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Summary

The main objective of this thesis is the development of a forecast algorithm
for short-term travel time forecasting. This algorithm is intended to become
an inherent part of a new real-time traffic reporting system. This system is in
the pipeline in the framework of the Danish Road Directorate. Practicability
and operability are the central keywords that permeate every aspect of this the-
sis. Consequently great emphasis is placed on the data value chain from data
collection and preparation of input data for the forecast algorithm to model
deployment. The movement of data through a series of stages and the transfor-
mations that these data undergo in the process are illustrated. Data modeling is
viewed as an intrinsic part of the complete data value chain with an end product
in mind, combined with methods of heuristic nature. Insights into the nature
of traffic data are provided by the use of clustering. The forecasting algorithm
is subsequently based on the results of clustering of data. The developed algo-
rithm is simple and its performance in terms of forecast accuracy is satisfactory.
The result is considered to be superior to forecasting based on average travel
times.
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Preface

This thesis was prepared at Informatics and Mathematical Modeling, the Techni-
cal University of Denmark in partial fulfillment of the requirements for acquiring
the master degree in engineering. This thesis was supervised by Bo Friis Nielsen
at IMM and co-supervised by Jan Holm from the Road Directorate.

This thesis deals with the development of a forecast algorithm for real-time
travel time forecasting and the establishment of a data value chain from data
collection to model deployment in support of modeling. The main result is
that clustering can be utilized in the context of travel time forecasting and that
satisfactory results can be achieved by a relatively simple model.

A draft paper about real-time travel time forecasting based on the ideas pre-
sented in this thesis was submitted and accepted for presentation at the 14th
World Congress on Intelligent Transport Systems in Beijing, China, October
2007.

Lyngby, July 2007
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Chapter 1

Background information

The traffic flow on the motorway network spanning the Greater Copenhagen
area is monitored by several hundred detectors and radars measuring vehicle
speed and count. To date, traffic reports have been presented to the public on
a website announcing traffic states (free flow, dense traffic, queuing) for each
motorway segment [1]. A new traffic reporting system has been designed in
order to improve the quality of the traffic reports. This system is intended to
operate in real-time. After implementation the public will have access to the
following information: three key tables showing long-term average travel times
and speeds for the specific time of day, real-time travel times and speeds, 15-
minute travel time and speed forecasts, respectively, for any pair of adjacent
motorway exits covering the aforementioned motorway network. These values
will be updated every minute. An excerpt from a key table showing real-time
travel times and speeds for all adjacent motorway exits on Hillerødmotorvejen
southbound is shown in Figure 1.1. Furthermore, the system will provide travel
times between arbitrary motorway exits in the motorway network based on the
real-time traffic situation. It can be used to forecast the travel time starting
just now. The user selects a starting point A and a termination point B, after
which the system calculates the expected travel time and speed on the selected
route. A route is modeled as a sequence of segments between two adjacent
motorway exits. The system calculates the travel time between motorway exits
A and B as follows: for the first motorway segment on the route the real-time
travel time is used. For the next segment on the route the real-time travel time,
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the 15-minute forecast or the 30-minute forecast is used as segment travel time,
depending on the running total travel time on the selected route. The travel
times are accumulated along the motorway segments which make up the route.
Depending on the accumulated travel time, the real-time, the 15-minute or the
30-minute forecast is used until the termination point B is reached. This process
is sketched in Figure 1.2.

Figure 1.1: Key table - test version

Figure 1.2: User interface - test version

1.1 Scope and goal of the project

The central topic in this thesis is the development of a universal 15-minute travel
time forecast algorithm that can be applied to each road segment between two
motorway exits. If workable, the prepared forecast algorithm will be integrated
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into the new traffic reporting system upon the completion of this thesis, after
which this service will be released to the public. For this reason, great emphasis
will be placed on the practical issues that arise when dealing with the devel-
opment of a real-time large-scale application. Hence, there will be a trade-off
between the complexity of the chosen methods of approach and the require-
ments, which working with real-time data in a large-scale application imposes
on the possibilities of selecting the theoretically most desirable approach. This
thesis will aim at ensuring compliance with the requirements outlined by the
Road Directorate by the use of heuristic methods.
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Chapter 2

Requirements specification

2.1 Functional and non-functional requirements

The development of a forecast model is subject to a number of functional and
non-functional requirements, which need to be accounted for before, during and
after the model building process. These requirements have informally been
worked out by the Road Directorate in collaboration with the writer to ensure
that the developed forecast algorithm complies with the proposed vision for the
new traffic reporting system. Above all, the system requires that the forecasted
travel times are reasonably trustworthy, and that they are reported to the public
in real-time. Furthermore, the Road Directorate has expressed a desire that
the preparation of input data, model building, model evaluation and model
deployment is native to the database where the collected data will reside. The
above requirements place a series of constraints on how the modeling process
can be conducted, and what special purpose software tools should be used. The
following paragraphs will outline these requirements and their particular details.
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2.1.1 Service availability

The forecast function is required to have an excellent service availability. This
means that the forecasted travel times must be considered reliable before they
can be announced to the public. This has been defined as the maximum ac-
ceptable deviation that the forecasted travel times are allowed to have from
the actual travel times in minutes. The maximum acceptable value is set to
5 minutes. This value has origins in the evaluation report prepared by COWI
[2] of the 15-minute forecast model that was developed in connection with the
extension of the M3 motorway [3]. The forecast functionality will be disabled
if the difference between the actual and the forecasted travel times exceeds 5
minutes.

2.1.2 Computational considerations

The forecast algorithm is subject to the requirement that the computation time
for the whole motorway network has to be containable to a few seconds. This is
due to the fact that the forecasted travel times will be reported every minute.

2.1.3 Data preparation

This includes data cleaning and repair such as the handling of missing values,
outliers and data transformation. In other terms, this step includes the creation
of methods to process the collected data into a unified, consistent format before
it is passed on as input to the forecasting algorithm.

2.1.4 Model building and evaluation

An inherent part of this process is choosing the software tool. The requirement
states that this process needs to be native to the database where the collected
data will reside. This means that, ideally, the process should be conducted in the
database. This is due to the fact that the amount of modeling that needs to be
done to create the forecast models for the whole motorway network is expected
to be rather comprehensive given its size. The model building and evaluation
process involves handling great amounts of data, which, in turn, would make the
data extraction, transportation and loading process cumbersome and expensive
if the input data had to be moved outside of the database.
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2.1.5 Model deployment

This process involves the deployment of the prepared forecast models to the
real-time application. It is a requirement that model deployment is native to
the database to enable seamless model distribution without wasting resources
on custom-designing a solution.

2.1.6 Recalibration

This process involves the maintenance and recalibration of the forecast models
after deployment. This is necessary when the distribution of data has changed
since the last time the models were built. It is a requirement that this process
is automated, thereby minimizing manual work.

2.1.7 Interpretability

A capable person, but a non-expert, should be able to understand and con-
duct the previously mentioned steps once a routine for their execution has been
defined and implemented.

2.2 Concluding remarks

The discussed requirements partially exclude the use of any prevalent stand
alone software for model building. This is mainly due to the fact that this
would require the movement of data outside the database, and subsequent im-
plementation of the results in the application. The Road Directorate uses Oracle
Database 10g [4] for storing the collected data. It was decided that all data han-
dling pertaining to bringing the collected data into a format that can be used
as input to the forecast algorithm would take place in a data warehouse that
would be built inside the Oracle Database. For this reason, it makes sense to
use Oracle Data Mining for subsequent model building, evaluation and deploy-
ment as this tool is an inherent part of the Oracle database. Chapter 5 will
give an informal introduction on how Oracle Data Mining can be used for data
modeling purposes.
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Chapter 3

Conceptual project outline

The development of a forecasting algorithm, which is to be integrated in a
commercial application, is limited not only to the selection of an appropriate
forecast algorithm and an estimation of model parameters. A supporting frame-
work needs to be created in which data handling and modeling is going to take
place. Figure 3.1 outlines a conceptual data value chain from data collection,
aggregation, transformation and preprocessing to production of 15-minute travel
time forecasts. This figure will serve as a road map for the work that needs to
be done in order to develop the requested forecast algorithm and make it ready
for deployment. The box-shaped sections, which are marked with dotted lines,
will not be considered in the project.



10 Conceptual project outline

Figure 3.1: Conceptual project outline



Chapter 4

Review of the studied
bibliography

4.1 Introduction

A number of articles about travel time forecasting were reviewed to gain in-
sight into the studies that have been conducted in this field. Only articles that
deal with models based on statistical analysis and machine learning have been
reviewed. The outlined requirements in Chapter 2 will be used as a point of
departure for the discussion of the theoretical aspects and the technical poten-
tialities presented in the articles. This discussion includes the issues that are
comparable with the ones that will need to be dealt with in the present project.
These are listed below:

Introduction A brief introduction to the paper.

Data quality Method of approach towards dealing with the quality of input
data (regarding, e.g., discarding and/or repairing corrupt and missing
data, handling incident traffic patterns etc.)

Forecasting step The time interval upon which the forecasts are made.
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Forecasting horizon The extent of time ahead to which the forecast is refer-
ring.

Type of input Speed or travel time and the interval upon which the input is
based.

Forecast algorithm The selected methodology approach.

Validation The statistical and qualitative measures that are used for model
validation.

Results

Scenarios for practical implementation

Following are a few articles that have been chosen for further examination to
illustrate the variety and quality of the research that has been conducted in the
area.

4.2 Reviewed articles

4.2.1 Road trafficking description and short term travel
time forecasting, with a classification method [5]

Introduction The study is carried out on a road segment which is a branch
of the Parisian highway network. This road segment is representative of the
Parisian road traffic. It is 21.82 kilometers long and has 38 counting stations.
The database used in the paper is composed of the daily evolution of the vehicles
speed over 709 days. For each day and each counting station 180 measurements
are available, corresponding to the average speed over a period of 6 minutes,
ranging from 05:00:00 to 23:00:00.

Data quality Concrete action is taken to remove aberrant data and to com-
plete missing data. These data cleaning techniques are applied to the 6-minute
series containing the average speed.

Forecasting step Unspecified.
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Forecasting horizon {18, 30, 48, 60, 78, 90, 108} minutes.

Type of input Average speed over a period of 6 minutes (6-minute series).

Forecast algorithm The forecasting methodology consists of two main parts:
first, the estimation of standard speed profiles for each counting station; second,
the matching of incoming observations for speed to the estimated profiles and
hence, estimating speed at all counting stations to forecast travel time. Inter-
comparison of mixture models and the agglomerative clustering algorithm for
the estimation of speed profiles.

Validation The difference between the actual and the estimated travel time,
standardized by the actual travel time for each counting station using both
forecasting methodologies. These are compared to the stationary pattern, which
is the mean of all available traffic patterns for each counting station.

Results The best forecasts are achieved by the agglomerative forecast algo-
rithm.

Scenarios for practical implementation None.

Comments The forecasting step is left unspecified. No differentiation is made
between peak-hours and off-peak periods. Even if, a speed curve for one of the
counting stations indicates that the travel times vary throughout the day. The
discussion paragraph addresses the issue of outliers and rare events. Computa-
tional performance of the algorithms has also been taken into consideration.

4.2.2 Univariate Short-Term Prediction of Road Travel
Times [6]

Introduction The study is conducted on data collected from Vehicle Infor-
mation and Communication System in Japan over a 15 km long main road over
a period of 14 months. For each day 262 measurements are available, corre-
sponding to an average of travel times over a period of 5 minutes, ranging from
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02:00:00 to 23:55:00. These travel times were derived from speed, flow and
occupancy measurements collected from the detectors installed on this road.

Data quality Not considered.

Forecasting step 5 minutes.

Forecasting horizon {5, 10, 15, ..., 120} minutes.

Type of input Average travel time over a period of 5 minutes (5-minute
series). The authors do not specify how the collected measurements are accu-
mulated into the 5-minute travel time series.

Forecast algorithm The forecasting process consists of fitting a different
model for each 5-minute interval. Experimental intercomparison of linear regres-
sion, neural networks, regression trees, k-nearest neighbors and locally weighted
linear regression models.

Validation Root Mean Squared Error (RMSE). This error is averaged over
all prediction points, i.e., over all predictive models.

Results Locally weighted linear regression models produce the best forecasts.

Scenarios for practical implementation None.

Comments Provides a remarkable insight into a variety of univariate methods
for travel time forecasting for a single road segment.

