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Abstract

This thesis is addressing theory on models for ranked preference data, based
on paired comparisons. The three models,which will be in focus are Mallows-
Bradley-Terry (MBT), Bradley-Terry-Luce (BTL) as presented in [4], and a
variation of the MBT model, where it is assumed that the number of times
each ranking occurs in the data, is Poisson distributed in stead of polynomial
distributed.

The predominant body of the literature on the subject today is limited to a data
analytical approach. Either applying the models in a concrete analysis of data,
or presenting a theoretic description of how to use the models in the readers
forthcoming practical application.

This thesis will in contrast to the existing literature on the subject provide the
reader with a thorough description of the models all from the psychophysical
idea to the mathematical formulation of the model and the model inference, in
a theoretical and strict mathematical way.

The data analytical approach in the existing literature might be the reason why
an introductory description of theoretical comparison of the models is missing.
This comparison will be made in this thesis.

The attention will especially be on the restraining factors for the ability to de-
scribe ranking preference data, and the possibilities for writing them as General-
ized Linear Models (GLM), to be able to derive Maximum Likelihood estimates
through an Iterative Reweighted Least Squares (IRLS) algorithm.

For practical approaches a very relevant extension of the ranking models is the
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extension to handle panel segmentations.Therefore this work will in the last
chapters turn the focus to Latent Class Models (LC), which can handle the
presence of unobserved segmentation of the consumers. Like other mixture
models the inference from the latent class models will happen iteratively by
using an Expectation-Maximization (EM) algorithm.

Through the thesis illustrative and relevant tests are made on simple test data,
to assist the theoretical descriptions. In a separate chapter some more realistic
ranked preference data from the Danish audio- and videoproducer, Bang &
Olufsen (B&O) is analyzed.



Resumé

Denne afhandling beskriver teori om modeller for rangordnet preference data,
baseret p̊a parrede sammenligninger. De tre modeller, der vil være i fokus er
Mallows-Bradley-Terry (MBT), Bradley-Terry-Luce (BTL) som den præsen-
teres i [4] og en variant af MBT, hvor det antages at antallet af gange en given
rangordning optræder i data, følger en poisson fordeling i stedet for en multino-
mial fordeling.

Den litteratur, der i dag er til r̊adighed indenfor emnet, er i høj grad begrænset
til at have en dataanalytisk tilgang. Enten med fokus p̊a anvendelse af mod-
ellerne i en konkret analyse opgave, eller i en teoretisk presentation af modeller,
med fokus p̊a at lette læserens forest̊aende praktiske anvendelse.

Denne afhandling vil derfor skille sig ud fra den eksisterende litteratur p̊a
omr̊adet, ved at beskrive modellerne helt fra de grundlæggende psykofysiske
tanker til den endelige matematiske model samt parameter estimation, p̊a en
matematisk teoretisk stringent måde.

Den dataanalytiske tilgang i den eksisterende litteratur er måske årsag til en
manglende introducerende teoretisk sammenligning af de nævnte modeller, hvilket
denne afhandling vil r̊ade bod p̊a.

Fokus vil i særdeleshed ligge p̊a modellernes begrænsninger i forhold til at
beskrive rangordnet preference data, samt mulighederne for at opskrive dem
som Generaliserede Lineære Modeller (GLZ), med henblik p̊a at kunne finde
Maksimum Likelihood estimater gennem en Iterativ Reweighted Least Squares
(IRLS) algoritme.
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I praktiske anvendelser er en meget relevant udvidelse af rangordningsmod-
ellerne at kunne h̊andtere ikke-homogene forbrugergrupper. Derfor vil sidste del
af afhandlingen beskrive latent-klasse modeller (LCM), der kan h̊andtere tilst-
edeværelsen af uobservede segmenteringer af forbrugerne. Som andre mixtur
modeller vil fastlæggelsen af paramtrene af latent-klasse modellen ske iterativt
ved brug af en Expectation-Maximization (EM) algoritme.

Gennem afhandlingen vil relevante, illustrative test blive foretaget p̊a simple
datasæt, med det formål at understøtte de teoretiske beskrivelser. I et separat
kapitel vil et mere realistisk datasæt fra den Danske højtaler- og tv-producent,
Bang & Oluftsen (B&O) blive analyseret.
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Chapter 1

Introduction

When approaching literature on analysis of ranking data, it is hard to find
literature giving a precise mathematical, but introductive presentation of the
subject.

Most of the literature found will be very desciptive on the experiments or maybe
on how to use some specific method, what is very seldom is literature with the
purpose of introducing the theory in a mathematical way.

This thesis will aim to describe both the motivation for, the construction and
use of paired comparison based ranking models.

Motivation for Preference Ranking Models

A person has to decide which pair of trousers in a shop to buy. Each pair of
trousers have some different options such as color, number of pockets, zipper or
buttons etc, and the person has a preference of each pair build upon all these
options.

The person might start by sorting the trousers into categrories, red trouses with
pockets in one box, short green trousers in one box and etc. If a whole group
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of consumers were asked to sort the same set of trousers, in the same boxes,
cathegorical data would occour. This data could be analysed, but it would not
tell anything about the preference of the consumers.

If all consumers were assumed to have the same preference for trousers, and each
consumer was asked to rank the trousers in the shop so that the pair he like the
most is on the hanger in front and the pair he like the least is far behind, the
information about relative preference, would suddently be a part of the data.
By numbering the hangers, numerical data occure.

The same ranking would be expected except for minor differences, due to ran-
domness. Eg. one person didn’t notice the pockets on the back, one person
didn’t notice that he switched two pairs, when he hurried hanging up the trousers
etc.

An intuitive way of modeling the preference from the ranking observations,
would be to analyze the number on the hangers through ordinary regression
analysis. This analysis would estimate the most likely ranking, but some infor-
mation in the rank data would be lost.

If two trousers are alike except for a minor difference in the colors, they would
be likely to hang next to each other in the rankings. The more alike, the more
persons might not notice the difference between them and therefor the ranking
of those two pairs will often be switched.

This information about the distance between the trousers on the preference
scale would not be found by regression on the hanger numbers. Therefor models
incorporating this information is needed if the relative difference in preference
is to be estimated. Such models are called ranking models, and can be thought
of as both scaling and regression. Therefore not only the correct order of the
trousers is estimated using ranking models, also the relative distance between
the hangers is found.

Through the years a lot of different approaches has been put to estimate pref-
erence from rank data. In section 5 different kind of ranking models are briefly
introduced, such as Proportional Odds models, Distance based ranking models
and Multistage ranking models.

The main focus of this thesis is however put on ranking models based on paired
comparisons.
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Structure of the Thesis

The structure of the thesis is as follows:

The inference of the models in this thesis is done by maximum likelihood esti-
mation. In order to derive the estimates through an Iterative Reweighted Least
Squares algorithm, theory on Generalized Linear Models (GLM) is presented in
section 2.

The origin of preference data and the ideas behind the first attempts to model
preference or attitude is described in section 3. In this section a data set for

In section 4 paired comparison (PC) models will be presented, as an introduction
to the PC based ranking models, which account for the main focus of this thesis.

A brief overview of some ranking models is given in section 5, to present the
diversity in which the PC based ranking models are found. Section 6 present
the PC based ranking models.

Models coping with panel segmentations are presented in section 7 under the
name Latent Class Ranking Models.

In section 8, rank data from B&O is modeled using PC based models in section,
through multivariate statistical analysis on the estimates is carried out, together
with an analysis of the panel segmentation in the data.

A conclusion will summarize, emphasizing the main results of the project, in
section 9.
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Chapter 2

Generalized Linear Model

From one research field to the other the word ”model” might be used for a lot
of different concepts. In the following section the meaning of the word model
within this thesis will be emphasized, followed by a description of a specific kind
of models, Generalized Linear Models (GLM).

2.1 What is a mathematical model?

To be able to make calculations on physical problems, a mathematical model of
the problem is needed. A mathematical model is always formed as a compromise
between the complexity of the physical problem, the accuracy needed and the
capability of performing function evaluations.

Data is the concrete link to the physical problem, and provide information from
the physical problem. The model describe the overall origin of the data in a
mathematical formulation. The model is the structure, with a number of free
variables.

There are different ways of approaching the choice of model or density function
as it is called within the field of statistics. According to [2], they are often
divided into parametric and non-parametric models.
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The definitions are ambiguous, but as a guideline, parametric models can be
thought of as models assuming density function from a specific kind of distri-
butions. Data is then used to estimate the parameters, eg. mode and scale
parameters, to define the best member of the family of variables.

The non-parametric models on the other hand can be thought of as models
where the data is used to ”design” the density function, allowing for much
more general models than the parametric. Such models will fit data well, but a
drawback is that the number of variables will often increase by the size of the
data. The choice of how flexible the model must be can only be made from a
decision of how smooth the solution shall be.

Until section 7 the models presented will be parametric. In section 7, a semi-
parametric model or mixture model will be presented. A model, which is a
mixture of parametric models.

When the model structure has been decided, the question comes to how to
determine the parameters, that is how to tie free parameters of the model. This
is often done by minimizing some error function. This step is called inference
of the model. Inference of a GLM model is mentioned in section 2.5.

Depending on the choice of inference, an algorithm for doing the actual deriva-
tions of the parameter estimates, must be found. And finally a choice of a
specific implementation of the algorithm, must be made.

In some cases the minimization of the error function demand a solution to a non
linear problem. In such cases the algorithm must be iterative. This is also the
case when inferencing from GLMs.

A commonly used model, is the general linear model, which can be defined as a
model of the vector of responses Y = (Y1, . . . , Yq), where the components Yi are
mutually independent normally distributed with common variance. This entail
that the model can be written as

Y = Xβ + ε,

where the linear predictor part is defined Xβ, and ε is normal distributed.

Once the model is formed as a general linear model a lot of statistic packages
have standard procedures for evaluating the model in many ways. (regression
analysis, analysis of variance, analysis of covariance etc.) But of cause not all
observations can be modeled by general linear models.
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2.2 What is a Generalized Linear Model?

Generalized linear models are generalizations of general linear models, where the
mutually independent components of Y are allowed to be distributed according
to the exponential family of distributions.

The advantages of describing models within the GLM framework is that a lot of
the standard procedures for evaluating the model is inherited from the general
linear models.

The reason for restricting GLMs to the exponential family of distributions for
Y is that the same algorithm applies to this entire family, for any choice of link
function, [1, p. 119].

2.3 The Exponential Family of Distributions

The definition of the exponential family distribution vary over the literature,
in this thesis the most general will be used, following [16], defining a pdf for a
distribution from the exponential family as

fexp(y; η, φ) = exp
(

(yη − b(η))
a(φ)

+ c(y, φ)
)

, (2.1)

where η is a function of the location parameter called the canonical parameter
and φ is the dispersion parameter.

Different members of the exponential family of distribution occur for different
definitions of the functions a, b and c. Examples of members could be the
Normal, the exponential, the binomial, the Poisson and the Gamma distribution.

The mean of Y can be found as,

E(Y) = b′(η), (2.2)

and the variance

var(Y) = a(φ)b′′(η). (2.3)

For derivation of both (2.2) and (2.3) see [16, page 38-39]. Notice that the
variance might be a function of the mean, contrary to the general linear model.
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2.4 Link Function

A consequence of Y = (Yi, . . . , Yq) being modeled by a GLM, is that for each
component Yi, with a corresponding set of Xij , there exists a monotone differen-
tiable function g called a link function, relating the expected value, E(Yi) = µi

to a linear predictor so that

g(µi) = Xiβ, (2.4)

where Xi = (Xi1, . . . , Xiq) and β = (β1, . . . , βv).

Every distribution has a link function which in some sense is ”natural”, called
the canonical link function. According to [16, page. 42], the definition of the
canonical link function, is the link function, for which g(µ) = η, where η is the
canonical location parameter of the distribution.

Summing up a generalized linear model is defined by the choice of the distri-
bution of the components of Y, through the functions a,b and c, and by a link
function g with corresponding linear predictor Xβ.

GLM for count data

When the components of Y are independent and distributed by a Poisson dis-
tribution, the pdf is

fPoiss(yi, λ) = e−λ λyi

yi!
= exp(yiη − exp(η) − log(yi!)),

where the last equation is recognized as an exponential density function with,
η = log(λ), b(η) = exp(η), c(yi, φ) = − log(yi!) and a(φ) = 1.

From (2.5) the canonical link function for the Poisson distribution is determined
as the logarithm, since η = log(λ). Notice that g : [0;∞[y]−∞;∞[, spreading
the positive count observations to ] −∞;∞[.

GLM for binary and binomial data

When the observations can be thought of as sums of Bernoulli outcomes, the
components of Y might be modeled as binomial distributed, and then the pdf
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is

fbin(yi, p, n) =
(

n

yi

)
pyi(1 − p)n−yi

= exp
(

yiη + n log
(

1
1 + exp(η)

)
+ log

(
n

yi

))
,

where the last equation is recognized as a density function from the exponential
family, η = log( p

1−p ), b(η) = n log(1 + exp(η)), c(yi, φ) = log
(

n
yi

)
and a(φ) = 1.

According to the definition in [16], mentioned above, the canonical link function
of the binomial distribution, should be the function g(µ) = log( µ

n−µ ), since it
was recognized that

η = log
(

p

1 − p

)

= log
(

µ

n − µ

)
. (2.5)

However, it is worth noticing, that everywhere in the GLM literature ([16], [1]
etc), the canonical link function for the binomial distribution is declared to be
the logit function, which according to (2.5), is not the case, except for the special
case of Bernoulli distribution, where n = 1.

In this thesis the canonical link function for the binomial distributed will be
defined as (2.5), and referred to as the scaled logit or simply the canonical link
function for the binomial distribution.

Another link function that is often used instead of the scaled logit, is a scaled
probit function

g(µ) = Φ−1(p),

= Φ−1(
µ

n
), (2.6)

where Φ is the cumulative distribution function for the Gaussian distribution.
Yet another link function mentioned will be the scaled complementary log-log
link

g(µ) = log(− log(1 − p))

= log(− log(1 − µ

n
)) (2.7)

As for (2.5), the functions given by (2.6) and (2.7), is in the literature mislead-
ingly called relatively the probit link and the complementary log-log link.
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Figure 2.1: Logit, probit and complementary log-log functions.

In Figure 2.1 the logit, probit and complementary log-log functions are com-
pared. Notice that all of them transform goes from [0; 1] to ]−∞;∞[.

2.5 Inference for GLMs

When the kind of distribution or the structure of the model has been decided,
the observations should be used for model inference, which means to determine
the parameters of the model, so that it is the best in “some sense”. In this
situation the question raise: What is the definition of “best sense”? Or in other
words; how should the degrees of freedom of the chosen structure be tied? The
question is often answered by minimizing some distance function or norm of the
residuals.

One definition of best could be the model that makes the observed data most
likely. This estimate of the parameters is called the Maximum Likelihood esti-
mate and is the model that minimizes the variance. In the case of general linear
models this is the same as minimizing the 2-norm of the residuals.

Other ways to determine the parameters could be to minimize other distance
functions, like the 1-norm and the ∞-norm. Each having different advantages
and disadvantages. Eg. if robustness is important, one should chose to minimize
the 1-norm, or maybe a combination of the 1- and 2-norm defined as the Huber-
function. See [19, chapter 8] for a good description of how the ML estimate
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relates to other estimates, for a more numerical version of parameter estimation
choose e.g. [12].

Anyway in this thesis the definition of ”best sense” will be the parameters
maximizing the likelihood of the observations.

2.5.1 Likelihood Equations

Recalling that all GLMs have distributions which are members of the exponen-
tial family, maximizing the likelihood is defined as maximizing the probability
density function given in (2.1), (in this situation called the likelihood function)
with respect to the parameters η and φ. Since maximizing the likelihood and
the logarithm result in the same estimates, then for convenience maximizing the
logarithm of the likelihood is most often chosen.

The log-likelihood function for (2.1) is written as

`(η, φ; y) = log(L(η, φ; y))

=
yη − b(η)

a(φ)
+ c(y, φ). (2.8)

Finding the maximum can be done by finding roots in the derivatives of (2.8).
The derivative for a single observation, xj is

δ`

δβj
=

(y − µ)
a(φ)

1
V

dµ

dη
xj

=
W

a(φ)
(y − µ)

dη

dµ
xj ,

where the weight W is given by

W−1 =
(

dη

dµ

)2

V. (2.9)

By summing over all the observations the likelihood equation for one parameter
βj is given by

n∑
i=1

Wi(yi − µi)
a(φ)

dηi

dµi
xij = 0,

and defines one row in a system of equations, which can be solved with respect
to β, through the link functions. See [1] for more details.
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2.6 Iterative Algorithms

The likelihood equations (2.10) are usually nonlinear in the parameters. And
therefore iterative methods must be used to estimate the parameters. There
are a lot of different methods, which could come handy. In [1, chapter 4.6]
three methods are mentioned, the Newton-Raphson, the Fischer scoring and
the Iterative Reweighted Least Squares (IRLS) Method. [16, chapter 2.7] only
briefly mention the IRLS.

Newton-Raphson Method

The Newton-Raphson Method is maybe the most common used algorithm for
nonlinear optimization, it is a steepest descend method, which means that each
step is taken in a direction where the objective function is descending or at least
non-increasing. A description using the GLM notation could be found in [1],
but every introductory course in optimization has a description. A very good
one is found in [13], together with different improved variants of the algorithm.

The Newton-Raphson algorithm among others, uses information about the gra-
dient of the objective function to define descending directions. Methods not
using gradient information are also available. Such a direct search algorithm is
implemented in the software MatLab in the function fminsearch. This function
will be used in later sections to minimize the negative log-likelihood, in the case
where the model can not be formulated as a GLM.

When the GLM framework can be applied other iterative methods are more
useful, such as the IRLS method.

