas the synchronized primitive only allows locked regions to be
contained in each other. Therefore a mutual exclusive region like the one in Listing
2.3 can never be constructed using the synchronized primitive.

1 method () {
2 A.lock();
3 B.lock();
4 A.unlock ();
5 B.unlock ();
6 }

Listing 2.3: Illustrates that locks may be used to construct locked regions that
intersect, and not only contained in each other.

In many applications, an object is shared between threads where some of them only
read the state of the object, whereas other threads alter the state of the object3.
By using the monitor approach, the developer has no other choice than making
exclusive access to the state variables encapsulated within the object in order to
avoid race conditions. Because a race condition first occur when a thread reads a
variable changed by another thread, no race condition occur if multiple threads only
read the object state simultaneously. Therefore the monitor approach has quite an
overhead because mutual exclusion is enforced on both reads and writes. In order
to increase performance in such cases, Java provides the ReentrantReadWriteLock4

implementation which is a synchronization primitive that can be used to solve the
readers-writer problem. The ReentrantReadWriteLock combines two locks, namely
a ReentrantReadLock and a ReentrantWriteLock used for respectively reading from
and writing to a shared state. The semantics of the locks allow multiple reader threads
to read from the shared state concurrently, while a writer thread requires exclusive
access.

Java provides other Lock implementations, but common for all of them are that they
extend from the java.util.concurrent.locks.Lock.

3This is known as the classical readers-writer problem.
4Note that the lock is reentrant.



28 Background

Finally one should always accommodate exception handling when applying locks,
because the semantics of locks does not require a one-to-one relation between the
number of calls to lock and unlock, this is often done by using the try - finally
semantics to ensure that unlock is always called when a thread leaves the intended
scope of the lock. Listing 2.4 illustrates how try - finally may be used to guarantee
that the lock is released, even in the case of an exception being thrown.

1 method () {
2 l.lock();
3 try {
4 // Perform actions
5 }
6 finally {
7 l.unlock ();
8 }
9 }

Listing 2.4: Illustrates how try - finally can be used to guaretee that a lock is
released. Note that if the lock method call was inside the try-scope, there would
exist the potential risk of throwing an exception before acquiring the lock, thereby
calling unlock without owing the lock.

Both monitors and locks guarantee “visibility”, a property that is closely related to
the Java memory model which will be described in section 2.4.

2.5.3 Semaphores

Edsger Dijkstra invented the semaphore, a classic concurrency control construct. The
classical semaphore only has two methods, namely V() and P(), where V stands for
“verhoog”, or “increase’ and P for “probeer te verlagen”, or “try-and-decrease”. Note
that Edsger Dijkstra was Dutch.
Listing 2.5 illustrates an implementation of a semaphore, where both the V() and
P() methods are synchronized because parts of the operations within these methods
must be done atomic.

Because semaphores are very simple they are often used in environments where re-
sources are few, e.g., they are the primitive synchronization mechanism in many
operating systems.

2.5.4 Some Notions of Locks

For the benefit of later topics, we denote the following notions about the different
synchronization mechanisms:



2.6 Class-wise Thread Safety 29

1 public class Semaphore {
2 private volatile int s = 0;
3 public Semaphore(int s0) {
4 s = s0;
5 }
6 public synchronized void P() throws InterruptedException {
7 while(s == 0) wait(); /* must be atomic once s > 0 is detected */
8 s--;
9 }

10 public synchronized void V() {
11 s++; /* must be atomic */
12 notify ();
13 }
14 }

Listing 2.5: An implementation of a simple semaphore. Note that the implementation
depends on the synchronized primitive, thus the semaphore would not work without.

• Reader- and writer-locks
We refer to types of ReentrantReadLock (or types extended from) as reader-
locks and similar to types of ReentrantWriteLock (or types extended from) as
writer-locks.

• Mutual exclusive locks
We will use this phrase about all monitors and locks, that are not reader- or
writer-locks (or derived from any of these). The reason is, that synchronization
performed by these mechanisms are performed with mutual exclusion between
the blocks of code surrounded by a synchronization primitive of these kinds,
allowing us to generalize their common behavior in one term.

• M denotes a mutual exclusive lock.

• R denotes a reader-lock.

• W denotes a writer-lock.

The latter three notions may be followed by indices allowing to distinguish between
locks. E.g. the reader- and writer-locks from the same ReentrantReadWriteLock
will be addressed Ri and Wi, respectively.

Finally, let ls(`i) denote the set of locks held at the location `i and ls(`i)′ the set of
locks held after `i.

2.6 Class-wise Thread Safety

To be able to define analyses capable of detecting non thread-safe behavior in a class,
we must initially give some meaning to what thread-safe behavior is. In Java a class



30 Background

consists of methods and fields, where the fields are used to maintain the state of the
object. A class without field variables have no state because the outcome of a method
call can only depend on the input, namely the arguments.

In this section, we look upon some common rules and policies for writing thread-safe
programs and generalize this to a set of rules that we can apply to our analyses.
We start by summarizing some usefull policies for using and sharing objects in a
concurrent program. These concepts are adopted from [12].

• Thread-confined
A thread-confined object is owned exclusively by and confined to one thread,
and can be modified by its owning thread.
This policy is known from the Java Swing framework, where all access to GUI
components must be done through the event-dispatch thread.

• Shared read-only
A shared read-only object can be accessed concurrently by multiple threads
without additional synchronization, but cannot be modified by any thread.
Shared read-only objects include immutable and effectively immutable objects.

• Shared thread-safe
A thread-safe object performs synchronization internally, so multiple threads
can freely access it through its public interface without further synchronization.

• Guarded
A guarded object can be accessed only with a specific lock held. Guarded
objects include those that are encapsulated within other thread-safe objects
and published objects that are known to be guarded by a specific lock.
A policy like this thereby assumes that the client conforms to the given lock-
protocol.

Because the “Thread-confined” and “Guarded” policies are program-wise, a complete
analysis of a program would be required in order determine if a program comply to
one of these policies.

Regarding the “Shared read-only” and “Shared thread-safe” policies a class-wise anal-
ysis is possible because only the class invariants must be maintained. When an ob-
ject enters a state where one or more class invariants may be violated thread-safety
might fail. In order to analyze a program for thread-safety without knowing the
invariants the developer had in mind, one has no other choice than making an over-
approximation when reasoning about class invariants. Some analysis tools enable the
developer to express invariants in a formal way within the code, so that the analysis
can benefit from knowing the exact invariants, assuming that the developer is able to
express them correctly. Even though an analysis enabling invariants to be described
by the developer has the advantage of being potentially more precise, it also has the



2.6 Class-wise Thread Safety 31

drawback of being dependent on the developer to write correct invariants, which may
not be a trivial task.

As stated in the introduction we have decided to use the concept of the SPA when
trying to reason about thread-safety, because this reminds us that we should always
over-approximate our analysis in order to be sure that the SPA cannot break any
invariants of the class.

When saying that a class is threadsafe we mean that neither safety- or liveness-
properties can be violated within the context of the class. Below we have defined the
set of rules that make up our definition of class-wise thread-safety.

2.6.1 Encapsulation

The state of an object is represented by the field variables in the object. For the class-
wise approach we apply, that means field variables must not be directly accessible
from outside the class or in classes extending the class of interest, because then the
SPA may be able to break class invariants by altering the state of the class of interest.
This leads to a general property of thread-safety for field variables, namely that field
values may not be declared public or protected, unless they are declared final.

Field variables of a class may be objects that have an internal state themselves. If
the state of such objects is not properly encapsulated and the fields are accessible by
the SPA, their state may be altered and thereby also the state of the class of interest
is altered, potentially breaking class invariants. A property that ensures that the
state of the class of interest is not altered by SPA is to require all reference-type field
variables are declared private.

However, a less conservative property can be applied. We say that an object with a
state that can be altered from outside the object is mutable and otherwise it is called
immutable. If the field variables of the class of interest contains mutable objects, then
these must be declared private. If the field variables contain immutable objects, then
it is only required that they are not declared public or protected, unless they also
are declared final. Then the SPA may not unexpectedly change the state of the
class of interest.

Listing 2.6 shows examples of bad encapsulation.

1 public class BadEncapsulationExample {
2 public String a = ""; /* BAD: Public field */
3 protected String b = ""; /* BAD: Protected field */
4 public final List l = new ArrayList (); /* BAD: Mutable object in a public field */
5 /* etc. */
6 }

Listing 2.6: Example of encapsulation violations



32 Background

A final note regarding field variables, is that if a field is used as a lock by a Java
synchronization primitive within the class of interest, then that field must be private
, because otherwise it may be accessed by the SPA, raising the possibility of deadlock
within the class of interest (if SPA provokes, e.g., a deadlock or infinite loop outside
the class). This will further be described in the next section.

2.6.2 Absence of Deadlock

If a program enters a state where at least two threads may be waiting for the locks
held by the other and vice versa, we classify this as being a potential deadlock. In
reality this may not be a deadlock because a third thread may release some resource,
so that one of the two stuck threads are able to continue. As described earlier we will
have to settle for an over-approximation, and therefore we will classify a potential
deadlock as deadlock in the context of the analysis.

We will in the following take a closer look at the properties of deadlock and derive
a more formal definition of how potential deadlocks can be revealed. The Listing

1 public class DeadlockExample {
2 private final Object m1 = new Object ();
3 private final Object m2 = new Object ();
4

5 public void doStuff1 () {
6 synchronized(m1) {
7 /* Thread T1 here => deadlock with T2 */
8 synchronized(m2) {
9 /* etc. */

10 }
11 }
12 }
13

14 public void doStuff2 () {
15 synchronized(m2) {
16 /* Thread T2 here => deadlock with T1 */
17 synchronized(m1) {
18 /* etc. */
19 }
20 }
21 }
22 }

Listing 2.7: Examples of deadlocks between mutual exclusive locks

2.7 shows some examples of potential deadlock situations, when using mutually ex-
clusive locking mechanisms. The characteristics can easily be described formally:
Consider two different locations, l1 and l2. Then a potential deadlock exists in case
the following condition holds:

ls(l1) ∩ ls(l2) = ∅ ∧ ls(l1)′ ∩ ls(l2) 6= ∅ ∧ ls(l2)′ ∩ ls(l1) 6= ∅ (2.1)



2.6 Class-wise Thread Safety 33

For the case of reader- and writer-locks, deadlocks can occur in another manner: If a
location locked by the reader-lock, Ri, attempts to acquire the corresponding writer-
lock, Wi, then a deadlock will occur if that particular location is reached. Similarly,
a deadlock will occur if a location locked by Wi attempts to acquire Ri (or Wi again)
and that location is ever reached. We may formalize this property also. We will refer
to the readlock of lock L as rl(L) and the writelock of lock L as wl(L), allowing us
to formalize the desired property:

(rl(L), > 0) ∈ ls(`) ∧ (wl(L), 1) ∈ ls(`)′ ∨
(wl(L), 1) ∈ ls(`) ∧ (rl(L), > 0) ∈ ls(`)′ ∨ (2.2)
(wl(L), > 1) ∈ ls(`)

where (l, n) denotes the lock l acquired n times.

Another case of deadlocking regarding writer-locks, is due to the fact that writer-locks
behave as mutually exclusive locks do, thus 2.1 also applies if one or more writer-locks
are present in the sets of locks causing potential deadlocks.

Another constraint is that all objects used as a lock mechanism, must be declared
private. The reason is that SPA may introduce a deadlock using visible immutable
state objects. Thus an interesting consequence is that the this reference should
never be used as a synchronization primitive, because the this reference can never
be encapsulated within the object itself. Listing 2.8 exemplifies this particular case.

2.6.3 Escaped Objects

All objects that enter through non-private methods have the potential to be shared
between threads, therefore all objects that enter the class being analyzed are es-
caped. This means that field variables can never be substituted with objects that
are passed as parameters to a non-private method, because the class must be able to
synchronize all access to its own state. This problem can for example be related to
the Collections.SynchronizedList, which is an object that encapsulates a regular
non-thread-safe List-type while synchronizing all access to it and thereby making it
thread-safe. The problem is that the List has to be given as a parameter, making
it impossible for the wrapper class to be sure that the encapsulated List objects are
not accessed directly which would break thread-safety.

It is allowed for an escaped value to be passed as an argument to a method call on a
state variable, otherwise the state of the object could never be modified as a result
of a method call. A consequence of this is that return values from method calls on
a state variable are escaped, if an escaped object can be used as a parameter in any
method invocation on the given state variable. If no escaped object can escape to a
state variable, the state of that state variable cannot be escaped, because the class
must encapsulate all muteable state variables.



34 Background

1 public class ThisDeadlockExample {
2 public void doStuff1 () {
3 /* Threads T1 and T2 executed by SPA prevents entering forever. */
4 synchronized (this) {
5 /* Do important stuff ... */
6 }
7 }
8 }
9

10 public class SPACausingDeadlock {
11 private final ThisDeadlockExample e = new ThisDeadlockExample ();
12

13 public void doStuff3 () {
14 synchronized (e) {
15 /* Thread T1 here => deadlock with T2 */
16 synchronized (this) {
17 /* etc. */
18 }
19 }
20 }
21

22 public void doStuff3 () {
23 synchronized (this) {
24 /* Thread T2 here => deadlock with T1 */
25 synchronized (e) {
26 /* etc. */
27 }
28 }
29 }
30 }

Listing 2.8: An example illustrating how SPA can cause a deadlock when this is
used for locking.



2.6 Class-wise Thread Safety 35

This also implies that a state variable is escaped if it is passed as an argument to
a method call on an escaped object. Furthermore all values that are returned from
within the context of the class being analyzed will be categorized as escaped.

A final constraint for escaped objects, is that if they are used as a lock by a synchro-
nization mechanism, that particular lock may be changed outside the class of interest.
Thus the regions of code the lock surrounds will be not to be mutually exclusive or
sound with respect to reader- and writer-locks, depending of which kind of lock it is.
Therefore locking with escaped objects can be ignored.

2.6.4 Locking

To maintain the class of interest in a state without violations of liveness properties, all
locks acquired within a non-private method in the class of interest, must be released
again before all exit locations of that method and similar more locks may not be
released than acquired, within non-private methods. Otherwise the SPA may leave
the class of interest in a state where liveness properties are not satisfied.

At the point where a lock is acquired, the object that is locked on should usually
not point to several values. In case a lock potentially points to several values, the
region within the locked scope cannot be assumed to be mutual exclusive with any
other locked regions within the class. We therefore classify this as unwanted locking
behavior.

2.6.5 Thread-Safe Field Access

All access to non thread-safe fields must be mutual exclusive, meaning that only
one thread at a time may use the given object. Though, with the exception of
synchronization with the means of reader- and writer-locks, where only interleavings
that allow both reader- and writer-locks or multiple writer-locks to access a non
thread-safe field simultaneously, will violate thread-safety. If these constraints are not
fulfilled, the object being used concurrently might enter an unsafe state where its class
invariants are not satisfied. Regarding escaped objects synchronization is of no use,
because we can never be sure that we are in complete control of the escaped object.
The synchronization primitives used to construct mutual exclusive regions within a
class, must be stored in field variables in order to be visible in every method. If one for
some reason wants to substitute an object used as a synchronization primitive with
another, all access to that field must be synchronized in order to maintain thread-
safety in the regions that the object is used to protect. In listing 2.9 we see that a
ReentrantReadWriteLock can be used to safely change the variable o, which is used
as a synchronization primitive. The problem is a typical readers-writer problem.
Listing 2.9 illustrates that multiple readers will perform mutual exclusive actions,



36 Background

1 public class NonFinalLockPrimitive {
2 private ReentrantReadWriteLock rwl =
3 new ReentrantReadWriteLock ();
4 private Object o = new Object ();
5 public void doMutexAction () {
6 rwl.readLock ().lock();
7 try {
8 synchronized(o) {
9 ... // do mutex action

10 }
11 }
12 finally {
13 rwl.readLock ().unlock ();
14 }
15 }
16 public void newLockPrimitive () {
17 rwl.writeLock ().lock();
18 try {
19 o = new Object ();
20 }
21 finally {
22 rwl.writeLock ().unlock ();
23 }
24 }
25 }

Listing 2.9: Example of the use of ReentrantReadWriteLock, where a
synchronization primitive is safely changed.

and as the lock o changes, it is performed under a write-lock, such that no readers
will be performing the mutual exclusive action.

In section 3.1 we will see that the ability to change references to objects that is used
as a synchronization primitive, introduces some challenges in the design of a desired
analysis, capable of rendering visible the values a given variable is possible assigned,
when concurrent access is taken into account.

In general, ensuring safe field accesses regarding the potential misuse caused by SPA,
must rely on that the developer intends to be able to access state variables with
deterministic values. If that is somehow not the case, we are not capable of prop-
erly approximating the class invariant the developer may have in mind. Thereof we
come to a general conclusion about safe access to state variables and the general
approximation of our analysis will be:

All writes to a field variable may not give occasion to non-
deterministic results possibly being read elsewhere in the class. Nei-
ther must multiple writes to the same field variable take place at any
time.



2.6 Class-wise Thread Safety 37

2.6.6 Stale data

Modern computers utilize multiple processors and caches to speedup program exe-
cution. In a shared-memory multiprocessor architecture, each processor has its own
cache that is periodically reconciled with the shared main memory.
Ensuring that every processor knows exactly what the other processors in the system
is doing at all time is to expensive, because most of the time this information is not
needed. Therefore processors relax their memory-coherency guarantees to improve
performance. An architectures memory-model tells what guarantees can expected
from the memory-system, and specifies a set of instructions necessary to coordinate
access to shared data. Because not all architectures provide the same set of guar-
antees concerning the memory-model, Java provides its own memory model, where
the JVM deals with the differences between the common JMM and the underlaying
architectures memory-model, inserting the necessary memory barriers.
The JMM defines a partial ordering called happens-before on all actions within a
program. To guarantee that a thread executing an action B, can see the results of
an action A(whether or not A and B occur in different threads), there must exists
a happen-before relationship between A and B. In order for the JVM to optimize
performance, e.g., by trying to reduce the number of cache misses, the JVM is is free
to reorder instructions where no happens-before relationship exists. This makes the
reasoning about ordering in the absence of synchronization complicated. The rules
for happen-before are:

• Program order rule
Each action within a thread happens-before every action in that thread that
comes later in the program order.

• Lock rule
An unlock on a monitor lock happens-before every subsequent lock on that same
monitor lock. Furthermore does locks and unlocks on subclasses of java.util
.concurrent.Lock have the same memory semantics as monitor locks.

• Volatile variable rule
A write to a volatile field happens-before every subsequent read of that same
field. Also reads and writes of atomic variables have the same memory semantics
as volatile variables.

• Thread start rule
A call to Thread.start on a thread happens-before every action in the started
thread.

• Thread termination rule
Any action in a thread happens-before any other thread detects that thread
has terminated, either by successfully return from Thread.join or by Thread
.isAlive returning false.



38 Background

• Interruption rule
A thread calling interrupt on another thread happens-before the interrupted
thread detects the interrupt, with is either done by having a
InterruptedException thrown, or by invoking isInterrupted or
interrupted.

• Finalizer rule
The end of a constructor for an object happens-before the start of the finalizer
for the object.

• Transitivity
If A happens-before B, and B happens-before C, then A happens-before C.

Listing 2.10 illustrates the concept of stale data, where a value n is given as an argu-
ment in the constructor and assigned to a field. Because no happens-before relation-
ship exists, the value of n may not be visible to other threads after the constructor has
finished. The guarantee of initialization safety ensures that for properly constructed

1 public class Holder {
2 private int n;
3

4 public Holder(int n) { this.n = n; }
5

6 public void assertSanity () {
7 if(n != n) {
8 throw new AssertionError("Expression is true!");
9 }

10 }
11 }

Listing 2.10: A class where no happens-before relationship exists between the
assignment to this.n in the constructor and the if-branch, thus n is not properly
published and therefore may the boolean expression in line 7 be true.

objects, all threads will see correct values of final fields, regardless of how the object
is published. The Holder class may be fixed by declaring n final or by establishing
a happens-before relationship, e.g., by declaring n volatile.



Chapter 3

The Analyses

Java support for concurrency is like the
first rule: Don’t spill grape juice on the
carpet.

− Unknown

In this chapter, we present the analyses that we have developed and implemented
to facilitate a tool capable of detecting certain synchronization pitfalls. First of all,
we need to narrow down our overall approach and identify the functionality of the
analyses we apply.

3.1 Our Approach

First of all, the classes our analyses operates on are binary bytecode class files com-
piled from Java source programs, meaning that the targets of the analyses are required
to be verified bytecode classes. Thus, we do not perform any initial verification of
the input classes, but assume them to be verified already.

Section 1.1 on page 1 describes the main concept of our approach. We view the
target of the analysis from the point-of-view of a strongest possible attacker, SPA, to
reveal where thread-safety may fail. This resembles the concept of unit tests, where



40 The Analyses

a unit is somehow identified as target of a test suite, to make sure this unit will
perform as expected. After such a test suite has been performed, the unit can be
“plugged in” as a component of a larger system, where it can be viewed as a simple
black box, that given some particular input, produces the correct output. The target
unit or component of our analysis will be a specific Java class, which will then be
analyzed from the view of SPA, with regards to non thread-safe behavior. In Section
2.6 on page 29 this led us to a set of well defined properties that apply to class-wise
thread-safety and these definitions are the properties we must analyze. A small recap
follows; refer to Section 2.6 for full descriptions:

• Encapsulation
Mutable state variables of a class must be kept private. Immutable state vari-
ables may be non-private if they are declared final, unless they are used as
lock mechanism by Java’s synchronization primitives in which case they may
be cause for deadlocks.

• Absence of Deadlock
No interleaving may exist, where two threads wait for the lock that is held by
the other and vice versa. This eliminates the existence of deadlocks.

• Escaped objects
Basically, all objects either not properly encapsulated or entering from outside
the current target class of the analysis, are escaped. In case escaped objects
enter the state of any object inside the class, all return values from this object,
will also be considered escaped.