4.2.3 Classification of Traffic Pattern [7]

Introduction The data used in this study was collected from a 12 km long
expressway of the Tokyo Metropolitan Expressway Network over a period of 2
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years. For each day 288 measurements are available, corresponding to an average
of travel times on the expressway over a period of 5 minutes, ranging from
00:00:00 to 23:59:00. These travel times were derived from speed measurements
collected from the detectors installed app. 300 meters apart.

Data quality Not considered.

Forecasting step Unspecified.

Forecasting horizon Unspecified.

Type of input The 5-minute travel time series are smoothed by use of a
wavelet function. These series are subsequently divided into 2 periods, ranging
from 07:00:00 to 13:00:00 and 15:00:00 to 20:00:00, respectively. The author
does not specify how the collected speed measurements are accumulated into
the 5-minute travel time series.

Forecast algorithm The forecasting methodology consists of two main parts:
first, the segmentation of traffic patterns from the historical database into a
fixed number of representative clusters (for each period); second, matching the
incoming patterns with the representative clusters. Small large ratio clustering
algorithm for market basket data was used for segmentation of traffic patterns.
An exogenous database that for each traffic pattern contains information about
day of the week, amount of rainfall, long weekend and vacations is used to
facilitate the segmentation process.

Validation A coefficient that measures the correlation between each traffic
pattern and the segmented patterns. Mean Absolute Error (MAE), mean ab-
solute percentage %, percentage of forecasts within 5 % and 10 %. The traffic
patterns are also matched individually with all traffic patterns from the non-
segmented database (= the historical database).

Results Matching new traffic patterns to segmented historical traffic patterns
performs better than matching new traffic patterns to all historical traffic pat-
terns one by one.
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Scenarios for practical implementation None.

Comments The results are reported on a per day basis, which does not reflect
the overall performance of the forecasting algorithm. Furthermore, they are
hard to interpret due to the fact that essential information about the different
parameters is left unspecified (forecasting step and forecasting horizon).

4.2.4 Travel Time Prediction with Support Vector Regres-
sion [8]

Introduction The data used in this study are travel times over 45, 78 and
350 kilometer long road segments in Taiwan collected over a period of 5 weeks.
The 5 week period is chosen such that it does not contain any special events and
holidays etc. as these factors, according to the authors, could bias the results.
For each day 60 measurements are available, corresponding to an average of
travel times on the expressway over a period of 3 minutes, ranging from 07:00:00
to 10:00:00. These travel times are derived from speed measurements collected
from detectors installed at 1 km intervals along these road segments.

Data quality Days with missing and/or corrupted values are excluded from
the study. Therefore, repair methods for improving the quality of data are not
considered.

Forecasting step Unspecified.

Forecasting horizon Unspecified.

Type of input Average travel time over a period of 3 minutes (3-minute
series). The authors do not specify how the collected speed measurements are
accumulated into the 3-minute travel time series.

Forecast algorithm Support vector regression.
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Validation Relative Mean Error (RME) and Root Mean Squared Error (RMSE).
Comparison with current travel time forecast method and historical mean fore-
cast method.

Results The support vector regression algorithm outperforms the other two
methods.

Scenarios for practical implementation None.

Comments The results are unclear as information about the forecasting step
and the forecasting horizon is not specified. The results of the study are subject
to the condition that the input traffic patterns are ”good” traffic patterns which
is most unlikely in field conditions.

4.2.5 M3 forecast model [3]

The development of this model was conducted in the framework of the Road
Directorate. The results of this study have not been published. This model has
been included because research on Google did not return anything about real life
implementation projects pertaining to travel time forecasting. For this reason,
the writer will implicitly take this model as a baseline case when evaluating the
results of the 15-minute forecast algorithm.

Introduction The data used in this study are travel times from 12 road seg-
ments spanning the M3 motorway. These segments are of varying length, rang-
ing from 1.5 to 3.5 kilometers. The data have been collected over a period of 2
months. For each day 482 measurements are available for each road segment,
corresponding to 1-minute travel time series, ranging from 06:00:00 to 10:00:00
and 14:00:00 to 18:00:00. These travel times are derived from measurements for
speed and vehicle count collected from detectors installed at app. few hundred
meter intervals along these road segments.

Data quality Observations with missing values are substituted with an av-
erage of observations from the other detectors which belong to the same road
segment. Corrupt values are excluded from the study. Vacations and incidents
are also removed.
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Forecasting step 1 minute.

Forecasting horizon 15 minutes.

Type of input Difference between long-term (2 months) average travel times
for the specific time of day of the forecast and travel times at 1-minute intervals.
This value is calculated for each segment.

Forecast algorithm Linear autoregressive model. 120 models are made in
total: two for each business day and road segment - one for the AM period and
another for the PM period.

Validation Mean Squared Error (MSE). Percentage of error between the ac-
tual and forecasted travel times exceeding 2 and 5 minutes, respectively. These
values are averaged over all road segments. Baseline predictors such as the
2-month historical average are included for comparison.

Results Model performance is evaluated on the M3 motorway stretch as a
whole. Individual segments are not evaluated separately. The model with the
lowest MSE value was chosen for implementation.

Scenarios for practical implementation The forecast algorithm was im-
plemented in a real-time application. However, due to glitches in data relay
from the data warehouse where the collected data reside, the service was never
launched to the general public.

Comments The results are subject to the condition that all input traffic pat-
terns are ”good” traffic patterns. Individual road segment characteristics are
not taken into account as one model structure is fit for all road segments.
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4.3 Concluding remarks

The reflections of this section do not include the M3 forecast model. The com-
ments are only related to the published articles.

A common feature in all of the reviewed articles is that none of them actually
deal with a real life implementation case, suggesting that the proposed algo-
rithms are not immediately intended for use in any kind of application. As a
consequence hereof, the supporting framework in which data preprocessing and
modeling takes place is not considered. The proposed forecast algorithms are
evaluated under presumably ideal conditions in that aberrant traffic patterns
are either excluded from the modeling process or ignored. How this affects the
results, is not investigated in any great detail. Although the proposed forecast
methods perform satisfactorily as reported in the studies, the results are not
related to the type of application the forecasting algorithms potentially are go-
ing to get integrated into. Furthermore, the results of some of the studies are
somewhat unclear in that they are blurred by the fact that crucial information
about forecasting step and horizon is not revealed. Intercomparison between
the studies is difficult as each study has a different basis in terms of topology
of the examined road segments, the level of detail of input data, the forecasting
step and horizon, and the utilized forecast method. The presented material is
not backed up by even a hypothetical implementation scenario, which is another
weak point. There is, however, no doubt that the reviewed articles have been
informative in terms of introducing the writer to a wide range of methods and
approaches that can be utilized when dealing with travel time forecasting. This
will serve as an inspiration for further work.
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Chapter 5

Practical issues

5.1 Introduction

Before beginning the data preparation and modeling, clarification about the
supporting tools will be provided. It was mentioned in Chapter 2 that the Road
Directorate has decided that the 15-minute forecast algorithm will be developed
using the tools provided by Oracle Data Mining. This approach has been chosen
to streamline processes pertaining to the development of the 15-minute forecast
algorithm.

5.2 What is Data Mining with Oracle?

Oracle Data Mining (ODM) embeds data mining functionality in the Oracle
Database [9]. This means that the data preparation, model building, evaluation
and deployment remain in the database. ODM algorithms operate natively on
the data residing in the database, thus eliminating the need for extraction and
transfer into prevalent stand-alone tools for data modeling such as R, S-plus
or MATLAB etc., resulting in a simpler and more streamlined data modeling
process. Model deployment is also facilitated in that the results are already in
the database. Also, the less data movement, the less time the entire process
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takes. The direct coupling between the various stages of data modeling process
is regarded as a step forward by the Road Directorate in terms of applicability
of using data modeling in applications pertaining to traffic reporting.

5.3 Data Mining Functions in ODM

For a complete list of available data mining functions refer to Oracle Data
Mining Concepts Guide [9].
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Real-time traffic data
collection

A series of in-road loop detectors and roadside radars (698 to be exact) placed
along motorways spanning the Greater Copenhagen Area supply the following
information: vehicle presence, vehicle count and occupancy. In that detectors
cannot directly measure speed, it is estimated from the time a vehicle spends
between two detectors. These measurements are continuously relayed to cen-
tralized road stations set up on the sides of the roads. Although information
is relayed many times per second, the measurements are accumulated and am-
plified at the road stations. Accumulated values for speed and vehicle count
for each detector and radar are subsequently sent to the data warehouse at 1-
minute intervals (hereinafter referred to as 1-minute accumulated measurements
for speed and vehicle count). The accumulated value for speed is an estimate
for the average of speed in the preceding minute.
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Chapter 7

Real-time data warehouse

7.1 Introduction

A real-time data warehouse was built for the purpose of handling minute-to-
minute data. All processing of data pertaining to the estimation of the 15-
minute travel time forecasts will be conducted in this data warehouse. This
chapter will outline the route of how the 1-minute accumulated measurements
for speed and vehicle count can be transformed into prospective input to the
forecasting algorithm.

7.2 Preliminary considerations

The reviewed bibliography in the area of travel time forecasting showed that
different types of data were used as input to the forecasting algorithms (see
Chapter 4 for examples). These data were accumulated and amplified to the
desired level of detail from detector measurements of vehicle presence, vehicle
count and occupancy. The choice of the type and the level of detail of input
data depend to a great extent on the type and area of each application. Hence,
the presented proposals cannot be extended to this project right away. The
starting point in this project is the 1-minute accumulated measurements for
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speed and vehicle count which are available for all detectors and radars. These
measurements are updated at 1-minute intervals. The application requires the
estimation of actual segment travel times and 15-minute forecasts between two
adjacent motorway exits at 1-minute intervals. The segment travel times can be
estimated by the use of aggregation, after which they can potentially be used
as input to the forecasting algorithm. Hence, it was decided to aggregate the
1-minute accumulated measurements for speed and vehicle count to 1-minute
travel times between two adjacent motorway exits. The aggregation steps are
described in Section 7.3. The aggregation process itself is outlined in Section 7.4.
Speed measurements for single vehicles could also have been used as input for
the estimation of segment travel time. This is due to the fact that the average of
speed may not be adequate to characterize the actual speed profiles experienced
by vehicles traveling along a motorway segment. However, these measurements
were not readily available.

7.3 Aggregation steps

The purpose of aggregation is to aggregate the 1-minute accumulated measure-
ments for speed and vehicle count to 1-minute travel times between two adjacent
motorway exits. This process consists of three steps, which are equivalent to
the three levels of details in which the 1-minute accumulated measurements for
speed and vehicle count will be found in during the aggregation process: the
lowest level, the intermediate level and the highest level. The lowest level is
equivalent to the 1-minute accumulated measurements for speed and vehicle
count in each lane within a cross section. This is illustrated by the encircled
detectors in Figure 7.1. The intermediate level is an aggregation of the mea-
surements at the lowest level across the lanes within a cross section. A cross
section is defined as a stretch of road that is covered by detectors in all lanes.
The scope of a single cross section is illustrated in Figure 7.1. The highest level
equals the aggregation of the measurements at the intermediate level across all
cross sections between two adjacent motorway exits. The stretch between two
motorway exits is defined as a motorway segment. This is illustrated in Figure
7.2. Data aggregation from the lowest level to the intermediate level produces
cross section traffic data. Data aggregation from the intermediate level to the
highest level produces segment traffic data. The applied formulas are described
in Section 7.4.
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Figure 7.1: Detectors within a cross section

Figure 7.2: Aggregations levels

7.3.1 The lowest level

The lowest level is comprised of the following measurements: a detector identi-
fier, timestamp, average speed and vehicle count. Table 7.1 shows these mea-
surements for motorway segment 10051006 for one point in time. These mea-



28 Real-time data warehouse

surements should ideally exist for all active detectors. There are 698 active de-
tectors and radars in the motorway network spanning the Greater Copenhagen
Area. Values for average speed and vehicle count are missing for detectors with
identifiers TRIM35132 and TRIM35133. This illustrates the fact that drop-outs
occur quite frequently due to a number of reasons such as equipment failure,
communication failure or extreme traffic bottlenecks.

