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Abstract
In this paper we present a new method for construct-
ing di�eomorphic statistical deformation models in
arbitrary dimensional images with a nonlinear gener-
ative model and a linear parameter space.

Our deformation model is a modi�ed version of the
di�eomorphic model by Cootes et al. The modi�ca-
tions ensure that no boundary restriction has to be
enforced on the parameter space to prevent folds or
tears in the deformation �eld.

For straightforward statistical analysis, principal
component analysis and sparse methods, we assume
that the parameters for a class of deformations lie
on a linear manifold and that the distance between
two deformations are given by the metric introduced
by the L2-norm in the parameter space. The cho-
sen L2-norm is shown to have a clear and intuitive
interpretation on the usual nonlinear manifold.

Our model is validated on a set of MR images of
corpus callosum with ground truth in form of manual
expert annotations.

We anticipate applications in unconstrained di�eo-
morphic synthesis of images, e.g. for tracking, seg-
mentation, registration or classi�cation purposes.

1 Introduction
Registration is the problem of establishing correspon-
dence between points in di�erent images. It has been
used for building models of variation in groups of im-
ages for several years. Cootes et al. proposed the
very successful active appearance models in 1998 [3],
which, once trained, can establish correspondence be-
tween points in the model and the images using a

piecewise a�ne mapping. Rueckert et al. presented
a statistical deformation model based on registrations
of an atlas to the images of the group [9]. Joshi et
al. demonstrate how to construct an unbiased atlas
from a population [5], and Cootes et al. presented
a guaranteed di�eomorphic shape model [2] by us-
ing smooth kernels for interpolating a warp �eld and
putting restrictions on the variation of the param-
eters. Vester-Christensen et al. have presented an
accelerated version of this algorithm [10], which is
based on the inverse compositional method by Baker
et al., which we have also made extensive use of in
the presented work [1].

2 Methods
We de�ne image registration as the identi�cation of
correspondence between positions in images. In the
current work we address problems where the corre-
spondences can be represented by a di�eomorphic
function f ∈ H, where H denotes the in�nite dimen-
sional group of di�eomorphisms on RN . The map-
ping from one image to the other is di�erentiable and
the inverse exists and is also di�erentiable. Popular
speaking this limits the problem of registration to
the problem of �nding smooth warps without folds
or tears.

In the statistical analysis of the warp functions we
are interested in estimating an unbiased atlas of the
structures we are registering. We identify such an at-
las as the groupwise maximizer of similarity between
the atlas and the deformed images, while minimizing
the deformation �eld.

[φi, R̂] = min
φi,R̂

∑

i

S[R̂, T ◦ φ] + αD(φi)2 . (1)
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where S denotes the similarity measure and D(φ) de-
notes the regularization term, introduced to regular-
ize the warp φ further than just restricting it to the
space of the parameters, and α is the regularization
parameter.

2.1 Parameterized di�eomorphisms
Fletcher et al. have investigated geodesic curves on
the nonlinear manifolds of the parameters of the M-
reps parameterization [4]. Most of the current statis-
tical analysis, however, is based on the assumption
that the data is located on a linear manifold with the
Euclidian metric, e.g. principal component analysis
(PCA) and independent component analysis (ICA),
which have nice properties as analytical tools. This
is our motivation for introducing a function G which
identi�es RM with a (hopefully interesting) subset of
di�eomorphisms.

Let H(RN ) denote the set of di�eomorphisms (f :
RN → RN ). Now let G be a bijective mapping:

G : RM → Ht . (2)

where Ht = G(RM ) ⊂ H. We let Ht inherit the
Euclidian metric from the parameter space RM

d(G(t1),G(t2)) ≡ d(t1, t2) = ‖t1 − t2‖2 ,

t1, t2 ∈ RM and G(t1),G(t2) ∈ Ht , (3)

from which we conclude that G is a homeomorphism,
and that the spaces Ht = G(RM ) and RM are topo-
logically equivalent. To conclude it can be observed
that the de�ned metric on the space of parameterized
warps is the L2 norm on RM as intended.

2.1.1 Composition of warps
The composition of more di�eomorphisms is di�eo-
morphic, which is a very important property of dif-
feomorphisms in the present context.

fi ∈ H , i ∈ {1, 2, . . . , n}
φ = fn ◦ fn−1 ◦ . . . ◦ f1 ⇒ φ ∈ H (4)

This allows for the construction of di�eomorphisms of
higher complexity by the composition of several sim-

pler warps. We shall assume we are dealing with pa-
rameterized warp functions, and our statistical anal-
ysis of warps can be reduced to the analysis of the
warp parameters, in line with (3). For all images in
our set the warp parameters shall warp from our ref-
erence, R, into the current target, I. In order to be
able to compare parameters from di�erent warp com-
positions it is evident that all our parameters exist in
the same space. This is achieved by ensuring that all
warps fi in a composition warp from the reference
coordinate system[2].

