
e-Assessment of Workplace
Health & Safety

Martin René Pedersen

Kongens Lyngby 2007

IMM-Eksamensprojekt-2007-52

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary

Danish companies with employees are obligated to assess the health and safety
environment work. The assessment is a time demanding but important task.

This thesis documents a masters project aiming at developing a web based
assessment system for this work. The system should comply with the working
environment law in force and at the same time be simple and foreseeable to the
user.

The thesis introduces Java Enterprise Edition as the platform technology, Ex-
treme Programming as the development methodology and the planning and
implementation of the first release of the e-assessment system.

ii

Resumé

Alle virksomheder med én eller flere ansatte skal måle og vurdere h̊andteringen
af virksomhedens arbejdsmiljøog sikkerhed - en APV. At gennemføre en APV
proces er et tidskrævende men vigtigt arbejde.

Denne rapport dokumenterer et eksamensprojekt med sigte p̊aat udvikle et web
baseret system til h̊andtering af virksomhedens APV. Systemet skal opfylde
gældende krav til APV og samtidig skal systemet være simpelt og let overskueligt
for den almingelige bruger.

Rapporten introducerer Java Enterprise Edition som teknologi, Extreme Pro-
gramming som udviklingsmetode og planlægning samt gennemførelse af første
iteration af APV systemet.

iv

Preface

This thesis was prepared at Thermo Fischer Scientific, Roskilde and is the docu-
mentation of a project aiming at developing a electronic system for assessment of
workplace health and safety. The system should be web based and the usability
of the user interface is crucial to the employees.

The thesis is divided into three parts.

Part 1 describes the Java Enterprise Edition platform. The platform includes
various technologies as servlets, Java Server Pages, Java Server Faces and En-
terprise Java Beans which makes it a very powerful platform for large web and
enterprise applications.

The application server used in this project is JBoss Application Server which
includes the Apache Tomcat server for servlets and Java Server Pages. The
server also includes the new EJB3.0 specification for Enterprise Java Beans and
along with the JBoss Seam framework for connecting Enterprise Java Beans
with Java Server Faces this makes a powerful runtime platform.

Part 2 describes Extreme Programming which is a relatively new software
development methodology. It was devised in the late 1990s combine well known
practices of software development in a new way and with new practices. Making
high quality software should be fun and rewarding - and this is the main goal
of Extreme Programming.

vi

Part 3 describes a web based system for e-assessment of workplace health
and safety. The system is described and planned using the Extreme Program-
ming Methodology. The project is divided into three iterations and the first is
implemented in Java Enterprise Edition

As the basic aspects of Java Enterprise Edition is described in the first part no
knowledge of this technology is required to read the report, but as the platform is
quite complex the reader is presumed to know the Java platform at an advanced
level.

Lyngby, June 2007

Martin René Pedersen

Acknowledgements

A lot of people have been very helpful during this project.

I would like to thank the employees and the management at Thermo Fischer
Scientific (Nunc A/S) for participating in this project. Projects with students
always has a risk as you never now what the result will be. Eventually I think
we will come up with a useful and timesaving solution.

I would especially like to thank the safety organization for excellent feedback and
criticism as the project and the web layout were presented to them at a meeting.
I would also like to thank Mogens Andersen and Asger Dahl - the health and
safety managers at Thermo Fischer Scientific. Their help and patience were
crucial for the understanding of the working environment legislation and the
requirements for the assessment system.

I would also like to thank my supervisor Jens Thyge Kristensen who always has
more several points of view and useful feedback.

And last but not least I would like to thank Tina for her never-ending support
and patience with me.

viii

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

I Java Enterprise Edition as Technology 1

1 Java Enterprise Edition 3

1.1 Web application . 5

1.2 Enterprise Java Beans . 21

2 Jboss Application Server 35

2.1 JBoss Seam . 36

x CONTENTS

II Xtreme Programming as Methodology 41

3 Extreme Programming 43

3.1 Background for XP . 43

3.2 What is Extreme Programming? 44

3.3 Practices of Extreme Programming 46

3.4 Strategies . 50

III e-assesment system 55

4 Introduction to the project 57

4.1 Assessment of safety and health 57

4.2 Thermo Fischer Scientific and APV 58

4.3 Existing application . 59

5 Project specification 61

5.1 General considerations . 61

5.2 Requirements . 62

5.3 Technology . 64

5.4 Methodology . 64

5.5 System metaphor . 65

6 Planning 67

6.1 User stories . 67

CONTENTS xi

6.2 Value and Risk . 70

6.3 Releases . 70

7 Design 75

7.1 The web application . 75

7.2 Domain Data . 79

7.3 Domain logic . 80

7.4 Refactoring to list factories . 81

8 Test 83

8.1 Unit testing JEE . 83

8.2 Unit testing JBoss Seam . 84

9 Conclusion 85

9.1 Java Enterprise Edition . 85

9.2 JBoss Seam . 86

9.3 Extreme Programming . 87

9.4 e-assessment system . 88

9.5 Personal experiences and lessons learned 88

A Annotations in Java 5.0 91

A.1 Annotation . 91

B Working Environment Act 93

C User Stories 95

xii CONTENTS

C.1 User administration . 95

C.2 Department administration . 96

C.3 Schema administration . 97

C.4 Review administration . 100

C.5 Evaluation . 100

C.6 Results . 101

C.7 Action-plan administration . 102

C.8 Statistics . 103

C.9 Accessibility . 104

D Source Code 105

D.1 Web pages . 105

D.2 Entity Beans . 118

D.3 Session Beans . 134

D.4 Configuration files . 149

Part I

Java Enterprise Edition as

Technology

Chapter 1

Java Enterprise Edition

Java Enterprise Edition is one of the most comprehensive and flexible platforms
available. It offers the entire Java API (which is enormous) and has several
opportunities for each part of the application. The latest version is Java Enter-
prise Edition 5 released fall 2006 and features at lot of updates and additions
compared to the rather old version 2. In the following JEE will be used and
refers to Java Enterprise Edition 5.

Sun provides the JEE platform for developing applications but not the middle-
ware connecting the platform with the custom made application. In this project
a web server1 is needed and there are several possibilities from different vendors.
JBoss Application Server is one of the most popular and widely used JEE web
servers and will be the one used for this project.

Figure 1.1 shows an overview of the entire JEE platform. The grey arrows
indicates how calls from clients are processed through the system. The following
sections describes the most important technologies of JEE - but is by no means
exhaustive as that would require several hundreds of pages. More information
on the specific technologies is found in the books and websites referenced in the
bibliography.

1There are other servers providing a platform for running traditional client/server applica-
tions as e.g. a financial system with a server and dektop client.

4 Java Enterprise Edition

Database

Web Container

Servlets Beans

JSP TagLibs

HTTP

SERVER

Domain

Logic

Domain

Data

Domain modelWeb Server

JDBC

Browser
XML

Browser
HTML

Browser
Applet

Application
Java

EJB Container

Entity

Beans

Session

Beans

Message

Beans

Java Enterprise Edition Server RDBMSClients

Figure 1.1: An overview of Java Enterprise Edition.

1.0.1 Architecture of a JEE application

In the design of JEE web applications there are two commonly used architectural
patterns referred to as Model 1 and Model 2.

Model 1 is the simpler of the two. When a request is made by a client either
a servlet or a JSP processes the request. It is responsible for validating input,
handling business logic and generating the response to the client. The pattern
is very simple and not suitable for large applications.

Model 2 builds on the Model-View-Control (MVC for short)2 architectural pat-
tern. In the pattern a client makes a request to a controller implemented as
a servlet. Based on the request the controller decides which view to pass the
request to. The view may be either a Java Server Pages (JSP) or a Java Server
Faces (JSF) which again invokes the methods of the model which are made up
of Enterprise Java Beans (EJB). The model might access a database and the
produces a response object which is passed to the view. The view then generates
a response which is sent back to the client.

2The MVC pattern was first described by Trygve Reenskaug in 1979 and used in the
Smalltalk language. The pattern separates the layers of an application into the model con-
taining the business logic of the domain, the view which renders the work of the model into
e.g. a user interface and a controller which processes events, invokes changes on the model
and responds to the events

1.1 Web application 5

1.1 Web application

Web application might not be the best heading for this section as this only
describes servlets, Java Server Pages and Java Server Faces whereas Enterprise
Java Beans are covered in the next section. Nevertheless the three technologies
are packed and deployed inside the Web container of the JEE server and they
are not dependent on the EJBs (e.g. using the Model 1 pattern does not include
EJBs), so they actually are able to form an entire web application.

1.1.1 Servlets

One of the most central elements in the JEE platform is servlets. A servlet is a
java class which extends the web server and enables the server to respond to new
kinds of requests. This is accomplished by letting the java class implement the
Servlet interface through extending the abstract class GenericServlet. As
many applications are web applications a special abstract class HttpServlet

which extends the GenericServlet class is used. The HttpServlet class im-
plements some HTTP specific functionality (by overriding the verb+service()+
method of the GenericServlet class) and has four methods supporting re-
quests of the HTTP protokol 3. The four methods are doGet, doPost, doPut
and doDelete - the latter two are seldom used as most requests are GET or
POST requests. The application servlet must override at least one off these
methods.

Servlets has a lot of advantages over e.g. web scripting languages like php, asp
and cgi. As they the are written in Java they are portable between operation
systems, the are powerful through the Java API, they are reliable through the
secure memory model of Java and they are an elegant way of developing as they
are object oriented and modular. As they extends the web server there is a
close integration with the server and the server handles a lot of the trivial stuff
like sessions, cookies and logging. There are disadvantages though. If making
small applications things might get unnecessarily complicated bringing Java into
the development. Generating output for the response is quite tedious (se the
examples later) but this may be solved using Java Server Pages as in section
1.1.2.

Servlets were originally developed by Anselm Baird-Smith at Sun Microsystems
and later elaborated into a specification by Satish Dharmaraj.

3See http://www.w3.org/Protocols for more information on the HTTP Protocol

6 Java Enterprise Edition

<<interface>>

javax.servlet.Servlet
init(config:ServletConfig)
service(req;ServletRequest, res:ServletResponse)
destroy()

(abstract)

javax.servlet.GenericServlet
log(msg:String)
log(msg:String, t:Throwable)

(abstract)

javax.servlet.http.HttpServlet
doGet(req:HttpServletRequest, res:HttpServletResponse)
doPost(req:HttpServletRequest, res:HttpServletResponse)
doPut(req:HttpServletRequest, res:HttpServletResponse)
doDelete(req:HttpServletRequest, res:HttpServletResponse)

Application Servlet

Figure 1.2: The class hierarchy of the servlet application. Only methods inter-
esting for the lifecycle of the servlet are included.

1.1.1.1 Lifecycle of a servlet

The servlet lives inside the servlet container and is therefore instantiated by the
container. This is done either when the servlet container starts up, when the
servlet is deployed to the container or the first time a request is sent towards
the servlet. The chosen strategy is different for different container vendors.

Loaded

Initialized

init()

destroy()

service()Servlet

Figure 1.3: The lifecycle of a servlet

Once the servlet has been instantiated it is kept in memory and is in Loaded
state. At some point the servlet is initialized by the container which calls the
init(ServletConfig config) method on the servlet. The method will save
the config object and call the overloaded no argument init() method - and

1.1 Web application 7

the Servlet is now in Initiated state. Just like the constructor of a simple java
class the init method is guaranteed to be called only once per instance.

As the servlet is initialized it is ready to service clients. When the container
receives a request it wraps the request in a HttpServletRequest object, creates
HttpServletResponse object and calls the service(ServletRequest req,

ServletResponse res)method which in turn calls the appropriate doXXXmethod.
This method generates a response, wraps it into the HttpServletResponse ob-
ject and returns it to the container. The container unwraps the object and gener-
ates the response to the client. HttpServletRequestand HttpServletResponse

are Java interfaces whereas the specific class implementations are vendor specific
and unknown to the servlet developer.

A servlet is only instantiated once in the container and the initiated servlet
then handles request for all clients which means a servlet may serve several
concurrent requests from multiple clients.

Servlet Container

ServletBrowser
request

response

request object

response object

Figure 1.4: The container handles the requests and responses between the client
and the servlet.

At some point the servlet instance is destroy by the destroy() method called
by the container. Once the method has been called the instance will not call it
again and at some point, the instance is garbage collected and the servlet enters
the Unloaded state (denoted Servlet in figure 1.3).

1.1.1.2 Examples of servlets

Listing 1.1 shows a simple servlet which generates a list of questions from a
specific category. From the response the servlet instantiates a PrintWriter

object which is a text based output response for the browser. A table with all
questions is generated and printed to the object. The output is flushed manually
at the end of the request which is not needed in this case as it is automatically
flushed when the PrintWriter object is destroyed.

The servlet only responds to GET requests as only the doGet method is im-

8 Java Enterprise Edition

public class pr in tQue s t i on sSe rv l e t extends HttpServ le t {
public void doGet (HttpServ le tRequest request ,

HttpServletResponse re sponse)
throws IOException , Se rv l e tExcept ion {

// Get category id from request (parsed in URL)
St r i ng categoryId = reque s t . getParameter(” categoryId ”) ;

// Get quest ions for category with categoryId (pseudo method)
List<Question> que s t i onL i s t = getQuestionsFromDatabase (categoryId) ;

// Get a PrintWriter to wri te output html back to container
PrintWri te r output = response . ge tWri te r () ;
re sponse . setContentType (” t ex t /html”) ;

// Print out quest ions in a ta b l e
output . p r i n t l n (”<tab le>”) ;
for (Quest ion qs : que s t i onL i s t) {

output . p r i n t l n (”<tr><td>”) ;
output . p r i n t l n (qs . getText ()) ;
output . p r i n t l n (”</td></tr>”) ;

}
output . p r i n t l n (”</tab le>”) ;

// Flush output
output . f l u s h () ;

}
}

Listing 1.1: printServlet.java - example of servlet printing out a list of questions.

plemented. If a POST request is send to the servlet the container will respond
with a HTTP 405 Method Not Allowed error.

As mentioned earlier the servlet may also function as a controller in the Model
2 pattern. Listing 1.2 shows an example of a controller servlet. The controller
responds to both GET and POST requests as both calls the processRequest

method. The method find a parameter action from the request and loops
through a set of if...then...else statements to find a matching case. If the match-
ing case was viewQuestionsFromCategory the categoryId parameter is picked
from the request and a list of questions is generated e.g. from a database. The
list is set as an attribute on the response object. At the end of the servlet
the destination page is set on the request object to forward the container focus
to the destination page (which will be an error page by default if not changed
during the if...then...else).

1.1.1.3 Declaring the servlet

The servlet must be declared for the servlet container to use it and additionally
the servlet must be mapped to an url. This is done in an xml format in web.xml.

1.1 Web application 9

public class Cont r o l l e r S e r v l e t extends HttpServ le t {
private static f ina l St r i ng ACTION KEY = ” ac t i on ” ;
private static f ina l St r i ng ERROR PAGE = ”/ e r ro r . j sp ” ;

public void doGet(HttpServ le tRequest request ,
HttpServletResponse re sponse)

throws IOException , Se rv l e tExcept ion {
proce ssRequest (request , re sponse) ;

}

public void doPost (HttpServ le tRequest request ,
HttpServletResponse re sponse)

throws IOException , Se rv l e tExcept ion {
proce ssRequest (request , re sponse) ;

}

public void proce ssRequest (HttpServ le tRequest request ,
HttpServletResponse re sponse)

throws IOException , Se rv l e tExcept ion {
// Get requested act ion
St r i ng actionName = reque s t . getParameter(ACTION KEY) ;
// Set de s t ina t ion to d e f au l t error page
St r i ng dest inat ionPage = ERROR PAGE;

// Find the requested act ion and perform
i f (actionName . equa l s (”viewQuestionsFromCategory ”) {

St r i ng categoryId = reque s t . getParameter(” categoryId ”) ;

// Get quest ions for category with schemaId (pseudo method)
List<Question> que s t i onL i s t = getQuestionsFromDatabase (categoryId) ;

// Parse l i s t o f quest ions to the response ob je c t
re sponse . s e tAt t r i bu t e (” que s t i onL i s t ” , que s t i onL i s t) ;
de st inat ionPage = ”/ que s t i onL i s t . j sp ” ;

}
else i f (. . .) { . . . }
else {}

// Redirect to dest inat ionPage
RequestDispatcher d i spa t che r =

getServ le tContext () . ge tRequestDispatcher(dest inat ionPage) ;
d i spa t che r . forward (request , re sponse) ;

}
}

Listing 1.2: ControllerServlet.java - controller implemented as a servlet

Listing webxml shows the web.xml for the ControllerServlet. The servlet
is mapped to /testcontroller/* and the wildcard character * indicates that the
servlet matches any url starting with /testcontroller not matter what is added
to the url. The controller servlet may now be requested from a browser using
the url http://localhost:8080/testcontroller?action=viewQuestionFromCategory.

10 Java Enterprise Edition

<web−app>

<s e r v l e t>
< !−− Making the s e r v l e t a v a l i a b l e −−>

<s e r v l e t−name>TestCon t ro l l e rS e r v l e t</ s e r v l e t−name>
<s e r v l e t−c l a s s>Cont r o l l e r S e r v l e t</ s e r v l e t−c l a s s>

</ s e r v l e t>
<s e r v l e t−mapping>

< !−− Mapping the s e r v l e t to an URL −−>

<s e r v l e t−name>TestCon t ro l l e rS e r v l e t</ s e r v l e t−name>
<ur l−patte rn>/ t e s t c o n t r o l l e r /∗</ ur l−patte rn>

</ s e r v l e t−mapping>
</web−app>

Listing 1.3: The mapping of the controller in the web application.

1.1.2 Java Server Pages

Java Server Pages (JSP for short) is a markup and scripting language much like
php and asp. It combines HTML, XML and Java to create dynamic content to
a web application. Java and scripts might lead the thought towards JavaScript
but there is a huge difference between JavaScript and JSP. JavaScript is sent to
the client and then the client runs the script and produces the result. JSP runs
on the server and only the result is sent to the client.

JSP is not the same as servlet either. The difference between servlets and JSP
is often describes as servlets being Java code with embedded HTML whereas
JSP are HTML with embedded Java code.

When JSP scripts are deployed to the container they are translated into servlet
code by the JSP engine which during then translation checks the syntax and
validity of the code. The resulting code is a servlet which extends a vendor
specific class which in turn extends the HttpJspPage interface as in figure 1.5.

After the translation the resulting code is compiled into a servlet which behaves
the same way as application servlets described earlier. The lifecycle of the
JSP servlet is exactly the same though the methods have new name; jspInit,
jspDestroy and _jspService. Architecturally JSP may be seen as an higher-
level abstraction of servlets.

A JSP script may be broken down to eight elements.

• Static code like HTML.

• Directives which are command evaluated during the compilation of the
JSP page.

1.1 Web application 11

<<interface>>

javax.servlet.Servlet

Vendor specific Servlet class

JSP implementation class

<<interface>>

javax.servlet.jsp.HttpJspPage
_jspService(rep:HttpServletRequest, res:HttpServletResponse)

<<interface>>

javax.servlet.jsp.JspPage
jspInit()
jspDestroy()

Figure 1.5: The class hierarchy of the resulting servlet of a JSP page.

• Declarations which can be any valid Java declaration. They are copied
as is to the servlet code during compilation.

• Expressions which are standard Java expressions that evaluate into a
value. They are evaluated once per request.

• Scriptlets which are Java code embedded into the page. At compilation
they are copied as is into the _jspService method of the resulting servlet
and are evaluated once per request.

• Actions which are commands given to the JSP engine. They are evaluated
at request time and are stated in XML format (unlike the other elements).

• Comments does not affect the output in any way. They are considered
part of the JSP code and does not affect the result or the servlet.

• Custom tags which are tags made by the developer or loaded from a
library.

1.1.2.1 Scopes in JSP

JSP has four different scopes an application may exist in. All elements in a
page exists in one of these scopes - but not necessarily the same. The object
are maintained in different object as attribute-value pairs and may be requested
through getAttribute and setAttribute methods of the object.

The four scopes are:

12 Java Enterprise Edition

• Application scope where objects are shared across all components of the
application. The objects are available for the entire application life time.
They are maintained in the ServletContext instance as attribute-value
pairs.

• Session scope where object are shared across all request in the same
session. The objects are available throughout the session and removed
when the session ends. They are maintained in the HttpSession object.

• Request scope where objects are shared across the elements which are
part of the same request. The objects are available during the request and
they are maintained in the HttpServletRequest object.

• Page scope where objects are available in the translation unit in which
the are defined. They are maintained in the PageContext object.

The default scope if not set in the declaration is Page.

JavaBeans may be used inside the JSP page. The obvious advantage of using
beans is a lot of saved work for the developer as JavaBeans provide a standard
way of setting and getting properties. But a factor just as important is the use
of scopes as the bean may be declared inside one of the above scopes making
the bean and the information it holds available to subsequent requests.

<j sp : useBean id=” quest ion ” class=”Question” scope=” s e s s i o n ” />

The bean declared in a JSP page using an action like the above. A JavaBean of
class Question is set in the session scope. The property of the bean may now be
accessed using getters and setters e.g. <% out.print(question.getText()) %>.

<j sp : se tProperty
name=” quest ion ”
property=” tex t”
va lue=”Do you know the s a f e ty procedure ?”

/>

1.1.2.2 Examples of JSP

Listing 1.4 shows an example of a JSP script. The c:forEach loop is bound to
a variable questionList. The variable is part of the request environment and
could e.g. be set by a servlet like the ControllerServlet in listing 1.2. The
list could also be generated inside the JSP script by putting some scriplet code

1.1 Web application 13

< !−− Use the j sp j s t l l i b r a r y −−>

<%@ t ag l i b p r e f i x=”c” u r i=”http : / java . sun . com/ j sp / j s t l / core ” %>

<html>

<head>

<t i t l e>Quest ionLi st In JSP</ t i t l e>

</head>

<body>

<table>

< !−− Run a foreach on a l l items in que s t ionL is t −−>

< !−− Ins ide the loop the current quest ion i s bound to q s t −−>

<c : forEach items=’${ que s t i onL i s t } ’ var=”qst ”>
<tr>

< !−− Print the text of current q s t −−>

<td>${ qst . t e x t}</td>

</ tr>

</c : forEach>

</ table>

</body>

</html>

Listing 1.4: A list of questions is printed out inside a table on the jsp page.

like listing 1.5 in the script. This is not good programming practice though and
should in general be avoided.

The current element of the forEach loop is bound to a variable qst and the
properties of the object may be referenced by putting the property after the
variable separated by a punctuation.

< !−− Import the needed java c l a s s e s to make the que s t ionL is t −−>

<%@ page import=” java . u t i l . ArrayList , dk . eapv . domain . Quest ion” %>

<%
// Prepare que s t i onL i s t
ArrayList<Question> que s t i onL i s t = new ArrayLi st<Question> () ;

// Create two que s t i on s ob j e c t s and add them to the l i s t
Quest ion qst1 = new Question () ;
qst1 . setText (”Do you know the s a f e ty procedure ?”) ;
que s t i onL i s t . add (qst1) ;
Quest ion qst2 = new Question () ;
qst2 . setText (”Are ac c i d en t s thoroughly i nv e s t i g a t ed ?”) ;
que s t i onL i s t . add (qst2) ;

// Add the que s t i onL i s t to the context o f the page
pageContext . s e tAt t r i bu t e (” que s t i onL i s t ” , que s t i onL i s t) ;

%>

Listing 1.5: The list of questions may be created inside the jsp page.

14 Java Enterprise Edition

1.1.2.3 Tag Libraries

JSP provides the possibility of implementing a lot of functionality into the page
with Java code, but as mentioned earlier this is not good programming practice.
To avoid this JEE offers the possibility of implementing custom tags and collect
them in Tag Libraries. The logic is implemented in Java code and then made
available through tags in the JSP page. This way the logic is separated out and
may be reused in other pages.

The library consists of two thing - a number of Java files with the logic (normally
packed into a standard jar file) and a Tag Library Descriptor (TLD for short).
The TLD is a XML file and contains the meta information which maps the
elements of the Java code to the tags used in JSP along with information on
attributes.

To use a library it the JSP page must import it. This is done using a JSP
directive.

<\%@ ta g l i b u r i=”uriToTLD” p r e f i x=”myTL” \%>

The uri is the uri to the TLD of the library - not the jar file. It may either be
root-relative, relative to current position or absolute. The prefix is a reference
to the library used inside the script as prefix:tagname to call methods or set
properties of the library.

<myTL: f i ndQue s t ions s e l e c t edCatego ry=”2” s to r eRe su l t In=” r e s u l t ” />
<c : forEach items=” r e s u l t ” var=” qst ” />

${ qst . t e x t}
</c : forEach>

JavaServer Pages Standard Tag Library or JSTL is a standard tag library of
JEE. The library extends the JSP specification and adds standardized function-
ality for common tasks like loops, conditions and data processing. In listing 1.4
JSTL was used to provide the forEach tag - note how it was implemented at
the beginning of the script.

In addition to the JSTL there are a lot of open source Tag Libraries available
throughout the Internet. It will often be possible to find a library containing all
or part of the functionality needed.

1.1 Web application 15

1.1.3 Java Server Faces

Though servlets, JSP, custom taglibs and javabeans are powerful technologies
which together makes up a powerful platform for developing and running clien-
t/server applications a lot of issues are not addressed. Some examples of issues
are conversion between java objects and http, validation of input to the applica-
tion, internationalization and different languages on the website and navigation
which is often mixed in between Java or JSP code.

Through the years a lot of different solutions to these issues have appeared but
most of them have been either developer- or project specific solutions without
the flexibility required for a real framework (most of them based on the Model 2
pattern4). This finally lead to the JSF Specification from SUN. The most pop-
ular JSF framework is MyFaces MyFacesdevelop as under the Apache project
(section 2.1.5).

Conventional desktop application programming has for many years been dom-
inated by the popular term Rapid Application Development (RAD for short).
The methodology was developed by James Martin5 and involves the construc-
tion of prototypes and the use of Computer-aided software engineering (CASE)
tools. A lot of RAD tools have emerged through the years e.g. PowerBuilder,
Delphi and Microsofts Visual Studio used for e.g. C#, Visual Basic and others.

JEE did not have a standard Java RAD tool though a few individual tools
emerged. The Java Server Faces specification provides these standards and over
the past few years several vendors6 have implemented JSF into their respective
RAD tools thereby making a framework to build web based UIs in Java.