Detector identifier Timestamp Average speed (km/h) Vehicle count
TRIM35132 5-05-2007 11:55 Missing Missing
TRIM35133 5-05-2007 11:55 Missing Missing
TRIM35072 5-05-2007 11:55 115 2
TRIM35073 5-05-2007 11:55 85 10
TRIM38500 5-05-2007 11:55 118 1
TRIM38501 5-05-2007 11:55 104 7
TRIM38508 5-05-2007 11:55 92 14
TRIM38509 5-05-2007 11:55 88 8

Table 7.1: Measurements at the lowest level for motorway segment 10051006

7.3.2 The intermediate level

The intermediate level is comprised of the following measurements: a cross
section identifier, timestamp, cross section speed and cross section length. Table
7.2 shows these measurements for motorway segment 10051006 for one point in
time. This level is a collection of motorway cross sections, of which every cross
section consists of a number of detectors. This number depends on the number
of lanes on the given stretch of motorway. There are 298 cross sections in the
motorway network spanning the Greater Copenhagen Area. Cross section with
identifier 12, which consists of detectors with missing measurements, is included
at the intermediate level for reasons explained in Section 7.4.

Cross section
identifier

Timestamp Cross section
speed (km/h)

Cross section
length (m)

12 5-05-2007 11:55 Missing 304
16 5-05-2007 11:55 90 933
79 5-05-2007 11:55 106 1422
81 5-05-2007 11:55 91 1643

Table 7.2: Measurements at the intermediate level for motorway segment
10051006
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7.3.3 The highest level

The highest level is comprised of the following measurements: a segment identi-
fier, timestamp, travel time, segment speed and segment length. Table 7.3 shows
these measurements for motorway segment 10051006 for one point in time. This
level is a collection of motorway segments, of which every segment consists of
a number of cross sections. The motorway segments have been selected to
be consistent with adjoining road entrances and exits. Hence, the number of
cross sections in a motorway segment varies according to the stretch of motor-
way. There are 76 motorway segments in the motorway network spanning the
Greater Copenhagen Area.

Segment
identifier

Timestamp Travel time (min) Segment
speed
(km/h)

Segment
length
(m)

10051006 5-05-2007 11:55 2,72 95 4302

Table 7.3: Measurements at the highest level for motorway segment 10051006

7.4 Data cleaning, repair and aggregation

7.4.1 Introduction

Experience shows that real-time traffic data is always distorted by noise and
usually include false or missing values, duplicate measurements, resulting from
the malfunction of the data collection and relay mechanisms. For these reasons,
the quality of the 1-minute accumulated measurements for speed and vehicle
count needs to be checked, and corrective actions need to be taken before travel
time can be calculated to ensure that the derived travel time is as reliable as pos-
sible. The data cleaning, data repair and data densification process is conducted
on all three levels and is thus an inherent part of the aggregation process. The
rules for data aggregation and cleaning have origins in the specification of re-
quirements for intelligent traffic management in connection with the extension
of the M3 motorway [10]. The rules for data repair were informally outlined
during a series of meetings between the writer and the engineers at the Road
Directorate, and are based on their experience. Detailed guidance about data
densification has primarily been sought in data warehousing literature [11].
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7.4.2 Cleaning rules

A series of cleaning rules were worked out in order to clean the 1-minute ac-
cumulated values for speed and vehicle count from unreasonable values, both
individually and in combination. Table 7.4 shows an individual test rule for
speed. This rule examines the value of speed for each individual detector at a
time.

Cleaning rules
Speed test

Speed > 180 (km/h) Discard

Table 7.4: Cleaning rules for each detector - Speed test

Table 7.5 shows combination test rules. These rules examine the combined
values of speed and vehicle count for each individual detector at a time.

Cleaning rules
Combination tests

Speed = 1-180 (km/h), Vehicle count > 0 Accept
Speed = 0, Vehicle count = 0 Discard
Speed = 0, Vehicle count > 0 Discard
Speed = 0, Vehicle count < 0 Discard
Speed < 0, Vehicle count = 0 Discard
Speed < 0, Vehicle count > 0 Discard
Speed < 0, Vehicle count < 0 Discard
Speed > 0, Vehicle count = 0 Discard
Speed > 0, Vehicle count < 0 Discard

Table 7.5: Cleaning rules for each detector - Combination tests

The main deficiency of the individual test is that it assumes that the acceptable
range of values for vehicle count for the same detector is independent of the value
of the speed. Hence, unreasonable combinations of values for speed and vehicle
count that are not listed in Table 7.5 will not be identified. If the 1-minute
accumulated values for speed and vehicle count do not pass the combination
test, the values for speed and vehicle count for the affected detector are fixed at
null. A null value indicates a missing value [12].
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7.4.3 The lowest level

It is expected that the number of incoming 1-minute accumulated measurements
for speed and vehicle count is consistent with the number of active detectors in
the motorway network. However, this assumption turns out to be false quite
frequently for reasons mentioned in Section 7.4.1 (see Table 1 for an example). In
this case, the missing detector identifiers have to be inserted in the table where
the other non-missing measurements reside. The missing detector identifier gets
the same timestamp as measurements from the non-missing detectors. Values
for average speed and vehicle count are fixed at null. The purpose with data
densification at this level is to ensure that the following aggregation of the
data from this level to the intermediate level is correct. This highlights an
important issue with using aggregation for travel time estimation, which is that
the aggregated travel time value is reliable and can be considered as prospective
input to forecasting algorithms, only if the data at the lower levels is dense.

7.4.4 The intermediate level

The following algorithm has been employed to aggregate the 1-minute accumu-
lated measurements for speed and vehicle count to the intermediate level: The
number of vehicles in the motorway cross section is calculated from the following
formula:

n =
M∑

j=1

nj ,

where n is the total number of vehicles in the affected cross sections, nj is the
number of vehicles in lane j and M is the total number of lanes. The number of
lanes ranges from two to four lanes depending on the motorway segment. Cross
section speed is calculated from the following formula:

v =

∑M
j=1 njvj∑M
j=1 nj

,

where v is the weighted average speed in the affected cross section, nj is the
number of vehicles in lane j, vj is the speed in lane j and M is the total number of
lanes. All corresponding pairs of measurements (vj , nj) need to have passed the
combination test in order to calculate the aggregated values for average speed
and vehicle count at the intermediate level. Another option could have been to
substitute the negative and missing values for average speed and vehicle count
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in the affected lanes with values from adjacent lanes. However, this option was
dismissed given the differences in average speed between the fast and the slow
lanes. Previously conducted research at the Road Directorate has shown that
this substitution method has an impact on the reliability of the aggregated travel
time values. It can be argued whether these results apply to rush hour traffic as
the differences between the fast and the slow lanes are balanced out during this
period. Furthermore, substitution and interpolation with values from adjoining
detectors was also dismissed. A number of data repair methods have been
implemented in order to densify the aggregated values. Missing values for speed
at the intermediate level are substituted with non-missing values over a 5-minute
time window preceding the timestamp at the same level. This technique has
been chosen due to the fact that some data deliveries frequently lag behind the
schedule in the range of a few minutes. The substitution fails if it turns out
that all values for speed in the preceding 5 minutes are missing. In this case,
the value for cross section speed is calculated as the average of speed values in
the remaining cross sections which belong to the same motorway segment at the
highest level:

vcross section = (

∑M
j=1 vj

M
),

where vcross section is the average speed in the cross section, vj is the speed in
the remaining cross sections that belong to the same motorway segment and M
is the number of cross sections in the affected motorway segment. The travel
time at the intermediate level is calculated from the following formula:

tcross section =
scross section

vcross section
,

where tcross section is cross section travel time, scross section is the length of
the cross section and vcross section is the cross section speed. The travel time
tcross section in the cross section is fixed at null if the value for speed vcross section

is missing.

7.4.5 The highest level

The travel time at this level is calculated by adding the individual cross section
travel times:
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tsegment =
M∑

j=1

tj ,

where tsegment is the travel time in the motorway segment, tj is the travel time
in cross section belonging to the motorway segment and M is the number of
cross sections. The speed is calculated by the following formula:

vsegment =
ssegment

tsegment
,

where vsegment is motorway segment speed, ssegment is the length of the segment
and tsegment is the aggregated travel time in the segment. The travel time at
this level will be hereinafter referred to as the aggregated travel time. Another
measurement that is calculated at this level is the motorway segment availability
rate. This measurement is used to quantify the available cross sections used in
the segment traffic data production. A motorway segment availability rate is
estimated based on the following formula:

Availability rate =

∑M
′′

j=1 sj∑M
j=1 si

,

where M
′′

is the number of cross sections totally or partially included in the
affected motorway segment with a valid cross section speed as determined in
Section 7.4.4, sj is the length of the jth cross section belonging to the affected
motorway segment and having a valid speed, M is the number of cross sections
constituting the motorway segment and si is the length of the ith cross section
included in the motorway segment. The motorway segment availability rate is
used as a quality measure to assess the reliability of the estimated segment travel
times and speeds. Moreover, this measure can be used to make an estimate of
the quality of the incoming data. This measurement will no be reported to the
end users.

7.5 Concluding remarks

This chapter addressed a number of issues which need to be dealt with before
embarking on the modeling process. A method of approach, by which the actual
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travel times in a motorway segment can be estimated, was developed. These
travel times will subsequently serve as prospective input to the forecasting al-
gorithm. Furthermore, a set of rules for data cleaning and repair were devised
to ensure that the quality of segment travel times is estimated to best effect.
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Historical data warehouse

A historical data warehouse was built for the purpose of storing the daily minute-
to-minute cross section and segment traffic data, which can be recalled when
examination of past data is required (e.g. when building a forecast model). This
data warehouse contains data for each day from October 2006 through March
2007 (and growing with each passing day). For each motorway segment and
each day 1440 travel times are stored in a table, corresponding to the aggre-
gated travel time and speed over a period of 1-minute, ranging from 00:00:00 to
23:59:00 (the contents are identical to Table 7.3). For each motorway segment
and each day 429120 travel times are stored in another table, corresponding
to the cross-section travel time and vehicle count over a period of 1-minute,
ranging from 00:00:00 to 23:59:00 (contents are identical to Table 7.2). The
1-minute accumulated measurements for speed and vehicle count corresponding
to the lowest level are not retained (refer to the contents of Table 7.1). They
are discarded at the end of each day.
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Chapter 9

The examined motorway
network

9.1 Results

The intensity of traffic varies widely throughout the day and for this reason,
it can be hard to quantify. Consequently, it is not reasonable to expect that a
single forecast model would model equally well travel times during the morning
rush hour, afternoon rush hour, and off-peak periods. This means that for
the purpose of forecasting, separate models should be fit to different periods of
day. Different approaches can be taken towards dividing the day into a number
of periods such as the morning and the afternoon peak hour [7] or dividing
the day into a number of intervals of shorter duration [6]. Present study will
look into the morning rush hour, which has been defined as the time interval
between 06:30:00 and 09:45:00. Preliminary inspection has shown that not all
motorway segments have morning rush hour traffic that spans the entire time
interval. However, in order to standardize the data preparation, model building,
evaluation and deployment processes for future use, the selected time interval
had to capture the characteristics of the whole motorway network.
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9.2 Description

The examined motorway network encompasses the motorway stretch called
Hillerødmotorvejen. This motorway spans from motorway entrance Allerød in
the north to motorway exit Høje Gladsaxe in the south. The examination will
only encompass the morning rush hour in the southbound motorway stretch.
The northbound motorway stretch will not be examined as it is not affected
by the morning rush hour traffic and hence is of no immediate interest to the
Road Directorate. The southbound stretch has been divided into five motorway
segments, corresponding to the five motorway entrances and exits as shown in
Table 9.1. Travel times at 110 km/h (free traffic flow) and 15 km/h (extreme
traffic bottleneck) have been included to provide a basis for comparison for the
reader. This stretch has been selected for examination for the following reasons:
it consists of motorway segments of different lengths and varying intensities of
traffic.

