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Preface

This report summarizes the results of the project Intelligent wind power prediction systems

which has been conducted over the period May 2004 to April 2007. The project was
financially supported by the Danish utilities PSO fund (FU-4101) and with Informatics
and Mathematical Modelling, Technical University of Denmark as the entity responsible
for the project. The further participants in the project were Risø National Laboratory
(part of the Technical University of Denmark as of January 1, 2007), RAM-løse edb,
Elsam Kraft A/S and Energi E2 A/S (now DONG Energy A/S). Furthermore, Vattenfall
participated in some of the last project meetings. The transmission companies, first
Elkraft System and then Energinet.dk, followed the progress and attended meetings. With
the aim of fertilizing international cooperation, parts of the project have been conducted
in collaboration with sub-contractors. Specifically, CENER in Spain and VTT in Finland.
The project budget was DKK 3.37 million, of which DKK 2.07 million was granted under
the PSO rules.

Measurements of power production were provided by the project participants. Further-
more power data have been provided by ACCIONA in Spain. Meteorological forecasts
have been provided by the Danish and Spanish meteorological institutes and the National
Centers for Environmental Prediction (USA). The forecasts from Deutscher Wetterdienst
were obtained commercially via financial support by the Danish PSO fund under contract
101295 (FU-2101). Furthermore, CENER in Spain provided Alaiz wind farm data and
forecasts based on MM5 modelling and LocalPred for Spain and for the meteorological
forecasts from the National Centers for Environmental Prediction for Denmark. Data on
power prices were provided by Nord Pool.

The first experiments using mesoscale modelling for the Aliaz wind farm were conducted
under the EU funded ANEMOS project (ENK5-CT-2002-00665), see Giebel et al. (2006).
The Intelligent Prognosis project has benefitted from the experience gained in that earlier
project. Karlsruhe University/Research Center Karlsruhe is acknowledged for permission
to use KAMM. As part of the collaborative partnerships developing the mesoscale model
WRF, the following institutions in the U.S.A. are acknowledged; the National Center for
Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration
(the National Centers for Environmental Prediction (NCEP) and the Forecast Systems
Laboratory (FSL), the Air Force Weather Agency (AFWA), the Naval Research Labora-
tory, Oklahoma University, and the Federal Aviation Administration (FAA).

The project and the results were presented at the following conferences:

• European Wind Energy Conference & Exhibition 2006, Athens, Greece, 2006 (poster)
(Nielsen et al., 2006b).

• Global Windpower 2006, Adelaide, South Australia (poster) (Nielsen et al., 2006b).
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• European Wind Energy Conference & Exhibition 2007. Milan, Italy (talk and cor-
responding paper in the Scientific Proceedings) (Nielsen et al., 2007b).

At the conference in 2007, most of the main results of the project were presented.

The following publications were produced as part of the project:

Badger et al. (2007): Badger J., Giebel G., Larsen X.G., Nielsen T.S., Nielsen H.Aa.,
Madsen H., and Tøfting J. Report on the use of stability parameters and mesoscale
modelling in short-term prediction. Technical Report Risø-R-1614, Risø National
Laboratory, Technical University of Denmark, Frederiksborgvej 399, DK-4000 Roskilde,
2007.
http://www.risoe.dk/rispubl/VEA/ris-r-1614.pdf

Christiansen et al. (2007): Christiansen L.E., Nielsen H.Aa., Nielsen T.S., and Mad-
sen H. Automatic selection of tuning parameters in wind power prediction. Techni-
cal Report IMM-2007-12, Informatics and Mathematical Modelling, Technical Uni-
versity of Denmark, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby,
2007.
http://www.imm.dtu.dk/pubdb/views/publication details.php?id=5316

Holttinen and Ikäheimo (2007): Holttinen H. and Ikäheimo J. Wind prediction and
bids in Denmark. VTT Energia, 2007.
http://www.imm.dtu.dk/∼han/pub/FU4101 DKvind bids and balance VTT 2006.pdf

Nielsen et al. (2005): Nielsen H.Aa., Nielsen T.S., Madsen H., and Giebel G. Can-
didate prediction models and methods. Informatics and Mathematical Modelling,
Technical University of Denmark, 2005.
http://www.imm.dtu.dk/∼han/pub/FU4101 Candidate pred models.pdf

Nielsen et al. (2007a): Nielsen H.Aa., Nielsen T.S., Madsen H., San Isidro M.J., and
Marti I. Optimal combination of wind power forecasts. Wind Energy, 2007. Ac-
cepted.
http://www.imm.dtu.dk/∼han/pub/FU4101 WEpaperCFCaccepted.pdf

Nielsen et al. (2007b): Nielsen H.Aa., Pinson P., Christiansen L.E., Nielsen T.S., Mad-
sen H., Badger J., Giebel G., and Ravn H.F. Improvement and automation of tools
for short term wind power forecasting. In Scientific Proceedings of the European

Wind Energy Conference & Exhibition. Milan, Italy, 2007.
http://www.ewec2007proceedings.info/allfiles2/475 Ewec2007fullpaper.pdf

Nielsen et al. (2007c): Nielsen T.S., Nielsen H.Aa., and Giebel G. Initialisation of
power curve models using à priori information. Technical Report IMM-2007-13,
Informatics and Mathematical Modelling, Technical University of Denmark, Richard
Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2007.
http://www.imm.dtu.dk/pubdb/views/publication details.php?id=5329

http://www.risoe.dk/rispubl/VEA/ris-r-1614.pdf
http://www.imm.dtu.dk/pubdb/views/publication_details.php?id=5316
http://www.imm.dtu.dk/~han/pub/FU4101_DKvind_bids_and_balance_VTT_2006.pdf
http://www.imm.dtu.dk/~han/pub/FU4101_Candidate_pred_models.pdf
http://www.imm.dtu.dk/~han/pub/FU4101_WEpaperCFCaccepted.pdf
http://www.ewec2007proceedings.info/allfiles2/475_Ewec2007fullpaper.pdf
http://www.imm.dtu.dk/pubdb/views/publication_details.php?id=5329
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Nielsen et al. (2006b): Nielsen T.S., Nielsen H.Aa., Madsen H., San Isidro M.J., and
Marti I. Optimal wind power forecasting by model combination. Poster presented
at the European Wind Energy Conference & Exhibition 2006, Athens, Greece, 2006.
http://www.imm.dtu.dk/∼han/pub/FU4101 EWEC06poster.pdf

Nielsen et al. (2006c): Nielsen T.S., Nielsen H.Aa., Pinson P., Madsen H., Giebel G.,
and Badger J. Improvement and automation of tools for short term wind power
forecasting. Poster presented at Global Windpower 2006, Adelaide, South Australia,
2006.
http://www.imm.dtu.dk/∼han/pub/FU4101 GW06poster.pdf

Nolsøe (2006): Nolsøe K. Estimating the power curve. Informatics and Mathematical
Modelling, 2006.
http://www.imm.dtu.dk/∼han/pub/FU4101 EstimatingThePowerCurve.pdf

Pinson et al. (2007c): Pinson P., Nielsen H.Aa., and Madsen H. Robust estimation of
time-varying coefficient functions – application to the modeling of wind power pro-
duction. Technical Report IMM–2007-09, Informatics and Mathematical Modelling,
Technical University of Denmark, Richard Petersens Plads, Building 321, DK-2800
Kgs. Lyngby, 2007.
http://www.imm.dtu.dk/pubdb/views/publication details.php?id=5275

Ravn (2006): Ravn H.F. Short term wind power prognosis with different success cri-
teria. In Proceedings of the 9th International Conference on Probabilistic Methods

Applied to Power Systems. 2006.
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?isnumber=4202205&arnumber=4202303&count=196&index=97

Furthermore, the following master thesis project was closely linked to the project:

Linnet (2005): Linnet U. Tools supporting wind energy trade in deregulated markets.
Master’s thesis, Informatics and Mathematical Modelling, Technical University of
Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby,
2005.
http://www.imm.dtu.dk/pubdb/views/publication details.php?id=3969

http://www.imm.dtu.dk/~han/pub/FU4101_EWEC06poster.pdf
http://www.imm.dtu.dk/~han/pub/FU4101_GW06poster.pdf
http://www.imm.dtu.dk/~han/pub/FU4101_EstimatingThePowerCurve.pdf
http://www.imm.dtu.dk/pubdb/views/publication_details.php?id=5275
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4202205&arnumber=4202303&count=196&index=97
http://www.imm.dtu.dk/pubdb/views/publication_details.php?id=3969
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Summary

This report summarizes the results of the Danish PSO-project Intelligent wind power pre-

diction systems. During the project further improvement and automation of tools for short
term wind power forecasting, typically with horizons up to 48 hours, have been studied.
Also, the use of such forecasts in bidding on the spot marked have been considered.