Listing 1.6 shows the question list written through JSF. This shows the conver-
sion between the java objects and the resulting http response. The conversion
is mapped by the value attribute of the JSF tags. Note that the bindings are
expressed in JSF Expression Language which is surrounded by #{ } tags (and
not ${ } tags like JSP Expression Language). The code is not much shorter
or simpler than the same page and result written in JSP - but this very simple
example does not show the real powers of JSF. Note the suffix of the filename
remains .jps as the JSP engine is still used to translate the page. In the browser
though the page is referenced by questionList.jsf and questionList.jsp will not

4Model 2 is a variation of the MVC architectural pattern specific for web applications. In
the pattern the browser is considered part of the model

5Dr. James Martin has been called guru of the information age. He has written over a
hundred books on the subject and has been one of the early promoters of fourth generation
programming languages like Maple, ColdFusion and Ruby on Rails.

6IBMs WebSphere Application Developer, Oracles JDeveloper and Suns Java Studio Cre-
ator are the three best known examples of RAD with JSF support

16 Java Enterprise Edition

< !−− Use the j s f l i b r a r i e s −−>

<%@ tag l i b p r e f i x=” f ” u r i=”http : / java . sun . com/ j s f / core ” %>

<%@ tag l i b p r e f i x=”h” u r i=”http : / java . sun . com/ j s f /html” %>

<html>

<f : view>

<head>

<t i t l e>Quest ionLi st In JSF</ t i t l e>

</head>

<body>

< !−− Use the dataTable tag to pr in t the table with quest ions −−>

<h : dataTable value=”#{que s t i onL i s t }” var=” qst ”>
<h : column>

< !−− Print the text of the current quest ion q s t −−>

<h : outputText value=”#{qst . t e x t}” />
</h : column>

</h : dataTable>

</body>

</ f : view>

</html>

Listing 1.6: questionList.jsp - The list of questions may be created inside the jsf
page.

work.

In the two first lines of the code - two tag libraries are loaded. These are the
JSF HTML Custom Actions and the JSF Core Custom Actions libraries. These
libraries contains standard tags for most common visual items used on web pages
like the table rendered using the h:dataTable tag.

1.1.3.1 Validation in JSF

Validation of input is essential to any application and so is the case for web
applications. Neither servlets nor JSP provides a simple standardized way to
validate the input sent from forms. JavaScript may be used inside the JSP page
to check the different input fields or a validation method may be implemented
in either the servlet or the bean holding data. The development of a validation
method is often cumbersome and time consuming - and it actually more or less
the same tasks over and over again but on different fields.

A large part of the JSF specification considers the creation of forms and the
validation of the input of them. This makes developing pages with input forms
much easier as the tag library handles everything from rendering fields, validat-
ing the input, binding values to beans and displaying error messages.

Listing 1.7 shows a simple bean used to hold users of a system. It has three

1.1 Web application 17

properties; username, password and a boolean value indicating whether the user
is a superuser. The bean has a method for saving the method in the database.
Getter and setter methods are left out.

pub l i c c l a s s UserBean {
pr i va t e S t r i ng username ;
p r i va t e S t r i ng password ;
p r i va t e Boolean superUser ;

pub l i c S t r i ng c reateUser () {
// S ince the username , password and superUser p r ope r t i e s
// i s bound to the form in the j s f page the only th ing
// to do here i s save the va lues to e . g . a database .
t ry {

t h i s . save () ;
re turn ” suc c e s s ” ;

}
catch (Exception e) {

re turn ” f a i l u r e ” ;
}

}

// Gette rs and s e t t e r s f o r p r ope r t i e s
. . .

}

Listing 1.7: UserBean.java - a simpel bean for a user.

To create a new user a simple form must be filled. The page with the form is gen-
erated from listing 1.8. The page generates a form <h:form id="createUserForm">

containing three inputfields; h:inputText, h:inputSecret, h:selectBooleanCheckBox
for the username, password and a checkbox to indicate superuser.

The input fields is all bound to a property of the UserBean by their attributes.
If the validation succeeds these values are automatically set on the bean and
available for the createUsermethod in the bean which is invoked by the submit
button rendered from the commandButton tag. The method is bound through
the tags action attribute.

When the form is submitted the fields are validated according to the validation
attributes set on them. All three fields has a required="true" attribute indi-
cating a non null field. Additionally the username and the password field tags
has a f:validateLength tag setting the minimum and maximum number of
characters of the field.

Beneath each of the fields is a h:message tag. Each tag is bound to the previous
field through its for="" attribute. If the validation of a field fails, this tag will
render an error message.

As simple as it may seem this is everything needed to create a form, validate the

18 Java Enterprise Edition

< !−− Use the j s f l i b r a r i e s −−>

<%@ tag l i b p r e f i x=” f ” u r i=”http : / java . sun . com/ j s f / core ” %>

<%@ tag l i b p r e f i x=”h” u r i=”http : / java . sun . com/ j s f /html” %>

<html>

<f : view>

<head>

<t i t l e><h : outputText value=”#{message . c reateUser }” /></ t i t l e>

</head>

<body>

<h : form id=”createUserForm ”>
<h : outputText value=”#{message . username}/>

<!−− Input boks f o r username − bound to username property
o f userBean o f c l a s s UserBean . The box must be f i l l e d
and minimum length i s 2 − maximum length i s 20 −−>

<h : inputText id=”username” value=”#{userBean . username}
r e qu i r ed=” true ”>

<f : va l idateLength minimum=”2” maximum=”20”/>
</h : inputText>
< !−− Print errors i f va l ida t ion f a i l s −−>

<h : message id=”usernameError ” for=”username” />

<h : outputText value=””#{message . password}/>”Password

<h : i npu tSe c r e t id=”password” va lue=”#{userBean . password}
r e qu i r ed=” true ”>

<f : va l idateLength minimum=”4” maximum=”20”/>
</h : i npu tSe c r e t>
<h : message id=”passwordError f o r=”password” />

<h : outputText va lue=”#{messagge . superuse r } />
<h : se lectBooleanCheckBox id=” superuse r ”

value=”userBean . superUser ” r equ i r ed=” true ”/>

< !−− Submit Button for form −−>

<h : commandButton id=”submit” action=”#{userBean . c reateUser }”
value=”#{message . submitCreateUser}” />

</h : form>

</body>

</ f : view>

</html>

Listing 1.8: createUser.jsp - a JSF page for creating a user. The input elements
of the form is bound to a UserBean.

input when the form is submitted and showing error messages on a web page.

1.1.3.2 Internationalization in JSF

One of the other great features of JSF is the language handling. All messages
on a screen may be put into a property file and then referenced from the JSF
page via the message variable.

The property file is a simple text file containing a set of key-value pairs. One or

1.1 Web application 19

more property files may be bundled together into a language bundle which may
be loaded into the JSF page or setup in the faces-config.xml. Listing 1.9 shows
the english language file for the createUser.jsf.

c reateUser=Create a use r
username=Username (min . 4 cha rac t e r s)
password=Password
superuse r=Super use r with a l l p r i v i l e g e s
submitCreateUser=Save User

Listing 1.9: message.properties - a language file is a flat text file with key=value
pairs.

1.1.3.3 Navigation in JSF

The navigation on websites and in web applications has always been autonomous
and decentralized to the individual scripts and pages. The consequence is often
a loss of overview of the application as this turns out to be rather complex in
large applications.

JSF centralizes the navigation by a navigation configuration. In the configu-
ration every page is identified and the possible ways to navigate on from the
page is configured. The navigation configuration is saved in faces-config.xml
and listing 1.10 shows the configuration for the createUser.jsp in listing 1.8.

<nav igat ion−r u l e>

<from−view−id>/ createUser . j sp</from−view−id>

<nav igat ion−case>

<from−outcome>su c c e s s</from−outcome>
<to−view−id>/ u s e rL i s t . j sp</to−view−id>

<r e d i r e c t />
</ nav igat ion−case>

<nav igat ion−case>

<from−outcome> f a i l u r e</from−outcome>
<to−view−id>/ f a i l u r e . j sp</to−view−id>

<r e d i r e c t />
</ nav igat ion−case>

</ nav igat ion−r u l e>

Listing 1.10: faces-config.xml contains the navigation configuration for a JSF
application.

The navigation configuration has two navigation cases based on the outcome of
the createUser method in the UserBean in listing 1.7. If the creation succeeds
the method returns a string success and if the creation fails failure. Based on
this answer the JSF framework selects a navigation case and hand over control

20 Java Enterprise Edition

to the specified view. Note that view-ids in the configuration always are set
relative to the web application root starting with the /.

1.1.4 Packing and deployment

The web application is packed into a jar file with the suffix .war (Web ARchive).
The packed file must have the structure as shown in 1.6.

The web root is the root of the file and the uri used in the browser refers
to this root. The archive must have a WEB-INF directory in root. The di-
rectory should contain all deployment descriptors like the web.xml, tag library
descriptors and the faces-config.xml file is using JSF. The directory should also
contain a directory named classes which contains the compiled class files from
e.g. servlets.

Figure 1.6: The structure of the web application package file

1.2 Enterprise Java Beans 21

1.2 Enterprise Java Beans

There is no doubt that the biggest difference from JEE 5 to the previous versions
is on the Enterprise Java Beans (EJB for short). With JEE a new specification
of the EJB has been developed - the EJB3.0 specification.

Enterprise Java Beans forms the model in a Model 2 setup. This is where
the business logic is implemented and preform operations on the data of the
application.

The biggest problem with the former specifications was the tight connection
to the EJB container. Every bean was deployed via a deployment descriptor
describing the bean, the methods and the parameters of the bean. This made
deployment very cumbersome and error prone causing endless pain to develop-
ers. [5] which uses the previous J2EE and EJB2.1 specifications uses several
pages on arguing against using them in simple applications.

The EJB3.0 specification is a complete overhaul of EJBs and the EJB container
simplifying things extremely. The deployment descriptor is no longer needed
(though the meta-data given as annotations may also be set via a deployment
descriptor) and the beans have been simplified to simple Java beans making
applications simple and elegant.

There are three different kinds of EJBs:

• session beans which contains the core business logic.

• entity beans which represents the data of the application.

• message driven beans which processes asynchronous messages (these
will not be described further).

1.2.1 Entity Beans

Previous versions of JEE entity beans were very complicated to use compared
to the benefits. The implementation had to follow specific standard and the
beans were deployed through deployment descriptors. This made the use of en-
tity beans unnecessarily complicated to use, deploy and test. The consequence
were that JEE entity beans were not used. Instead several frameworks emerged
fulfilling the persistence task. The best known is probably the Hibernate frame-
work developed by Gavin King but all of them build on the idea of using simple

22 Java Enterprise Edition

Java beans (also called Plain Old Java Objects or POJOs for short) in the appli-
cation and the map these simple objects to databases through some persistence
mechanism.

When the Java Community started working on the EJB3.0 specification they
invited Gavin King into the specification process. The process ended up with
a total reinvention of the entity beans and their role as the persistence were
separated into its own specification - the Java Persistence 1.0. The specification
provides an abstraction layer of persistence which - opposite earlier versions -
make the entity beans independent of database and container. This removed
much of the complexity of using entity beans and in the new specification entity
beans are simply POJOs annotated with @Entity on the class and persistence
specific annotations on class and methods (see more on annontation in appendix
A).

1.2.1.1 The EntityManager

The persistence functionality in Java Persistence 1.0 is handled by the
javax.persistence.EntityManager interface. Before using the entity manager
a persistence unit is needed. The entity manager maps a fixed set of classes to
a particular database - and this set is the persistence unit. It is configured in
.xml file named persistence.xml and listing 1.11 shows an example.

<p e r s i s t e n c e>

<pe r s i s t en c e −un i t name=”eapv”>
<j ta−data−source>j a va : /eapvDS</ j ta−data−source>

<p r ope r t i e s>
<property name=” hibernate . hbm2ddl . auto” va lue=” create−drop” />
<property name=” hibernate . d i a l e c t ”

va lue=” org . h ibe rnate . d i a l e c t . MySQLInnoDBDialect”/>
<property name=” jbos s . e n t i t y . manager . f a c t o ry . j nd i . name”

va lue=” j a va : /EntityManagerFactories / entityManager”/>
</ p rop e r t i e s>

</ pe r s i s t en c e −un i t>
</ p e r s i s t en c e>

Listing 1.11: persistence.xml - the configuration of a persistence unit.

In the configuration the name and data source of the persistence unit is set. The
data source is configured in yet another .xml file which is deployed to the ejb
container. This file basically holds information of the uri to the database server
and username, password and the name of the database. The persistence unit
also defines which hibernate dialect is used based on the database server used
for the application and the name of the entity manager used in the project.

As the persistence unit is configured entities may now be managed by the en-

1.2 Enterprise Java Beans 23

tity manager. An entity is either managed or unmanaged. When an entity is
attached to the entity manager it becomes managed and the entity manager
keeps track state changes and synchronizes changes with the database. An en-
tity may be detached and become unmanaged and will be when the when the
persistence context is closed. A persistence context is a set of managed object
instances. There are two different persistence contexts; transactional which lives
throughout a transaction and extended which lives longer than a transaction.
Transaction-scoped persistence context is the default but extended persistence
context may be managed by the application code.

A persistence context may be created by calling
EntityManagerFactory.createEntityManager()which returns an EntityManager

representing the context. Using the factory is a little cumbersome and awkward
though, so in general it is recommended to inject 7 the entity manager directly
into the session bean.

@PersistenceContext (unitName=”eapv”)
private EntityManager entityManager ;

Note the unit name is the name set in the persistence.xml file. Objects may
then be persisted through the persist(Object object) method.

entityManager . p e r s i s t (quest ion) ;

The manager has methods for common persistence tasks like merging and re-
moval of objects but also for using query language on the database as described
in section 1.2.1.4.

1.2.1.2 Object to relation mapping

When persisting objects to a database the object must be mapped to a database
table and the properties of the object to the columns of the table. In the
previous versions of the EJB specification this was done in the deployment
descriptor of the entity bean thereby putting information about the bean and
information about the mapping of the bean to the table two separate places. The
previously mentioned frameworks changed this and specifically Hibernate put
the information inside the bean class. The information were put into annotations
inside comments in the code. This practice have been adopted by the EJB3.0
specification but annotations have become part of the language in Java 5.0
making the bean code yet more consistent. The mapping could be done using

7Dependency Injection is an architectural pattern where one object uses a second object to
provide some particular capacity. It is also called Inversion of Control and is a way to achieve
louse coupling between different elements.

24 Java Enterprise Edition

XML inside a <entity-mappings> element in the persistence.xml file. It might
be a matter of taste which to use - the xml version of the mappings will not be
shown here.

Mapping a class to a table is done using the javax.persistence.Table anno-
tation.

@Table (name=”Schema”)
public Class Schema {
. . .

The @Table annotation is not required as the entity manager will use the name
of the class if the table name is not specified.

The properties of the bean is mapped to the columns of the table. This is done
by annotating either the getter or the setter method of the property.

private St r i ng name ;

@Column (name=”SchemaName”)
public St r i ng getName () {

return name ;
}

public void setName(S t r i ng name) {
this . name = name ;

}

As for the class if a property is not annotated with a @Column annotation the
name of the property is used for the column.

Some properties might have special annotations either because of the way databases
work or because a special mapping between the database and the beans is
needed. An entity bean must e.g. have a primary key which is the identity
of the bean. The primary key can map one or more properties and must be a
primitive type, a String or a primary-key class composed of primitive types and
strings. The primary key is annotated with the @ID annotation. The primary
key could either be generated by the database or set in the application. If it is
generated by the database a @GeneratedValue annotation is used in conjunction
with the @Id annotation.

private int id ;

@Id
@GeneratedValue
@Column (name=”SchemaId”)
public int get Id () {

return id ;
}

public void s e t Id (int id) {
this . id = id ;

}

1.2 Enterprise Java Beans 25

The persistence mechanism will in most case automatically map the properties
of a bean to the correct types in the database where the types are primitive
types or primitive wrapper types. This is known as basic mapping and may
be annotated with the @Basic annotation though it is rarely used as this is the
default mapping strategy. It may however be useful if a fetch strategy is needed.
A property may either be loaded as LAZY or EAGER. With an EAGER strategy the
property is fetched from the database when the entity bean is fetched whereas
the LAZY strategy fetches the property first time the it is accessed.

The @Temporal annotation provides information to the persistence mechanism
about the mapping of java.util.Date or java.util.Calendar properties. Us-
ing this annotation allows the bean developer to map these types to either a
TIME, DATE or TIMESTAMP field in the database.

private Date c reated ;

@Column (name=”SchemaCreated”)
@Temporal(TemporalType .TIMESTAMP
public Date getCreated () {

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

An entity bean might contain a property that should be persisted to the database
and therefore not mapped to the table. The @Transient annotation tells the
persistence mechanism not to map the property.

These are the general tools for mapping entity beans to database tables. See [1]
for information on more special cases of mapping.

1.2.1.3 Entity Relationships

In the previous section entity bean properties of simple types were mapped to
a database table through annotations. This works fine for simple concepts but
entity beans may also form more complex relationships to other entity beans
modeling in order to model more complex real-world concepts. Persisting these
relationships is a crucial part of the persistence mechanism.

There are four types of relationship cardinalities. These can be one-to-on, one-
to-many, many-to-one or many-to-many. Additionally each of these types may
be either unidirectional or bidirectional. If a relationship is unidirectional only
one entity knows of the relation to the other entity whereas both entities knows
of the relationship if it is bidirectional. This yields seven different relationships.

26 Java Enterprise Edition

• One-to-one unidirectional

• One-to-one bidirectional

• One-to-many unidirectional

• One-to-many bidirectional

• Many-to-one unidirectional

• Many-to-many unidirectional

• Many-to-many bidirectional

At first sight one might have guessed that four relationships cardinalities and
relationship types would yield eight relationship types - but the many-to-one
bidirectional and one-to-many bidirectional is the same relationship.

Fortunately these relationships are similar to the relationships derived from the
relational model 8 and so makes the persistence easy.

As for the simple types of properties in the entity beans the related types are
annotated (or they may be configured in persistence.xml).

Person

id:int
name:String
address:address

Address

id:int
street:String
zip:int

1 1

Person

Id INT PRIMARY KEY
Name CHAR(20)
AddressId INT

Address

Id INT PRIMARY KEY
Street CHAR(20)
Zip INT

Figure 1.7: Unidirectional relation between two entity beans and the equivalent
database relation.

To create a unidirectional relationship the relationship is configured in the entity
bean which has a property of the other bean - see 1.7. The property is not
annotated with a @Column annotation for the property but with a @JoinColumn

annotation defining the column in the database table holding the foreign key of
the other entity.

8The Relational Model was proposed by Edgar Codd in 1969 while working at IBM. The
fundament for the model is relational algebra where all data is represented as n-ary relations
(see [7] for more information on relational model and relational algebra).

1.2 Enterprise Java Beans 27

public class Person {
private Address addre ss ;

@OneToOne
@JoinColumn(name=”AddressId”) ;
public Address getAddress () {

return addre ss ;
}
public void se tAddress (Address addre ss) {

this . addre ss = address ;
}

}

The Address bean does not contain any annotations or fields regarding the
person or the relationship. A Person object contains the correct address but an
Address object has no knowledge of the Person object.

In bidirectional relationships both entities are aware of the relation. Say in
the above example it was necessary to find a person from his address then a
bidirectional relation is required. This only requires a change in the Address

bean.

public class Address {
private Person person

@OneToOne(mappedBy=”AddressId”)
public Person getPerson () {

return person ;
}
public void se tPerson (Person person) {

this . person = person
}

}

The bean now has a Person property which is mapped by a OneToOne relation
to the Person bean. The mappedBy attribute indicates which column in the
Person table maps the Address entity to the Person entity.

OneToMany and ManyToOne relations are mapped the same way using the @JoinColumn
annotation. If the relation should be bidirectional the mappedBy attribute is
used. In both cases the persistence mechanism will add a column to the ”One”
side of the relation and keep the primary key of the other in this column.

The ManyToMany relation is a bit different. In the relational model ManyToMany
relations cannot be modeled. The solution is to split the relation into two new
relations - a ManyToOne and a OneToMany relation and add an extra table joining
the two relations - see figure 1.8

A unidirectional relation is annotated on the entity bean with knowledge of the
relation and the other bean.

public class Person {

28 Java Enterprise Edition

Person

id:int
name:String
departments:Collection<Department>

Department

id:int
name:String
persons:Collection<Person>

* *

Person

Id INT PRIMARY KEY
Name CHAR(20)

Department

Id INT PRIMARY KEY
Name CHAR(20)

Person_Department

Person_Id INT
Department_Id INT

Figure 1.8: ManyToMany relation between two entity beans and the equivalent
database relation.

private Set<Department> departments = new HashSet<Department >() ;

@ManyToMany
@JoinTable (name=”Person Department” ,

joinColumns{@JoinColumn(name=”PersonId”)} ,
inverseJoinColumns={@JoinColumn(name=”DepartmentId”)})

public Set<Department> getDepartments () {
return departments ;

)
public void setDepartments(Set<Department> departments) {

this . departments = departments ;
}

The relation may be made bidirectional using the mappedBy attribute in con-
junction with the ManyToMany annotation on the Department bean.

public class Department {
private Set<Person> persons = new HashSet<Person >() ;

@ManyToMany (mappedBy=”departments ”) ;
public Set<Person> getPersons () {

return persons ;
)
public void se tPersons (Set<Person> persons) {

this . pe r sons = persons ;
}

The relation now resembles the relation shown in figure 1.8. Note that the
mappedBy attribute is mapped to the departments property of Person as this
property contains the annotations with the mapping information.

The four relation annotations all have an attribute named cascade(). The
attribute is used to cascade operations performed by the entity manager on the
related entities - that is the same operation performed on an entity is performed
on the related entities.

public class Category {
private Set<Question> que s t i on s = new HashSet<Question >() ;

@OneToMany (cascade={CascadeType .PERSIST }) ;

1.2 Enterprise Java Beans 29

public Set<Question> getQuest ions () {
return que s t i on s ;

)
public void s e tQue s t i ons (Set<Question> que s t i on s) {

this . qu e s t i on s = que s t i on s ;
}

There are five different cascading types; PERSIST, MERGE, REMOVE, RE-
FRESH and ALL which indicates all four operations.

1.2.1.4 EJB QL

Querying is a fundamental feature of relational databases as this allows the
developer to find, calculate and report the information in an almost endless
number of ways. This flexibility has made relational databases so popular that
most databases today are relational (though a few other types like object ori-
ented databases exists). Queries are formatted in Structured Query LanguageÊ9

or SQL for short.

In Java Persistence queries are performed using both SQL and EJB QL which is
a language similar to SQL but is constructed to perform queries on Java objects
rather than on databases like SQL.

FROM Schema scm ORDER BY scm . id DESC

The above example shows a typical simple EJB QL query. It select all schemas
in the database ordering them by the id of the schema in descending order. Note
how query is expressed in terms of the persistence schema. The variable scm is
bound to the Schema object and the properties of the object is referenced with
scm.id.

The entity manager has a method for creating queries on the database. The
method takes a EJB QL string as parameter.

Query que = entityManager . createQuery (”FROM Schema scm ORDER BY scm . id DESC”) ;
L i s t r e s u l t = que . g e tRe su l tL i s t () ;

When the query is executed, the entity manager uses the mapping information
described in the previous sections to translate the EJB QL into SQL which
conforms with the underlying database and the vendor specific notations. The
SQL is sent through JDBC and a vendor specific driver. This way EJB QL is

9SQL was developed at IBM by Donald D. Chamberlin and Raymond F. Boyce in the
early 1970s. It was formally standardized by ANSI in 1986 and subsequent versions have been
released as ISO standards.

30 Java Enterprise Edition

portable between containers and databases since the entity manager handles the
translation.

There are a few specialties that cannot be set through the EJB QL but must
be set with parameters. Parameters are set on the Query object using the
setParameter() method and refers to an ”anchor” in the query string. Below
is an example with a label but it is possible to refer to the number of the anchor.

Query que = entityManager .
createQuery (”FROM Category cat WHERE cat . schema=: f i r s t ”) ;

que . setParameter (” f i r s t ” , 3) ;
L i s t r e s u l t = que . g e tRe su l tL i s t () ;

This way of setting parameters are especially needed when setting dates on an
object as the TemporalType must be set.

que . setParameter (S t r i ng name , Date value , TemporalType temporaltype) ;

que . setParameter (S t r i ng name , Calendar value , TemporalType temporaltype) ;

The EJB QL language has all the basic SQL constructions including joins (like
INNER JOIN and LEFT JOIN), functional expressions (like COUNT, DISTINCT and
MAX), WHERE clauses with a number of possibilities (like WHERE ... BETWEEN,
WHERE ... IN, WHERE ... IS NULL, WHERE ... MEMBER OF and WHERE ... LIKE),
ORDER BY clauses and GROUP clauses. Additionally subqueries are possible
so almost anything possible in SQL is possible.

Though EJB QL meets most developer needs some vendor specific queries can-
not be performed on a database with EJB QL. During the specification of EJB
QL a group of developers foresaw this limitation and provided an API for this.

1.2.2 Session Beans

Session beans model the logic of a domain (opposite entity beans that model the
domain data). The logic might be seen as the business processes or workflows of
the domain. These processes are implemented as methods in a session bean and
often related functionality is gathered in the same bean e.g. administration of
users where the bean has method for creating, editing, deleting and listing users.
The session bean may use entity beans to represent the data and manipulate
the entity beans.

A session bean consists of two elements; a bean interface and a bean class.
Clients interact with the bean through the interface and the logic is implemented
inside the bean class. The bean interface may either be a Local interface or a

1.2 Enterprise Java Beans 31

Remote interface. The local interface may only be called from inside the ejb
package whereas the remote interface may be called from outside - even from
other servers through Java RMI 10.

There are two types of session beans; stateless beans and stateful beans.

1.2.2.1 Stateless Session Beans

Stateless session beans are best described as a collection of related methods
implemented in a bean. The bean maintains no state across requests. When
a client invokes a method on a stateless session bean, an instance is requested
from a pool of bean (the Method-Ready pool), the method is executed on the
bean and the result is sent to the client. Then the bean is returned to the
pool ready to service other requests. It has no knowledge of other beans or of
requests before or after the execution.

@Stat e l e s s

public class UserBean implements User {
public void c reateUser () {

. . .
}

public void ed i tUser () {
. . .

}

public void de l e t eUse r () {
. . .

}
}

Listing 1.12: UserBean.java - an example of a stateless session bean.

Listing 1.12 shows an example of a stateless session bean. A stateless session
bean is annotated with the @Stateless annotation on the class.