Iterative Reweighted Least Squares Method

If the maximization algorithm could take advantage of the structure of the non-
linear objective function, even more effective algorithms would raise. Therefor
a lot of algorithms specified for non-linear least squares problems have been
developed over the years. For an overview of some see [13].

A very used method within the GLM framework is the Iterative Reweighted
Least Squares (IRLS) method, where each iteration solves the weighted least
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squares problem:

βnew = argminβ{||W (y − Xβ)||2}
= argminβ{(y − Xβ)ᵀW (y − Xβ)}, (2.10)

where the weighting function W (·) in the case of maximizing the log-likelihood
in (2.8) should be given by (2.9). It is stressed that this is only one way to define
the weights. The weight function should be chosen according to the problem
to be solved. The choice of weighting function can e.g. be used to change the
estimate towards a 1-norm estimate.

The IRLS algorithm described by (2.10), is implemented in the statistical soft-
ware R as the method glm(). This implementation will be used in later sections
for inference of GLMs.
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Chapter 3

Preference Data

One thing is to measure physical merits such as hight, length, weight etc. An-
other thing is to measure abstract concepts such as preference, attitude, self
esteem and intelligence.

In the 19’th century the view of psychology changed. With the development
of the subdiscipline psychophysics, it was now looked upon as a regular field of
science. Psychophysics is dealing with the relationship between physical stimuli
and their subjective percepts.

One of the main topics was to find a way to convert the measurable physics to
an perceptual experienced scale. This transformation is called scaling. A well
established scaling is the perceptual experience of the frequency of sound which
is called pitch, and is measured in mels.

3.1 Scaling

When the question comes to scaling more abstract psychological measurements
such as attitude, personality traits etc. another kind of research field comes
into account. Psychometrics is the research field of theory and techniques of
psychological measurements.
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The observed data is often answers to a number of questions, and different
scaling methods, such as Thurstone scaling, Likert scaling and Guttman scaling,
have been developed. A very good text about general issues in scaling is found
in [20], which also describe in details the practical procedures of the different
scaling methods.

In the following a brief introduction to Thurstone and Guttman scaling will be
given together with a mathematical motivation for the scalings. Notice that an
assumption for all these scalings is that the abstract concept can be measured
on a unidimensional scale.

Thurstone Scaling

In 1928 Thurstone presented the first formal scaling method of measuring atti-
tude in [17], as he was measuring attitude towards religion. He had a number
of statements, each which had been applied a numerical merit (a scale value),
of how favorable the statement was towards religion. A very descriptive text of
the process is given in [20].

The test person could now either agree or disagree with the statements. Thur-
stone measured the persons attitude towards religion by summing over all the
scale values of the agreed statements. This way of measuring attitude is called
Thurstone Scaling, and in further analysis of the attitude data, it is assumed to
follow a Normal distribution.

As it is a formulated goal of this thesis to present the theory in a mathematical
stringent way, a mathematical motivation for the assumed distribution is given.
It is stressed that the mathematical motivations are not proved, but are de-
veloped by the author as examples of mathematical formulations of the theory.
It will however be seen in later sections, that they come to fit nicely into the
general theory of Paired Comparison models.

From a mathematical point of view Thurstone assumed that every answer was
an outcome of a stochastic variable, weighted by the scale values. The attitude
could also be seen as a stochastic variable X , defined as the sum of all the
stochastic answer-variables.

A natural choice of distribution of X would be the Normal distribution since the
Normal distribution, according to the Central Limit Theorem, can be obtained
as the limit distribution of the sum of a large number of independent distributed
stochastic variables.



3.1 Scaling 17

Theorem 3.1 Central Limit Theorem Let X1, X2, . . . Xn be independent,
identical distributed stochastic variables with mean µ and variance σ2. Then
the distribution of

Un =
√

n

σ

(
X1 + . . .Xn

n
− µ

)
,

will converge towards a normal distribution, when n → ∞, like

P (Un ≤ u) → Φ(u).

Guttmann Scaling

In 1944 Louis Guttman published his work about Scalogram Analysis. The
Guttman scale is based on observations of a test persons agreement/not agree-
ment answers towards statements just as the Thurstone scale.

Different from the Thurstone scaling a Guttman scale has a cumulative order
of the statements. Each statement is applied a value, so that every test person
agreeing with statement 4 also agrees with statement 1, 2 and 3. The persons
attitude towards say immigration as in the example below, is then measured as
the maximum value of the agreed statements.

An example of a Guttman scale could be the Bogardus Social Distance Scale:

1. I believe that this country should allow more immigrants in.

2. I would be comfortable with new immigrants moving into my community.

3. It would be fine with me if new immigrants moved onto my block.

4. I would be comfortable if a new immigrant moved next door to me.

5. I would be comfortable if my child dated a new immigrant.

6. I would permit a child of mine to marry an immigrant.

As for the Thurstone measure of attitude, a more mathematical motivation
could be, that every answer of agreement is seen as a stochastic variable. Now
if the measure of attitude is defined by the stochastic variable X , then X will
follow the maximum distribution of all the stochastic answer-variables.

From the Extremal Types Theorem, a natural choice of distribution for X would
be the Extreme Value Distribution, also known as the Gumbel distribution.
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Theorem 3.2 Extremal Type Theorem For samples taken from a well be-
having arbitrary distribution X, the resulting extreme value distribution Yn =
max{X1, X2, . . . , Xn}, can be approximated and parameterize with the extreme
value distribution (Gumbel) with the appropriate support.

lim
n→∞ P

(
Yn − bn

an
≤ x

)
= G(x),

where F (x) is the Gumbel distribution.

The Gumbel distribution has probability density function as

f(x) =
1
β

e−
x−α

β e−e
− x−α

β
, (3.1)

where α is the mode or location parameter and β is the scale parameter.

The mean is derived as α + εβ, where the ε ≈ 0.5772 is the Eulers number.
The standard deviation is βπ√

6
. The case where α = 0 and β = 1 is called the

standard Gumbel distribution.
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Figure 3.1: Gaussian and Gumbel probability density functions.

Figure 3.1 compares pdf’s for the Gaussian distribution with the standard Gum-
bel distribution. Notice that the Gumbel distribution is not symmetric around
the mode.
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Item Response Theory

The main body of theory within psychometrics is the Item Response (IR) theory.
This is theory about the IR models, also known as Latent Trait Models, which
are mathematical models applying scaling data, used to analyze psychological
measurements.

The two IR models which will be used in this thesis are the Thurstone model
for paired comparisons, and the Bradley-Terry model. The latter is a special
case of the Rash model for dichotomous data. The two models are based on
respectively Thurstone scaling and Guttman scaling, and will be presented in
section 4.



20 Preference Data



Chapter 4

Paired Comparison Models

As mentioned in the last section, this section will present theory of the item re-
sponse models, known as the Thurstone-Mosteller (TM) model and the Bradley-
Terry (BT) model. The models specify the probability of a specific outcome in
terms of some item parameters, or scale values of the perceived ”weight” on a
continuum.

These models are as the title indicates, models for data originating from paired
comparison experiments, and are simple examples of proportional odds models
also known as order statistic ranking models. In section 5 a generalization of
these models into comparison of more than two items is presented. However the
real reason for describing the models so detailed in this section is that they are
used as a base for the PC based ranking models described in section 6, which
are the main-focus models of this thesis.

The section will show why in practise the differences between the Thurstone-
Mosteller and the Bradley-Terry model are almost non-existing, but also em-
phasize that there is a mathematical theoretical interesting difference in how
the models have emerged.
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4.1 Paired Comparison Data

Assuming that the scale values called item parameters of t items are to be
estimated. The preferences of a panel of n consumers are used as observations.
The consumers are each asked to compare two items at a time, answering which
item they prefer of the two.

The consumers are assumed to have equal preference scale, so that the observa-
tions can be treated as independent outcomes of the same distribution.

Letting Yij be a stochastic variable describing the preference between two items,
so that

Yij =

{
1 if a consumer prefer item i to item j

0 otherwize,

for all i, j = 1, . . . , t.

Letting pij = P (Yij = 1) be the probability of a consumer preferring item i to
item j, the distribution of Yij is then given as

Yij ∼ bin(pij , 1) ∀ i, j = 1, . . . , t. (4.1)

The preference probability pij could be thought of as the difference in the con-
sumers preference/attitude towards two items. Therefore the scaling theory
from section 3 can be applied. Defining the stochastic variable of the scale value
for each item Wi, i = 1, . . . , t, the probability pij can be modeled as the prob-
ability of the event that the preference of item i is greater than the preference
of item j,

P (Yij = 1) = P (Wi > Wj)
= P (Wj − Wi ≤ 0). (4.2)

So far the theories for the two models, TM and BT agree, but as they are
developed from different scaling models the distributions of the latent variables
Wi, for i = 1, . . . , t are different for the two models. Recall that the Thurstone
scale assumes Normal distribution of Wi, while the Guttman scale assumes
Gumbel.
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4.2 Thurstone-Mosteller model

Assuming that the mathematical formulation of the Thurstone scaling is correct,
the latent item variables Wi are assumed to follow a Normal distribution with
means, µi and for simplicity equal variance σ2,

Wi ∼ N(µi, σ), ∀i = 1, . . . , t.

The preference probability defined by (4.2), can now be modeled as

pij = P (Wj − Wi ≤ 0)

= P

(
(Wj − Wi) − (µj − µi)√

2σ2
≤ −µj − µi√

2σ2

)

= Φ
(

µj√
2σ

− µi√
2σ

)
= Φ(θj − θi), (4.3)

where the last equality sign comes from defining the parameter θi as

θi =
µi√
2σ

∀i = 1, . . . , t,

without loss of model complexity.

This result is consistent with the Law of Comparative Judgement (LCJ). In
1927 Louis Leon Thurstone published a paper on the so called ”law”, which
is more correctly to be described as a measurement model. The ”law” shows
how to model scale values of the perceived ”weight” on a continuum by use of
paired comparisons. The fifth case of LCJ, assumes uncorrelated observations
and could therefore be used in the present case.

4.3 Bradley-Terry model

Using the Guttman Scaling theory the latent variable Wi of the item i, should
follow a Gumbel distribution. This assumption results in the formulation known
as the Bradley-Terry probability, as a competitor to (4.3)

pij =
πi

πi + πj
,

where parameter πi ≥ 0 and πj ≥ 0 for i, j = 1, . . . , t. The following section will
provide the argumentation.
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Assume that the observed response Yij is formed by a latent variable. Let Wi for
i = 1, . . . , t be stochastic unobserved variables following a Gumbel distribution,
with location parameters αi and for simplicity equal scale parameters β > 0. So
that,

Wi ∼ G(αi, beta), β > 0

then the pdf of Wi, according to [1] is

P (Wi ≤ wi) = exp(−(wi − αi)) · exp
(
− exp

(
−wi − αi

β

))
.

Using this formulation of the latent item variables, the preference probability
can be modeled as

pij = P (Yij = 1)
= P (Wi ≥ Wj)
= P (Wj − Wi ≤ 0)

= P

(
Wj − Wi − (αj − αi)

β
≤ 0 − (αj − αi)

β

)
= LOG((αi − αj)/β)

=
1

1 + exp(−(αj − αi)/β)
, (4.4)

where the second last line, comes from the fact that the difference of two Gumbel
distributed random variables with equal scale parameters, is logistic distributed
with mean equal to the difference of the Gumbel means and scale parameter
equal to the Gumbel scale parameter, see [15] for details.

As β is just a scaling factor we can, without loss of model complexity define a
new item parameter θi as

θi =
αi

β
, ∀i = 1, . . . , t.

Using the new item parameter in (4.4)

pij = LOG(θj − θi) ⇔
log

pij

1 − pij
= θj − θi ⇔

logit(pij) = θj − θi. (4.5)
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Making another transformation, πi = exp(θi) ⇔ θi = log(πi), the Bradley-Terry
formulation in (4.4) is recognized as

pij =
πi

πi + πj
, (4.6)

This result is consistent with the theory for the Rash model for dichotomous
data. The Rash model for dichotomous data models the probability of item
i being preferred to item j, as a function of both a person parameter of the
persons ability to answer correct and of an item parameter. By conditioning on
the person to answer correct, the model states that the logarithm of the odds
(logit) of P (Yij = 1) can be modeled as the difference in the item parameters,
as seen in (4.5).

4.4 Inference

Given a set of data from a sequence of paired comparisons, how would it then
be possible to draw inference using either the TM or the BT model?

Recalling from (4.3) and (4.4) that both models formulate pij as

pij = g−1(θj − θi),

where the function g in the TM approach is the inverse probit, and in the BT
approach is the logit function.

Here it should be stressed, that an assumption about no order effect, which
means pij = 1− pji, has been made. Thereby only observations yij where i < j
are modeled, reducing the degrees of freedom in the model. This gives, in a set
of t items,

(
t
2

)
= (t−1)t

2 different stochastic variables.

The observation vector yk for each consumer k = 1, . . . , n, is defined as an
observation from the multiple stochastic variable Y = (Y12, Y13, . . . , Yt−1,t),
with one element for each type of paired comparison made by consumer number
k.

Assuming that all the paired comparisons (i < j) made by a consumer are
independent, the probability of observing yk can be formulated as the product
over all the paired comparisons made, which according to (4.1) each follow a
binomial distribution with parameters (pij , 1),
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P (Y = yk) =
t−1∏
i=1

t∏
j=i+1

P (Yij = yijk)

=
t−1∏
i=1

t∏
j=i+1

(
1

yij

)
p

yij

ij (1 − pij)1−yijk

=
t−1∏
i=1

t∏
j=i+1

(
1

yijk

)
p

yijk

ij (1 − pij)(
1

1 − pij
)yijk

=
t−1∏
i=1

t∏
j=i+1

(
1

yijk

)(
pij

1 − pij

)yijk

(1 − pij)

=
t−1∏
i=1

t∏
j=i+1

(
1

yijk

)(
pij

pji

)yijk

(pji),

for all consumers k = 1, . . . , n.

Therefore the total probability of the observed data is

P (Y = y) =
n∏

k=1

P (Yk = yk)

=
n∏

k=1

t−1∏
i=1

t∏
j=i+1

(
1

yijk

)(
pij

pji

)yijk

(pji).

Maximum Likelihood

The likelihood function is

L(θ;y) =
n∏

k=1

t−1∏
i=1

t∏
j=i+1

(
1

yijk

)(
pij

pji

)yijk

(pji), (4.7)

and thereby the log-likelihood

`(θ;y) =
n∑

k=1

t−1∑
i=1

t∑
j=i+1

log
(

1
yijk

)
+ yijk(log(pij) − log(pji)) + log(pji)

= a +
n∑

k=1

t−1∑
i=1

t∑
j=i+1

log(
pij

pji
) + n

t−1∑
i=1

t∑
j=i+1

log(pji).
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where a =
∑n

k=1

∑t−1
i=1

∑t
j=i+1 log

(
1

yijk

)
is a constant with respect to pij and

can therefore be neglected in the maximization.

Using the different distributions of Yij for the TM model and the BT model,
gives different log-likelihood functions `TM and `BT , given as

`TM (θ;y) = a +
n∑

k=1

t−1∑
i=1

t∑
j=i+1

yijk log
(

Φ(dij)
Φ(−dij)

)
+

n

t−1∑
i=1

t∑
j=i+1

log(Φ(−dij)), (4.8)

where the distance dij = θi − θj , and

`BT (θ;y) = a +
n∑

k=i

j−1∑
i=1

t∑
j=i+1

yijk
πi

πj
+ n

j−1∑
i=1

t∑
j=i+1

πj

πi + πj
, (4.9)

where π is defined like in (4.6), so that πi = log(θi) for all items i = 1, . . . , t.

Taking the non-linearity of the problem into account, one way to optimize
the log-likelihood functions could be through the iterative method of Newton-
Raphson, or maybe using a direct search method, that does not need knowledge
about the derivatives. Such a directive search method is implemented in the
MatLab function fminsearch.

Example

As an illustration consider the data from example 1 ind [5], in which 15 persons
examine all possible pairings of four different taste samples. The data is given
in Table 4.1.
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index (i, j) yij

(1, 2) 3
(1, 3) 2
(1, 4) 2
(2, 3) 11
(2, 4) 3
(3, 4) 5

Table 4.1: Paired Comparison data from example 1 in [5]. 15 persons have
examined all possible pairings of four different taste samples.

The log-likelihood function for the Bradley-Terry model has been implemented
in MatLab. The code is found in the file loglikeBT.m in appendix C.

The estimated item parameters are found to be

θTM = (−2.3571,−0.7440,−1.0561, 0),

which equals the estimates in [5].

An other way of estimating the item parameters could be to recognize the model
for the problem as a GLM, and then use an IRLS method, e.g. the one imple-
mented in the software R, in the function called glm.

GLM approach

As the components of the multiple stochastic variable Y = (Y12, Y13, . . . , Yt−1,t),
are independent and binomial distributed, Y can be modeled as a generalized
linear model with binomial distribution, according to section 2.

According to (4.7) both the TM model and the BT model has the following
model of the mean

g(p) = Xθ ⇔
g(

µ

n
) = Xθ,

where the θ = (θi, . . . , θt)ᵀ is the parameter vector and the model matrix X is
given as

Xij,k =




1 if k = i,
−1 if k = j,
0 otherwise,
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which is a matrix with one row per paired comparison made. That is
(

t
2

)
=

(t−1)(t)
2 rows. Each row has a 1-entry in the i’th column and a −1-entry in the

j’th column.

The link function g(p) is recognized as the (scaled) probit link (2.6) for TM
model, and the (scaled) logit link (2.5)for the BT model.

Now both models are formulated as Generalized Linear Models and an IRLS
method, can be used to estimate the parameters.

Code for estimating the item parameters for data from Table 4.1, using a GLM
framework with binomial distribution and logit as well as probit link function
is presented in binprobitlogitCFeks1.R in appendix D.