It has been demonstrated that it is indeed possible to achieve further automation and
robustness by modification of the methods underlying tools such as the Wind Power
Prediction Tool. Initialisation of a statistically based power curve model using a physical
model results in significant performance improvements for high wind speeds during the
first months of operation. Presumably, performance for events which are even more rare,
as e.g. cut-outs, can be improved generally or at least until sufficient data from the
particular type of event are available.

For a complex site it has been shown that stability indices can be used to improve the
accuracy of wind speed predictions based on a simple statistical model. The stability
indices are derived from the same operational forecasting model that provides the usual
inputs for wind speed predictions. This improvement indicates the advantages of using
more of the data available within the operation forecast models. The physical basis for the
improvement given by the stability indices is revealed by mesoscale modelling. Mesoscale
modelling is then used to provide corrections for wind speed predictions based on wind
speed, direction and stability. These corrections improved the prediction accuracy. The
mesoscale model results are verified using two different models.

The adaptive non-parametric methods underlying modern forecasting tools require a small
number of tuning parameters to be selected. Methods for continuous adjustment of these
parameters have been developed. The criteria used for adapting these are directly related
to the prediction performance. Also a robust version of the adaptive non-parametric
estimation method has been developed. For data containing outliers, this method re-
sults in markedly more accurate estimation of the underlying power curve. Operational
robustness is easily achieved using meteorological forecasts from two or three different
suppliers. When more than one forecast is available, combined forecasting can be used.
The improvement in performance which can be achieved depends on the variance and
correlation of the meteorological forecast errors. For realistic values of these, significant
improvements are observed.

Finally, the type of criterion used during estimation or when forming a bid on the spot
marked may have economic consequences for wind power producers. Also, it has been
shown to have consequences at the level of the electricity system as whole in that it affects
the requirement for regulating power.
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1 Introduction

With the increasing focus on renewable energy the share of wind power production is
rapidly increasing worldwide. As a consequence of this an increasing focus on state-of-
the-art forecasting tools is observed. These systems must be operating for wind farms or
regions which can be quite different in terms of location, layout, quality of meteorological
forecasts, etc. This report summarize the results obtained as part of the project Intelligent

wind power prediction systems. During the project, further improvement and automation
of tools for short term wind power forecasting, typically with horizons up to 48 hours,
have been studied. Also, the use of such forecasts in bidding on the spot marked has been
considered.

Based on the requirements outlined above the methods underlying the tools must be
self-calibrating, also called adaptive (Nielsen et al., 2002a,b, 2006a). In this project the
Wind Power Prediction Tool (WPPT) (Madsen et al., 2005a; Nielsen et al., 2005) is used
as an example of such a system and thus forms the technological basis of the project.
In Section 2 WPPT is briefly described. Since WPPT is based on statistical modelling,
the system must learn the relation between the meteorological forecast and the observed
power production before reasonable forecasts can be produced. In Section 3 it is inves-
tigated how this can be (partly) avoided by the use of initial models generated using
physical modelling and software such as WAsP1. The section also describes the bene-
fits from such an approach. Section 4 considers improvement of the underlying physical
models. The section sets out by considering various stability measures, and the benefit
of including these in a linear regression model relating the forecasted wind speed to the
observed wind speed is investigated. The stability measures are based on the data from
the operational weather forecast model providing the usual basic wind speed inputs for
wind farm prediction systems. This part of the study aims to find out what benefits
may come about by using more of the stability related information within operational
weather forecasting models. Thereafter, mesoscale modelling of a wind farm placed in
complex terrain is described. The section also includes a suggestion for using these ex-
tended models together with WPPT. For further automation of adaptive forecasting tools
Section 5 describes approaches to continuous adjustment of tuning parameters (forgetting
factor and bandwidth). Section 6 considers estimation criteria. First, a general introduc-
tion to economically based estimation criteria and their relation to quantile regression
and robust estimation is given. Thereafter a robust version of the estimation method
currently used in WPPT Nielsen et al. (2000a) is presented. Finally, in Section 6.3, the
system-wide consequences of bidding on the spot marked using economical estimation cri-
teria are considered. Operational robustness can be improved by having access to several
meteorological forecasts. However, most of the time, all meteorological forecasts will be
available. Section 7 considers the improvement in performance which can be achieved by
using several meteorological forecasts. Finally, in Section 8 the main conclusions of the
project are outlined.

1www.wasp.dk
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2 The Wind Power Prediction Tool

The technological basis of much of the work presented here is the Wind Power Prediction
Tool (WPPT) (Madsen et al., 2005a; Nielsen et al., 2002a, 2000b). Therefore, for the
sake of clarity, the system is briefly described below. A more complete description can
be found in (Nielsen et al., 2005). Furthermore, configuration examples are shown in
(Madsen et al., 2005a).

WPPT has run at all major Danish utilities for more than a decade. Since version 4
the direction dependent power curve modelling of WPPT has been based on conditional
parametric models (Cleveland, 1994). In such models the the response yt at time t is
modeled using two groups of explanatory variables. One group of variables xt enters
globally through coefficients depending on the other group of variables ut, i.e.

yt = xT
t θ(ut) + et, (1)

where θ(·) is a vector of coefficient-functions to be estimated and et is the noise term.

Depending on how the software is set up, the power curve directly models the relation
between the meteorological forecast and the power production in a wind farm or in a
region. The rationale behind this is explained in e.g. (Nielsen et al., 2002b).

To account for auto correlation and diurnal variation, WPPT uses the output from the
conditional parametric model as input to an ARX-model (Ljung, 1987) which adjusts for
these effects. These models can be written in the form

yt = xT
t θ + et , (2)

where t is the time index, yt is the output, xt is a vector containing inputs and possibly
lagged values of the output, θ is a vector containing the coefficients of the model, and et

is the error term.

All models in WPPT are automatically re-calibrated as new information becomes avail-
able. For ARX-models adaptive recursive least squares (Ljung, 1987) are used, whereas
for conditional parametric models the method described in (Nielsen et al., 2000a) is used.
Further information about WPPT can be obtained via www.risoe.dk/zephyr/.

www.risoe.dk/zephyr/
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3 Initial estimates

The adaptive estimation methods need to learn the underlying dependencies from data,
i.e. sets of meteorological forecasts and actual power productions. At startup, initial
estimates must be supplied and over time the influence of the initial estimates will vanish.
Given historic data, the software can be run in off-line mode and hence the estimates
will be appropriate when going into on-line mode. However, if historic information is not
available, the initial estimates will influence the forecasts generated until the effect of the
initial estimates has vanished. Depending on the geographical location, this may take
several months for combinations of wind speeds and directions which only occur rarely.

Here we focus on the power curve model of WPPT and investigate ways in which initial
estimates can be accommodated by the adaptive estimation method. The initial estimates
are calculated using the software WAsP (www.wasp.dk) Park from Risø National Lab also
Appendix A in Nielsen et al. (2005).