• Locking
All non-private methods within the class must have released all locks held at
return point.

• Thread-safe Field Access
All accesses to non thread-safe fields must be mutual exclusive or sound with
respect to multiple readers and writers accessing the non thread-safe field.

• Stale Data
The existence of caches with write-back memory models reveal the possibility
that non synchronized accesses to fields can result in inconsistent values and
must be analyzed.

To be able to document how we have identified and developed analyses cabable of
revealing violations in the above conditions, we will look at each of the conditions in
turn and identify what information they will require. Based on that information, we
will present analyses capable of collecting that information.



3.1 Our Approach 41

3.1.1 Encapsulation

To analyze whether the state of a class is properly encapsulated, we need to traverse
and notice if fields are mutable or immutable. After this, we can check if they conform
to the requirement stated about encapsulation, by testing against their visibility
modifier and the final modifier. Although we cannot yet determine whether fields
are used by synchronization primitives, which reveals a dependency of an analyses
capable of telling which variables are used by locking mechanisms.

3.1.2 Absence of Deadlock

To identify potential deadlocks we must be able to know which variables have been
used as a lock by synchronization primitives. For this to be possible, we first of all
need a points-to analysis, that is, an analysis that keeps track of the possible set
of values that may have been assigned to variables. With this information, another
analysis can be performed, keeping track of which locks are currently held. This is
easier said than done, but we shall not describe the complexity at this point.

3.1.3 Escaped objects

Analyzing which objects can have escaped, again relies on the existence of a points-
to analysis, because that information is indeed required to be able to track the flow
of escaped objects. The information about where escaped objects may enter the
class of interest can in fact be collected by the points-to analysis and made available
by somehow flagging the points-to values if they are potentially escaped objects.
An individual analysis for escaped objects could then collect this information and
generate violations where applicable.

3.1.4 Thread-Safe Field Access

The information required to collect this information both relies on the ability to be
able to determine which locks are currently held and the ability to track the flow of
possible values a variable can be assigned. As before mentioned, this does introduce
some complexity which we shall soon address.

3.1.5 Stale Data

An analysis of thread-safe field access will reveal possible stale data also.



42 The Analyses

3.1.6 Summary

Until this point, we have seen the necessity of a points-to analysis and an analysis
capable of identifying which locks are currently held. We will denote the latter anal-
ysis as the lock analysis. Inter-procedural points-to analyses are well researched and
some suggestions of implementations for Java exist [25, 15, 18, 20, 29]. However, we
have decided to specify an inter-procedural points-to analysis specific to our approach
ourselves, because we would like the analysis to analyze and take mutually exclusive
regions into account, which is a specialized behavior for our approach. We denote
this particular analysis a concurrent points-to analysis. This analysis takes the in-
formation about locks at the current location into account and therefrom determine
what other locations can be accessed concurrently and merge points-to information
from these locations into the information currently present. This introduces an in-
terdependency between the lock-analysis and the concurrent points-to analysis: The
lock-analysis requires to be able to tell what values a given variable may be assigned at
the location where a lock is taken on that variable, whereas the concurrent points-to
analysis, requires information about which locks are held at a given location.

To address this problem, we present a general assumption that allows us to avoid this
interdependence. It simple says that:

The variables used as locking mechanisms by synchronization prim-
itives may not be changed anywhere in the class of interest.

Reasoning about the limitation introduced from this assumption, we now present an
example where a variable used for locking is changed.

Listing 3.1 illustrates that a variable, m2, used for locking, is changed, although prop-
erly synchronized by another lock, m1, and thereby does not ensure mutual exclusion
between the scopes synchronized with m2: Action 1 can very well be performed
concurrently with Action 2. The location at Action 2 illustrate, that if one wraps
synchronizations by m2 with synchronizations by m1, the only effect of the synchro-
nizations, is that of m1. Therefore we might as well ignore the synchronizations by
m2, which justifies the assumption we will apply. The example is of similar character
regarding changing either a read- or write-lock.

However, we must not forget the example presented in listing 2.9. Here a lock is
actually changed, while maintaining the mutual exclusive access. We have chosen
to make the assumption anyways, because it allows us to avoid the interdependency
mentioned. That means that examples such as that of listing 2.9, where actions are
accomplished mutual exclusive, although a lock changes, may give rise to violations in
our analysis. Though we believe the example stands almost for itself, and we consider
the assumption a fair over-approximation of actual runtime program behavior.

Now we focus on how we use the assumption to avoid the interdependency between
the lock analysis and the concurrent points-to analysis. With the assumption applied,



3.2 General Definitions 43

1 public class BadMutualExclusion {
2 private final Object m1 = new Object ();
3 private Object m2 = new Object ();
4

5 public void changeLock () {
6 synchronized(m1) {
7 m2 = new Object ();
8 }
9 }

10

11 public void doStuff () {
12 synchronized(m2) {
13 /* Action 1 */
14 }
15 /* etc. */
16 synchronized(m1) {
17 synchronized(m2) {
18 /* Action 2 */
19 }
20 }
21 }
22 }

Listing 3.1: A variable used by a synchronization primitive, is changed, resulting in
non mutually exclusive actions.

this allows us to make an initial points-to analysis that is intra-procedural and thereby
only reveals what variables may point in a sequential manner. As locks cannot be
changed, that means that the lock analysis can very well build on top of this analysis
alone, because then it is known at the time a lock is taken, what the locking variable
points to. With the lock analysis in place, the concurrent points-to analysis can
then be applied, as it can now be queried what a variable points to at any location
and which locks are held at any location. Moreover The concurrent points-to analysis
requires another analysis to come into play, namely a special dominator analysis that
will be described in detail later.

We have now summed up the analyses we shall depend on, to be able to analyze
for violations of the conditions we apply regarding class-wise thread-safety. Figure
1.1 on page 4 illustrates the order of which the analyses must be performed. What
remains is detailed information about each of the analyses and the precision of the
approximations they will apply. Generally, we desire the analyses to be as accurate
as possible, which may be at the cost of performance.

3.2 General Definitions

We shall now describe the analyses that our tool consists of. The order of which
they will be introduced, corresponds to the dependencies of the analyses, which was
introduces in the previous section. Initially we will introduce some notions and
functionality that will be used to describe the analyses.



44 The Analyses

In the following we will use the notion of a location, denoted `C,M,n, where C is the
class of interest, M is the method of the CFG being analyzed and n is a linenumber
(n ∈ N) in the bytecode instruction sequence for M . Our analyses work on classes,
and the class of interest is often implicit from the context, so we will use `M,n or just
`n as the notation of a location, where we do not need to distinct between different
class contexts or both the class and method is implicit from the context. In case we
discuss an arbitrary location, we will not use a subscript at all, we just write `.

For the analyses, we want to abstract an actual program element to a value, that
uniquely identifies that program element. By program element, we could mean, e.g.,
a variable or a certain instantiation value, which all would be mapped in a one-to-
one relationship from the value to the program element it actually describes. The
program elements that an analysis operates with will be introduced in the contexts
of the analyses.

Because the analyses operates on bytecode, initially we will introduce functions that
can abstract the actual mapping into the stack to a representation that eases in
describing and formalizing the analyses. At this point, we will assume the existence
of a function stack(`) = S` which yields the contents of the stack at the location
`. We abstract the stack representation to an array indexable by a number i, where
the bottom element has the index 0. Based on the representation of the stack as an
indexable array, we now assume the existence of a function top(S`) that yields the
top element from the stack. The top element is represented as a value which, in this
context, is a one-to-one relationship between an actual variable reference, instance
reference or value and the abstracted value yielded. The abstraction of this function
is such that, i.e., a double on the stack (which occupies two slots, as it is 64-bit long)
is represented by one value, which is the value that can be accessed by top(S`). In
the following we shall represent values as integers. Furthermore, we introduce the
function new, which yields a new, unique value.

The bytecode instruction operands are elements of the stack, and on the execution
of instructions, initially the operands are popped off the stack and if a result is
computed, the result pushed back on the stack. We shall abstract the operands of
instructions by assuming the following functions to be able to index into the stack
and receive the correct values, representing the operands.



3.3 Points-To Analysis 45

target(ins) The object that is the target of an instruction. In general this
is the object into which a value is saved or an invocation is
performed on.

cpindex(ins) The index in the constant pool to which the instruction
refers (for instructions with an index in the constant pool as
operand).

lindex(ins) The index in the local variable frame into where the instruction
indexes (for instructions with an index in the local variable
frame as operand).

method(ins) Is the method of the instruction given as parameter (for in-
structions that has a dispatch target).

With these general definitions, we now describe the analyses one by one.

3.3 Points-To Analysis

The points-to analysis is the main cornerstone of our tool. The task of the points-to
analysis is to collect information about what variables may point to at any given
location. As already mentioned, this analysis is intra-procedural and the main pur-
pose of it is to offer the lock analysis the ability to know which variable is used for
locking mechanism by a synchronization primitive at a given point. Furthermore,
this analysis will be used to collect information for the concurrent points-to analysis,
which bases its results on the points-to and lock analyses.

We define the information that the points-to analysis must compute as a function,
the points-to set denoted PTS(`), which we will refer to as the fact computed by the
points-to analysis, also referred to as the points-to set:

PTS(`) = 〈S, D〉

where S is a set and for each sn ∈ S, dn ∈ D is a destination that s points
to. The points-to set is a multiset of pairs, representing that si points to several
destinations. The mapping in PTS(`) expresses a directed graph, with source and
intermediate nodes as values s ∈ S and leaf nodes representing specific value or
instance assignments. Note that destinations, D, may either be an intermediate
node or a leaf node; that is, either a source (another variable) or a specific value or
instance assignment respectively. We use the points-to set for a specific location as a
function of a value, s1, such that it yields a set, Di, containing all destinations, dsi ,
si points to:

PTS(`)(si) = Di ∀dsi
∈ Di : (si, dsi

) ∈ PTS(`)



46 The Analyses

In the following, we shall describe the computation of PTS(`) for all ` in a given class
and method. The computation is performed on the CFG for the method of interest.
We now introduce some notation for computing PTS(`) CFG-wise: Let

CFG The CFG of interest,
(`, `′) represents an edge from ` to `′ in the CFG,
`◦ is the first location in the entry basic-block,
ι specifies the initial analysis information,
ins(`) yields the bytecode instruction at the location `,
f` is the transfer function at `.

The transfer function, f`, depends on the information of interest at `, in this case
ins(`). We now define expressions for computing the incoming and outgoing points-to
information at a location `, PTS◦(`) and PTS•(`) respectively.

PTS◦(`) =
{

ι if ` = `◦⊔
PTA { PTS•(`′) | (`′, `) ∈ CFG } otherwise

(3.1)
PTS•(`) = f`(PTS◦(`))

The points-to analysis is a forward dataflow analysis and should act almost similar
to a may analysis, such that the points-to sets are over-approximations representing
that a variable may be assigned one of several possible values. We will define the
combine operator

⊔
PTA later.

`1 `2

`3

PTS•(`1) PTS•(`2)

PTS•(`1) tPTA PTS•(`2)

Figure 3.1: The combining of different facts according to (3.1).

In the following, we present examples that step-by-step describe the workings of the
points-to analysis, what choices of precision we have considered, and which have



3.3 Points-To Analysis 47

been chosen for the points-to analysis. We describe the behavior from Java source
code examples, although the analysis traverses bytecode instructions. Java source
code, however, is easier to understand. After presenting the behavior of the points-
to analysis, we introduce the transfer functions that maintain this behavior formally,
based on bytecode instructions. For the examples, we use the notations for PTS with
a line number from the Java source code, instead of a location. This is to make the
reasoning easier to express from Java source code, however caution should be made,
not to confuse a line number in Java with a line number in bytecode. Typically one
line of code in Java will be several instructions in bytecode.

3.3.1 Conversion to SSA

For the lock analysis to be described later in Section 3.4, the points-to set at a
location where a lock is taken must be able to express what the object that is locked
on points to at that location. However, in case the object locked on, points to several
different values as a result of different flows that have been combined by the analysis,
the lock analysis should not approximate this by assuming all possible values for an
object being locked on, as this would be too imprecise. The reason is, that at the
location a lock is taken, the lock will only point to one of possibly several values at
runtime, but it is undecidable which one at compile-time. The lock analysis then
must not consider a region locked on an object undecidable at compile-time to be
mutual exclusive with any other region, but the information of potential locks should
be present anyways, as they may cause potential deadlocks. The points-to analysis
handles this, by representing facts in accordance with SSA form, as described in 2.1.
Therefore we introduce ϕ-functions.

In our analysis, we introduce so-called ϕ-values, which are single values, ϕi = v, for
which the points-to analysis has a mapping, such that the ϕ-function, ϕ(v), yields all
destinations that v points to. We introduce the ϕ-values when combining facts from
different control flows, that has different assignment values for the same source value.
That functionality is introduced by defining the combine operator,

⊔
PTA, such that

it is not the component wise extension of union for tuples, but a slight modification.
We define tPTA : PTS × PTS → PTS as:

PTS1 tPTA PTS2 = 〈S1, D1〉 tPTA 〈S2, D2〉

=

(s, d)

∣∣∣∣∣∣
PTS1(s) = PTS2(s) ∨
(d ∈ PTS1(s) ∧ s ∈ S1 ∧ s /∈ S2) ∨
(d ∈ PTS2(s) ∧ s ∈ S2 ∧ s /∈ S1)


⋃ 

〈(s, d), (d, d1), (d, d2), ..., (d, dn)〉∣∣∣∣∣∣
PTS1(s) 6= PTS2(s) ∧
(di ∈ PTS1(s) ∨ di ∈ PTS2(s)) ∧
s ∈ S1 ∧ s ∈ S2 ∧ ϕ(d) := {d1, d2, ..., dn}





48 The Analyses

The consequence of introducing SSA form, is that the facts are added intermediate
nodes, that has been given a new, unique value, corresponding to a ϕ-value, and
these values then points to several other values in the points-to set. Thereby the lock
analysis can represent an undecideable lock taken with a ϕ-value.

3.3.2 Variable Assignments

The analysis needs to be able to track that a given variable has been assigned a
value or instance reference (depending on if the variable is value-type or reference-
type, respectively). In Listing 3.2, the variable o1 is assigned a new instance of type
Object.

1 public class PointsToExample {
2 public void assignNewInstance () {
3 Object o1 = new Object (); /* o1=2, new Object =3 */
4 Object o2 = o1; /* o2=4 */
5 /* etc. */
6 }
7 }

Listing 3.2: An example of an assignment of one local variable to another.

At line 3 the information computed from the points-to analysis must represent the
assignment to o1 in all facts for locations succeeding line 3 in the CFG. Therefore
the fact PTS◦(3) = ∅ reaching line 3 will be extended with the points-to information
for o1 - a fresh value, that represents the source variable o1, say the number 2,
and a fresh value that represents the instance created by new Object(), say 3. The
outgoing fact then becomes PTS•(3) = {〈2, {3}〉}.

Other than just tracking what values or instance references variables may be assigned
to, the points-to analysis must also be aware what other variables a given variable
may point to. In Listing 3.2, line 4, variable o1 is assigned to o2, and we take a look
at what then should happen. At location l3 the output fact is PTS•(3) = {〈2, {3}〉}.
So the input fact in line 4 is PTS◦(4) = {〈2, {3}〉}. In line 4, the assignment to
o2 must be added to the fact. We are now left with two options: The destination
can either be the value assigned to o1, namely 2, or the analysis can query PTS◦(4)
to reveal that o1 points to 3. The analysis should not loose information required
for the concurrent points-to analysis, which takes into account that multiple threads
may execute anywhere in the class simultaneously. However, the variable pointed to,
o1, is a local variable and cannot be shared between threads, as threads each have
their own execution stack. Therefore the analysis can safely use 3 as the points-to
destination. Assuming the local variable o2 is represented by the unique value 4, the
output fact from line 4 then becomes PTS•(4) = {〈2, {3}〉 ; 〈4, {3}〉}.



3.3 Points-To Analysis 49

With global variables, on the other hand, the points-to analysis must do otherwise.
The example in Listing 3.3 shows a local variable o4 that is assigned to a global
variable o3.

1 public class PointsToGlobalExample {
2 private final Object o1 = new Object (); /* o1=2, new Object () =3; */
3 private final Object o2 = new Object (); /* o2=4, new Object () =5; */
4 private Object o3 = o1; /* o3=6 */
5

6 public void assignVariable () {
7 Object o4 = o3; /* o4=7 */
8 }
9 public void changeGlobal () {

10 o3 = o2;
11 }
12 }

Listing 3.3: In the example, o3 may point to both o1 and o2, when multiple threads
execute within the class. Therefore o4 may not map the points-to destination all the
way back to the instantiation of o1, or we will lose information for the concurrent
points-to analysis.

In Listing 3.3 we assume that the analysis assigns values to the variables and in-
stantiations according to the comments. As initializations of final fields during
the initializations of objects are guaranteed to be performed before an instance of
PointsToGlobalExample may be visible to any thread, it might seem reasonable to
assume the input fact at `7 such that o3 maps directly to the instantiation with value
3. However, as soon as the object is published after the initialization, several threads
may access the object and that means o3 may point to either of o1 and o2. It might
not even have been initialized yet, because o3 is not declared final! The points-to
analysis may therefore not map o4 to point to other than o3. At a later time the
concurrent points-to analysis is responsible of collecting all possible points-to desti-
nations of o3, and not until then can it be determined which instantiations o4 may
point to.

Another example must be given attention, that illustrates further behavior that must
be put in the points-to analysis in order not to lose precision before the concurrent
points-to analysis.

In Listing 3.4 line 4, a local variable o2 is assigned the value of the global variable
o1. In line 5 the global variable o1 is changed, however, that does not influence the
value o2 points to. As o1 is then assigned the value of o2 in line 6, the previous
behavior described, would traverse what o2 points to at that location, which would
yield the new value o1 was assigned in line 5. This, however is not correct, and
to compensate, the points-to analysis must do more, when assigning a variable the
value of a global variable. What it does, is that if a variable is assigned to a global
variable, then the points-to analysis must add both the value of that global variable
and all leaf node destinations that global variable has in the points-to set. The com-



50 The Analyses

1 public class PointsToLimitationExample {
2 private Object o1 = new Object (); /* o1=2, new Object ()=3 */
3 public void doAssign () {
4 Object o2 = o1; /* o2=4 */
5 o1 = new Object (); /* new Object ()=5 */
6 o1 = o2;
7 }
8 }

Listing 3.4: An example demonstrating a tricky self-assignment to a global variable,
which the points-to analysis must also handle right.

putation of points-to information would then compute as follows within the method
doAssign(): PTS(3) = 〈(2, 3)〉 → PTS(4) = 〈(2, 3), (4, 2), (4, 3)〉 → PTS(5) =
〈(2, 5), (4, 2), (4, 3)〉 → PTS(6) = 〈(2, 5), (2, 3), (4, 2), (4, 3)〉. This behavior is an ap-
proximation that yields the points-to information about o1, that it may have in a
multi-threaded environment accessing the class, thus the points-to information is cor-
rect, with respect to the concurrent points-to analysis described later, but a necessary
over-approximation regarding the intra-procedural points-to analysis.

1 public class LoopAssignmentExample {
2 private Object o1;
3 public void loopAssignment () {
4 int i = 0;
5 do {
6 o1 = new Object ();
7 i++;
8 }
9 while (i <100);

10 /* etc */
11 }
12 }

Listing 3.5: A variable o1 is assigned 100 times in a loop.

Looping structures, such as for, while, and do...while, all result in a cycle in
the control flow. For such control flow, the analysis only traverses until it reaches a
node already seen before. Thereby it will collect all assignments within the looping
structure once, which is enough for the following analyses. E.g., if a field is not safely
assigned to (with respect to thread-safety) within a looping control flow, the unsafety
introduced by that assignment is present first time the loop construct evaluates, as
well as all other iterations. In Figure 3.2 a cycle is present in the control flow, here
illustrating the do...while construct from Listing 3.5. The fact after the cycle is
unaffected by the cycle; the points-to information within is only added once.

The general approach of the points-to analysis regarding variable scope of visibility,
is that it safely can map in depth as long as the points-to destinations are local
variables, but as soon it is a global variable, it must append both that global variable
and all leaf-nodes that variable points to, to the destinations.



3.3 Points-To Analysis 51

i = 0

o1 = new Object()

i < 100

PTS = 〈〉

PTS = 〈(2, 3)〉

PTS = 〈(2, 3), (4, 5)〉

PTS = 〈(2, 3), (4, 5)〉

PTS = 〈(2, 3), (4, 5)〉

[false]

[true]

Figure 3.2: Control flow with a cycle, corresponding to listing 3.5

3.3.2.1 Transfer Function

We now turn to describing the transfer functions for the bytecode instructions, that
come in play for assignments. The instructions that store a value are PUTFIELD for
global variables, and ISTORE, LSTORE, FSTORE, DSTORE, and ASTORE for local variables.
The transfer functions rely on the stack-function stack(`) = S`, which we assume
available and yielding the top element with top(S`) corresponding to the element that
is the value of the assignment. The definitions of the functions cpindex and lindex can
be found in Section 3.2. For convenience, we define a function traverse(PTS(`), s)
that traverses the points-to set for all points-to information for the value s. The
function yields a set containing all possible leaf-nodes of the subtree with s as root
and in addition, all global variable values in the subtree, that are not dominated by
another global variable value in the subtree with s as root. This set accomodates the
special handling required for assigning a variable the value of a global variable. The
Table 3.1 shows the transfer functions for assignments.