The estimated item parameters are found to be

θlogit = (−2.3571,−0.7441,−1.0561, 0) and
θprobit = (−1.3874,−0.4421,−0.6192, 0),

which equals the estimates in [5].
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Figure 4.1: Estimated values of θ, with GLM probit, GLM logit and ML-
estimate.

In Figure 4.1 the estimated item parameters are plotted, both the maximum
likelihood estimate, and the GLM estimates with probit and logit link functions.
Notice that the estimate with logit link and the ML-estimate are equal, as
assumed.
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Chapter 5

Ranking Models

In section 4 models for estimating item parameters from paired comparison data
was described. The next two sections will be concerning models for estimating
the item parameters from ranking data.

First ranking data will be described followed by a brief overview of the diver-
sity of ranking models, and then in section 6, ranking models based on paired
comparisons will be treated.

5.1 Ranking Data

Assuming that the item parameters of t items are to be estimated. The pref-
erences of a panel of n consumers are used as observations. The consumers are
each asked to order the t items, starting with the one they like the most ending
with the one they like the least.

The consumers are of cause assumed to have equal preference scale, so that the
observations can be treated as independent outcomes of the same distribution.

Notice the difference between the concepts ordering and ranking. A ranking of
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t items, is defined as

ru = (r1u, r2u, . . . , rtu) ∀u = 1, . . . , t!,

where riu is the rank value chosen for item i in ranking number u, while the
ordering of the items is defined as

hu = 〈h1u, h2u, . . . , htu〉 ∀u = 1, . . . , t!,

where hiu is the item number of the item with rankvalue i in ranking number
u.

The relation between a ranking ru and ordering hu is unique, and therefor the
data could be observed in either ways.

All possible rankings of t items can be described by all possible permutations
of the indexes of the items. That is t! different rankings of t items.

To derive a mathematical model of how to estimate item parameters from a set
of ranking observations, the stochastic variable Yuk of the ranking observations
is defined;

Yuk =

{
1 if consumer k rank the items according to ranking ru

0 otherwise,

for all u = 1, . . . , t! and k = 1, . . . , n.

Written in another way

Yuk ∼ bin(pu, 1) ∀ u = 1, . . . , t!,

where pu = P (Yuk = 1).

Since a consumer must prefer one and only one ranking to all the others, the
probabilities pu , for u = 1, . . . , t! must sum to one,

t!∑
u=1

P (Ru) = 1,

where Ru is used as a notation for the event that a consumer rank the items
according to ranking ru, {Ru} = {Yuk = 1}.

So far all ranking models must agree, but similar to hte PC models in section 4,
different approaches to describe the probability pu has been made through the
years.
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5.2 The Diversity of Ranking Models

Every author in this field has his or her own way of categorizing ranking models.
Therefore the reader is asked to keep in mind, that under the right assumptions
the categories presented here might overlap and/or define new categories.

The author find the categories used here very instructive in providing an overview
of the models, emphasizing the differences, but as least as important the simi-
larities.

Proportional Odds Models

These models have several names; Order Statistics Models, Proportional Odds
Models or Cummulative Logit Models.

Examples of those models are the Thurstone-Mosteller-Dianiels (TMD) model
and the Luce model. Both these models are generalizations of the two-paired
comparison models Thurstone-Mosteller and Bradley-Terry.

Like in the paired comparison models the perception of an item is modeled as
a latent stochastic variable, modeled according to a scaling model.

A simple introduction could be to let qi be the probability that item i is preferred
to all other items.

The probability of item i to be ranked number 1 can then be derived as

P (riu = 1) = qi.

Then the probability of item j to be ranked number 2, given that item i is
ranked number 1, must be

P (rju = 2| riu = 1) =
qj

1 − qi
.

Generalizing this idea, the probability of ranking ru can be derived as a product
of the independent conditional probabilities

P (Ru) =
t∏

j=1

qhju∑t
i=j qhiu

,
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or written by rankings

P (Ru) =
t∏

j=1

qj


 t∑

i=1,riu>rju

qi




−1

.

For different introductions see [16], [21] and [18], but for a more thorough review
see [1, ch. 7.2.2].

The multistage ranking models

The multistage ranking models was first presented in [8]. These models break
the ranking process down into a sequence of t−1 stages, like the Luce and TMD
models just described.

The difference is that these models are parameterized by the probability of the
different degree of ”accuracy” at each stage. It is assumed that the accuracy of
the choice at any stage is independent of the accuracy at other stages.

Accuracy is assessed with respect to a central ranking. This means that once a
central ranking has been chosen, the choice probability at a given stage depends
only on the stage rather than on the objects remaining at that stage, contrary
to the proportional odds models.

This will, according to [8] avoid analytical difficulties, when the number of items
increase to more that ”a few”.

Distance based ranking models

In these kind of ranking models each ranking ru = (r1u, . . . , rtu) is looked upon
as a point in some t dimensional space, with some distance function attached
to the space. The probability of a ranking is found as a function of the distance
between the specific ranking and some modal ranking. A ranking has decreasing
probability with increasing distance from the modal ranking.

Examples of such models are the Kendall’s Distance model an Mallow’s φ-model.
The latter is presented in [7] The ”distance” is defined by a metric on permu-
tations, d(ru, rv) which is the minimum number of transpositions required to
bring ru to rv. For an instructive description see [9].
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Some generalizations to these models was made by Fligner and Verducci and
presented in [7].

Models based on paired comparisons

Yet another kind of models are the models based on paired comparison models.
These models are not generalizations of the paired comparison models, in the
same sense as the proportional odds models TMD and the Luce-model. These
models converts the ranked data into paired comparison data, and then work
on it, as if it was paired comparison data.

Example: A consumer has ordered four items in this preference order: hu =
〈3, 1, 2, 4〉 meaning that he prefers item 3 the most and 4 the least. This means
that the consumer contribute to the data by the ranking ru = (2, 3, 1, 4). The
paired comparison probabilities that are present with this ranking would be p12,
p14, p24, p31, p32 and p34. One way to describe those probabilities, could be all
pij where i, j = 1, . . . , t and riu < rju.

These models are the main focus of this thesis and different examples of such
are presented in the next section 6.
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Chapter 6

PC based Ranking Models

In the last section some different approaches to model ranking data were briefly
presented. This section will go more thorough into an approach based on the
paired comparison (PC) models described in section 4. Three models will be
presented.

The first (MBT) mentioned in [5] will describe the data well, but will not be a
GLM. The second model BTL, is presented in [4] and identified as a GLM, but
it is showed to have some simplifications that does not match the structure of
the data. At last a GLM model is derived having the same reasonable parameter
estimates as the MBT model.

Even though the models presented here could use either kind of paired compar-
ison models as a reference, this presentation will be limited to use the Bradley-
Terry model. In section 4 it was shown that the difference between the BT
model and the Thurstone model is quite small both in theory and practice. It
will be easy for the reader to replace the Bradley-Terry form of pij , by any other
if wanted, but the BT form makes the equations more readable and easy to work
with and is therefore chosen here.

From (4.6) the Bradley-Terry probability of a consumer preferring item i to item
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j is

pij =
πi

πi + πj
.

The general idea behind the models is to think of each ranking as a combination
of some paired comparisons. This way of thinking of the origin of a ranking
might make sense to a psychometrician as a natural way of ranking items. When
a person is to rank say 10 items, it is very unlikely that he is able to compare all
items at one time. Intuitively one would assume that he, in his head, compare
the items two at a time, and then build up his ranking from those comparisons.

An advantage of thinking of the rankings as originating from paired comparisons
is that there is a straight forward way to handle incomplete data. Even though
a full ranking has not been fully completed by each consumer, still some compo-
nents of the ranking can be identified as paired comparisons and the information
will not be lost. Incomplete data will not be an issue in this thesis.

6.1 Mallows-Bradley-Terry model

Recalling from section 5 the structure of a ranking of t items

ru = (r1u, r2u, . . . , rtu),

and the stochastic Bernoulli variable Yuk describing whether consumer k =
1, . . . , n rank the items according to ranking ru for u = 1, . . . , t! or not.

Yuk ∼ bin(pu, 1),

where the probability pu = P (Ru), according to 5.1.

A way to define all the different paired comparisons being consistent with some
ranking ru, is to chose all the pairs (i, j) where the rank value of item i is smaller
than the rank value of item j, that is riu ≤ rju. Assuming independence between
the pairs, this leads to a description of the probability that the ranking ru, is
observed in a one-trial experiment

P (Ru) = c0(θ)
t∏

(i,j),riu<rju

pij , u = 1, . . . , t!

where c0(θ) is a normalization constant, assuring that
∑t!

u=1 P (Ru) = 1.
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Now following the Bradley-Terry theory defining, pij = πi

πi+πj
, one can write

P (Ru) = c0(θ)
t∏

(i,j),riu<rju

πi

πi + πj

= c0(θ)
∏t

i=1 πt−riu

i∏t−1
i=1

∏t
j=i+1(πi + πj)

= c0(θ)
∏t

i=1 πt−riu

i

π0

= c(θ)
t∏

i=1

πt−riu

i , (6.1)

where the two last lines comes from defining the constant π0 =
∏t−1

i=1

∏t
j=i+1(πi+

πj), and a new normalization constant c(θ) = c0(θ)/π0.

The Normalization Constant

To ensure that a consumer prefer one and only one ranking to all the other
rankings, the sum of the ranking probabilities over all rankings has to sum to
1,
∑t!

u=1 P (Ru) = 1. This is made true by the normalization constant c(θ),
depending on the parameters.

Using (6.1) to describe P (Ru) the constant can be derived from

1 =
t!∑

u=1

P (Ru)

=
t!∑

u=1

c(θ)
t∏

i=1

πt−riu

i

= c(θ)
t!∑

u=1

t∏
i=1

πt−riu

i ⇔

c(θ) =

(
t!∑

u=1

t∏
i=1

πt−riu

i

)−1

.
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Distribution of Y

Assuming that the number of consumers n is constant, the stochastic variable
Yu of the sum of the Bernoulli variables Yuk over consumers, must be defined
with distribution

Yu =
n∑

k=1

Yuk ∼ bin(pu, n), u = 1, . . . , t!, (6.2)

which can also be thought of as a stochastic variable for the number of times
the ranking ru will occur in the data set.

Since
∑t!

u=1 pu = 1, and Yu ∼ bin(pu, n), the multiple stochastic variable
Y = (Y1, Y2, . . . , Yt!) must be polynomial distributed according to [10], with
parameters given as

Y ∼ poly((p1, p2, . . . , pt!), n),

with probability density function

P (Y = y) = P (Y1 = y1 ∧ Y2 = y2 ∧ · · · ∧ Yt! = yt!)

=
(

n

y1 y2 · · · yt!

) t!∏
u=1

P (Yu = yu)

=
(

n

y1 y2 · · · yt!

) t!∏
u=1

P (Ru)yu .

6.1.1 Parameter estimation

Even though the components of Y can be written as being distributed accord-
ing to the exponential family, the model does not fall into the frames of GLM.
The reason is that in the polynomial distribution, the components are not in-
dependent, and therefor the GLM acquirements are not fulfilled. Inference can
therefor not be done by use of the IRLS method described in 2 , but must be
done by iteratively maximizing the likelihood.

Another approach could be to use of a multiple version of IRLS, since the
polynomial distribution can be thought of as a Multivariate Generalized Linear
Model. Those models will not be handled in this thesis, but an introduction can
be found in [1].
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The likelihood function

LMBT(θ;y) =
(

n

y1 y2 · · · yt!

) t!∏
u=1

P (Ru)yu

=
(

n

y1 y2 · · · yt!

) t!∏
u=1

(
c(θ)

t∏
i=1

πt−riu

i

)yu

.

The log-likelihood function

`MBT(θ;y) = log

((
n

y1 y2 · · · yt!

) t!∏
u=1

(
c(θ)

t∏
i=1

πt−riu

i

)yu
)

= b0 +
t!∑

u=1

yu log

(
c(θ)

t∏
i=1

πt−riu

i

)

= b0 +
t!∑

u=1

yu

(
log(c(θ)) +

t∑
i=1

(t − riu)θi

)

= b0 + n log(c(θ)) +
t!∑

u=1

yu

(
t∑

i=1

(t − riu)θi

)
(6.3)

where b0 = log
(

n
y1 y2···yt!

)
, and πi = exp θi.

As an illustration consider the data from example 3 in [5], in which 32 consumers
have ranked four salad dressings. The data is given in Table 6.1.
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u (ri r2 r3 r4) yu

1 1 2 3 4 2
2 1 2 4 3 0
3 1 3 2 4 0
4 1 3 4 2 0
5 1 4 2 3 0
6 1 4 3 2 0
7 2 1 3 4 1
8 2 1 4 3 2
9 2 3 1 4 1
10 2 3 4 1 0
11 2 4 1 3 0
12 2 4 3 1 0
13 3 1 2 4 2
14 3 1 4 2 1
15 3 2 1 4 0
16 3 2 4 1 0
17 3 4 1 2 0
18 3 4 2 1 1
19 4 1 2 3 11
20 4 1 3 2 6
21 4 2 1 3 3
22 4 2 3 1 0
23 4 3 1 2 1
24 4 3 2 1 1

Table 6.1: Ranking data from example 3 in [5]. 32 consumers have ranked 4
salad dressings according to their preference.

The loglikelihood function of the MBT model has been implemented in MatLab,
and using the direct search algorithm fminsearch, the following estimates of
the item parameters has been found.

θMBT = (−0.5549, 1.1824, 0.3776, 0).

Notice that θ1 has the lowest value, followed by θ4, θ3 and θ2. This gives an
estimated order h̃ = 〈1, 4, 3, 2〉, equivalent to the ranking r̃ = (4, 1, 2, 3), which
is the ranking most consumers have chosen in the data in Table 6.1.
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6.2 Bradley-Terry-Luce model

As an alternative to the MBT model, [4] presents a ranking model inspired by
the Bradley-Terry model for paired comparison. The advantage of this model
is that it falls into the frames of GLM. In the following section the model will
be described in a more mathematical consistent way, than what is found in [4],
highlighting the assumptions and simplifications made.

Consider the stochastic Bernoulli distributed stochastic variable Yijk from sec-
tion 4,

Yijk =

{
1 consumer k prefer item i to item j

0 otherwise,

where P (Yijk = 1) = pij .

Defining t(t−1)/2 new stochastic variables by summing over the n consumers or
observations one gets the variables Yij =

∑n
k=1 Yijk for i < j and i, j = 1, . . . , t.

The distributions of these variables are binomial with parameters like

Yij ∼ bin(pij , n),

with mean E(Yij) = npij . Yij describes the number of times item i is preferred
to item j in the ranking data set.

At this point Courcoux and Semenou makes an assumption about the stochastic
variables Yij being independent. Even though the dependency between them is
more complex than for the variables Yu, in the MBT case, it is not correct to
assume independence between them.

In other words, it still holds that the sum of the rank-probabilities must sum to
one, and since the probabilities pij are factors of the rank probabilities, according
to (6.1), there is a relation between them, and they should not be assumed
independent. Just as well as the multiple stochastic variable in the MBT model
Y = (Y1, . . . , Yt!) must be polynomial distributed and not multiple-binomial.

To assume independence between the Yij ’s, is the same as allowing for cycles in
the data, as might be possible for real paired comparison data, but when the
data originates from ranked data, the consumers have already made sure that
no cycles are possible.

A consumer in a paired comparison experiment might prefer item 1 to item
2, item 2 to item 3 and item 3 to item 1. This is possible as the consumers
preferences might be influenced by order or carry-over effects. Such effects are
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not possible ind ranking data. This is because in ranking tests the consumer is
forced to make a full ranking ranking of the items, not only pair by pair.

A consequence is that the BTL model expect a larger variance in the observa-
tions, than what will actually be found in data.

This drawback of the simplification is not mentioned by [4], but it is clear why
the simplification is made. The stochastic variable Y has binomial independent
components, and can therefore fit into the GLM framework.

The probability density function of the stochastic variable Y = (Y12, Y13, . . . , Y(t−1),t)
will take the form

P (Y = y) =
n−1∏
i=1

n∏
j=i+1

P (Yij = yij),

The BTL model can then be described as a transformation of the ranked data
into paired comparison data with loss of the no-cycling condition in the ranked
data, and then using the BT model on the transformed data.

6.2.1 Parameter Estimation

The likelihood function for the model has a lot of similarity to the the one for
the BT model given in (4.7),

L(θ;y) =
n∏

k=1

t−1∏
i=1

t∏
j=i+1

(
n

yijk

)(
pij

pji

)yijk

(pij),

where pij = πi/(πi + πj) and θi = log(πi) for all i, j = 1, . . . , t.

The log-likelihood function then follows as,

`BTL(θ;y) = a0 +
n∑

k=i

j−1∑
i=1

t∑
j=i+1

yijk
πi

πj
+ n

j−1∑
i=1

t∑
j=i+1

πj

πi + πj

∝
n∑

k=i

j−1∑
i=1

t∑
j=i+1

yijk
πi

πj
+ n

j−1∑
i=1

t∑
j=i+1

πj

πi + πj
,

where the constant a0 =
∑n

k=i

∑j−1
i=1

∑t
j=i+1 log

(
n

yijk

)
., and θi = log(πi), for all

i = 1, . . . , t.
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The estimates of the parameters θ can be found by maximization of the log-
likelihood using e.g. the fminsearch function in MatLab.

This procedure has been tested on the data from [5], given in Table 6.1. Code
for an implemented in MatLab of the loglikelihood function is given in the file
loglikeBTL.m in appendix C, where also the file with the estimation procedure
testlikelihood.m is found.

The estimated item parameters are found to be

θBTL = (−0.8271, 1.8147, 0.6116, 0).