3.1 Initialization

The power curve model in WPPT is estimated recursively and adaptively using a proce-
dure as described in (Nielsen et al., 2000c) based on locally linear regression. The coeffi-
cients, θ, and correlation matrix, R, of the local linear models (see also section 5) must
be initialized prior to the estimation. This section compares the traditional initialization
scheme for the power curve model of WPPT with a new simulation driven initialization
scheme.

In recursive linear estimation, the coefficients and correlation matrix are traditionally
initialized with θ = 0 and R = αI, where I is the identity matrix and α << 1. This is
the initialization scheme used in the current operational version of WPPT.

In the simulation driven scheme a simulated data series covering a period prior to com-
mencement of the observations is generated using a physical derived power curve model
for the wind farm. A set of simulated wind speed and wind direction series are generated
and used as input to the physical model to calculate a simulated power series from the
wind farm.

A simulated data set has been calculated for the Klim wind farm in Northern Jutland,
Denmark, covering a period of one year prior to the observed data set used in the eval-
uation (period: 29/11/2002-20/07/2004). Here the wind speed and wind direction series
have been generated as two sets of independent uniformly distributed variables. The
deterministic wind farm model used is the WAsP model developed by Risø and the de-
terministic power curve used in the simulations is found in Figure 1.

www.wasp.dk
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Figure 1: Deterministic power curve calculated by WAsP for the Klim wind farm.

Different lengths of initial period have been investigated ranging from 0 to 12 months.
The benefits of the initialization have been investigated using the first 2 months, the first
6 months and the entire 20 months of the data set as evaluation period and the results
are found in Table 1 using NRMSE (root mean square error normalised with rated power)
as measure.

The first 4 lines of Table 1 state the results when the the power curve is initialized for all
wind speeds and all data in the evaluation period is used. Using initialization results in
a persistent improvement compared to no initialization, however the benefits are small.
From the table it is also seen that the simulation period used in initialization should be
short. This indicates that the estimated power curve must be allowed to adapt quickly to
the observed data from the initial estimate based on simulated data.

The density of the observations decreases rapidly as the wind speeds increases, hence the
period before sufficient data is available to give a firm estimate of the power curve is longer
for high wind speeds compared to low wind speeds. It has therefore been investigated
if it is beneficial only to initialize the upper part of the power curve corresponding to
wind speeds above 10m/s. As seen from lines 5 to 7 in Table 1, this turns out to be the
case. Compared to no initialization a reduction in NRMSE of 14% is found for the first
2 months of the evaluation period.
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As indicated above initialization is expected to be of more importance for the high wind
speed part of the power curve compared to the low wind speed part. This is confirmed by
the lower part of Table 1, which shows the effect of the initialization if only observations
with wind speeds above 10m/s are considered in the evaluation. It is seen that the
advantage of initialization is much more pronounced for high wind speeds and NRMSE is
reduced by 33% and 31% for the first 2 and 6 months of the evaluation period, respectively.

Ini. Ini. ws Eval. ws Eval. period

length 2m. 6m. 20m.

0m. – All 18.3 14.7 14.0

2m. All All 16.3 14.0 13.8

4m. All All 16.7 14.2 13.9

8m. All All 17.1 14.4 14.0

2m. > 10m/s All 15.7 13.8 13.7

4m. > 10m/s All 15.7 13.9 13.8

8m. > 10m/s All 15.9 14.0 13.8

0m. – > 10m/s 26.6 24.6 21.9

2m. All > 10m/s 18.4 17.5 17.6

4m. All > 10m/s 18.9 17.9 17.8

8m. All > 10m/s 19.3 18.2 17.9

2m. > 10m/s > 10m/s 17.7 17.0 17.5

4m. > 10m/s > 10m/s 17.9 17.2 17.6

8m. > 10m/s > 10m/s 18.4 17.6 17.8

Table 1: NRMSE for different initialization lengths and evaluation periods for the Klim
wind farm. Both the effect of only initializing as well as evaluting the upper part of the
power curve above 10m/s is shown.

In conclusion, the results clearly show that benefits can be achieved by initializing the
statistical power curve model based on a priori information, especially in the high wind
speed regions. However care must be taken to give appropriately low emphasis to the a
priori information in regions which are well represented by the observed data.
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4 Improvement of the initial model

With the aim of improving the initial physical model, it is investigated if stability measures
and mesoscale modelling can achieve this goal. Such an approach has the potential of
identifying model structures by which the general performance of the prediction system
can be improved, i.e. not limited to the initial phase. As an onset, the mesoscale model
KAMM was used, and subsequently the mesoscale model WRF was used in order to verify
the results.

4.1 Stability measures as input to statistical models

In this section ways to incorporate models with some physical basis into the prediction
system are explored. A range of methods for using Global Forecasting System (GFS)
forecast data to make wind speed predictions for a specific site are considered. The
simplest way is to use the NWP wind speed directly, for example using U10 for the nearest
NWP model grid point, and adjustments to different heights can be made using the
logarithmic profile. The error for these kinds of predictions very often contains a significant
systematic error, for example a bias, that can be reduced by Model Output Statistics

(MOS). The MOS used in this first part of this study was

Upred = A + BUNWP , (3)

where A and B are found by fitting a linear regression using a training period of the
concurrent NWP and observed winds time series. A more novel way to produce a wind
speed prediction is to introduce a stability parameter in the linear regression, as in the
following,

Upred stab = A + BUNWP + CSNWP , (4)

where SNWP represents a stability parameter based on data from the NWP system. A, B,
and C can be a function of wind direction, using a training period of the concurrent NWP
winds and stability parameter, and the observed winds time series. Although the stability
parameter is very unlikely to have a purely linear influence, at this stage a linear relation
is used in order to identify potentially useful stability measures. More sophisticated ways
of making stability based adjustments could be employed in the near future.

The objective is to assess whether using a stability measure can reduce the mean absolute
error (MAE), the mean of the absolute prediction errors. Various stability parameters,
used to supply SNWP , were employed. They are typically based on vertical gradients
of horizontal wind speed or potential temperature. Among the parameters were the
Brunt-Väisälä frequency, N2, (evaluated as (g∆θ)/(θ0∆z)), and the Froude number, Fr,
(evaluated as u

√

θ/(g∆θ∆z)); and correspondingly, the value SNWP is set to N2 or Fr
in (4). θ is the potential temperature, θ0 is the mean potential temperature in the ∆z
layer, and g is the gravitational acceleration. The GFS output includes meteorological
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quantities at several heights, thus it is possible to use different vertical extents, ∆z,
in order to calculate stability parameters. Where the stability parameters have been
calculated using quantities below 1000 m a.g.l., and ∆z smaller than a few hundred
metres, the stability measure is referred to as a ’shallow profile’ measure. In contrast, for
larger ∆z, the term ’deep profile’ measure is used.

Wind speed predictions have been made for the anemometer located at 76 m a.g.l. (cor-
responding approximately to a typical hub height for a 2 MW turbine) on the circa 120-m
Risø mast. Half the data from the full period (01/09/2005-28/02/2006 )was selected ran-
domly for fitting the linear regression (training), the other half was used for evaluation.
The error evaluations use the 0 hour leadtimes only and comparison to the 10-minute
average measurement at the appropriate validation times.

When using the linear regression without the stability parameter employing the GFS
product giving the mean wind speed for the layer between 0 mb and 30 mb above the
surface (U30 0) as UPWD gave the most accurate wind speed predictions. Using a stability
measure at best only gave a very marginal improvement in the accuracy of the prediction.
These small improvements were achieved using ’shallow profile’ stability parameters based
on the absolute potential temperature gradient and the Brunt-Väisälä frequency (N2).