3.3.3 Constructors

In the previous section, neither of the examples contain constructors. When intro-
ducing these, more information can be added the points-to information. If a class



52 The Analyses

ins(`) PTS•(`) = f`(PTS◦(`)) :

PUTFIELD [Given : s = cpindex(ins(`))]
target(ins(`)) = this :
f`(PTS◦(`)) = PTS◦(`) \ 〈(s, PTS◦(`)(s))〉 tPTAF

PTA {(s, d) | ∀d ∈ traverse(top(S`))}
otherwise :
f`(PTS◦(`)) = PTS◦(`)

ISTORE, LSTORE, FSTORE,
DSTORE or ASTORE

[Given : s = lindex(ins(`))]
f`(PTS◦(`)) = PTS◦(`) \ (s× PTS◦(`)(s)) tPTAF

PTA {(s, d) | ∀d ∈ traverse(top(S`))}

Table 3.1: Transfer functions for variable assignments.

has a single constructor, this constructor is known to have been executed, before the
object constructed publishes to the threads that may use the instance. If multiple
constructors are available, the class-wise approach our tool takes cannot determine
which constructor has instantiated the class, however one constructor has been run to
instantiate the object. The matter of constructors does not apply to static methods
however, so the following only applies to non-static methods.

In general, when constructors are available, our analysis should be capable of knowing
the values that variables have been assigned by a constructor, in advance of analyz-
ing any non-static method. To do this, we make sure that the points-to analysis
has analyzed constructors and built facts for these, before analyzing any methods.
However, if several constructors exist, we are left with two options for the behavior
of the analysis. Either methods have to be analyzed with as many initial facts as
there are constructors, or the facts after each constructor should be combined using⊔

PTA prior to analyzing methods. The first option is the most precise, as it may
reveal errors specific to a certain constructor, but it also requires n− 1 more traver-
sals of each method, compared to the second approach, if there are n constructors.
The second approach however, is not able to reveal which constructor may cause a
thread-safety violation, but apart from that, it can be made equally precise. The
critical aspect to get right in the second approach, is that although a field variable
may have been initialized with different values by different constructors, it will only
have one of these values and not potentially several of them, because a constructor
is only run by one thread amongst those sharing the access to the object1, implying
no thread interleavings in constructors.

Our analysis uses the second approach. To be able to distinct the initial values a vari-
able may have been assigned by constructors, we introduce a function initial(v) that

1A constructor invoked by two different threads, yields two different instances, and can not be
shared amongst the two threads, until the constructors finishes and the instance becomes visible.
However the this reference may escape if a new thread is staring in the constructor, which in
general is bad code practice.



3.3 Points-To Analysis 53

a value v can be tested with, yielding true if that value is assigned by a constructor
and false if not.

3.3.4 Method Invocation

Apart from instructions that directly assign a value or instance, as the ones that
we have described previously, other instructions may contribute with points-to in-
formation. These are instructions that invoke a method, inside or outside the class
of interest. Commonly, two approaches can be applied on dispatches, either context
insensitivity or context sensitivity.

A context sensitive points-to analysis is the most accurate approximation. It is
costly though, as it requires to traverse a dispatch from every context it occurs
in, meaning that the same method may be analyzed several times, but with different
initial analysis information, ι. In our class-wise approach, we strive for good accuracy
and will therefore apply context sensitivity, although not to all dispatches.

3.3.4.1 Context Sensitivity Inside Class

Our analysis will handle dispatches to private and final methods within the class of
interest sensitive to context, as we have the adequate context information immediately
available here. The reason is, that private methods and non-final methods may not
be overwritten by a SPA in classes inherited from the class of interest. Thus, the
SPA cannot alter the behavior of these methods, and therefore the information they
may add to the points-to set, is determinied by the context they are called in.

The context information required is simply the points-to set at the location where
a dispatch occurs. Here, a mapping to the arguments of the dispatch is done, such
that the values of the parameters correspond to what the arguments point to in the
current points-to set. Then the analysis is performed on the target of the dispatch,
with the mapped arguments and the current points-to set as initial analysis infor-
mation. The outcome of the analysis of the dispatch method is then combined into
the current points-to set, such that the following locations have the information from
the dispatch also. We denote the set of return facts RPTA(m, ι) for the method m
with the initial analysis information ι. Thereby the outcome of the analysis of an
invoked instruction becomes

⊔
PTARPTA(m,PTS◦(`)). Note that exit points may

be unhandled exception edges as well as return points, such that all possible facts on
exit points are combined into the resulting points-to set.

With this approach comes a problem similar to that of looping constructs, namely
recursive method invocations. This does not introduce cycles in the CFG, but instead
in the call graph, that is the information of where invocations occur and which method
they invoke. Our analysis does not compute a call graph in advance whereon cycle



54 The Analyses

detection could be performed. Instead, the analysis is aware of which locations there
has already been analyzed a dispatch from and what return fact that yielded. The
analysis will then only be performed again from that location, if the return fact
changes compared to the last return fact. For the points-to analysis this clearly
terminates, as the same assignments in the dispatched method will yield the same
values after the first traversal by the analysis only. Notice that this behavior also
applies to analysis of the constructors, such that one constructor that invokes a
method, performs an analysis to get the return fact of that invocation, in order to
propagate accurate points-to information in the following context.

3.3.4.2 Context Insensitivity Outside Class

Concerning non-final, non-private dispatches within the class of interest and dis-
patches that do not target a method within the class of interest, context sensitivity
gets harder to realize. For non-final, non-private dispatches within the class, the
class may be extended and the SPA can then introduce all sorts of behaviors that
will change the class-invariant. For dispatches to methods outside the class of inter-
est, first of all, the instance that the dispatch is performed on, may have been given
as parameter to some method in the class of interest. Thereby, we cannot determine
anything about its internal state. Though, for objects created within the context of
the class of interest that are not escaped, an analysis of it self could approximate
the state of that object. However, a precise context-sensitive analysis to determine
the state of objects within the class, would require flow-insensitivity, as the class
of interest can be concurrently accessed, and it would require the information about
which locks are held at what location. Therefore we decide not to create such a costly
analysis and instead choose a context-insensitive approach to dispatches with targets
that are not within the class of interest and non-final, non-private dispatches within
the class of interest.

The context-insensitive approach the analysis performs, then will not be able to
determine what can happen to variables passed as parameters to these dispatches.
Therefore, if a field from the class of interest is passed a method invocations either
extendable or outside the class context as argument, the safe over-approximation on
the behavior will be that that field has escaped the class of interest, which violates
thread-safe behavior, as the state then may not be preserved. Similarly, the return
value of such a dispatch must necessarily also be over-approximated with an escaped
value, as the context insensitive approach cannot determine if that returned instance
is used outside the class or not. These issues should be solved by the escape analysis,
which is, however, left for future work.

In bytecode, the two kinds of dispatches that are analyzed context insensitive, need
a little attention to get right. First of all, the method that is invoked by an invoke
instruction (see section 2.4) is identified by an index in the constant pool. However,
this does not distinct the object on which the method is invoked, which is information



3.3 Points-To Analysis 55

we will need in the lock analysis to be able to properly identify reader- and writer-
locks, as the invocations of either readLock() or writeLock() on the same object of
type ReentrantReadWriteLock, yields the same reader- or writer-lock respectively
at each invocation. The object that the dispatch is on, is on top of the stack when
the dispatch occurs. The analysis then requests the value of the object with top(`)
and creates a mapping from that value and the particular method index in the local
variable frame to a fresh, unique value. Points-to information is then inserted, such
that the return value of the dispatch points to the new fresh value, which in turn
points to the value of the object the dispatch was performed on, that is top(`). The
points-to set is then able to map from a return value to a unique value, representing
the object the invocation was performed on and the index of the dispatch in the
constant pool, which is a requirement for the lock analysis later. Furthermore, the
points-to set maps from the unique value to the value of the object that the invocation
was performed on, which becomes necessary in the concurrent points-to analysis. For
an example of the behavior, review Listing 3.6 and the corresponding bytecode part
in Listing 3.7.

1 public class InvokeReadLockExample {
2 private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock (); /* rwl=2,

new Ree ..=3 */
3 public void doReaderAction1 () {
4 Lock rl = rwl.readLock (); /* rl=4, readLock ()=5 */
5 rl.lock();
6 try {
7 /* Do reader action */
8 }
9 finally {

10 rl.unlock ();
11 }
12 }
13 public void doReaderAction2 () {
14 Lock rl = rwl.readLock (); /* rl=7, readLock ()=8 */
15 rl.lock();
16 try {
17 /* Do reader action */
18 }
19 finally {
20 rl.unlock ();
21 }
22 }
23 }

Listing 3.6: An example where the points-to set must be able to map the instances
of ReadLocks to the same value, when an instance is returned in line 4 and 14.

In Listing 3.7, location 0 pushes this on the stack (local variable index 0). Then
this is popped from the stack by GETFIELD and the ReentrantReadWriteLock field
is fetched from index 4 in this and pushed to the stack. At location 4, the method
readLock() that returns the ReadLock of the ReentrantReadWriteLock is invoked,
the ReentrantReadWriteLock is popped from the stack and the ReadLock pushed.
That object is then popped from the stack and stored in the local variable index 1,



56 The Analyses

1 0: aload_0;
2 1: getfield #4; // Field rwl:Ljava/util/ concurrent /locks/ ReentrantReadWriteLock ;
3 4: invokevirtual #5; // Method java/util/ concurrent /locks/ ReentrantReadWriteLock .

readLock :() Ljava/util/ concurrent /locks/ ReentrantReadWriteLock \ $ReadLock;
4 7: astore_1
5 8: aload_1
6 9: invokeinterface #6, 1; // InterfaceMethod java/util/ concurrent /locks/Lock.lock

:()V

Listing 3.7: Bytecode instructions for the lines 4-5 in Listing 3.6 in method
doReaderAction1.

corresponding to the Lock l from the example Java source. The actions until now,
that is from location 0 to 7, are the ones performing the assignment in line 4 in the
doReaderAction1() method of the Java source. Then the ReadLock is fetched from
local variable index 1 and pushed to the stack, followed by the invocation of the
lock() method, that also pops the ReadLock again.

Figure 3.3 shows how the points-to analysis computes the points-to set for the byte-
code in Listing 3.7. The method doReaderAction1() is analyzed with the initial
analysis information that rwl points to new ReentrantReadWriteLock(), that is
〈2, 3〉.

Now return to the example in Listing 3.6. From the behavior of the points-to analysis
demonstrated in Figure 3.3, the points-to analysis has, when first seen the invocation
of rwl.readLock(), stored a value for this particular method invocation with the
ReentrantReadWriteLock in rwl. This value, 6, is identified by the value of rwl, 2,
and the constant pool index where the method readLock() is allocated, 5. Thereby
the Java source line 14 (which has the same bytecode instructions as in listing 3.7)
will result in that rl will point to the return value 7, which in turn then points to
the same value, 6, introduced for the invocation earlier. Then 6 again points to 2,
the value for the field rwl.

3.3.4.3 Transfer Function

In bytecode, the instructions INVOKEINTERFACE, INVOKESPECIAL, and
INVOKEVIRTUAL are the instructions that cause dispatches. We utilize functions that
are defined in Section 3.2, which may be inspected for further explanation. We
denote the set of return facts for a method m with initial analysis information ι
as RPTA(m, ι). For a method invocation on m, with ι = PTA◦(`) the transfer
functions should compute the points-to set given by PTA•(`) = f`(PTA◦(`)) =⊔

PTARPTA(m, ι). Said in an informal way we combine all the return facts according
to the binary operator tPTA. The function retval(t, i) is a function that yields a
unique value corresponding to a pair of target object t and constant pool index i.

The transfer functions for dispatches are shown in Table 3.2.



3.3 Points-To Analysis 57

0: aload_0;

1: getfield #4;

4: invokevirtual #5;

7: astore_1;

8: aload_1;

9: invokeinterface #6;

PTS 〈(2, 3)〉 stack: []

PTS 〈(2, 3)〉 stack: [0(this)]

PTS 〈(2, 3)〉 stack: [2(rwl)]

PTS 〈(2, 3), (5, 6), (6, 2)〉 stack: [5(ReadLock)]

PTS 〈(2, 3), (5, 6), (6, 2), (4, 5)〉 stack: []

PTS 〈(2, 3), (5, 6), (6, 2), (4, 5)〉 stack: [5(rl)]

Figure 3.3: Illustration of how the points-to analysis computes the points-to set for
the bytecode in listing 3.7. On the left, the points-to set is built up and on the right
the stack is shown along the traversal. The values correspond to the values in the
comments in listing 3.6. The dispatch at `4 introduces new points-to information in
the points-to set, such that the return value 5 points to a fresh value 6, representing
the pair of object and index in the constant pool ((2, 5)), and that the fresh value 6
points to the object 2 on which the invocation was performed.

ins(`) PTS•(`) = f`(PTS◦(`)) :

INVOKEINTERFACE,
INVOKESPECIAL,
INVOKEVIRTUAL

»
Given :

m = method(ins(`)), t = target(ins(`)),
i = cpindex(ins(`)), r = retval(t, i)

–
t = this ∧m is final ∨ private :
f`(PTS◦(`)) =

F
PTA RPTA(m, PTS◦(`))

otherwise :
f`(PTS◦(`)) = PTS◦(`) tPTA 〈(r, new), (new, t)〉

Table 3.2: Transfer functions for dispatch instructions.



58 The Analyses

3.3.5 Accessing Field Variables Outside Class

Now, one last thing remains for the transfer functions of the points-to analysis.
Namely, that GETFIELD instructions may push the value of a field variable that is
not a member of this. This somewhat resembles how we handle dispatches context
insensitive.

1 public class GetFieldExample {
2 public void getField(A a) {
3 b = a.b;
4 /* etc. */
5 }
6 }

Listing 3.8: A field variable with type b from the object A is fetched.

The example in Listing 3.8 references a field from another object than this. This
implies a GETFIELD instruction in bytecode, which gets the field from the object on
top of the stack; in this case A. Again our analysis is not capable of determining any
information about that field, because it may be accessed by a SPA and therefore the
state is unknownm, thus it is treated just like a return value as in the case of context
insensitive analysis of dispatches.

3.3.5.1 Transfer Function

That then leads us to a transfer function for GETFIELD almost similar to that of
dispatches analyzed context insensitive and is defined in table 3.3. The function
retval(t, i) is described previously for method invocations to methods outside the
class of interest. The new function yields a fresh value.

ins(`) PTS•(`) = f`(PTS◦(`)) :

GETFIELD
»
Given :

m = method(ins(`)), t = target(ins(`)),
i = cpindex(ins(`)), r = retval(t, i)

–
t 6= this :
f`(PTS◦(`)) = PTS◦(`) tPTA 〈(r, new), (new, t)〉
otherwise :
f`(PTS◦(`)) = PTS◦(`)

Table 3.3: Transfer function for the GETFIELD instruction.

3.3.6 Summary

The points-to analysis has now been introduced, both by example and formalized in
transfer functions. We sum up with a table containing an overview of the transfer



3.4 Lock Analysis 59

functions used for the points-to analysis in Table 3.4.

ins(`) PTS•(`) = f`(PTS◦(`)) :

PUTFIELD [Given : s = cpindex(ins(`))]
target(ins(`)) = this :
f`(PTS◦(`)) = PTS◦(`) \ 〈(s, PTS◦(`)(s))〉 tPTAF

PTA {(s, d) | ∀d ∈ traverse(top(S`))}
otherwise :
f`(PTS◦(`)) = PTS◦(`)

ISTORE, LSTORE, FSTORE,
DSTORE or ASTORE

[Given : s = lindex(ins(`))]
f`(PTS◦(`)) = PTS◦(`) \ (s× PTS◦(`)(s)) tPTAF

PTA {(s, d) | ∀d ∈ traverse(top(S`))}

INVOKEINTERFACE,
INVOKESPECIAL,
INVOKEVIRTUAL

»
Given :

m = method(ins(`)), t = target(ins(`)),
i = cpindex(ins(`)), r = retval(t, i)

–
t = this ∧m is final ∨ private :
f`(PTS◦(`)) =

F
PTA RPTA(m, PTS◦(`))

otherwise :
f`(PTS◦(`)) = PTS◦(`) tPTA 〈(r, new), (new, t)〉

GETFIELD
»
Given :

m = method(ins(`)), t = target(ins(`)),
i = cpindex(ins(`)), r = retval(t, i)

–
t 6= this :
f`(PTS◦(`)) = PTS◦(`) tPTA 〈(r, new), (new, t)〉
otherwise :
f`(PTS◦(`)) = PTS◦(`)

otherwise f`(PTS◦(`)) = PTS◦(`)

Table 3.4: Transfer functions for the points-to analysis.

3.4 Lock Analysis

The goal of the lock analysis is to provide lock informations at all reachable locations
within a given class context. The analysis depend on the points-to analysis in order
to map the target(s) of an instruction to the correct object(s). Without the points-
to analysis it would be impossible to know what object a lock or unlock operation
is performed on, so by utilizing the points-to analysis we can at a given location
resolve the object that is used as a synchronization primitive, and thereby lock on the
correct object. As already mentioned, we have decided to support the synchronized
primitive and subclass of java.util.concurrent.Lock including readers writer lock
semantics.

As for the points-to analysis the lock analysis is an intra-procedural analysis and
context sensitive for private or final methods within the context of the class.



60 The Analyses

At a given location `, the lock information is represented as a “lock set” which is
defined as the power set:

LS(`) = P(L×N)

where L = N and N = N ∪ ⊥. For a specific pair (l, n), the value l represents the
lock and n represents the lock count. The lock analysis is like the points-to analysis
a forward dataflow analysis, and below we define the expressions used for computing
the incoming and outgoing lock information at location `.
We will use the notion of a lock set before and after a location as LS◦(`) and LS•(`),
respectively:

LS◦(`) =
{

ι if ` = `◦⊔
LS { LS•(`′) | (`′, `) ∈ CFG } otherwise

(3.2)
LS•(`) = f`(LS◦(`))

The transfer function f` is responsible for making the necessary modifications on the
lock set LS◦(`) yielding the modified lock set LS•(`). Only in locations of interest
will the transfer function modify the lock set, namely if a lock is taken or a lock is
released. In the case that neither a lock or unlock operation is performed the transfer
function simply yields: f`(LS◦(`)) = LS◦(`). A summary of the transfer function is
found in Section 3.4.3.
The lock analysis is neither a may or a must analysis, because combining lock sets is
neither done by using union or intersection. The lock analysis however resembles a
must analysis because the information it provides is guaranteed to hold. We therefore
explicitly define the combine operator for the lock analysis,

⊔
LS : P(LS) → LS. We

assume the existence of a function locks : LS → L that yields the set of locks held
at a given location `. We then define tLA : LS × LS → LS by:

ls1 tLA ls2 =

(l, n)

∣∣∣∣∣∣
l ∈ locks(ls1)

∧
l ∈ locks(ls2)

, n =
{

n (l, n) ∈ ls1 ∧ (l, n) ∈ ls2

⊥ otherwise

}⋃
{(l,⊥) | l ∈ locks(ls1) \ locks(ls2)} (3.3)⋃
{(l,⊥) | l ∈ locks(ls2) \ locks(ls1)}

The reason why the lock analysis is designed to resemble a must analysis is because
we need to be able to determine what locks are guaranteed to be held at a given loca-
tion `. However if the analysis was a may analysis, we could not use it to determine if
a critical region is guarded by a specific lock at all time, thereby making it worthless
for our purpose.



3.4 Lock Analysis 61

3.4.1 Locking and Unlocking

The lock analysis must compute the necessary modifications to the lock set at loca-
tions where lock and unlock operations occur. A lock operation will always target
some object, meaning that a lock cannot just be taken without anyone owning the
lock.
Listing 3.9 illustrates the need for a function that returns distinct locks for MONITOR
and INVOKEINTERFACE instructions when invoked on the same object. This is because
all subclasses of Object can be used as a monitor lock, thus subclasses of java.util
.concurrent.Lock may also be used as a monitor lock. Because the lock taken by
invoking lock on, e.g., a ReentrantLock is not the same as taking the monitor lock on
that particular instance, a mutual exclusive region cannot be implemented by using
a mixture of these.

1 public class DeterministicLock {
2 private final Lock rl1 = new ReentrantLock ();
3 public void useLocking () {
4 rl1.lock();
5 try {
6 /* Make actions depending on that no thread
7 will be in the region guarded by the monitor */
8 }
9 finally{

10 rl1.unlock ();
11 }
12 }
13 public void useMonitor () {
14 synchronized(rl1)
15 /* Make actions depending on that no thread
16 will be in the region guarded by the lock */
17 }
18 }
19 }

Listing 3.9: A failed attempt to construct a critical region, using a common object
to lock on and use as a monitor lock.

From now on, we assume the existence of a function lockid(ins(`), target(ins(`))) = l
where l ∈ L that given the same target, returns distinct locks for MONITOR and
INVOKEINTERFACE instructions.
Before defining the transfer functions, we describe a number of examples illustrating
the functionality of the transfer function. Listing 3.10 shows an example where a
ReentrantLock is used to protect a region within the class.

As already mentioned only the synchronization primitives will modify the lock set,
meaning that the lock set will only be modified at line 4 and 9 where respectively a
lock and unlock operation is done. The entry lock set ι for the method doLocking()
is the empty set, and therefore no locks will be held before returning from the lock()
method call in line 4.

The compiled bytecode for the Listing 3.10 is shown in Listing 3.11.



62 The Analyses

1 public class DeterministicLock {
2 private final Lock rl1 = new ReentrantLock (); /* rl1=2, new ReentrantLock ()=3 */
3 public void doLocking () {
4 rl1.lock();
5 try {
6 // Make computation
7 }
8 finally{
9 rl1.unlock ();

10 }
11 }
12 }

Listing 3.10: A critical region that is protected by a lock that is deterministic at all
time.

1 0: aload_0
2 1: getfield #15; // Field rl1:Ljava/util/ concurrent /locks/Lock;
3 4: invokeinterface #22, 1; // InterfaceMethod java/util/ concurrent /locks/Lock.

lock :()V
4 9: aload_0
5 10: getfield #15; // Field rl1:Ljava/util/ concurrent /locks/Lock;
6 13: invokeinterface #27, 1; // InterfaceMethod java/util/ concurrent /locks/Lock.

unlock :()V
7 18: return

Listing 3.11: The bytecode for the Java code in example 3.10.