Segment
identifier

Entrance Exit Travel
time
at 110
km/h
(min)

Travel
time
at 15
km/h
(min)

Length

10011002 Allerød Farum 0,88 6,46 1616
10021003 Farum Værløse 3,06 22,42 5606
10031004 Værløse Skovbrynet 1,66 12,16 3040
10041005 Skovbrynet Gladsaxe 1,44 10,56 2641
10051006 Gladsaxe Høje Gladsaxe 2,35 17,21 4302

Table 9.1: Specifics on motorway segments on Hillerødmotorvejen southbound

Figure 9.1 illustrates travel speeds for each motorway segment. This figure has
been included to illustrate the level of congestion on Hillerødmotorvejen during
the morning rush hour. The segment travel speeds are better indicators of the
level of congestion than travel times because the segments have different lengths.
It can be seen that segments 10011002, 10021003, 10031004 and 10051006 are
fairly equally affected by the rush hour traffic. These segments are severely
congested during the rush hour period in that the average speed for much of
the time is in the interval between 20 km/h - 40 km/h. Segment 10041005 is
moderately congested. The average speed on this segment is approximately 70
km/h throughout the rush hour period. The level of congestion can be defined as
the ratio between the number of vehicles through a motorway segment compared
to the capacity of the motorway segment. The rest of the study will only detail
the results for motorway segment 10051006.
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Figure 9.1: Evolution in average speed on Hillerødmotorvejen on Wednesday
28-02-2007

9.3 Results

9.3.1 Example: the aggregated travel times

Figure 9.2 shows the aggregated travel times for motorway segment 10051006
for a number of Mondays from October 2006 to March 2007. Days with miss-
ing values in the examined time interval have been discarded. The aggregated
travel times fluctuate quite considerably over very short periods of time. This is
mainly due to the fact that traffic is processed in a ”stop-go” manner, meaning
that localized queuing of short duration occurs very often. Furthermore, the ag-
gregated travel times are not true travel times per se, but are rather the results
of an aggregation - first, an accumulation of values of speed for all cars passing
between two detectors over a period of 60 seconds; second, an aggregation of
the accumulated values of speed across detectors and subsequently across cross
sections. Both are a cause for considerable variations in speed which, in turn,
is reflected in the aggregated travel times.
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Figure 9.2: Aggregated travel times for different Mondays - motorway segment
10051006

9.3.2 Smoothing

The very stochastic nature of the aggregated travel time data could make the
modeling process ineffective and in the worst case scenario, impact on the accu-
racy of the forecasts to an extent that would render them useless for the end user.
To remedy this problem, it was decided to apply a simple moving average func-
tion, even if this would probably result in the loss of information. The purpose
for this is to diminish the erratic minute-to-minute fluctuations in the aggre-
gated travel times, which in overall terms have little significance, and allow the
major trends in traffic flow to be made more visible. Erratic minute-to-minute
fluctuations in the aggregated travel times were also deemed unacceptable by
the Road Directorate in that these times would also be reported to the pub-
lic through the website. The interpretation of minute-to-minute variations in
the travel times would be confusing for the ordinary user. The fluctuations
reflect the variations in cross section speed, not in segment travel time. Due
to these reasons, a 10-minute moving average function was applied. For exam-
ple, the calculation for travel time at time 06:45:00 consists of the average of
travel times from 10 consecutive minutes preceding and including time point
06:45:00. This number is scientifically unsubstantiated per se; however, the
inspection of the aggregated travel times, 1-minute (1 minute preceding and
including the current travel time), 5-minute (5 minutes preceding and including
the current travel time) and 10-minute moving average travel times indicated
that the best results were obtained by choosing the 10-minute moving average
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window function. The 1-minute and 5-minute moving average travel times were
too responsive to the recent variations in the aggregated travel times, with the
result that the minute-to-minute fluctuations in the travel times were still quite
substantial. The 10-minute moving average function seemed to produce the
desired results. A larger smoothing interval, however, would give a mislead-
ing picture of the current travel time times as it, from a theoretical viewpoint,
would produce a more pronounced lag in the smoothed sequence. It can be dis-
cussed whether the proposed smoothing interval is already too large. This has,
however, not been tested out in practice. Figure 9.3, 9.4 and 9.5 show the ag-
gregated travel times after application of the 1-minute, 5-minute and 10-minute
moving average function. It can be seen in Figure 9.5 that the course of the
traffic flow is now illustrated more clearly. A number of traffic flow patterns
have emerged, suggesting that the traffic flow might be grouped into a number
of clusters. The disadvantage of using this smoothing technique is that all

Figure 9.3: 1 - minute moving average travel time data for a number of Mondays
- motorway segment 10051006

past observations are given the same weight, in which case, the resulting travel
times might be downright misleading, especially as the size of the smoothing
interval gets bigger. This applies also for congestion build-up and phase-out.
Other smoothing techniques could have been used to diminish the fluctuations
in the aggregated travel time values, such as the weighted moving average or
the exponential smoothing functions. Both give more weight to recent observa-
tions and less weight to older observations [13]. However, these functions are
only useful when there are trends. And there are no well-defined trends in the



42 The examined motorway network

Figure 9.4: 5 - minute moving average travel time data for a number of Mondays
- motorway segment 10051006

Figure 9.5: 10 - minute moving average travel time data for a number of Mon-
days - motorway segment 10051006

evolution in the aggregated travel times per se. Visual inspection of Figure 9.2
supports this claim. The aggregated travel times shift considerably throughout
the rush hour period, even during congestion build-up and phase-out.
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9.3.3 Application of the aggregated travel time data

As a starting point, the aggregated travel times can be used to form a general
view of the traffic patterns that govern the examined motorway segment. The
15-minute forecast model developed in connection with the extension of the
M3 motorway assumed that the traffic followed a weekly pattern, which meant
that the traffic pattern on any Monday morning resembled those of the other
Mondays; the traffic pattern on any Tuesday morning resembled those of the
other Tuesdays etc [3]. It is of interest to find out whether this assumption also
applies to this motorway segment. Examination of the 10-min moving average
travel times from October 2006 though March 2007 immediately disproves this
assumption, as shown in Figure 9.6.

Figure 9.6: 10-min moving average travel times for motorway segment
100510006. Mondays: blue lines, Tuesdays: green lines, Wednesdays: red lines,
Thursdays: light blue lines, Fridays: pink lines

It can be seen that congestion build-up intervals range from 07:15:00 and 07:30:00
and congestion phase-out intervals range from 09:00:00 to 09:30:00. The 10-
minute moving average travel times range on average from 8 minutes up to 14
minutes. Some days reach peak travel times that are as high as 18 minutes. The
travel time on the majority of days is, however, around 8 minutes. It can be
concluded that the travel times do not follow a distinct weekly pattern, but are
rather governed by the location of congestion build-up, the length of the rush
hour, the travel times and the location of congestion phase-out.
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9.4 Concluding remarks

Inspection of the aggregated travel times suggested that a smoothing technique
was called for in order to eliminate the substantial minute-to minute fluctuations
in the aggregated travel times. A 10-minute moving average function was ap-
plied to good effect as major trends in traffic flow patterns were uncovered. The
selected approach leaves, however, plenty of room for improvement in that the
results are heuristic. A sensitivity analysis could, for instance, be conducted in
support (or rejection) of the chosen time lag. The application of other smooth-
ing techniques could also be used in order to smoothen the minute-to-minute
variations in the aggregated travel times. An entirely different approach could
be employed that states that the travel times at the lower levels are used instead
of the aggregated travel times. The examination of a series of traffic patterns
indicated that the 10-minute moving average travel times might be grouped into
a number of clusters based on the shape of the traffic patterns, rather than their
respective belonging to the business days and (or) vacations.
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Clustering

10.1 Introduction

Clustering will be used as a means to detect whether the traffic flow on any
given day has similarities with the traffic flow on other days. The inspection
of Figure 9.6 suggests that traffic patterns could perhaps be grouped into a
number of clusters based on the shape of the curve for the traffic flow in the
considered time interval. The search for these trend curves will be entirely based
on the traffic patterns in the historical data warehouse. There is hope that the
algorithm will merge similar traffic patterns into clusters, such that patterns
that belong to the same cluster are more similar than patterns that belong to
different clusters. The influence of exogenous variables on clustering will also
be examined. Each pattern can be characterized by four exogenous variables:
business day (Monday through Friday), season (autumn, winter, spring, sum-
mer), vacation (fall recess, winter holidays, public holidays, summer vacation
etc.), incident (yes/no). It is of interest to find out whether the clustering algo-
rithm can to detect patterns that strongly deviate from the majority of traffic
patterns. These traffic patterns are denoted incidents. An incident can be a
road accident, bad weather, road works and the like, briefly described, patterns
that are not predictable in advance.
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10.2 Clustering in Oracle Data Mining

Clustering will be performed using Oracle Data Mining (ODM) clustering algo-
rithms. ODM provides two algorithms for this purpose:

Enhanced k-Means algorithm, which is an enhanced version of the traditional
k-Means algorithm [14]

Orthogonal partitioning clusters (the O-Cluster algorithm), which is an Oracle
proprietary algorithm [15]

Both algorithms support identifying naturally occurring groupings within the
input data set. The enhanced K-means algorithm creates hierarchical clusters
and groups the input traffic patterns into the user specified number of clus-
ters. The O-cluster algorithm selects the most representative clusters without
the user prespecifying the number of clusters. Both algorithms provide detailed
information about the generated clusters, which includes placement of all traffic
patterns in the clustering model hierarchical tree, cluster rules, which capture
the main characteristics of the data assigned to each cluster and cluster cen-
troid values. The generated clusters can subsequently be used to score new
input patterns on their cluster membership. They are also used to generate a
Bayesian probability model that is used during scoring for assigning data points
to clusters. Clustering can also be used for incident detection by building a clus-
tering model, applying it and then finding items that do not fit in any cluster.
Both algorithms were initially tested out on a sample data set. The O-cluster
algorithm did not return any usable results due to the fact that all patterns
were clustered in the same cluster which, according to the inspection of the 10-
minute moving average travel times in Figure 9.6, can be dismissed. In addition,
the lack of adequate documentation on the O-cluster algorithm made it almost
an impossible task to tune the numerous parameter settings which presumably
are required for this algorithm to run properly. Neither Google search nor the
browsing of the Oracle Technology Network discussion forums [16] shed more
light on how to apply this algorithm in practice. For this reason, the enhanced
k-Means algorithm was selected for further examination. The start-up phase
was difficult due to the lack of adequate documentation in terms of explaining
the theoretical applicability of the numerous parameter settings and interpret-
ing the output. Once these obstacles were overcome, the algorithm was used to
gain insight into the behaviour of traffic patterns.
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10.2.1 Enhanced k-Means algorithm

The enhanced k-Means algorithm is a distance-based clustering algorithm that
partitions the data into a predetermined number of clusters, provided that there
are enough distinct patterns in the data set. The algorithm relies on a distance
metric to measure the similarity between data points which is either Euclidean,
Cosine, or Fast Cosine distance (refer to [17] for an informal explanation of the
applicability of Cosine and Fast Cosine distance metrics). The former and the
latter distance metrics have not been tested out. Data points are assigned to
the nearest cluster according to the distance metric used. The algorithm builds
models in a hierarchical top-down manner and is reminiscent of the algorithms
for divisive clustering [18]. The algorithm begins by placing all traffic patterns in
a single cluster. This single cluster is denoted as the first level of the hierarchy.
Each level of the hierarchy represents a particular grouping of data into disjoint
clusters of traffic patterns. It then chooses the traffic pattern whose average
dissimilarity from all the other patterns in the data set is largest. This pattern
becomes the first member of the second cluster. At each successive step that
pattern in the first cluster whose average distance from those in the second
cluster, minus that for the remaining patterns in the first cluster is largest,
is transferred to the second cluster. This continues until the corresponding
difference in averages becomes negative. When the transfer of patterns from the
first cluster to the second cluster stops, there are no longer any patterns in the
first cluster, that are, on average closer to those in the second cluster. The result
is thus a split of the original cluster into two child clusters, one containing the
patterns transferred to the second cluster, and the other those remaining in the
first cluster. These two clusters represent the second level of hierarchy. After the
children of the parent node have converged, the traditional k-Means algorithm
is run on all leaves until convergence, that is, either when the change in error
between two consecutive iterations is less than the minimum error tolerance
or the number of iterations exceeds the maximum number of iterations (both
are parameter settings that need to be specified before running the k-Means
algorithm, refer to Section 10.2.2). Each successive level is produced by applying
this splitting procedure to one of the clusters at the previous levels. There are
two different strategies on how to choose which child cluster to split in order
to increase the size of the tree, until the desired number of clusters has been
reached. This strategy only applies from the second level of the hierarchy and
onward. The child clusters can be split based on either largest variance or largest
size. Variance is computed as the sum of squared distances from all patterns
belonging to the child cluster to the cluster centroid. Size is computed as the
number of patterns belonging to each child cluster. Recursive splitting continues
until all child clusters either become single patterns or the specified number of
clusters has been reached. The centroids of the inner clusters in the hierarchy
are updated as the construction of the tree evolves. The whole tree is returned.
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Moreover, the algorithm returns, for each cluster, the place in the clustering
model hierarchical tree, a cluster prototype (consisting of the mean and variance)
and histograms (one for each feature). The clusters discovered by the algorithm
are then used to create rules that capture the main characteristics of the data
assigned to each cluster. The rules represent the bounding boxes that envelop
the data in the clusters discovered by the clustering algorithm. The antecedent
of each rule describes the clustering bounding box. The consequent encodes the
cluster ID for the cluster described by the rule. Furthermore, the algorithm
provides probabilistic scoring and assignment of data to clusters. For a given
record, the clustering models return the probability of the record belonging to a
given cluster P (cluster | record). This probability is similar to what is obtained
from using a classification model. From this perspective, clustering is treated
as a classification problem where first the class labels (clusters) are identified
and then the records are classified into clusters from a predefined set of clusters
[19]. Patterns can be affiliated to several clusters with the same probability as
long as the total probability does not exceed 1. This might occur when splitting
a natural grouping into a number of constituents. In addition, this will occur
whenever an attempt is made to cluster an incident pattern. Missing values are
not automatically handled. If missing values are present in the data set and are
not treated before the clustering algorithm is run, the algorithm will handle the
input data incorrectly with the result that the data will be grouped erroneously.
This algorithm is not susceptible to initialization issues, that is, the results of
the algorithm are reproducible for identical parameter settings. This is useful
when dealing with a real life implementation in that the results need not be
stored but can be obtained any time. However, the algorithm also suffers from
a number of deficiencies such as the vagueness of termination criteria in terms
of choosing the right number of clusters in the model. It is then up to the user
to decide which model (if any) actually represents a natural clustering in the
sense that patterns within each of its groups are sufficiently more similar to each
other than patterns assigned to different groups at that level.