Predictions based on using 10-m winds (U10) from GFS as UPWD gave a mean absolute
error of 1.37 m/s, when no stability parameter was used. The accuracy was improved
by the inclusion of the stability parameter in the linear regression, giving a reduction in
mean absolute error of up to 5 %. However in absolute terms the best predictions based
on U10 and a stability parameter were never better than the best prediction based on U30 0

and a stability parameter. For the Risø winds, the use of ’deep profile’ stability measures
did not bring about marked improvements in overall performance.

Wind speed predictions have been made for the 55 m a.g.l. anemometer at the Alaiz
wind farm, near Pamplona in Northern Spain. Again half the data from the full period
(01/07/2004-31/05/2005) was selected randomly for fitting the linear regression (training),
and the other half was used for evaluation. The error evaluations use the leadtimes from 0
to 48 hours, with a 6-hour interval, and comparison to the 10-minute average measurement
at the appropriate validation times.

For predictions made without using the stability parameter, U30 0 and U10 gave a mean
absolute error of 2.98 m/s and 3.19 m/s respectively. When including a stability parameter
a large reduction in mean absolute error was achieved (between 15% and 20%) when using
’deep profile’ stability parameters based on the absolute potential temperature gradient
and the Brunt-Väisälä frequency (N2). For the Aliaz winds, the use of ’shallow profile’
stability measures brought about improvements to the mean absolute error in the range
1 - 8 %. The ’deep profile’ stability measures had much more impact.

Wind speed predictions have been made for two 46 m a.g.l. anemometers at the Klim
wind farm in Northern Jutland, Denmark, (period: 01/12/2005-31/03/2006). Including
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a stability parameter yielded no significant reduction in mean absolute error irrespective
of the leadtime was used. This may be related to the NWP stability measures being
inaccurate or alternatively because the GFS model predicts wind speed very well (mean
absolute error of 1.2 m/s).

Risø Alaiz
no Stab Stab no Stab Stab

1.26 1.25 2.98 2.48
0.73 % 16.6 %

Table 2: Summary of prediction performance for Risø and Alaiz given by mean absolute
error [m/s] for predictions made without and with stability parameter. The percentage
improvement is also given.

Table 2 summarizes the main results. The ’deep profile’ stability measure that improved
the prediction for Alaiz was based on a vertical extent, ∆z ≃ 3000 m. This suggests that
stability and flow interaction with terrain, with a comparable vertical extent, is important
for the Alaiz case. Mesoscale modelling will be described in the next section that explores
the role of terrain and stability in the region of the Alaiz wind farm.

4.2 Mesoscale modelling

The importance of stability in determining the wind conditions at the Alaiz wind farm
site is supported by mesoscale simulations using KAMM Adrian and Fiedler (1991) using
a wide range of different atmospheric conditions, i.e. wind speed, wind direction and
potential temperature profiles.

Idealized KAMM studies have been performed using sets of wind profiles representing
different wind directions and different atmospheric stabilities. Four different geostrophic
wind speed profiles (5, 10, 15, 20 m/s) and three different stabilities, neutral, typical (near
neutral) and stable, were investigated.

The geostrophic wind and temperature profiles were defined at 0, 1500, 3000, 5500 m
above sea level. The geostrophic wind speeds forcing the model were constant with height.
For the stable and typical stability cases the temperature profiles were evaluated using
NCEP/NCAR reanalysis data.

Figure 2 summarizes the results from five sets of the idealized KAMM simulations. The
thick rectangles show the forcing directions, e.g. the sector centred on 30◦ is red. For a
given large-scale forcing the simulated winds at 50 m for five locations neighbouring the
wind farm are show by lines of the same colour. The direction on the diagram indicates
the direction where the wind comes from and the length indicates the wind speed speed-
up. The dotted-line circle represents a speed-up of 1, meaning that the wind speed at
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50m is the same as the geostrophic forcing. A speed-up above 1 indicates a wind faster
than the forcing wind speed, and when it is below 1 this indicates a wind slower than the
wind forcing.

(a)

(b) (c) (d)

(e)

Figure 2: Diagrams showing the mesoscale effects on the geostrophic wind forcings for
five sets of KAMM simulation using different wind speed and thermal stratifications, (a)
20 ms−1 and typical stability, (b) 10 ms−1 and stable conditions, (c) 10 ms−1 and typical
stability, (d) 10 ms−1 and neutral conditions, (e) 5 ms−1 and typical stability. Each set
is made up of twelve simulations using different wind directions indicated by the colours.
Please refer to the main text for an explanation of the figures.
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Figure 3: The observed wind speed and direction at 55 m a.g.l. from data for 2001.

Looking at Fig. 2(c) first, the set using 10 ms−1 geostrophic winds and typical stability,
it is possible to see that the wind directions at the wind farm site tend to be concentrated
into the northern and south-eastern sectors, regardless of the forcing wind direction. Ex-
amining the next Fig. 2(e), the set using 5 ms−1 geostrophic winds and typical stability, it
is possible to see that the direction concentration effect is slightly enhanced and that there
is a greater degree of speed-up of the winds. Similar behaviour is seen when examining
Fig. 2(b), the set using 10 ms−1 winds and stable stratification. Figure 2(a) shows the
set of simulations using 20 ms−1 winds and typical stratification. Here it is possible to
see a reduction in the direction concentrating effect of the winds at the wind farm, and
a reduced speed-up effect. Figure 2(d) shows the set using 10 ms−1 winds and neutral
stratification. More so than in the case of Fig. 2(a), it shows a further reduction in the
direction concentrating effect and speed-up.

Figure 3 shows the observed wind speed and direction at the 55 m a.g.l. mast at the Alaiz
wind farm. It can been seen from the observations that there is a strong concentration
of winds, and especially the more powerful winds, from the directions centred on 350◦and
150◦. This corresponds strongly with the findings of the idealized mesoscale simulations.

Climatically representative profiles of the atmospheric flow based on the GFS data over
the period 01/07/2004-31/05/2005 have been used to drive the mesoscale model. These
profiles were created using a similar method to that given in Frank and Landberg (1997)
and the method draws on the method of statistical-dynamical downscaling as used in
Frey-Buness et al. (1995). Figure 4(a) shows the GFS forecasted geostrophic wind speed
and direction for the aforementioned period. Each point in the figure represents a forecast
based on the nearest GFS grid points to the wind farm. The figure shows the distribution
of the forcing winds in the region. Figure 4(b) shows the 103 representative wind classes
that have been defined based on data shown in Fig. 4(a). Each wind class in fact describes
the way the geostrophic wind speed and direction, and potential temperature changes with
height.

The KAMM modelling results are shown in Fig. 4(c) for each wind class. Comparing the
wind speed and direction distribution in Fig. 4(c) and Fig. 3, it is possible to see that the
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(a) (b) (c)

Figure 4: (a) The geostrophic wind and direction derived from GFS forecasts for the
period 01/07/2004 - 31/05/2005 derived from grid points close to the Alaiz wind farm.
(b) The geostrophic wind and direction for the 103 wind classes that have been calculated
to represent the data in (a). (c) The KAMM modelled wind speed and direction at 50 m
a.g.l. at the wind farm site resulting from the simulations using the wind classes shown
in (b). The colours of the plotted points indicate the values of 1/Fr2, the colour key is
provided by the colour of the values above the plots.

modelling results reproduce to a fair degree the wind speed and direction distributions
observed at the wind farm site.

The modelling results can be applied in a prediction system as a downscaling look-up
table. By finding the entry in the downscaling look-up table, via reference to the most
appropriate wind class for the driving flow situation provided by the GFS forecast, the
wind conditions at the wind farm site are given.

Without application of MOS, the mean absolute error using the KAMM mesoscale look-
up table was 3.46 m/s. With MOS the mean absolute error is brought down to 2.60 m/s.
This compares favourably with the predictions made using GFS and MOS alone, giving
a mean absolute error of 2.98 ms−1 for Alaiz.