1.2.2.2 Stateful Session Beans

Stateful session beans are best described as an extension of the client. When a
client invokes a method on the bean, the bean performs the some functionality on
behalf of the client and maintains state related to the client. The big advantage

10Java Remote Method Invocation (Java RMI for short) is an API which provides remote
communication that allows an object running inside one Java Virtual Machine to invoke
methods on an object running inside another Java Virtual Machine.

32 Java Enterprise Edition

here is that the session bean holds the data instead of sending it to the client
and on the next call the client must send it to the session bean an so forth.

An instance of a stateful session bean is dedicated to the same client for its entire
lifetime 11 and maintains what is called conversational state . The concept may
be compared to a conversation between two people having a conversation on a
subject. When one responds to a ”call” he still knows what the prior ”calls”
and responses in the conversation were. Stateful beans should not be confused
with entity beans though as they are not persistent and though they may access
the database the do not model the data in the database.

@State fu l

public class SchemaEditorBean implements SchemaBean {
private Schema schema ;

@PersistenceContext (unitName=”eapv”)
private EntityManager entityManager

public void createSchema () {
schema . setName (”VarFromForm”) ;

}

public void addCategory () {
Category cat = new Category () ;
cat . setName(”VarFromForm”) ;
schema . addCategory(cat) ;

}

public void saveSchema () {
entityManager . p e r s i s t (schema) ;

}

@Remove
public void destroy () {}

}

Listing 1.13: SchemaEditorBean.java - an example of a stateful session bean.

Listing 1.13 shows an example of a stateful session bean. The bean is used
to create a schema. First the name of the schema is set, then a category is
created and added to the schema and finally the schema is saved. Note that
the instance variable schema is used in all three methods over three calls to the
bean as its state is maintained. Also note the destroy() method annotated
with a @Remove annotation. A stateful session bean must have this notation on
a method which is called just before the instances is removed. This may be used
for cleaning up before removal.

Stateful session beans may be nested through injection. When an instance of

11[1] states that this is a conceptual model. Some vendors may share instances through
instance swapping but makes it appear as if the same instance serves the client on all requests

1.2 Enterprise Java Beans 33

the containing bean is instantiated a unique session is created for the referenced
session bean - and when removed the referenced instance is removed too.

Earlier there was a common opinion in the Java community that stateful session
beans are a scalability killer as maintaining the state over several request require
a vast amount of resources. This probably were the reality in the middle of the
1990s but since then EJB containers has evolved a lot, and today they have
extremely sophisticated mechanisms for stateful session bean state replication
e.g. through a fine-grained replication where only the attribute values which
actually changed are replicated.

1.2.3 Packing and deployment

Enterprise Java Beans is packed into a jar file with the suffix .jar (Java Archive)
as it is considered a java application. The file must have the structures shown
in figure 1.9.

The root of the jar file must contain a META-INF directory with the persistence
configuration in persistence.xml. The directory may also contain an ejb-jar.xml
deployment descriptor file. This is an xml file with the configuration of the
EJBs and is only necessary if the configuration is not done using annotations.

Figure 1.9: The structure of the EJB jar package file

1.2.3.1 Packing the entire application

As said earlier the web application .war file may be deployed as is if it contains
the entire application without EJBs. If EJBs are used in the application the
application must be wrapped up into a jar file with the suffix .ear (Enterprise
ARchive). The structure of the package is shown in figure 1.10.

34 Java Enterprise Edition

The previously packed files goes into the root along with other files if necessary
(e.g. the JBoss Seam application and some JSF packages used along with JBoss
Seam).

Figure 1.10: The structure of the enterprise application package file

The root folder contains a META-INF directory holding a deployment descrip-
tor - the application.xml. This file should contain a reference to all files packed
into the enterprise package as listing 1.14 shows.

<app l i c a t i o n version=” 1 . 4 ”>
<module>

<web>

<web−ur i>eapv−view . war</web−ur i>
<context−root>/eapv</ context−root>

</web>

</module>
<module>

<e jb>eapv−e jb . j a r</ e jb>

</module>
</ app l i c a t i o n>

Listing 1.14: application.xml - the deployment descriptor for the enterprise
archive.

Chapter 2

Jboss Application Server

As mentioned in the introduction to the chapter on JEE the JEE platform does
not provide the middleware between JEE and the custom application. JBoss
Application Server is the most widely used web server middle ware for JEE.

The JBoss project was started by Marc Fleury1 in 1999 founding the JBoss
group which in 2004 became JBoss Inc. In 2006 RedHat Corporation bought
JBoss Inc. and it is now a division of RedHat.

JBoss has a lot of running project mainly developed by the JBoss community.
The JBoss Application Server is the flagship and most of the other project
support this - including JBoss Seam framework introduced later and the JBoss
Eclipse IDE which is a plugin for the Eclipse Development IDE. The application
server includes the EJB3.0 specification in its newest version.

1Marc Flery is originally from France. He worked at Sun Microsystems in France befor
moving to the United States. He has worked on several Java projects.

36 Jboss Application Server

2.1 JBoss Seam

Both Enterprise Java Beans and JSF is powerful technologies but unfortunately
there is no standardized coupling between them. Both specification have excel-
lent stubs for communication with other technologies but the implementation
of the connection is left to the application developers.

JBoss Seam is a framework for coupling the two specification - ”sewing” them
together with a ”seam” so to speak. The project started a few years ago in
the JBoss community and one of the active developers is actually Gavin King.
JBoss Seam is not an official specification but a specific framework.

2.1.1 How does it work?

The framework is a combination of taglibs and bean packages which sort of
encapsulates EJB and JSF. Through reflection (which were implemented in
Java 5.0) the framework ”inspects” the beans and makes them available to JSF
- and vice versa. JBoss Seams uses interceptors for this as the classes have no
parent class of interface.

An EJB becomes a JBoss Seam element through a name. The class is simply
annotated with a name and then the framework creates a reference for it which
may be used from other beans or JSF pages. JSF pages are automatically
included in the framework.

@Name (”Schema”)
public class Schema {
. . .
}

2.1.2 Inversion of control and bijection

The sharing of information between JBoss Seam elements are done through in-
version of control - and actually double inversion of control or bijection. In the
EJB specification objects may be injected into a class but with JBoss Seam
objects may also be outjected from a class and available to either JSF or an-
other EJB. Injected objects are annotated with @In and outjected objects are
annotated with @Out (actually they may also be outjected through a special
construct named @Datamodel which is often used for JSF datatables).

2.1 JBoss Seam 37

2.1.3 Conversational context

In section 1.1.2.1 JSP scopes were discussed. JBoss Seam have extended the
number of scopes with a few where the most important is the conversational
context (actually the business process is very interesting too but is to be de-
scribed here).

The conversational context may be compared to - a conversation. The conversa-
tion begins, some information is shared and operated on - and at some point the
conversation ends. An example of using the conversational context is booking
a hotel room. First you search for available rooms, then you choose a hotel,
then you reserve the room, then you pay and finally you receive a confirmation
of the booking. The smart thing about JBoss Seams conversational context is
you may actually have several ongoing conversations at the same time without
interfering with each other. So after you search for hotels you may actually
start more than one booking conversation. The different conversations are even
aware of each other and can share information if useful.

2.1.4 Some advanced features

2.1.4.1 Validation in the Model layer

In section 1.1.3.1 an example of how validation of input could be done in JSF.
This way of validating input is simple but lacks one important property - the
validation rules are configured in the View layer of the application and this may
lead to a lot of problems (and is the wrong way of dividing responsibility). Say
the user should be able to change username and password in the application.
Since the user cannot himself change his status to superuser a new page is needed
- editUser.jsp. The page will be exactly the same as the createUser.jsp in listing
1.8 except for the h:selectBooleanCheckBox. This way createUser.jsp has a
set of validation rules and editUser.jsp has a set of validation rules making the
validation rules redundant.

The solution to this problem is obvious - the validation rules must be configured
in the Model layer of the application as the model (entity bean) of the user is
located here. Unfortunate the EJB3.0 does not contain any validation specifi-
cation but the Hibernate framework does. Luckily Hibernate is part of JBoss
and JBoss Seam has some tools to utilize the validation.

The validation rules are setup on entity beans much the same way as the object-
relational mapping was done in section 1.2.1.2 - through annotations. Just as

38 Jboss Application Server

with the mappings the annotations were embedded into comments in previous
versions of Java but are now an independent part of the language. The anno-
tations are placed above the getter method just as the mapping of the property
to a column in the database table as in listing 2.1.

@Entity
@Name (” use r ”)
@Table (name=”User”)

public class User {
private St r i ng username ;

@Column (name=”UserUsername”)
@NotNull (message=”Username i s r e qu i r ed”)
@Length (min=2, max=20, message=”Username must be 2−20 charac t e r s ”)
public St r i ng getUsername () {

return username ;
}

public void setUsername (S t r i ng username) {
this . username = username ;

}
}

Listing 2.1: Validation annotations is put above the getter method of the prop-
erty getter method

Each annotation may contain a message parameter which will be send to the
View layer if validation of the annotations fails. Unfortunately these messages
does not support different languages as with JSF validation. Also note the due
to the architecture of the current JSF framework the @NotNull annotation do
not work without the required attribute mentioned in section 1.1.3.1.

2.1.4.2 Navigation with JBoss Seam

JBoss Seam has two navigation models. You may either use JSF or Seam
navigation rules which is the simple stateless navigation model or the more
advanved jPDL and stateful navigation model.

The stateless model was introduced in section 1.1.3.3 as it is implemented as
part of the JSF specification. Seam has its own set of rules that may be used
instead of the JSF navigation rules - the difference between the two rulesets
are small and is probably a question of preference of xml format. The stateless
navigation model is often enough for small simple web applications.

The stateful model defines a set of transitions between of named, logical ap-
plication states. The flow of the interaction with the user may be expressed
using the jPDL pageflow definition. This separates the actionlistener methods

2.1 JBoss Seam 39

<page view−id=”/ createUser . j sp ”>
<nav igat ion>

<r u l e i f−outcome=” suc c e s s ”>
<r e d i r e c t view−id=”/ u s e rL i s t . j sp ” />

</ru le>

<r u l e i f−outcome=” f a i l u r e ”>
<r e d i r e c t view−id=”/ f a i l u r e . j sp ” />

</ru le>

</nav igat ion>

</page>

Listing 2.2: pages.xml contains the navigation configuration for a Seam appli-
cation.

form the navigation as the methods of the session beans does not return a string
indicating the outcome of the method.

The biggest difference on the two models are the behavior of the browsers Back
button. As the stateless model is stateless the user may freely navigate around
with back, forward and refresh buttons. The responsibility of ensuring the
state of the web application lies on the application. The stateful model on the
other hand lets Seam handle the responsibility. The state is simply ensured by
”disabling” the back button. When it is activated the current page is rendered
over again possibly with an error message. Which model to use depends on
the application and the developer. The disabling of the back button may be
frustrating to the user whereas it may be a feature to the developer as state is
maintained.

2.1.5 MyFaces and TomaHawk

The JBoss Seam package includes MyFaces which is a implementation of the
JSF specification. MyFaces is a project under the Apache project.

The project provides a few taglibs in addition to the JSF implementation among
others the Tomahawk library which provides standard implementation for tree-
menus, calendar and a lot of other useful web layout tools. Additionally it
provides some improvements on standard JSF tags e.g. the possibility of mak-
ing a dynamic number of columns in tables which is not possible from the JSP
specification. Figure 2.1 gives an overview of MyFaces used with JBoss Seam
(note the pages.xml is used). With MyFaces comes a servlet which can be used
as the controller in a MVC architecture. The JSF pages is then implemented
as ui:construction which essentially is just JSF and HTML packed into a sur-
rounding tag block. The servlet uses these block to construct the response sent

40 Jboss Application Server

to the client.

JSF Web Application

FacesServlet

faces-config.xml pages.xml

JSP page with

JSF -UI elements

JSF TaglibsValidators

Events

Messages

Business Logic

implemented as

EJBs

Client

Figure 2.1: An overview of the JSF application and how it interacts with the
different elements of JSF.

Part II

Xtreme Programming as

Methodology

Chapter 3

Extreme Programming

Extreme Programming (XP for short) is a methodology for engineering software.
It was developed by Kent Beck while working on the Chrysler Comprehensive
Compensation System 1 which throughout the years adapted and and refined
the methodology. Kent Beck published a book on the methodology in 1999 and
though the project were closed by Chrysler Corporation in 2000 XP has become
accepted in the developer community as a true development methodology.

3.1 Background for XP

Making software is difficult - making good software is even more difficult.

According to [10] software development in the 1990s were influenced by two ma-
jor topics. Internally in the industry procedural programming were replaced by
Object oriented programming as the favorite development paradigm. Externally
the rise of the Internet and the ”dot-com boom” which emphasized speed-to-
market and company-growth as competitive business factors. This lead to re-

1C3 was a project run by the Chrysler Corporation. The project started in 1995 and
the result should replace several payroll application within the organization with one single
system.

44 Extreme Programming

quirements which changed fast and the production cycles became shorter. Many
of the traditional software development methodologies were not geared for these
short cycles leading to many poor quality expensive software projects. The com-
munity needed more lightweight methodologies and this was the starting point
of agile software development .

Agile software development is a conceptual framework for developing software
through an evolutionary change throughout the entire life-cycle of the project.
Most agile methods develops software in iterations of short time - typically
between one to four weeks - and each iteration is a small development project
of its own. By the end of each iteration a full functional products is finished
thereby increasing the functionality of the overall project. XP is indeed an agile
methodology and perhaps the flagship of agile software development.

3.2 What is Extreme Programming?

So what is Extreme Programming? The short explanation is that XP is a
methodology that through twelve practices used on a daily basis builds on five
values. The goal is a productive development team that makes software of a
high quality, delivered at the agreed deadline and to the agreed price - and at
the same time software development should be great fun.

3.2.1 Risks of software development

There are a number of risks when developing software. Missed deadlines, defec-
tive software, misunderstood requirements and thereby missing and/or unneces-
sary functionality are just a few of them. Eventually after a few year developers
are sick and tired of the development project and start leaving the company and
the project.

3.2.2 Four factors of XP

XP builds on four unknown factors; cost of developing the software, time to de-
velop it, quality of the resulting software and scope of the resulting. Customer
and management may change the first three but only the development group
can change the the scope of the project. Often scope is completely neglected
but in software development and especially in XP scope is very important. Of-

3.2 What is Extreme Programming? 45

ten the customer only have a weak idea of the exact functionality and which
functionality will be most valuable to him. During the development process new
ideas come up, the domain changes and when the customer received the first
version he realize what functionality the really wanted from this version. The
requirements to the software changes during the development process.

Therefore the idea in XP is to split the entire development process up into
small iterations typically lasting between one to four weeks. And the end of an
iteration a finished part of the software is delivered. Before the development
process is started a series of deadlines - one for each iteration - is set, the quality
level is decided and the cost of the software is set. This is often decided by the
management or the customer. Based on these decisions the development team
sets the scope of the software within the limitations and setting the scope of each
iteration. As the project changes so does the scope of the following iterations
making the process more responsive to the customers needs.

3.2.3 Five values of XP

• Communication is important in a software development process. Most of
the problems arising in a project can be lead back to lack of communication
either among the developers, between the developer and the customer or
between the developers and the management.

XP promote communication through different working habits. Automated
test, pair programming and estimating tasks all requires communication.

• Simplicity is actually very complicated. Another way of stating simplic-
ity is develop what you need today - not what you think you need tomorrow.
The core of the statement is that you do not know exactly what you need
tomorrow and therefore you should not plan ahead. Code exactly what
you need right now - and do it as simple as possible. This way the code
might be changed a bit if needed without time wasted.

• Feedback is essential to XP. Feedback works in two different time frames.
The developers writes test cases for all possible failures they can think of.
When running a test cases in the application code the developer gets
immediate feedback on the correctness of the implementation.

The second time frame is on a longer term. On every release the customer
tests the application and holds it up against the user stories to ensure the
functionality is as expected. This feedback gives a picture of the projects
current condition and the plan for the project may be adjusted accordingly.

• Courage is hard to define. It requires courage to not think about the
future but only code what you need today and not thinking about what

46 Extreme Programming

you need tomorrow or in a week. It requires courage to refactor code
which possibly means you have to change entire parts of the application.
It requires courage to throw away code and start over with a new imple-
mentation. In general a lot of the practices in XP requires courage as they
are pushed to the extreme.

• Respect was not one of the original values but have become apparent
during the maturing of the methodology. Developers must have respect to
each other e.g. by not integrating code pieces that break existing tests or
delay other developers. Developers also must respect their work and aim
at high quality and the best design for a solution.

3.3 Practices of Extreme Programming

Extreme Programming has twelve practices grouped into four areas.

3.3.1 Shared Understanding

3.3.1.1 Coding Standard

Since all developers are going to change different parts of the system and refactor
the previously built parts the development team must agree up on a common
coding standard which is used for the entire project. The standard should
demand less possible work and still be consistent. The standard should also
emphasize the procurement of the code.

Often the standard conventions specified by the language vendor is used but the
team may decide on another standard.

3.3.1.2 Collective Code Ownership

If a developer finds an error or a possibility to improve the code, the developer
is obligated to do so. All developers are responsible for the entire code and
everybody knows at least the overall functionality of the different parts.

In the earlier days the ”rule” were no ownership. If a developer needed to
change the code he just did without considering the rest of the system. The

3.3 Practices of Extreme Programming 47

code evolved fast but got unstable just as fast. Then individual ownership
emerged where only the developer who wrote a piece of code were allowed to
change it. Other developers could propose changes and then wait for it to
be implemented. The code now were stable but evolved slowly. Collective
ownership is the combination of the to making fast evolving and stable code.

3.3.1.3 Simple Design

Simplicity in the design of the system is central in Extreme Programming. When
implementing the functionality at hand the simplest possible approach should
be chosen. Only program exactly what you need to implement the functionality
without thought of future needs.

By making the design as simple as possible the cost of changing direction in
the middle of the project is much less expensive since no preparations for new
functionality has been made. Along with refactoring the simple design ensures
a very flexible code.

3.3.1.4 System Metaphor

A metaphor is a designation used to describe something to ensure a common
understanding of it. Everybody in the development team should have a common
understanding of all the metaphors of the system so they will be able to com-
municate without misunderstandings. The metaphors is also used in the code -
and the development team should agree on a common way to name classes and
methods so everybody knows what e.g. a method does from its name.

3.3.2 Fine Scale Feedback

3.3.2.1 Pair Programming

All code is produced by two developers working on one task at one workstation.
The two developers has two roles. The one with the keyboard thinks about how
to implement the current functionality the best way while the other thinks in
the bigger picture of the entire application. Roles are traded regularly.

The pairs are not fixed which ensures that all members of the development team
has some understanding of the entire application.

48 Extreme Programming

3.3.2.2 Planning Game

Planning software is a ongoing process throughout the project with a dialog be-
tween the possible and the desirable. Neither business considerations nor tech-
nical considerations should be dominating. The customer must decide the scope
of the project, the order of priority, the content of each release and the dates
of the release. The development team must decide on estimates of functional-
ity, consequences of decisions, the development process and the detail planning.
The business considerations cannot be decided on by the customer alone as the
technical considerations might have an impact on these.

3.3.2.3 Test Driven Development

Every functionality in the application is tested. This is done using automated
unit tests which is constructed to test specific units of the code. The test is
written before the actual application code to stimulate the developer to think
of every possible way the functionality could fail. When the developer cannot
think of more ways the code may fail the code is finished.

Tests is not needed for every function in the code. If the code cannot fail there
is no need for a test - e.g. it is not necessary to test simple properties of beans
(unless the have some special functionality or conditions which is rarely the
case). The entire collection of test improves the trust of the application since
every bit for expected behavior.

3.3.2.4 Whole Team

Whole Team is sometimes also known as Customer Presence. The customer
should be present in the development group for discussions and questions on
all aspects of the customers requirements to the application. This insures the
inside knowledge of how the application should be used and respond.

In this context the customer is the person who should use the application - and
not necessarily the one paying for it. If the application is a customer service
system then the customer should be a customer service assistant. There are
by the way different opinions on whether the customer should be in the group
physically at all times or should be at hand at all times.

3.3 Practices of Extreme Programming 49

3.3.3 Continuous Process

3.3.3.1 Continuous Integration

New code is integrated and tested every few hours - and at least once a day. If
the test fails all problems is solved at once to ensure the integrity of the current
version in the repository.

Different developer teams might have their own version with various changes
saved locally. By integrating small pieces of code it is easier to find and solve
problems. Additionally integration problems are solved when the code still is
fresh in the developers memory instead of postponing it to a major integration
step.

3.3.3.2 Design Improvement / Refactoring

When implementing some functionality developers should consider if chang-
ing some of the existing code will make the implementation easier and more
versatile. After every new implementation developers should again consider if
changing code will simplify things. This is known as refactoring.

Refactoring is a necessity in Extreme Programming due to the principle of only
implementing the needs for the current functionality without thinking ahead on
what might be needed later in the project. This principle may lead to messy
and duplicate/similar code which makes the application hard to maintain and
develop further.

3.3.3.3 Small Releases

The entire project should be split up into a number of small releases. Every
release should contain as little additional though complete functionality as pos-
sible compared to the previous release - but enough to add value to the product.

Making small releases has several purposes. First of all the customer can follow
the development process and see the product as it evolves. For every release some
new features has been added to the product and this strengthens the confidence
in the development team. Also delivering a piece of work which is finished and
ready to ship to the customer improves the moral of the development team.
Besides that progress of the entire project is easy to follow.

50 Extreme Programming

3.3.4 Programmer Welfare

3.3.4.1 Sustainable Pace

A working week should therefore be between 35 and 45 hours depending on the
individual. Overtime is not allowed more than one week at a time.

Software developers are human beings like everybody else. Therefore they have
the same needs for spare time to sleep, family, sports or any kind of activities
not related to work. The idea is simply that people performs best when they
are rested.

In [6] Kent Beck also makes a remark on vacation as americans opposite eu-
ropeans rarely has more than two or three days of vacation in a row. Longer
vacations are just as important to the welfare of workers.

Not all twelve practices are invented by Kent Beck during the development of
XP. Several of them build upon well known principles of software engineering.
The twelve practices are carefully selected so that they support the weaknesses of
one or more of the other practices. E.g. you might claim that pair programming
will never work as it is too slowly and the two developers might not agree
on the solution or the code. But if the coding standard is set, there is no
arguments on trifling matters. If the working week is 40 hours long everybody
are rested as the day begins reducing the risk of trivial discussions. And if the
two developers start by coding the test-case that should test the functionality
they will gain a common understanding of the functionality supported by the
system metaphor and a simple design. And then the development process will
not be slow and there will be no arguments on the solution. On the contrary the
solution will be implemented in the best way as two developers have approved
the implementation 2 The same way the other practices interact making XP a
versatile and strong methodology.

3.4 Strategies

3.4.1 Planning

In [6] Kent Beck states that

2Similar descriptions of interaction between the practices may be found in [6].

3.4 Strategies 51

Planning is all about guessing what it will be like to develop a piece
of software with a customer.

Note that he on purpose uses the term with the customer. The sentence might be
read as planning with the customer or developing with the customer - and this is
exactly the purpose of planning. In XP both the planning and the development
is done with the customer.

The planning is built on five fundamental principles of XP 3

• Only plan a short period of time

• Accept responsibility

• The developer doing the work should estimate it

• Ignore dependencies between different parts of the system

• Prioritize the work

The planning process is called the Planning Game in XP as it might be compared
to a game.

• The goal of the game is to maximize the value of the software produced
during the game.

• The strategy of the game is to invest as little time and resources as pos-
sible in the development process by developing the part of the system with
greatest value to the customer as fast as possible (though still considering
the programming- and design strategies agreed upon to ensure quality).
When the first delivery has been delivered the customer will know what
then becomes the next part with highest value.

• The pieces are history cards with user stories.

• The players are the customer and the development team. The devel-
opment team are the those developing the software whereas sometimes it
might be unclear who the customer is if the software is an off-the-shelf item
not developed for a specific customer. Then focus-groups or representa-
tives from the customer mass (e.g. expert users who knows the system in
and out) might be used as the customer player.

3These are the most important principles for the Planning game. More principles are
covered in [6].

52 Extreme Programming

• The moves are divided into three phases; the exploration phase where
decisions on system functionality is made, the commitment phase where
the decisions on priority is made and steering phase where the project is
led in the correct direction as reality affects the plan.

The planning game is divided into two parts each containing the three phases.

3.4.1.1 Release planning

The release planning part of the game is focused on determining what require-
ments should be included in which release and when the releases should be
delivered. Both the customer and the developers takes part in this planning.

Exploration phase This phase focuses on gathering the requirements and
estimating the work needed on every requirement. The customer has a problem
which should be solved by the software. The problem is described as a user story
by the customer telling what the system should do. When a story is finished
the development team estimates the time it takes to develop and implement a
story. If it is not possible to estimate the story the customer may have to split
the story into several small stories.

Commitment phase The commitment phase focuses on committing to the
development. The customer sorts the user stories according to the value of the
story. The developers sort the stories according to the risk based on how accu-
rate they can estimate the risk. The development team the tells the customer
at what speed they can perform the project and then the customer select the
scope of the first delivery. The customer may either set a deadline and then
choose stories that according to the speed of the developers - or the customer
may choose the stories and then set the deadline accordingly.

Steering phase Within the steering phase the the plan may be updated due
to the lessons the developers and customers learn - thereby steering the project
in the correct direction. Updates are changes in the plan such as different
priorities of stories, lower development speed, new stories or even new estimates
of all stories in the project.

3.4 Strategies 53

3.4.1.2 Iteration planning

The iteration planning part of the game focusses on planning the activities of
the development team. The customer is not involved in this part.

Exploration phase The exploration phase is used to extract tasks from the
stories and estimate their implementation time. Tasks are smaller than hole
stories and often a task compliment more than one story. If a task is to difficult
to estimate the task should be split up into smaller tasks.

Commitment phase In the commitment phase a programmer commits to a
task. As the programmer is responsible for the task he should also estimate the
task. Each programmer sets their load factor which essentially is the effective
days for development divided by the number of workdays (e.g. if a week has
40 hours and 8 are used for meetings then there will be less than 32 hours for
development giving a load factor of 40/32 or 4/5 which is for development days
out of five.). Each developer compares the estimates of the tasks with their load
factor and the tasks are balanced out on all members of the team.

Steering phase The implementation of the tasks is done during the steering
phase. The procedure is get a card, find a partner (for pairprogramming), design
the task, write a unit test for the solution, write the code, run the test, refactor
the code and end by running functional tests according to the requirements of
the user story.

The release planning is done at the beginning of the project and the iteration
planning is done during each iteration (which actually resides inside the steering
phase of the release planning). An iteration is typically lasts three to four weeks.