10.2.2 The applied settings

The algorithm has the following settings (for a full list of available settings refer
to [21]):

Number of clusters. This setting specifies the number of clusters in the model.
The value must be between 2 and the number of distinct cases in the data
set.

Distance function. This setting specifies how the algorithm calculates the
distance. The distance function can be Euclidean, Cosine or Fast Cosine.
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Clustering will be performed with the Euclidean distance function.

Split criterion. This setting specifies how the algorithm splits the node. The
split criterion can either be variance or size. Clustering will be performed
with size as the split criterion. Reasons for this will be explained in Section
10.3.2.

Minimum error tolerance. This setting specifies the minimum percentage
change in error between iterations to consider that the clusters have con-
verged. The minimum error tolerance must be a non-negative number
that is less than 1. Preliminary runs of the algorithm showed that this
setting did not impact the outcome of the algorithm at all. For this reason
clustering will be performed with the minimum error tolerance set to .001
(default value).

Maximum Iterations. This setting specifies the maximum number of itera-
tions for the k-Means algorithm. The value must be between 2 and 30.
Clustering will be performed with the number of iterations set to 30.

A pattern is affiliated to a cluster only if the probability of affiliation is larger
than 50 %. Patterns, for which the probability of affiliation is less than 50 %,
are not affiliated to any clusters in order to avoid affiliating that pattern to
several clusters with the same probability. In most cases, this occurs when the
number of clusters in the model exceeds the amount of natural groupings in
the data set. If so, there are several ”most-likely” affiliations with probabilities
less than 50 %. Aside from this, incident patterns would normally be affiliated
with a probability less than 50 % in that they do not belong to any clusters
per se. This approach has been chosen in order to keep tabs on the affiliations
as the number of clusters in the model is increased, which otherwise would not
be feasible. The probabilities are provisionally assigned only for the purpose of
evaluation of the validity of the emerged clusters and in order to determine the
optimal number of clusters.

10.2.3 Concluding remarks

The main detriment attributable to using ODM is the lack of adequate doc-
umentation on how the clustering algorithms work in practice. Oracle only
provides limited informative material, which for the most part does not go be-
yond the very basic introduction to the algorithms, making the initial starting
cumbersome. The lack of elaborate documentation prohibited the use of the
O-cluster algorithm due to the fact that the algorithm produced clusters that
were deemed incorrect. For this reason, it was chosen to further investigate the
enhanced k-Means algorithm.
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10.3 Results

10.3.1 Input data

The input data for the clustering algorithm is the 10-minute moving average
travel times. The data set consists of 86 traffic patterns from October 2006
through March 2007. Each pattern Yj consists of a sequence of pairs (yi, ti)
in the interval from 06:30:00 through 09:45:00, corresponding to 196 features,
where yi denotes the 10-minute moving average travel time value and ti the
time that has elapsed since midnight. Weekends have been discarded due to
the fact that the traffic flows at the speed limit and are hence of no immediate
interest for modeling purposes. Patterns with missing data in the chosen time
interval have also been discarded. This is due to the fact that the enhanced
k-Means algorithm lacks the ability to handle missing data. Approximately 40
traffic patterns have been deselected. The number of consecutive missing data
points for each deselected traffic pattern was not investigated. The number of
”complete” patterns was deemed sufficient, and hence no measures were taken
in order to densify patterns with missing data points. No prior assumptions are
made about the nature of each traffic pattern. The patterns are approximately
evenly distributed between business days and months.

10.3.2 Split criterion

Originally, clustering analysis was performed on an ad hoc basis by trying out
both split criterions and by randomly varying the number of clusters. It turned
out that the best results were achieved by using size as the split criterion in that
traffic patterns with similar characteristics were grouped together early, that is,
when the number of clusters was small in comparison to the size of the data
set. Exceptional traffic patterns were separated out, that is, were not affiliated
to any clusters, when the number of clusters in the model was low relative to
the number of well-separated groups. Setting the split criterion to variance,
resulted in the creation of clusters that were comprised of single traffic patterns
when the number of clusters in the model was low in comparison to the size
of the data set. This meant that the number of clusters in the model had to
be increased substantially in order to capture the underlying characteristics of
the data. More often than not, patterns that at first sight resembled each other
were separated out as single clusters, whereas the other criterion was capable
of grouping the exact same traffic patterns into homogeneous groupings. As a
consequence hereof, it was chosen to proceed with size as the split criterion in
that this criterion was able to form well-separated groups relatively early, that



10.3 Results 51

is, when the number of clusters relative to the size of the data set was small.
Exceptional patterns were segregated as opposed to the other split criterion
meanwhile maintaining the natural groupings in the data.

10.3.3 Estimating the number of clusters

Visual inspection of traffic patterns belonging to motorway segment 10051006
gives a vague estimate of the prospective number of clusters (see Figure 9.6). In
that the number of clusters in the model is not automatically determined by the
chosen clustering algorithm, but has to be set before the algorithm can be run,
the determination of the right number of clusters called for another technique
than visual inspection. This number will be determined using the following
cluster validity measurement techniques: the within-point scatter (within sum
of squares function) [22] and the elbow criterion [23]. Separate solutions will be
obtained for each number of clusters K. An estimate for the optimal number of
clusters is then obtained by identifying a kink in the plot of the within sum of
squares values as a function of K. However, this approach is somewhat heuristic
and the kink cannot always be unambiguously identified [20]. Following are the
results for the within sum of squares function for K ∈ {2, 3, ..., 15}. The value
for KMAX was chosen in view of initial trial runs of the enhanced k-Means
algorithm. This was due to the fact that as KMAX was increased the algorithm
was unable to assign the majority of the traffic patterns to any of the clusters
with a probability that was greater than 50 %. This can be accounted for by
the fact that, as the number of clusters in the model is increased, naturally
occurring groupings are split into their subgroups, and if patterns from two or
more sub-groups resemble each other (in that they, in fact, belong together),
the algorithm assigns a pattern to several clusters with the same probability.
Hence, these patterns would be neglected in the calculation of the within sum
of squares function. Thus, increasing KMAX would not necessarily decrease its
value. These observations entail that the data might, in fact, be divided into a
manageable number of well-separated groups. Figure 10.1 shows the within sum
of squares function for motorway segment 10051006. The first strong ”break”
in the value of the within sum of squares function occurs at 3 clusters, followed
by another strong ”break” at 4 clusters and a less pronounced ”break” at 5
clusters, indicating that the optimal number of clusters is to be found in this
range. After 5 clusters the drop in the within sum of squares value levels off,
suggesting that the data set most likely is comprised of at least five natural
groupings. For this reason, it is a reasonable assumption that a feasible lower
bound for the optimal number of clusters can be estimated at 5 clusters. This
within sum of squares function is useful when determining the optimal number
of clusters for a particular motorway segment. This function is, however, not
easily comparable across motorway segments in that the magnitude of the values
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of the within sum of squares function will depend on the travel time for each
motorway segment. Another method, denoted the elbow criterion, contains
basically the same information about the potential clusters in the data. It uses
a different scaling in that the function values are expressed as percentages of
variance explained by the clusters, which are easier to compare across motorway
segments.

Figure 10.1: Within sum of squares function - motorway segment 10051006

The elbow criterion is the percentage of variance explained by the clusters
against the number of clusters, which is the ratio of within-point scatter to
total-point scatter. The number of clusters should be chosen so that adding an-
other cluster doesn’t add sufficient information [23]. The first clusters will add
much information, but at some point the marginal gain in adding a new cluster
will drop, giving an ”elbow” in the graph. This is approach is also heuristic in
that this elbow can not always be unambiguously identified.

Same conclusion as for the within sum of squares function can be drawn from
the inspection of the elbow criterion function in Figure 10.2. 85 % percent of the
variance is explained when the number of clusters is 5, 15 % up from when the
number of clusters is 2, the marginal gain, however, from adding extra clusters
remains in the range of 4 % when going from 5 to 15 clusters. Given the results
from both cluster validity measurements techniques, it was decided to start up
with using 5 clusters to illustrate the grouping of the traffic patterns. Models
with 6, 7 and 8 clusters are included for illustration purposes and also to give
assurance that the clustering algorithm performs as intended.
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Figure 10.2: Percent of variance explained - motorway segment 10051006

10.3.4 Example: five clusters

The enhanced k-Means clustering algorithm has been applied to the 10-minute
moving average travel time data for motorway segment 10051006 as described in
Section 10.3.1. The data are a 86×196 table of 10-minute moving average travel
times, each representing a measurement for a date-stamp (row) and point in time
(column). The enhanced k-Means clustering algorithm is applied with K = 5
in light of the outcome of the within sum of squares function and the elbow
criterion for each clustering with K running from 2 to 15. Figure 10.3 shows
the clusters that have emerged from running the enhanced k-Means algorithm.
It can be seen that the shape of the clusters is mostly governed by the intensity
of the traffic flow during peak hours and the length of the peak hour period. The
rush hour traffic begins approximately at the same time, namely, in the time
interval between 07:15:00 and 07:30:00. Also, the slope of congestion build-up is
approximately the same. It can be seen that congestion build-up times do not
differ significantly between clusters 1, 2, 3 and 4. Cluster 5 does not exhibit a
rush hour traffic pattern. The average travel time during the rush hour ranges
from 7 minutes to 9 minutes for clusters 2, 3 and 4, with the exception of
cluster 1 where the average peak travel times are approximately 12 minutes.
There is more variation in congestion phase-out times than in congestion build-
up times. The rush hour traffic begins to halt around 09:05:00 for cluster 4,
around 09:10:00 for cluster 3, and around 09:15:00 for clusters 1 and 2. This
could be explained by the fact that people tend to leave their houses around the
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same time in the morning, but the traffic flow since then can be affected by a
number of events which might have an impact on the phase-out process.