4.3 Validation of the mesoscale results using WRF

The mesoscale simulations described and used so far here have been performed using the
model KAMM. Validation has been carried out by comparing wind speed prediction with
wind speed measurements at Risø, Aliaz and Klim. As a second step in the validation
process model results from KAMM are compared with a second mesoscale model. The
second mesoscale model is the WRF model, which stands for the Weather Research and
Forecasting model. There are in fact two versions of the model: the ARW (Advanced
Research WRF) and the NMM (Non-hydrostatic Mesoscale Model). The ARW version
is used here because it features an option to use an initialization method rather like that
used for KAMM. Skamarock et al. (2005) gives a detailed description of the WRF/ARW
model.
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To the extent possible for two different models, the same idealized simulations that were
presented in Fig. 2 were carried out using WRF in place of KAMM. Qualitatively, the re-
sults from the idealized WRF simulations are very similar to the results from the idealized
KAMM simulations. In Fig. 5 the results from both KAMM and WRF for the idealized
simulations using the 10 ms−1profile with typical stability is shown, a full comparison is
given in Badger et al. (2007). A very similar wind direction concentration and wind speed
enhancement effects are exhibited. Similarly the wind direction concentration and wind
speed enhancement effects are strongest for the low wind speed and stability cases. The
dominant angles for the wind direction concentrations are 330 - 0◦ and 130 - 150◦. This
is also in very good agreement with the KAMM results.

(a) (b)

Figure 5: Diagrams showing the mesoscale effects on the geostrophic wind forcings from
12 directions using the 10 ms−1 and typical stability profile given by (a) KAMM and (b)
WRF. Each set is made up of 12 simulations using different wind directions indicated by
the colours. Please refer to the main text for an explanation of the figures.

The WRF mesoscale model was also used to create a downscaling look-up table using the
wind classes shown in Fig. 4(b). As in the KAMM case, the prediction performance was
evaluated using data from the period 01/07/2004-31/05/2005. Table 3 summarizes the
performance of the KAMM and WRF look-up table prediction systems. First, looking
at the mean error and mean absolute error for the two systems without using MOS, it
can be seen that the WRF look-up table system does not perform as well as the KAMM
look-up table system. However it does still perform better than when using the wind class
geostropic winds alone which gives a mean absolute error of 4.19 ms−1. After MOS the
performance of the two models’ look-up tables is rather similar. It should be repeated
that this performance is better than using GFS surface wind data (U30−0) for the wind
farm location and MOS.

4.4 Application of stability correction in WPPT

The stability correction and the information contained within the mesoscale look-up ta-
bles can be incorporated in the WPPT system by adding a preprocessor step. Figure 6
shows how the preprocessor would fit into the system. The NWP provided data, including
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no MOS with MOS
Model ME MAE ME MAE
KAMM -0.66 3.46 -0.11 2.60
WRF -1.18 3.78 -0.15 2.65

Table 3: Mean error (ME) and mean absolute error (MAE) in m/s for predictions made
using KAMM and WRF look-up tables without MOS and with MOS.

the appropriate stability measure, is fed into the preprocessor and the linear regression is
applied. The measured wind speed and measured farm power are also fed into the prepro-
cessor so that the linear regression coefficients can be updated recursively. The recursive
features of WTTP bring many advantages to the system, such as accommodation of sea-
sonal variations, dirtying of turbine blades, changes to the operation of the NWP system,
etc. Thus a recursive adjustment of a stability correction is considered advantageous.

Figure 6: Schematic diagram showing the conceptual development of the WPPT prepro-
cessor.
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5 Selection of tuning parameters

The adaptiveness of the estimation methods are controlled by a constant λ ∈ (0, 1) called
the forgetting factor. Furthermore, the method used for estimation in conditional para-
metric models requires the selection of a so called bandwidth h > 0. As a consequence, in
order to set up WPPT two forgetting factors and one bandwidth must be selected. In fact
for the conditional parametric models it is even possible to use different bandwidths and
forgetting factors for each fitting point, i.e. for each point at which the functions involved
are estimated (Nielsen et al., 2000a).

Here we consider how the forgetting factors and bandwidths can be tuned over time. In
this way an additional layer of adaptiveness is added which ultimately should allow for
easy setup of the software because default values can be supplied and the software will
then automatically adjust these to the specific site or region.

5.1 Forgetting factor

In this section we consider linear regression models or auto regressive models with exoge-
nous variables (2).

Since the underlying system of which (2) is an approximation may change over time it
is often beneficial to track the coefficients. Given a constant called the forgetting factor
λ ∈ (0, 1) exponential weighted adaptive recursive least squares (Ljung, 1987) accomplish
this by the following recursions:

kt =
P t−1xt

λ + xT
t P t−1xt

(5)

ξt = yt − x
T
t θt−1 (6)

θ̂t = θ̂t−1 + ktξt (7)

P t = λ−1(I − ktx
T
t )P t−1 (8)

where Pt is the inverse correlation matrix, kt is the gain, ξt is the prediction error, and θ̂t

is the vector of estimates at time t. The memory time constant 1/(1 − λ) (Ljung, 1987)
is an indication of how many observations the estimates are based on.

Several methods allowing the forgetting factor to vary over time exist in the literature
(Ljung and Gunnarsson, 1990). Here we focus on methods which directly aim at mini-
mizing the expected value of the prediction error. In (Haykin, 1996, Sec. 16.10) a steepest
decent algorithm for updating λ is presented.

Since the admissible values of λ are bounded, a clipper function is added to the algorithm
on an ad hoc basis. Initial investigations revealed that the algorithm does not perform
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Figure 7: Comparing unbound (red) and bounded (green) versions of the steepest descent
algorithm on a simulation with a constant model.

well for noisy systems which only change slowly over time, i.e. where the appropriate λ is
close to 1. For the application to the dynamical model of WPPT (Madsen et al., 2005a)
this would pose problems. For this reason an unbounded version of the algorithm was
derived, i.e. λ is expressed as a function of g and the function is constructed so that g ∈ R

results in λ being restricted to (1 − 1/Nmin, 1). This can be obtained using:

λ(g) = 1 −
1

Nmin + exp(g)
, g ∈ R and Nmin > 1 (9)

Naturally, the resulting algorithm is very similar to the algorithm in (Haykin, 1996,
p. 735), the difference being that the derivative of λ w.r.t. g is now included in the
algorithm.

What may not be that obvious is how much the stability differs between the two versions.
As an example consider the constant model yt = 1.5xt + et, where xt is autoregressive:
xt = 0.975xt−1 +0.025st with st iid. uniformly distributed on [1; 2]. Finally, et is Gaussian
iid. noise with zero mean and standard deviation 0.7. Figure 7 depicts the trace of
the memory length over time. It is seen that the clipper function causes very unstable
behavior, whereas our revised method results in a steady increase of the memory length.
In both cases the initial forgetting factor was set to 0.99.

For both versions of the algorithm, a constant controlling the step size must be set, i.e.
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instead of λ a new tuning parameter, α, is introduced. However, we have demonstrated
that for a wide range of α the method is not sensitive to the actual value. For further
details see (Christiansen et al., 2007).

5.2 Bandwidth

The power curve model and the upscaling model of WPPT is described in (Madsen et al.,
2005a). The models are conditional parametric models (1) for which the coefficient func-
tions are tracked (estimated) over time as described in (Nielsen et al., 2000a). Basically,
the estimation procedure works by estimating the coefficient functions for a number of
fixed values of the arguments, i.e. the vector u; the so called fitting points. For each of
these fitting points the bandwidth, the scaling of the individual elements of u, the for-
getting factor, and the degree of the local approximating polynomial, c.f. (Nielsen et al.,
2000a), must be selected. Here we consider the bandwidth, the remaining quantities will
normally be constant across fitting points.

In the project it has been investigated how the bandwidth at each fitting point can
be updated over time. An approach similar to the approach in Section 5.1 is applied.
More precisely the expected value of w(ut)ξ

2
t is minimized, where w(ut) is the weight on

observation t given the fitting point, and ξt is the error when predicting the output based
on the fitting point considered. Given this criteria function, it is important to define the
weight function so that its integral is independent of the bandwidth.