3.4.2 Development

The development strategy is probably the most radical of the strategies com-
pared to traditional methodologies. The development enforces continuos pro-
cess, collective code ownership and pair programming as described in the XP
practices above. As describes these practices are very new and often hard to
implement for experienced users.

54 Extreme Programming

3.4.3 Design

The design strategy of XP short - simplest possible implementation. There are
four rules which encapsulate this in short:

• The system should communicate everything you would like to communi-
cate - including both application code and test.

• The system cannot contain duplicate code

• The system should have as few classes as possible

• The system should have as few methods as possible

This way of developing will work due to the short iterations and small releases,
as it is cheaper to change simple design than complex design.

3.4.4 Test

The test strategy may be encapsulated in

• The test cases is written before the application code and thereby leading
the way for the implementation.

• The test cases is derived from the customer requirements (user stories)

• The developer writes unit and integration test.

• The customer writes function tests

Part III

e-assesment system

Chapter 4

Introduction to the project

4.1 Assessment of safety and health

All companies in Denmark with at least one employee are as of year 2000 ob-
ligated to prepare a written assessment of the safety and health conditions at
the workplace due to the Consolidated Danish Working Environment Act (see
appendix B). In Danish this assessment is named an Arbejdsplads Vurdering or
APV for short. The purpose of the APV is to ensure that the work on safety
and health in the company encompass all significant working environment prob-
lems. This implies that the APV is a tool for the company and it is not to be
reported to any governmental institution though Danish Working Environment
Authority oversee that companies observe the statutory order.

The company is obligated to involve the safety organization of the company in
the process of planning, implementation, follow-up actions and revision of the
APV. The scope of the APV depend on the complexity of the work, technical
equipment, chemical substances or materials, working methods and the size and
arrangement of the company.

Companies a free to choose the methodology used for the APV but it should be
well suited for mapping out the significant problems. Some companies choose
a questionnaire while other interview all employees depending on the culture

58 Introduction to the project

and the size of the company. The Danish Working Environment Authority has
devised 60 checklists with a set of questions aimed at different business sectors.
Whatever methodology is chosen it should contain five elements:

• Identification and mapping of working environment conditions.

• Specification and assessment of working environment problems

• Include the sickness absenteeism of employees in order to assess if working
environment problems affect this.

• Preparation of action-plans for the purpose of solving the problems - and
an order of priority of these.

• Guidelines for following up on action-plans

The APV must be revised if the work or the working method changes such that
it affects the working environment. This may be triggered by new knowledge or
a workplace accident.The APV must be revised at least every third year, since
revising the APV on a regular basis helps the company on systematizing the
ongoing work with safety and health.

4.2 Thermo Fischer Scientific and APV

Nunc 1 is one of the world leaders in the production of high tech disposable plas-
tic ware for biotechnology, pharmaceutical and research laboratories. The com-
pany was founded in 1953 in Roskilde and now resides just outside Roskilde with
a large production facility with numerous casting machines producing high qual-
ity products round the clock. The company have around 500 people employed in
production, development, sales and marketing, distribution and administration.
In december 2006 the company became part of the american Thermo Fischer
Scientific group and this name were adopted shortly after though all products
is marketed under the NUNC brand.

At Thermo Fischer Scientific the APV process is implemented through a ques-
tionnaire based on the checklists devised by the Danish Working Environment
Authority. Though the questionnaire is aimed at the plastic producing industry
the checklist is very general and therefore is not necessarily an effective tool for
assessing and improving the working environment. At Thermo Fischer Scientific
there is a lot of focus on the safety and health of the employees and therefore

1Nunc is latin for now and symbolizes innovation

4.3 Existing application 59

a better tool is needed. The department responsible for safety and health have
devised their owen questionnaire with 125 questions divided on 16 categories.
Each question may be answered with one of the following: Not relevant, Prob-
lem, OK or Good. This gives the safety organization a more nuanced picture of
the working environment condition.

Questionnaire

Assessment of

results

Identification of

problems

Create action

plans

Follow-up

and revise

action plans

Close action

plans

Solve problems

Revise APV

Figure 4.1: An overview of the APV process at Thermo Fischer Scientific

The questionnaire is a twelve sheet paper schema which every employee must fill
out. The company is divided into a number of departments and each department
has a safety responsible or a safety group. Their job is to collect all schemas from
the employees in the department and extract the results from the questionnaire
by counting the number of answers for each question. This is a cumbersome
and time demanding work which often ends as a low priority task in a busy
company.

The objective of this project is to develop a electronic system for the assessment
of safety and health for the company. The environmental act allows the written
assessment to be in an electronic format as long as it fulfills the requirements
of the act and supports the APV process. (see figure 4.1 for an overview of the
process).

4.3 Existing application

As the APV has been mandatory for companies for seven years and carrying out
a manual APV is a time demanding job several electronic solutions are available.

60 Introduction to the project

The three most important are:

• Orbicons APV which probably is the largest product available. The
standard checklists devised by the Danish Working Environment Author-
ity is available and it is possible to construct your own schemas based
on the questions from the checklists. The solution is web based and has
three levels of user access: administrator, safety group and employee. Un-
fortunately you are not able to add your own questions which makes it
inflexible - and additionally the subscription price is quite high. Orbicon2

is part of the Danish Company Hedeselskabet.

• NemAPV is a web based solution developed defgo.net 3. The specifica-
tion states that the solution contains the standard checklists but nothing
about the possibility of creating your own questions. The specification
does not state anything on results or the possibility of dividing the as-
sessment based on department. Additionally it is not possible to write
remarks to answers.

• APVplus is developed by Særkon Kommunikation 4. The solution con-
tains a lot of the working environment information available from the
Danish Working Environment Authority and the working environment
act. The system is not web based but consists of a database placed on a
central server, a client used to fill out the questionnaire and an adminis-
trative client to extract results.

Common for most of the electronic solutions (including the three mentioned
above) are the method chosen. They are based on a questionnaire with the stan-
dard questions from the checklists without the possibility to add new questions
or response possibilities. Though the schemas are a little different and there are
different possibilities on extracting results and adding action-plans the different
solutions available are based on the same process making the solutions almost
the same.

2www.orbicon.dk
3www.defgo.net and www.nemapv.dk
4www.apvplus.dk

Chapter 5

Project specification

The objective of this project is to specify, develop and implement an electronic
system for assessment of health and safety based on the needs of Thermo Fischer
Scientific. The sections in this chapter states the overall specifications for the
project and system. The more functional specifications is discussed in the next
chapter.

5.1 General considerations

5.1.1 User characteristics

The system should have three types of users; administrators, safety group mem-
bers and ordinary users. Administrators of the system will probably be the
safety and health managers, the system administrator and production managers.
Common to the administrators is they are all experienced computer users with
understanding of navigation web sites.

The departments and the management should select a group of members in
the department as the safety group. These users are - like ordinary users -
often unskilled workers who might not be very experienced with computers.

62 Project specification

Additionally Thermo Fischer Scientific employ many people with different ethnic
backgrounds some of who might have difficulties understanding danish technical
terms and guidelines.

5.1.2 Assumptions and constraints

It is assumed that Thermo Fischer Scientific has examined the solutions available
for making the APV process electronically and have found no suitable solution
- and that it will feasible to develop an individual solution for their needs (a
feasibility study).

It is assumed that computers with web browsers are available to all users of the
system.

5.2 Requirements

The developed solution must comply with a set of requirements. The require-
ments are stated by the different stakeholders who all have different interests in
the system. These stakeholders include

• Users using the system (includes safety group members)

• Administrators administrating the system and using the results to ad-
ministrate the working environment. Administrators also reports to the
management.

• Operation manager is responsible for the operation of the system on a
daily basis. This is the system administrator of the IT department.

• Developer who develops and maintains the system.

5.2.1 Non-functional requirements

Non-functional requirements are requirements that are not directly functionality
related. They are very general and are related to the operation and dependabil-
ity of the system.

5.2 Requirements 63

5.2.1.1 Safety and reliability

The system should have a maximal uptime and be available to the users at all
times. The system must register all entries without errors and notify the user
is he acts erroneously.

The system should be secured against unauthorized access through a login and
password system. The functionality of the system should be secured through a
privilege system with three different user types.

5.2.1.2 Interaction

The system should be web based and interact with the user through a web
interface thereby being accessible on all computers in the company. The web
interface should be structured in a simple and intuitive manner making it easy
for even unexperienced users to use the system. The development should aim
at using keyboard interactivity only.

5.2.2 Domain requirements

Domain requirements are requirements extracted from the domain of operation.
These are often related to technical or legal matters of the domain.

5.2.2.1 Technical requirements

The data of the system must be saved in a Microsoft SQL Server database,
as the company has one of these available. Additionally the system must run
on a server in the company thereby only being accessible through the internal
company network.

The system should not be limited to the currently specified functionality but be
possible to extend with new functionality.

64 Project specification

5.2.2.2 Legal requirements

The system functionality must comply with the requirements set by the Working
Environment Act (see appendix B).

5.3 Technology

For this project the Java Enterprise Edition 5.0 platform is chosen. JEE is
the enterprise edition of the Java programming language adding features for
networked enterprise applications. The platform builds on top of the traditional
Java language and thereby have access to the entire Java API.

The e-assessment system will run on a JBoss Application Server which is one
of the most widely used JEE servers. JBoss AS is written purely in Java which
makes it platform independent. Additionally it is easy to install. It comes in a
package which is unpacked. Inside the package is a run script which starts the
server - and within a few minutes the server is up and running. The current
version includes EJB3.0 and requires a Java 5.0 runtime environment.

On top of the JBoss AS the JBoss Seam framework is used. The framework
connects the Enterprise Java Beans of the application with the Java Server Faces
view in a neat and simple way. Additionally it bring some extra functionality
and improved context handling making the server environment very powerful.

5.4 Methodology

Extreme Programming programming is a relatively new development methodol-
ogy which distinguishes it self from older methodologies in the focus on coding
and testing as soon and as little as possible rather than analyzing the entire
project, then code and end up with testing the application. This makes the
it easy to change the requirements through the development process without
affecting to much work already done. The aim is that it should be great fun to
develop high quality software.

The rest of this part of the report will be structured according to XP with
a planning, development, implementation and test though the content of the
section might not follow the XP guidelines strictly.

5.5 System metaphor 65

5.5 System metaphor

The terms stated below will be used throughout the documentation of the APV
system. The terms recur in the application code - many of them as classes.

• Question - A question part of the questionnaire and should clarify pos-
sible problems - e.g. Are accidents investigated to avoid recurrences?.

• Category - The questions is divided into categories e.g Accidents. A
question may only be related to one category.

• Schema - The categories with questions make up a schema. A category
may only be related to one schema. A schema is similar to the standard
checklists devised by the Danish Working Environment Authority. The
schema may be used for several revisions of the APV.

• Review - A revision of the APV is done through a review. A review is
based on a specific schema and may be carried out in several departments.
If two different departments use two different schemas in the same revision,
two reviews should be created connecting the departments with the correct
schema.

• Department - The company may be divided into several organizational
sectors - these are named departments. Reviews and action-plans are
connected to departments making the extraction of results and statistics
flexible and easy to inspect.

• Value - The severity of a problem clarified by a question is ranked by a
value - e.g. Problem or Good.

• Answer - An answer is related to a specific question made by one em-
ployee. The answer contains a value and a remark to the question if set.

• Evaluation - An evaluation is the collection of answers to a schema made
by one employee. The evaluation is connected to a review (and thereby
to a schema) and the department of the employee.

• Result - The result of a review collect all answer of the evaluations related
to the review. The resulting values for each question is calculated from
the answers as a percentage of all answers.

• Action-plan - If the result of a review identifies a problem, the safety
group should create an action-plan. The action-plan is related to a specific
question and the result for a specific department. It has a deadline and a
responsible for taking action.

66 Project specification

Follow-ups on action-plans are modeled as an new action-plan with rela-
tion to the old version.

• User - A virtual user has access to the APV system. A user could be
related to a physical user or a safety group depending on the company
policy.

• User Type - The system has three user types - administrator, safety
group member and user. The users privileges in the system is dependent
on the user type.

Chapter 6

Planning

6.1 User stories

The non-functional and domain requirements to the APV system is stated in
section 5.2. These sets the basic technical requirements to the system but states
nothing about the functionality. The functionality requirements or user require-
ments are described through user stories written by the customer.

To give an overview of the user stories, they are grouped together in nine groups
based in on their related functionality. The original groups were

• User administration

• Group administration

• Privileges administration

• Department administration

• Schema administration

• Evaluation

68 Planning

• Results

• Action-plan administration

• Statistics

6.1.1 Changes in user stories

A lot of the user stories have changed from the first version to the current.
During the implementation of the functionality of the first iteration new expe-
riences were gained and this caused some drastic changes. The major changes
is described here.

6.1.1.1 Splitting user stories

Originally the Create schema (C.3.1) were simply stated as one long story. It
described a long and rather complex sequence of steps with a lot of digressions
from the core functionality. The story were split up into eight user stories
which specifies a simpler functionality required. The benefit is a more precise
description of the individual tasks and an individual order for priority for the
stories as not all of them are equally valued. E.g. creation of category and
questions inside the schema have a much higher value to the customer than
retiring these, as the customer actually can create a schema and use it for a
review without the possibility of retiring.

6.1.1.2 Review added

The user stories did not exactly specify how the evaluations entered by the
users and a schema was connected. The original thought were to simply relate
a schema to a department and thereby to the users.

This soon turned out to be a bad solution as the schema can only be used for
one revision of the APV. As a consequence a new element - the review - were
added along with user stories for it (C.4). This gave a looser coupling between
the schema, the department and the evaluations entered. One of the benefits
is the possibility of using the same schema on several reviews - and thereby on
several revisions of the APV. This opens the opportunity of detailed statistics
over several revisions as the same questions are evaluated over again.

6.1 User stories 69

6.1.1.3 Groups and privileges removed

The original set of user stories had two additional groups besides the above
mentioned. The idea was to divide users into group with different privileges to
the system. The privileges would then be set either on the user, the group of
the department. During the development of the the development of the Create
a review (C.4.1) and through conversations with the safety and health manager
this construction appeared to be to complex for the needs.

Therefore the groups and privileges were removed. Now users are given a user-
type (administrator, safety group member and user) which determine system
privileges and users are connected to at least one department, which determines
which reviews the user can access to either carry out an evaluation or only see
the results. This simplification resulted in a simpler user administration though
it still satisfy the requirements of administrating access.

6.1.1.4 New requirements

Half way through the first iteration the project were presented to the entire
safety organization at Thermo Fischer Scientific. The discussion of the project
caused two new requirements that was not covered in the original set of user
stories.

In the APV system a schema is created and used in an electronic format. As not
all employees in the production sectors of the company have access to computers
the schema is also published on paper and the results are entered into the APV
system by the safety group of the department. The paper schema has so far been
implemented in Microsoft Excel - but as the APV system already implements
a schema, it should be possible to print the schema e.g. as a pdf file. The
functionality is described in C.3.3.

The american owners of the Thermo Fischer Scientific group are very focused
on statistics. Their preferred chart is Pareto Charts1 and therefore it should
be possible to plot the results of an APV preview as such. The functionality is
described in C.6.2.

The final user stories can be found in appendix C.

1A Pareto Chart is a bar chart where the values are arranged in descending order. It is
named after Vilfredo Pareto who was a french-italian sociologist, economist and philosopher.

70 Planning

6.2 Value and Risk

The customer value of the functionality each user story describes is assessed
from the amount of work it would simplify during the APV process and how
it interacts with other user stories. The highest value functionality is easy to
point out whereas the lower priority is difficult to prioritize among. In general
create and edit functionality is prioritized higher than retire and delete as they
are useful to the customer in the preparation of and during the APV process
whereas nothing is retired or deleted from the system until the entire process is
ended.

The risk assessment of a story is based on experience and the presumed complex-
ity of implementing the functionality. Each story is given one of three values:

• Low Risk are relatively simple implementations. Typical examples are
creating, editing, retiring and listing objects.

• Medium Risk are more complex implementations where the developer
has some idea of how this might be done.

• High Risk are either very complex functionality, special implementations
or cases where the developer have to search for a solution. These cases
are often time consuming.

Table 6.1 shows all user stories of the APV system sorted by the value they bring
to the system. Along with the value the risk is also stated. Both customer value
and risk is noted on each user story in appendix C.

6.3 Releases

Based on the user stories the development of the APV system is divided into
three iterations. The horizontal lines in table 6.1 indicates which user stories
is in which iteration. The distribution of the work amount and time required
is very difficult to estimate, but based on prior experience loose estimates have
been made. The three iterations is estimated to last four weeks each - probably
with an extra week for the first release caused by the setup of the project and
configurations.

6.3 Releases 71

Customer Value User story Developer Risk
1 View Results of a review High
2 Enter an evaluation Medium
3 Create a schema Medium

Create a category Low
Create a question Low

4 Edit a schema Medium
Edit a category Low
Edit a question Low

5 Create a review Low
6 Create an action-plan Low
7 Close an action-plan Low
8 Create a follow-up action-plan Medium
9 List action-plans Low
10 Create a user Low
11 Edit a user Low
12 Print Schema High
13 Log in Medium
14 Log out Low
15 Close a review Low
16 Retire a review Low
17 Create a department Low
18 Edit a department Low
19 Create a new revision of question Low
20 Retire a question Low
21 Retire a category Low
22 Retire a schema Low
23 Delete user Low
24 Extract results of review... Medium
25 Extract statistics of action-plans... Medium
26 Extract statistics of schema... Medium
27 View results of a review as Pareto Chart High
28 Retire a department Low

Table 6.1: The user stories of the APV system listed in customer value order.

72 Planning

6.3.1 First release

The first release implements the core process of an APV revision. In the manual
APV process used at Thermo Fischer Scientific the most time consuming part is
collecting and calculating the result thereby mapping the problems in safety and
health. An automated result calculation would bring high value to the process.

To calculate the results the system must have some input from the process.
This is done by user entering evaluations. Evaluations is answers to a schema
containing question grouped into categories and therefore the functionality to
create schemas, categories and questions along with editing them is required.
The result, evaluations and schemas are related through a review and therefore
this is also required.

As the results of a review is divided on and connected to departments these
are needed too. As the departments resemble physical departments these rarely
changes and in the first release these will be modeled as static data in the
database.

In addition to the described functionality the layout of the web interface will
be produced and implemented into the system with this release. This way the
user interface can be evaluated early in the process and the customer sees some
progress on the system implementation. The consequence is that parts of the
interface will be disabled.

6.3.2 Second release

The second release implements two main functionalities - action-plans and user/priv-
ilige administration.

The action-plans are part of the core APV process but not as highly valued
as the results of a review as the action-plans are the consequence of the result
pointing out a problem. The action-plans could might as well be handled on
paper or in a text document.

The user administration is mainly a supporting functionality which adminis-
trates what different users can do inside the system. These privileges are related
to a user-type of the user logged in. Both the user-types and the privileges on
different functionality are static and built into the APV system. Figures 6.1 6.2
and 6.3 shows the functionality each of the user-types are privileged to use.

6.3 Releases 73

Along with a system for administrating the users the functionality to enforce
the privileges must be implemented in all parts of the system. This is a quite
big operation and therefor the number of user stories completed in this release
is limited.

User

View results

Enter
evaluation

List
action-plans

Log in / out

Figure 6.1: The functionality a user is privileged to use

Safety
Group
Member

View results

Enter
evaluation

List
action-plans

Log in / out

Create
action-plan

Follow-up
action-plan

Figure 6.2: The functionality a safety group member is privileged to use.

6.3.3 Third release

The third release contains the rest of the functionality described in the user
stories collection. This release has three main areas.

74 Planning

Admini-

strator

User
administration

Department
administration

View results

Enter
evaluation

List
action-plans

Log in / out

Create
action-plan

Follow-up
action-plan

Schema
administration

Review
administration

Statistics

Figure 6.3: An administrator has privileges to all functionality in the APV
system.

The functionality of creating and editing elements of the APV is contained in
the two previous releases. This release implements functionality for retiring the
elements. The term retire should be understood as removed from the active part
of the application but not deleted or perhaps as archived.

The administration of departments is postponed to this release as it - as stated
earlier - is an almost static type.

Output is another keyword for this release as the functionality for extracting
statistics to comma-separated files is implemented along with the possibility
of printing the APV schema. These user stories are marked with medium or
high risk due to the work required. The information must be generated and
then formatted to either comma-separation for the statistics or a pdf file for the
schema and then sent to the client. Especially the amount of work required in
formatting the output is very uncertain.

Chapter 7

Design

7.1 The web application

The web application of the APV system is the user interface where the user
interacts with the system. Therefore the design of the web application is an
important matter for the success of the entire system.

7.1.1 Requirements for the web application

When designing the web layout for a web application, it is important to bear
the purpose of the application and the target users in mind. Different purposes
requires different layouts for different users.

The purpose of the APV application is as an internal tool in the company
providing value to the APV process. It is to be used as an application along
with a financial system or a document management system.

The users of the system spans from experienced users to users with little or no
experience - and even users without good danish reading skills. As the questions
is formulated in danish the application elements should not take the focus from

76 Design

the questions.

On the basis of these two premises a simple and concise web layout should
be created. No superfluous elements should draw the focus away from the
APV process. Therefore web layout will contain a small header indicating the
current task, a simple menu for navigation and a centralized area for the core
functionality. The colors are kept in white, grey and a dark green with black
text and there will be no banners, dynamic elements or anything else disturbing
the eye. The web layout for the APV system is shown in figure 7.1.

Figure 7.1: The web layout for the APV application.

7.1.2 Implementation of the web application

The user interface is implemented using the MyFaces JSF library distributed
with JBoss Seam. This makes a strong framework with lots of preimplemented
functionality.

The application will use the MyFaces Servlet described in section 2.1.5 as the
controller of the application. The view is constructed with xhtml files which
contains JSF and HTML code inside a ui:construction block.

7.1 The web application 77

7.1.3 Template and elements

The MyFaces Servlet uses a template to construct the basic layout of the web
page e.g. the top bar with logged on user and date. The template includes three
ui blocks from a website:

• pagename is a small block which only contains the name of the page.
The block is written in the top bar of the page.

• content is the main container for the content of the page. This block
contains the forms and lists that make up the functionality of the appli-
cation.

• sidebar is a small content block used in the right lower side of the page.
It is used for e.g. a clickable list of categories in the schema editor and
when viewing the results of an APV review.

An ui block is defined using the ui:define tag with a name attribute.

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadFrontpage}”/>

</ u i : d e f i n e>

The above defines the content of the pagename block which in this case is a text
from a language file (the name of the frontpage).

In addition to the three block defined in the emphxhtml file for a view page,
the template file includes the sidebar.xhtml file. This file is inserted in the
upper right corner of the page and contains the department selector and the
application menu. The department selector selects the department used for the
current session. The available departments are based on the departments the
currently logged in user is related to and his privileges (as administrators have
access to all departments). The menu likewise is generated dynamically based
on the privileges of the user and the currently selected department (though
this is not fully implemented in release 1). The three ui blocks and the menu
sidebar.xhtml is indicated in figure 7.2 and the code for the template can be
found in appendix D.1.1.

The flow of the application may be illustrated as in figure 7.3.

78 Design

Figure 7.2: A web page is composed by three elements which is included into a
template file.

home

schemaList schemaAdd reviewAdd
evaluation

Conversation
evaluationResult

schemaEditor

questionAdd questionEditcategoryEditProcess

Figure 7.3: The flow of the application may be illustrated as above. The names
refer to the filenames of the xhtml files.

7.2 Domain Data 79

7.2 Domain Data

The domain data is implemented as entity beans. The different entities is derived
from the user stories written by the customer as the thing some operation is
used on. Figure 7.4 shows the entity beans of the APV system and how they
are related.

id:int
value:Value
remark:String
question:Question
created:Date
modified:Date

Answer
id:int
name:String
sorting:int
questions:List<Question>
created:Date
modified:Date

Category

id:int
name:String
users:List<User>
created:Date
modified:Date

Department

id:int
review:Review
department:Department
answers:List<Answer>
created:Date
modified:Date

Evaluation

id:int
text:String
version:int
sorting:int
created:Date
modified:Date

Question

id:int
name:String
editor:int
note:String
schema:Schema
departments:List<Deparment>
created:Date
modified:Date

Review

id:int
name:String
editor:String
description:String
categories:List<Category>
created:Date
modified:Date

Schema

id:int
text:String
color:String
sorting:int
created:Date
modified:Date

Value

Figure 7.4: The domain data is modeled in entity beans connected as shown.

As described in section 1.2 the beans are simple POJOs with some properties
and a getter and setter method for each property. In addition to these method
all beans contains a method named updated. This method is called from all
setter methods and sets the modified property to the current date and time.
When ann entity is created it additionally sets the created property too. The
method may be seen as a simple changes tracking mechanism of when the entity
was updated last. This may be done in a more lightweight way (the method is
called every time a setter method is called) but this is simple and it works.

All entity beans have an overriding equals method. The method is mainly used
along with the entityconverter taglibrary which converts object to string for
the id of JSF select and button tags (see e.g. appendix D.1.11). The idea of the
method is simple - if two objects have the same id - they are the same.

Besides these methods which are common for all beans Schema have a addCategory
method and Category have a addQuestion method (see appendix D.2.7 and
D.2.2). These methods are used to add a new category and question respec-
tively to the tail of the lists inside the entities and assign it the correct sorting

80 Design

value.

7.2.1 Database implementation

The database layout resembles the class diagram shown i figure 7.4 though it
has four extra tables. These tables model the relations between the entities and
are:

• Category Question which is created as the relation between the two
classes is a bidirectional one-to-many.

• Evaluation Answer which also is a bidirectional one-to-many relation.

• Schema Category which also is a bidirectional one-to-many relation.

• Review Department which is a many-to-many relation between the two
classes

During the development the Database Management Server (DBMS for short)
have been the swedish MySQL Database. This is a robust and rather efficient
open source database and still small enough to run on even small computers.
The requirements specify the system must use a Microsoft SQL Server as data
backend. The shift to another DBMS is not a problem though as the Java
Persistence Specification acts as a facade on the DBMS hiding all the ”ugly”
SQL stuff away and providing a nice, high-level interface. The only thing needed
to change DBMS is finding an JDBC driver for the new DBMS and changing
the dialect in the persistence.xml file.

7.3 Domain logic

The business logic of the APV system is implemented in enterprise session beans.
The core functionality is implemented in four beans:

• SchemaEditorBean which has all the functionality for creating and edit-
ing an APV schema. The bean have methods for creating and editing cat-
egories in the schema - and creating and editing questions in a category.