In Figure 6.1 the estimates from maximizing `MBT and `BTL are compaired.
An analysis of the practical error using BTL in stead of MBT would be of high
interest in further work.
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Figure 6.1: Estimated values of θ, found using the MBT model and the BTL
model.

GLM approach

Since the BTL model equals the BT model, the same GLM holds for both
models, each component Yij of the multible stochastic variable Y is binomial
distributed with probability pij and quantity parameter n, and they are assumed
independent according to the mentioned simplification.



46 PC based Ranking Models

This gives a GLM with binomial distribution, (scaled) logit link function, and a
linear predictor Xθ like the one in the paired comparison BT model in (4.10).

Parameter estimation by call to the R function glm, has been done. The code
is found in binprobitlogitCFeks3.R presented in appendix E.

The estimated item parameters are found to be

θlogit = (−0.8271, 1.8147, 0.6116, 0) and
θprobit = (−0.4740, 1.0654, 0.3689, 0).
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Figure 6.2: Estimated values of θ, found using the GLM framework with logit
and probit link.

In Figure 6.2 the estimated item parameters plotted. Notice that the estimates
found using the logit link function in the GLM framework are equal to the
estimates found by maximizing the loglikelihood function of the BTL model, as
would be expected.

6.3 Ranking model with poisson

In [5] the MBT model was presented. In the article it is claimed that the MBT
model can easily be written as a GLM, which according to section 6.1 is not
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possible since the components of a polynomial distributed stochastic variable
are not independent.

However in the appendix of [5] some code for a call to some GLM software called
GLIM was listed. The code indicated that a poisson model was used with a log
link function. This showed that it was not the MBT model but another model,
which was used within the GLM framework.

This section will describe the mathematical derivation of a model, which is not
the MBT model, but which is found to give the same estimates, but contrary
to the MBT it holds the ability of being written as a GLM.

Recall from (5.1) the stochastic bernoulli variable

Yuk =

{
1 consumer k prefer ranking ru

0 otherwise,

where P (Yuk = 1) = pu, and from (6.2) the stochastic variables for the number
of times ranking ru occur in the data was assumed to be binomial distributed
with parameters pu and n, since the number of consumers was assumed to be a
known constant. The expected value of Yu being E(Yu) = npu.

Distribution of Y

Once again the multiple stochastic variable Y = (Y1, . . . , Yt!) is defined, but now
another approach to model the components Yu will be taken. Assuming that
the number nu of consumers evaluating rank ru, is an (unknown) variable, Yu

will follow a Poisson distribution. Though still assumed to have the “correct”
binomial mean E(Yu) = npu. Notice that now, the components of Y can be
assumed independent, even since the sum of the probabilities must still sum to
1.

Therefore now

P (Yu = yu) = e−λu · λyu
u

yu!

with mean λ = nP (Ru), inherited by the polynomial MBT model.

Due to the assumed independency of the components, the total pdf for the data



48 PC based Ranking Models

can be written as

P (Y = y) =
t!∏

u=1

P (Yu = yu)

=
t!∏

u=1

e−nP (Ru) · (nP (Ru))yu

yu!
.

(6.4)

6.3.1 Parameter Estimation

The parameter estimation is once again first done by maximizing the log-
likelihood `Poiss. The derivation of the log-likelihood will show that it is pro-
portional to the log-likelihood of the MBT model.

Secondly the new model will be found to fall into the GLM framework, and
thereby being solvable by means of an IRLS algorithm.

Maximum Likelihood

The likelihood function is given by the probability density function (6.4)

L(θ;y) =
t!∏

u=1

P (Yu = yu)

=
t!∏

u=1

e−nP (Ru) · (nP (Ru))yu

yu!

=
t!∏

u=1

e−nP (Ru) · (nc(θ)
∏t

i=1 πt−riu

i )yu

yu!
,

where πi = exp(θi).
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The Log-likelihood function of Y is therefore

`Poiss(θ;y) =
t!∑

u=1

(−nP (Ru)) + log(
t!∏

u=1

1
yu!

) +

t!∑
u=1

yu

(
log(nc(θ) +

t∑
i=1

(t − riu) log(πi)

)

= −n + log(
t!∏

u=1

1
yu!

) + n log(nc(θ)) +
t!∑

u=1

yu

(
t∑

i=1

(t − riu)θi

)

= −n + log
(

1
n!

(
n

y1 y2 · · · yt!

))
+

n log(n) + n log(c(θ)) +
t!∑

u=1

yu

(
t∑

i=1

(t − riu)θi

)

= −n − log(n!) + b0 + n log(n) + n log(c(θ)) +
t!∑

u=1

yu

(
t∑

i=1

(t − riu)θi

)
,

where the constant b0 is defined like in (6.3), as b0 = log
(

n
y1 y2···yt!

)
.

Comparing the log-likelihood of the MBT model (6.3), with the one found for
the new model, it is seen that

`Poiss(θ;y) = −n − log(n!) + n log(n) + `MBT(θ;y)
∝ `MBT (θ;y),

which means that the new model gives exactly the same estimates of the item
parameters θ as the MBT model.

This was confirmed by implementing `Poiss in the MatLab function loglikepoiss.m
(see appendix C and maximize it using the build in MatLab function fminsearch.
Code for this estimation is found in testlikelihood.m, also presented in ap-
pendix C.

IRLS

The model derived above has the advantage that the item parameter estimates
are “correct” in the sense of being equal to the ones estimated using MBT.
This section will show how the new model can be recognized as a GLM, and
therefor through GLM software, an IRLS algorithm can be used to estimate the
parameters.
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According to section 2, the components of Y must be independent and dis-
tributed according to the exponential family of distributions, if the model should
be characterizes as a GLM. The independence of the components Yu for u =
1, . . . , t! has just been explained, and it was shown in section 2 that the Poisson
distribution is a member of the exponential family of distributions, with the
functions defined as a(φ) = 1, b(ηu) = exp(ηu) and c(yu, φ) = − log(yu!).

The choice of mean equal to the MBT mean gives

E(Yu) = λu

= nP (Ru)

= nc(θ)
t∏

i=1

πt−riu

i

= exp

(
log(nc(θ)) + log(

t∏
i=1

πt−riu

i )

)

= exp

(
log(nc(θ)) +

t∑
i=1

(t − riu)θi

)
.

This makes it possible to write the logarithm of the expected value of Yu for all
u = 1, . . . , t!

log(λu) = log(nc(θ)) +
t∑

i=1

(t − riu)θi,

= ϑ +
t∑

i=1

(t − riu)θi,

defining a new normalization parameter ϑ = log(nc(θ)).

Thereby the linear system of equations look like




log(λ1)
log(λ2)

...
log(λt!)


 =




t − r11 t − r21 . . . t − rt1 1
t − r12 t − r22 · · · t − rt2 1

...
. . .

...
...

t − r1t! t − r2t! . . . t − rtt! 1







θ1

θ2

...
θt

ϑ


 ,

log(λ) = [X|1]
[
θ

ϑ

]

where the last equation defines the n × t matrix X with elements

{X}ui = t − riu.
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An estimate of the item parameters θ using an IRLS approach can be executed
by calling the R function glm.

Call to glm - Salad data

>y=c(2,0,0,0,0,0,1,2,1,0,0,0,2,1,0,0,0,1,11,6,3,0,1,1)

>x1=4-c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4)

>x2=4-c(2,2,3,3,4,4,1,1,3,3,4,4,1,1,2,2,4,4,1,1,2,2,3,3)

5 >x3=4-c(3,4,2,4,2,3,3,4,1,4,1,3,2,4,1,4,1,2,2,3,1,3,1,2)

>x4=4-c(4,3,4,2,3,2,4,3,4,1,3,1,4,2,4,1,2,1,3,2,3,1,2,1)

# model

>model <- glm(y ~ x1+x2+x3+x4, family=poisson(link=log))

10 >summary(model)

#OUTPUT:

#=========

15 Call:

glm(formula = y ~ x1 + x2 + x3 + x4, family = poisson(link = log))

Deviance Residuals:

Min 1Q Median 3Q Max

20 -1.9410 -0.6043 -0.3296 0.3676 2.0695

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3097 1.0390 -2.223 0.0262 *

25 x1 -0.5548 0.2491 -2.228 0.0259 *

x2 1.1825 0.2866 4.127 3.68e-05 ***

x3 0.3776 0.2228 1.694 0.0902 .

x4 NA NA NA NA

---

30 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 70.753 on 23 degrees of freedom

35 Residual deviance: 22.249 on 20 degrees of freedom

AIC: 60.99

Number of Fisher Scoring iterations: 5

Notice (line 8) that the call is made with design matrix X and not [X|1], because
the normalization parameter ϑ is taking care of within the glm function.

The estimates of θ can be read from the output to be equal to the estimates
from inference of the MBT model, as it was expected.

An other thing to notice about the design matrix is the size of it as a function
of the item number. The design matrix X has t! rows. With eg. 10 items to be
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compared, X is a non-sparse matrix of size 3, 628, 800×10. In a test executed, it
was not possible to get glm to work on such a huge matrix, even with a memory
limit at 4 GB.

The lefthand side of the system, though is very sparse. The number of non-zero
elements are at most equal to the number of consumers n. An interesting thing
to look into at this point would be how to enhance the sparse structure of the
lefthand side to reduce the number of equations. Right now it is not possible
since every row holds a contribution to the normalization constant. But reducing
the size of the system is definitely a tempting advancement of the model to work
on.

If the glm function was used to fit the model of the data simplified by removing
the zeros from the lefthand sid eog the system, the estimates change.

Call to glm - Modified Salad Data

>y=c(2,1,2,1,2,1,1,11,6,3,1,1)

>x1=4-c(1,2,2,2,3,3,3,4,4,4,4,4)

>x2=4-c(2,1,1,3,1,1,4,1,1,2,3,3)

5 >x3=4-c(3,3,4,1,2,4,2,2,3,1,1,2)

>x4=4-c(4,4,3,4,4,2,1,3,2,3,2,1)

# model

>model <- glm(y ~ x1+x2+x3+x4, family=poisson(link=log))

10 >summary(model)

The estimates are now

θ̃ = (−0.4759, 0.7725, 0.2412, 0),

and with an intercept at −0.8726. Maybe a way to calculate the correct item
parameters θ from θ̃, using the intercept in some way, could be found.



Chapter 7

Models with Latent Classes

The models presented up till now, have been adequate to model responses,
where consumers originate from a homogenous population. That means every
consumer is assumed to have the same underlying preference scale. This as-
sumption might be realistic for trained test panels, but when using untrained
test persons this assumption is very strong. Therefor this section will be dedi-
cated to describe models coping with panel segmentations.

The basic idea is that the heterogeneous consumer group may be partitioned
into a small number of homogenious subgroups. The models are named Latent
Class (LC) models, refering to the latent segmentation of the consumers. A
segmentation which can not be identified directly, but only observed through
the preference estimates.

Recall the categories of models for density estimation, presented in section 2;
parametric and non-parametric models. Until now the models described in
the thesis have been of the parametric kind. In this section a semi-parametric
model will be used, also called mixture model. The LC ranking models are finite
mixture models. This section will therefor provide an introduction to mixture
models and how they are used within ranking problems.

The model description is followed by a presentation of an the iterative algorithm
used for parameter estimation, called the Expectation Maximization (EM) algo-
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rithm.

7.1 Mixture Models

Semi-parametric models are models which fall somewhere in between the para-
metric and the non-parametric models. They allow for some flexibility, but are
still limiting the number of variables. One kind of semi-parametric models are
mixture models, where the density function is assumed to be a linear combi-
nation or mixture of a small number of parametric density functions. As the
number of parametric density functions increase the semi-parametric model will
approach a non-parametric model.

If the number of parametric density functions, which can be thought of as basis
functions is fixed, the model is called a finite mixture model. This is the case
for the LC models.

The density probability function in a mixture model can be derived using the
Bayes Theorem of conditional probability. In [2] this is done, and the density
function p(x) is given as

p(x) =
m∑

s=1

p(x|s)P (s),

where p(x|s) is the s’th parametric density function (or basis function), and the
linear coefficients P (s) for s = 1, . . . , m are called the mixing parameters or
prior probabilities. The prior probabilities maintain the following conditions

k∑
s=1

P (s) = 1 ∧ 0 ≤ P (s) ≤ 1,

ensuring that p(x) satisfy the conditions of a density function, since of cause all
the parametric density functions are probability density functions obeying the
normalization condition

∫
p(x|s)dx = 1.
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The combined probability of observing xi for i = 1, . . . , q

P (X = x) =
q∏

i=1

p(xi) (7.1)

=
q∏

i=1

m∑
s=1

p(xi|s)P (s). (7.2)

7.2 Mixture models within Ranking Problems

Recall the ranking model presented in 6.3, where the stochastic variable of the
number of times ru is observed in the data, is

Yu =
n∑

k=1

Yuk,

and the multiple stochastic variable of those

Y = (Y1, . . . , Yt!),

where all components are independent, and from which the observation y =
(y1, . . . , yt!) has been drawn.

The total probability of the observed data, is still

P (Y = y) =
t!∏

u=1

PLC(Yu = yu), (7.3)

but PLC(Yu = yu) is now modeled according to a finite mixture model, to hold
the latent classes.

Define an unobserved categorical stochastic variable Z. An observation from Z
identify the latent class s from which a random consumer originate. That is

P (Z = s) = αs ∀s = 1, . . . , m,

where m is the number of latent classes in the model, and

m∑
s=1

αs = 1 ∧ 0 ≤ αs, ∀s = 1 . . . , m.
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The probability density PLC(Yu = yu) in the latent class model is then, accord-
ing to (7.1),

PLC(Yu = yu) =
m∑

s=1

P (Yu = yu|Z = s)P (Z = s). (7.4)

Each class is thought of as a homogenous consumer group with its own set of
item parameters θs to be estimated. Therefore any ranking model could be
used inside each class. In this thesis however the MBT model with Poisson
distribution will be used, and as done in 6.3 the Bradley-Terry probability is
assumed. Therefor the class conditioned probability of observing ranking ru is
described according to (6.4), indexed by class number

P (Yu = yu|Z = s) = Ps(Yu = yu)

= c(θs)
t∏

i=1

πt−riu

i,s , (7.5)

for all classes, s = 1, . . . , m where πi,s = exp(θis) is preference score of item i in
class s for all items and all classes.

Using (7.4) and (7.5) into (7.3), the total probability is given as

P (Y = y) =
t!∏

u=1

m∑
s=1

Ps(Yu = yu)αs.

7.3 Parameter Estimation

Like in the earlier section the likelihood function is derived in order to find the
ML parameters

L(Θ, α;y) =
t!∏

u=1

m∑
s=1

Ps(Yu = yu)αs,

where Θ = (θ1, . . . ,θm) is a matrix of item parameter vectors and α = (α1, . . . , αm)
is a vector of the prior probabilities for each class.

The log-likelihood function is therefore

`(Θ, α; y) =
t!∑

u=1

yu log

(
k∑

s=1

αs(Ps(Ru))

)
. (7.6)
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Inference in a finite mixture model must provide estimates both for the mixing
parameters, here α1, . . . , αm as well as for the parameters of each mixing com-
ponent, here components of Θ. This is most often a highly non-linear problem,
and an iterative method must be used to maximize the log-likelihood function.

Iterative Algorithms

The overall idea behind the iterative methods used is to alternate between op-
timizing on α and optimizing on θs for each s = 1, . . . , m, until the change in
the parameters pass some limit of wanted precision.

Different methods have been applied to the problem. In [19, chapter 8.6] a
Gibbs sampler is proposed, which is a Markov Chain Montecarlo Method. The
algorithm which will be used in this thesis is an Expectation Maximization (EM)
algorithm, which is closely related to the Gibbs sampler. The EM algorithm was
first described in 1977 by Dempster et al, and is implemented in the statistical
software R, in the function flexmix.

Expectation Maximization Algorithm

The goal of the algorithm is to maximize the log-likelihood function (7.6), to esti-
mate the prior probabilities α1, . . . , αm as well as the item parameters θ1, . . . ,θm

for each class.

The algorithm alternates between an Expectation step (E-step) and a Maxi-
mization step (M-step), until the change in the parameters pass the precision
criteria.

An initial guess on the item parameters θs in each class, must be made, together
with an initial guess on the posterior probability of each observation. This is a
classical starting guess problem, if nothing is known, one guess can be as good
as the other. In the tests made on ranking data in this thesis, the starting guess
will be done in the following way.

Divide the rankings r1, . . . , rt! into m groups, where m is the number of latent
classes to fit. If the rank number u tells anything about the difference in the
rankings, eg. maybe rank ru is ”near” to ru+1, then this knowledge should be
used. Then set the posterior probability of the observations from the rankings
in group s to be Z = s for all m groups.
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For each group an ordinary ML estimate is found according to the ranking
model used. Which in this section is the MBT with Poisson distribution and
BT probability. This procedure gives the initial guess on Θ and the posterior
probabilities.

Now the algorithm can be started, alternating between the two steps.

Maximization step

New estimates for Θ are found in this step, by maximizing the log-likelihood
function using the probabilities Ps(Yu = yu) and prior probability estimates α̃s.

For every class, s = 1, . . . , m

θ̃s = argmaxθs
{`(θ;y)}.

Expectation step

The calculations made in this step are derivations of the expected value of the
posterior weights α, to be used as an estimate of α in the next M-step.

α̃s =
1
n

n∑
k=1

P (Z = s|Yu = yu),

where P (Z = s|Yu = yu), the posterior probability, have been calculated using
Bayes Theorem,

P (Z = s|Yu = yu) =
α̃sP (Yu = yu|Z = s)∑m

s=1 α̃sP (Yu = yu|Z = s)

=
α̃sPs(Yu = yu)∑m

s=1 α̃sPS(Yu = yu)
,

using the ”old” α estimates.

The algorithm is described by the following pseudo code.