The bandwidth ht at time t is expressed as

ht = h0 + exp(gt) (10)

which for gt ∈ R restricts the bandwidth to be larger than h0. The minimum bandwidth
should be related to the grid size of the fitting points. In (Christiansen et al., 2007) an
update formula for g is derived. The formula can be used for any weight function as long
as the partial derivative of the weight function w.r.t. g is available.

To demonstrate the ability of the method to adjust the bandwidth, consider the following
model

yt = xtθ(ut) + et , (11)

i.e. a simple model resembling the up-scaling model of WPPT. Here we define the coeffi-
cient function as

θ(u) =

{

1 , 0 ≤ u ≤ 1
u , 1 < u ≤ 2

(12)

and estimate the function using a local linear approximation of the function. Furthermore,
xt iid. U [1; 2], ut iid. U [0; 2], and et iid. N(0, 0.252). The result is shown in Figure 8. It is
seen that even though the initial bandwidth is not appropriate for the central points (pur-
ple, light blue, light green), the algorithm changes the bandwidths within 1000 samples,
whereas the remaining bandwidths are only modified to a minor extent.
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Figure 8: Using a tri-cube weight function to optimize the bandwidth at nine fitting
points spread equidistantly from 0 to 2. Both steepest descent traces and fix bandwidth
optimized on the last half of the data are shown. The 4 boundary points are blue and
green, the central point is purple, the neighbour points of the central point are light blue
and light green, and the remaining two points are black and red.
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6 Estimation criteria

6.1 General aspects of estimation criteria

The commonly used estimation procedures in wind power forecasting minimize the squared
sum of the prediction errors of the wind power forecast. In non-parametric adaptive esti-
mation Nielsen et al. (2000a), these squared errors are furthermore weighted. Nielsen and Ravn
(2003) use a criterion based directly on regulation prices. It turns out that this criterion
is closely related to quantile regression (Koenker, 2005). To realize this, reference is made
to (Bremnes, 2004; Morthorst, 2003). Let ep be the actual electricity produced at the
future time point under consideration, let eb be the bid at the spot marked, which must
be placed in advance, and let ps be the spot price. Furthermore, let c− be the unit cost of
production less than the bid and let c+ be the unit cost of excess production. With this
setup, the income corresponding to the future time point will be

{

epps − (eb − ep)c− if ep ≤ eb

epps − (ep − eb)c+ if ep > eb

(13)

Following the arguments by Bremnes (2004) the income structure above leads to the
conclusion that the bid should be the c+/(c+ +c−) quantile in the conditional distribution
of the future power production. Using quantile regression this corresponds to minimizing
the criterion

1

c+ + c−

{

c+e , e ≥ 0
− c−e , e < 0

(14)

Which is equivalent to minimizing the criterion in (Nielsen and Ravn, 2003). These cri-
teria are related to the criterion used in robust estimation which was considered as part
of this project, cf. Section 6.2 below.

However, it also leads to the idea that instead of focusing on a single point prediction
focus should be on forecasting the conditional distribution of the future power production,
so-called probabilistic forecasts. Providing an overview of this subject is beyond the scope
of this report. It has been considered in the PSO-project “Vindkraftforudsigelse med en-
semble forecasting”(Wind power prediction with ensemble forecasting), see (Giebel et al.,
2005; Nielsen et al., 2006a) and the references therein. For a more complete overview see
(Pinson et al., 2007b).

One conclusion from the project just mentioned is that the estimation procedures nor-
mally used lead to bias of the estimated power curve. This bias is problematic when using
meteorological ensemble forecasts to produce probabilistic forecasts of the wind power pro-
duction. As part of this project it has been investigated whether non-parametric inverse
regression techniques can help solve the bias issue (Nolsøe, 2006). However, it proves to
be problematic to preserve the monotonicity of the power curve in this case, making non-
parametric inverse regression problematic. Instead it seems to be more beneficial to use
orthogonal regression as described in (Pinson et al., 2007a), which describes work which
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has been carried out as part of the PSO-project “High Resolution Ensembles for Horns
Rev”.

As part of this project is has also been investigated whether a bidding strategy derived
from the discussion above will result in more critical situations. The result is described
in (Holttinen and Ikäheimo, 2007). See also Linnet (2005), which describes the results of
a master thesis project closely linked to this project.

6.2 Robust non-parametric regression

On-line systems are potentially vulnerable to erroneous data. WPPT applies a wealth of
initial checks and validation steps of the data it receives and models are only updated if
newly received data are considered as valid. Despite this, these valid data may still include
a non-negligible noise component. This will result in contaminating the model estimates
and consequently in an increase of the level of prediction error in the short run. It has then
been envisaged to robustify the estimation method used in WPPT. Robust estimation
in ARX-models can be performed using the method described in (Sejling et al., 1994).
However, the power curve modeling part of WPPT, which is based on a local polynomial
regression (Nielsen et al., 2000a), has not been robustified so far. This is discussed in the
present paper.

Let ε denote a model residual. The classical criterion function ρ used for estimation in
local polynomial regression is a quadratic criterion, i.e. ρ(ε) = ε2. It thus gives a high
weight to large model residuals when recursively adapting model estimates. Write θ̂ the
estimator based on the ρ criterion function. Following (Huber, 1981), this function is
modified in order to downweight these large residuals. Write ρ∗ the criterion function for
robust estimation. ρ∗ is made linear for residuals larger than a certain threshold value c.
It is defined as

ρ∗(ε, c) =

{

ε2/2 , |ε| ≤ c
c|ε| − c2/2, |ε| > c

(15)

and the related robust estimator is referred to as θ̂∗.

The power curve for a wind farm may change over time owing to e.g. changes in the
surroundings or aging of the turbines. Therefore, it is considered that the criterion func-
tion may also be non-stationary. And, because distributions of model residuals may be
asymmetric and skewed, the symmetry constraint on the definition of ρ∗ is relaxed. In-
stead of specifying c, one defines a proportion α of model residuals to be considered as
suspicious (thus downweighted). The related threshold points are estimated by using the
empirical distribution of recent model residuals, so that the same proportion of positive
and negative model residuals are downweighted. A benefit of this approach is that the
threshold parameters are made a function of the time of the year. The resulting criterion
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Figure 9: The ‘usual’ quadratic (ρ) and asymmetric Huber (ρ†) criterion functions. The
thresholds points c− and c+ locate the negative and positive transitions from quadratic
to linear criteria. Here these points are such that c− = -0.25 and c+ = 0.3. Negative
residuals larger than c− (in absolute value) and positive residual larger than c+ are then
downweighted when updating the model estimates.

function ρ† writes

ρ†(ε, α) =







c−α ε − c−α
2
/2, ε < c−α

ε2/2 , ε ∈ [c−α , c+
α ]

c+
α ε − c+

α

2
/2, ε > c+

α

(16)

where c is the vector of negative and positive threshold values, denoted by c− and c+,
respectively, uniquely defined by α. The related robust estimator is θ̂†. The two criterion
function ρ and ρ† are depicted in Figure 9. All the mathematical developments and
details about the proposed method for the robustification of local polynomial regression
are described in (Pinson et al., 2007c).