Figure 10.3: 5 clusters - motorway segment 10051006

Table 10.1 shows the distribution of traffic patterns between the five clusters. It
can be seen that all business days are distributed more or less evenly between
the five clusters, and that all clusters contain approximately the same number
of days. Hence, the previously made assumption that the traffic flow follows a
pattern that is governed by Mondays through Thursdays as well as Fridays and
holiday traffic can be dismissed (see Section 9.3.3 for a contributory cause to
this assumption). The vacation’s column lists the 5 weekdays from fall recess
in October 2006 and 3 weekdays from the winter holidays in February 2007.
The remaining two weekdays were deselected due to missing travel time values.
All vacations belong to the same cluster, namely, cluster 5. The intensity of
traffic on days belonging to this cluster approximately equals traffic at free
flow. Moreover, it can be seen that Mondays through Thursdays have been
distributed evenly between the five clusters with the exception of the lack of
presence of Tuesdays in cluster 4. Table 10.2 shows the compound distribution of
the examined business days across clusters. The trend is towards that Mondays
through Thursdays predominantly belong to clusters with high travel times,
namely, clusters 1, 2 and 3. Over 50 % of Mondays through Thursdays belong
to these clusters, whereas only 13 % of Fridays. All Fridays, except for two, have
been grouped in cluster 4 and 5. The sizeable presence of Fridays in cluster 5
makes sense as it is a common belief at the Road Directorate that the traffic flow
on Fridays proceeds differently than the traffic flow on the other business days,



10.3 Results 55

and for the most part resembles vacation traffic. This assumption is, however,
only partially true as a sizeable number of Fridays was also grouped into cluster
4 where the average travel time during peak hours reaches approximately 8
minutes, which is four times higher than the travel time at free flow (see Table
9.1).

Monday Tuesday Wednesday Thursday Friday Vacation Total
Cluster 1 2 4 2 2 1 11
Cluster 2 3 4 1 6 1 15
Cluster 3 4 5 4 2 15
Cluster 4 2 4 4 7 17
Cluster 5 2 2 3 4 6 8 25
No cluster 1 1 1 3

Table 10.1: Distribution of business days between clusters - motorway segment
10051006

Monday Tuesday Wednesday Thursday Friday
Cluster 1 15% 27% 14% 11% 7%

Cluster 1, 2 38% 53% 21% 44% 13%
Cluster 1, 2, 3 69% 85% 50% 56% 13%

Cluster 1, 2, 3, 4 85% 85% 79% 78% 60%
Cluster 1, 2, 3, 4, 5 100% 100% 100% 100% 100%

Table 10.2: Compound distribution of business days across clusters - motorway
segment 10051006

In the following traffic patterns affiliated to each of the five clusters along with
the ones which were not affiliated to any clusters will be shown in order to vi-
sually assess the quality of the resulting groupings in terms of how well these
traffic patterns are separated into the five clusters. It can be seen from Figure
10.4, 10.5, 10.6, 10.7 and 10.8 that the enhanced k-Means algorithm is success-
ful at grouping together traffic patterns of the same shape. Inspection of all
five clusters suggests that the clusters are well-separated, and it can therefore
be assumed that the examined data set is comprised of at least five naturally
occurring groupings. There are, however, a few exceptions. One traffic pat-
tern in the third and fourth cluster, and three patterns in the fifth cluster are
inappropriately placed in these clusters in that they profoundly deviate from
the other patterns in this group. These traffic patterns are marked with green,
red and purple. The reason why these patterns are affiliated to the respective
clusters is the probabilistic nature of pattern affiliation in that probabilistically
these patterns are quite close to the clusters they have been assigned to. Three
traffic patterns have been affiliated to all five clusters with a 20 % probability
(see Figure 10.9). The inspection of these traffic patterns immediately suggests
that this is not due to the fact that a well-separated grouping has been split
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up into it’s constituents, but rather indicates that an incident might have taken
place on the affected days. It is possible that another conclusion will be reached
as the amount of traffic patterns in the historical data warehouse increases, and
the clustering algorithm is rerun.
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Figure 10.4: Cluster 1

Figure 10.5: Cluster 2
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Figure 10.6: Cluster 3

Figure 10.7: Cluster 4
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Figure 10.8: Cluster 5

Figure 10.9: Traffic patterns without cluster affiliation
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10.3.5 The season factor

Table 10.3 shows the distribution of traffic patterns across months. All months
are present in each cluster except for December. This is most likely due to the
fact that only seven days qualified as input to the clustering algorithm.

October November December January February March
Cluster 1 3 4 1 1 1 1
Cluster 2 1 3 5 2 4
Cluster 3 1 1 4 5 4
Cluster 4 3 2 1 3 3 5
Cluster 5 5 6 5 1 5 3
No cluster 1 1 1

Total 14 17 7 14 16 18

Table 10.3: Distribution of months between clusters - motorway segment
10051006

Cluster 1 for the most part consists of traffic patterns from October and Novem-
ber, whereas patterns from January, February and March mostly constitute
clusters 2 and 3. Clusters 4 and 5 consist of patterns from all of the examined
months. Cluster 5 has a notable presence of days from all months, except for
January and March. October is due to fall recess, December to the fact that
a lot of people tend to take time off before Christmas and February to winter
holidays. These observations suggest that the level of congestion might depend
on time of the year. Experience shows that there is, indeed, a season effect in
terms of the amount of traffic. It is, however, too early to jump to conclusions
in that the amount of available data in the historical data warehouse for the
time being is deemed insufficient to make a qualified assessment of this effect.
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10.3.6 Example: six, seven and eight clusters

The formed clusters in Section 10.3.4 had some shortcomings due to the fact
that several traffic patterns were seemingly misplaced. To check the validity
of the model, it was decided to apply the enhanced k-Means algorithm to the
same data set with K = 6, 7, 8. The formed clusters with K = 6 are shown in
Figure 10.10. Cluster 5 consists of a single traffic pattern, which is one of the
patterns that was not affiliated to any clusters with K = 5 (see Figure 10.9).
The remaining clusters are identical to clusters 1, 2, 3, 4 and 5 with K = 5. The
percentage of variance explained remains the same in that the added cluster is
a single day, which has no influence on the remaining clusters (see Figure 10.2).

Figure 10.10: 6 clusters - motorway segment 10051006

The formed clusters with K = 7 are shown in Figure 10.11. Cluster 5 is identical
to cluster 5 in Figure 10.10. Cluster 6 corresponds to the green traffic pattern
in Figure 10.8. The remaining clusters are identical to clusters 1, 2, 3, 4 and 5
with K = 5, except for the change in the number of traffic patterns in cluster 6.
The percentage of variance explained increases by 1 % in that the added cluster
is a single day, which with K = 5 was assigned inappropriately.

The formed clusters with K = 8 are shown in Figure 10.12. Cluster 5 is identical
to cluster 5 in Figure 10.10. Cluster 6 is identical to cluster 6 in Figure 10.11.
Cluster 7 consists of the red and lavender traffic patterns in Figure 10.8. The
remaining clusters are identical to clusters 1, 2, 3, 4 and 5 with K = 5 except for
the change in the number of days in cluster 7. There is no gain in the percent
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Figure 10.11: 7 clusters - motorway segment 10051006

of variance explained (see Figure 10.2).

Figure 10.12: 8 clusters - motorway segment 10051006

The results show that increasing the number of clusters only marginally influ-
ences the formed clusters with K = 5. Traffic patterns that were classified as
incidents and patterns that stood out from the crowd have been segregated.
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10.4 Concluding remarks

The enhanced k-Means algorithm was applied in order to determine whether the
available traffic patterns could be grouped into a fixed number of representative
patterns. The optimal number of representative patterns was determined by use
of the within sum of squares function and elbow criterion. The estimation of
the number of clusters was conducted on a single training set, no independent
tests sets were utilized for the validation of the estimate. This is due to the
fact that this cross-validation technique cannot be utilized in the context of
clustering in that the within sum of squares function value would also decrease
with increasing the number of clusters in the model [24].

Detailed cluster analysis was conducted for the estimated optimal number of
clusters. It showed that during fall recess, winter holidays and on the majority
of Fridays travel times are fairly constant, and the traffic resembles free flow
conditions. The other clusters had approximately the same shape but different
plateau levels. For the presented distribution of traffic patterns quite plausible
explanations exist. The assumption that business days resemble each other
was dismissed as there were no well-separated groups of Mondays, Tuesdays,
Wednesdays or Thursdays. The previously made assumption that traffic flow
on Fridays differs from traffic flow on the other business days was partially
disproved as Fridays were also mixed with other business days. Moreover, fall
recess and winter holidays were visible and grouped together in the same cluster
along with other traffic patterns that exhibited travel times at the speed limit.
Incident traffic patterns either formed their own cluster or were not affiliated
to any clusters. Furthermore, a vague seasonal effect was observed, which will
require further investigation once the amount of data in the historical data
warehouse permits it.

The advantage of using the enhanced k-Means algorithm is that no assumptions
need to be made about the data a priori. All traffic patterns can enter the anal-
ysis on an equal footing. There is no need to store exogenous attributes about
each pattern. It was shown that all these effects are elucidated automatically.
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Chapter 11

Forecasting

11.1 Introduction

Chapter 10 showed that the 10-minute moving average travel time data could be
divided into a fixed number of representative traffic patterns. This suggests that
a new traffic pattern could perhaps be compared to the pool of representative
traffic patterns to identify which pattern it resembles. For now, information
about these patterns will be used to determine whether it can be used in the
context of travel time forecasting.

11.2 Data preparation

The input data set consists of 86 traffic patterns in the interval between 06:30:00
and 09:45:00, corresponding to 196 features. It is identical to the data set used
to perform clustering in Section 9.3. No data preprocessing such as the removal
of previously detected incidents has taken place. The input data set is divided
into a training set (50 % of the input data) and a test set (50 % of the input
data). It is a prior assumption that the amount of available data in the historical
data warehouse is sufficient to make a fairly informed guess about the optimal
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number of clusters for travel time forecasting. The training set will be used
to estimate representative patterns. The test set will be used to estimate the
optimal number of clusters. Subsequently, the test set will become the training
set and the training set will become the test set, and the estimation process
will be repeated. The patterns are distributed randomly between the training
and test sets. Business days are uniformly distributed between the training set
and the test set. This is, however, not expected to influence the performance of
the clustering algorithm given that business days were distributed between all
clusters. The discovered season effect, albeit vague, has not been accounted for.
The enhanced k-Means algorithm will be run twice - once for each training set.
Model performance will also be evaluated twice - once for each test set. Data
will be clustered into K clusters ranging from 2 to 15 clusters (see Section 10.3.3
for an explanation). Hence 14 models will be trained and subsequently tested.
This approach has been chosen in order to test the applicability of clustering for
forecasting purposes. If deemed applicable, the k-Means algorithm will only be
run on the training set in the future, after which the estimation of the optimal
number of clusters will be conducted on the test set. Adjustments will also most
likely be made to the distribution ratio of input data between training and test
sets.

11.3 Assumption

The motorway segments on Hillerødmotorvejen will be considered independent.
This means that the state of neighboring segments will not be taken into account
when determining future travel times for motorway segment 10051006.

11.4 The forecast algorithm

The models are evaluated based on the clusters found in the training set. Clus-
ters, which contain a single traffic pattern, are excluded from model testing and
the forecasts are performed on the remaining clusters in the model. This is due
to the fact that a single day most likely represents an exceptional event, and
hence is of no immediate interest for further analysis in that the occurrence of
each exceptional event is unique. The occurrence of an incident would in most
cases trigger the disablement of the forecast functions as it is unlikely that the
formed clusters would be able to capture it. The cluster centroids are stored in
a 196× K table of real numbers, each representing a centroid measurement for
a point in time (row) in the interval between 06:30:00 and 09:45:00 and a cluster
ID running from 1 to K (column). These tables are generated by running the
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enhanced k-Means algorithm on the training set - once for each number of clus-
ters. 14 such tables are generated for each training set for evaluation purposes.
This number will be reduced to one, once the optimal number of clusters has
been selected and the model is ready for deployment. Cluster centroids and the
10-minute moving average travel times are used as input to the clustering algo-
rithm. The forecasting step is put to 1 minute, which means that the 10-minute
moving average travel time will be recalculated each minute. The forecasting
horizon is put to 15 minutes, meaning that the produced forecast will be in
force 15 minutes later. The forecasting step and horizon have been selected as
per requirements for the new traffic reporting system. The proposed algorithm
covers the following steps:

Calculate the distance between the 10-minute moving average travel time val-
ues to each of the cluster centroids at time t. The squared error has been
chosen as the distance metric and is calculated from the following formula:
(xobservedt − xclustert)

2, where xobservedt is the 10-minute moving average
travel time value and xclustert

is the cluster center value at time t.

Select the cluster ID K, which has the smallest squared error.

Use this cluster as a forecast cluster for the expected travel time, such that the
centroid value of this cluster offset 15 minutes from time t becomes the
forecasted travel time at time t + 15.