At location `4 in the bytecode a lock is being acquired, and before invoking the lock
method the lock set is given by LS◦(`4) = {}, whereas afterwards LS•(`4) = {(5, 1)}
assuming lockid(ins(`4), target(ins(`4))) = 5. In this example target(ins(`4)) will
resolve to the object that rl1 points to, namely the instance of ReentrantLock.
At the unlock call at `9 the incoming lock set is given by LS◦(`9) = {(5, 1)}, thus
LS•(`9) = {}.

As seen in definition 3.3, the combine operator will assign a specific lock, l, the lock
count ⊥, when combining locksets where the lock count for l differs. In example 3.12
a branch is used to determine if the lock, rl1, should be taken.

1 public class BottomLock {
2 private Lock rl1 = new ReentrantLock ();
3 public void doLocking(boolean b) {
4 if(b) rl1.lock();
5 else // Other action
6 }
7 }

Listing 3.12: Locking is performed on a non-deterministic lock, because the value of
the boolean b is unknown at compile-time.



3.4 Lock Analysis 63

Because only one branch results in a method call to lock, the lock sets after the if
and else branches will contain a different number of lock counts, thus an empty lock
set is combined with a lock set containing one lock with count 1. Expressed formally
combining the two lock sets will yield: LS•(4)tLALS•(5) = {(2, 1)}tLS{} = {(2,⊥)}
assuming lockid(ins(4), target(ins(4))) = 2.

Listing 3.13 shows a less trivial example which illustrates locking on a undecidable
lock, thus the boolean b might not be known at compile-time.

1 public class NonDeterministicLock {
2 private Lock rl1 = new ReentrantLock ();
3 public void doLocking(boolean b) {
4 Lock rl = b ? rl1 : rl2;
5 rl.lock();
6 try {
7 // Make computation
8 }
9 finally{

10 rl.unlock ();
11 }
12 }
13 }

Listing 3.13: Locking is performed on a lock undecidable at compile-time, because
the value of the boolean b is unknown.

Because it would be a under approximation (in the case of mutual exclusion) to take
the lock on both object instances that rl might point to, another solution had to be
found. Fortunately the points-to analysis guarantees that there exists a intermediate
ϕ-value, ϕ`, in the points-to set if a variable might point to different destinations,
thus we have solved this problem by acquiring the lock, lockid(ins(`), target(ins(`))),
assuming that target(ins(`)) = ϕ`. Listing 3.14 illustrates how the reader lock be-
longing to a ReentrantReadWriteLock is used to protect a region.

1 public class DispatchAndAcquireLock {
2 private final Lock rwl = new ReentrantReadWriteLock ();
3 public void useLocking () {
4 rwl.readLock ().lock();
5 try {
6 /* Make read operation */
7 }
8 finally{
9 rwl.readLock ().unlock ();

10 }
11 }
12 }

Listing 3.14: Illustrates a lock being acquired though the use of a private dispatch.

As described in Section 3.3 the PTA(`) contains information about the relation be-
tween reader and writer locks belonging to the same ReentrantReadWriteLock in-



64 The Analyses

stance. Therefore the lock analysis does not need to make any special treatments for
these kinds of locks, because the target(ins(`)) simply yields the correct target.

3.4.1.1 Transfer functions

We now turn our attention to the transfer functions for the lock analysis and formalize
these. We start by defining the transfer functions for the synchronized primitive,
namely the monitor instructions, which is shown in Table 3.5.

ins(`) LS•(`) = f`(LS◦(`))

MONITORENTER
»
Given :

l = lockid(ins(`), target(ins(`)))
n = LS◦(`)(l)

–
(l, n) /∈ LS◦(`) :
f`(LS◦(`)) = LS◦(`) ∪ (l, 1)
n 6= ⊥ ∧ n ≥ 0 :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l, n + 1)
otherwise :
f`(LS◦(`)) = LS◦(`)

MONITOREXIT
»
Given :

l = lockid(ins(`), target(ins(`)))
n = LS◦(`)(l)

–
n 6= ⊥ ∧ n > 0 :
f`(LS◦(`))) = (LS◦(`) \ (l, n)) ∪ (l, n− 1)
otherwise :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l,⊥)

Table 3.5: Transfer function entering and exiting a monitor.

Even though the wait(), notify() and notifyAll() methods all may affect concur-
rent behavior, we do not need to take these calls into account, because none of these
methods will break mutual exclusion within a critical region, due to the semantics of
the MONITOR instructions.

The transfer function for java.util.concurrent.Lock is almost identical, where the
only difference is the instructions that will result in a modified lock set. See Table
3.6.

3.4.2 Method Invocation

As already described, the lock analysis is context sensitive for final and private
methods within the context of the class being analyzed. Only context sensitive
dispatches may change the lock set LS, thus a context insensitive dispatch yields



3.4 Lock Analysis 65

ins(`) LS•(`) = f`(LS◦(`))

INVOKEINTERFACE
on java.util.concur-
rent.locks.lock.lock()

»
Given :

l = lockid(ins(`), target(ins(`)))
n = LS◦(`)(l)

–
(l, n) /∈ LS◦(`) :
f`(LS◦(`)) = LS◦(`) ∪ (l, 1)
n 6= ⊥ ∧ n ≥ 0 :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l, n + 1)
otherwise :
f`(LS◦(`)) = LS◦(`)

INVOKEINTERFACE
on java.util.concur-
rent.locks.lock.unlock()

»
Given :

l = lockid(ins(`), target(ins(`)))
n = LS◦(`)(l)

–
n 6= ⊥ ∧ n > 0 :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l, n− 1)
otherwise :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l,⊥)

Table 3.6: Transfer function for invoking lock and unlock on a subclass of java.
util.concurrent.locks.Lock.

LS◦(`) = f`(LS◦(`)). In this section we will describe the functionality of the transfer
function regarding context sensitive dispatches.

Listing 3.15 illustrates a lock being acquired by invoking the private method,
acquireLock. By invoking acquireLock the transfer function should transfer
LS◦(4) = {} into LS•(4) = {(2, 1)} assuming that lockid(ins(14), target(ins(14))) =
2.

1 public class DispatchAndAcquireLock {
2 private final Lock rl1 = new ReentrantLock ();
3 public void useLocking () {
4 acquireLock ();
5 try {
6 /* Make actions depending on that no thread
7 will be in the region guarded by the monitor */
8 }
9 finally{

10 rl1.unlock ();
11 }
12 }
13 private void acquireLock () {
14 rl.lock();
15 }
16 }

Listing 3.15: Illustrates a lock being acquire though the use of a private dispatch.

The example illustrates that the lock set held when returning from acquireLock
must be transferred to the caller and used as lock information at LS•(4). When



66 The Analyses

analyzing the acquireLock method, the lock set LS◦(4) must be transferred to the
called method, thus ι = LS◦(4). Because a method may return in more than one
place, e.g., due to multiple return statements or as a side effect of one or more
unhandled exceptions, multiple return lock sets may exist. Therefore the transfer
function must combine these return lock sets combining them into one. In the next
section we formalize the transfer function for final and private method invocations.

3.4.2.1 Transfer functions

We denote the set of return facts for a method m as RLA(m, ι). For a method
invocation on m, with ι = LS◦(`) the transfer functions should compute the return
lock set given by LS•(`) = f`(LS◦(`)) =

⊔
LARLAm . Said in a informal way we

combine all the return facts according to the binary operator tLA. See Table 3.7.

ins(`) LS•(`) = f`(LS◦(`))

INVOKEINTERFACE
INVOKESPECIAL
INVOKEVIRTUAL

»
Given :

m = method(ins(`))
ι = LS◦(`)

–
target(ins(`)) = this ∧m is final ∨ private :
f`(LS◦(`)) =

F
LA RLA(m, ι)

otherwise :
f`(LS◦(`)) = LS◦(`)

Table 3.7: Transfer function for local private and final method invocations.

3.4.3 Summary

The lock analysis has now been introduced. A number of examples has illustrated
the purpose of the lock analysis and transfer functions has been formalized. We sum
up with a table containing an overview of the transfer functions that make up the
lock analysis. See Table 3.8.



3.4 Lock Analysis 67

ins(`) LS•(`) = f`(LS◦(`))

MONITORENTER
»
Given :

l = lockid(ins(`), target(ins(`)))
n = LS◦(`)(l)

–
(l, n) /∈ LS◦(`) :
f`(LS◦(`)) = LS◦(`) ∪ (l, 1)
n 6= ⊥ ∧ n ≥ 0 :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l, n + 1)
otherwise :
f`(LS◦(`)) = LS◦(`)

MONITOREXIT
»
Given :

l = lockid(ins(`), target(ins(`)))
n = LS◦(`)(l)

–
n 6= ⊥ ∧ n > 0 :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l, n− 1)
otherwise :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l,⊥)

INVOKEINTERFACE
on java.util.concur-
rent.locks.lock.lock()

»
Given :

l = lockid(ins(`), target(ins(`)))
n = LS◦(`)(l)

–
(l, n) /∈ LS◦(`) :
f`(LS◦(`)) = LS◦(`) ∪ (l, 1)
n 6= ⊥ ∧ n ≥ 0 :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l, n + 1)
otherwise :
f`(LS◦(`)) = LS◦(`)

INVOKEINTERFACE
on java.util.concur-
rent.locks.lock.unlock()

»
Given :

l = lockid(ins(`), target(ins(`)))
n = LS◦(`)(l)

–
n 6= ⊥ ∧ n > 0 :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l, n− 1)
otherwise :
f`(LS◦(`)) = (LS◦(`) \ (l, n)) ∪ (l,⊥)

INVOKEINTERFACE
INVOKESPECIAL
INVOKEVIRTUAL

»
Given :

m = method(ins(`))
ι = LS◦(`)

–
target(ins(`)) = this ∧m is final ∨ private :
f`(LS◦(`)) =

F
LA RLA(m, ι)

otherwise :
f`(LS◦(`)) = LS◦(`)

otherwise f`(LS◦(`)) = LS◦(`)

Table 3.8: Transfer functions for the lock analysis.



68 The Analyses

3.5 Dominator Analysis

The dominator analysis is a prerequisite for the concurrent points-to analysis; the
reason will be enlightened in the next section. The dominator analysis task is to reveal
what variable assignments have been performed previous to the current location, but
within the same locked region as the current location.

We initially define the fact the dominator analysis computes, called the dominator
set or DS(`), as:

DS(`) = P(S × P(L))

where S = N and L = N. Thereby an element (s, ls) represents that the assignment
to the variable with value s is dominating under the set of locks in ls. We define
the function on the dominator set DS(`)(s) = ls, which yields ls in the pair (s, ls) ∈
DS(`).

The dominator analysis computes the dominator set in a forward manner on the CFG,
such that we may express the input DS◦(`) and output DS•(`), which corresponds
to the facts flowing forward in the control flow, as:

DS◦(`) =
{

ι if ` = `◦⊔
DA { DS•(`′) | (`′, `) ∈ CFG } otherwise

DS•(`) = f`(DS◦(`))

The dominator analysis resembles a must analysis, as it will combine facts, such that
the combining of sets results in that variable values not present on all paths will not
be part of the resulting dominator set. However, the combining of assignments to the
same variable under different lockset, that do not intersect, should also not be part of
the result, which cannot be expressed by ∩ solely and therefore the combine operator
for the dominator analysis,

⊔
DA : P(DS) → DS, must be defined specifically. We

define tDA : DS ×DS → DS:

ds1 tDA ds2 =
{

(s, ls)
∣∣∣∣ s ∈ S1 ∧ s ∈ S2,

ls = ds1(s) ∩ ds2(s) 6= ∅

}
Assuming that ds1 = P(S1 × P(L)) and ds2 = P(S2 × P(L)). An example of
this behavior can be that {(1, {8}), (2, {8, 9}), (3, {8}), (4, {8, 10})} combines with
{(1, {8}), (2, {9}), (4, {9})} which results in the dominator set
{(1, {8}), (2, {9})}.

The transfer functions for the dominator analysis vary and either are a function of
the instruction and the top of the stack at the current location, f`(ins(`), top(S`)) or
only a function of the current location, implicitly already denoted by f`.

In the following we demonstrate the dominator analysis behavior from examples and
later formalize the transfer functions that define the analysis behavior.



3.5 Dominator Analysis 69

3.5.1 Variable Assignments

First of all, the dominator analysis must compute the dominator sets based on the
locations where variables are assigned.

1 public void DominatorAssignmentExample {
2 public void doAssign () {
3 Object o3 = new Object (); /* o3 = 2, new Object ()=3 */
4 synchronized(this) { /* this =1 */
5 Object o2 = new Object (); /* o2 = 4, new Object ()=5 */
6 /* etc */
7 }
8 }
9 }

Listing 3.16: An example used to demonstrate the dominator analysis.

Listing 3.16, shows an example Java class for which the dominator analysis will be
demonstrated. We describe how the dominator set is computed for line 6, by looking
at how the dominator analysis must react upon variable assignments during control
flow.

In the above example, the CFG of the method doAssign is the target of the analy-
sis. The initial analysis information to doAssign is empty, because no assignments
precede from constructors or initializations. The input fact at line 3 is then empty,
DS◦(3) = {}. The assignment in line 3 could therefore potentially add the value of
o3 to the dominator set. However, LS(3) = {} and nothing is added to the dom-
inator set. The reason is that the dominator set shall only express the values of
variables that have been assigned within a region protected by at least one lock.
The analysis then proceeds with the empty dominator set, DS•(3) = {}, which is
unaffected by line 4, thus DS•(4) = {}. At line 5 however, LS(5) = {(1, 1)} and
therefore the assignment to o2 must now be added to the dominator set, such that it
becomes DS•(5) = {(4, {1})}, which represents that after line 5, the variable o1 has
been assigned to under the lock this. The dominator set present at line 6 is then
DS◦(6) = {(4, {1})}, which ends this simple example.

3.5.1.1 Transfer Function

We will formalize the transfer function of variable assignments according to the be-
havior presented in the previous section. This can be reviewed in table 3.9 below.

3.5.2 Method Invocation

The dominator analysis must also be aware of method invocations. For invocations
to non-final, non-private methods within the class of interest, the over-approximation



70 The Analyses

ins(`) DS•(`) = f`(DS◦(`))

PUTFIELD [Given : s = cpindex(ins(`))]
t = this :
f`(DS◦(`)) = DS◦(`) ∪ {(s, l) | l = dlocks(LS(`)) 6= ∅}
otherwise :
f`(DS◦(`)) = DS◦(`)

ISTORE
LSTORE
FSTORE
DSTORE
ASTORE

[Given : s = lindex(ins(`))]
t = this :
f`(DS◦(`)) = DS◦(`) ∪ {(s, l) | l = dlocks(LS(`)) 6= ∅}
otherwise :
f`(DS◦(`)) = DS◦(`)

Table 3.9: Transfer functions for variable assignments in the dominator analysis.

of the behavior regarding the dominator analysis, is that nothing will be added the
dominator set on such a dispatch, because the behavior of these methods cannot be
known at compile-time. This also applies for dispatches to methods outside the class
of interest. However, for dispatches to private or final methods within the class of
interest, the behavior is deterministic and the dominator analysis may analyze these
dispatches as they occur in the traversal, with a context sensitive approach, where
the context information is the points-to set, the lock set and the dominator set at
the location of the dispatch. This behavior will be demonstrated in the example in
listing 3.17.

1 public class DominatorDispatchExample {
2 private Object o1 = new Object (); /* o1=2, new Object ()=3 */
3 public void doDispatch () {
4 synchronized(this) { /* this =1 */
5 doAssignment ();
6 /* etc. */
7 }
8 }
9 public final void doAssignment () {

10 o1 = new Object (); /* new Object ()=4 */
11 }
12 }

Listing 3.17: An example with a dispatch to a final method, that must be handled
by the dominator analysis.

The dominator set after line 5 of the Java source must reflect that o1 has been
assigned to under the lock of this. The analysis handles this, by identifying that a
dispatch to the final method within the class of interest, doAssignment, is invoked
in line (5). Then it initiates an analysis of doAssignment with ι = DS◦(5) and
performs the analysis of doAssignment. As the assignment to o1 in line 10 occurs,
the dominator set result is then updated to DS = {(2, {1})}, representing that o1 is



3.5 Dominator Analysis 71

assigned to under the lock of this. The dominator sets at the end points of the CFG
of doAssignment are then combined according to tDA; in this case there is only one
end point of the CFG, so the computed result is the output dominator set of line 5,
namely DS•(5) = {(2, {1})}.

3.5.2.1 Transfer Function

We now formalize the dominator analysis transfer function that handles dispatches.
For this purpose, we define the function RDA(m,DS◦(`)), which is a function that
initiates a dominator analysis and analyzes the dispatch on location ` with the initial
analysis information, ι = DS◦(`), combines all return facts according to tDA and
returns the resulting dominator set. The formalization is shown in Table 3.10.

ins(`) DS•(`) = f`(DS◦(`))

All [Given : DS◦(`) = P(S × L)]
DS•(`) = {(s, l) | ∀s ∈ S, ∀l ∈ DS◦(`)(s) : l ∈ LS(`)}

Table 3.10: Transfer function for dispatches in the dominator analysis.

3.5.3 Removing Dominating Assignments

What remains to describe for the dominator analysis, is that values representing
variables that have been assigned to within a specific locked scope, must be removed
again from the dominator set, if the locked scope a value is assigned in ends.

1 public class DominatorRemoveEntryExample {
2 public void doSynchronizedAssignments () {
3 Object o1; /* o1=2 */
4 synchronized(this) { /* this =1 */
5 o1 = new Object (); /* new Object ()=3 */
6 }
7 /* etc. */
8 }
9 }

Listing 3.18: In the example the point of interest is when the synchronized region
ends, which must influences the dominator set.

Consider line 7 in listing 3.18. Here the synchronization on this has ended, and
therefore interleavings may exist between the assignment to o1 and line 7, and o1
may not be present with an assignment under the lock this in the dominator set
in line 7. The dominator analysis handles this as it visits locations. It looks up the
lockset at the location it visits, LS(`), and if any dominating assignments are present



72 The Analyses

in the dominator set with any locks not present in LS(`), then these assignments
must be removed from the set. In the example, the lock set in line 7 does not contain
any locks. However, the input dominator set contains an assignment to o1 under the
this lock. Then l \ LS(7) = {1} \ {} 6= ∅, as DS◦(7)(2) = l = {1}, and (2, 1) must
be removed from the dominator set, yielding an empty dominator set in line 7.

3.5.3.1 Transfer Functions

We can formalize the behavior just described in a transfer function that applies to all
locations, without being a function of the instruction, as it only relies on the incoming
dominator set and the lockset on the location. This can be seen in table 3.11.

ins(`) DS•(`) = f`(DS◦(`))

All [Given : DS◦(`) = P(S × L)]
DS•(`) =
{(s, l) | ∀s ∈ S, ∀l ∈ DS◦(`)(s) : l ∈ LS(`)}

Table 3.11: Transfer function for removing dominating assignments in the dominator
analysis.

3.5.4 Summary

In the previous sections, it is documented how the dominator analysis behaves and
transfer functions defining this behavior are stated. We now sum these up in the
Table 3.12.



3.6 Concurrent Points-To Analysis 73

ins(`) DS•(`) = f`(DS◦(`))

PUTFIELD [Given : s = cpindex(ins(`))]
t = this :
f`(DS◦(`)) = DS◦(`) ∪ {(s, l) | l = dlocks(LS(`)) 6= ∅}
otherwise :
f`(DS◦(`)) = DS◦(`)

ISTORE
LSTORE
FSTORE
DSTORE
ASTORE

[Given : s = lindex(ins(`))]
t = this :
f`(DS◦(`)) = DS◦(`) ∪ {(s, l) | l = dlocks(LS(`)) 6= ∅}
otherwise :
f`(DS◦(`)) = DS◦(`)

INVOKEINTERFACE
INVOKESPECIAL
INVOKEVIRTUAL

[Given : m = method(ins(`)), t = target(ins(`))]
t = this ∧m is private ∨ final :
f`(DS◦(`)) = RDA(m, DS◦(`))
otherwise :
f`(DS◦(`)) = DS◦(`)

All [Given : DS◦(`) = P(S × L)]
DS•(`) = {(s, l) | ∀s ∈ S, ∀l ∈ DS◦(`)(s) : l ∈ LS(`)}

Table 3.12: Transfer functions for the dominator analysis.

3.6 Concurrent Points-To Analysis

The concurrent points-to analysis is responsible of collecting points-to sets from other
location in the class of interest, such that contains information of what variables point
to, when considering use in a multi-threaded environment. This analysis is flow-
insensitive, as the computation of the current fact does not depend on the outcome of
previously computed facts. The concurrent points-to analysis does not propagate the
fact through control flow; it bases the fact only on the facts computed by previous
analyses at locations in the class. We define the fact for the concurrent points-to
analysis:

CPTS(`C,M,n) = 〈S, D〉

called the concurrent points-to set fact. It is a 2-tuple, similar to the PTS(`), ex-
pressing that for each source si ∈ S, di ∈ D is a value that the source points to.
Several sources may be the same, which represents that the same variable may point
to several values.

Until this point, the analyses described have been intra-procedural. The concurrent
points-to analysis, however, is inter-procedural. This is because threads may be
present and executing at any location in the class of interest, making the possible
set of values variables may point to at a given location naturally bigger, than for



74 The Analyses

sequential program flow.

As the concurrent points-to analysis does not have any flow-functions, because the
facts are independent of program flow, we do not either have a transfer function, as
such. The only function we shall define in this section, is CPTS(`C,M,n).

The concurrent points-to analysis uses the locksets for locations obtained from the
lock analysis. The concurrent points-to analysis should be able to compare two such
locksets and determine, whether the region locked by one lockset will be able to
execute in parallel with a region locked by another lockset. For this, we introduce
the function enter(LS1, LS2) = b where b ∈ {true, false}. Before formally defining
this function, we introduce two functions, rl(l) = c and wl(l) = c, that yield a lock c
if the lock l is a readlock or writelock respectively. Note that c may be ∅, which then
means that the functions does not find l to be a read- or writelock respectively. For
the locksets LS1 = P(L1 ×N1) and LS2 = P(L2 ×N2) we define the function:

enters(LS1, LS2) =

∀l1 ∈ L1,∀l2 ∈ L2 :
∧


wl(l2) 6= c if rl(l1) = c, c 6= ∅
rl(l2) 6= c ∧ wl(l2) 6= c if wl(l1) = c, c 6= ∅
wl(l1) 6= c if rl(l2) = c, c 6= ∅
rl(l1) 6= c ∧ wl(l1) 6= c if wl(l1) = c, c 6= ∅
l1 6= l2 if otherwise

where
∧

is the logical AND for all the expressions in enter(LS1, LS2).