7.3 Parameter Estimation 59

Algorithm 1 Expectation Maximization Algorithm
Require: : n rank observations obsj = {y1j , . . . , yt!j} ∀j = 1, . . . , n

k = number of latent classes.
1: make initial guess on θ for every class, θ0s, ∀s = 1, . . . , k
2: make initial guess on α for every class α0s, ∀s = 1, . . . , k
3: while `new − `old > threshold do
4: Calculate Ps(obsj) for every observation j = 1, . . . , n
5: Estimate posterior probabilities

p̂js =
αsPs(obsj)∑k

s=1 αsPs(obsj)

6: Estimate new prior probabilities

α̃s =
1
n

n∑
j=1

p̂js

7: Estimate item parameters for each class s = 1, . . . , k

θ̃s = argmaxθ{`(θ;y, p̂js, α̃s)}

8: Update `old and `new

9: end while

Implementations of EM

The EM algorithm for estimating parameters in a latent class ranking model,
as described above, has been implemented in a MatLab file EM.m, which can be
seen in appendix F.

Example

As an illustrative example a model with two latent classes was fitted to the
Salad data presented in Tabel 6.1.

The code for the example, which also describes the initial guesses, can be found
in script testEM.m in appendix F.

The algorithm is stopped when the the difference in the log-likelihood distribu-
tions gets below 10−6. There seems to be a weakness in the implementation,



60 Models with Latent Classes

since the posterior probabilities change in an odd way, when the precision limit
is increased. This must be looked into before further use. To see the posterior
weights see the script EMoutput.m in appendix F.

Another implementation of the EM algorithm is found in the R-package FlexMix,
see reference [11]. The standard assumption in FlexMix is that the m multi-
ple stochastic variable from which the data is observed has components with
independent distributions of the exponentially family. Therefor each M-step in
the function EM implementation flexmix calls glm() for parameter estimation.
The user might implement optional M-steps, but the standard case suites fine
in the case of Bradley-Terry probabilities and Poisson distribution, since it fits
into the GLM framework.

The following call was made to the R function flexmix.

Call to flexmix
# DATA: CF example 3

#========

>y=scan(’latentdata.txt’)

>n=32;

5

# Definition of factors

>salad=factor(rep(1:4,32))

>consumer=factor(rep(1:32,rep(4,32)))

10 >library(flexmix)

# model with 2 latent classes

>res2=flexmix(y~salad|consumer,k=2)

>summary(res2)

The Θ estimate, was found to be

Θ = [θ1, θ2]

=



−0.9544 −3.0000
−0.5590 −1.666
0.1163 −1.3338

0 0




This is however not interesting since, the number of classes m have just been
chosen without reason.
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7.3.1 The Number of Latent Classes

In a finite mixture model the number of mixture components, m is a constant
which is assumed to be known. But the question of how to define the influential
number m, has been ignored until now.

When the mixture model is a latent class model, then sometimes knowledge
about the origin of the data indicates how many latent classes to seek for. If this
is not the case, it might be possible to identify the number of classes by looking
at the observations graphically. Maybe the observations naturally cluster into
m more or less district groups.

If m is unknown, a theoretical way to estimate m must be found. This could
be to estimate parameters for models with different number of classes, and then
compare the model with m classes against the model with m + 1 classes, either
starting with 1 class and then increase m, or start with the saturated model
where m = n, and then compare it to the model with m = n − 1 classes etc.

Different tests for how good the model fits data could be used for these tests,
for brief examples see [16, chapter 2.8], but for a more thorough review see [19,
chaptor 7] on model assessment and model selection.

The more parameters the more flexible the model will be. In the saturated model
even interpolation is possible. The test should therefore somehow encourage a
good fit, but penalize on the number of parameters. The penalization term can
only be determined from a choice of how ”smooth” the solution should be.

In [16] the Aikaike’s Distance Criteria (AIC), is presented as one way to measure
the ”goodness” of a model. AIC is also implemented in the R function flexmix.

In R the definition of AIC is given as

AIC = −2` + κν, (7.7)

where ν is the number of parameters in the model, and κ is some parameter of
AIC. In the default AIC, κ = 2, but a choice like κ = log(ν) is possible.

This definition means that a low AIC value indicates a better model, than a
model with a high AIC value.

Using AIC distance criteria as a way to choose the number of latent classes,
which is in practice just a choice of the flexibility of the model, seems a bit
naive, if the parameter κ is not chosen whit respect to the present model and
wanted smoothness.
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Using the default AIC to choose the number of latent classes in the Salad data,
gives a number of classes equal to the number of different rank observations. So
the penalization term is far to small, to have any influence on the choice, unless
of cause interpolation is wanted.



Chapter 8

B & O application

This section is build upon an analysis of a set of ranking data from the Danish
audio- and video-producer, Band & Olufsen. The analysis were carried out by
Dina Hvas Mortensen, Department of Psychology, Aarhus University, Denmark,
and Søren Bech, Bang & Olufsen, Struer, Denmark and is described in [14].

A presentation of the data and the experiments from which it arrive will lead
to a review of how the analysis is made in the article and which alternatives
the GLM framework provides for the same tests. At last this presentation
goes a bit further than the article from B&O, by analyzing the data for panel
segmentations.

Design of Experiments

One of the interests of B&O, as designer of technological equipment, is to un-
derstand the perceptual experience of tool use, and how the individual senses
interact in this context. A lot of equipment in all technology fields today use
touch screens. To design touch screens, the visual appearance is a question,
but what about the stimulation of the other senses? Would it make sense to
artificially add haptic and auditive information to the user?
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To understand more about what the stimulation of the three senses, sight, hear-
ing and sense of touch, mean for a users performance of turning on a switch,
Dina Mortensen arranged a test of the preference of different switches.

The items tested were 10 different switches (e.g. toggle switches, push button
switches etc). The test participants were 88 employees at B&O. The task of
the test participants were to rank the 10 switches by preference. Several tests
were made, some with all senses available, some with only one or two senses
available.

The tests were grouped in seven groups by available senses. There were 10 to
20 tests made in each group:

• Q1 Vision Only

• Q2 Audition only

• Q3 Haptic only

• Q4 vision and Audition only

• Q5 Vision and Haptic only

• Q6 Haptic and Audition only

• Q7 All senses available

For some (unknown) reason the data from all 88 consumers was reduced to only
10 observations per group. As this is an unreasonable loss of information the
whole data set will be used in for the following analysis.

The practical execution of the experiments were done by “covering” the senses
by a combination of the following; headphones with pink noise, black painted
swimming goggles, and for the sense of touch; hockey gloves and diving gloves
on top of cotton inner gloves. For more details see [14].

8.1 The data Analysis

The main research questions asked in [14] are:

1. How does the sensory modalities interact in the specific user context.
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2. What sensory modalities are important in the full perceptual experience
of that user context.

These questions were answered through the following analysis of data.

Are all switches equal?

To make any inference of the data, the hypothesis about all switches being equal
must be rejected.

Getting a rough impression on how the switches are preferred, a spaghetti plot
is made for each test.
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Figure 8.1: Ranks Q7

Figure 8.1 shows a trend in the rankings of the switches. The ranking of the
other tests (Q1, . . . ,Q6) can be seen in appendix A. They too, give the same
impression about some trend for all the tests.

B&O tested the hypothesis that all switches are preferred equal using Fried-
mans test. The test indicated that at least two of the switches are different
with respect to preference, since the null hypothesis was rejected for all test
conditions.
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To support the Friedmans test a plot of the rank median and rank mean values
including a 95% confidence interval, were made for each test. The results confirm
that there are significant differences between the rankings of the switches. The
problem about analyzing on the rank mean values are that the data is categorical
and not numerical. Therefor the rank mean is only theoretical valid if it has
been shown that the categories lies equidistant on the preference scale. A better
alternative would be to analyze on the item parameters, estimated by a ranking
model of the data.

As shown in 6, the best ranking model is the MBT. Even though the BTL will
be used in the following analysis, since the MBT requires the construction of
a very large model matrix, which can not be handled within R, even with a
memory limit at 4 GB.

The drawback of using BTL instead of MBT was described in 6.
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(a) Q7 rank mean
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(b) Q7 (negative) item parameters θ

Figure 8.2: Rank mean and item parameters plotted with corresponding stan-
dard errors. The item parameters are plotted negative, to facilitate
comparison of the plots.

The same plots as Figure 8.2 has been made for the other test conditions and can
be found in appendix B. The plots in the appendix show, as Figure 8.2, that the
rank mean gives a relative good indication of the trend in the item parameters,
despite the unexplained assumption about equidistance between the categories
on the preference scale.

Notice that the standard deviations on the two plots can not be compared
by the size of the lines, because in the first Figure the standard deviation is
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calculated on the raw rank data, and in the second Figure it is calculated on
the θ parameters, which are only described relative to each other.

To investigate the assumption about equidistance between the categories on the
preference scale, the transformation function for the category levels are plotted.
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Figure 8.3: Optimal Scaling of the category levels.

Figure 8.3 show the non-linear scaling or transformation from the ranking cat-
egory scale (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) to the correct underlying preference scale.
This means that if Figure 8.3 had shown straight lines, it could be concluded
that the intervals between the switch parameters θ1, . . . , θ10 on the underly-
ing preference scale would be equidistant. The greater the slope between two
categories, the greater the distance between the categories on the preference
scale.

It is seen that for some of the test conditions the intervals between the categories
differ more than for others. A test on whether this is a significant result could
be interesting to carry out. Together with a test on wether these graphs are
significantly different from straight lines. That is wether the ratio between the
item parameters could be assumed to be equal.

But before these tests have been carried out the most correct strategy must be
to incorporate the non-equidistance between the category levels in the model.
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Multidimensional structure in data

Through a Mann-Whitneys U-test B&O suggests that more than one under-
lying perceptual dimension have been applied in determining the ranking. To
explore this further, Spearmans rank correlations were calculated between the
test conditions.

The result of the test show that there are at least two major groups with respect
to preference, one including conditions Q1, Q2 and Q4, and another including
conditions Q3, Q5, Q6 and Q7. For details see [14, Table 2].

To investigate this indication of a multidimensional structure of the data, B&O
conduct a Principal Component Analysis. Since the data is categorical, a Cat-
egorical Principal Component Analysis procedure (CATPCA) is used. The
CATPCA quantifies categorical variables using optimal scaling. This results
in optimal principal components for the transformed variables.

The eigenvalues associated with the dimensions calculated using CATPCA of
the rank mean is given in Table 8.1, together with the eigenvalues associated
with dimensions calculated using ordinary PCA on the θ parameters.

Dimension CATPCA PCA
of mean [%] of θ [%]

1 2.146 30.66 3.5814 51.16
2 1.678 23.97 2.4264 34.66
3 0.949 13.56 0.4849 6.93
4 0.849 12.13 0.2992 4.27
5 0.626 8.94 0.0146 1.49
6 0.578 8.26 0.1045 1.27
7 0.173 2.47 0.0890 0.21

Table 8.1: The eigenvalue of the seven principal components, with CATPCA on
the rank mean, and with PCA on θ.

Table 8.1 shows that both the CATPCA and the ordinary PCA on the θ pa-
rameters indicate that the most variance can be described by two dimensions.
Though the CATPCA claims that 56% of the variance could be described by
two dimensions, while the PCA on θ shows that 85% could be described by two
dimensions.

Since B&O uses CATPCA they claim to model the transformation, so the results
from CATPCA and PCA on θ should be comparable. However there is a big
difference in the variance described by the first two principal components, by
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Dimensions
Test 1 2 3

mean θ mean θ mean θ
Q1 Vision -0.509 0.0021 0.697 0.6100 -0.210 0.1810
Q2 Audio -0.123 0.1579 0.807 0.5455 -0.307 -0.0230
Q3 Tactility 0.624 0.4842 0.175 -0.0076 0.532 0.4973
Q4 Vision and Audio -0.321 0.2725 0.642 0.5062 0.517 -0.3092
Q5 Vision and Tactility 0.666 0.4740 0.340 -0.1504 0.222 0.4277
Q6 Tactility and Audio 0.775 0.4403 0.159 -0.1605 -0.455 -0.6487
Q7 All 0.792 0.4978 0.254 -0.1601 -0.1415 -0.1415

Table 8.2: The eigenvectors of the first three dimensions, for both CATPCA on
the rank mean values and PCA on the item parameters θ.

the two methods.

It is not known to the author how CATPCA perform the optimal scaling, but it
is obvious that the scaling does not hold as much of the variation as the scaling
done with θ. Whether this has something to do with the BTL model being
used is unknown, but it could be investigated by applying the MBT model to
the data, and then conduct the same PCA, if a way to deal with the size of the
model matrix is found.

Anyway it must be concluded that two dimensions account for the most of the
variance in the data.

What defines the dimensions?

Two dimensions has been found in the data, but what defines these dimensions?
This is one of the research questions asked in [14] as Which senses are crucial
when performing the task of using a switch?.

To find out, the eigenvectors of the first three dimensions were calculated. The
results are shown in Table 8.2.

From Table 8.2 it is seen that the first dimension of the data is highly expressed
by Q3, Q5, Q6 and Q7, while the second dimension is described by Q1, Q2 and
Q4. An equal loading on Q3 and Q4 is observed in the third dimension for the
eigenvectors calculated by CATPCA. As noticed in [14], this does not match
the result of the Spearman rank correlation made. It is argued that it might be
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due to the transformation applied by CATPCA. But since the high correlation
between Q3 and Q4 is not found when calculating on the item parameters, it
must be concluded that the high correlation found, can not be due to a correct
transformation.

A loading plot of the first two dimensions is made for both the CATPCA analysis
on the rank means (Figure 8.4) and for the PCA on the item parameters (Figure
8.5). Both giving the information of how the test conditions are projected on
to the principal components.
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Figure 8.4: Loadingplot for CATPCA on rank mean values.
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Figure 8.5: Loading plot for PCA on θ values.

Both Figure 8.4 and 8.5 shows that the haptic information plays a crucial role
in how the switches are preferred. Since Q3, Q5 and Q6 are all close to Q7
(no senses covered) the plot indicates that as long as the haptic information is
available there is only little difference from having full sensibility. In other words
the haptic information is the most important information, even more important
than a combination of the other senses.

According to [3], a score plot is the two dimensional plot, which best shows the
euclidian distances. Score plots of the the estimates from the PCA analysis are
shown in Figure 8.6.

8.2 Panel Segmentation

The analysis made in the article from B&O, has relied on the assumption that
the preferences of each consumer are equally distributed. This is a strong as-
sumption, for the relatively untrained panel. Therefor an analysis of panel
segmentations for the Q7-tests (all senses available), will be performed in the
following section. First it will be investigated wether there is a reason to believe
that the consumers differ in preference when all senses are available. Since this
is the case, an analysis of which consumers fall into which class will follow.
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An important thing to remember about the B&O dataset, is that it only consists
of 10 consumers. This is a quite small dataset and so the uncertainty of the
result might be relative high. Despite this, the data will provide an instructive
example of a latent class analysis.

The tests are carried out using the R package flexmix. The code and output
can be found in appendix G.

How many Latent Classes?

To estimate the number of Latent Classes in the data, models with increasing
number of classes are fitted, and the default Akaike’s Information Criteria (AIC)
is calculated for each model. As an example, the call and output from R is
showed for the case where two latent classes are assumed.

> model2=flexmix(x~switch|consumer,k=2)
> summary(model2)

Call:
flexmix(formula = x ~ switch | consumer, k = 2)

prior size post>0 ratio
Comp.1 0.301 30 80 0.375
Comp.2 0.699 70 100 0.700

’log Lik.’ -196.5404 (df=23)
AIC: 439.0809 BIC: 498.9998

From the output example it is seen that assuming two latent classes the AIC
is 439.0809. By fitting models with consecutively increasing number of classes,
the best model, according to the AIC is the model where the number of classes
equals the number of consumers. The same situations as mentioned in section
7 with the Salad data.

It is therefore assumed that the best model is the model with two classes, chosen
from the smoothness of the solution. The call to flexmix show that if two classes
is fittet, the consumers will be divided into classes of 3 and 7 consumers.
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Which consumer to which class?

Looking at the posterior probabilities for each consumer for each class tells how
likely the observation from a given consumer is in a given class. As the chosen
model only has two latent classes only the posterior probabilities for one of the
classes are examined since the probabilities sum to one over all classes.

Figure 8.7 clearly indicates that the rank observation made from consumer 1,
6 and 7 is highly possible to originate from class 2, while the opposite must be
valid for the rest of the observed ranks. However that the posterior probabilies
split up like this, is because the problem degenerate into two distinct problems.
The normal situation would be that the probability mass of the posterior was
more spread out over the different classes.

Because the data is to big to be handled within the GLM framework with a
Poisson distribution, an alternative solution to estimate the item parameters
have been chosen. The data is split into two distinct data sets, and the item
parameters are estimated within each group. This is done as an alternative to
estimate the parameters correctly through the latent model, weighted by the
posterior probabilities.

The observation divides the panel into two classes, class 1, consisting of con-
sumer 2,3,4,5,8,9 and 10, and class 2 consisting of consumer 1, 6 and 7. Because
of the problem by handling the data in the Poisson model, the rank mean of
each class has been derived, and Figure 8.8 show the result. Even though the
trend is somewhat the same for the two classes, it is easy to spot the differences
too.

In stead of looking at rank mean which does not take the non-linearity of the
preference scale into account, the item parameters (θ) were derived for the two
classes.