The size of the squared error is evaluated for different window functions. This
means that the calculation of the squared error now includes the squared error
of the current time as well as a summation of the squared errors for a number
of time points preceding the current time. The accumulated squared error is
calculated from the following formula:

∑T
i=1(xobservedi

−xclusteri
)2 , where T is

the number of time points preceding the current time, xobservedi
is the observed

travel time and xclusteri is the cluster centroid value. The value for T is set
to 10 minutes. Moreover, all times which have elapsed since 06:30:00 including
the current time are included in the calculation - in this case the time window
is termed unbounded. However, it is a prior assumption that the accumulation
of the preceding 10-minute moving average travel time values, regardless of the
accumulation window, might not have an impact on the 15-minute forecasts as
they already embody an average of the aggregated travel times for 10 consecutive
minutes preceding and including the current value.
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11.5 Evaluation criteria

The performance of the model will be evaluated by comparing the mean squared
error and the percentage of errors between the 10-minute moving average travel
time and the 15-minute forecast that exceed two and five minutes, respectively.
Mean squared error (MSE) measures the expected value of the square of the
error, which is the amount by which the observed travel time on average differs
from the predicted travel time [25] and is calculated from the following formula:

MSE =
∑T

i=1(xobservedi
−xpredi

)2

Ndataset
, where xobservedi

is the 10-minute moving aver-
age travel time value at time t, xpredi

is the forecasted travel time value and
Ndataset is the number of observations in the dataset. The values of the mean
squared error might give a misleading impression as they, in fact, represent the
average over all time points in the examined time interval. The largest val-
ues of the mean squared error are expected to occur under congestion build-up
and phase-out, and during localized queuing of short duration due to the fact
that the traffic flow exhibits major fluctuations during these time periods and
hence are harder to forecast accurately. The percentage of error between the 10-
minute moving average travel time values and the forecasted travel time value
that exceeds 2 minutes (small errors) and 5 minutes (large errors) will also be
calculated. These measures quantify the amount of discrepancies as a function
of the total number of input features. The determination of small errors enables
the practitioner to evaluate the quality of forecasts on a microscopic level. The
determination of large errors is important in that these errors will be recognized
by the drivers. Moreover, the forecast function will be disabled if the difference
between the 10-minute moving average travel time value and the forecasted
travel time value exceeds 5 minutes.

11.6 Results

It can be seen from Figure 11.1 and 11.2 that, based on the values of MSE for
the various time windows, the best travel time forecasts are achieved by using
a time window of zero. This means that the performance of the model only
depends on the current observation and the immediate history of observations
need not be taken into account for future travel time estimation. This result
was anticipated as the 10-minute moving average travel times already embody
the immediate history of observations. For these reasons all further work with
regard to travel time forecasting for this motorway segment will be done using
a time window of zero. The reddish brown curve shows the model with five
clusters. This model has been highlighted because it was shown in Section 10.3
that, based on the results of cluster validation techniques, five clusters could
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be used as a lower bound for the optimal number of clusters for this motorway
segment.

Figure 11.1: Mean squared error - test set 1 motorway segment 10051006; the
blue curves represent models with 2 and 3 clusters; the green curves represent
models with 4 clusters and above; the reddish brown curve represents a model
with 5 clusters

Figure 11.2: Mean squared error - test set 2 motorway segment 10051006; the
blue curve represents a model 2 clusters; the green curves represent models with
3 clusters and above; the reddish brown curve represents a model with 5 clusters
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Figure 11.3 shows the values of MSE for both test sets. It can be seen that the
values of MSE are larger for test set 1 than test set 2. This discrepancy can
most likely be ascribed to the fact that the formed clusters in training set 1 do
not represent the data in test set 1 very well, and that the formed clusters in
training set 2 are more in sync with the data in test set 2.The season factor
which was observed when performing clustering on all 86 traffic patterns might
have influenced the outcome of these tests. The best forecast performance is
achieved by employing models where the number of clusters is 7 for test set 1
and 4 for test set 2 (except for 13 clusters), after which the values of MSE level
off. This can be attributable to the fact that the algorithm has a tendency to
segregate single daya and put them in an independent cluster when the number
of clusters is increased. This does not impact travel time forecasts as clusters,
which consist of a single day are excluded from the modeling process (see Section
10.3.6 for discussion).

Figure 11.3: Mean squared error - motorway segment 10051006

Figure 11.4 and 11.5 shows the percentage of errors exceeding two and five
minutes, respectively. The percentage of errors exceeding two minutes is smallest
when the number of clusters is 4 and 3, respectively. The percentage of errors
exceeding five minutes is smallest when the number of clusters is 10 and 15,
respectively.

Figure 11.6, 11.7, 11.8 and 11.9 illustrate the results of applying the forecasting
algorithm to a number of days from both test data sets.
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Figure 11.4: Percentage of small errors - motorway segment 10051006

Figure 11.5: Percentage of large errors - motorway segment 10051006

The results are illustrated with 4 (minimum percentage errors > 2 minutes)
and 7 (minimum MSE) clusters for test set 1, and with 3 (minimum percentage
errors > 2 minutes) and 4 (minimum MSE) clusters for test set 2. Curves for
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Figure 11.6: Test set 1 - 10-minute moving average travel times vs. forecasts
using models with 4 and 7 clusters - Friday 26-01-2007

Figure 11.7: Test set 1 - 10-minute moving average travel times vs. forecasts
using models with 4 and 7 clusters - Friday 16-02-2007 (winter vacation)

the difference between the 10-minute moving average travel times (hereinafter
actual travel times) and the forecasted travel times have also been included.
Results with 10 and 15 clusters (minimum percentage errors > 5 minutes) for
test set 1 and 2, respectively, have not been included. This is due to the fact that
the number of large errors is small and fairly constant for all models, except for
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Figure 11.8: Test set 2 - 10-minute moving average travel times vs. forecasts
using models with 3 and 4 clusters - Thursday 16-11-2006

Figure 11.9: Test set 2 - 10-minute moving average travel times vs. forecasts
using models with 3 and 4 clusters - Monday 06-11-2006

the first two models. The majority of deviations are in the range of 0-2 minutes
and the difference between using 4 or 7 clusters in the model for test set 1,
and 3 or 4 clusters in the model for test set 2 is negligible. In most cases
the discrepancies between the actual and forecasted travel time values occur
under congestion build-up and phase-out. It can be seen that the forecasting
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algorithm has a tendency to slightly underestimate the forecasted travel times.
The forecasts also have a tendency either to lag behind or be ahead, especially
during congestion build-up and phase-out. There are, however, no systematic
differences between the actual and the forecasted travel time values, and it takes
usually less time than the forecast horizon to contain severe divergences between
the actual and the forecasted values. Friday 16-02-2007 (see Figure 11.7) has
been included to illustrate the effect of using clustering as means for travel time
forecasting on a traffic pattern which is a business day and a winter holiday
simultaneously. The latter factor was not taken into account when forecasting
travel times for this traffic pattern. The model with 4 clusters does not initially
pick up the intensity of the traffic flow as the forecasted travel times begin to rise
around 07:20:00. This mishap is, however, remedied approximately 10 minutes
later, after which the forecasted travel times are in sync with the actual travel
times. A forecast model solely based on modeling this day as any other business
day (or as any other Friday) would perhaps be unable to detect this feature.
Figure 11.7 and 11.8 have rapid upward and subsequently downward shifts in
the forecasted travel times. This is for two reasons. First, if the traffic flow
on a given day is between two clusters the algorithm will shift between these
clusters and, as a consequence thereof, oscillations will occur. Second, clusters
overlap under free flow conditions, which give rises to discrepancies between the
actual and the forecasted travel time values right after the onset of congestion
build-up and in the final stages of congestion phase-out. The algorithm does,
however, usually take remedial action immediately, after which the discrepancies
are reduced or eliminated. The results of the forecasting analysis are not directly
comparable to the results obtained in the studied bibliography for a number of
reasons. First, the forecasting steps and the forecasting horizons are different.
Second, statistical and quantitative measures that are used for model validation
are different. Third, the starting point for each study in terms of dividing
the day into morning/afternoon rush hour, the week into business days and
the removal/retain of incident patterns is different. The results can, however,
be put into perspective by comparing them with the forecast model developed
in connection with the extension of the M3 motorway [3]. The starting point
for the development of the forecast algorithm is the same - the days were also
divided into a morning and an afternoon rush hour period of approximately the
same length, and the forecasting step and horizon were the same. There are,
however, also a series of dissimilarities. First, a different model was fit for each
business day in comparison to fitting one model for all business days regardless
of any exogenous factors. Second, all incident traffic patterns were removed
before model parameters were estimated. And the results were also profoundly
different. The M3 forecast algorithm did not have the ability to automatically
elucidate exogenous effects. The presented forecast algorithm looks only at
the actual travel times without taking account of any exogenous factors and
elucidates all effects automatically.
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11.7 Implementation issues

Section 11.6 showed that the proposed forecast algorithm can be utilized for
the purpose of travel time forecasting. To extend the application of the forecast
algorithm to all segments in the motorway network, a method of approach needs
to be worked out in order to automate the evaluation of the performance of
the prospective forecast models in terms of choosing the model which will be
implemented in the application. In the following guidelines for selection of input
data for training and test, and the optimal number of clusters will be presented.
These guidelines have been worked out based on the results in Section 11.6.
The amount of data currently residing in the historical data warehouse has
also been taken into account given that implementation will be conducted upon
completion of the thesis.

11.7.1 Selection of input data

All available traffic patterns in the historical data warehouse will be utilized as
input for training and test. The distribution ratio will be changed to 80 % for
training and 20 % for test. 80 % of the data in the historical data warehouse
should enable the enhanced k-Means algorithm to detect all representative pat-
terns. The remaining 20 % is deemed sufficient to make an informed guess about
the optimal number of clusters based on the representative patterns. Patterns
for training and testing will still be chosen at random due to the fact that only
vague season effects were observed. The number of prospective forecast models
will initially be kept at 14. This number might increase as the amount of data
in the historical data warehouse grows and a larger spectrum of traffic patterns
becomes available.

11.7.2 Selection of the best forecast model

It was decided that the optimal number of clusters will be chosen when the
percentage of errors exceeding 2 minutes is at a minimum. This is due to the
fact that the majority of errors were found in the interval between 2 and 5
minutes. It is, however, possible that this strategy will not work equally well for
some of the remaining motorway segments. This is yet to be tested out. In worst
case scenario the practitioner might be forced to think along entirely new lines.
It is important to remember that these guidelines have been worked out based
on the situation as it was in March 2007. As time goes by and the amount
of available data in the historical data warehouse grows, an entirely different
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approach might be called for. These guidelines should be revised whenever a
recalibration of the model takes place.

11.8 Other methods for travel time forecasting

The Road Directorate does not presently make use of any tools, aside from the
employed verification techniques in Section 11.5 that would enable the writer
to verify the quality of the forecasts made by the proposed forecast algorithm.
This is due to the fact that the travel times are presently not forecasted per
se. However, a number of trivial forecasting methods for future travel times
have been suggested that can be utilized for comparison with the proposed
forecast algorithm. Furthermore, the quality of the forecasts produced by these
methods is also of interest in terms of determining whether they can be used for
reporting purposes. This is of major relevance in case data relay from the road
stations is interrupted. If so, the current assessment is that no forecasts would
be announced on the website. However, if the quality of the forecasts produced
by one of these methods (if any) is deemed acceptable, an estimate for the 15-
minute forecast value could be provided to the end users as a substitute for
the forecasts produced by the proposed algorithm. Following are the proposed
forecast methods:

Speed limit forecast method. This method suggests making use of the speed
limit and using it as a forecast. This method assumes that the future travel
times can always be modeled as travel times in free flow conditions thus
completely ignoring the fact that travel times during morning rush hour
substantially differ from travel times at free flow. For this reason they are
of little or no value for future travel time forecasting during the morning
rush hour due to heavy congestion. This method has been included as it
is widely used in various route finders and navigation systems for travel
time estimation.

Historical travel time forecast method. Historical travel times are long-
term average travel times for the specific time of day of the forecast. The
historical travel time forecast method suggests making use of the average
travel times as measured on all working days at every minute between
06:45:00 and 09:45:00 and using them as a forecast. The historical travel
times have been computed based on the same dataset as used for clus-
tering. This forecast would be exact, if future travel times were equal
to their historical averages, and furthermore, the current and past travel
times had no impact on future travel times. This method completely ig-
nores the current traffic situation.
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Current travel time forecast method. This method suggests making use
of the current 10-minute moving average travel time value and using it
as a forecast. This prediction would be exact if future travel times were
equal to the current ones. Current travel time forecast method is the
only method which accounts for the current traffic situation; however this
method only accounts for the situation right now and assumes that the
situation in the future resembles the situation right now. This assumption
is, however, valid in free flow conditions but as congestion starts building
up, the instantaneous travel time starts lagging. The method suffers from
the lack of a built-in means that would account for the traffic flow in the
future.