The beans resides in a conversational context starting the conversation
as a new schema is created or a schema for editing is chosen from a list.

7.4 Refactoring to list factories 81

The conversation runs over the entire editing and ends when the schema
is saved.

• ReviewAddBean creates a new APV review. The bean only has one
business method which persists the injected review. The bean is a stateless
session bean.

• EvaluationConversationBean handles the evaluation process. It is im-
plemented as a conversational bean and the conversation starts when the
bean creates a set of answer objects for the evaluation process - and it
ends after the last page of questions have been filled out and submitted.

As the different states in the conversation is simply different lists of ques-
tions map of question-answer pairs is outjected and send to the same page
file over and over again.

• EvaluationResultBean calculated the results of each question in an
APV review based on the currently selected category. The bean is im-
plemented as a simple stateful bean which outjects the result to the same
page over and over again.

Looking at the flowchart in figure 7.3 there are five possible paths from the start
page home. Four of form exactly the core functionality implemented with the
four core session beans.

7.4 Refactoring to list factories

The fifth path from the start page in figure 7.3 is through the schemaList. This
page lists the schemas in the system and by selecting one of these a conversation
with the SchemaEditorBean is started. This kind of lists are used in various
parts of the application. The evaluation conversation e.g. uses a list of questions
in the category the user currently is entering.

The list of categories used by the evaluation conversation is also used by the
evaluation result part. The lists are exactly the same - and so is the code
generating it.

Due to the Design Improvement practice before implementing the method pro-
viding the list over again the previously implemented functionality should be
examined. This leads to the Extract Method refactoring moving the code from
original methods to a new method. Due to the architecture of JEE and JBoss
Seam the method is moved to a new session bean only containing the function-
ality of generating a list and providing the selected object. More refactorings

82 Design

lead to the implementation of such a ”list factory” for the Schems, Category,
Question, Department and Review objects (and with the next release a factory
for the Value object is implemented).

Chapter 8

Test

8.1 Unit testing JEE

One of the main goals of revising the EJB specification was to simplify testing
of enterprise applications. In EJB 2.1 the beans were tightly connected with
the container through deployment descriptors thus making testing very com-
plicated. Due to the tight connection applications had to be deployed into an
application server cutting of the developer. There were no way to test the appli-
cation directly and often applications were only tested through the client (e.g.
a browser). Over the past five years or so a lot of attempts to solve the problem
have emerged. The most popular is probably Cactus1 which is a framework that
allows developers to write JUnit tests and deploy them to the application server
and then executed via a web interface. This way the internals of the application
inside the container is exposed to JUnit and it is possible to test applications.
This works but the downside is that the applications server has to be running to
test and for every change in the code the application must be redeployed. Ad-
ditionally Cactus is a non commercial project and the development effectively
stopped at J2EE 1.3.

As beans in EJB 3.0 is simply POJO’s and they do not depend on the container
it is possible to test the EJBs outside the container.

1http://jakarta.apache.org

84 Test

Entity beans are straight forward to test but often they do not contain critical
functionality with different outcomes depending on the input. Simple getter and
setter methods are normally not tested. In the APV system the equals method
of the entity beans are tested.

Session beans on the other hand contain a lot of processing and data manipula-
tion. It is easy to test simple method which do not interact with the database.
Methods interacting with the Java Persistence is a bit trickier to test - but not
difficult.

The trick is to exploit that Java Persistence uses the entity manager for al kinds
of communication through the persistence functionality to the database. By
creating our custom version of the entity manager and overriding the built in,
full control of the communication with the ”database” is accomplished. These
kinds of object which simulate some other objects functionality but giving the
user full control is known as Mock objects.

8.2 Unit testing JBoss Seam

Testing JBoss Seam adds a little more complexity to the unit testing of session
beans, as objects are injected and outjected through the framework. The so-
lution is quite simple though as the injection resembles setter method on the
internal property holding the injected object and outjection resembles getter
methods. By implementing getter and setter method appropriately in the ses-
sion beans, JBoss Seam element can be tested too. All session beans in the
APV system is tested this way.

Chapter 9

Conclusion

9.1 Java Enterprise Edition

A more lightweight platform like php or asp could have been chosen. Most of
the functionality would perhaps be easier to implement in these platforms.

There are two reasons for choosing JEE.

• With the JBoss Application Server the entire application could be packed
into a single package. The package could be used on any platform with a
Java 5.0 RE simply by extracting it and starting the application server.
The server and the code stays within the folder it was extracted to and
no system files are needed or installed. This makes the application simple
and versatile to install, backup and even move to another location.

• By using JEE the application have access to the entire Java API which
is big and contains almost any functionality wished for. This simplifies
much of the implementation and ensures the possibility of meeting fu-
ture requirements. Especially I expect it to be easier to implement more
complex graphical representations of the results from a review.

I started up with J2EE version 1.4 but soon realized there is an enormous

86 Conclusion

difference between that and the new JEE 5.0 platform - in favor of JEE 5.0.
Unfortunately I wasted a lot of time on the older version experimenting with
different tools which not were reusable in the new version. But the upgrade were
worth the effort of learning the new version too as it is much more versatile and
simple.

9.2 JBoss Seam

JBoss Seam is an excellent middle layer between the view/controller and the
model of a JEE application. Through some simple annotations it exposes EJBs
to JSF and vice versa - and additionally it brings a lot of extra functionality to
the standard JSF specification. But though JBoss Seam has a lot of advantages
but also some disadvantages.

The form validation functionality that moves the validation of input to the
Model instead of the View as with JSF is by far one of the biggest advantages
of using JBoss Seam as no duplicate code for validating the same thing in JSF
is needed. But the implementation has two major drawbacks.

The @NotNull annotation indicating a property must be filled does not work and
the form field therefore must have the required="true" attribute as mentioned
in section 2.1.4.1. A note in the Seam reference documentation [9] states this is
due to the architecture of JSF.

The second problem is the error messages from the validation. These messages
is hardcoded into the entity bean and are printed as is on the web page if
validation fails. As JBoss Seam really has been utilizing JSF (and thereby
the internationalization possibilities) it is problematic that validation does not
utilize the use of language files like JSF and JSF validation does. Though
searching intensively no documentation have been found on this problem.

There is no doubt that JBoss Seam will be an important framework in the JBoss
world - and thereby an important brick in the JEE puzzle, but it is still a young
framework. The reference documentation has good intentions on helping new
developers getting started with the framework but it is not complete. During the
implementation I experienced some problems and after working on the problem
for two days trying different solutions and searching for hours, I found a small
note in the middle of a discussion forum stating that what I was trying is not
possible due to a architectural temporary solution in the framework. Then I
used most of a third day changing the implementation. Only two books have
been published so far and the number of developers using JBoss Seam is still

9.3 Extreme Programming 87

limited so searching for help is not always a simple task.

9.3 Extreme Programming

The project showed that the Planning game actually works as intended. The
user stories is a simple way of communicating functionality from the customer
to the development team. It is by no means exhaustive but this is where the
Whole Team practice comes in as the customer is present in the development
team. As the customer sorts the user stories according to value it is obvious
which stories to start with though they might be risky from the development
teams point of view.

The value sorting is obvious at the end of the project. Though only the first of
the three planned iterations have been completed the system actually is usable
for carrying out a review. The review will be divided on departments and it
is possible to see the results in a simple graphic manner which quickly outlines
problems that should be addressed.

Comparing this with carrying out a review with paper schemas where everything
is done manually is a huge relief on the entire safety organization. A manual
review include collecting the results of about 500 schemas with 125 questions
(which is about 62.000 answers), divide them into departments and then calcu-
lating the results for each department manually would require countless working
hours.

The practice of not planning ahead in the process is very difficult and as software
developer this seems like the hardest thing to learn. The entire IT educational
system instructs you in planning everything - and so does ordinary life. Letting
go of this is very hard and you must actually think about not thinking.

The test-driven development approach where the test of some functionality is
implemented prior to actually coding the functionality is a very useful approach
- if the developer knows the programming language, the platform and possible
frameworks. When I first started I knew Java and I knew a bit of JEE but
nothing about JBoss Seam and how it interacts with JEE. This makes it very
difficult to write the test as the result is unknown. After implementing several
parts and writing tests for them the result became more apparent but still the
test were written over several times.

The overall experience of using Extreme Programming is positive. It is a more
fun way of programming software as the analyzing and planning phase is short

88 Conclusion

as the focus is on producing code. In my opinion XP requires a development
group of at least four people - primarily due to the pair programming practice so
it is possible to switch. The methodology might not work for very big projects
as communication and sharing information is an overall premise.

9.4 e-assessment system

The e-assessment system was not finished through this project. It was originally
divided into three small releases and at the project end the first release have
been finished. This release implements the core functionality of carrying out an
APV process and as of now will simplify the process.

In the middle of the first iteration the project were presented to the entire
safety organisation at Thermo Fischer Scientific. The response to the project
was really positive and even caused two user stories being added. There were
a general satisfaction with the application and the scope of the functionality as
well as the web layout were positively received.

After this masters project is ended the development of the APV system at
Thermo Fischer Scientific continues until the last two iterations is carried out
and the final release (compared to the user stories in this thesis) is finished.

The system may be seen in function at www.eapv.dk using the username dtu
and the password summer2007.

9.5 Personal experiences and lessons learned

Planning is everything. When I started the project I expected to implement the
entire e-assessment system during the project period and planned the release
iterations to last about four weeks. After having a lot of small problems with
especially JBoss Seam I could not keep up with the plan. At some point the
second and third releases were simply removed in the effort of finishing the core
functionality of the system.

At several occasions I considered dropping JEE and implement the entire ap-
plication in php which I have been using for several years. Using a standard
framework I have developed over the years the implementation of the entire
e-assessment system would probably take a month or so. This would have left
at least three months for writing this report. But it would also have left me

9.5 Personal experiences and lessons learned 89

with very little or no experience. Therefore I from the beginning choose JEE as
I think it is an interesting platform - and it is used widely in the professional
software development community.

At the end of the project it has been a very learning experience working on a
large application over several months. It gives a much broader perspective of the
challenges and problems you run into in real software development compared to
the small ”Mickey Mouse” problems used in the daily teaching at a university.
And - as Extreme Programming said - it was great fun.

90 Conclusion

Appendix A

Annotations in Java 5.0

A.1 Annotation

Annotations are used to attach meta-data to some kind of target being a dec-
laration of a constructor, field, method, package parameter, type or even the
declaration of another annotation. An annotation can hold a simple type, an
Object, a String, a class, an enum-type or an array of one of these types - but
only one of each.

Annotations are set above the declaration like

@Table (name=”User”)
public class User {

private int id ;

@Column (name=” Id”)
@Id
public int get Id () {

return id ;
}
. . .

}

Custom annotations may be implemented as an interface

92 Annotations in Java 5.0

@Target (METHOD)
@Retention (RUNTIME)
@in t e r f a c e Column {

public St r i ng name ;
}

The example shows an column annotation which only may be applied to Meth-
ods. The attribute values are kept for run time and it has only one property
name.

Source [4].

Appendix B

Working Environment Act

The extract below is section 15a of the Consolidated Danish Working Environ-
ment Act No. 268 of March 18th 2005. It is taken from part 4 on the General
duties of the employer.

15a.

1. The employer shall ensure the preparation of a written workplace assess-
ment of the safety and health conditions at the workplace, taking due
regard to the nature of the work, the work methods and work processes
which are applied, as well as the size and organisation of the enterprise.
The workplace assessment shall remain at the enterprise and be available
to the management and employees at the enterprise, as well as the Danish
Working Environment Authority. A workplace assessment shall be revised
when there are changes in work, work methods, work processes, etc., and
these changes are significant for safety and health at work. The workplace
assessment shall be revised at least every three years.

2. A workplace assessment shall include an opinion on the working envi-
ronment problems at the workplace, and how these are to be solved, in
compliance with the principles of prevention stated in the occupational
health and safety legislation. The assessment shall include the following
elements:

94 Working Environment Act

• Identification and mapping of the working environment conditions at
the enterprise.

• Description and assessment of the working environment problems at
the enterprise.

• Priorities and an action plan to solve the working environment prob-
lems at the enterprise.

• Guidelines for following up the action plan.

3. The employer shall involve the Internal Safety Organisation or the employ-
ees in planning, organising, implementation and following up the work-
place assessment, cf. subsections (1) and (2) above.

4. The Minister of Employment shall lay down further rules on the duties of
the employer under subsections (1) to (3) above.

Appendix C

User Stories

C.1 User administration

The system should contain a user administration system. The system should
contain three different user-types:

• User is allowed to see the results of a review for all departments.

• Safety Group member has the same rights as a user. Additionally he
should be able to enter an evaluation and create an action-plan to the
results of his owen department.

• Administrator has the same rights as a Safety Group member. Addi-
tionally he should be able to enter evaluations and action-plans for all
departments. The administrator also administrates users, schemas and
reviews. He should also be able to view statistics for all departments.

C.1.1 Create a user

Create a virtual user in the system. The user should have a username, a pass-
word, an optional email address and a optional note. Additionally a type must

96 User Stories

be set on the user and the user must be connected to a department. The email
address cannot be used for username as a safety group may be created as a user.

Value: 10 • Risk: Low

C.1.2 Edit a user

Edit a users information.

Value: 11 • Risk: Low

C.1.3 Delete a user

Delete a virtual user from the system and revoke all privileges from the user.
This should NOT delete the evaluations, results and action-plans the user have
created in the system.

Value: 23 • Risk: Low

C.2 Department administration

The administrator should be able to administrate virtual departments in the
system modeling the organizational sections of the company. Users should be
connected to departments.

C.2.1 Create a department

Create a department with a name and the possibility of information on the
physical department.

Value: 17 • Risk: Low

C.3 Schema administration 97

C.2.2 Edit a department

Edit the information of the department

Value: 18 • Risk: Low

C.2.3 Retire a department

Remove the department from then active part of the application. The evalua-
tions, reviews and and action-plans should still be accessible to administrators.

Value: 28 • Risk: Low

C.3 Schema administration

A schema is a tool in the APV review. The schema contains a set of questions
divided into a set of categories.

C.3.1 Create a schema

Create a schema for the APV evaluation. The schema should have a name and
it should be registered who created the schema.

Value: 3 • Risk: Low

C.3.1.1 Create a category

Create a category to a schema. The category should have a name.

Value: 3 • Risk: Low

98 User Stories

C.3.1.2 Edit a category

Edit the name of the category or the position of the category in the schema
(sorting).

Value: 4 • Risk: Low

C.3.1.3 Retire a category

The category should be removed from the active part of the application. The
questions, evaluations for questions and action-plans for questions should not
be deleted and should be accessible to the administrator.

Value: 21 • Risk: Low

C.3.1.4 Create a question

Create a question to a category. The questions should hold the question text.

Value: 3 • Risk: Low

C.3.1.5 Edit a question

Edit the question text or the position of the question in the category.

Value: 4 • Risk: Low

C.3.1.6 Create a new revision of question

If the text of a question is radically changed a new version of the question should
be added to the system. The new revision should be connected to the old version
such that statistics may still be extracted on the question.

Value: 19 • Risk: Low

C.3 Schema administration 99

C.3.1.7 Retire a question

Remove a question from the active part of the application. The evaluations and
action-plans connected with the question should not be deleted and should be
accessible to the administrator.

Value: 20 • Risk: Low

C.3.2 Edit a schema

Editing a schema involves editing the categories and questions of the schema
using the functionality described under Create schema.

Value: 4 • Risk: Medium

C.3.3 Print a schema

Since most of the production will fill out the APC schema on paper it should
be possible to print the schema e.g. as a pdf file. The layout of the print should
be as close to the web layout as possible.

Value: 12 • Risk: High

C.3.4 Retire a schema

Remove the schema from the active part of the application. The evaluations,
reviews and action-plans based on the schema should be accessible to adminis-
trators. A schema may only be retired if it is not connected to any not-retired
reviews.

Value: 22 • Risk: Low

100 User Stories

C.4 Review administration

A review models the APV review. It connects a schema with a set of depart-
ments

C.4.1 Create a review

Create a review. A schema should be attached to the review and a list of
departments participating in the review should be added to it. The review
should have a name and an optional note - and it should be registered who
created the review. When the review is created it should open for evaluation.

Value: 5 • Risk: Low

C.4.2 Close a review

When the review is done it should be closed so no more evaluations is added to
it. It should still be possible to add action-plans and follow-ups on action-plans.

Value: 15 • Risk: Low

C.4.3 Retire a review

Remove the review from the active part of the application. Nothing should be
deleted and the review should still be available to the administrator.

Value: 16 • Risk: Low

C.5 Evaluation

An evaluation is done by the individual employee and is a set of answers to the
questions of the schema.

C.6 Results 101

C.5.1 Enter an evaluation

The evaluation is attached to a review and should display all questions in a
schema one category at a time. The user should respond to every question
by choosing among a set of predefined values (e.g. Not relevant, OK, Problem).
Additionally the user may add a remark to the each question. The system should
register the user entering the evaluation and the department it is attached to.
The system should respond with a unique ID which may be written on the paper
version of the schema making it possible to find the paper evaluation again if
doubt on the remarks.

Value: 2 • Risk: Medium

C.6 Results

The results of a review is a presentation of the percentage of each value in the
total responses to a question.

C.6.1 View results of a review

The results should be presented for each question on a selected department. A
graphical presentation is preferred to give a quick overview of the result. The
number of evaluations the result is based upon should be displayed. The remarks
made through the evaluation should also be displayed.

Value: 1 • Risk: High

C.6.2 View results of a review as Pareto Chart

The results should be presented as a Pareto Chart. These charts are often used
in the company group.

Value: 27 • Risk: High

102 User Stories

C.7 Action-plan administration

If the result of a review shows a problem on a specific question an action-plan
for solving the problem must be created.

C.7.1 Create an action-plan

Create an action-plan and attach it to a specific question, the review and the
department. The action-plan should contain a name of the responsible owner of
the plan, a deadline for solving it and a description of the problem and solution.
The system should register the user that created the plan.

Value: 6 • Risk: Low

C.7.2 Create a follow-up action-plan

If an action-plan cannot be solved within the deadline a follow-up on the plan
must be made. This resembles the action-plan as it sets a new deadline, a
responsible owner and a description of the reasons that the original action-plan
was not solved within the deadline. The follow-up action-plan must be connected
to the original plan.

Value: 8 • Risk: Medium

C.7.3 Close an action-plan

When the problem of the action-plan is solved, the action-plan may be closed.
It is not removed from the system but stays available as long as the review is
not retired.

Value: 7 • Risk: Low

C.7.4 List action-plans

It should be possible to get a list of all action-plans (and follow-up action-
plans) and the status of them. The administrator should be able to chose either

C.8 Statistics 103

a specific department or all departments whereas the the other users may only
list action-plans from their own department.

Value: 9 • Risk: Low

C.8 Statistics

Statistics is an important tool when examining the health and safety of the
organization. Rather than implementing some static tools for calculating and
displaying statistics, the extraction of comma-separated files which may be used
in statistics systems or spreadsheets is required.

C.8.1 Extract results of review as comma-separated file

It should be possible to extract the result of a review as a list with all ques-
tions and the number and percentage of each value among the answers. Ad-
ministrators should be able to extract either a specific department or a set of
departments.

Value: 24 • Risk: Medium

C.8.2 Extract statistics of action-plans as comma-separated

file

The administrator should be able to extract statistics on action-plans. The
interesting statistics are how fast the safety group in a department solves the
action-plan and how many times it is postponed (that is a follow-up plan is
created).

Value: 25 • Risk: Medium

C.8.3 Extract statistics of schema as comma-separated file

It should be possible to extract the results of a schema from several reviews to
follow the development over several years. The statistics should be based on

104 User Stories

either a one or a set of departments and only the administrator should have
access to them.

Value: 26 • Risk: Medium

C.9 Accessibility

The accessibility to the system is based on a login and a password (see User
administration)

C.9.1 Log in

A user should be authenticated and logged in. The user then have access to the
functionality on the department/departments he is connected to. The access is
based on his user type.

Value: 13 • Risk: Medium

C.9.2 Log out

When the user logs out the session should be ended and the user should not
have access to anything.

Value: 14 • Risk: Low

Appendix D

Source Code

This appendix contains the entire source code for the APV system release 1. It
is divided into the web pages forming the view, the entity beans modeling the
domain data and the session beans modeling the domain business logic. The
appendix ends with some of the more interesting configuration files.

D.1 Web pages

The web pages is written in xhtml format and follows the W3C standard. The
pages uses standard JSP tags (<f: and <h:) and JBoss Seam tags (<s:).

D.1.1 template.xhtml

This is the template file for the web pages generated. It sets up the layout of
the page through simple html tags an using the cascading style sheet defined
for the project. The template includes three ui JSF elements on the page: the
content of the page, the sidebar.xhtml and the content of the lower right side.

106 Source Code

< !DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>

<html xmlns=”http : //www.w3 . org /1999/xhtml” xml : lang=”da” lang=”da”
xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”>
<head>

<meta http−equiv=”content−type” content=” tex t /html ; cha r s e t=ISO−8859−1” />
<meta http−equiv=”content−s c r i p t −type” content=” tex t / j a v a s c r i p t ” />
<meta http−equiv=”content−s ty l e−type ” content=” tex t/ c s s ” />
<l ink rel=” s t y l e s h e e t ” href=” s t y l e / layout . c s s ” type=” tex t / c s s ” />
<t i t l e>eAPV. dk</ t i t l e>

</head>

<body>

<div id=” s i t e c o n t a i n e r ”>
<div class=” d i v i d e r”></div>

<div id=” topbarconta ine r ”>
<div id=” t opba r l e f t ”>

<u i : i n s e r t name=”pagename”/>
</div>

<div id=” topbar r i gh t”>
< !−− The top bar showing logged in user and date −−>

<img src=”images /key . png” alt=”Logget ind” id=”topbarkey”
border=”0”/> Martin | <h : outputText value=” #{dateShort } ” />
[Log ud]

</div>

<div id=” topbarcente r ”> ;</div>

</div>

<div class=” d i v i d e r”></div>

<div id=” l e f t c o n t en t c on t a i n e r ”>
< !−− Inse r t the content on the page −−>

<u i : i n s e r t name=” content”/>

<hr />
< !−− Print error faces messages − e . g . va l ida t ion errors −−>

<h : messages/>
</div>

<div id=” r i gh t c on t en t c on ta in e r ”>
< !−− Inc lude s idebar xhtml which generates the menu −−>

<u i : i n c l ude src=” s id eba r . xhtml” />
<hr/>

< !−− Inse r t content for the lower r i gh t frame −−>

<u i : i n s e r t name=” s id e c on t en t ”/>
</div>

<div id=”bottombar”>
eAPV. dk | 2007 | Thermo F i s che r S c i e n t i f i c , Rosk i lde

</div>

</div>

</body>

</html>

D.1 Web pages 107

D.1.2 home.xhtml

This is the frontpage of the application after user has logged in.

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org/TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>

<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”
xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=”http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadFrontpage}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>
<h : outputText value=”#{messages . Welcome}”/>

</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.1.3 sidebar.xhtml

This is the menu file for the right side of the template. The drop-down box
for department selection is not implemented correctly as it is a static solution
in release 1. It should be generated by the departments list factory - and the
selected department should be saved as a session value for the user.

< !DOCTYPE div PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org/TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>
<div xmlns=”http : //www.w3 . org /1999/xhtml”

xmlns : c=” http : // java . sun . com/ j s t l / core ”
xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : f=” http : // java . sun . com/ j s f / core ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”>

< !−− Select the department current l y worked on
Temporary s t a t i c so lu t ion for d i sp l ay only
Replaced by a dynamic l i s t generated by the
departments l i s t fac tory and the selected

i s saved as a sess ion var iab l e −−>

<select style=”margin− l e f t : 3px ; width : 140px ; ”
onchange=”document . getElementById(’menu ’) . s t y l e . d i sp l ay=’block ’ ; ”>
<option>Afde l ing 10</option>

<option>Afde l ing 11</option>

108 Source Code

<option>Afde l ing 12</option>

<option>Afde l ing 13</option>

<option>Afde l ing 14</option>

</ select>

<hr />
< !−− Generate menu depending on the selected department −−>

<s : l ink id=”MenuFrontpage” view=”/home . xhtml”

value=”#{messages . PageHeadFrontpage}” s t y l eC l a s s=”menuitem”
propagat ion=”none”/>

<s : l ink id=”MenuSchemaAdd” view=”/schemaAdd. xhtml”
value=”#{messages . addSchema}” s t y l eC l a s s=”menuitem”
propagat ion=”none”/>

<s : l ink id=”MenuSchemaEdit” view=”/ schemaList . xhtml”
value=”#{messages . editSchema}” s t y l eC l a s s=”menuitem”
propagat ion=”none”/>

<s : l ink id=”MenuReviewAdd” view=”/reviewAdd . xhtml”
value=”#{messages . addReview}” s t y l eC l a s s=”menuitem”
propagat ion=”none”/>
<s : l ink id=”MenuStartEvaluation ”

action=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”
value=”#{messages . s t a r tEva lua t i on}” s t y l eC l a s s=”menuitem”
propagat ion=”none”/>

<hr />
</div>

D.1.4 schemaAdd.xhtml

This page displays a form for creating a new schema in the system. It contains a
temporary field for the editor id. In release 2 this will be replaced by the logged
in user.

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>
<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”

xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=”http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadSchemaAdd}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>
<h : form id=”schemaAdd”>

<f i e ldset>

<s : v a l i d a t eA l l>
<h : outputLabel for=”name”>

<h : outputText value=”#{messages . schemaName}” />
</h : outputLabel>

D.1 Web pages 109

<h : inputText id=”name” value=”#{schema . name}” r equ i r ed=” true ”/>

< !−− A temporary f i e l d for adding the ed i to r of the
schema . Replaced by logged in user −−>

<h : outputLabel for=” ed i t o r ”>
<h : outputText value=”#{messages . ed i t o r }” />

</h : outputLabel>

<h : inputText id=” ed i t o r ” value=”#{schema . ed i t o r }” r equ i r ed=” true ”/>

<h : commandButton id=”submitAddSchema” value=”#{messages . c r e a t e }”
action=”#{schemaEditor . schemaAdd}”/>

</s : v a l i d a t eA l l>
</ f i e ldset>

</h : form>

</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>
</ u i : compos i t ion>

D.1.5 schemaList.xhtml

This page displays a list of active schemas in the application along with an icon
for editing the schema.