In the following we describe the behavior of the concurrent points-to analysis, initially
from an example. Later, we shall formalize the function that computes the concurrent
points-to set for a specific location in the class of interest.

In Listing 3.19, we describe the behavior of the concurrent points-to analysis, if it
was queried what variables may point to in line 10 of the Java source code.

Initially, what variables can definitely point to at the location, is the fact from the
points-to analysis at line 10. We assume that null has the value 0. The points-to
set in line 10, is PTS(10) = {(2, 3), (4, 7), (5, 6)}. The analysis will then traverse all
locations in public methods in the class, to be able to reveal what other assignments
to global variables there might be. Line 7 and line 10 will then be visited, however
trivially they will not add anything not already present. The analysis then visits
location 16, 17 and 18 in turn (at some time). On these locations, the analysis must
initially check that the current locks held (at line 10), LS(10), allow entering with the
locks held in line 16, 17 and 18 respectively, in short: enters(LS(10), LS(16 − 18)).
If it yields false, then the regions are mutual exclusive, and no threads may execute
from line 16-18 while currently at line 10. In this case, LS(10) = {(2, 1)} and
LS(16 − 18) = {(2, 1)} intersect and therefore enters(LS(10), LS(16 − 18)) = true
and none of the assignments in line 16-18 are added at this point. However, the
assignment to o3 in line 16 does actually have to be included. We now explain why
and how the analysis proceeds to obtain that.



3.6 Concurrent Points-To Analysis 75

1 public void ConcurrentPointsToExample {
2 private final Object o1 = new Object (); /* o1=2, new Object ()=3 */
3 private Object o2; /* o2=4 */
4 private Object o3; /* o3=5 */
5

6 public void doAssign1 () {
7 o3 = new Object (); /* new Object ()=6 */
8 synchronized(o1) {
9 o2 = new Object (); /* new Object ()=7 */

10 /* etc */
11 }
12 }
13

14 public void doAssign2 () {
15 synchronized(o1) {
16 o3 = new Object (); /* new Object ()=8 */
17 o2 = new Object (); /* new Object ()=9 */
18 o2 = new Object (); /* new Object () =10 */
19 }
20 }
21 }

Listing 3.19: An example class demonstrating examples of what the concurrent
points-to analysis must analyze.

In line 7 o3 is assigned a value, however not within a locked scope. Therefore an
interleaving may exist before the locked scope from line 8 is entered, such that a
thread then executes line 15-19 and thereby o3 may also point to another value.
However, o2 is also assigned in that interleaving, but it should not have any other
values added, because in line 9 it is assigned, and that is within the same locked region
as line 10 and therefore dominates the assignments to o2 in lines 17 and 18. The
keypoint to make our analysis aware of this, is the information from the dominator
analysis, DS(10) = {4, {2}}, which indicates that the value of o2 from PTS(10) is
assigned under the locked scope of o1 (value 2). For further information, see Listing
3.16 and the corresponding description of the computation of DS(10). What the
analysis does, is that it compares the locksets from all locations to the lockset at the
current location, and if any points-to information is in the points-to set that is not
in the dominator set, then that points-to information is added. In this case, that
means that at line 19, where PTS(19) = {(2, 3), (5, 8), (4, 10)}, the locksets are not
mutually exclusive, and as 5 /∈ DS(10), the points-to (5, 8) is added (and (2, 3) as
well, but that is already present). Thereby the concurrent points-to set at line 10
becomes CPTS(10) = {(2, 3), (4, 6), (5, 7), (5, 10)}.

For the concurrent points-to analysis, it visits all locations within non-private meth-
ods, because these are the locations that are immediately reachable for an SPA,
that may invoke these methods. However, in case a non-private method invokes
a private method within the class of interest, the locations within that private
dispatch will also have to be visited. This approach offers better precision, than just
visiting all methods within the class of interest.



76 The Analyses

We then define the overall computation of the concurrent points-to set at a given
location. For convenience, we define the set P of methods the concurrent points-to
analysis must visit all locations of, initially the non-private methods in the class of
interest, C. We allow this set to be expanded, when dispatches to private methods,
mpriv /∈ P ∧ mpriv ∈ C, are seen during the visits of locations, such that these
methods are visited, before the computation ends:

CPTS(`C,M,n) = PTS(`) ∪


∀`C,mi,j ,∀mi ∈ P,
enters(LS(`C,M,n), LS(`C,mi,j)) = true,
s = target(ins(`C,mi,j))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
⋃



{(s, dj)|∀dj ∈ PTS(`C,mi,j)(s)} ins(`C,mi,j) ∈ {PUTFIELD, PUTSTATIC}
∨ (DS(`C,M,n)(s) = ∅ ∧
¬(ins(`C,mi,j) = INVOKEINSTRUCTION
∧ s ∈ mpriv,mpriv /∈ P ∧mpriv ∈ C))

M = M ∪mpriv ins(`C,mi,j) = INVOKEINSTRUCTION
∧ s ∈ mpriv,mpriv /∈ P ∧mpriv ∈ C




3.7 Applying the Analyses

Based on the analyses we have now described, we will now return to the conditions
of thread safety and describe how each aspect of these definitions may be tested with
the help of the analyses. We take each condition in turn and describe the required
use of the analyses to determine thread-safety violations with respect to SPA.

3.7.1 Encapsulation

First of all, violations of thread-safety regarding encapsulation can be identified if
any fields in the class of interest are declared public or protected without being
declared final. This does not require any of the analyses described in the precedings
of this section, to test. Simply iterate the field variables in the bytecode and test
their visibility and immutability modifier against the criteria.

For a more precise analysis, the mutability of objects in the field variables of the class
has to be determined. Depending on the mutability of an object in a field variable, it
may only be declared private if the object is mutable and non-private in addition,
if it is immutable but also declared final.



3.7 Applying the Analyses 77

3.7.2 Absence of Deadlock

For mutually exclusive locks, we have the definition of a potential deadlock from
(2.1):

ls(l1) ∩ ls(l2) = ∅ ∧ ls(l1)′ ∩ ls(l2) 6= ∅ ∧ ls(l2)′ ∩ ls(l1) 6= ∅

This definition requires the information about which locks are held at and after a
particular location. This information is offered by the lock analysis as LS◦(`) for the
locks at ` and LS•(`) for the locks held after `. Checking for potential deadlocks is
then as simple as comparing all combinations of (LS◦(`), LS•(`))× (LS◦(`), LS•(`))
to check if any fulfill the condition in (2.1), meaning a potential deadlock exists. The
check can even be substantially improved, by only traversing the locations at which
a lock is taken, -this is how the implementation works.

The check above also applies to writer-locks that may be a part of the locksets.
However, for reader- and writer-locks, other situations of deadlocking may occur.
This is formalized in (2.2), that says:

(rl(L), > 0) ∈ LS◦(`) ∧ (wl(L), 1) ∈ LS•(`) ∨
(wl(L), 1) ∈ LS◦(`) ∧ (rl(L), > 0) ∈ LS•(`) ∨
(wl(L), > 1) ∈ LS◦(`)

The above is tested in a similar manner, by only looking at locations where locks are
being acquired.

The final case of deadlock is caused by bad encapsulation, namely that an object used
as lock is not declared private. In that case, an SPA may hold the lock in another
class, i.e., causing a deadlock or spinning a loop forever with that lock held. This
property can be verified by running through all locations in the class of interest and
querying the locksets if a lock held at a location is not declared private. In fact this
property can be determined already as the lock analysis is performed, however this
is left for as an implementation detail.

3.7.3 Escaped Objects

To analyze whether objects influencing the state of the class of interest may escape,
so that SPA undesiredly may alter the state of the class of interest, the concurrent
points-to analysis can be put to use. For all locations where public or protected
methods within the class returns an object, the concurrent points-to set at that

location should be queried to reveal if any objects influencing the state of the class
of interest are pointed to by any of the returned objects. Also, for all invocations
of methods outside the class of interest, parameters should not point to any state
object references, which may also be checked with the concurrent points-to sets at



78 The Analyses

the locations of dispatches. However, it remains to approximate the objects that may
have influence on the state of the class of interest.

The trivial objects that influence the state of the class of interest, are the field
variables. But field variables may themselves contain a state, e.g., a java.util.
collections.ArrayLists state depends on the elements of the list, which may also
be returned by methods in the class of interest, thus escaping objects with influence
on the state. Approximating this behavior and displaying proper warnings, the mute-
ability of the objects in the field variables must somehow be determined. One way to
do so, could be to traverse invocations on the field objects into the class where the
method is defined and analyze if that invocation may lead to a change of the state in
that object. Doing so, requires an analysis of it self and somewhat does not comply
to the class-wise analysis approach, we would like to delimit the analyses to.

Another approximation could be to interpret all return values from methods not
within the class of interest, as potentially returning escaped values. Likewise, an ap-
proximation regarding all parameters passed to methods outside the class of interest,
could be to assume these have escaped.

The latter approach would be the easiest to apply and compute, however, at the cost
of much lower precision. For methods within the class of interest that are possible
to override, that is, not declared final and public or private, the latter approach
though is the best approximation one can get, because the SPA may override such
methods and return whatever, possibly escaping the state of the class of interest.

Finally, if the availability of an analysis computing some approximation of where
escaped values enter and exit the class of interest is assumed, then violations of thread-
safety regarding escaping objects, would be on occurrences where the concurrent
points-to analysis reveals that a write to a member of the state takes place, where
the value that is written is an escaped value, and the occurrence where a member of
the state is passed as argument to an invocation outside the class or a return from
a non-private method within the class. For final and private methods within the
class, context-sensitivity could be applied to the analysis, such that the arguments
could be followed in the control flow and it could be determined if they escape.

3.7.4 Locking

All locks acquired within a non-private method within the class of interest, must be
released again before the dispatch returns. This property can be analyzed from the
lockset entry and exit facts of all non-private methods within the class of interest.
The exit fact may not hold more locks than the entry fact holds.

However, another condition applies to the locks in the class of interest, namely that
they may not be changed at any program point in the class. In case a lock changed in
the analysis, it will appear from the concurrent points-to analysis, and therefore a test



3.7 Applying the Analyses 79

whether the assumption holds can be performed with the support of the concurrent
points-to analysis. Furthermore, locks may not be an escaped object, which with the
support of a capable escape analysis can be detected.

3.7.5 Thread-safe Field Access

To analyze how field variables are used in accordance with thread-safety, a checker
should look at all PUTFIELD and GETFIELD instructions, and if the use is not in
correspondence with the statement

All writes to a field variable may not give occasion to non-
deterministic results possibly being read elsewhere in the class. Nei-
ther must multiple writes to the same field variable take place at any
time.

a violation has occured. In practice, violations can be expressed formaly. Assume
P (x) is a PUTFIELD operation to field x and G(x) is a GETFIELD operation on the
field x, and we write `i = P (x) to express that the location `i is a write operation to
x, and similar for reads. Then violations can be expressed:

∃`i = P (x) : LS(`j) ∩ LS(`i) = ∅, `j = P (x) ∨ `j = G(x)

This formalization can be applied in practice and will reveal violations of thread-
safety regarding field accesses.

3.7.6 Stale Data

For stale data, the check for thread-safe field access will find all occurences, where
stale data might occur also, given that the check also looks at assignments in con-
structors. However, a special case for constructors, is that if the field assigned to is
declared final or volatile, then stale data is guaranteed not to occur with that
constructor.



80 The Analyses



Chapter 4

Implementation

In this Section we discuss the implementation of the analyses, the detectors and
finally how these are integrated in FindBugs. As described in Section 2.3, FindBugs
utilizes both BCEL and ASM to provide the developer with the best from both
worlds. In order to ease the implementation FindBugs provides a feature rich API
which to some extend works as a layer above the BCEL and ASM API’s, uniting the
API’s. FindBugs provides an intra-procedural control flow analysis that may be used
to construct a CFG for a given method. The CFG’s provide the foundation for the
analyses that we now describe the implementation of.

4.1 The Analyses

In the following we describe the implementation of the analyses formalized in sec-
tion 3. As mentioned FindBugs provides a number of base classes useful for creat-
ing flow sensitive analyses. Because our analyses have many things in common we
have created the base class AGenericForwardDataflowAnalysis which can be found
in the source code1. The AGenericForwardDataflowAnalysis is an abstract class
that extends the ForwardDataflowAnalysis which is a part of the FindBugs frame-
work. The primary goal of the intermidiate AGenericForwardDataflowAnalysis
class, is to provide a transparent way for handling dispatches, as we want to be
context sensitive for private and final methods within the context of the class.

1dtu.imm.findbugs.plugin.analysis.AGenericForwardDataflowAnalysis.java



82 Implementation

In order to provide a nice abstration, we make extensive use of generics, thus the
ForwardDataflowAnalysis is a generic class, which let us define the type of the fact
that we want to use in the analysis. There are no constraints regarding the type of
the fact, meaning that the fact does not need to be a subclass of some common fact
class. This makes it possible for us to create our own common base class for the fact
in each of our analyses. All facts implement the common interface shown in Listing
4.1, which makes it possible to handle all the functionality, that these methods pro-
vide, in the AGenericForwardDataflowAnalysis, simplifying the implementation of
the analyses.

An analysis class extending AGenericForwardDataflowAnalysis is forced to imple-
ment methods for transfering a fact from one location to the next, as well as creating
a new dataflow for a context sensitive dispatch.

1 public interface IGenericFact <Fact > {
2 public void copyFrom(Fact other);
3 public Fact makeCopy ();
4 public boolean isTop ();
5 public boolean sameAs(Fact other);
6 public void meetWith(Fact other);
7 public void clear ();
8 }

Listing 4.1: The generic interface that the PointsToSet, ExtendedLockset and
Dominatorset implements.

As it can be seen from the class header for the AGenericForwardDataflowAnalysis
shown in Listing 4.2, we force facts to implement our IGenericFact<Fact>. As one
may note we give filenames a preceding letter denoting if the file contains a (I)nterface
or an (A)bstract class.

1 public abstract class AGenericForwardDataflowAnalysis
2 <
3 Fact extends IGenericFact <Fact >,
4 Dataflow extends AGenericDataflow <Fact , ?, ?>
5 >
6 extends ForwardDataflowAnalysis <Fact > { ...

Listing 4.2: The class header for the AGenericForwardDataflowAnalysis, which is
our base class for all our analyses.

A generic dataflow base class extending the Dataflow provided by FindBugs, has
also been developed to generalize the basic functionality that
AGenericForwardDataflowAnalysis provides. The class header for this class,
AGenericDataflow, is shown in Listing 4.3

The interface IGenericFact<Fact>, and the two classes, AGenericDataflow and



4.1 The Analyses 83

1 public abstract class AGenericDataflow
2 <
3 Fact extends IGenericFact <Fact >,
4 Analysis extends AGenericForwardDataflowAnalysis <Fact ,Dataflow >,
5 Dataflow extends AGenericDataflow <Fact , ?, ?>
6 >
7 extends edu.umd.cs.findbugs.ba.Dataflow <Fact , Analysis > {

Listing 4.3: The class header for the AGenericDataflow class, which is our base class
for all our dataflows.

AGenericForwardDataflowAnalysis, together form the foundation for our analyses.
Figure 4.1 shows how our points-to analysis inherit these base classes.

IGenericFact

PointsToSet

Dataflow

AGenericDataflow

PointsToDataflow

ForwardDataflowAnalysis

AGenericForwardDataflowAnalysis

PointsToAnalysis

Figure 4.1: The figure illustrates how the points-to analysis inherit form our founda-
tion classes

As mentioned the AGenericForwardDataflowAnalysis handles context sensitive
method invocations, almost transparently for the subclasses. This is achieved by
forcing subclasses to implement the abstract method in Listing 4.4, which returns a
new dataflow using the initial analysis information given by the fact at the location
of the method invocation.

1 protected abstract Dataflow getDispatchDataflow(ClassContext classContext ,
2 Method method ,
3 Location location ,
4 InvokeInstruction ins ,
5 Fact entryFact)

Listing 4.4: Subclasses of GenericForwardDataflowAnalysis is forced to
implement this method, so that dispatches can be handled in the common
AGenericForwardDataflowAnalysis class.



84 Implementation

4.1.1 Points-to analysis

In the following section we describe the details concerning the implementation of the
points-to analysis. The PointsToAnalysis2 inherit from the common analysis base
class, GenericForwardDataflowAnalysis. Likewise does the PointsToDataflow3

inherit from AGenericDataflow and the PointsToSet4 implements the common fact
interface shown in Listing 4.1, where the meetWith method is a direct translation of
the formal meet operator defined in Section 3.3, see Listing 4.5.

1 public void meetWith(PointsToSet other) {
2 for (ValueNumber vn : other.pointsToSet.keySet ()) {
3 if (this.pointsToSet.containsKey(vn)) {
4 this.pointsToSet.get(vn).addAll(other.pointsToSet.get(vn));
5 }
6 else {
7 this.pointsToSet.put(vn , other.pointsToSet.get(vn));
8 }
9 }

10 }

Listing 4.5: The implementation of the meet function is a direct translation of the
formal definition expressed in Section 3.3

With FindBugs comes a intra-procedural ValueNumberDataflowAnalysis that may
be used to model the production of values in a stack frame. The analysis is con-
text insensitive, and therefore over approximates return values. The analysis uses
instances of the class ValueNumber to represent information, a ValueNumber basi-
cally consists of a number and flags, e.g., a number may have the flag RETURN_VALUE,
indicating that this ValueNumber number entered the stackframe as a return value
from a method invocation. A ValueNumber cannot be instantiated, but have to be
instantiated by a ValueNumberFactory where instances of ValueNumbers produced
by the same ValueNumberFactory are unique, so reference equality may be used to
determine whether or not two value numbers are the same. In general, ValueNumbers
from different factories cannot be compared, thus we cannot use ValueNumber’s pro-
duced by the ValueNumberDataflowAnalysis in our points-to analysis, because we
want to be able to compare points-to information across methods. To solve this
problem we use a single instance of a ValueNumberFactory when analyzing a class,
thereby mapping values from a instance of a ValueNumberDataflowAnalysis into
our ValueNumber-space.

Remember that points-to information at a specific location, ` in Section 3.3 was
defined as a 2-tuple, where a source, s, could point to multiple destinations dn.

2Implemented in: dtu.imm.findbugs.plugin.analysis.pta.PointsToAnalysis
3Implemented in: dtu.imm.findbugs.plugin.analysis.pta.PointsToDataflow
4Implemented in: dtu.imm.findbugs.plugin.analysis.pta.PointsToSet



4.1 The Analyses 85

Implementation wise this is achieved by using the structure:

HashMap<ValueNumber, Set<ValueNumber>>

where the key is the source, pointing to a set of destinations.
Because the PointsToAnalysis is a subclass of GenericForwardDataflowAnalysis
it implements the getDispatchDataflow method. In order to create a new dis-
patch dataflow for an invoked method, arguments are be popped from the stack,
mapped into our ValueNumber-space. and passed to the constructor of the new
GenericForwardDataflowAnalysis. Because the arguments simply are sources in
the initial points-to set, the new analysis knows what the arguments points to.
Finally when a fact is transfered from one location to the next, then points-to infor-
mation in the fact is first modified, and then ϕ-values are introduced where necessary.
Both actions conforms to the formal definition found in Section 3.3.

4.1.2 Lock analysis

We now turn our attention to the implementation of the lock analysis. As for the
points-to analysis the lock analysis inherit our three foundation classes.
The LockAnalysis5 inherit from the common GenericForwardDataflowAnalysis,
LockDataflow6 inherit from AGenericDataflow and finally does ExtendedLockSet7

implement the common fact interface shown in Listing 4.1 as well as inheriting from
a generel LockSet class provided by FindBugs. The LockSet class in FindBugs is
used in a simple intra-procedural lock analysis, which seems very unprecice, however
we found the LockSet class useful. The meetWith method for the LockSet conforms
to the formal definition expressed in Section 3.4. As for the PointsToAnalysis
the LockAnalysis implements the getDispatchDataflow method, however no argu-
ments are popped from the stack, because only the initial lock information must be
parsed to the new LockAnalysis.

The transfer function for the LockAnalysis detects when a lock or unlock method
is invoked on subclasses on java.util.concurrent.locks.Lock as well as detecting
MONITORENTER and MONITOREXIT instructions. When that happens the LockAnalysis
uses the PointsToAnalysis to resolve the target that the lock is acquired on, maps
the target to a monitor or a lock ValueNumber instance, and either increases or
decreases the lock count for that specific lock target. Finally the lock analysis detects
method calls to readLock and writeLock on instances of ReentrantReadWriteLock,
and flag the return value with respectively READ_LOCK or WRITE_LOCK. This makes it
possible for later analyses to detect if a region is locked by a read or write lock.

5Implemented in: dtu.imm.findbugs.plugin.analysis.la.LockAnalysis
6Implemented in: dtu.imm.findbugs.plugin.analysis.la.LockDataflow
7Implemented in: dtu.imm.findbugs.plugin.analysis.la.ExtendedLockSet



86 Implementation

4.1.3 Dominator analysis

The dominator analysis is, as the other analyses, based on our three foundation
classes. The analysis is implemented in the DominatorAnalysis8 class which inherit
from GenericForwardDataflowAnalysis. The DominatorDataflow9 inherit from
AGenericDataflow and the DominatorSet10 implements the common fact interface
shown in Listing 4.1.