The following measures will be calculated to assess the performance of the pre-
viously mentioned forecast methods: the mean squared error (MSE) and the
percentage of error between the 10-minute moving average travel times and the
forecasted travel times exceeding two and five minutes, respectively. A descrip-
tion of these methods can be found in Section Section 11.5. Table 11.1 shows
that the best performance is achieved by using the proposed forecast algorithm.
The current travel time method is only slightly inferior to the proposed fore-
cast algorithm. Historical travel time forecast method comes in third. This
reconfirms the belief that the historical travel times are a weak estimate of the
current traffic situation as the travel times differ considerably between working
days and weeks. Speed limit forecast method has the worst performance.

Motorway segment Speed limit Historical travel times Current travel time Test set 1 Test set 2
10051006 13 4,31 2,56 2,20 1,64

Table 11.1: MSE for current travel time prediction methods

Table 11.2 shows the percentage of encountered errors between the 10-minute
moving average travel times and the forecasted travel times which exceed two
minutes. The results bear resemblance to the reached conclusions based on
inspection of Table 11.1. The ranking of the methods is the same as before. The
percentage of errors exceeding two minutes doubles when using the current travel
time method for forecasting in comparison to the proposed forecast algorithm,
whereas the difference in performance between the proposed method and the
current travel time method was in the range of a few percent. The gain from
using the proposed forecast method compared to the historical travel times and
speed limit methods is threefold. Table 11.3 shows the percentage of errors
between the 10-minute moving average travel times and the forecasted travel
times which exceed two minutes. The proposed forecast algorithm outperforms
the trivial forecast methods.
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Motorway segment Speed limit Historical travel times Current travel time Test set 1 Test set 2
10051006 28,1 27,87 18,1 10,87 10,21

Table 11.2: Percentage of errors exceeding 2 minutes

Motorway segment Speed limit Historical travel times Current travel time Test set 1 Test set 2
10051006 2,17 1,51 1,36 0,92 1,13

Table 11.3: Percentage of errors exceeding 5 minutes

It can be discussed whether the trivial methods can be used as substitutes in case
forecasts cannot be estimated. Speed limit and historical travel times method
are not acceptable as substitutes due to their poor performance in the context
of travel time forecasting. The performance of the current travel time method is
comparable to the proposed forecast algorithm on average as there is not much
difference between the values of MSE. However, due to the fact that the increase
in the percentage of errors exceeding 2 minutes is twofold, this method is not
recommended for the purpose of substitution.

11.9 Model recalibration

Traffic flow on some motorway segments might change with time due to chang-
ing seasons, road works or changes in travel patterns etc. For these reasons,
from time to time, a recalibration of model parameters will be under consider-
ation. The recalibration process includes the recreation of representative traffic
patterns and the estimation of the optimal number of clusters, after which the
table that stores the cluster centroid values is updated. A method of approach
is called for that would automatically trigger the recalibration of model param-
eters. An initial suggestion would be to track the evolution in the percentage of
errors exceeding 2 minutes. This method was used for the selection of the opti-
mal number of clusters. An appropriate threshold value needs to be determined
that can be used to monitor the performance of the model. This threshold value
could be put to the minimum value of percentage of error exceeding 2 minutes
(as per the current number of clusters in the model). In that this value is subject
to uncertainty a few per cent need to be added for slack. When the percentage
of errors exceeds this threshold value a warning can be issued to the practitioner
to initiate model recalibration. A procedure could also be set up that automat-
ically recalibrates the model parameters. An automatic recalibration would be
associated with zero costs, once a routine for conducting it is implemented. This
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is due to the fact that all routines that handle the data from data collection to
generation of the aggregated travel time values at 1-minute intervals are already
an inherent part of the data warehouse.

11.10 Concluding remarks

Clustering was utilized in the context of travel time forecasting. An algorithm
was proposed that outperformed other trivial methods for forecasting. It was
shown that one forecast model can be utilized to make forecasts for all business
days, meaning that there is no need to prepare separate models for each business
day or for handling vacations and incident patterns. This implies that it is not
necessary to preprocess the input data (aside from deselecting traffic patterns
with missing values) before creating the representative traffic patterns. The
clustering algorithm will take care of grouping traffic patterns together based
on the intensity of traffic. This means that there is no need to keep tabs on
an event log for the purpose of input data preprocessing, which can be cumber-
some. The inspection of single traffic patterns before forming clusters can be
time consuming as the amount of data in the historical data warehouse grows.
The simplicity of the forecast algorithm in terms of the required input means
that its implementation is straightforward. This is due to the fact that there
is only a need to store the values of the cluster centroids which can be stored
in a table per motorway segment. Furthermore, it is only necessary to store
the 10 latest aggregated travel times immediately preceding the current travel
time value. The calculation of the squared error is computationally cheap which
means that the forecasts will be made in real-time as per requirements. The
percentage of error exceeding five minutes is small, which means that the fore-
cast function would have an excellent service availability as the algorithm would
be switched off only a fraction of the time. The recalibration of this algorithm
is also straightforward and can be conducted any time or when the percentage
of 2 minute errors exceeds the specified threshold value. There are, however,
also a number of deficiencies. The accuracy of the forecasts might be comprised
as a result of clustering and due to the fact that the input values are the 10-
minute moving average travel times. Moreover, the forecasts tend to lag behind
or ahead, especially under congestion build-up and phase-out. Furthermore, if
the traffic pattern lies in the interval between two clusters, oscillations in the
forecasted travel times will occur. In addition, it has been assumed that mo-
torway segment 10051006 is stochastically independent from segment 10041005,
which means that the forecasting algorithm only takes into account the situa-
tion on one segment at a time, thus completely ignoring the traffic on the other
segment.
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Chapter 12

Future work

There are a number of issues pertaining to further development and perhaps
the improvement of forecasts which, for the time being, will remain unsolved.
Before modeling began, it was assumed that the aggregated segment travel
times were stochastically independent. However, it is obvious to hypothesize
that their covariance should also be identified. This is due to two reasons:
first, theoretically it can be expected that their use would result in increased
forecast accuracy, because the state of the neighboring segments would be taken
into consideration when determining future travel times; second, it should be
noted that the forecasting of segment travel times is not only an end product
in itself, but also an input to the route travel time forecasting application. The
accumulation of forecasted segment travel times across segments might result in
misleading forecasts in that travel time forecasts for an individual segment are
already subject to some degree of uncertainty per se.

Increasing the forecast horizon to 30-minutes is another topic of interest that re-
quires further study. It is expected that the performance of the proposed forecast
algorithm will deteriorate as the forecasting horizon is increasing. Furthermore,
the appropriate level of aggregation of the accumulated 1-minute measurements
for speed and vehicle count should be investigated. It was assumed a priori that
the aggregation level should be the 1-minute segment travel times. The choice
of the forecasting step should also be subject to further research. It can be hy-
pothesized that the quality of the produced forecasts will improve by increasing
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the level of aggregation or by increasing the interval in which the forecasts are
made. The studied bibliography showed that all of the studies utilized higher
levels of aggregation. This would also be relevant when developing the 30-minute
forecast model in order to minimize the degree of uncertainty. The smoothing
interval of the 1-minute aggregated travel time values was chosen based on vi-
sual inspection of the smoothed out travel time curves. The optimal size of the
smoothing interval should be determined, after which forecast performance can
be assessed. Experiments using exponential smoothing functions should also be
conducted. There are also a number of issues that will remain unresolved in the
short term. The season effect should be investigated when the amount of data
in the historical data warehouse permits it. Furthermore, the creation of more
sophisticated methods for data cleaning and repair should be looked into. It is
hypothesized that applicable solutions cannot be proposed until the amount of
data in the historical data warehouse is larger.
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Conclusion

The main objective of this thesis was to develop a universal algorithm for fore-
casting travel times 15 minutes ahead in time which was going to be embedded
in the new real-time traffic reporting system. Although the main focus was on
developing a forecast algorithm, the process was not exclusively confined to se-
lecting an appropriate algorithm and estimating model parameters. The Road
Directorate had outlined a number of requirements primarily pertaining to com-
putational performance, data handling and model deployment, which had to be
honored in this work. The preparation of input data was an issue of special
importance. Development of operational scenarios for model deployment and
recalibration were also requested. Moreover characteristics in modeling such
as consideration of the type of input data, the type of desired output and the
quality of data, which are factors that strongly affect the ability of the forecast-
ing algorithm in providing accurate and efficient forecasts, needed to be taken
into consideration. These requirements were prepared to ensure that the rec-
ommended solution was operational in a practical framework. The initial scope
of activities was comprehensive if all issues involved were going to be closely ex-
amined. Consequently emphasis was put on developing a product as a result in
which practicability and operability rather than theoretical research was made
a priority. In order to accommodate the requirements a conceptual project out-
line was developed, which charted the course for the tasks that needed to be
accounted for before, during and after model development. First, this included
the development of a supporting framework in which all data handling was going
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to be conducted. It was decided that all processes pertaining to data handling
would be confined to the Oracle Database. A real-time data and a historical
data warehouse were built up for transforming the collected data into a format
that could be used as input for forecasting. Oracle Data Mining was utilized for
data understanding purposes and for model building and evaluation. This tool
was chosen in order to streamline the modeling process because it is embedded
in the Oracle Database where the data reside. Clustering was chosen for the
purpose of data understanding. The start-up phase was somewhat challenging
due to the fact that the documentation about the clustering algorithms was
scanty. The scope of the implemented algorithms was unclear. Oracle Technol-
ogy Network was utilized in order to gain more insight on how to set and tune
the parameters, which was required before the algorithms were run. Apart from
that the algorithms were tested out on a trial and error basis. Clustering gave
insight into how the input data could be structured (or handled) for the purpose
of travel time forecasting. It was demonstrated that preprocessing of input data
was rendered needless, as all exogenous effects were elucidated automatically.
Four possible exogenous variables were investigated: the effect of working days,
of seasons, of vacations and incidents. The applicability of clustering in the
area of travel time forecasting was evidenced. A simple and flexible algorithm
forecasting algorithm was proposed. The only parameter that needs to be deter-
mined for each motorway segment is the number of clusters in the model. The
cluster centroids are stored in a table, which basically constitutes the model.
Suggestions for model recalibration were proposed. This can be conducted at
any time. The simplicity and the flexibility of the forecast algorithm means that
a forecast model can be worked out for all motorway segments, even if there is
no immediate justification for that, which would be the case if the variation
in the aggregated 10-minute moving average travel times during the morning
(and afternoon) rush-hour is insignificant. This will without doubt facilitate
the preparatory work pertaining to model building and streamline later model
deployment. The results were satisfactory. The amount of large errors was
deemed insignificant. The amount of small errors was acceptable. Although the
forecasts under congestion build-up and phase-out involved a certain amount of
uncertainties, there is no doubt that the obtained results are better than the
previously gained knowledge in the Road Directorate about travel time fore-
casting, as a result of which at this stage the proposed algorithm is going to
be implemented ”as-is”. The utilization of clustering in travel time forecasting
has shown that satisfactory results can be achieved by a relatively simple model.
The amount of data which was available in March 2007 was sufficient in order to
obtain workable results. However, as more data becomes available the forecast
performance of the proposed forecast algorithm can be improved. The strength
of this project is that satisfactory results were obtained even though the main
emphasis was put on practicability rather than model complexity. The flow of
data from data collection to model deployment was considered. A sound knowl-
edge of Oracle Data Mining as a prospective tool for data modeling was achieved
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despite start-up difficulties. One additional feat of note is that it was impossible
to find a single thread in the Oracle Technology Network data mining discussion
forum that even remotely approached a success story in terms of applying the
clustering algorithm in a commercial application. This seems to indicate that
perhaps the application of data mining in Oracle data warehouse environments
is still in its early stages. The Road Directorate has given approval to implement
the proposed forecasting algorithm into the new traffic reporting system. The
outlined strategies for model selection and model recalibration will also be put
into practice.
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