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org/TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>
<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”

xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=” http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadSchemaList}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>
<h : form>

<h : dataTable var=”scm” value=”#{schemaList}”
rendered=”#{schemaList . rowCount>0}”>
<h : column>

<h : outputText value=”#{scm . name}”/>
</h : column>

<h : column>

<s : l ink id=”editSchema” value=””
action=”#{schemaEditor . schemaEdit}”>

<h : graphicImage value=”/ images / pe nc i l . png”/>
</s : l ink>

</h : column>

</h : dataTable>

</h : form>

</ u i : d e f i n e>

110 Source Code

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.1.6 schemaEditor.xhtml

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>
<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”

xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=”http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadSchemaEditor}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>

<h2>

<h : outputText value=”#{s e l e c t edCategory . name}”
rendered=”#{s e l e c t edCatego ry != nu l l }”/>

</h2>

< !−− Generate l i s t o f quest ions in selected category −−>

<h : form>

<h : dataTable var=”qst ” value=”#{que s t i onL i s t }”
rendered=”#{que s t i onL i s t . rowCount>0}” s t y l eC l a s s=” eva lua t i on”>

<h : column>

<h : outputText value=”#{qst . id }”/>
</h : column>

<h : column>

<h : outputText value=”#{qst . t e x t}”/>
</h : column>

< !−− Link for moving the quest ion up in the sor t ing order −−>

<h : column>

<h : commandLink value=”” action=”#{que s t i on s . questionMoveUp}” >

<h : graphicImage value=”/ images /arrow up . png”/>
</h : commandLink>

</h : column>

< !−− Link for ed i t ing the quest ion −−>

<h : column>

<s : l ink id=” ed i tQuest ion ” value=””
action=”#{schemaEditor . quest ionEdi t }”>
<h : graphicImage value=”/ images / pen c i l . png”/>

</s : l ink>

</h : column>

</h : dataTable>

</h : form>

<s : l ink id=”addQuestion” action=”#{schemaEditor . questionAdd}”
value=”#{messages . AddQuestion}” rendered=”#{s e l e c t edCategory != nu l l }”/>

<s : l ink id=”schemaSave” action=”#{schemaEditor . schemaSave}”

D.1 Web pages 111

value=”#{messages . SaveSchema}”/>
</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”>
< !−− Generate l i s t for ca te gor ie s for r i gh t s idebar −−>

<h : form>

<h : dataTable var=” cat ” value=”#{c a t e go ryL i s t }”
rendered=”#{c a t e go ryL i s t . rowCount>0}”>
<h : column>

<h : commandLink value=”#{cat . name}” action=”#{que s t i on s . f i ndQue s t ions}”/>
</h : column>

< !−− Link for moving the category up in the sor t ing order −−>

<h : column>

<h : commandLink value=”” action=”#{c a t e g o r i e s . categoryMoveUp}”>
<h : graphicImage value=”/ images/ arrow up . png”/>

</h : commandLink>
</h : column>

< !−− Link for ed i t ing the category −−>

<h : column>

<s : l ink id=” ed i tCategory” value=””
action=”#{schemaEditor . categoryEdi t }”>

<h : graphicImage value=”/ images/ pen c i l . png”/>
</s : l ink>

</h : column>

</h : dataTable>

</h : form>

<s : l ink id=”addCategory” action=”#{schemaEditor . categoryAdd}”

value=”#{messages . AddCategory}”/>
</ u i : d e f i n e>

</ u i : compos i t ion>

D.1.7 categoryAdd.xhtml

This page displays a form with one field for creating a new category in a schema.

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org/TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>

<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”
xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=” http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadAddCategory}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>

112 Source Code

<h : form id=”addCategory”>
<f i e ldset>

<h : outputLabel for=”name”>
<h : outputText value=”#{messages . schemaName}” />

</h : outputLabel>

<h : inputText id=”name” value=”#{category . name}” r equ i r ed=” true ”/>

<h : commandButton id=”submitAddCategory” value=”#{messages . c r e a t e }”
action=”#{schemaEditor . categorySave }”/>

</ f i e ldset>

</h : form>

</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.1.8 categoryEdit.xhtml

This page displays a form with one field with the name of the selected category.
The name of the category can be changed and then saved.

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>
<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”

xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=”http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadCategoryEdit}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>

<h : form id=” ed i tCategory”>
<f i e ldset>

<s : v a l i d a t eA l l>
<h : outputLabel for=”name”>

<h : outputText value=”#{messages . categoryName}” />
</h : outputLabel>

<h : inputText id=”name” value=”#{category . name}” r equ i r ed=” true ”/>

<h : commandButton id=”submitEditCategory” value=”#{messages . save }”

action=”#{schemaEditor . categorySave }”/>
</s : v a l i d a t eA l l>

</ f i e ldset>

</h : form>

</ u i : d e f i n e>

D.1 Web pages 113

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.1.9 questionAdd.xhtml

This page displays a form with one field for adding a question.

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org/TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>

<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”
xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=” http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadCateoryEdit}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>
<h : form id=” ed i tQuest ion ”>

<f i e ldset>

<s : v a l i d a t eA l l>
<h : outputLabel for=”name”>

<h : outputText value=”#{messages . quest ionText }” />
</h : outputLabel>

<h : inputText id=”name” value=”#{quest ion . t e x t}” r equ i r ed=” true ”/>

<h : commandButton id=” submitEditQuest ion” value=”#{messages . save }”
action=”#{schemaEditor . quest ionSave}”/>

</s : v a l i d a t eA l l>
</ f i e ldset>

</h : form>

</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.1.10 questionEdit.xhtml

This page displays a form with one field with the selected question. The ques-
tion text can be changed and then saved.

114 Source Code

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>

<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”
xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=”http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadCateoryEdit}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>
<h : form id=” ed i tQuest ion ”>

<f i e ldset>

<s : v a l i d a t eA l l>
<h : outputLabel for=”name”>

<h : outputText value=”#{messages . quest ionText }” />
</h : outputLabel>

<h : inputText id=”name” value=”#{quest ion . t e x t}” r equ i r ed=” true ”/>

<h : commandButton id=”submitEditQuest ion” value=”#{messages . save }”
action=”#{schemaEditor . quest ionSave}”/>

</s : v a l i d a t eA l l>
</ f i e ldset>

</h : form>

</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.1.11 reviewAdd.xhtml

This page displays a form for creating a view. Besides a name and a temporary
editor field it contains two drop-down boxes where one schema and one or more
departments can be chosen (selectOneMenu andselectManyListBox).

The two drop-down boxes uses a taglibrary named entityconverter to convert
from Schema objects and Department objects respectively to a String which is
used for the html select element as the id. When the form is submitted the
entityconverter uses the string id to return the correct object. It uses the object
equals() method for this.

D.1 Web pages 115

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org/TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>

<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”
xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=” http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
xmlns : ec=”http : // j bo s s . com/products /seam/ en t i t y c onv e r t e r/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadReviewAdd}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>
<h : form id=”reviewAdd”>
<f i e ldset>

<s : v a l i d a t eA l l>
<h : outputLabel for=”name”>

<h : outputText value=”#{messages . reviewName}” />
</h : outputLabel>

<h : inputText id=”name” value=”#{review . name}”/>

< !−− Temporary f i e l d for ed i to r id . Replaced by
logged in user in re l ease 2 −−>

<h : outputLabel for=” ed i t o r ”>
<h : outputText value=”#{messages . e d i t o r }” />

</h : outputLabel>

<h : inputText id=” ed i t o r ” value=”#{review . ed i t o r }”/>

<h : outputLabel for=”schema”>
<h : outputText value=”#{messages . schemaName}” />

</h : outputLabel>

<h : selectOneMenu id=”schema” value=”#{review . schema}”>

<s : s e l e c t I t em s value=”#{schemaModel}” var=”scm”
label=”#{scm . name}”/>

< !−− Enti ty converter used to convert Schema to text for

the select elemtens value tag and v ic e versa −−>

<ec : convertEnt i ty en t i t yCla s s=”dk . eapv . e jb . domain . Schema”/>
</h : selectOneMenu>

<h : outputLabel for=”department”>
<h : outputText value=”#{messages . department}” />

</h : outputLabel>

<h : se lectManyListbox id=”department” value=”#{review . departments}”>

<s : s e l e c t I t em s value=”#{departmentList }” var=”dpt”
label=”#{dpt . name}”/>

< !−− Enti ty converter used to convert Department to text for

the select elemtens value tag and v ic e versa −−>

<ec : convertEnt i ty en t i t yCla s s=”dk . eapv . e jb . domain . Department ”/>
</h : se lectManyListbox>

<h : commandButton id=”submitReviewAdd” value=”#{messages . c r e a t e }”

116 Source Code

action=”#{reviewAdd . reviewAdd}” />
</s : v a l i d a t eA l l>

</ f i e ldset>

</h : form>

</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.1.12 evaluationConversation.xhtml

This page is the actual questionnaire with questions answered by the employ-
ees. The possible answers for a question is determined by the number of Value
objects in the database.

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>
<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”

xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=”http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
xmlns : ec=”http : // j bo s s . com/products /seam/ en t i t y c onv e r t e r/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadEvaluation}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

<u i : d e f i n e name=” content”>
< !−− The ID of the f in i shed evaluaion . Is only rendered i f the

eva luat ionId i s se t −−>

<h : outputText value=”#{messages . evaluationEnded } .
#{messages . e v a l i a t i o n I d I s } #{eva lua t i on Id}”
rendered=”#{eva lua t i on Id != nu l l }”/>

< !−− Current category name −−>

<h2>

<h : outputText value=”#{eva luat ionCategory . name}”
rendered=”#{eva lua t i on Id == nu l l }”/>

</h2>

< !−− Evaluation form . Only rendered i f eva luat ionId i s not se t −−>

<h : form id=”evaluationForm” rendered=”#{eva lua t i on Id == nu l l }”>
<f i e ldset>

<s : v a l i d a t eA l l>
<h : dataTable value=”#{eva luat ionAnswerLi st}” var=”ans”

s t y l eC l a s s=” eva lua t i on”
columnClasses=” quest ion , va lueconta ine r , note”>

<h : column>

<h : outputText value=”#{ans . quest ion . t e x t }” />
</h : column>

D.1 Web pages 117

< !−− Radio button for ranking value of the quest ion
The number of choices i s determined by the
number of va lues in the database −−>

<h : column>

<h : se lectOneRadio value=”#{ans . va lue}”
r equ i r ed=” true ” layout=” l i n e d i r e c t i o n ”
s ty l eC l a s s=” value”>

<s : s e l e c t I t ems value=”#{va lu eL i s t }” var=” val ” label=””/>
< !−− Use ent i t yconve r t e r to convert from Value to String

and v ic e versa on submit −−>

<ec : convertEnt i ty en t i t yCla s s=”dk . eapv . e jb . domain . Value”/>
</h : se lectOneRadio>

</h : column>

<h : column>

<h : inputText value=”#{ans . remark}” s t y l eC l a s s=”remark”/>
</h : column>

</h : dataTable>

<h : commandButton id=” submitEvaluationPrev ious”
value=”#{messages . prev ious }”
action=”#{eva luat ionConversat ion . prev iousCategory}”>
< !−− Propagate the conversat ion when c l i c k e d −−>

<s : conversat ionPropagat ion type=” j o i n ”/>
</h : commandButton>

<h : commandButton id=”submitEvaluationNext”
value=”#{messages . next}”
action=”#{eva luat ionConversat ion . nextCategory}”>
< !−− Propagate the conversat ion when c l i c k e d −−>

<s : conversat ionPropagat ion type=” j o i n ”/>
</h : commandButton>

</s : v a l i d a t eA l l>
</ f i e ldset>

</h : form>

</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.1.13 evaluationResult.xhtml

< !DOCTYPE compos i t ion PUBLIC ”−//W3C//DTD XHTML 1 .0 Tran s i t i ona l //EN”
” http : //www.w3 . org/TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l . dtd”>
<u i : compos i t ion xmlns=”http : //www.w3 . org /1999/xhtml”

xmlns : u i=”http : // java . sun . com/ j s f / f a c e l e t s ”
xmlns : h=”http : // java . sun . com/ j s f /html”
xmlns : f=”http : // java . sun . com/ j s f / core ”
xmlns : s=”http : // j bo s s . com/products /seam/ t a g l i b ”
template=” template . xhtml”>

< !−− Page header b lock −−>

<u i : d e f i n e name=”pagename”>
<h : outputText value=”#{messages . PageHeadEvaluationResult}”/>

</ u i : d e f i n e>

< !−− Page content b lock −−>

118 Source Code

<u i : d e f i n e name=” content”>
<h : dataTable value=”#{r e s u l tQu e s t i o nL i s t}” var=” qst ” s t y l e c l a s s=” eva lua t i on”>

<h : column>

<h : outputText value=”#{qst . t e x t}” />
</h : column>

</h : dataTable>

</ u i : d e f i n e>

< !−− Page sidebar b lock −−>

<u i : d e f i n e name=” s id eba r ”></ u i : d e f i n e>

</ u i : compos i t ion>

D.2 Entity Beans

The entity beans are standard Java beans with additional annotations for the
persistence mechanism.

D.2.1 Answer.java

The Answer class hold a contrete answer to a specific question in an evaluation
of a review.

package dk . eapv . e jb . domain ;

import java . u t i l . Date ;

import javax . p e r s i s t en c e . ∗ ;

import org . h ibe rnate . v a l i da to r . NotNull ;
import org . j bo s s . seam . annotat ions .Name;

@Entity
@Name (”answer”)
@Table (name=”Answer”)
public class Answer {

// Id of the answer
private int id ;

// The rank va lue of the answer
private Value va lue ;

// Remarks to the answer
private St r i ng remark ;

// The quest ion the answer i s re l a t ed to
private Question quest ion ;

// Date of creat ion
private Date c reated ;

D.2 Entity Beans 119

// Date of l a s t modi f icat ion
private Date modi f i ed ;

@Id @GeneratedValue
@Column (name=”AnswerID”)
public int get Id () {

return id ;
}

public void s e t Id (int id) {
this . id = id ;
this . updated () ;

}

@ManyToOne
@JoinColumn (name=”AnswerValue”)
public Value getValue () {

return value ;
}

public void se tValue (Value va lue) {
this . va lue = value ;
this . updated () ;

}

@Column (name=”AnswerRemark”)
public St r i ng getRemark () {

return remark ;
}

public void setRemark (S t r i ng remark) {
this . remark = remark ;
this . updated () ;

}

@ManyToOne
@JoinColumn (name=”AnswerQuestion”)
public Question getQuest ion () {

return quest ion ;
}

public void se tQuest ion (Quest ion quest ion) {
this . quest ion = quest ion ;
this . updated () ;

}

@Column (name=”AnswerCreated ”)
@Temporal (TemporalType .TIMESTAMP)
public Date getCreated () {

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

@Column (name=”AnswerModified”)
@Temporal (TemporalType .TIMESTAMP)
public Date getModi f i ed () {

return modi f i ed ;
}

public void se tModi f i ed (Date modi f i ed) {
this . mod i f i ed = modi f i ed ;

}

120 Source Code

// Updates the modi f icat ion date on an ob je c t
private void updated () {

i f (this . id == 0)
this . c reated = new Date () ;

this . mod i f i ed = new Date () ;
}

// Overriding equa ls method check on id only
public boolean equa l s (Object o) {

i f (o == null)
return fa l se ;

else {
Answer otherAnswer = (Answer) o ;
return this . ge t Id () == otherAnswer . ge t Id () ;

}
}

}

D.2.2 Category.java

The questionnaire schema contains a set of categories each with a name and a
list of questions in the category.

package dk . eapv . e jb . domain ;

import java . u t i l . ArrayLi st ;
import java . u t i l . Co l l e c t i o n ;
import java . u t i l . Date ;
import java . u t i l . L i s t ;

import javax . p e r s i s t en c e . ∗ ;

@Entity
@Name (” category ”)
@Table (name=”Category”)
public class Category {

// I f o f the category
private int id ;

// The name of the category
private St r i ng name ;

// Placement in the sor t ing rank
private int s o r t i ng ;

// L is t o f quest ions in the category
private List<Question> que s t i on s = new ArrayList<Question >() ;

// Date of creat ion
private Date c reated ;

// Date of l a s t modi f icat ion
private Date modi f i ed ;

@Id @GeneratedValue
@Column (name=”CategoryId”)
public int get Id () {

D.2 Entity Beans 121

return id ;
}

public void s e t Id (int id) {
this . id = id ;

}

@Column (name=”CategoryName”)
public St r i ng getName () {

return name ;
}

public void setName(S t r i ng name) {
this . name = name ;
this . updated () ;

}

@Column (name=”CategorySort ing”)
public int ge tSo r t i ng () {

return s o r t i n g ;
}

public void s e t S o r t i n g (int s o r t i n g) {
this . s o r t i ng = so r t i ng ;
this . updated () ;

}

@OneToMany
@OrderBy (” s o r t i ng ASC”)
public List<Question> getQuest ions () {

return que s t i on s ;
}

public void s e tQue s t i on s (Li st<Question> que s t i on s) {
this . qu e s t i on s = que s t i on s ;
this . updated () ;

}

@Column (name=”CategoryCreated”)
@Temporal (TemporalType .TIMESTAMP)
public Date getCreated () {

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

@Column (name=”CategoryModif ied”)
@Temporal (TemporalType .TIMESTAMP)
public Date getModi f i ed () {

return modi f i ed ;
}

public void se tModi f i ed (Date modi f i ed) {
this . mod i f i ed = modi f i ed ;

}

// Updates the modi f icat ion date on an ob je c t
private void updated () {

i f (this . id == 0)
this . c reated = new Date () ;

this . mod i f i ed = new Date () ;
}

122 Source Code

// Overriding equa ls method check on id only
public boolean equa l s (Object o) {

i f (o == null)
return fa l se ;

else {
Category otherCategory = (Category) o ;
return this . ge t Id () == otherCategory . ge t Id () ;

}
}

// Simple funct ion for adding a quest ion to the
// the end of the l i s t o f quest ions with the
// correc t sor t ing rank va lue
public void addQuestion (Quest ion quest ion) {

quest ion . s e t S o r t i n g (que s t i on s . s i z e ()+1) ;
this . qu e s t i on s . add (quest ion) ;

}
}

D.2.3 Department.java

Companies are often divided into organizational units which may be modeled
by departments. This gives the possibility of dividing results of a review on
departments for better overview.

package dk . eapv . e jb . domain ;

import javax . p e r s i s t en c e . ∗ ;

import java . u t i l . ∗ ;
import static org . j bo s s . seam . ScopeType .EVENT;

import org . h ibe rnate . v a l i da to r . Length ;
import org . h ibe rnate . v a l i da to r . NotNull ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Scope ;
import org . j bo s s . seam . u i . tag . MessageTag ;

@Entity
@Name (”department”)
@Table (name=”Department ”)

public class Department {
// Id of the department
private int id ;

// The name of the department
private St r i ng name ;

// L is t o f users in the department
private List<User> use r s ;

// Date of creat ion
private Date c reated ;

// Date of l a s t modi f icat ion
private Date modi f i ed ;

D.2 Entity Beans 123

@Id @GeneratedValue
@Column (name=”DepartmentId”)
public int get Id () {

return id ;
}

public void s e t Id (int id) {
this . id = id ;

}

@Column (name=”DepartmentName”)
@NotNull (message=”Navn ska l ud f y ld e s”)
public St r i ng getName () {

return name ;
}

public void setName(S t r i ng name) {
this . name = name ;
this . updated () ;

}

@ManyToMany
public List<User> getUsers () {

return use r s ;
}

public void s e tUse r s (L i st<User> use r s) {
this . u s e r s = use r s ;
this . updated () ;

}

@Column (name=”DepartmentCreated”)
@Temporal (TemporalType .TIMESTAMP)
public Date getCreated () {

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

@Column (name=”DepartmentModified”)
@Temporal (TemporalType .TIMESTAMP)
public Date getModi f i ed () {

return modi f i ed ;
}

public void se tModi f i ed (Date modi f i ed) {
this . mod i f i ed = modi f i ed ;

}

// Updates the modi f icat ion date on an ob je c t
private void updated () {

i f (this . id == 0)
this . c reated = new Date () ;

this . mod i f i ed = new Date () ;
}

// Overriding equa ls method check on id only
public boolean equa l s (Object o) {

i f (o == null)
return fa l se ;

else {
Department otherDepartment = (Department) o ;

124 Source Code

return this . ge t Id () == otherDepartment . ge t Id () ;
}

}
}

D.2.4 Evaluation.java

An evaluation is a set of answers given by one employee on the questions in a
schema. The evaluation is related to a department and a review.

package dk . eapv . e jb . domain ;

import java . u t i l . Date ;
import java . u t i l . L i s t ;

import javax . p e r s i s t en c e . ∗ ;

import org . j bo s s . seam . annotat ions .Name;

@Entity
@Name (” eva lua t i on”)
@Table (name=”Evaluation ”)
public class Evaluation {

// Id of the eva luat ion
private int id ;

// The review the eva luat ion i s re l a t ed to
private Review review ;

// The department the eva luat ion i s re l a t ed to
private Department department ;

// L is t o f answers to quest ions from the user
private List<Answer> answers ;

// Date of creat ion
private Date c reated ;

// Date of l a s t modi f icat ion
private Date modi f i ed ;

@Id @GeneratedValue
@Column (name=”Evaluat ionId”)
public int get Id () {

return id ;
}

public void s e t Id (int id) {
this . id = id ;

}

@ManyToOne
public Review getReview () {

return review ;
}

public void setReview (Review review) {
this . review = review ;

D.2 Entity Beans 125

this . updated () ;
}

@ManyToOne
public Department getDepartment () {

return department ;
}

public void setDepartment (Department department) {
this . department = department ;
this . updated () ;

}

@OneToMany (cascade={CascadeType .ALL})
public List<Answer> getAnswers () {

return answers ;
}

public void setAnswers (L i st<Answer> answers) {
this . answers = answers ;
this . updated () ;

}

@Column (name=”EvaluationCreated ”)
@Temporal (TemporalType .TIMESTAMP)
public Date getCreated () {

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

@Column (name=”Evaluat ionModi f ied”)
@Temporal (TemporalType .TIMESTAMP)
public Date getModi f i ed () {

return modi f i ed ;
}

public void se tModi f i ed (Date modi f i ed) {
this . mod i f i ed = modi f i ed ;

}

// Updates the modi f icat ion date on an ob je c t
private void updated () {

i f (this . id == 0)
this . c reated = new Date () ;

this . mod i f i ed = new Date () ;
}

// Overriding equa ls method check on id only
public boolean equa l s (Object o) {

i f (o == null)
return fa l se ;

else {
Evaluation otherEvaluat ion = (Evaluation) o ;
return this . ge t Id () == otherEvaluat ion . ge t Id () ;

}
}

}

126 Source Code

D.2.5 Question.java

A question is a simple question in the questionnaire.

package dk . eapv . e jb . domain ;

import java . u t i l . Date ;

import javax . p e r s i s t en c e . ∗ ;

import org . h ibe rnate . v a l i da to r . Length ;
import org . h ibe rnate . v a l i da to r . NotNull ;

@Entity
@Name (” quest ion ”)
@Table (name=”Question”)
public class Question {

// Id of the quest ion
private int id ;

// The quest ion t e x t
private St r i ng t ex t ;

// The vers ion of the quest ion .
// New vers ion can be created i f the t e x t
// changes and the h i s to ry i s e s s e n t i a l
private int ve r s i on ;

// The sor t ing rank of the quest ion
// with in the category
private int s o r t i ng ;

// Date of creat ion
private Date c reated ;

// Date of l a s t modi f icat ion
private Date modi f i ed ;

@Id @GeneratedValue
@Column (name=”QuestionId ”)
public int get Id () {

return id ;
}

public void s e t Id (int id) {
this . id = id ;

}

@Column (name=”QuestionText ”)
@NotNull @Length (min=5, max=255)
public St r i ng getText () {

return t e x t ;
}

public void setText (S t r i ng t ex t) {
this . t e x t = tex t ;
this . updated () ;

}

@Column (name=”Quest ionSort ing”)
@NotNull
public int ge tSo r t i ng () {

D.2 Entity Beans 127

return s o r t i n g ;
}

public void s e t S o r t i n g (int s o r t i n g) {
this . s o r t i ng = so r t i ng ;
this . updated () ;

}

@Column (name=”QuestionVersion ”)
@NotNull
public int getVers ion () {

return ve r s i on ;
}

public void s e tVe r s i on (int ve r s i on) {
this . v e r s i on = ve r s i on ;
this . updated () ;

}

@Column (name=”QuestionCreated”)
@Temporal (TemporalType .TIMESTAMP)
public Date getCreated () {

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

@Column (name=”QuestionModif ied ”)
@Temporal (TemporalType .TIMESTAMP)
public Date getModi f i ed () {

return modi f i ed ;
}

public void se tModi f i ed (Date modi f i ed) {
this . mod i f i ed = modi f i ed ;

}

// Updates the modi f icat ion date on an ob je c t
private void updated () {

i f (this . id == 0)
this . c reated = new Date () ;

this . mod i f i ed = new Date () ;
}

// Overriding equa ls method check on id only
public boolean equa l s (Object o) {

i f (o == null)
return fa l se ;

else {
Question otherQuest ion = (Quest ion) o ;
return this . ge t Id () == otherQuest ion . ge t Id () ;

}
}

}

128 Source Code

D.2.6 Review.java

A revision of the APV is modeled as a review. The review contains a specific
schema with questions used in the review.

package dk . eapv . e jb . domain ;

import javax . p e r s i s t en c e . ∗ ;

import java . u t i l . ∗ ;

import static org . j bo s s . seam . ScopeType .EVENT;

import org . h ibe rnate . v a l i da to r . Length ;
import org . h ibe rnate . v a l i da to r . NotNull ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Scope ;
import org . j bo s s . seam . u i . tag . MessageTag ;

@Entity
@Name (” review ”)
@Table (name=”Review”)

public class Review {
// Id of the review
private int id ;

// Name of the review
private St r i ng name ;

// Id of the user who created the review
private int ed i t o r ;

// A note used for de sc r ip t ion or gu ide l ine s
private St r i ng note ;

// The schema used in the review
private Schema schema ;

// A l i s t o f departments carr ing out the review
private List<Department> departments ;

// Date of creat ion
private Date c reated ;

// Date of l a s t modi f icat ion
private Date modi f i ed ;

@Id @GeneratedValue
@Column (name=”ReviewId ”)
public int get Id () {

return id ;
}

public void s e t Id (int id) {
this . id = id ;

}

@Column (name=”ReviewName”)
public St r i ng getName () {

return name ;

D.2 Entity Beans 129

}

public void setName(S t r i ng name) {
this . name = name ;
this . updated () ;