The estimates were found to be

(θ1, θ2) =




−1.85448 −7.355
−1.88224 −7.424
0.84368 −7.789
0.53934 −5.496
−1.49968 −6.915
−1.35833 −7.531
0.23201 −6.382
−0.08213 −8.303
−0.89304 −8.432

0 0




,
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by calling the R function glm. Both calls can be found in appendix G in the
script binprobitclasses.m. The call and output from R for the model inference
of class 2 were

Call to glm - B&O data

>modelclass2 <- glm(cbind(Y,n-Y) ~ X1+X2+X3+X4+X5+X6+X7+X8+X9+X10-1,

family=binomial(link=probit), data=BOclass2)

> summary(modelclass2)

5

Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

data = BOclass2)

10

Deviance Residuals:

Min 1Q Median 3Q Max

-1.387e+00 -2.692e-01 -1.366e-07 3.561e-01 1.336e+00

15 Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

X1 -7.424 451.915 -0.016 0.987

X2 -7.798 451.915 -0.017 0.986

X3 -5.496 451.915 -0.012 0.990

20 X4 -6.915 451.915 -0.015 0.988

X5 -7.531 451.915 -0.017 0.987

X6 -7.780 451.915 -0.017 0.986

X7 -6.382 451.915 -0.014 0.989

X8 -8.303 451.915 -0.018 0.985

25 X9 -8.432 451.915 -0.019 0.985

X10 NA NA NA NA

(Dispersion parameter for binomial family taken to be 1)

30 Null deviance: 118.406 on 45 degrees of freedom

Residual deviance: 21.319 on 36 degrees of freedom

AIC: 68.513

Number of Fisher Scoring iterations: 18

It is seen that the θ values vary around −7 which seems a bit strange relative to
the previous tests made. The standard error however is high, and it is assumed
that the strange result occur as a consequence of the small data set of only three
rank observations. Never the less the same tendency for the item parameters is
found for the mean rank values in Figure 8.8. This tendency shown in Figure
8.9.
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Figure 8.6: Score plot for PCA on θ values.
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Figure 8.8: Rank mean for each latent class, plotted with the mean for the case
where no panel segmentation was assumed.
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Chapter 9

Conclusion

This thesis contribute to the existing literature on the field of analysis of ranked
preference data, as it provides an introductory, but mathematical stringent de-
scription of paired comparison based ranking models.

A possible mathematical background for the Thurstone and Guttman scaling
models have been proposed, and it has been seen that the background is con-
sistent with the paired comparison models, Thurstone-Mosteller and Bradley-
Terry.

Ranking Models based on paired comparison models have been treated very
thorough in a mathematical stringent way. Other possible ranking models have
been mentioned to imply the diversity in which the models operate.

It has been shown that the MBT model and the variant of the MBT model
replacing the polynomial distribution with a Poisson distribution, give the same
maximum likelihood estimates. But that the Poisson version has the advantage
that it can be written as a GLM.

This result give the necessary argumentation for the algorithms used for infer-
ence in [5].

The BTL method presented in [4], as an GLM alternative to the MTB model is



80 Conclusion

showed to have some simplifications inconsistent with rank data. The theoretical
comparison of BTL and the MTB models which according to Philippe Courcoux
has not been seen before, has been given in this thesis.

A theoretical presentation of analysis of panel segmentations have been given,
as well as a practical application on ranked preference data from the Danish
audio- and videoproducer, Bang & Olufsen.

Conclusions on the analysis of the rank data from B & O was given through
section 8, but a short summary could be that it was shown that the haptic infor-
mation is the most important information in a job of using a switch. The haptic
information is even more important than a combination of other informations.
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Mean vs. θ
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Appendix C

MatLab-code for ML
estimation

testlikelihood.m
function [theta, FVAL, Exitflag] = testlikelihood(s)

% Testfunction, estimate theta parameters from optimizing on the

% loglikelihood functions. Calls direct search algorithm "fminsearch"

%

5 % INPUT:

% ======

% ’t’ = loglike_TM on data from CF eks 1

% ’p’ = loglike_poiss on data from CF eks 3

% ’b’ = loglike_BTL (call loglike TM) on data from CF eks 3

10 %

% OUTPUT:

% =======

% theta = parameter vector

% FVAL = function evaluation of neg. prop. loglikelihood

15 % Exitflag = exitflag from fminsearch

if s==’t’

% PC data from CF eks 1

Yij = [3,2,2,11,3,5]’; n=15;

20 theta = [1,1,1]’; items = length(theta)+1;

theta_probitCF = [-1.3874; -0.4421; -0.6192; 0];

theta_logitCF = [-2.3571; -0.7441; -1.0561; 0];

par = struct(’Yij’,Yij,’indexvector’, pairindex(items),’consumer’, n);

else

25 % Ranking data from CFeks 3

Yu = [2,0,0,0,0,0,1,2,1,0,0,0,2,1,0,0,0,1,11,6,3,0,1,1]’;
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theta = [1,1,1]’; items = length(theta)+1;

R = ranks(items);

par = struct(’Yu’,Yu, ’ranks’, R);

30 end

if s==’t’ %evaluate BTL likelihood

[theta,FVAL,Exitflag] = fminsearch(@(th) loglikeTM(th,par), theta)

theta = struct(’CFprobit’, theta_probitCF,’CFlogit’, ...

35 theta_logitCF, ’MLlogit’, [theta;0])

elseif s==’p’ % evaluate poisslikelihood

[theta,FVAL,Exitflag] = fminsearch(@(th) loglikepoiss(th,par), theta)

40 elseif s==’b’ % evaluate BTLlikelihood (BT paired comp)

[theta,FVAL,Exitflag] = fminsearch(@(th) loglikeBTL(th,par), theta)

end

loglikeTM.m
function LL = loglikeTM(theta, par)

% negative Loglikelihood function for the Paired Comparison, BT model

% INPUT:

% ======

5 % par = struct with y and indexvector.

% y = obs-vector t(t-1)/2 (all PC)

% theta = parametervector, length t-1 (except last)

%

% OUTPUT:

10 % =======

% LL = neg. functionvalue of prop. loglikelihood

% kristine@frisenfeldt.dk, 2007

15 theta = [theta;0];

t = length(theta); %# of items

Yij = par.Yij; % t(t-1)/2 x 1 -vektor

n = par.consumer; % # consumers

20 index = par.indexvector;

thetai = theta(index(:,1));

thetaj = theta(index(:,2));

term1 = sum(Yij.*(thetai-thetaj));% 1x(t(t-1)/2),(t(t-1)/2)x1

25

pivec = exp(theta); %[pi_1, pi_2, ... ,pi_t]’

pii = pivec(index(:,1)); %[pi_1, pi_1, p1_1, pi_2, pi_2, pi_3]’

pij = pivec(index(:,2)); %[pi_2, pi_3, p1_4, pi_3, pi_4, pi_4]’

term2 = n*sum(log((pij./(pii+pij))));

30

% proportional loglikelihood

LL = -sum(term1+term2)

end
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loglikepoiss.m
function LL = loglikepoiss(theta, par)

% negative Loglikelihood function for the Ranking model,

% MBT with Poisson distribution

%

5 % INPUT:

% ======

% par = struct with y and indexvector.

% Yu = obs-vector length t! (all ranks)

% theta = parametervector, length t (all items)

10 %

% OUTPUT:

% =======

% LL = neg. functionvalue of prop. loglikelihood

15 % kristine@frisenfeldt.dk, 2007

y = par.Yu; %t! x 1 -vektor

n = sum(y); %# of consumers

theta = [theta;0];

t = length(theta); %# of items

20 R = par.ranks;

c1 = normconst(theta,R); %normalization constant

term1 = n*log(c1);

term2 = (y’)*(t-R)*theta; % 1xt!, t!xt, tx1

25

% negative proportional loglikelihood

LL = -sum(term1+term2);

end

30

loglikeBTL.m
function LL = loglikeBTL(theta, par)

% negative Loglikelihood function for the BTL model

% INPUT:

% ======

5 % par = struct with y and indexvector.

% Yu = obs-vector length = t! (all ranks)

% theta = parametervector, length t-1 (except last)

%

% OUTPUT:

10 % =======

% LL = neg. functionvalue of prop. loglikelihood

% kristine@frisenfeldt.dk, 2007

15 items = length(theta)+1;

consumer = sum(par.Yu);

txtflag = 0;

% convert Ranking data to PC data

Yij = rank2pair(par.Yu, par.ranks, items, consumer, txtflag);

20

par = struct(’Yij’,Yij, ’indexvector’, pairindex(items), ...
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’consumer’ ,consumer);

% call Thurstone-Mosteller PC model

25 LL = loglikeTM(theta,par)

end

normconst.m
function const = normconst(theta, R)

% Calculate normalization constant c(theta)

%

% INPUT:

5 % ======

% theta = parameter vector (or matrix) (remember theta(t) == 0)

%

% OUTPUT:

% =======

10 % const = normalization constant assuring that sum_u(P(R_u))=1.

% size(const) = 1xm (m = #latent classes)

% kristine@frisenfeldt.dk, 2007

15 t = size(theta,1); %# of items

m = size(theta,2); %# of latent classes

pivec = exp(theta); %pi_matrix items x classes

tfak = size(R,1); %# of ranks t!

20 const = [];

for s=1:m

next = (sum(prod(repmat(pivec(:,s)’,tfak,1).^(t-R),2)))^(-1);

const = [const,next];

end

25 end
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R-code for GLM PC models

binprobitlogitCFeks1.R
# PC models (GLM - binomial distribution)

# Thurstone-Mosteller (probit)

# Bradley-Terry (logit)

5 # DATA: CF eksempel 1

#======

y = c(3,2,2,11,3,5)

n=rep(15,6)

x1=c(1,1,1,0,0,0)

10 x2=c(-1,0,0,1,1,0)

x3=c(0,-1,0,-1,0,1)

x4=c(0,0,-1,0,-1,-1)

#Thurstone-Mosteller model (probit)

15 model <- glm(cbind(y,n-y) ~ x1+x2+x3+x4-1, family=binomial(link=probit))

summary(model)

#OUTPUT:

#=======

20

Call:

glm(formula = cbind(y, n - y) ~ x1 + x2 + x3 + x4 - 1,

family = binomial(link = probit))

25 Deviance Residuals:

1 2 3 4 5 6

0.2789 -0.8685 0.6595 1.3098 -1.1124 0.5592
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Coefficients: (1 not defined because of singularities)

30 Estimate Std. Error z value Pr(>|z|)

x1 -1.3874 0.2833 -4.897 9.71e-07 ***

x2 -0.4421 0.2494 -1.772 0.0763 .

x3 -0.6192 0.2516 -2.461 0.0139 *

x4 NA NA NA NA

35 ---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

40 Null deviance: 34.6890 on 6 degrees of freedom

Residual deviance: 4.5327 on 3 degrees of freedom

AIC: 27.061

Number of Fisher Scoring iterations: 4

45

#Bradley-Terry model (logit)

model <- glm(cbind(y,n-y) ~ x1+x2+x3+x4-1, family=binomial(link=logit))

summary(model)

50

#OUPUT:

#======

Call:

55 glm(formula = cbind(y, n - y) ~ x1 + x2 + x3 + x4 - 1,

family = binomial(link = logit))

Deviance Residuals:

1 2 3 4 5 6

60 0.3433 -0.8047 0.6020 1.2555 -1.0562 0.6481

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

x1 -2.3571 0.5123 -4.601 4.21e-06 ***

65 x2 -0.7441 0.4208 -1.768 0.0771 .

x3 -1.0561 0.4290 -2.462 0.0138 *

x4 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

70

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 34.6890 on 6 degrees of freedom

Residual deviance: 4.2399 on 3 degrees of freedom

75 AIC: 26.768

Number of Fisher Scoring iterations: 4
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R-code for GLM Ranking
models

poisslogCFeks3.R
# CF eksempel 3

# Ranking model Mallows-Bradley-Terry

# GLM Poisson distribution, log-link

5 # DATA: CF example 3

#========

y=c(2,0,0,0,0,0,1,2,1,0,0,0,2,1,0,0,0,1,11,6,3,0,1,1)

x1=4-c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4)

x2=4-c(2,2,3,3,4,4,1,1,3,3,4,4,1,1,2,2,4,4,1,1,2,2,3,3)

10 x3=4-c(3,4,2,4,2,3,3,4,1,4,1,3,2,4,1,4,1,2,2,3,1,3,1,2)

x4=4-c(4,3,4,2,3,2,4,3,4,1,3,1,4,2,4,1,2,1,3,2,3,1,2,1)

# model

model <- glm(y ~ x1+x2+x3+x4, family=poisson(link=log))

15 summary(model)

#OUTPUT:

#=========

20 Call:

glm(formula = y ~ x1 + x2 + x3 + x4, family = poisson(link = log))

Deviance Residuals:

Min 1Q Median 3Q Max

25 -1.9410 -0.6043 -0.3296 0.3676 2.0695
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Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3097 1.0390 -2.223 0.0262 *

30 x1 -0.5548 0.2491 -2.228 0.0259 *

x2 1.1825 0.2866 4.127 3.68e-05 ***

x3 0.3776 0.2228 1.694 0.0902 .

x4 NA NA NA NA

---

35 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 70.753 on 23 degrees of freedom

40 Residual deviance: 22.249 on 20 degrees of freedom

AIC: 60.99

Number of Fisher Scoring iterations: 5

45 # DATA: CF example 3 (-without null-terms...)

y=c(2,1,2,1,2,1,1,11,6,3,1,1)

x1=4-c(1,2,2,2,3,3,3,4,4,4,4,4)

x2=4-c(2,1,1,3,1,1,4,1,1,2,3,3)

x3=4-c(3,3,4,1,2,4,2,2,3,1,1,2)

50 x4=4-c(4,4,3,4,4,2,1,3,2,3,2,1)

# model

model <- glm(y ~ x1+x2+x3+x4, family=poisson(link=log))

summary(model)

55

#OUTPUT:

#=========

Call:

60 glm(formula = y ~ x1 + x2 + x3 + x4, family = poisson(link = log))

Deviance Residuals:

Min 1Q Median 3Q Max

-1.22657 -0.73067 -0.07679 0.42284 1.44781

65

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8726 1.1196 -0.779 0.43575

x1 -0.4759 0.2526 -1.884 0.05961 .

70 x2 0.7725 0.2875 2.687 0.00722 **

x3 0.2412 0.2564 0.941 0.34695

x4 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

75

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 26.3912 on 11 degrees of freedom

Residual deviance: 9.4115 on 8 degrees of freedom

80 AIC: 48.153
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Number of Fisher Scoring iterations: 5

binprobitlogitCFeks3.R
# CF eksempel 3

# Converted Ranking data to PC data

# Ranking model BTL

# GLM binomial distribution, logit-link

5 # (also version with probit-link)

# DATA:

#======

y = c(4,6,8,25,29,21)

10 n=rep(32,6)

x1=c(1,1,1,0,0,0)

x2=c(-1,0,0,1,1,0)

x3=c(0,-1,0,-1,0,1)

x4=c(0,0,-1,0,-1,-1)

15

#Thurstone-Mosteller model (probit)

model <- glm(cbind(y,n-y) ~ x1+x2+x3+x4-1, family=binomial(link=probit))

summary(model)

20 #OUTPUT:

#=======

Call:

glm(formula = cbind(y, n - y) ~ x1 + x2 + x3 + x4 - 1,

25 family = binomial(link = probit))

Deviance Residuals:

1 2 3 4 5 6

1.3136 -0.1734 -0.8414 0.3245 0.8466 0.1464

30

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

x1 -0.4740 0.1753 -2.704 0.00686 **

x2 1.0654 0.1879 5.669 1.43e-08 ***

35 x3 0.3689 0.1679 2.197 0.02804 *

x4 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

40 (Dispersion parameter for binomial family taken to be 1)

Null deviance: 80.465 on 6 degrees of freedom

Residual deviance: 3.307 on 3 degrees of freedom

AIC: 29.832

45

Number of Fisher Scoring iterations: 4

#Bradley-Terry model (logit)

50 model <- glm(cbind(y,n-y) ~ x1+x2+x3+x4-1, family=binomial(link=logit))

summary(model)
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#OUPUT:

#======

55

Call:

glm(formula = cbind(y, n - y) ~ x1 + x2 + x3 + x4 - 1,

family = binomial(link = logit))

60 Deviance Residuals:

1 2 3 4 5 6

1.19370 -0.06114 -0.67964 0.16454 0.79619 0.09420

Coefficients: (1 not defined because of singularities)

65 Estimate Std. Error z value Pr(>|z|)

x1 -0.8271 0.3009 -2.749 0.00598 **

x2 1.8147 0.3391 5.352 8.69e-08 ***

x3 0.6116 0.2829 2.162 0.03059 *

x4 NA NA NA NA

70 ---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

75 Null deviance: 80.4645 on 6 degrees of freedom

Residual deviance: 2.5604 on 3 degrees of freedom

AIC: 29.085

Number of Fisher Scoring iterations: 4



Appendix F

MatLab-code for EM
implementation

testEM.m
% This script tests the EM algorithm implementet in EM.m

% The data is the Ranking Data from CF eks 3, with 2 classes

%

% Initial guesses are made, and then the funciton is called.

5

Yu = [2,0,0,0,0,0,1,2,1,0,0,0,2,1,0,0,0,1,11,6,3,0,1,1]’;

k = 2; %# latent classes

theta0 = [1,1,1]’;

10 items = length(theta0)+1;

R = ranks(items);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% make start guess on posterior and theta_s

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

split = round(length(Yu)/k);

Ysplit = zeros(length(Yu),k);

for s=1:k

if s==k

20 indexs = ((split*(s-1)+1):length(Yu));

Ysplit(indexs,s) = Yu(indexs);

else

indexs = (split*(s-1)+1):(split*s);

Ysplit(indexs,s) = Yu(indexs);

25 end
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end

theta=[];

for s=1:k

par = struct(’Yu’,Ysplit(:,s), ’ranks’, R);

30 thetas = fminsearch(@(th) loglikepoiss(th,par), theta0);

theta = [theta,thetas];

end

theta_start = theta %start guess

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% prior probabilities (alpha)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

40 alpha_start = repmat(1/k,k,1); %start guess

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

45 % function call

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

par = struct(’y’,Yu, ’ranks’, R, ’theta’, theta_start, ...