The meetWith method for the DominatorSet conforms to the formal definition ex-
pressed in Section 3.5. Regarding the implementation, a given variable may be dom-
inated by multiple locks and therefore we use the data structure

HashMap<ValueNumber, Set<ValueNumber>>

to represent dominater information at a given location. The transfer function for
the DominatorAnalysis detects when a PUTFIELD instruction occurs. If there are
locks held at that location, the fact is updated, indicating that the given field is
assigned under that given lock set. When locks are released or get the value ⊥, they
are removed from the dominator set. Note that the DominatorAnalysis depends
on both the PointsToAnalysis to map the instruction into our ValueNumber-space,
as well as the LockAnalysis which provides the lock information. As for the other
analyses the DominatorAnalysis is forced to implement the
getDispatchDataflow method, which simply returns a new DominatorDataflow,
where the dominator information at the location of the method invocation is used as
initial information in the new DominatorAnalysis.

4.1.4 Concurrent points-to analysis

We now turn our attention to the concurent points-to analysis the uses the three
other analyses to provide a interprocedural points-to analysis that take locks into
account. The analysis is implemented in ConcurrentPointsToAnalysis11 which
inherit from the common analysis base class, GenericForwardDataflowAnalysis.
Note that even though the concurrent points-to analysis is not flow sensitive, we
still get an easy way of traversing program locations by extending our foundation
classes. The ConcurrentPointsToDataflow12 inherit from AGenericDataflow and
the fact used in this analysis is the same as used in the PointsToAnalysis, namely
the PointsToSet that implements the common fact interface listed in 4.1.

Points-to information at a given location is computed by first copying the content
of the points set from the sequential points-to analysis into the points-to set for

8Implemented in: dtu.imm.findbugs.plugin.analysis.da.DominatorAnalysis
9Implemented in: dtu.imm.findbugs.plugin.analysis.da.DominatorDataflow

10Implemented in: dtu.imm.findbugs.plugin.analysis.da.DominatorSet
11Implemented in: dtu.imm.findbugs.plugin.analysis.cpta.ConcurrentPointsToAnalysis
12Implemented in: dtu.imm.findbugs.plugin.analysis.cpta.ConcurrentPointsToDataflow



4.2 Detecting Bugs 87

the concurrent points-to analysis. Then sequential points-to information for all other
locations where another thread could be simultaneously and where a write to a field is
done, are added to the current fact. Furthermore is points-to information at locations
where another thread could be simultaneously and where a lock is released, added.
Note that if a ϕ-value is added, the whole points-to chain is added.

4.2 Detecting Bugs

One of our requirements is to make it easy for developers to utilize our plugin. As
Java 1.5 provides the ability to annotate code, we use these to enable the developer to
provide information for the analyses. At the time of writing BCEL does not include
any support for reading annotations in compilled Java classes, but fortunately ASM
does.

As FindBugs includes the annotation package from the book Java concurrency in
practice [12], we have decided to use the @ThreadSafe annotation from that package
to invoke our bug detectors. Therefore all that one must do, is to annotate a given
class @ThreadSafe, to get our bug detectors running on the class.

In this section we describe the implementation of the bug detectors that utilize our
analysis to find and report bugs. All our bug detectors extends our common de-
tector class ConcurrentDetector. The primary goal of the ConcurrentDetector
is to statically cache the instance of the PluginAnalysisContext, which is a class
that contains instances of dataflows. We do this to avoid running the analyses once
for every bug detector. Furthermore the ConcurrentDetector almost makes con-
text sensitive dispatches transparent for the subclass. Because every dataflow may
contain zero or more dispatch dataflows, visiting dataflows are done in a recursive
manner, as the problem suggests. The bug detectors that we have implemented can
be found in the dtu.imm.findbugs.plugin.detect package. Below we summerize
the functionality of these:

• The DeadlockDetector finds Deadlocks by looking at location paris in the
class, where the Deadlock condition described in Section 3.7 holds. For each of
such paris a bug is reported.

• The LockCheckDetector performs basic lock checking to detect if a lock target
may point to more than one object instance, if that is the case a bug is reported.
Furthermore it detects if a lock is done on a variable that only has local scope,
thus it has no effect on the state of the class being analyzed.

• The LockHeldAtReturnDetector detects if the combined return lock set from
a non-private method is different from the initial lock set. If that is the case
a bug is reported because such behaviour may violate liveness properties.



88 Implementation

• The LockOnNullDetector is used to detect if a lock is taken on a variable that
may point to null, thus a bug is reported if the lock target may point to at
least one null value.

• The NonPrivateFieldDetector detects if the state of the class is properly
encapsulated, otherwise a bug is reported.

• The UnsafeFieldAccessDetector is used to detect if reads and writes from a
specific field is guarded by a lockset having at least one common lock. Other-
wise a bug is reported. This detector also detects missing volatile or final
declarations.

Finally we turn our attention to the implementation details concerning the integration
with FindBugs. In order for a plugin to work with FindBugs the following prerequisets
must be met. First of all, FindBugs expects two XML files to be found in the root
of the plugin Jar. The findbugs.xml contains information about what detectors
that exist in the plugin, and where in the package hierachy they exist. The other
file, namely the messages.xml contains the actual bug descriptions reported by the
detectors. For more information on these two XML files and the Apache Ant build
script, used for building the plugin, see Appendix A which outlines the directory
structure of our project, and Appendix B which contains the findbugs.xml and
messages.xml.

4.3 Testing

In this section we describe how the implemented analyses and bug detectors have
been tested to verify that they behave correctly.
Below we summarize the two most used approaches for verifying software:

• Structural testing
This kind of testing is often denoted as “white box testing” or “clear box test-
ing”. In a structural test the internal perspective of a system is taken into
account, meaning that the test is based on the internal representation of the
system. The goal of such a test is to identify all paths through the system and
verify that no errors exist on any of these paths. In many cases it will however
be to time consuming or difficult to identify all paths.

• Functional testing
Functional testing is often denoted as “black box testing” because only output
from the system is verified to see if it conforms to the expected output. This
means that only the external perspective of the system is taken into account.
The disadvantage of a functional test compared to the structural is that one
cannot be sure that all existent paths through the system are tested. Therefore
even though a functional test succeeds errors might still exist.



4.3 Testing 89

Even though a complete structural test would be more precise, we have decided to
settle for a functional test, simply because a structural test would be to time consum-
ing. We have also decided that it is sufficient to only test the bug detectors because
they depend on the analyses and thereby test them implicitly.

Our testing framework is based on the unit testing framework, JUnit. To avoid any
confusion we will in the following denote our testing framework as a “test suite”. The
main reason why we decided to use JUnit, is because it intergrates very nicely with
Apache Ant which we use to build and run our plugin with. JUnit also provides the
necessary functionality to report errors in a convient way, eg. by making assertions
or simply failing with a given error message. Finally JUnit has the ability to generate
status reports based on errors found in the test(s).

A number of test cases has been developed to verify that the bug detectors report the
right bugs, and for each of the test cases expected output has been defined. The test
suite we have implemented verifies that the expected output conforms to the actual
bugs reported. The expected output has been embedded into each test case so that
all information related to that given test case is contained within the given test file.
An example of a test case is shown in figure 4.6

1 /*
2 <ExpectedBugs >
3 <BugInstance type =" NPF" priority ="2" abbrev =" MTSE" category =" MT_CORRECTNESS ">
4 <Class classname =" dtu.imm.findbugs.testing.examples. ExposedStateVariables ">
5 <SourceLine classname =" dtu.imm.findbugs.testing.examples.

ExposedStateVariables "/>
6 </Class >
7 <Field classname =" dtu.imm.findbugs.testing.examples. ExposedStateVariables "

name ="i" signature ="I" isStatic =" false">
8 <SourceLine classname =" dtu.imm.findbugs.testing.examples.

ExposedStateVariables "/>
9 </Field >

10 </BugInstance >
11 </ExpectedBugs >
12 */
13

14 @ThreadSafe
15 public class ExposedStateVariables {
16

17 public int i = 0;
18

19 }

Listing 4.6: An example of a test case. The XML in the comment is the expected
output, namely a textural representation of the bug(s) that should be detected when
analyzing the class. The expected output is parsed by the testing framework and
compared with the computed output.

Our test suite is implemented as a subclass of TestCase, a predefined class in JUnit.
The TestCase class provides a number of methods used to report errors with. Our
test suite is implemented as a “fixture”, meaning that a test starts by setting up the



90 Implementation

test case, running a number of tests, and finally cleaning up the used resources.
The implementation of the test suite is found in: dtu.imm.findbugs.testing.
TestSuite and the test cases for testing all detectors can be found in Appendix
C.



Chapter 5

Conclusion

In previous sections we describe analyses that are the foundation of a tool capable of
analyzing Java classes class-wise for thread-safety. The approach is to test if a class
specified for concurrent use, will be able to prevent the strongest possible attacker,
being the over-approximation of concurrent accesses, from using the class in a manner
that may leave the class in a state without liveness properties preserved or with the
class state changing unexpectedly.

5.1 Achievements

We have developed analyses capable of analyzing Java classes that use the most com-
mon synchronization primitives offered by Java, namely synchronized and mecha-
nisms derived from java.util.concurrent.Lock, in particular readers-writer locks,
that introduce special lock semantics. The analyses offer the foundation of detecting
whether the properties introduced in Section 2.6 are violated within a class meant
for use in a threaded environment.

A key achievement is the concurrent points-to analysis, which performs an analysis,
to determine what variables may point to at a given location. It does so, by iden-
tifying what other regions of context in the class, that may be executed in parallel
by intersecting the locksets between locations, thus providing another approach to
performing a may-happen-in-parallel analysis [19, 23]; traditionally suggested to be
based on a parallel execution graph.



92 Conclusion

We have developed detectors for detecting most of the properties introduced in Sec-
tion 2.6, making our tool capable of detecting many synchronization errors. The
detectors that has been developed, are capable of detecting violations of:

• Encapsulation We currently detect violations of encapsulation by identifying
fields that are protected or public, and not final, which may be directly
accessed and written to by SPA. It remains to develop an analysis to check if
fields may be mutable objects and thus only may be declared private.

• Absence of Deadlock Potential deadlocks are successfully identified for all
uses of synchronized, objects implementing java.util.concurrent.Lock and
readers-writer locks.

• Locking All non-private methods that has acquired more locks than they
have released, or vice versa, at any return point of the method, are detected.
Furthermore, it is detected if a lock is taken on an object that may point to
several values, which is classified as an error.

• Thread-safe Field Access Race conditions are detected, such that two dif-
ferent locations may execute in parallel, where one writes to the same field as
the other reads or writes to.

• Stale data Stale data is detected as violations of thread-safe field access. The
special case with final or volatile field variables initialized in a constructor,
is handled, so that it does not generate unnecessary errors.

What remains is detection of escaped values, which relies on the development of an
escape analysis, which is left as a remainder for future work.

The analysis implementations are based on a generalized platform on which other
analyses, such as an escape analysis, can be based on. The generic foundation of the
analyses offer an easy way for other analyses to perform context-sensitive analysis
regarding invocations of methods with unchangeable context at compile time. It also
offers to only change in the general, generic analysis, if, e.g., context-sensitivity is
desired to cover entire programs.

Similarly, a generic platform for detectors using our analyses has been developed.
This greatly eases the implementation of the remainding detectors, that are left for
future work.

The tool we have developed integrates with Eclipse, such that the developer receives
bug markings according to violations of thread safety, in classes marked for analysis
with the @ThreadSafe annotation.



5.2 Applications 93

5.2 Applications

With the analyses we have developed, the foundation for a class-wise thread-safety
test tool for Java classes has been created. Despite the limitations of our analyses,
the detectors implemented covers a range of potential thread-safety violations. Our
tool excels as a component based test approach to Java classes that are to be used in
a multi-threaded environment. Especially in situations where the program context
utilizes a huge amount of different threads and a program-wise analysis would be hard
to compute, our class-wise approach proves beneficial, as it assumes any number of
concurrent threads utilizing the class and therefore over-approximates any program
specific contexts, where the class may be used concurrently.

The generic foundations of both the analyses and detectors implemented, allows for
changing the common behavior of our analyses in an easy way. E.g., future work
or other applications of the analyses than those we present, may desire more or
less precision, which in many cases can be accomplished by changing the generic
foundations of the analyses.

5.3 Future work

Some aspects are left for future work. An escape analysis that bases its fact on
the concurrent points-to analysis and the remaining detector to be able to analyze
where values influencing state may escape the class of interest. Also, the Semaphore
synchronization primitive is not currently accounted for by the lock analysis, which
can be implemented as future work. An improvement on the otherwise generic struc-
ture of the implementation, would be to create a generic lock type, such that only a
description of how a custom lock mechanism act and interact would be required to
support new lock mechanisms in the lock analysis.

Performance has not been a main concern for our work, and therefore future work may
involve optimizing computations. Also precision may be improved on some aspects.
E.g., future work might involve the implementation of a lazy analysis to determine
the mutability of objects in the field variables in the class of interest. Lazy, because
it should not be run on all field objects, only those that are declared final and are
non-private.

A comparison between our tool and other projects offering similar efforts is also left
for future work, as the time constraints of our work has not permitted such. Though,
our tool takes another approach than most other concurrency testing tools for Java,
as we analyze class-wise and therefore over-approximates the program-wise context
the class of interest may be used in. Therefore our tool may raise warnings that may
be guaranteed not to occur by other means at program level, but are correct warnings
regarding class-wise thread-safety.



94 Conclusion

Our testing framework demonstrates the wide range of functionality our tool handles,
e.g., the use of both synchronized and all subclasses of java.util.concurrent.
locks.Lock, including special treatment of readers-writer locks. The latter locking
mechanisms are even supported to be acquired through invocations of private and
final methods within the class. Our over-approximation of program behavior, does
succesfully raise warnings to all violations of class-wise thread-safety, except for the
remainding analysis of escaped objects.



List of Notation



96 LIST OF NOTATION

⊔
A,tA − The combine operators for the analysis type A. See . . . . . . . . . . . . . . . . . . .47

⊥ − The least element a.k.a. bottom. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

u − The meet operator. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

t − The join operator. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

> − The greatest element a.k.a. top. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

AST − Abstract Syntax Tree. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

CFG − Control Flow Graph. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

cpindex(ins) − The index in the constant pool to which the instruction refers (for
instructions with an index in the constant pool as operand). See . . . . . . . 45

DS(`) − The fact computed by the dominator analysis called the dominator set. See
68

DS(`)(s) = ls − A function that yields ls in the pair (s, ls) ∈ DS(`). See . . . . . . . 68

E − Edge. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

f` − The transfer function at location `.. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ι − The initial analysis information.. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ins(`) − Yields the bytecode instruction at the location `. See . . . . . . . . . . . . . . . . . . 46

` − An arbitrary location. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

`n − A location in an implicit class and method, where n is the line number in the
bytecode instructions sequence for the implicit method.. See . . . . . . . . . . . 44

`C,M,n − A location in the bytecode for the method M in class C, where n is the line
number.. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

`M,n − A location in an implicit class, where n is the line number in the bytecode
instructions sequence for the method M .. See . . . . . . . . . . . . . . . . . . . . . . . . . .44

L − Lattice. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

`◦ − The first location of the entry basic-block.. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



LIST OF NOTATION 97

lindex(ins) − The index in the local variable frame into where the instruction indexes
(for instructions with an index in the local variable frame as operand). See
45

lockid(ins(`), target(ins(`)))− A function that given the same target, returns distinct
locks for MONITOR and INVOKEINTERFACE instructions. See . . . . . . . . . . . . . 61

locks − A function that given a lockset, returns the set of locks held by that lockset.
See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

LS(`) − The fact computed by the points-to analysis called the points-to set. See 60

ls(`i) − The set of locks held at the location `i. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ls(`i)′ − The set of locks held after the location `i. See . . . . . . . . . . . . . . . . . . . . . . . . . 29

Mi − The ith mutual exclusive lock. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

method(ins) − Is the method of the instruction given as parameter (for instructions
that has a dispatch target). See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ϕ-values − A single value that points to several other values. See . . . . . . . . . . . . . . . 47

PTS(`) − The fact computed by the points-to analysis called the points-to set. See
45

PTS(`)(si) − A function that yields a set, Di, containing all destinations, dsi , si

points to. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Ri − The readlock for the ith reader-writer-lock. See . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

RA(m, ι) − Denotes the return facts for the analysis A for a method m with initial
analysis information ι. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

retval(t, i) − A function that yields a unique value corresponding to a pair of target
object t and constant pool index i. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

SPA − Strongest Possible Attacker. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

SSA − Static Single Assignment (Form). See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

target(ins) − The object that is the target of an instruction. In general this is the
object into which a value is saved or an invocation is performed on. See 45



98 LIST OF NOTATION

traverse(PTS(`), s) − traverses the points-to set for all points-to information for
the value s and yields a set containing all possible leaf-nodes of the subtree
with s as root and in addition, all global variable values in the subtree, that
are not dominated by another global variable value in the subtree with s as
root. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

V − Vertex. See . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Wi − The writelock for the ith reader-writer-lock. See . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Bibliography

[1] Apache software license (last visited june 29, 2007).
http://www.apache.org/licenses/LICENSE-2.0.

[2] Asm, latest version: 3.0 (november 1, 2006) (last visited june 29, 2007).
http://asm.objectweb.org/.

[3] Bcel - the byte code engineering library, latest version: 5.2 (june 6, 2006) (last
visited june 29, 2007). http://jakarta.apache.org/bcel/index.html.

[4] Findbugs, latest version: 1.2.1 (may 31, 2007) (last visited june 29, 2007).
http://findbugs.sourceforge.net/.

[5] Findbugs, part 1: Improve the quality of your code (last visited june 29, 2007).
http://www-128.ibm.com/developerworks/java/library/j-findbug1/.

[6] Findbugs, part 2: Writing custom detectors (last visited june 29, 2007).
http://www.ibm.com/developerworks/java/library/j-findbug2/.

[7] Gnu lesser general public license (last visited june 29, 2007).
http://www.gnu.org/copyleft/lesser.html.

[8] Soot: a java optimization framework, latest version: 2.2.4 (april 27, 2007) (last
visited june 29, 2007). http://www.sable.mcgill.ca/soot/.

[9] Eric Bruneton. Asm 3.0 - a java bytecode engineering library (last visited june
29, 2007). http://download.forge.objectweb.org/asm/asm-guide.pdf, February
2007.

[10] Ciera Nicole Christopher. Evaluating static analysis frameworks (last visited
june 29, 2007). http://www.cs.cmu.edu/ aldrich/courses/654/tools/christopher-
analysis-frameworks-06.pdf, May 2006.



100 BIBLIOGRAPHY

[11] Create and Read J2SE 5.0 Annotations with the ASM Bytecode Toolkit. Create
and Read J2SE 5.0 Annotations with the ASM Bytecode Toolkit (last visited June
29, 2007), October 2004.

[12] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and
Doug Lea. Java Concurrency in Practice. Addison-Wesley Professional, May
2006.

[13] Michiel Graat. Static analysis of java card applications. Master’s thesis, Radboud
University Nijmegen, August 2006.

[14] Hatcliff and Dwyer. Using the bandera tool set to model-check properties of
concurrent java software, 2001.

[15] Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis in the presence
of dynamic class loading, June 2004.

[16] William Hovemeyer, David & Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12):92–106, December 2004.

[17] R. Karol. A tool for analysis of concurrent programs. Master’s thesis, Informatics
and Mathematical Modelling, Technical University of Denmark, DTU, Richard
Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2006.

[18] O. Lhotak and L. Hendren. Scaling Java points-to analysis using SPARK. Lecture
Notes in Computer Science, 2622:153–169, 2003.

[19] Lin Li and Clark Verbrugge. A practical MHP information analysis for concur-
rent java programs, 2004.

[20] Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Extending and eval-
uating flow-insensitive and context-insensitive points-to analyses for java, June
18–19 2001.

[21] Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Specification
(2nd Edition). Prentice Hall PTR, April 1999.

[22] Brad Long, Roger Duke, Doug Goldson, Paul A. Strooper, and Luke Wildman.
Mutation-based exploration of a method for verifying concurrent java compo-
nents, 2004.

[23] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An efficient algorithm
for computing mhp information for concurrent java programs. 1999.

[24] F. Nielson, H. Riis Nielson, and C. L. Hankin. Principles of Program Analysis.
Springer, 1999.

[25] Bjarne Steensgaard. Points-to analysis in almost linear time, 1996.



BIBLIOGRAPHY 101

[26] Navindra Umanee. Shimple: An investigation of static single assignment form.
Master’s thesis, McGill University, February 2006.

[27] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne
Gagnon, and Phong Co. Soot - a java optimization framework, 1999.

[28] John Whaley. Context-Sensitive Pointer Analysis using Binary Decision Dia-
grams. PhD thesis, Stanford University, March 2007.

[29] John Whaley and Monica S. Lam. An efficient inclusion-based points-to analysis
for strictly-typed languages. Lecture Notes in Computer Science, 2477:180–??,
2002.



102 BIBLIOGRAPHY



Appendix A

README

1 Installation:

2

3 To build the plugin simply go to ./ scripts/plugin/ and run ’ant’.

4 The build.xml script may also be used to test all the detectors by

5 running ’ant test.all’ or to test a single detector ,

6 by running ’ant test.<Name of detector >’

7 To make the plugin integrate with Eclipse , install the normal

8 Findbugs plugin and copy the plugin jar to the Findbugs plugin

9 installation directory.

10

11 Directory structure:

12 ./lib/ :

13 Contains external libraries used.

14

15 ./ scripts/plugin/ :

16 Contains the XML files used in the plugin.

17

18 ./ external/ :

19 Contains the implementation of findbugs used in the project.

20

21 ./src/ :

22 Contains the source code.



104 README



Appendix B

FindBugs XML

B.1 messages.xml

1 <MessageCollection >

2

3 <Detector class="dtu.imm.findbugs.plugin.detect.DeadlockDetector">

4 <Details ><![ CDATA[<p> This detector finds deadlock within single

classes]]>

5 </Details >

6 </Detector >

7

8 <Detector class="dtu.imm.findbugs.plugin.detect.