}

@Column (name=”ReviewEditor ”)
@NotNull (message=”Edi tor ska l ud f y ld e s”)
public int getEd i tor () {

return e d i t o r ;
}

public void s e tEd i t o r (int ed i t o r) {
this . e d i t o r = ed i t o r ;
this . updated () ;

}

@Column (name=”ReviewNote”)
public St r i ng getNote () {

return note ;
}

public void setNote (S t r i ng note) {
this . note = note ;
this . updated () ;

}

@ManyToOne
@JoinColumn (name=”ReviewSchema”)
public Schema getSchema () {

return schema ;
}

public void setSchema(Schema schema) {
this . schema = schema ;
this . updated () ;

}

@ManyToMany
public List<Department> getDepartments () {

return departments ;
}

public void setDepartments(L i st<Department> departments) {
this . departments = departments ;
this . updated () ;

}

@Column (name=”ReviewCreated”)
@Temporal (TemporalType .TIMESTAMP)
public Date getCreated () {

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

@Column (name=”ReviewModified ”)
@Temporal (TemporalType .TIMESTAMP)
public Date getModi f i ed () {

return modi f i ed ;
}

130 Source Code

public void se tModi f i ed (Date modi f i ed) {
this . mod i f i ed = modi f i ed ;

}

// Updates the modi f icat ion date on an ob je c t
private void updated () {

i f (this . id == 0)
this . c reated = new Date () ;

this . mod i f i ed = new Date () ;
}

// Overriding equa ls method check on id only
public boolean equa l s (Object o) {

i f (o == null)
return fa l se ;

else {
Review otherReview = (Review) o ;
return this . ge t Id () == otherReview . ge t Id () ;

}
}

}

D.2.7 Schema.java

The schema models the questionnaire schema with questions divided into cate-
gories.

package dk . eapv . e jb . domain ;

import javax . p e r s i s t en c e . ∗ ;
import java . u t i l . ∗ ;
import static org . j bo s s . seam . ScopeType .EVENT;

import org . h ibe rnate . v a l i da to r . Length ;
import org . h ibe rnate . v a l i da to r . NotNull ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Scope ;
import org . j bo s s . seam . u i . tag . MessageTag ;

@Entity
@Name (”schema”)

// As schema i s a keyword in database terminology
// the t a b l e i s named Scheme
@Table (name=”Scheme”)

public class Schema {
// Id of the schema
private int id ;

// The schema name
private St r i ng name ;

// The id of the ed i to r
private St r i ng ed i t o r ;

// Used for a de sc r ip t ion or a gu ide l ine
private St r i ng d e s c r i p t i o n ;

D.2 Entity Beans 131

// L is t o f ca t e gor ie s in the schema
private List<Category> c a t e g o r i e s = new ArrayList<Category >() ;

// Date of creat ion
private Date c reated ;

// Date of l a s t modi f icat ion
private Date modi f i ed ;

@Id @GeneratedValue
@Column (name=”SchemeId”)
public int get Id () {

return this . id ;
}

public void s e t Id (int id) {
this . id = id ;

}

@Column (name=”SchemeName”)
@NotNull (message=”Skemanavn ska l ud f y ld e s”)
@Length (min=3, max=255, message=”Skemanavn ska l være 3 − 255 tegn”)
public St r i ng getName () {

return this . name ;
}

public void setName(S t r i ng name) {
this . name = name ;
this . updated () ;

}

@Column (name=”SchemeEditor”)
@NotNull (message=”Brugernavnet ska l ud f y ld e s”)
public St r i ng getEd i tor () {

return e d i t o r ;
}

public void s e tEd i t o r (S t r i ng ed i t o r) {
this . e d i t o r = ed i t o r ;
this . updated () ;

}

@Column (name=”SchemeDescr ipt ion”)
public St r i ng ge tDe sc r i p t i on () {

return d e s c r i p t i o n ;
}

public void s e tDe s c r i p t i o n (S t r i ng de s c r i p t i o n) {
this . d e s c r i p t i o n = d e s c r i p t i o n ;
this . updated () ;

}

@OneToMany (cascade={CascadeType .ALL})
@OrderBy (” s o r t i ng ASC”)
public List<Category> ge tCat e go r i e s () {

return c a t e g o r i e s ;
}

public void s e tCat e go r i e s (L i st<Category> c a t e g o r i e s) {
this . c a t e g o r i e s = ca t e g o r i e s ;
this . updated () ;

}

@Column (name=”SchemeCreated”)

132 Source Code

@Temporal (TemporalType .TIMESTAMP)
public Date getCreated () {

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

@Column (name=”SchemeModified”)
@Temporal (TemporalType .TIMESTAMP)
public Date getModi f i ed () {

return modi f i ed ;
}

public void se tModi f i ed (Date modi f i ed) {
this . mod i f i ed = modi f i ed ;

}

// Updates the modi f icat ion date on an ob je c t
private void updated () {

i f (this . id == 0)
this . c reated = new Date () ;

this . mod i f i ed = new Date () ;
}

// Overriding equa ls method check on id only
public boolean equa l s (Object o) {

i f (o == null)
return fa l se ;

else {
Schema otherSchema = (Schema) o ;
return this . ge t Id () == otherSchema . ge t Id () ;

}
}

// Simple method for adding a category to the
// end of the category l i s t . The category w i l l
// ge t the correc t sor t ing rank
public void addCategory(Category category) {

category . s e t S o r t i n g (c a t e g o r i e s . s i z e ()+1) ;
this . c a t e g o r i e s . add (category) ;

}
}

D.2.8 Value.java

A question may be answered with a rank value and a remark. The rank value
is modeled by a value class to simplify statistics on the results.

package dk . eapv . e jb . domain ;

import javax . p e r s i s t en c e . ∗ ;

import org . j bo s s . seam . annotat ions .Name;
import java . u t i l . Date ;

@Entity
@Name(” va lue”)

D.2 Entity Beans 133

@Table (name=”Value”)

public class Value {
// Id of the va lue
private int id ;

// Value t e x t
private St r i ng t ex t ;

// Color of the r e s u l t bar ind ica t ing
// the percent of answers with t h i s va lue
private St r i ng co l o r ;

// Sort ing rank in eva luat ion and r e su l t
private int s o r t i ng ;

// Date of creat ion
private Date c reated ;

// Date of modi f icat ion
private Date modi f i ed ;

@Id @GeneratedValue
@Column (name=”ValueId ”)
public int get Id () {

return id ;
}

public void s e t Id (int id) {
this . id = id ;

}

@Column (name=”ValueText ”)
public St r i ng getText () {

return t e x t ;
}

public void setText (S t r i ng t ex t) {
this . t e x t = tex t ;
this . updated () ;

}

@Column (name=”ValueColor”)
public St r i ng getColor () {

return c o l o r ;
}

public void s e tCo l o r (S t r i ng co l o r) {
this . c o l o r = co l o r ;
this . updated () ;

}

@Column (name=”ValueSort ing”)
public int ge tSo r t i ng () {

return s o r t i n g ;
}

public void s e t S o r t i n g (int s o r t i n g) {
this . s o r t i ng = so r t i ng ;
this . updated () ;

}

@Column (name=”ValueCreated ”)
@Temporal (TemporalType .TIMESTAMP)
public Date getCreated () {

134 Source Code

return c reated ;
}

public void se tCreated (Date c reated) {
this . c reated = created ;

}

@Column (name=”ValueModif ied”)
@Temporal (TemporalType .TIMESTAMP)
public Date getModi f i ed () {

return modi f i ed ;
}

public void se tModi f i ed (Date modi f i ed) {
this . mod i f i ed = modi f i ed ;

}

// Updates the modi f icat ion date on an ob je c t
private void updated () {

i f (this . id == 0)
this . c reated = new Date () ;

this . mod i f i ed = new Date () ;
}

// Overriding equa ls method check on id only
public boolean equa l s (Object o) {

i f (o == null)
return fa l se ;

else {
Value otherValue = (Value) o ;
return this . ge t Id () == otherValue . ge t Id () ;

}
}

}

D.3 Session Beans

The session beans models the business logic of the domain. Each session bean
contains methods modeling the functionality and the methods in a session bean
is often related.

Session beans implements inferfaces either local or remote. These interfaces is
not included here. All methods in the session beans is specified in the interface
as to be available to the EJB container.

D.3.1 ReviewAddBean.java

Adds a new review to the system

D.3 Session Beans 135

package dk . eapv . e jb . bu s i n e s s ;

import javax . e jb . Remove ;
import static javax . p e r s i s t e n c e . PersistenceContextType .EXTENDED;
import javax . e jb . S t a t e f u l ;
import javax . e jb . S t a t e l e s s ;
import javax . p e r s i s t e n c e . EntityManager ;
import javax . p e r s i s t e n c e . Pers i s tenceContext ;

import org . j bo s s . annotat ion . e jb . cache . s imple . CacheConfig ;
import org . j bo s s . seam . ScopeType ;
import org . j bo s s . seam . annotat ions . Destroy ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions . In ;
import org . j bo s s . seam . annotat ions . Logger ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Out ;
import org . j bo s s . seam . annotat ions . Scope ;
import org . j bo s s . seam . l og . Log ;

import dk . eapv . e jb . domain . Review ;
import dk . eapv . e jb . s e r v i c e . ReviewAdd ;

@Sta t e l e s s
@Name (”reviewAdd”)
@Scope (ScopeType .PAGE)
public class ReviewAddBean implements ReviewAdd {

private Review review ;

@PersistenceContext
private EntityManager entityManager ;

@Logger
private Log l og ;

// Pers i s t s the review
public void reviewAdd () {

i f (review != null) {
entityManager . p e r s i s t (review) ;
l og . debug (”Review Pe r s i s t ed ”) ;

}
}

public void destroy () {}

// Se t t e r method for review
@In (r equ i r ed = fa l se)
public void setReview (Review review) {

this . review = review ;
}

}

D.3.2 EvaluationConservationBean.java

This bean handles the entering of an evaluation. The bean starts a conversation
that runs through the evaluation and ends when the evaluation is saved.

136 Source Code

package dk . eapv . e jb . bu s i n e s s ;

import java . u t i l . ArrayLi st ;
import java . u t i l . HashMap ;
import java . u t i l . L i s t ;
import java . u t i l .Map ;

import javax . e jb . Remove ;
import javax . e jb . S t a t e f u l ;
import javax . p e r s i s t en c e . EntityManager ;
import javax . p e r s i s t en c e . Pers i s tenceContext ;

import org . j bo s s . seam . ScopeType ;
import org . j bo s s . seam . annotat ions . Begin ;
import org . j bo s s . seam . annotat ions . Conversat iona l ;
import org . j bo s s . seam . annotat ions . Destroy ;
import org . j bo s s . seam . annotat ions . End ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions . Logger ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Out ;
import org . j bo s s . seam . annotat ions . Scope ;
import org . j bo s s . seam . annotat ions . datamodel . DataModel ;
import org . j bo s s . seam . l og . Log ;

import dk . eapv . e jb . domain . Answer ;
import dk . eapv . e jb . domain . Category ;
import dk . eapv . e jb . domain . Evaluation ;
import dk . eapv . e jb . domain . Quest ion ;
import dk . eapv . e jb . domain . Review ;
import dk . eapv . e jb . domain . Schema ;
import dk . eapv . e jb . domain . Value ;
import dk . eapv . e jb . s e r v i c e . Eva luat ionConversat ion ;
import static javax . p e r s i s t en c e . PersistenceContextType .EXTENDED;

@State fu l
@Name (” eva luat ionConversat ion ”)
@Scope (ScopeType .CONVERSATION)
@Conversat ional
public class EvaluationConversat ionBean implements Evaluat ionConversat ion {

@DataModel
private List<Answer> eva luat ionAnswerLi st ;

@PersistenceContext (type=EXTENDED)
private EntityManager entityManager ;

@Logger
private Log l og ;

private Category eva luat ionCategory ;
private List<Value> va lu eL i s t ;
private St r i ng eva lua t i on Id ;
private int categoryCount = 0 ;
private Review review ;
private Schema schema ;
private List<Category> c a t e go ryL i s t ;
private Map<Category , L i st<Answer>> totalAnswerMap ;

// Start the eva luat ion by g e t t i n g the review
// and beg ins a conversat ion
// For re l ease 1 a dummy value i s used to s e l e c t review id 1.
// This should be s e l e c t e d from a l i s t

D.3 Session Beans 137

@Begin
public void s t a r tEva lua t i on () {

try {
// TODO: Should be s e l e c t e d from a l i s t instead
review = (Review) entityManager .

createQuery (”FROM Review rew WHERE rew . id = 1”) . g e tS ing l eRe su l t () ;
schema = review . getSchema () ;
c a t e go ryL i s t = schema . ge tCat e go r i e s () ;
totalAnswerMap = new HashMap<Category , L i st<Answer>>();

// Creates a l i s t o f va lues
// Should be re fac tored to l i s t fac tory
this . f i ndVa lu eL i s t () ;

// Creates an empty answer l i s t
for (Category category : c a t e go ryL i s t) {

ArrayList<Answer> answerLi st = new ArrayList<Answer >() ;

// Creates an answer in the answer l i s t
// for each quest ion in the current category
for (Quest ion quest ion : category . ge tQuest ions ()) {

Answer currentAnswer = new Answer () ;
currentAnswer . se tQuest ion (quest ion) ;
answerLi st . add (currentAnswer) ;

}
totalAnswerMap . put (category , answerLi st) ;

}
}
catch (Exception e) {

l o g . debug (”EvaluationBean : Find review f a i l e d ”) ;
}

}

// Creates a l i s t o f answers for the current category
@Factory (” eva luat ionCategory”)
public void f indAnswersListForCategory () {

eva luat ionCategory = cat e go ryL i s t . ge t (categoryCount) ;
eva luat ionAnswerLi st = totalAnswerMap . ge t (eva luat ionCategory) ;

}

// Creates a l i s t o f va lues . Should be re fac tored to a l i s t fac tory
@Factory (” va lu eL i s t ”)
public void f i ndVa lu eL i s t () {

va lu eL i s t = entityManager .
createQuery (”FROM Value va l ORDER BY val . s o r t i ng ”) . g e tRe su l tL i s t () ;

}

// Moves the pointer ” evaluationCategory ” to the next category
// and c a l l s method for creat ing answers
public void nextCategory () {

i f (categoryCount < c a t e go ryL i s t . s i z e ()−1) {
// Move to next category
categoryCount++;
this . f indAnswersListForCategory () ;

}
else {

// End the eva luat ion
this . saveEvaluat ion () ;

}
}

// Moves the pointer ” evaluationCategory ” to the prev ious
// category . I f current i s the f i r s t nothing happens
public void prev iousCategory () {

i f (categoryCount > 0)

138 Source Code

categoryCount−−;
this . f indAnswersListForCategory () ;

}

// Saves the eva luat ion and s e t s the eva luat ionId
// The method ends the conversat ion .
@End
public void saveEvaluat ion () {

Evaluation eva lua t i on = new Evaluation () ;
e va lua t i on . setReview (review) ;
L i st<Answer> saveL i s t = new ArrayList<Answer >() ;

for (L i st<Answer> l i s t : totalAnswerMap . va lues ()) {
saveL i s t . addAll (l i s t) ;

}
eva lua t i on . setAnswers (saveL i s t) ;
entityManager . p e r s i s t (e va lua t i on) ;
e va lua t i on Id = review . ge t Id () + ”−” + eva lua t i on . ge t Id () ;

}

// Destroy method for s t a t e f u l bean
@Remove
@Destroy
public void destroy () {}

// Getter method for evaluationCategory
@Out (r equ i r ed = fa l se)
public Category getEvaluat ionCategory () {

return eva luat ionCategory ;
}

// Getter method for va lueL is t
@Out (r equ i r ed = fa l se)
public List<Value> getValueLi st () {

return va lu eL i s t ;
}

// Getter method for eva luat ionId
// (se t when eva luat ion i s ended and saved)
@Out (r equ i r ed = fa l se)
public St r i ng getEvaluat ionId () {

return eva lua t i on Id ;
}

}

D.3.3 EvaluationResultBean.java

This bean calculates the result of a review. The results are calculated from the
selected category.

package dk . eapv . e jb . bu s i n e s s ;

import static javax . p e r s i s t en c e . PersistenceContextType .EXTENDED;

import java . u t i l . HashMap ;
import java . u t i l . L i s t ;
import java . u t i l .Map ;

D.3 Session Beans 139

import javax . e jb . Remove ;
import javax . e jb . S t a t e f u l ;
import javax . p e r s i s t e n c e . EntityManager ;
import javax . p e r s i s t e n c e . Pers i s tenceContext ;

import org . j bo s s . seam . annotat ions . Destroy ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions . In ;
import org . j bo s s . seam . annotat ions . Logger ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Out ;
import org . j bo s s . seam . l og . Log ;

import dk . eapv . e jb . domain . Answer ;
import dk . eapv . e jb . domain . Category ;
import dk . eapv . e jb . domain . Evaluation ;
import dk . eapv . e jb . domain . Quest ion ;
import dk . eapv . e jb . domain . Schema ;
import dk . eapv . e jb . domain . Value ;
import dk . eapv . e jb . s e r v i c e . Cat e go r i e s ;
import dk . eapv . e jb . s e r v i c e . Departments ;
import dk . eapv . e jb . s e r v i c e . Eva luat ionResu l t ;

@State fu l
@Name (” eva lua t i oRe su l t ”)
public class EvaluationResultBean implements Evaluat ionResu l t {

Departments departments ;
Cat e go r i e s c a t e g o r i e s ;
private List<Question> r e s u l tQu e s t i o nL i s t ;
private Map<Question , Map<Value , Double>> resultValueMap ;

@PersistenceContext (type=EXTENDED)
private EntityManager entityManager ;

@Logger
private Log l og ;

// Finds the quest ions for the current review
// Not implemented correc t l y in re l ease 1
// Uses a dummy value to f ind schema
@Factory (” r e s u l tQu e s t i o nL i s t”)
public void f i ndRe su l tQue s t i onL i s t () {

i f (c a t e g o r i e s != null)
r e s u l tQu e s t i o nL i s t = c a t e g o r i e s . ge tSe l ec tedCategory () .

ge tQuest ions () ;
else {

// TODO: Change from dummy value to
// a va lue based on a review s e l e c t e d
// from a review l i s t
try {

Schema defaultSchema = (Schema) entityManager .
createQuery (”FROM Schema sch WHERE sch . id = 1”) .
g e tS ing l eRe su l t () ;

Category de fau l tCategory = defaultSchema . ge tCat e go r i e s () . ge t (0) ;
r e s u l tQu e s t i o nL i s t = de fau l tCategory . ge tQuest ions () ;

}
catch (Exception e) {

l o g . debug (”EvaluationResultBean : Find schema f a i l e d ”) ;
}

}
}

// Calcu lates the f rac t ion of each va lue
// for the t o t a l answers of quest ions

140 Source Code

// The f rac t ion i s mapped to the va lue and
// the value−f rac t ion map i s mapped to the
// correc t quest ion .
// Is not implemented correc t l y in re l ease 1
// Uses a dummy value
@Factory (” resultValueMap ”)
public void f indResultValueMap () {

// Find po s s i b l e Values
List<Value> va lu eL i s t = entityManager .

createQuery (”FROM Value va l ORDER BY val . id ”) . g e tRe su l tL i s t () ;

// Find eva lua t ions for s e l e c t e d department and review
// TODO: Should be changed to use a review s e l e c t e d
// from a review l i s t
List<Evaluation> e v a l u a t i o nL i s t = entityManager .

createQuery (”FROM Evaluation eva l WHERE eva l . department=1 AND
eva l . review=1”)

. g e tRe su l tL i s t () ;

// I n i t i a t e ResultMap with quest ion va lue in te g e r pairs
resultValueMap = new HashMap<Question , Map<Value , Double >>();

// Array for quest ions va lues and count
int [] [] noOfAnswersPerQuestionArray =

new int [r e s u l tQu e s t i o nL i s t . s i z e ()] [va l u eL i s t . s i z e ()] ;

// Count number of va lues for each quest ion
for (Evaluation ev : e v a l u a t i o nL i s t) {

for (Answer ans : ev . getAnswers ()) {
noOfAnswersPerQuestionArray [r e s u l tQu e s t i onL i s t .

indexOf (ans . ge tQuest ion ())]
[va l u eL i s t . indexOf (ans . getValue ())] += 1 ;

}
}

// Count a va lues f rac t ion of the t o t a l answers to a quest ion
int indexOfQuest ionInLi st = 0 ;
for (int [] quest ionCounts : noOfAnswersPerQuestionArray) {

int totalAnswersForQuest ion = 0 ;
for (int valueCounts : quest ionCounts) {

totalAnswersForQuest ion += valueCounts ;
}
Map<Value , Double> va lu eFrac t i on s = new HashMap<Value , Double >() ;
int indexOfValue InLi st = 0 ;
for (int valueCounts : quest ionCounts) {

va lu eFrac t i on s . put (va lu eL i s t . ge t (indexOfValue InLi st) ,
(double) (valueCounts / totalAnswersForQuest ion)) ;

}
resultValueMap . put (r e s u l tQu e s t i o nL i s t . ge t (indexOfQuest ionInLi st) ,

va lu eFrac t i on s) ;
}

}

// Destroy method for s t a t e f u l bean
@Destroy @Remove
public void destroy () {}

// Se t t e r method for departmens
@In (r equ i r ed = fa l se)
public void setDepartments(Departments departments) {

this . departments = departments ;
}

// Se t t e r method for ca te gor ie s
@In (r equ i r ed = fa l se)

D.3 Session Beans 141

public void s e tCat e go r i e s (Cat e go r i e s c a t e g o r i e s) {
this . c a t e g o r i e s = ca t e g o r i e s ;

}

// Getter method for re su l tQues t ionL is t
@Out (r equ i r ed = fa l se)
public List<Question> ge tRe su l tQues t ionL i st () {

return r e s u l tQu e s t i o nL i s t ;
}

// Getter method for resultValueMap
@Out (r equ i r ed = fa l se)
public Map<Question , Map<Value , Double>> getResultValueMap() {

return resultValueMap ;
}

}

D.3.4 SchemasBean.java

Factory for creating a list of schemas

package dk . eapv . e jb . bu s i n e s s ;

import java . u t i l . L i s t ;

import javax . e jb . Remove ;
import javax . e jb . S t a t e f u l ;
import javax . p e r s i s t e n c e . EntityManager ;
import javax . p e r s i s t e n c e . Pers i s tenceContext ;
import static javax . p e r s i s t e n c e . PersistenceContextType .EXTENDED;

import org . j bo s s . seam . ScopeType ;
import org . j bo s s . seam . annotat ions . Conversat iona l ;
import org . j bo s s . seam . annotat ions . Destroy ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions . In ;
import org . j bo s s . seam . annotat ions . Logger ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Out ;
import org . j bo s s . seam . annotat ions . Scope ;
import org . j bo s s . seam . annotat ions . datamodel . DataModel ;
import org . j bo s s . seam . annotat ions . datamodel . DataModelSe lect ion ;
import org . j bo s s . seam . l og . Log ;

import dk . eapv . e jb . domain . Category ;
import dk . eapv . e jb . domain . Schema ;
import dk . eapv . e jb . s e r v i c e . Cat e go r i e s ;
import dk . eapv . e jb . s e r v i c e . Schemas ;

@State fu l
@Name (”schemas”)
public class SchemasBean implements Schemas {

@PersistenceContext (type=EXTENDED)
private EntityManager entityManager ;

@DataModel
L i st<Schema> schemaList ;

142 Source Code

@DataModelSelection
Schema schema ;

@Logger
Log l og ;

// Returns the schema se l e c t e d from the datamodel
public Schema getSelectedSchema () {

return schema ;
}

// Creates a l i s t o f schemas ordered by the id
// descending thereby pu t t ing the newest schemas
// at the head of the l i s t
@Factory(” schemaList”)

public void f indSchemas () {
schemaList = entityManager .

createQuery (”FROM Schema scm ORDER BY scm . id DESC”) . g e tRe su l tL i s t () ;
}

// Destroy method for s t a t e f u l bean
@Destroy

@Remove
public void destroy () {}

}

D.3.5 CategoriesBean.java

Factory for creating a list of categories. The list is based on the selected schema

package dk . eapv . e jb . bu s i n e s s ;

import java . u t i l . L i s t ;

import javax . e jb . Remove ;
import javax . e jb . S t a t e f u l ;
import javax . p e r s i s t en c e . EntityManager ;
import javax . p e r s i s t en c e . Pers i s tenceContext ;

import org . j bo s s . seam . annotat ions . Destroy ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions . In ;
import org . j bo s s . seam . annotat ions . Logger ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . datamodel . DataModel ;
import org . j bo s s . seam . annotat ions . datamodel . DataModelSe lect ion ;
import org . j bo s s . seam . l og . Log ;

import dk . eapv . e jb . domain . Category ;
import dk . eapv . e jb . domain . Schema ;
import dk . eapv . e jb . s e r v i c e . Cat e go r i e s ;
import dk . eapv . e jb . s e r v i c e . SchemaEditor ;
import static javax . p e r s i s t en c e . PersistenceContextType .EXTENDED;

@State fu l

D.3 Session Beans 143

@Name (” c a t e g o r i e s ”)
public class CategoriesBean implements Catego r i e s {

private Schema schema ;
private SchemaEditor schemaEditor ;

@PersistenceContext (type=EXTENDED)
private EntityManager entityManager ;

@DataModel
private List<Category> c a t e go ryL i s t ;

@DataModelSelection
private Category category ;

@Logger
private Log l og ;

// Creates a l i s t o f ca t e gor ie s based on the
// ac t i v e schema of the schemaEditor
@Factory(” ca t e go ryL i s t ”)

public void f i ndCatego r i e s () {
schema = schemaEditor . getSe lectedSchema () ;
i f (schema == null) {

l o g . debug (”CategoriesBean : schema i s n u l l ”) ;
c a t e go ryL i s t = null ;

}
else

c a t e go ryL i s t = schema . ge tCat e go r i e s () ;
}

// Moves the category s e l e c t e d from the datamodel
// one step up in the sor t ing rank
public void categoryMoveUp() {

i f (category . g e tSo r t i ng () > 1) {
int indexOfCurrentCategory = cat e go ryL i s t . indexOf (category) ;
i f (indexOfCurrentCategory != 0) {

// Current category
c a t e go ryL i s t . remove (indexOfCurrentCategory) ;
category . s e t S o r t i n g (category . g e tSo r t i ng () −1);
c a t e go ryL i s t . add (indexOfCurrentCategory −1, category) ;