’prior’, alpha_start);

[theta, posterior] = EM(par)

EM.m
function [thetaout, postout]= EM(par)

% Expectation Maximization Algorithm

% call loglike_latent

%

5 % Input:

% ========

% par = struct(’y’,Yu, ’ranks’, R, ’theta’, theta_start, ...

% ... ’prior’, alpha_start);

% Output:

10 % ========

% thetaout = matrix with item parameter vectors for each class

% postout = matrix with posterior prob for each observation for each class

% Kristine Frisenfeldt, 2007

15 R = par.ranks; %rankings

yu = par.y; %observed data

indexyj = find(yu~=0)

tfak = size(R,1) %t!

k = size(par.theta,2);%# of latent classes s=1...k

20 t = size(R,2); %# of items i=1...t

n = sum(yu); %# of observations =# of consumers j=1...n

Lold = 0; Lnew = 1; % likelihood function values

it = 0;

25 while (abs(Lold-Lnew)>10e-5)

it = it+1; Lold = Lnew

%%%%%%%%%%%%%%%%%%%% E-step %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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theta = [par.theta;zeros(1,k)]; %txk

30 prior = par.prior; %kx1

c = normconst(theta,R); %1xk

% P(Yj=1|s) = PsRj, nxk

PsRu = repmat(c,tfak,1).*exp((t-R)*theta);

35 PsYj = [];

for j=indexyj’

PsYj = [PsYj;repmat(PsRu(j,:),yu(j),1)];

end

40 % P(s|Yj=1) = posterior , kxn

post_new=(PsYj*diag(prior))./(repmat(PsYj*prior,1,k));

%nxk * kxk ./ nxk * kx1

% P(s) = prior, notice sum(prior)==1

45 prior_new = sum(post_new)/n;

%%%%%%%%%%%%%%%%%%% end of E-step %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

par.post = post_new;

par.prior = prior_new’;

50

%%%%%%%%%%%%%%%%%%% M-step %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[theta_new,Lnew,Exitflag] = fminsearch(@(th) loglikelatent(th,par), ...

par.theta);

%%%%%%%%%%%%%%%%%%% end of M-step %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55

par.theta = theta_new;

end %end forloop

thetaout = par.theta; postout = par.post;

60 par.it = it; %#iterations

end %end EM-function

loglikelatent.m
function LE = loglikelatent(theta, par)

% Calculate the negative prop. loglikelihood of the latent model.

%

% INPUT:

5 % ======

% theta = start guess for parameters

% par = struct with

% y = obs-vector length t! (all ranks)

% R = rank matrix

10 % theta = last parameter estimate

% post = last posterior estimate

% prior = last prior estimate

%

% OUTPUT:

15 % ======

% LE = negative proportional loglikelihood evaluation
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% kristine@frisenfeldt.dk, 2007

R = par.ranks;

20 t = size(R,2); %# of items

k = size(par.theta,2); %# of latent classes

theta = [theta;zeros(1,k)];

cc = normconst(theta,R);

post = par.post;

25 y = par.y;

n = sum(y);

indexyj = find(y~=0);

temp = (t-R)*theta; % t!xt * txk

30 temp1 = []; % becomes nxk

for j=indexyj’

temp1 = [temp1;repmat(temp(j,:),y(j),1)];

end

35 LE = -sum(sum((post.*(repmat(log(cc),n,1) + temp1))));

end
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Code Analysis of B&O Data

binomialOutput.txt
# The data analysed comes from these calls

# GLM with binomial distribution and probit link.

5 #Q1:

#=====================================================================

Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

10 X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

data = BOQ)

Deviance Residuals:

Min 1Q Median 3Q Max

15 -1.46990 -0.53518 -0.02375 0.47237 1.29842

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

X1 -0.16363 0.18614 -0.879 0.37935

20 X2 -0.60374 0.18733 -3.223 0.00127 **

X3 -0.49268 0.18635 -2.644 0.00820 **

X4 -1.45609 0.21374 -6.812 9.60e-12 ***

X5 -0.02331 0.18731 -0.124 0.90096

X6 -0.18810 0.18601 -1.011 0.31191

25 X7 -0.13239 0.18633 -0.711 0.47736

X8 -0.85807 0.19139 -4.483 7.35e-06 ***

X9 -0.33109 0.18574 -1.783 0.07466 .
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X10 NA NA NA NA

---

30 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 111.420 on 45 degrees of freedom

35 Residual deviance: 19.522 on 36 degrees of freedom

AIC: 149.01

Number of Fisher Scoring iterations: 4

40 #Q2:

#=====================================================================

Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

45 X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

data = BOQ)

Deviance Residuals:

Min 1Q Median 3Q Max

50 -1.50039 -0.65690 0.01795 0.38586 1.55450

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

X1 0.1540 0.1958 0.787 0.431424

55 X2 0.1452 0.1958 0.741 0.458391

X3 0.7804 0.2040 3.825 0.000131 ***

X4 -1.0690 0.2269 -4.712 2.46e-06 ***

X5 0.5131 0.1987 2.583 0.009809 **

X6 0.9061 0.2076 4.364 1.28e-05 ***

60 X7 1.3996 0.2300 6.086 1.16e-09 ***

X8 -1.0368 0.2250 -4.608 4.06e-06 ***

X9 -0.3658 0.2003 -1.826 0.067800 .

X10 NA NA NA NA

---

65 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 243.799 on 45 degrees of freedom

70 Residual deviance: 23.910 on 36 degrees of freedom

AIC: 130.31

Number of Fisher Scoring iterations: 5

75 #Q3:

#=====================================================================

Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

80 data = BOQ)

Deviance Residuals:
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Min 1Q Median 3Q Max

-1.03873 -0.25317 0.01202 0.26389 0.95210

85

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

X1 -0.9941 0.1943 -5.116 3.12e-07 ***

X2 -1.0824 0.1964 -5.510 3.60e-08 ***

90 X3 -0.2924 0.1882 -1.554 0.120234

X4 -0.1237 0.1894 -0.653 0.513820

X5 -0.5415 0.1883 -2.875 0.004035 **

X6 -0.7046 0.1896 -3.716 0.000202 ***

X7 0.2274 0.1961 1.160 0.246232

95 X8 -0.8471 0.1915 -4.423 9.73e-06 ***

X9 -0.7296 0.1899 -3.842 0.000122 ***

X10 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

100

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 101.797 on 45 degrees of freedom

Residual deviance: 8.451 on 36 degrees of freedom

105 AIC: 141.27

Number of Fisher Scoring iterations: 4

#Q4:

110 #=====================================================================

Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

115 data = BOQ)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7620 -0.4921 0.1758 0.4502 1.2299

120

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

X1 -0.6546 0.1362 -4.805 1.55e-06 ***

X2 -0.8568 0.1382 -6.202 5.58e-10 ***

125 X3 0.2823 0.1418 1.991 0.0465 *

X4 -1.7177 0.1614 -10.642 < 2e-16 ***

X5 -0.3100 0.1354 -2.290 0.0220 *

X6 -0.6126 0.1360 -4.505 6.63e-06 ***

X7 0.1020 0.1386 0.736 0.4618

130 X8 -0.8127 0.1376 -5.904 3.54e-09 ***

X9 -0.7635 0.1371 -5.567 2.59e-08 ***

X10 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

135

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 305.474 on 45 degrees of freedom

Residual deviance: 25.836 on 36 degrees of freedom

140 AIC: 179.66

Number of Fisher Scoring iterations: 4

#Q5:

145 #=====================================================================

Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

150 data = BOQ)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.76511 -0.41267 -0.05444 0.43675 1.76682

155

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

X1 -1.31849 0.20451 -6.447 1.14e-10 ***

X2 -0.99860 0.19740 -5.059 4.22e-07 ***

160 X3 -0.23153 0.19527 -1.186 0.235748

X4 -0.03076 0.19844 -0.155 0.876810

X5 -0.71746 0.19425 -3.694 0.000221 ***

X6 -1.06141 0.19848 -5.348 8.91e-08 ***

X7 -0.34884 0.19422 -1.796 0.072485 .

165 X8 -1.14535 0.20015 -5.722 1.05e-08 ***

X9 -1.00651 0.19753 -5.096 3.48e-07 ***

X10 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

170

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.775 on 45 degrees of freedom

Residual deviance: 23.212 on 36 degrees of freedom

175 AIC: 150.96

Number of Fisher Scoring iterations: 5

#Q6:

180 #=====================================================================

Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

185 data = BOQ)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.81069 -0.47220 -0.02250 0.53442 2.20041

190

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)
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X1 -0.8172 0.1473 -5.547 2.91e-08 ***

X2 -0.6093 0.1455 -4.189 2.81e-05 ***

195 X3 0.4225 0.1547 2.731 0.00631 **

X4 -0.1207 0.1456 -0.829 0.40699

X5 -1.6703 0.1694 -9.858 < 2e-16 ***

X6 -1.1648 0.1532 -7.604 2.87e-14 ***

X7 0.1943 0.1495 1.300 0.19355

200 X8 -0.5778 0.1453 -3.977 6.98e-05 ***

X9 -0.9519 0.1492 -6.381 1.76e-10 ***

X10 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

205

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 331.449 on 45 degrees of freedom

Residual deviance: 25.684 on 36 degrees of freedom

210 AIC: 167.99

Number of Fisher Scoring iterations: 5

#Q7:

215 #=====================================================================

Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

data = BOQ)

220

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3781 -0.8048 -0.1770 0.3225 1.4276

225 Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

X1 -1.6657 0.2307 -7.222 5.14e-13 ***

X2 -1.7973 0.2355 -7.633 2.30e-14 ***

X3 0.4268 0.2322 1.838 0.066 .

230 X4 -0.1020 0.2149 -0.475 0.635

X5 -1.4933 0.2253 -6.629 3.38e-11 ***

X6 -1.4833 0.2250 -6.593 4.32e-11 ***

X7 -0.1461 0.2141 -0.682 0.495

X8 -0.8337 0.2127 -3.919 8.89e-05 ***

235 X9 -1.3615 0.2218 -6.139 8.30e-10 ***

X10 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

240 (Dispersion parameter for binomial family taken to be 1)

Null deviance: 250.380 on 45 degrees of freedom

Residual deviance: 25.131 on 36 degrees of freedom

AIC: 124.76

245

Number of Fisher Scoring iterations: 5
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PCA.m
clear all; close all;

%for title, label, legend

set(0,’defaultaxesfontsize’,13, ’defaultaxesfontweight’,’bold’);

%for line and marker

5 set(0,’DefaultLineLineWidth’,2,’DefaultLineMarkerSize’,10 );

%text ??

set(0,’defaulttextfontsize’,13, ’defaulttextfontweight’,’bold’);

% data fra GLM probit model [7sp?rgsm?l x 10knapper]

10 data = [-0.16362926, -0.60373591, -0.49267676, -1.45609437, ...

-0.02330957, -0.18809978, -0.13239480, -0.85807253, -0.33108952;

0.1540293, 0.1451606, 0.7803966, -1.0690160, 0.5130524, ...

0.9060717, 1.3996335, -1.0367837, -0.3657888;

-0.9941252, -1.0823540, -0.2924012, -0.1236812, -0.5414547, ...

15 -0.7046049, 0.2273817, -0.8470542, -0.7295774;

-0.6546101, -0.8568345 , 0.2823199, -1.7177144, -0.3100414, ...

-0.6126236, 0.1019870, -0.8127262, -0.7634603;

-1.31849228, -0.99860009, -0.23152731, -0.03076158, -0.71746365, ...

-1.06140544, -0.34883781, -1.14535492, -1.00651317;

20 -0.8172346, -0.6092874, 0.4224775, -0.1207263, -1.6702825, ...

-1.1648141, 0.1943458, -0.5777694, -0.9519208;

-1.6657386, -1.7972956 , 0.4268400, -0.1019803, -1.4933180, ...

-1.4832802, -0.1461087, -0.8337355, -1.3615162] ;

Q10 = zeros(7,1);

25 data = [data,Q10];

X = data’; %nxt %THETA DATA

%MEAN DATA

XMEAN = [];

30 for i = 1:7

clear Xrank; clear permut;

X = load(sprintf(’Q%d.txt’,i));

items = 10;

consumer = length(X)/items;

35 Xrank = reshape(X, items, consumer)’;

XMEAN = [XMEAN,mean(Xrank,1)’];

end

X=XMEAN; %%%%%%%%%%%%%%%%NOTICE!!

40

n = 10;

Xstreg = ((1/n)*sum(X,1))’;

% Dispersion matrix S

45 S = (1/(n-1))*(X’*X-n*Xstreg*Xstreg’)

Sd = diag(S);

sqsd = sqrt(Sd);

X=X./repmat(sqsd’,10,1);

50 Xstreg = ((1/n)*sum(X,1))’;

% Correlation matrix

R = (1/(n-1))*(X’*X-n*Xstreg*Xstreg’)
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55 % Eigenvectors and Eigenvalues

[V,D] = eig(R)

d = diag(D);

[d,I]=sort(d,1,’descend’); %sort eigenvalues, I = index

60 P = V(:,I); %eigenvectors, sorted.

% Accumulated percent of total varians

profvar=[];

for i = 1:length(d)

65 profvar = [profvar; sum(d(1:i))/sum(d)];

end

% denne figur svarer til figur 2 i B&O-paper.

clf

70 sorted = sort(data’,1);

plot(sorted, ’o-’);

legend(’Q1’,’Q2’,’Q3’,’Q4’,’Q5’,’Q6’,’Q7’, ’Location’, ’NorthWest’);

set(gca,’xtick’,linspace(1,10,10), ’XLim’,[0,11]);

%title(’B&O, optimal scaling, \theta’, ’fontsize’, 15);

75 xlabel(’categories’);

ylabel(’preference’);

% Eigenvalue table ref{}

eigcat = [2.146,1.678,0.949,0.849,0.626,0.578,0.173]’;

80 profvarcat = eigcat/7

eigpca = d;

profvarpca = d/7;

% Loading plots

85 %x = dim1, y = dim2

Vcat = [-0.509,0.697;

-0.123,0.807;

0.624,0.175;

-0.321,0.642;

90 0.666,0.340;

0.775, 0.159;

0.792, 0.254]’;

figure

plot([zeros(1,7);Vcat(1,:)],[zeros(1,7);Vcat(2,:)],’o-’); hold on

95 plot([-1,0;1,0],[0,-1;0,1],’:k’);

AXIS([-1 1 -1 1]);

set(gca, ’XTick’, linspace(-1,1,11), ’Ytick’, linspace(-1,1,11), ...

’Xgrid’, ’on’, ’Ygrid’, ’on’)

xlabel(sprintf(’Dimension 1 ( %2.1f percent)’,profvarcat(1)*100));

100 ylabel(sprintf(’Dimension 2 ( %2.1f percent)’,profvarcat(2)*100));

legend(’Q1’, ’Q2’, ’Q3’, ’Q4’, ’Q5’, ’Q6’, ’Q7’,’Location’, ’SouthEast’);

gtext(’Q1’);gtext(’Q2’);gtext(’Q3’);gtext(’Q4’);gtext(’Q5’);

gtext(’Q6’);gtext(’Q7’);

105 Vpca = V(:,1:2)’; %bem?rk negativ!!

figure

plot([zeros(1,7);Vpca(1,:)],[zeros(1,7);Vpca(2,:)],’o-’); hold on;

plot([-1,0;1,0],[0,-1;0,1],’:k’);

AXIS([-1 1 -1 1])
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110 set(gca, ’XTick’, linspace(-1,1,11), ’Ytick’, linspace(-1,1,11), ...