NonPrivateFieldDetector">

9 <Details ><![ CDATA[<p> This detector finds exposed state variables ]]>

10 </Details >

11 </Detector >

12

13 <Detector class="dtu.imm.findbugs.plugin.detect.LockOnNullDetector">

14 <Details ><![ CDATA[<p> This detector finds locations where a lock may

be taken on a null reference ]]>

15 </Details >

16 </Detector >

17

18 <Detector class="dtu.imm.findbugs.plugin.detect.

LockHeldAtReturnDetector">

19 <Details ><![ CDATA[<p> This detector finds methods that may result in

locks being held when returning ]]>

20 </Details >

21 </Detector >



106 FindBugs XML

22

23 <Detector class="dtu.imm.findbugs.plugin.detect.LockCheckDetector">

24 <Details ><![ CDATA[<p> This detector determines if locks may point to

different tings , as well as locking on local variables ]]>

25 </Details >

26 </Detector >

27

28 <Detector class="dtu.imm.findbugs.plugin.detect.

UnsafeFieldAccessDetector">

29 <Details ><![ CDATA[<p> This detector determines if a field i accessed

only while holding some common lock]]>

30 </Details >

31 </Detector >

32

33 <BugPattern type="DL">

34 <ShortDescription >Deadlock potential found!</ShortDescription >

35 <LongDescription >Deadlock potential found in {1}!</ LongDescription >

36 <Details >

37 </Details >

38 </BugPattern >

39

40 <BugPattern type="LOLV">

41 <ShortDescription >Locking on local variable!</ShortDescription >

42 <LongDescription >Locking on local variable in {1}!</ LongDescription >

43 <Details >

44 </Details >

45 </BugPattern >

46

47 <BugPattern type="LONDV">

48 <ShortDescription >Locking on non -deterministic variable!</

ShortDescription >

49 <LongDescription >Locking on non -deterministic variable in {1}!</

LongDescription >

50 <Details >

51 </Details >

52 </BugPattern >

53

54 <BugPattern type="NPF">

55 <ShortDescription >A field is non -private!</ShortDescription >

56 <LongDescription >A field is non -private at {1}!</ LongDescription >

57 <Details >

58 </Details >

59 </BugPattern >

60

61 <BugPattern type="LHAR">

62 <ShortDescription >A lock may be held when returning from non -private

method!</ShortDescription >

63 <LongDescription >A lock may be held when returning from non -private

method in {1}!</ LongDescription >

64 <Details >

65 </Details >

66 </BugPattern >

67

68 <BugPattern type="LON">

69 <ShortDescription >Looks like you lock on null!</ShortDescription >



findbugs.xml 107

70 <LongDescription >Looks like you lock on null in {1}!</

LongDescription >

71 <Details >

72 </Details >

73 </BugPattern >

74

75 <BugPattern type="NPF">

76 <ShortDescription >A field is non -private!</ShortDescription >

77 <LongDescription >A field is non -private at {1}!</ LongDescription >

78 <Details >

79 </Details >

80 </BugPattern >

81

82 <BugPattern type="UFA">

83 <ShortDescription >Unsafe access to a field!</ShortDescription >

84 <LongDescription >Unsafe access to a field {1}!</ LongDescription >

85 <Details >

86 </Details >

87 </BugPattern >

88

89 <BugCode abbrev="MTSE">Multi -threaded synchronization error </BugCode >

90 </MessageCollection >

B.2 findbugs.xml

1 <FindbugsPlugin >

2

3 <Detector class="dtu.imm.findbugs.plugin.detect.DeadlockDetector" speed

="fast" />

4 <BugPattern abbrev="MTSE" type="DL" category="MT_CORRECTNESS" />

5

6 <Detector class="dtu.imm.findbugs.plugin.detect.

LockHeldAtReturnDetector" speed="fast" />

7 <BugPattern abbrev="MTSE" type="LHAR" category="MT_CORRECTNESS" />

8

9 <Detector class="dtu.imm.findbugs.plugin.detect.LockCheckDetector"

speed="fast" />

10 <BugPattern abbrev="MTSE" type="LOLV" category="MT_CORRECTNESS" />

11 <BugPattern abbrev="MTSE" type="LONDV" category="MT_CORRECTNESS" />

12

13 <Detector class="dtu.imm.findbugs.plugin.detect.NonPrivateFieldDetector

" speed="fast" />

14 <BugPattern abbrev="MTSE" type="NPF" category="MT_CORRECTNESS" />

15

16 <Detector class="dtu.imm.findbugs.plugin.detect.LockOnNullDetector"

speed="fast" />

17 <BugPattern abbrev="MTSE" type="LON" category="MT_CORRECTNESS" />

18

19 <Detector class="dtu.imm.findbugs.plugin.detect.

UnsafeFieldAccessDetector" speed="fast" />

20 <BugPattern abbrev="MTSE" type="UFA" category="MT_CORRECTNESS" />

21

22 </FindbugsPlugin >



108 FindBugs XML



Appendix C

Test cases

C.1 LockTryFinally.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5

6

7 import net.jcip.annotations.ThreadSafe;

8

9 /*

10 <ExpectedBugs >

11 <BugInstance type="LHAR" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

12 <Class classname ="dtu.imm.findbugs.testing.All.LockTryFinally">

13 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

14 </Class >

15 <Method classname ="dtu.imm.findbugs.testing.All.LockTryFinally" name

=" test1" signature ="(Z)V" isStatic =" false">

16 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

17 </Method >

18 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally"

startBytecode ="67" endBytecode ="67"/ >

19 </BugInstance >

20 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">



110 Test cases

21 <Class classname ="dtu.imm.findbugs.testing.All.LockTryFinally">

22 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

23 </Class >

24 <Method classname ="dtu.imm.findbugs.testing.All.LockTryFinally" name

=" test1" signature ="(Z)V" isStatic =" false">

25 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

26 </Method >

27 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally"

startBytecode ="20" endBytecode ="20"/ >

28 <Int value ="0"/>

29 </BugInstance >

30 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

31 <Class classname ="dtu.imm.findbugs.testing.All.LockTryFinally">

32 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

33 </Class >

34 <Method classname ="dtu.imm.findbugs.testing.All.LockTryFinally" name

=" test2" signature ="(Z)V" isStatic =" false">

35 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

36 </Method >

37 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally"

startBytecode ="20" endBytecode ="20"/ >

38 <Int value ="0"/>

39 </BugInstance >

40 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

41 <Class classname ="dtu.imm.findbugs.testing.All.LockTryFinally">

42 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

43 </Class >

44 <Method classname ="dtu.imm.findbugs.testing.All.LockTryFinally" name

=" test2" signature ="(Z)V" isStatic =" false">

45 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

46 </Method >

47 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally"

startBytecode ="28" endBytecode ="28"/ >

48 <Int value ="1"/>

49 </BugInstance >

50 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

51 <Class classname ="dtu.imm.findbugs.testing.All.LockTryFinally">

52 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

53 </Class >

54 <Field classname ="dtu.imm.findbugs.testing.All.LockTryFinally" name

="l" signature =" Ljava/util/concurrent/locks/Lock;" isStatic ="

false">

55 <SourceLine classname ="dtu.imm.findbugs.testing.All.LockTryFinally

"/>

56 </Field >



ReaderWriterLocks.java 111

57 </BugInstance >

58 </ExpectedBugs >

59 */

60

61 // Verified and works

62 @ThreadSafe

63 public class LockTryFinally {

64

65 private Lock l = new ReentrantLock ();

66

67 public void test1(boolean b) throws Exception {

68 Lock p = b ? new ReentrantLock () : l;

69 try {

70 p.lock();

71 if(b) {

72 Object o = new Object ();

73 }

74 else {

75 throw new Exception ();

76 }

77 }

78 finally {

79 p.unlock ();

80 }

81 }

82

83 public void test2(boolean b) throws Exception {

84 Lock p = b ? l : new ReentrantLock ();

85 p.lock();

86 Lock q = p;

87 p.lock();

88 try {

89 if(b) {

90 Object o = new Object ();

91 }

92 else {

93 throw new Exception ();

94 }

95 }

96 finally {

97 p.unlock ();

98 q.unlock ();

99 }

100 }

101

102 }

C.2 ReaderWriterLocks.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantReadWriteLock;



112 Test cases

5

6 import net.jcip.annotations.ThreadSafe;

7

8 /*

9 <ExpectedBugs >

10 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.ReaderWriterLocks">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterLocks "/>

13 </Class >

14 <Method classname ="dtu.imm.findbugs.testing.All.ReaderWriterLocks"

name=" test3" signature ="(Z)V" isStatic =" false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterLocks "/>

16 </Method >

17 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterLocks" startBytecode ="23" endBytecode ="23"/ >

18 <Int value ="0"/>

19 </BugInstance >

20 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

21 <Class classname ="dtu.imm.findbugs.testing.All.ReaderWriterLocks">

22 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterLocks "/>

23 </Class >

24 <Field classname ="dtu.imm.findbugs.testing.All.ReaderWriterLocks"

name="l" signature =" Ljava/util/concurrent/locks/Lock;" isStatic

=" false">

25 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterLocks "/>

26 </Field >

27 </BugInstance >

28 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

29 <Class classname ="dtu.imm.findbugs.testing.All.ReaderWriterLocks">

30 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterLocks "/>

31 </Class >

32 <Field classname ="dtu.imm.findbugs.testing.All.ReaderWriterLocks"

name="rwl" signature =" Ljava/util/concurrent/locks/

ReentrantReadWriteLock ;" isStatic =" false">

33 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterLocks "/>

34 </Field >

35 </BugInstance >

36 </ExpectedBugs >

37 */

38

39 // Verified and works

40 @ThreadSafe

41 public class ReaderWriterLocks {

42

43

44 private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock ();



ExposedStateVariables.java 113

45 private Lock l;

46

47 public void test1(boolean b) {

48 ReentrantReadWriteLock local_rwl = rwl;

49 local_rwl.readLock ().lock();

50 rwl.readLock ().unlock ();

51 }

52

53 public void test2(boolean b) {

54 rwl.writeLock ().lock();

55 rwl.writeLock ().unlock ();

56 }

57

58 public void test3(boolean b) {

59 Lock p = b ? rwl.readLock () : rwl.writeLock ();

60 p.lock();

61 Lock q = p;

62 q.unlock ();

63 }

64

65 public void test4(boolean b) {

66 l = rwl.readLock ();

67 l.lock();

68 rwl.readLock ().unlock ();

69 }

70

71 }

C.3 ExposedStateVariables.java

1 package dtu.imm.findbugs.testing.All;

2

3 import net.jcip.annotations.ThreadSafe;

4

5 /**

6 * Class that exposes mutable state variables , and are therefore not

thread -safe.

7 */

8 /*

9 <ExpectedBugs >

10 <BugInstance type="NPF" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.ExposedStateVariables

">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ExposedStateVariables "/>

13 </Class >

14 <Field classname ="dtu.imm.findbugs.testing.All.ExposedStateVariables

" name="d" signature ="D" isStatic =" false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ExposedStateVariables "/>

16 </Field >

17 </BugInstance >



114 Test cases

18 <BugInstance type="NPF" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

19 <Class classname ="dtu.imm.findbugs.testing.All.ExposedStateVariables

">

20 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ExposedStateVariables "/>

21 </Class >

22 <Field classname ="dtu.imm.findbugs.testing.All.ExposedStateVariables

" name="i" signature ="I" isStatic =" false">

23 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ExposedStateVariables "/>

24 </Field >

25 </BugInstance >

26 </ExpectedBugs >

27 */

28

29 // Verified and works

30 @ThreadSafe

31 public class ExposedStateVariables {

32

33 public int i = 0;

34 public double d = 2.2;

35

36 public ExposedStateVariables () {

37 double dd = d;

38 int i = (int)dd;

39 }

40

41 }

C.4 ReaderWriterDeadLock.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantReadWriteLock;

5

6 import net.jcip.annotations.ThreadSafe;

7

8 /*

9 <ExpectedBugs >

10 <BugInstance type="DL" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock

">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

13 </Class >

14 <Method classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock

" name=" test1" signature ="(Z)V" isStatic =" false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

16 </Method >



ReaderWriterDeadLock.java 115

17 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock" startBytecode ="13" endBytecode ="13"/ >

18 </BugInstance >

19 <BugInstance type="DL" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

20 <Class classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock

">

21 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

22 </Class >

23 <Method classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock

" name=" test2" signature ="(Z)V" isStatic =" false">

24 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

25 </Method >

26 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock" startBytecode ="21" endBytecode ="21"/ >

27 </BugInstance >

28 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

29 <Class classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock

">

30 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

31 </Class >

32 <Field classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock"

name="rl" signature =" Ljava/util/concurrent/locks/Lock;"

isStatic =" false">

33 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

34 </Field >

35 </BugInstance >

36 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

37 <Class classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock

">

38 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

39 </Class >

40 <Field classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock"

name="rwl" signature =" Ljava/util/concurrent/locks/

ReentrantReadWriteLock ;" isStatic =" false">

41 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

42 </Field >

43 </BugInstance >

44 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

45 <Class classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock

">

46 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

47 </Class >

48 <Field classname ="dtu.imm.findbugs.testing.All.ReaderWriterDeadLock"

name="wl" signature =" Ljava/util/concurrent/locks/Lock;"



116 Test cases

isStatic =" false">

49 <SourceLine classname ="dtu.imm.findbugs.testing.All.

ReaderWriterDeadLock "/>

50 </Field >

51 </BugInstance >

52 </ExpectedBugs >

53 */

54

55 // Verified and works

56 @ThreadSafe

57 public class ReaderWriterDeadLock {

58

59 private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock ();

60 private Lock rl = rwl.readLock ();

61 private Lock wl = rwl.writeLock ();

62

63 public void test1(boolean b) {

64

65 rl.lock();

66 wl.lock();

67 wl.unlock ();

68 rl.unlock ();

69

70 }

71

72 public void test2(boolean b) {

73 Lock p = rwl.readLock ();

74 p.lock();

75 rwl.writeLock ().lock();

76 p.unlock ();

77 Lock q = rwl.writeLock ();

78 q.unlock ();

79 }

80

81 }

C.5 PublicNonFinalDispatch.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5

6 import net.jcip.annotations.ThreadSafe;

7

8 /*

9 <ExpectedBugs >

10 <BugInstance type="LHAR" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch "/>



PublicNonFinalDispatch.java 117

13 </Class >

14 <Method classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch" name=" test1" signature ="(Z)V" isStatic ="

false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch "/>

16 </Method >

17 <SourceLine classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch" startBytecode ="72" endBytecode ="72"/ >

18 </BugInstance >

19 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

20 <Class classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch">

21 <SourceLine classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch "/>

22 </Class >

23 <Field classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch" name="l" signature =" Ljava/util/

concurrent/locks/Lock;" isStatic =" false">

24 <SourceLine classname ="dtu.imm.findbugs.testing.All.

PublicNonFinalDispatch "/>

25 </Field >

26 </BugInstance >

27 </ExpectedBugs >

28 */

29

30 @ThreadSafe

31 public class PublicNonFinalDispatch {

32

33 private Lock l = new ReentrantLock ();

34

35 public void test1(boolean b) {

36 getUnknownLock(b,l,l).lock();

37 getUnknownLock(b,l,l).lock();

38 getUnknownLock(b,l,l).unlock ();

39 getUnknownLock(b,l,l).unlock ();

40 }

41

42 public Lock getUnknownLock(boolean b, Lock l,Lock q) {

43 return b ? l : q;

44 }

45

46 public void test2(boolean b) {

47 getKnownLock(b,l,l).lock();

48 getKnownLock(b,l,l).lock();

49 getKnownLock(b,l,l).unlock ();

50 getKnownLock(b,l,l).unlock ();

51 }

52

53 public final Lock getKnownLock(boolean b, Lock l,Lock q) {

54 return b ? l : q;

55 }

56

57 }



118 Test cases

C.6 DispatchTest.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5 import java.util.concurrent.locks.ReentrantReadWriteLock;

6

7 import net.jcip.annotations.ThreadSafe;

8

9 /*

10 <ExpectedBugs >

11 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

12 <Class classname ="dtu.imm.findbugs.testing.All.DispatchTest">

13 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest

"/>

14 </Class >

15 <Method classname ="dtu.imm.findbugs.testing.All.DispatchTest" name="

test1" signature ="( Ldtu/imm/findbugs/testing/All/DispatchTest ;)V

" isStatic =" false">

16 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest

"/>

17 </Method >

18 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest"

startBytecode ="11" endBytecode ="11"/ >

19 <Int value ="0"/>

20 </BugInstance >

21 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

22 <Class classname ="dtu.imm.findbugs.testing.All.DispatchTest">

23 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest

"/>

24 </Class >

25 <Method classname ="dtu.imm.findbugs.testing.All.DispatchTest" name="

test1" signature ="( Ldtu/imm/findbugs/testing/All/DispatchTest ;)V

" isStatic =" false">

26 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest

"/>

27 </Method >

28 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest"

startBytecode ="19" endBytecode ="19"/ >

29 <Int value ="1"/>

30 </BugInstance >

31 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

32 <Class classname ="dtu.imm.findbugs.testing.All.DispatchTest">

33 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest

"/>

34 </Class >

35 <Method classname ="dtu.imm.findbugs.testing.All.DispatchTest" name="

test1" signature ="( Ldtu/imm/findbugs/testing/All/DispatchTest ;)V

" isStatic =" false">

36 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest



AssignmentCycles.java 119

"/>

37 </Method >

38 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest"

startBytecode ="11" endBytecode ="11"/ >

39 <Int value ="0"/>

40 </BugInstance >

41 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

42 <Class classname ="dtu.imm.findbugs.testing.All.DispatchTest">

43 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest

"/>

44 </Class >

45 <Field classname ="dtu.imm.findbugs.testing.All.DispatchTest" name="o

" signature =" Ljava/util/concurrent/locks/Lock;" isStatic =" false

">

46 <SourceLine classname ="dtu.imm.findbugs.testing.All.DispatchTest

"/>

47 </Field >

48 </BugInstance >

49 </ExpectedBugs >

50 */

51

52 // Verified and works

53 @ThreadSafe

54 public class DispatchTest {

55

56 private Lock o = new ReentrantLock ();

57

58 public void test1(DispatchTest d) {

59 Lock p = getObj(true ,o);

60 p.lock();

61 Lock qq = p;

62 qq.unlock ();

63 }

64

65 private Lock getObj(boolean b, Lock p) {

66 if(b) {

67 return !b ? null : new ReentrantReadWriteLock ().writeLock ();

68 }

69 return b ? p : new ReentrantLock ();

70 }

71

72 }

C.7 AssignmentCycles.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5

6 import net.jcip.annotations.ThreadSafe;

7



120 Test cases

8 /*

9 <ExpectedBugs >

10 <BugInstance type="LHAR" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.AssignmentCycles">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.

AssignmentCycles "/>

13 </Class >

14 <Method classname ="dtu.imm.findbugs.testing.All.AssignmentCycles"

name=" test2" signature ="()V" isStatic =" false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.

AssignmentCycles "/>

16 </Method >

17 <SourceLine classname ="dtu.imm.findbugs.testing.All.AssignmentCycles

" startBytecode ="41" endBytecode ="41"/ >

18 </BugInstance >

19 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

20 <Class classname ="dtu.imm.findbugs.testing.All.AssignmentCycles">

21 <SourceLine classname ="dtu.imm.findbugs.testing.All.

AssignmentCycles "/>

22 </Class >

23 <Method classname ="dtu.imm.findbugs.testing.All.AssignmentCycles"

name=" test2" signature ="()V" isStatic =" false">

24 <SourceLine classname ="dtu.imm.findbugs.testing.All.

AssignmentCycles "/>

25 </Method >

26 <SourceLine classname ="dtu.imm.findbugs.testing.All.AssignmentCycles

" startBytecode ="21" endBytecode ="21"/ >

27 <Int value ="0"/>

28 </BugInstance >

29 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

30 <Class classname ="dtu.imm.findbugs.testing.All.AssignmentCycles">

31 <SourceLine classname ="dtu.imm.findbugs.testing.All.

AssignmentCycles "/>

32 </Class >

33 <Field classname ="dtu.imm.findbugs.testing.All.AssignmentCycles"

name="l1" signature =" Ljava/util/concurrent/locks/Lock;" isStatic

=" false">

34 <SourceLine classname ="dtu.imm.findbugs.testing.All.

AssignmentCycles "/>

35 </Field >

36 </BugInstance >

37 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

38 <Class classname ="dtu.imm.findbugs.testing.All.AssignmentCycles">

39 <SourceLine classname ="dtu.imm.findbugs.testing.All.

AssignmentCycles "/>

40 </Class >

41 <Field classname ="dtu.imm.findbugs.testing.All.AssignmentCycles"

name="l11" signature =" Ljava/util/concurrent/locks/Lock;"

isStatic =" false">

42 <SourceLine classname ="dtu.imm.findbugs.testing.All.