// The switched category
Category nextCategory = cat e go ryL i s t . remove (indexOfCurrentCategory) ;
nextCategory . s e t S o r t i n g (nextCategory . g e tSo r t i ng ()+1) ;
c a t e go ryL i s t . add (indexOfCurrentCategory , nextCategory) ;

}
}

}

// Destroy method of s t a t e f u l bean
@Destroy

@Remove
public void destroy () {}

// Se t t e r method for schema
@In (r equ i r ed = fa l se)

public void setSchema(Schema schema) {
this . schema = schema ;

}

// Se t t e r method for schemaEditor
@In (r equ i r ed = fa l se)

public void setSchemaEditor(SchemaEditor schemaEditor) {

144 Source Code

this . schemaEditor = schemaEditor ;
}

// Getter method for the category s e l e c t e d from the
// datamodel
public Category getSe l ec tedCategory () {

return category ;
}

}

D.3.6 QuestionsBean.java

Factory for creating a list of questions. The list is based on the selected category.

package dk . eapv . e jb . bu s i n e s s ;

import java . u t i l . L i s t ;

import javax . e jb . Remove ;
import javax . e jb . S t a t e f u l ;
import javax . p e r s i s t en c e . EntityManager ;
import javax . p e r s i s t en c e . Pers i s tenceContext ;
import static javax . p e r s i s t en c e . PersistenceContextType .EXTENDED;

import org . j bo s s . seam . ScopeType ;
import org . j bo s s . seam . annotat ions . Conversat iona l ;
import org . j bo s s . seam . annotat ions . Destroy ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions . In ;
import org . j bo s s . seam . annotat ions . Logger ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Out ;
import org . j bo s s . seam . annotat ions . Scope ;
import org . j bo s s . seam . annotat ions . datamodel . DataModel ;
import org . j bo s s . seam . annotat ions . datamodel . DataModelSe lect ion ;
import org . j bo s s . seam . l og . Log ;

import dk . eapv . e jb . domain . Category ;
import dk . eapv . e jb . domain . Quest ion ;
import dk . eapv . e jb . domain . Schema ;
import dk . eapv . e jb . s e r v i c e . Cat e go r i e s ;
import dk . eapv . e jb . s e r v i c e . Quest ions ;
import dk . eapv . e jb . s e r v i c e . SchemaEditor ;

@State fu l
@Name (” que s t i on s ”)
public class QuestionsBean implements Questions {

private Catego r i e s c a t e g o r i e s ;
private Category se l e c t edCatego ry ;

@PersistenceContext (type=EXTENDED)
private EntityManager entityManager ;

@DataModel
L i st<Question> que s t i onL i s t ;

D.3 Session Beans 145

@DataModelSelection
Quest ion quest ion ;

@Logger
Log l og ;

// Returns the quest ion s e l e c t e d from the
// datamodel
public Question ge tS e l e c t edQue st ion () {

return quest ion ;
}

// Produces a l i s t o f quest ions based on the
// s e l e c t e d category
public void f i ndQue s t i ons () {

s e l e c t edCatego ry = c a t e g o r i e s . ge tSe l ec tedCategory () ;
i f (s e l e c t edCatego ry == null) {

l o g . debug (”QuestionsBean : s e l e c t edCatego ry i s n u l l ”) ;
}
else

que s t i onL i s t = se l e c t edCatego ry . ge tQuest ions () ;
}

// Moves the s e l e c t e d quest ion form the datamodel
// one step up in the sor t ing rank
public void questionMoveUp() {

i f (quest ion . g e tSo r t i ng () > 1) {
int indexOfCurrentQuest ion = que s t i onL i s t . indexOf (quest ion) ;
i f (indexOfCurrentQuest ion != 0) {

// Current quest ion
que s t i onL i s t . remove (indexOfCurrentQuest ion) ;
quest ion . s e t S o r t i n g (quest ion . g e tSo r t i ng () −1);
que s t i onL i s t . add (indexOfCurrentQuestion−1, quest ion) ;

// The switched quest ion
Question nextQuest ion = que s t i onL i s t . remove (indexOfCurrentQuest ion) ;
nextQuest ion . s e t S o r t i n g (nextQuest ion . g e tSo r t i ng ()+1) ;
que s t i onL i s t . add (indexOfCurrentQuestion , nextQuest ion) ;

}
}

}

// Destroy method for s t a t e f u l bean
@Destroy

@Remove
public void destroy () {}

// Se t t e r method for Categories
@In (r equ i r ed = fa l se)

public void s e tCat e go r i e s (Cat e go r i e s c a t e g o r i e s) {
this . c a t e g o r i e s = ca t e g o r i e s ;

}

// Getter method for Category
@Out (r equ i r ed = fa l se)

public Category getCategory () {
return s e l e c t edCatego ry ;

}
}

146 Source Code

D.3.7 ReviewsBean,java

Factory for creating a list of reviews. The list is based on the selected depart-
ment. Not fully implemented in release 1

package dk . eapv . e jb . bu s i n e s s ;

import java . u t i l . L i s t ;

import javax . e jb . Remove ;
import javax . e jb . S t a t e f u l ;
import javax . p e r s i s t en c e . EntityManager ;
import javax . p e r s i s t en c e . Pers i s tenceContext ;

import org . j bo s s . annotat ion . e jb . cache . s imple . CacheConfig ;
import org . j bo s s . seam . ScopeType ;
import org . j bo s s . seam . annotat ions . Conversat iona l ;
import org . j bo s s . seam . annotat ions . Destroy ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions . In ;
import org . j bo s s . seam . annotat ions . Logger ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Out ;
import org . j bo s s . seam . annotat ions . Scope ;
import org . j bo s s . seam . annotat ions . datamodel . DataModel ;
import org . j bo s s . seam . annotat ions . datamodel . DataModelSe lect ion ;
import org . j bo s s . seam . l og . Log ;

import dk . eapv . e jb . domain . Review ;
import dk . eapv . e jb . domain . Schema ;
import dk . eapv . e jb . s e r v i c e . Reviews ;
import dk . eapv . e jb . s e r v i c e . SchemaEditor ;
import static javax . p e r s i s t en c e . PersistenceContextType .EXTENDED;

@State fu l
@Name (” rev iews ”)

public class ReviewsBean implements Reviews {
@PersistenceContext (type=EXTENDED)

private EntityManager entityManager ;

@DataModel
L i st<Review> r e v i ewL i s t ;

@DataModelSelection
Review review ;

@Logger
Log l og ;

// Returns the review s e l e c t e d from the datamodel
public Review getSe l ec tedRev iew () {

return review ;
}

// Created a l i s t o f reviews based on the s e l e c t e d
// department .
// Not f u l l y implemented − uses dummy value
@Factory(” r ev i ewL i s t ”)

public void f indReviews () {
r e v i ewL i s t = entityManager .

createQuery (”FROM Review rew WHERE rew . id=1”) . g e tRe su l tL i s t () ;

D.3 Session Beans 147

}

// Destroy method for s t a t e f u l bean
@Destroy

@Remove
public void destroy () {}

}

D.3.8 DepartmentsBean.java

Factory for creating a list of departments

package dk . eapv . e jb . bu s i n e s s ;

import java . u t i l . L i s t ;

import javax . e jb . Remove ;
import javax . e jb . S t a t e f u l ;
import javax . p e r s i s t e n c e . EntityManager ;
import javax . p e r s i s t e n c e . Pers i s tenceContext ;
import static javax . p e r s i s t e n c e . PersistenceContextType .EXTENDED;

import org . j bo s s . seam . annotat ions . Destroy ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions . Logger ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Out ;
import org . j bo s s . seam . annotat ions . datamodel . DataModel ;
import org . j bo s s . seam . annotat ions . datamodel . DataModelSe lect ion ;
import org . j bo s s . seam . l og . Log ;

import dk . eapv . e jb . domain . Department ;
import dk . eapv . e jb . s e r v i c e . Departments ;

@State fu l
@Name (”departments ”)
public class DepartmentsBean implements Departments {

private Department se lectedDepartment ;

@PersistenceContext (type=EXTENDED)
private EntityManager entityManager ;

@DataModel
L i st<Department> departmentList ;

@DataModelSelection
Department department ;

@Logger
Log l og ;

// Creates a l i s t o f departments ordered by
// the name of the department
@Factory(” departmentList ”)

public void f indDepartments () {
departmentList = entityManager .

createQuery (”FROM Department dpt ORDER BY dpt . name”) . g e tRe su l tL i s t () ;

148 Source Code

l o g . debug (”Lookup Departments”) ;
}

// Destroy method of s t a t e f u l bean
@Destroy

@Remove
public void destroy () {}

// Getter method for department
@Out (r equ i r ed = fa l se)

public Department getSe lectedDepartment () {
return se lectedDepartment ;

}
}

D.3.9 TimeBean.java

Simple time bean providing a date for display

package dk . eapv . e jb . bu s i n e s s ;

import java . t e x t . SimpleDateFormat ;
import java . u t i l . Calendar ;
import java . u t i l . Loca le ;

import javax . e jb . S t a t e l e s s ;

import org . j bo s s . seam . ScopeType ;
import org . j bo s s . seam . annotat ions . Factory ;
import org . j bo s s . seam . annotat ions .Name;
import org . j bo s s . seam . annotat ions . Out ;
import org . j bo s s . seam . annotat ions . Scope ;

import dk . eapv . e jb . s e r v i c e . Time ;

@Sta t e l e s s
@Name (”timeBean”)
@Scope (ScopeType .PAGE)

public class TimeBean implements Time {

private St r i ng dateShort ;

// Method for creat ing a short date time s t r ing
// Uses Danish Locale
@Factory (” dateShort ”)
public void pub l i shDateShort () {

Calendar c a l = Calendar . g e t In s tanc e (new Loca le (”da” , ”DK”)) ;
SimpleDateFormat sd f =

new SimpleDateFormat (”d . MMMMMMMMMMM yyyy” , new Loca le (”da” , ”DK”)) ;
dateShort = sd f . format (c a l . getTime ()) ;

}

// Getter method for short time s t r ing
@Out
public St r i ng getDateShort () {

return dateShort ;
}

}

D.4 Configuration files 149

D.4 Configuration files

The JEE application is configured using xml files. Most of the files are described
in the first part of the report.

D.4.1 ejb-jar.xml

The ejb-jar.xml file normally configures the beans of the application thereby
making them manages beans. In JBoss Seam this is done through interceptors.
These are configures here to make them available to the EJB container.

<ejb−j a r xmlns=” ht tp : // java . sun . com/xml/ns / javaee ”
xm ln s : x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”
xs i : schemaLocat ion=” ht tp : // java . sun . com/xml/ns/ javaee

h t tp : // java . sun . com/xml/ns / javaee / ejb−j a r 3 0 . xsd”
version=” 3 . 0 ”>

< i n t e r c e p t o r s>
< i n t e r c ep to r>

<i n t e r c ep to r−c l a s s>
org . j bo s s . seam . e jb . SeamInterceptor

</ in t e r c ep to r−c l a s s>
</ i n t e r c e p t o r>

</ i n t e r c ep t o r s>

<assembly−d e s c r i p t o r>
<i n t e r c ep to r−b ind ing>

<ejb−name>∗</ejb−name>
<i n t e r c ep to r−c l a s s>

org . j bo s s . seam . e jb . SeamInterceptor
</ in t e r c ep to r−c l a s s>

</ in t e r c ep to r−b ind ing>
</assembly−d e s c r i p t o r>

</ ejb−j a r>

D.4.2 persistence.xml

The persistence unit is configured in this file. It is tightly connedted with the
eapv-ds.xml file which configures the data source - that is the connection to the
database.

<p e r s i s t e n c e>

<pe r s i s t en c e −un i t name=”eapv”>
<j ta−data−source>j av a : /eapvDS</ j ta−data−source>

<p r ope r t i e s>
<property name=” hibernate . d i a l e c t ”

150 Source Code

value=”org . h ibe rnate . d i a l e c t . MySQLInnoDBDialect”/>
<property name=” jbos s . e n t i t y . manager . f a c t o ry . j nd i . name”

va lue=” j a va : /EntityManagerFactories / entityManager”/>
</ p rop e r t i e s>

</ pe r s i s t en c e −un i t>
</ p e r s i s t en c e>

D.4.3 faces-config.xml

In standard JSF applications the navigation rules of the application is specified
in this file. In the APV application this is handled by JBoss Seam - and this is
configured here. The language bundle is also configured in this file.

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>
< !DOCTYPE f a c e s−c on f i g
PUBLIC ”−//Sun Microsystems , Inc . //DTD JavaServer Faces Conf ig 1 .0//EN”
” h t tp : // java . sun . com/dtd/web−f a c e s c o n f i g 1 0 . dtd”>
<f a c e s−c on f i g>

< !−− A phase l i s t e n e r i s needed by a l l Seam app l i ca t ions −−>

< l i f e c y c l e>

<phase− l i s t e n e r>
org . j bo s s . seam . j s f . SeamPhaseListener

</phase−l i s t e n e r>

</ l i f e c y c l e>

<app l i c a t i o n>

<view−hand le r>
org . j bo s s . seam . u i . f a c e l e t . SeamFaceLetViewHandler

</view−hand le r>

<message−bundle>eapv</message−bundle>
</ app l i c a t i o n>

</ f ac e s−c on f i g>

D.4.4 pages.xml

This file contains the JBoss Seam navigation rules for the navigation in the ap-
plication.

< !DOCTYPE pages PUBLIC

”−//JBoss /Seam Pages Conf igurat ion DTD 1.1//EN”
” h t tp : // j bo s s . com/products /seam/pages −1.1. dtd”>

<pages no−conversat ion−view−id=”/home . xhtml”>

<page view−id=”/home . xhtml”>
<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>

D.4 Configuration files 151

<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/ schemaEditor . xhtml”>
<nav igat ion from−ac t i on=”#{schemaEditor . categoryEdi t }”>

<r e d i r e c t view−id=”/ categoryEdi t . xhtml”/>
</ nav igat ion>

<nav igat ion from−ac t i on=”#{schemaEditor . categoryAdd}”>
<r e d i r e c t view−id=”/categoryAdd . xhtml”/>

</ nav igat ion>

<nav igat ion from−ac t i on=”#{schemaEditor . quest ionEdi t }”>
<r e d i r e c t view−id=”/ quest ionEdi t . xhtml”/>

</ nav igat ion>

<nav igat ion from−ac t i on=”#{schemaEditor . questionAdd}”>
<r e d i r e c t view−id=”/questionAdd . xhtml”/>

</ nav igat ion>

<nav igat ion from−ac t i on=”#{schemaEditor . schemaSave}”>
<r e d i r e c t view−id=”/home . xhtml”/>

</ nav igat ion>

<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>
<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/schemaAdd. xhtml”>
<nav igat ion from−ac t i on=”#{schemaEditor . schemaAdd}”>

<r e d i r e c t view−id=”/schemaEditor . xhtml”/>
</ nav igat ion>

<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>
<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/ schemaList . xhtml”>
<nav igat ion from−ac t i on=”#{schemaEditor . schemaEdit}”>

<r e d i r e c t view−id=”/schemaEditor . xhtml”/>
</ nav igat ion>

<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>
<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/ categoryAdd . xhtml”>
<nav igat ion from−ac t i on=”#{schemaEditor . categorySave }”>

<r e d i r e c t view−id=”/schemaEditor . xhtml”/>
</ nav igat ion>

<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>
<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/ categoryEdi t . xhtml”>
<nav igat ion from−ac t i on=”#{schemaEditor . categorySave }”>

<r e d i r e c t view−id=”/schemaEditor . xhtml”/>
</ nav igat ion>

152 Source Code

<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>
<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/questionAdd . xhtml”>
<nav igat ion from−ac t i on=”#{schemaEditor . quest ionSave}”>

<r e d i r e c t view−id=”/schemaEditor . xhtml”/>
</ nav igat ion>

<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>
<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/ quest ionEdi t . xhtml”>
<nav igat ion from−ac t i on=”#{schemaEditor . quest ionSave}”>

<r e d i r e c t view−id=”/schemaEditor . xhtml”/>
</ nav igat ion>

<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>
<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/reviewAdd . xhtml”>
<nav igat ion from−ac t i on=”#{reviewAdd . reviewAdd}”>

<r e d i r e c t view−id=”/home . xhtml”/>
</ nav igat ion>

<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>
<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>

<page view−id=”/ eva luat ionConversat ion . xhtml”>
<nav igat ion from−ac t i on=”#{eva luat ionConversat ion . s t a r tEva lua t i on }”>

<r e d i r e c t view−id=” eva luat ionConversat ion . xhtml”>
</ nav igat ion>

</page>
</ pages>

D.4.5 web.xml

This file contains configuration for using JBoss Seam and MyFaces in the web
application (view). Most of it is standard configuration for JBoss Seam appli-
cations.

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>

<web−app version=” 2 . 5 ”
xmlns=” ht tp : // java . sun . com/xml/ns/ javaee ”
xm ln s : x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”
xs i : schemaLocat ion=” ht tp : // java . sun . com/xml/ns / javaee

h t tp : // java . sun . com/xml/ns / javaee /web−app 2 5 . xsd”>

D.4 Configuration files 153

< !−− JBoss Seam −−>

< l i s t e n e r>

< l i s t e n e r −c l a s s>org . j bo s s . seam . s e r v l e t . SeamListener</ l i s t e n e r −c l a s s>
</ l i s t e n e r>

< !−− Propagate conversat ions across r e d i r e c t s −−>

< f i l t e r>

< f i l t e r −name>Seam Redi rec t F i l t e r</ f i l t e r −name>
< f i l t e r −c l a s s>org . j bo s s . seam . s e r v l e t . SeamRedi rec tF i l te r</ f i l t e r −c l a s s>

</ f i l t e r>

< f i l t e r −mapping>
< f i l t e r −name>Seam Redi rec t F i l t e r</ f i l t e r −name>
<ur l−patte rn>∗ . seam</ ur l−patte rn>

</ f i l t e r −mapping>

< f i l t e r>

< f i l t e r −name>Seam Exception F i l t e r</ f i l t e r −name>
< f i l t e r −c l a s s>

org . j bo s s . seam . s e r v l e t . SeamExceptionFi lter</ f i l t e r −c l a s s>
</ f i l t e r>

< f i l t e r −mapping>
< f i l t e r −name>Seam Exception F i l t e r</ f i l t e r −name>
<ur l−patte rn>∗ . seam</ ur l−patte rn>

</ f i l t e r −mapping>

< !−− JSF −−>

<context−param>

<param−name>javax . f a c e s .STATE SAVING METHOD</param−name>
<param−value>c l i e n t</param−value>

</ context−param>

<context−param>

<param−name>javax . f a c e s .DEFAULT SUFFIX</param−name>
<param−value> . xhtml</param−value>

</ context−param>

<context−param>

<param−name> f a c e l e t s .DEVELOPMENT</param−name>
<param−value>t rue</param−value>

</ context−param>

<s e r v l e t>
<s e r v l e t−name>Faces S e r v l e t</ s e r v l e t−name>
<s e r v l e t−c l a s s>javax . f a c e s . webapp . Fac e sS e rv l e t</ s e r v l e t−c l a s s>
<load−on−star tup>1</ load−on−star tup>

</ s e r v l e t>

< !−− Faces Se rv l e t Mapping −−>

<s e r v l e t−mapping>
<s e r v l e t−name>Faces S e r v l e t</ s e r v l e t−name>
<ur l−patte rn>∗ . seam</ ur l−patte rn>

</ s e r v l e t−mapping>

< !−− MyFaces −−>

< l i s t e n e r>

< l i s t e n e r −c l a s s>
org . apache . myfaces . webapp . S ta r tupSe rv l e tContex tL i s t ener

</ l i s t e n e r −c l a s s>
</ l i s t e n e r>

<s e s s i on−c on f i g>

<s e s s i on−t imeout>15</ se s s i on−t imeout>

154 Source Code

</ se s s i on−c on f i g>

<context−param>

<param−name> f a c e l e t s . LIBRARIES</param−name>
<param−value>/WEB−INF/tomahawk . t a g l i b . xml</param−value>

</ context−param>

</web−app>

D.4.6 eapv-ds.xml

This file configures the connection to the database server. The files is often
placed outside the .ear package deployed to the JEE server.

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>

<datasource s>
< l o c a l −tx−datasource>

<jnd i−name>eapvDS</ jnd i−name>
<connection−ur l>j db c :mysq l : // l o c a lh o s t : 3 3 0 6 /eapv</ connection−ur l>
<dr ive r−c l a s s>com . mysql . jdbc . Dr ive r</ dr ive r−c l a s s>
<user−name>java</ user−name>
<password>java</password>

<dbname>eapv</dbname>
<min−pool−s i z e>5</min−pool−s i z e>

<max−pool−s i z e>20</max−pool−s i z e>

<i d l e−timeout−minutes>5</ id l e−timeout−minutes>
<track−statements/>
<except ion−so r t e r−c l a s s−name>

com . mysql . jdbc . i n t e g r a t i o n . j bo s s . ExtendedMysqlExceptionSorter
</ except ion−so r t e r−c l a s s −name>
<val id−connection−checker−c l a s s −name>

com . mysql . jdbc . i n t e g r a t i o n . j bo s s . MysqlValidConnectionChecker
</ va l id−connection−checker−c l a s s−name>

</ l o c a l −tx−datasource>
</ datasource s>

Bibliography

[1] Enterprise JavaBeans 3.0 • Bill Burke & Richard Monson-Haefel
O’Reilly, 2006, 5th edition • ISBN: 9780596009786

This book is called the definitive guide for EJB 3.0 and the Java Persistence
API. The book covers the three kinds of EJBs and how the are used in Java
EE 5.

[2] Beginning JBoss Seam • Joseph Faisal Nusairat
APress, 2007 • ISBN: 1590597923

This book is one of the first on the JBoss Seam framework. It gives a good
introduction to the framework, but is not an in-depth advanced reference
book.

[3] Pro EJB 3 - Java Persistence API • Michael Keith
APress, 2006 • ISBN: 1590596455

[4] Java Precisely • Peter Sestoft
The MIT Press, 2005, 2nd edition • ISBN: 0262693259

This book is a concise reference to Java version 5.0. It is not a starters book
as it presents the entire language in less than 150 pages.

[5] JBoss at Work: A Practical Guide •Tom Marrs & Scott Davis
O’Reilly, 2006 • ISBN: 0596007345

This book is a good starters guide for setting up JBoss Application Server
as your JEE platform. Unfortunately it only covers J2EE and therefore not
any of the newer specifications of JEE 5.

156 BIBLIOGRAPHY

[6] Introduktion til Extreme programming • Kent Beck
IDG, 2002 • ISBN: 8778435099

This book is called the ultimate book on Extreme Programming and is writ-
ten by Kent Beck, who is one of the developers of Extreme Programming.
This is the danish translation of the book.

[7] Database Systems: The Complete Book • Hector Garcia-Molina & Jeffrey
D. Ullman & Jennifer Widom
Prentice-Hall, Int. Edition 2001 • ISBN: 0130980439

[8] Slides from Component Based Design and J2EE at ITU • Rasmus Lund
& Jakob Bendsen
IT University, Copenhagen 2006

The slides are part of the course material on J2EE held by Peter Seetoft,
Jakob Benden and Rasmus Lund during spring 2006. The slides are the
base of most of the section on Servlets.

[9] http://docs.jboss.com/seam/1.1.6.GA/reference/en/html/index.html

This website contains the reference documentation for JBoss Seam version
1.1.6.GA. Unfortunately the documentations is not complete but should
explain most of the concepts.

[10] http://www.wikipedia.org

Wikipedia is a web-based free content encyclopedia project. The content
of the encyclopedia is written by volunteers and everybody may edit all
subjects.

Index

, 15

Agile Software Development, 44
Application scope, 12
APV, 57
APV methodology, 57
Arbejdsplads Vurdering, 57

Conversational State, 32

Data source, 22
doDelete, 5
doGet, 5
doPost, 5
doPut, 5

EJB QL, 29
EntityManager, 22
Extreme Programming, 43

HttpServlet, 5
HttpServletRequest object, 7
HttpServletResponse object, 7

Initiated state, 7
Internationalization, 18

Java Persistence, 22
Java Server Faces, 15
Java Server Pages, 10
JavaBeans in JSP, 12
JoinColumn, 26

JSP, 10
jspDestroy, 10
jspInit, 10
jspService, 10

Language bundle, 19
Lifecycle of a Servlet, 6
Loaded state, 6

message parameter, 38
Model 1, 4
Model 2, 4, 15
MVC pattern, 4

Nunc, 58

Page scope, 12
Persistence context, 23
Persistence unit, 22
Primary key, 24

RAD, 15
Rapid Application Development, 15
Request scope, 12
required attribute, 17, 38

Scopes, 11
Service method, 7
Session scope, 12
Structured Query Language, 29

Tag Library Descriptor, 14

158 INDEX

Thermo Fischer Scientific, 58

Unloaded state, 7

Validation in Java Server Faces, 16
Validation in the Model layer, 37

XP, 43

	Summary
	Resumé
	Preface
	Acknowledgements
	I Java Enterprise Edition as Technology
	1 Java Enterprise Edition
	1.1 Web application
	1.2 Enterprise Java Beans

	2 Jboss Application Server
	2.1 JBoss Seam

	II Xtreme Programming as Methodology
	3 Extreme Programming
	3.1 Background for XP
	3.2 What is Extreme Programming?
	3.3 Practices of Extreme Programming
	3.4 Strategies

	III e-assesment system
	4 Introduction to the project
	4.1 Assessment of safety and health
	4.2 Thermo Fischer Scientific and APV
	4.3 Existing application

	5 Project specification
	5.1 General considerations
	5.2 Requirements
	5.3 Technology
	5.4 Methodology
	5.5 System metaphor

	6 Planning
	6.1 User stories
	6.2 Value and Risk
	6.3 Releases

	7 Design
	7.1 The web application
	7.2 Domain Data
	7.3 Domain logic
	7.4 Refactoring to list factories

	8 Test
	8.1 Unit testing JEE
	8.2 Unit testing JBoss Seam

	9 Conclusion
	9.1 Java Enterprise Edition
	9.2 JBoss Seam
	9.3 Extreme Programming
	9.4 e-assessment system
	9.5 Personal experiences and lessons learned

	A Annotations in Java 5.0
	A.1 Annotation

	B Working Environment Act
	C User Stories
	C.1 User administration
	C.2 Department administration
	C.3 Schema administration
	C.4 Review administration
	C.5 Evaluation
	C.6 Results
	C.7 Action-plan administration
	C.8 Statistics
	C.9 Accessibility

	D Source Code
	D.1 Web pages
	D.2 Entity Beans
	D.3 Session Beans
	D.4 Configuration files