Simulation results based on semi-artificial datasets allow highlighting of the properties and
performance of the robust estimators. Focus is given to the modelling of the power curve
of the Klim wind farm (21MW) located in Northern Jutland. This regression function is
nonlinear, bounded and non-stationary. By semi-artificial is meant that the wind speed
measurements are the real measurements from the meteorological mast at the wind farm,
but that the related power values are obtained by transformation through a modelled
power curve. Both time-series cover a period of N = 10000 time steps with an hourly
time resolution. They are normalized so that they take values in the unit interval. At
any time step, the relation between wind speed and the ‘true’ power output is given
by a power curve modelled as a double exponential function whose parameters linearly
vary over time. The resulting non-stationary power curve is depicted in Figure 10. Note
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that by considering that the power curve is a function of wind speed only, we assume
that other variables e.g. wind direction do not influence this power curve. This may not
be true for real-world test cases. Though, the interest of this semi-artificial dataset is
that the true power curve, which is the target regression, is available and can be used for
evaluating the various estimators. The true wind speed and power data are then corrupted
by additive and impulsive Gaussian noises in order to obtain simulated but realistic wind
speed and power measurements. The characteristics of the noise have been derived based
on the expertise gained from a large number of wind power modelling and forecasting
applications. The way the data have been generated is further detailed in (Pinson et al.,
2007c). The corrupted data are also shown in Figure 10.
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Figure 10: Noise-free and corrupted power curves.

The dataset is split into a learning set (2000 points), a cross validation set (2000 points),
and an evaluation set (6000 points). The first two parts are used for determining the
optimal parameters for θ̂, while the latter serves for independently evaluating the per-
formance of the various estimators. Following (Madsen et al., 2005b), the criteria used
for performance evaluation are the Normalized Mean Absolute Error (NMAE) and Nor-
malized Root Mean Square Error (NRMSE). They are calculated against the true power
data (NMAEt and NRMSEt) and also against the corrupted power data (NMAEr and
NMAEr), which would correspond to operational conditions.

The robust estimators θ̂∗ and θ̂† are applied with various c and α values in order to
minimize the NRMSEt criterion on the evaluation set. These minima are reached for
c = 0.15 and α = 0.28. This means that for θ̂∗, model residuals larger than 0.15 (in
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absolute value) are downweighted, while a proportion of 28% of the largest model residuals
to be downweighted is optimal for the case of θ̂†. The minimum NRMSEt for all competing
estimators and related values of the other criteria are gathered in Table 4.

θ̂ θ̂∗ θ̂†

NMAEr 7.1408 6.9742 6.9168
NMAEt 2.3928 2.0047 1.7426
NRMSEr 11.4830 11.4844 11.4960
NRMSEt 2.9793 2.5067 2.1958

Table 4: Minimum values of the NRMSEt and related values of the other evaluation
criteria for the competing estimators.

Both robust estimators allow for better approximation of the true power curve model.
Indeed, error criteria calculated against the ‘true’ power data (NMAEt and NRMSEt)
exhibit significant decreases when going from the classical towards the robust estima-
tors. For instance, the decrease in NRMSEt is 15.9% when going from θ̂ to θ̂∗ and 26.3%
when going from θ̂ to θ̂†. However, when considering the error criteria calculated against
the corrupted power data (which would correspond to what happens when dealing with
real-world test cases), one sees that NRMSEr stays at a similar level. This shows that
if concentrating on a NRMSE criterion only when evaluating a prediction model in op-
erational conditions, the benefits of robust estimation would not visible. Instead, the
NMAEr seems more appropriate since it is also lowered significantly. Further benefits
of the robust estimators in operational conditions are discussed in (Pinson et al., 2007c),
where they are used for forecasting on real-word data at the Middelgrunden wind farm
in Denmark. It is shown that the classical adaptive estimator θ̂ is already fairly robust
against outliers that may be used for model adaptation. In addition, lower values of error
criteria were recorded when using both robust estimators. An advantage of θ̂† over θ̂∗ is
that its performance is less sensitive to the choice of its robustification parameter α.

6.3 System consequences

The above discussion presented ways of generating estimates for future wind power pro-
duction and applied various criteria for measuring their quality. One common aspect of
these criteria is that there is no formalised linkage between the consequences of applica-
tion of a particular estimation methodology and system aspects. Here, the latter refers
to aspects of the electricity system as a whole, in particular the total imbalance between
the forecasted and realised amount of wind power and the overall consequences (in terms
of economy, stability and otherwise).

The question here is what the relations between the way that wind power producers make
their forecasts for the electricity market and the overall operation of the electricity system
for which the transmission system operator (TSO) is responsible.
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Wind power producers need a prediction method to bid their energy to a day-ahead
market. They pay balancing costs for the energy that has been forecasted incorrectly.
These prices, in turn, reflect the cost of balancing electricity production and/or demand
elsewhere in the system. If the prices for up- and down-regulation are asymmetric, it
is worthwhile for wind power producers to bid a different amount than the forecasted
amount. In this way the balancing costs are minimised. Therefore minimising the costs
may result in different bids than minimising the errors in energy.

This has been analysed as part of this project. The result, based on data from Western
and Eastern Denmark, is described in (Holttinen and Ikäheimo, 2007). It shows that the
balancing cost as covered by wind power producers is in general reduced slightly (between
2 and 7 %) by using such a bidding strategy. Hence, there is a motivation to use such
strategy.

It was also investigated, using the same data, whether a bidding strategy derived from the
discussion above will have consequences at system level. It was shown that indeed there
will be consequences, as seen from Figure 11. In particular, it was found that for large
errors downwards (forecast production larger than realized production), the information
(i.e., the wind power bids) received by the transmission system operator (TSO), would
result in larger errors and therefore more up-regulation would be needed at system level.

Whether this is critical, in e.g. stability or economic terms, depends on the available
up-regulation capacity, its costs and other aspects, however, it has been beyond the scope
of this project to go into this.

Figure 11: Summed errors for both parks calculated from optimal bids (on ordinate)
plotted against summed errors for both parks calculated from power forecasts (abscissa).
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7 Using several meteorological forecasts

Operational robustness can be improved by having access to meteorological forecasts from
several suppliers. However, most of the time the wind power forecasting system will have
access to all meteorological forecasts and we consider how, and under which circumstances,
this extra information can be used to improve the forecasts.

The use of multiple meteorological forecasts will, especially when these come from dif-
ferent suppliers, result in operational robustness. This is obtained by running multiple
instances of the forecasting software, e.g. WPPT, and thereby producing multiple wind
power forecasts. Most of the time all these forecasts will be available and the question
then arises if additional benefits can be obtained by combining the individual wind power
forecasts.

Let ŷ1 and ŷ2 be the two individual wind power forecasts and assume for simplicity that
these are unbiased. Bates and Granger (1969) consider the case where the combined
forecast ŷc is obtained as a weighted average:

ŷc = w1ŷ1 + (1 − w1)ŷ2 , (17)

where w1 is the weight on forecast number 1. The variance of the forecast error of the
combined forecast depend on the weight, the variances of the individual forecast errors (σ2

1

and σ2
2) and the correlation ρ between the individual forecast errors. Bates and Granger

(1969) provide a formula for the value of w1 minimizing the variance σ2
c of the combined

forecast error together with an expression of the minimal variance.

If, arbitrarily, the individual forecast number 1 is assumed to be the best σ1 ≤ σ2 and
the relative improvement over forecast number 2 is expressed as r1 = (σ2 − σ1)/σ2, then
the relative improvement of the optimal combination over the best individual forecast
rc = (σ1 − σc)/σ1, can be expressed as:

rc = 1 −

√

1 − ρ2

(1 − r1)2 − 2ρ(1 − r1) + 1
, (18)

which is defined for |ρ| < 1. Figure 12 depicts rc as a function of ρ and r1 . It is seen
that given two forecasts, with identical performance (r1 = 0), for which the individual
forecast errors are correlated with a correlation coefficient of ρ = 0.7, the combined
forecast will perform 8% better than the best individual forecast. If the forecasts do not
perform equally well (r1 > 1) the correlation must be lower in order to achieve the same
improvement.

The method can, in principle, be extended to an arbitrary number of individual, pos-
sibly biased, forecasts (de Menezes and Taylor, 2000; Granger and Ramanathan, 1984;
Nielsen et al., 2007a). In practice the means, variances, and covariances/correlations of
the individual forecast errors must be estimated.
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Figure 12: Combination of two unbiased individual forecasts with performance σ1 < σ2.
The plot shows the relative improvement rc as a function of the correlation ρ and the
relative performance r1 of method 1 as compared to method 2. In the top-right corner
the weight on method 2 is negative.