AssignmentCycles "/>



ForLoopTest.java 121

43 </Field >

44 </BugInstance >

45 </ExpectedBugs >

46 */

47

48 // Verified and works

49 @ThreadSafe

50 public class AssignmentCycles {

51

52 private Lock l1 = new ReentrantLock ();

53 private Lock l11;

54

55 public void test1 () {

56 l11 = l1;

57 l1 = l11;

58 l1.lock();

59 try {

60 //make computation

61 }

62 finally {

63 l11.unlock ();

64 }

65 }

66

67 public void test2 () {

68 l1 = l1;

69 l1.lock();

70 try {

71 //make computation

72 }

73 finally {

74 l11.unlock ();

75 }

76 }

77

78 }

C.8 ForLoopTest.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5 import java.util.concurrent.locks.ReentrantReadWriteLock;

6

7 import net.jcip.annotations.ThreadSafe;

8

9 /*

10 <ExpectedBugs >

11 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

12 <Class classname ="dtu.imm.findbugs.testing.All.ForLoopTest">

13 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>



122 Test cases

14 </Class >

15 <Method classname ="dtu.imm.findbugs.testing.All.ForLoopTest" name="

test10" signature ="(Z)V" isStatic =" false">

16 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

17 </Method >

18 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest"

startBytecode ="40" endBytecode ="40"/ >

19 <Int value ="0"/>

20 </BugInstance >

21 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

22 <Class classname ="dtu.imm.findbugs.testing.All.ForLoopTest">

23 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

24 </Class >

25 <Method classname ="dtu.imm.findbugs.testing.All.ForLoopTest" name="

test10" signature ="(Z)V" isStatic =" false">

26 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

27 </Method >

28 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest"

startBytecode ="49" endBytecode ="49"/ >

29 <Int value ="1"/>

30 </BugInstance >

31 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

32 <Class classname ="dtu.imm.findbugs.testing.All.ForLoopTest">

33 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

34 </Class >

35 <Method classname ="dtu.imm.findbugs.testing.All.ForLoopTest" name="

test10" signature ="(Z)V" isStatic =" false">

36 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

37 </Method >

38 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest"

startBytecode ="58" endBytecode ="58"/ >

39 <Int value ="2"/>

40 </BugInstance >

41 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

42 <Class classname ="dtu.imm.findbugs.testing.All.ForLoopTest">

43 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

44 </Class >

45 <Method classname ="dtu.imm.findbugs.testing.All.ForLoopTest" name="

test10" signature ="(Z)V" isStatic =" false">

46 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

47 </Method >

48 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest"

startBytecode ="67" endBytecode ="67"/ >

49 <Int value ="3"/>

50 </BugInstance >

51 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

52 <Class classname ="dtu.imm.findbugs.testing.All.ForLoopTest">

53 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

54 </Class >

55 <Method classname ="dtu.imm.findbugs.testing.All.ForLoopTest" name="

test10" signature ="(Z)V" isStatic =" false">



ForLoopTest.java 123

56 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

57 </Method >

58 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest"

startBytecode ="40" endBytecode ="40"/ >

59 <Int value ="0"/>

60 </BugInstance >

61 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

62 <Class classname ="dtu.imm.findbugs.testing.All.ForLoopTest">

63 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

64 </Class >

65 <Method classname ="dtu.imm.findbugs.testing.All.ForLoopTest" name="

test10" signature ="(Z)V" isStatic =" false">

66 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

67 </Method >

68 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest"

startBytecode ="49" endBytecode ="49"/ >

69 <Int value ="1"/>

70 </BugInstance >

71 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

72 <Class classname ="dtu.imm.findbugs.testing.All.ForLoopTest">

73 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

74 </Class >

75 <Field classname ="dtu.imm.findbugs.testing.All.ForLoopTest" name="p"

signature =" Ljava/util/concurrent/locks/Lock;" isStatic =" false">

76 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

77 </Field >

78 </BugInstance >

79 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

80 <Class classname ="dtu.imm.findbugs.testing.All.ForLoopTest">

81 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

82 </Class >

83 <Field classname ="dtu.imm.findbugs.testing.All.ForLoopTest" name="q"

signature =" Ljava/util/concurrent/locks/Lock;" isStatic =" false">

84 <SourceLine classname ="dtu.imm.findbugs.testing.All.ForLoopTest "/>

85 </Field >

86 </BugInstance >

87 </ExpectedBugs >

88 */

89

90 // Verified and works

91 @ThreadSafe

92 public class ForLoopTest {

93 private Lock p;

94 private Lock q;

95

96 public void test10(boolean b) {

97

98 for(int i = 0; i != 100; i++) {

99 p = new ReentrantLock ();

100 q = new ReentrantLock ();

101 }

102 p.lock();



124 Test cases

103 q.lock();

104

105 p.unlock ();

106 q.unlock ();

107 }

108 }

C.9 PhiResolveTest.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5

6 import net.jcip.annotations.ThreadSafe;

7

8 /*

9 <ExpectedBugs >

10 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.PhiResolveTest">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.PhiResolveTest

"/>

13 </Class >

14 <Field classname ="dtu.imm.findbugs.testing.All.PhiResolveTest" name

="l" signature =" Ljava/util/concurrent/locks/Lock;" isStatic ="

false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.PhiResolveTest

"/>

16 </Field >

17 </BugInstance >

18 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

19 <Class classname ="dtu.imm.findbugs.testing.All.PhiResolveTest">

20 <SourceLine classname ="dtu.imm.findbugs.testing.All.PhiResolveTest

"/>

21 </Class >

22 <Field classname ="dtu.imm.findbugs.testing.All.PhiResolveTest" name

="ll" signature =" Ljava/util/concurrent/locks/Lock;" isStatic ="

false">

23 <SourceLine classname ="dtu.imm.findbugs.testing.All.PhiResolveTest

"/>

24 </Field >

25 </BugInstance >

26 </ExpectedBugs >

27 */

28

29 @ThreadSafe

30 public class PhiResolveTest {

31

32 private Lock l = new ReentrantLock ();

33 private Lock ll = l;

34



SynchronizedTests.java 125

35 public void test1(boolean b) {

36 Lock t = l;

37 Lock k = b ? l : t;

38 k.lock();

39 try {

40 //do some computation

41 }

42 finally {

43 l.unlock ();

44 }

45 }

46

47 public void test2(boolean b) {

48 Lock t = ll;

49 Lock k = b ? l : t;

50 k.lock();

51 try {

52 //do some computation

53 }

54 finally {

55 l.unlock ();

56 }

57 }

58

59 }

C.10 SynchronizedTests.java

1 package dtu.imm.findbugs.testing.All;

2

3 import net.jcip.annotations.ThreadSafe;

4

5 /*

6 <ExpectedBugs >

7 <BugInstance type="DL" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

8 <Class classname ="dtu.imm.findbugs.testing.All.SynchronizedTests">

9 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests "/>

10 </Class >

11 <Method classname ="dtu.imm.findbugs.testing.All.SynchronizedTests"

name=" Test1" signature ="()V" isStatic =" false">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests "/>

13 </Method >

14 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests" startBytecode ="13" endBytecode ="13"/ >

15 </BugInstance >

16 <BugInstance type="DL" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

17 <Class classname ="dtu.imm.findbugs.testing.All.SynchronizedTests">

18 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests "/>



126 Test cases

19 </Class >

20 <Method classname ="dtu.imm.findbugs.testing.All.SynchronizedTests"

name=" Test2" signature ="(Z)V" isStatic =" false">

21 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests "/>

22 </Method >

23 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests" startBytecode ="13" endBytecode ="13"/ >

24 </BugInstance >

25 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

26 <Class classname ="dtu.imm.findbugs.testing.All.SynchronizedTests">

27 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests "/>

28 </Class >

29 <Field classname ="dtu.imm.findbugs.testing.All.SynchronizedTests"

name="o1" signature =" Ljava/lang/Object ;" isStatic =" false">

30 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests "/>

31 </Field >

32 </BugInstance >

33 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

34 <Class classname ="dtu.imm.findbugs.testing.All.SynchronizedTests">

35 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests "/>

36 </Class >

37 <Field classname ="dtu.imm.findbugs.testing.All.SynchronizedTests"

name="o2" signature =" Ljava/lang/Object ;" isStatic =" false">

38 <SourceLine classname ="dtu.imm.findbugs.testing.All.

SynchronizedTests "/>

39 </Field >

40 </BugInstance >

41 </ExpectedBugs >

42 */

43

44 // Verified and works

45 @ThreadSafe

46 public class SynchronizedTests {

47

48 private Object o1 = new Object ();

49 private Object o2 = new Object ();

50

51 public void Test1 () {

52 synchronized (o1) {

53 synchronized (o2) {

54 }

55 }

56 }

57

58 public void Test2(boolean b) {

59 synchronized (o2) {

60 synchronized (o1) {

61 }

62 }



ThisDeadlock.java 127

63 }

64 }

C.11 ThisDeadlock.java

1 package dtu.imm.findbugs.testing.All;

2

3 import net.jcip.annotations.ThreadSafe;

4

5 /*

6 <ExpectedBugs >

7 <BugInstance type="DL" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

8 <Class classname ="dtu.imm.findbugs.testing.All.ThisDeadlock">

9 <SourceLine classname ="dtu.imm.findbugs.testing.All.ThisDeadlock

"/>

10 </Class >

11 <Method classname ="dtu.imm.findbugs.testing.All.ThisDeadlock" name="

test1" signature ="()V" isStatic =" false">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.ThisDeadlock

"/>

13 </Method >

14 <SourceLine classname ="dtu.imm.findbugs.testing.All.ThisDeadlock"

startBytecode ="10" endBytecode ="10"/ >

15 </BugInstance >

16 <BugInstance type="DL" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

17 <Class classname ="dtu.imm.findbugs.testing.All.ThisDeadlock">

18 <SourceLine classname ="dtu.imm.findbugs.testing.All.ThisDeadlock

"/>

19 </Class >

20 <Method classname ="dtu.imm.findbugs.testing.All.ThisDeadlock" name="

test2" signature ="()V" isStatic =" false">

21 <SourceLine classname ="dtu.imm.findbugs.testing.All.ThisDeadlock

"/>

22 </Method >

23 <SourceLine classname ="dtu.imm.findbugs.testing.All.ThisDeadlock"

startBytecode ="10" endBytecode ="10"/ >

24 </BugInstance >

25 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

26 <Class classname ="dtu.imm.findbugs.testing.All.ThisDeadlock">

27 <SourceLine classname ="dtu.imm.findbugs.testing.All.ThisDeadlock

"/>

28 </Class >

29 <Field classname ="dtu.imm.findbugs.testing.All.ThisDeadlock" name="

lock" signature =" Ljava/lang/Object ;" isStatic =" false">

30 <SourceLine classname ="dtu.imm.findbugs.testing.All.ThisDeadlock

"/>

31 </Field >

32 </BugInstance >

33 </ExpectedBugs >

34 */



128 Test cases

35

36 // Verified and works

37 @ThreadSafe

38 public class ThisDeadlock {

39

40 private Object lock = new Object ();

41

42 public void test1 () {

43 synchronized (lock) {

44 synchronized (this) {

45

46 }

47 }

48 }

49

50 public void test2 () {

51 synchronized (this) {

52 synchronized (lock) {

53

54 }

55 }

56 }

57

58

59 }

C.12 FieldAccess.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5

6 import net.jcip.annotations.ThreadSafe;

7

8 /*

9 <ExpectedBugs >

10 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.FieldAccess">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.FieldAccess "/>

13 </Class >

14 <Field classname ="dtu.imm.findbugs.testing.All.FieldAccess" name="o"

signature =" Ljava/lang/Object ;" isStatic =" false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.FieldAccess "/>

16 </Field >

17 </BugInstance >

18 </ExpectedBugs >

19 */

20

21 @ThreadSafe

22 public class FieldAccess {

23



LockOnLocalVariable.java 129

24 private final Lock l = new ReentrantLock ();

25 private volatile Object o = new Object ();

26

27 public void test1 () {

28 l.lock();

29 try {

30 Object p = o;

31 }

32 finally {

33 l.unlock ();

34 }

35 }

36

37 public void test2 () {

38 l.lock();

39 try {

40 o = new Object ();

41 }

42 finally {

43 l.unlock ();

44 }

45 o = new Object ();

46 }

47

48 }

C.13 LockOnLocalVariable.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5

6 import net.jcip.annotations.ThreadSafe;

7

8 /*

9 <ExpectedBugs >

10 <BugInstance type="LOLV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.LockOnLocalVariable">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnLocalVariable "/>

13 </Class >

14 <Method classname ="dtu.imm.findbugs.testing.All.LockOnLocalVariable"

name=" doStuff" signature ="(Z)V" isStatic =" false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnLocalVariable "/>

16 </Method >

17 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnLocalVariable" startBytecode ="35" endBytecode ="35"/ >

18 <Int value ="1"/>

19 </BugInstance >

20 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="



130 Test cases

MT_CORRECTNESS">

21 <Class classname ="dtu.imm.findbugs.testing.All.LockOnLocalVariable">

22 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnLocalVariable "/>

23 </Class >

24 <Method classname ="dtu.imm.findbugs.testing.All.LockOnLocalVariable"

name=" doStuff" signature ="(Z)V" isStatic =" false">

25 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnLocalVariable "/>

26 </Method >

27 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnLocalVariable" startBytecode ="29" endBytecode ="29"/ >

28 <Int value ="0"/>

29 </BugInstance >

30 </ExpectedBugs >

31 */

32

33 @ThreadSafe

34 public class LockOnLocalVariable {

35

36

37 public void test1(boolean b) {

38 doStuff(b);

39 }

40

41 private void doStuff(boolean b) {

42 Lock l1 = new ReentrantLock ();

43 Lock l2 = new ReentrantLock ();

44 Lock l = b ? l1 : l2;

45 l.lock();

46 l1.lock();

47 try {

48 //do stuff

49 }

50 finally {

51 l.unlock ();

52 l1.unlock ();

53 }

54 }

55

56

57 }

C.14 PublicFinalDispatch.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5

6 import net.jcip.annotations.ThreadSafe;

7

8 /*



GuardedVariable.java 131

9 <ExpectedBugs >

10 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

11 <Class classname ="dtu.imm.findbugs.testing.All.PublicFinalDispatch">

12 <SourceLine classname ="dtu.imm.findbugs.testing.All.

PublicFinalDispatch "/>

13 </Class >

14 <Field classname ="dtu.imm.findbugs.testing.All.PublicFinalDispatch"

name="l" signature =" Ljava/util/concurrent/locks/Lock;" isStatic

=" false">

15 <SourceLine classname ="dtu.imm.findbugs.testing.All.

PublicFinalDispatch "/>

16 </Field >

17 </BugInstance >

18 </ExpectedBugs >

19 */

20

21 @ThreadSafe

22 public class PublicFinalDispatch {

23

24 private Lock l = new ReentrantLock ();

25

26 public void test1(boolean b) {

27 getLock(b,l,l).lock();

28 l.lock();

29 try {

30 synchronized (getLock(b,l,l)) {

31

32 }

33 }

34 finally {

35 l.unlock ();

36 Lock p = this.l;

37 getLock(b,p,l).unlock ();

38 }

39

40 }

41

42 public final Lock getLock(boolean b, Lock l,Lock q) {

43 return b ? l : q;

44 }

45

46 public Lock getUnknownLock(boolean b, Lock l,Lock q) {

47 return b ? l : q;

48 }

49

50 }

C.15 GuardedVariable.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.ArrayList;



132 Test cases

4 import java.util.List;

5 import java.util.concurrent.locks.Lock;

6 import java.util.concurrent.locks.ReentrantLock;

7 import java.util.concurrent.locks.ReentrantReadWriteLock;

8

9 import net.jcip.annotations.ThreadSafe;

10

11 /*

12 <ExpectedBugs >

13

14 </ExpectedBugs >

15 */

16

17 @ThreadSafe

18 public class GuardedVariable {

19

20 private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock ();

21 private final Lock rl1 = rwl.readLock ();

22 private final Lock wl1 = rwl.writeLock ();

23 private volatile List <String > l = new ArrayList <String >();

24

25 public void test1 () {

26 rl1.lock();

27 try{

28 l.add("test");

29 }

30 finally{

31 rl1.unlock ();

32 }

33 }

34

35 public void test2(boolean b) {

36 wl1.lock();

37 try {

38 l = new ArrayList <String >();

39 }

40 finally {

41 wl1.unlock ();

42 }

43 }

44

45 }

C.16 SynchronizedMethod.java

1 package dtu.imm.findbugs.testing.All;

2

3 import net.jcip.annotations.ThreadSafe;

4

5 /*

6 <ExpectedBugs >

7

8 </ExpectedBugs >



LockOnNullReference.java 133

9 */

10

11 @ThreadSafe

12 public class SynchronizedMethod {

13

14 public void test1 () {

15 test2 ();

16 }

17

18 private synchronized void test2 () {

19

20 }

21

22 }

C.17 LockOnNullReference.java

1 package dtu.imm.findbugs.testing.All;

2

3 import java.util.concurrent.locks.Lock;

4 import java.util.concurrent.locks.ReentrantLock;

5

6 import net.jcip.annotations.ThreadSafe;

7

8 /**

9 * Example that illustrates the possibility to lock on a null reference

10 */

11

12 /*

13 <ExpectedBugs >

14 <BugInstance type="LHAR" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

15 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

16 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

17 </Class >

18 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test2" signature ="(Z)V" isStatic =" false">

19 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

20 </Method >

21 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="13" endBytecode ="13"/ >

22 </BugInstance >

23 <BugInstance type="LHAR" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

24 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

25 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

26 </Class >

27 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test3" signature ="(Z)V" isStatic =" false">

28 <SourceLine classname ="dtu.imm.findbugs.testing.All.



134 Test cases

LockOnNullReference "/>

29 </Method >

30 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="27" endBytecode ="27"/ >

31 </BugInstance >

32 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

33 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

34 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

35 </Class >

36 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test1" signature ="()V" isStatic =" false">

37 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

38 </Method >

39 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="4" endBytecode ="4"/>

40 <Int value ="0"/>

41 </BugInstance >

42 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

43 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

44 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

45 </Class >

46 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test1" signature ="()V" isStatic =" false">

47 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

48 </Method >

49 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="13" endBytecode ="13"/ >

50 <Int value ="1"/>

51 </BugInstance >

52 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

53 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

54 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

55 </Class >

56 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test2" signature ="(Z)V" isStatic =" false">

57 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

58 </Method >

59 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="8" endBytecode ="8"/>

60 <Int value ="0"/>

61 </BugInstance >

62 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

63 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

64 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>



LockOnNullReference.java 135

65 </Class >

66 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test3" signature ="(Z)V" isStatic =" false">

67 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

68 </Method >

69 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="10" endBytecode ="10"/ >

70 <Int value ="0"/>

71 </BugInstance >

72 <BugInstance type="LON" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

73 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

74 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

75 </Class >

76 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test3" signature ="(Z)V" isStatic =" false">

77 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

78 </Method >

79 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="22" endBytecode ="22"/ >

80 <Int value ="1"/>

81 </BugInstance >

82 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

83 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

84 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

85 </Class >

86 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test1" signature ="()V" isStatic =" false">

87 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

88 </Method >

89 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="4" endBytecode ="4"/>

90 <Int value ="0"/>

91 </BugInstance >

92 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

93 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

94 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

95 </Class >

96 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test2" signature ="(Z)V" isStatic =" false">

97 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

98 </Method >

99 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="8" endBytecode ="8"/>

100 <Int value ="0"/>

101 </BugInstance >



136 Test cases

102 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

103 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

104 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

105 </Class >

106 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test3" signature ="(Z)V" isStatic =" false">

107 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

108 </Method >

109 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="10" endBytecode ="10"/ >

110 <Int value ="0"/>

111 </BugInstance >

112 <BugInstance type=" LONDV" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

113 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

114 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

115 </Class >

116 <Method classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name=" test3" signature ="(Z)V" isStatic =" false">

117 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

118 </Method >

119 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference" startBytecode ="22" endBytecode ="22"/ >

120 <Int value ="1"/>

121 </BugInstance >

122 <BugInstance type="UFA" priority ="2" abbrev ="MTSE" category ="

MT_CORRECTNESS">

123 <Class classname ="dtu.imm.findbugs.testing.All.LockOnNullReference">

124 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

125 </Class >

126 <Field classname ="dtu.imm.findbugs.testing.All.LockOnNullReference"

name="l" signature =" Ljava/util/concurrent/locks/Lock;" isStatic

=" false">

127 <SourceLine classname ="dtu.imm.findbugs.testing.All.

LockOnNullReference "/>

128 </Field >

129 </BugInstance >

130 </ExpectedBugs >

131 */

132

133 @ThreadSafe

134 public class LockOnNullReference {

135

136 private Lock l;

137

138 public LockOnNullReference(boolean b) {

139 if(b) l = new ReentrantLock ();

140 }

141



LockOnNullReference.java 137

142 public void test1 () {

143 l.lock();

144 try {

145 //make computation

146 }

147 finally {

148 l.unlock ();

149 }

150 }

151

152 public void test2(boolean b) {

153 if(b) {

154 l.lock();

155 }

156 }

157

158 public void test3(boolean b) {

159 Lock q = l;

160 if(b) {

161 q.lock();

162 }

163 else {

164 l.lock();

165 }

166 }

167

168 }


	Summary
	Acknowledgements
	1 Introduction
	1.1 Motivation and Purpose
	1.2 Structure and Overview
	1.3 Delimitation

	2 Background
	2.1 Program Analysis
	2.2 Concurrency Theory
	2.3 Java Analysis Frameworks
	2.4 The Java Execution Model
	2.5 Java and Synchronization Primitives
	2.6 Class-wise Thread Safety

	3 The Analyses
	3.1 Our Approach
	3.2 General Definitions
	3.3 Points-To Analysis
	3.4 Lock Analysis
	3.5 Dominator Analysis
	3.6 Concurrent Points-To Analysis
	3.7 Applying the Analyses

	4 Implementation
	4.1 The Analyses
	4.2 Detecting Bugs
	4.3 Testing

	5 Conclusion
	5.1 Achievements
	5.2 Applications
	5.3 Future work

	List of Notation
	Bibliography
	A README
	B FindBugs XML
	B.1 messages.xml
	B.2 findbugs.xml

	C Test cases
	C.1 LockTryFinally.java
	C.2 ReaderWriterLocks.java
	C.3 ExposedStateVariables.java
	C.4 ReaderWriterDeadLock.java
	C.5 PublicNonFinalDispatch.java
	C.6 DispatchTest.java
	C.7 AssignmentCycles.java
	C.8 ForLoopTest.java
	C.9 PhiResolveTest.java
	C.10 SynchronizedTests.java
	C.11 ThisDeadlock.java
	C.12 FieldAccess.java
	C.13 LockOnLocalVariable.java
	C.14 PublicFinalDispatch.java
	C.15 GuardedVariable.java
	C.16 SynchronizedMethod.java
	C.17 LockOnNullReference.java