’Xgrid’, ’on’, ’Ygrid’, ’on’)

xlabel(sprintf(’Dimension 1 ( %2.1f percent)’,profvarpca(1)*100));

ylabel(sprintf(’Dimension 2 ( %2.1f percent)’,profvarpca(2)*100));

legend(’Q1’, ’Q2’, ’Q3’, ’Q4’, ’Q5’, ’Q6’, ’Q7’, ’Location’, ’SouthEast’);

115 gtext(’Q1’);gtext(’Q2’);gtext(’Q3’);gtext(’Q4’);gtext(’Q5’);

gtext(’Q6’);gtext(’Q7’);

% Scoreplots

%SC = X*Vpca’; % nxp , px2

120 SC = X*Vcat’; % nxp , px2

figure

plot([SC(:,1),SC(:,1)]’, [SC(:,2),SC(:,2)]’,’o’); hold on;

max = 14

plot([-max,0;max,0],[0,-max;0,max],’:k’);

125 AXIS([-max max -max max])

set(gca, ’XTick’, linspace(-max,max,11), ’Ytick’, ...

linspace(-max,max,11), ’Xgrid’, ’on’, ’Ygrid’, ’on’)

xlabel(sprintf(’Dimension 1 ( %2.1f percent)’,profvarpca(1)*100));

ylabel(sprintf(’Dimension 2 ( %2.1f percent)’,profvarpca(2)*100));

130 gtext(’1’);gtext(’2’);gtext(’3’);gtext(’4’);gtext(’5’);gtext(’6’);

gtext(’7’);gtext(’8’);gtext(’9’);gtext(’10’);

Q7analysis.txt
# Reading data

>x=scan("Q7.txt")

# Definition of factors

5 >switch=factor(rep(1:10,10))

>consumer=factor(rep(1:10,rep(10,10)))

>library(flexmix)

10 >res1=flexmix(x~switch|consumer,k=1)

>summary(res1)

Call:

flexmix(formula = x ~ switch | consumer, k = 1)

15

prior size post>0 ratio

Comp.1 1 100 100 1

’log Lik.’ -206.5132 (df=11)

20 AIC: 435.0264 BIC: 463.6833

> parameters(res1)

$coef

(Intercept) switch2 switch3 switch4 switch5 switch6

25 7.8 0.3 -5.6 -4.5 -0.5 -0.5

switch7 switch8 switch9 switch10

-4.3 -2.4 -0.8 -4.7

$sigma

30 [1] 2.006102
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# model with 2 latent classes

> res2=flexmix(x~switch|consumer,k=2)

> summary(res2)

35

Call:

flexmix(formula = x ~ switch | consumer, k = 2)

prior size post>0 ratio

40 Comp.1 0.301 30 80 0.375

Comp.2 0.699 70 100 0.700

’log Lik.’ -196.5404 (df=23)

AIC: 439.0809 BIC: 498.9998

45

# model with 3 latent classes

> res3=flexmix(x~switch|consumer,k=3)

> summary(res3)

50 Call:

flexmix(formula = x ~ switch | consumer, k = 3)

prior size post>0 ratio

Comp.1 0.399 40 80 0.500

55 Comp.2 0.401 40 70 0.571

Comp.3 0.200 20 20 1.000

’log Lik.’ -167.5131 (df=35)

AIC: 405.0263 BIC: 496.2072

60

# AIC does not increase with 3 classes

# therefor 2 classes are asumed (res2)

65 # info on each class

> parameters(res2,component=1)

$coef

(Intercept) switch2 switch3 switch4 switch5 switch6

6.0026862 1.0056101 -3.6616921 -1.3610496 0.3529849 1.0072038

70 switch7 switch8 switch9 switch10

-2.3399164 2.3180905 2.6458269 -4.9939205

$sigma

[1] 1.660916

75

> parameters(res2,component=2)

$coef

(Intercept) switch2 switch3 switch4 switch5

8.575795002 -0.004570537 -6.436653893 -5.854900878 -0.868183600

80 switch6 switch7 switch8 switch9 switch10

-1.150571545 -5.146053205 -4.436523113 -2.287361487 -4.573131763

$sigma

[1] 1.732276

85
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# theta for each class assigned to p1 and p2

> p1=parameters(res2,component=1)$coef

> p2=parameters(res2,component=2)$coef

90 > p1

(Intercept) switch2 switch3 switch4 switch5 switch6

6.0026862 1.0056101 -3.6616921 -1.3610496 0.3529849 1.0072038

switch7 switch8 switch9 switch10

-2.3399164 2.3180905 2.6458269 -4.9939205

95 > p2

(Intercept) switch2 switch3 switch4 switch5

8.575795002 -0.004570537 -6.436653893 -5.854900878 -0.868183600

switch6 switch7 switch8 switch9 switch10

-1.150571545 -5.146053205 -4.436523113 -2.287361487 -4.573131763

100

# class observation for each consumer

> posterior(res2) # three persons differ from the rest...

[,1] [,2]

[1,] 9.998531e-01 0.0001469120

105 [2,] 9.998531e-01 0.0001469120

[3,] 9.998531e-01 0.0001469120

[4,] 9.998531e-01 0.0001469120

[5,] 9.998531e-01 0.0001469120

[6,] 9.998531e-01 0.0001469120

110 [7,] 9.998531e-01 0.0001469120

[8,] 9.998531e-01 0.0001469120

[9,] 9.998531e-01 0.0001469120

[10,] 9.998531e-01 0.0001469120

[11,] 3.332089e-04 0.9996667911

115 [12,] 3.332089e-04 0.9996667911

[13,] 3.332089e-04 0.9996667911

[14,] 3.332089e-04 0.9996667911

[15,] 3.332089e-04 0.9996667911

[16,] 3.332089e-04 0.9996667911

120 [17,] 3.332089e-04 0.9996667911

[18,] 3.332089e-04 0.9996667911

[19,] 3.332089e-04 0.9996667911

[20,] 3.332089e-04 0.9996667911

[21,] 1.203385e-03 0.9987966149

125 [22,] 1.203385e-03 0.9987966149

[23,] 1.203385e-03 0.9987966149

[24,] 1.203385e-03 0.9987966149

[25,] 1.203385e-03 0.9987966149

[26,] 1.203385e-03 0.9987966149

130 [27,] 1.203385e-03 0.9987966149

[28,] 1.203385e-03 0.9987966149

[29,] 1.203385e-03 0.9987966149

[30,] 1.203385e-03 0.9987966149

[31,] 4.888132e-08 0.9999999511

135 [32,] 4.888132e-08 0.9999999511

[33,] 4.888132e-08 0.9999999511

[34,] 4.888132e-08 0.9999999511

[35,] 4.888132e-08 0.9999999511

[36,] 4.888132e-08 0.9999999511

140 [37,] 4.888132e-08 0.9999999511
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[38,] 4.888132e-08 0.9999999511

[39,] 4.888132e-08 0.9999999511

[40,] 4.888132e-08 0.9999999511

[41,] 1.564294e-03 0.9984357058

145 [42,] 1.564294e-03 0.9984357058

[43,] 1.564294e-03 0.9984357058

[44,] 1.564294e-03 0.9984357058

[45,] 1.564294e-03 0.9984357058

[46,] 1.564294e-03 0.9984357058

150 [47,] 1.564294e-03 0.9984357058

[48,] 1.564294e-03 0.9984357058

[49,] 1.564294e-03 0.9984357058

[50,] 1.564294e-03 0.9984357058

[51,] 9.959409e-01 0.0040591087

155 [52,] 9.959409e-01 0.0040591087

[53,] 9.959409e-01 0.0040591087

[54,] 9.959409e-01 0.0040591087

[55,] 9.959409e-01 0.0040591087

[56,] 9.959409e-01 0.0040591087

160 [57,] 9.959409e-01 0.0040591087

[58,] 9.959409e-01 0.0040591087

[59,] 9.959409e-01 0.0040591087

[60,] 9.959409e-01 0.0040591087

[61,] 9.990717e-01 0.0009282781

165 [62,] 9.990717e-01 0.0009282781

[63,] 9.990717e-01 0.0009282781

[64,] 9.990717e-01 0.0009282781

[65,] 9.990717e-01 0.0009282781

[66,] 9.990717e-01 0.0009282781

170 [67,] 9.990717e-01 0.0009282781

[68,] 9.990717e-01 0.0009282781

[69,] 9.990717e-01 0.0009282781

[70,] 9.990717e-01 0.0009282781

[71,] 8.140028e-08 0.9999999186

175 [72,] 8.140028e-08 0.9999999186

[73,] 8.140028e-08 0.9999999186

[74,] 8.140028e-08 0.9999999186

[75,] 8.140028e-08 0.9999999186

[76,] 8.140028e-08 0.9999999186

180 [77,] 8.140028e-08 0.9999999186

[78,] 8.140028e-08 0.9999999186

[79,] 8.140028e-08 0.9999999186

[80,] 8.140028e-08 0.9999999186

[81,] 1.270020e-03 0.9987299803

185 [82,] 1.270020e-03 0.9987299803

[83,] 1.270020e-03 0.9987299803

[84,] 1.270020e-03 0.9987299803

[85,] 1.270020e-03 0.9987299803

[86,] 1.270020e-03 0.9987299803

190 [87,] 1.270020e-03 0.9987299803

[88,] 1.270020e-03 0.9987299803

[89,] 1.270020e-03 0.9987299803

[90,] 1.270020e-03 0.9987299803

[91,] 1.573586e-02 0.9842641441

195 [92,] 1.573586e-02 0.9842641441
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[93,] 1.573586e-02 0.9842641441

[94,] 1.573586e-02 0.9842641441

[95,] 1.573586e-02 0.9842641441

[96,] 1.573586e-02 0.9842641441

200 [97,] 1.573586e-02 0.9842641441

[98,] 1.573586e-02 0.9842641441

[99,] 1.573586e-02 0.9842641441

[100,] 1.573586e-02 0.9842641441

205 mrank=ave(x,switch)[1:10]

# ranks for class 1 (without consumer 1,7)

> x1=x[!(consumer==7|consumer==1)]

210 # ranks for class 2 (consumer 1, 7)

> x2=x[(consumer==7|consumer==1)]

# switchnumbers for each class

> switch1=switch[!(consumer==7|consumer==1)]

215 > switch2=switch[(consumer==7|consumer==1)]

# mean of ranks of each class

> m1rank=ave(x1,switch1)[1:10]

> m2rank=ave(x2,switch2)[1:10]

220

> mrank

[1] 7.8 8.1 2.2 3.3 7.3 7.3 3.5 5.4 7.0 3.1

> m1rank

[1] 8.375 8.750 2.125 3.500 7.375 7.000 3.375 4.625 6.250 3.625

225 > m2rank

[1] 5.5 5.5 2.5 2.5 7.0 8.5 4.0 8.5 10.0 1.0

> dev.off()

Error in dev.off() : cannot shut down device 1 (the null device)

230

# ranks for class 1 (without consumer 1, 6 and 7)

> x1=x[!(consumer==7|consumer==6|consumer==1)]

# ranks for class 2 (consumer 1, 6 and 7)

> x2=x[(consumer==7|consumer==6|consumer==1)]

235

> x1

[1] 8 10 3 2 7 4 1 5 9 6 9 7 2 1 6 10 3 5 8 4 10 9 2 1 7

[26] 8 5 4 3 6 8 10 1 6 9 7 3 5 4 2 10 9 2 3 8 7 6 1 5 4

[51] 9 6 1 5 7 8 3 2 10 4 6 9 4 1 10 8 3 7 5 2

240 > x2

[1] 6 5 2 3 7 8 4 9 10 1 7 10 2 9 5 4 3 8 6 1 5 6 3 2 7

[26] 9 4 8 10 1

# switchnumbers for each class

245 > switch1=switch[!(consumer==7|consumer==6|consumer==1)]

> switch2=switch[(consumer==7|consumer==6|consumer==1)]

> switch1

[1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

250 [26] 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
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[51] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Levels: 1 2 3 4 5 6 7 8 9 10

> switch2

[1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

255 [26] 6 7 8 9 10

Levels: 1 2 3 4 5 6 7 8 9 10

# mean of ranks of each class

> m1rank=ave(x1,switch1)[1:10]

260 > m2rank=ave(x2,switch2)[1:10]

> m1rank

[1] 8.571429 8.571429 2.142857 2.714286 7.714286 7.428571 3.428571 4.142857

[9] 6.285714 4.000000

265 > m2rank

[1] 6.000000 7.000000 2.333333 4.666667 6.333333 7.000000 3.666667 8.333333

[9] 8.666667 1.000000

latentanalysis.m
clear all

close all

%for title, label, legend

set(0,’defaultaxesfontsize’,13, ’defaultaxesfontweight’,’bold’);

5 %for line and marker

set(0,’DefaultLineLineWidth’,2,’DefaultLineMarkerSize’,10 );

%text ??

set(0,’defaulttextfontsize’,13, ’defaulttextfontweight’,’bold’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 %this script contain info about the Latent Class Analysis of Q7.

%how many latent classes?

%AIC for 1, 2 and 3 classes.. from R code

aic = [435.0264, 439.0809, 405.0263];

15

%the posterior probabilities for each consumer indicating,

% that consumer 1, 6 and 7 differ from the rest.

%load posterior.m, to get posterior data

20 posterior

post = post(10*(1:10),:);

figure

25 plot([2,3,4,5,8,9,10],post([2,3,4,5,8,9,10]),’or’); hold on;

plot([1,6,7],post([1,6,7]),’ob’);

xlabel(’consumer’)

ylabel(’percent’)

legend(’consumer 2,3,4,5,8,9,10’,’consumer 1,6,7’,’Location’, ’NorthEast’)

30 set(gca,’xtick’,linspace(1,10,10),’Box’,’off’, ’xlim’, [0,11], ...

’ylim’,[-1,2]);

%rank mean class 1 (consumer 2,3,4,5,8,9,10) and class 2 (consumer 1,6,7)

mrank = [7.8 8.1 2.2 3.3 7.3 7.3 3.5 5.4 7.0 3.1];

35 m1rank =[8.571429 8.571429 2.142857 2.714286 7.714286
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7.428571 3.428571 4.142857 6.285714 4.000000];

m2rank =[6.000000 7.000000 2.333333 4.666667 6.333333

7.000000 3.666667 8.333333 8.666667 1.000000];

40 [mrankpermut,permut] = sort(mrank,’ascend’)

m1rankpermut = m1rank(permut);

m2rankpermut = m2rank(permut);

figure %latentmean.eps

45 plot(mrankpermut, ’ok-’); hold on;

plot(m1rankpermut, ’r-’);

plot(m2rankpermut,’b-’);

xlabel(’switch’)

ylabel(’rank mean’)

50 legend(’mean’,’class 1 mean’, ’class 2 mean’, ’Location’, ’SouthEast’)

set(gca,’xtick’,linspace(1,10,10),’XTickLabel’,permut,’Box’,’off’,

’ytick’, linspace(1,10,10), ’xlim’, [0,11], ’ylim’,[-0.5,11.5]);

55 %theta for class 1 and 2

theta1_ste1=[-1.85448 0.30531

-1.88224 0.30705

0.84368 0.28822

0.53934 0.27149

60 -1.49968 0.28604

-1.35833 0.27967

0.23201 0.26097

-0.08213 0.25566

-0.89304 0.26348

65 0 0];

theta2_ste2=[-7.355 , 262.462;

-7.424 , 451.915;

-7.789 , 451.915;

70 -5.496 , 451.915;

-6.915 , 451.915;

-7.531 , 451.915;

-6.382 , 451.915;

-8.303 , 451.915;

75 -8.432 , 451.915;

0,0];

theta =[-1.6657386, -1.7972956 , 0.4268400, -0.1019803, -1.4933180,

-1.4832802, -0.1461087, -0.8337355, -1.3615162,0] ;

80 theta1 = theta1_ste1(:,1)’;

theta2 = theta2_ste2(:,1)’;

thetapermut = -theta(permut);

theta1permut=-theta1(permut);

85 theta2permut=-theta2(permut);

figure %latenttheta.eps

plot(thetapermut, ’ok-’); hold on;

plot(theta1permut, ’r-’);

90 plot(theta2permut,’b-’);
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xlabel(’switch’)

ylabel(’-\theta’)

legend(’-\theta’,’-\theta, class 1’, ’-\theta, class 2’, ...

’Location’, ’SouthEast’)

95 set(gca,’xtick’,linspace(1,10,10),’XTickLabel’,permut,’Box’,’off’, ...

’xlim’, [0,11]);

binprobitclasses.R
# estimate theta for each class.

ls()

search()

5

#Load data into data frame:

BOQ <-read.table(’RQ7class1.txt’,header=T,sep=’ ’)

#n = rep(10,45) # if RQ4 n=rep(20,45) if RQ6 n=rep(18,45)

n=rep(7,45) #class1

10 #n=rep(3,45) #class2

#Add the data to the search path:

attach(BOQ)

15 # GLM (Bradley-Terry -probit) for consumer 2,3,4,5,8,9,10

model <- glm(cbind(Y,n-Y) ~ X1+X2+X3+X4+X5+X6+X7+X8+X9+X10-1,

family=binomial(link=probit), data=BOQ)

coef(model)

summary(model)

20

# Clear the work space and search path:

rm(list=ls(all=TRUE))

detach(BOQ)

25

###### CLASS 1 ##################

> coef(model)

X1 X2 X3 X4 X5 X6

30 -1.85447712 -1.88224084 0.84368479 0.53934327 -1.49968203 -1.35832721

X7 X8 X9 X10

0.23201411 -0.08213204 -0.89303875 NA

> summary(model)

35 Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

data = BOQ)

40 Deviance Residuals:

Min 1Q Median 3Q Max

-1.3088 -0.6006 -0.2211 0.3666 1.1211

Coefficients: (1 not defined because of singularities)

45 Estimate Std. Error z value Pr(>|z|)

X1 -1.85448 0.30531 -6.074 1.25e-09 ***
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X2 -1.88224 0.30705 -6.130 8.78e-10 ***

X3 0.84368 0.28822 2.927 0.00342 **

X4 0.53934 0.27149 1.987 0.04697 *

50 X5 -1.49968 0.28604 -5.243 1.58e-07 ***

X6 -1.35833 0.27967 -4.857 1.19e-06 ***

X7 0.23201 0.26097 0.889 0.37398

X8 -0.08213 0.25566 -0.321 0.74802

X9 -0.89304 0.26348 -3.389 0.00070 ***

55 X10 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

60

Null deviance: 217.126 on 45 degrees of freedom

Residual deviance: 17.520 on 36 degrees of freedom

AIC: 95.836

65 Number of Fisher Scoring iterations: 6

###### CLASS 2 ##################################

> coef(model)

X1 X2 X3 X4 X5 X6 X7 X8

70 -7.423629 -7.797988 -5.495509 -6.915105 -7.530833 -7.779726 -6.381677 -8.302855

X9 X10

-8.431670 NA

> summary(model)

75 Call:

glm(formula = cbind(Y, n - Y) ~ X1 + X2 + X3 + X4 + X5 + X6 +

X7 + X8 + X9 + X10 - 1, family = binomial(link = probit),

data = BOQ)

80 Deviance Residuals:

Min 1Q Median 3Q Max

-1.387e+00 -2.692e-01 -1.366e-07 3.561e-01 1.336e+00

Coefficients: (1 not defined because of singularities)

85 Estimate Std. Error z value Pr(>|z|)

X1 -7.424 451.915 -0.016 0.987

X2 -7.798 451.915 -0.017 0.986

X3 -5.496 451.915 -0.012 0.990

X4 -6.915 451.915 -0.015 0.988

90 X5 -7.531 451.915 -0.017 0.987

X6 -7.780 451.915 -0.017 0.986

X7 -6.382 451.915 -0.014 0.989

X8 -8.303 451.915 -0.018 0.985

X9 -8.432 451.915 -0.019 0.985

95 X10 NA NA NA NA

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 118.406 on 45 degrees of freedom

100 Residual deviance: 21.319 on 36 degrees of freedom

AIC: 68.513
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Number of Fisher Scoring iterations: 18
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