For application to wind power forecasting the following questions arise:

(i) What level of correlation and relative performance can be expected for well cali-
brated wind power forecast errors based on different meteorological forecasts?

(ii) What will be the effect of estimation error on the quality of the combined forecast?

As part of the project these aspects were investigated for two wind farms, considering
forecast horizons up to 24 hours (Nielsen et al., 2007a). An adaptive estimation procedure
was applied.
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With respect to (i) it has been found that when the meteorological forecasts originate
from models nested in different global models, then the correlation is between 0.45 and
0.75 for the wind farm Klim in Denmark and between 0.65 and 0.80 for the wind farm
Alaiz in Spain. In many cases the performance of the individual forecasts are similar.
Based on Figure 12 it is therefore suggested that improvements of 5 to 15% over the best
individual forecast can be obtained. In fact, this is the range of improvements which is
obtained. For Klim an overall level (across horizons) of 9% is obtained and for Alaiz an
overall level of 4% is obtained (Nielsen et al., 2007a). These results are obtained when
combining three individual forecasts based on meteorological models nested in different
global models.

Given the true means, variances, and covariances of the individual forecast errors, the
combined forecast can not perform worse than any of the individual forecasts. With re-
spect to (ii), when estimating the quantities the combined forecast can in fact perform
worse than the best of the individual forecasts. Hence, based on the investigations in
(Nielsen et al., 2007a) it is recommended that two or three good meteorological forecasts
are used and the forecast errors of these should have low correlation (less that approx-
imately 0.8). This seems to be the case for meteorological forecasts originating from
different global models. Since this also markedly improves the operational robustness, we
find this combination procedure to be sufficient. Sánchez (2006) considers methods which
seem to allow for many forecasts, possibly with high correlation, to be combined.
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8 Conclusion and discussion

We have demonstrated that it is indeed possible to achieve further automation and ro-
bustness by modification of the methods underlying tools such as WPPT. Operational
robustness is easily achieved by using meteorological forecasts from two or three different
suppliers. However, most of the time all meteorological forecasts will be available. When
combining these in an optimal manner, large improvements in performance are observed.
This is especially true when the forecasts originate from different global meteorological
models; this further adds to the operational robustness.

With respect to initialization of the statistical models, it has been demonstrated that
WPPT quickly learns the relation between meteorological forecasts and power production.
However, for some combinations of wind speed and direction which seldom occur, it is
beneficial to use a good physically based power curve as initialization. In locations around
the globe, cut-out due to high wind speeds occur so seldom that, in practice, the cut-
out characteristics of the wind farms can not estimated from on-site observations. The
proposed method of initialization, in principle, solves this problem by using the physical
power curve in regions where data is limited. In practice, further refinement of the
statistical models are needed in order to accommodate the characteristics of the physical
power curve near the cut-out wind speed.

For complex sites such as Alaiz in Spain it has been demonstrated that stability measures
derived from the meteorological forecasts can markedly improve the forecasts of wind
speed. This has been shown in two ways. The first way is through a simple linear
regression based wind prediction system, where one of a range of candidate stability
measures is used in the regression. It was found that a stability measure defined over a
vertical extent similar to the vertical extent of the terrain in the region was most effective.
The stability measure improved the mean absolute error on the wind speed predictions by
nearly 17 % for the Alaiz wind speed predictions. Therefore this part of the study indicates
a benefit of using more of the information within operational weather forecasting models.
A preprocessor system for WPPT is suggested to carry out a stability adjustment to the
input wind speed. The second way is through mesoscale simulations using both KAMM
and WRF mesoscale models. The mesoscale modelling, through idealized simulations,
demonstrated the ability of the models to capture the strong features of the observed
wind speed and direction distributions. A mesoscale downscaling look-up table prediction
system was tested. The look-up table entries were based on 103 wind class simulations
giving the wind speed and direction at the wind farm location for different wind forcing and
stability conditions. Although the performance was not as good as the predictions made
by the linear regression using stability measures, the performance achieved was better than
simply using GFS predictions and MOS. This demonstrates that the mesoscale modelling,
either by KAMM or WRF, is able to add information about the local flow around Aliaz
and improve wind speed predictions.

Adaptive and non-parametric methods such as those used in WPPT apply a number
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of tuning parameters. Normally, these have to be setup for each installation. We have
presented methods which add an additional layer of adaption, by adapting these tuning
parameters. The criteria used for adapting these directly address the prediction perfor-
mance.

The issue of robust and adaptive estimation of a wind farm power curve has been ad-
dressed. It has been shown that existing non-parametric estimators can be modified in
order to limit the influence of highly suspicious data when adapting the parameters of
a model. The ability of the resulting robust estimators to better approximate the true
power curve of a wind farm has been demonstrated from simulations, and the related
benefits in operational conditions have been discussed. Such robust methods will allow
for enhancement of the quality of the estimation of the direction dependent power curve
in on-line situations where the data quality cannot always be insured.

It has been shown that the choice of methods for generating wind power prognoses for
use in the electricity market may have economic consequences for wind power producers.
In particular it was shown that it may be profitable to make prognoses that are biased
in order to minimize balancing costs. It was also shown that such prognoses may have
consequences at the level of the electricity system as whole; however, it has been beyond
the scope of the project to go further into this.
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Nielsen H.A., Nielsen T.S., Madsen H., and Giebel G. Candidate prediction models and
methods. Informatics and Mathematical Modelling, Technical University of Denmark,
2005. http://www.imm.dtu.dk/∼han/pub/FU4101 Candidate pred models.pdf.

Nielsen H.A., Nielsen T.S., Madsen H., Giebel G., Badger J., Landberg L., Sattler K.,
Voulund L., and Tøfting J. From wind ensembles to probabilistic information about
future wind power production – results from an actual application. In Prooceedings of

the 9th International Conference on Probabilistic Methods Applied to Power Systems.
2006a. Invited paper.

Nielsen H.A., Nielsen T.S., Madsen H., San Isidro M.J., and Marti I. Opti-
mal combination of wind power forecasts. Wind Energy, 2007a. Accepted,
http://www.imm.dtu.dk/∼han/pub/FU4101 WEpaperCFCaccepted.pdf.

Nielsen H.A., Pinson P., Christiansen L.E., Nielsen T.S., Madsen H., Bad-
ger J., Giebel G., and Ravn H.F. Improvement and automation of
tools for short term wind power forecasting. In Scientific Proceedings of

the European Wind Energy Conference & Exhibition. Milan, Italy, 2007b.
http://www.ewec2007proceedings.info/allfiles2/475 Ewec2007fullpaper.pdf.

http://www.imm.dtu.dk/pubdb/views/publication_details.php?id=3969
http://www.windpower.org/en/core.htm
http://www2.imm.dtu.dk/pubdb/p.php?4262
http://www.ewea.org
http://www.imm.dtu.dk/~han/pub/FU4101_Candidate_pred_models.pdf
http://www.imm.dtu.dk/~han/pub/FU4101_WEpaperCFCaccepted.pdf
http://www.ewec2007proceedings.info/allfiles2/475_Ewec2007fullpaper.pdf


Intelligent wind power prediction systems 36/36

Nielsen T., Madsen H., and Christensen H. WPPT – a tool for wind power prediction.
In Proceedings of the Wind Power for the 21st Century Conference. Kassel, Germany,
2000b.

Nielsen T., Madsen H., and Christensen H.S. WPPT - a tool for wind power prediction.
In Proceedings of the Wind Power for the 21st Century Conference. Kassel, 2000c.

Nielsen T.S., Nielsen H.A., and Giebel G. Initialisation of power curve
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