2.1.2 Grid based di�eomorphisms
Several grid based representations of di�eomorphisms
have been presented and they are commonly used at
di�erent levels of detail and composed succeedingly
[2, 7, 9]. A general trait of the grid methods is that
they manipulate the parameters of the functions de-
scribing the di�eomorphism, and that the functions
have a local support in the image, either as points de-
�ned in the image or as basis functions with support
around a control point. Often this parameterization
of the grid is linear in the parameters and this obvi-
ously imposes some restrictions on the parameters to
produce di�eomorphic warps. Cootes et al. specify
a cut-o� at displacements larger than 1

π of the co-
sine based kernel [2] and Lee et al. �nd a threshold
bound on the B-spline parameters to secure that the
B-spline based warp function is di�eomorphic [6].

2.1.3 A proposed G
Let F be the function mapping from a real parameter
space RM into the space of functions from RN to
RN , e.g. in case of the B-spline warps, F maps from
the parameter space into the space of N -dimensional
B-spline functions f : RN to RN , the image of F ,
K can be shown to contain functions that are not
di�eomorphic.

As discussed in the previous section there can for
some parameterized warps be speci�ed a threshold
such that P = ]−τ1, τ1[ × · · · × ]−τM , τM [ and
F : P → Ht, where Ht ≡ F(P) ⊂ H. In the cur-
rent study we have investigated the use of a function
g : RM → P, that is a bounded monotonous injec-
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tive function into the space of thresholded displace-
ment parameters. Constructing G = F ◦ g, where
G : RM → Ht gives us the desired function G, namely
a homeomorphic mapping from the parameter space
RM into the space of di�eomorphisms. As an exam-
ple of the function g we have chosen a set of hyper-
bolic tangent function, because the range where it is
close to linear in large. The composed mapping G
and the di�erent ranges are illustrated in Figure 1.

Figure 1: Illustration of the mapping G from RN to G,
along with our proposed composed mapping G = F◦g

.

We de�ne g coordinate-wise by

g = {g1, ..., gM} where gi : R→ ]−τi, τi[

si = gi(ti) = τi tanh aiti , for i ∈ {1, ...,M} (5)

where τi are the threshold parameters reducing the
displacement parameter space of the warp to P ⊂
RM , s = {s1, ..., sM} ∈ P are the displacement pa-
rameters and ai are constants ensuring that the im-
pact of each ti is of the same order of magnitude.

2.1.4 Properties of the g mapping

Before we continue with an empirical validation of
our proposed mapping we will make some theoreti-
cal considerations over the choice of homeomorphic
mapping g. For small values t ∈ RM the L2 norm in
RM is equivalent to a scaled L2 norm in g(RM ) to a
�rst order. In other words, relating this to di�eomor-
phic warps, for small deformations the de�ned norm
is equivalent to the usual metric applied in analysis
of the warp �elds [2, 9].

2.1.5 The parameter distribution

We believe that the distribution of the parameters
is well described by normal distribution and we will
show what distribution this describes in the displace-
ment parameter space of the warp function. Let fti
be the marginal distribution of the parameter ti and
fgi be the marginal distribution of the warp param-
eter si = gi(ti) then

fi(ti) =
1√

2πσi
e
− t2i

2σi (6)

fgi(si) =
1

2ai · τi
√

2πσi

(
e
− g−1(si)

2

2σi +

e
µ2
i

2σi

2
e
− (g−1(si)−µi)2

2σi +
e
µ2
i

2σi

2
e
− (g−1(si)+µi)

2

2σi

)
(7)

where µi = σiai
2 and this distribution is seen to be the

composition of three Gaussian distributions scaled
by g−1. For small µi this is approaching the Gaus-
sian distribution which is often the distribution for
the warp parameters in the small deformation do-
main and for µi big the two µi displaced distribu-
tions dominate, and we observe a high concentration
of parameters around the threshold τi. In the pres-
ence of strong deformations this also what we expect
when imposing a threshold on the warp deformation
parameters. Based on these considerations we ex-
pect an M − dimensional normal distribution of our
parameters to be well suited for modelling the distri-
butions of the observed deformations.
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2.1.6 Statistical deformation model
In the previous section we argued that the expected
distribution of warps could be modelled as an M −
dimensional normal distribution. If this is the case
PCA is the shown to be the optimal choice of analysis
tool for creating a compact model of the observations,
and

3 Implementation
To validate our approach for construction of di�eo-
morphic deformation model we have adapted the grid
based di�eomorphisms by Cootes [2] with our g map-
ping. These di�eomorphisms can be viewed as an ex-
tension to standard linear interpolation, where the in-
terpolation coe�cients are transformed by a suitable
kernel k(r) which ensures smoothness across the grid
boundaries. The displacement of a 2D point x ∈ R2

is given by

u(x,d) =
1∑

m=0

1∑
n=0

kn(v)km(w)di+n,j+m

=
1∑

m=0

1∑
n=0

ai+m,j+n(x)di+n,j+m (8)

=
[
a(x)> 0

0 a(x)>

]
d (9)

where k0(r) = k(r), k1(r) = 1 − k(r), i and j is the
local indices of the neighboring grid points, v and w
are relative positions of x in the neighborhood and d
and di,j are all the displacements and the displace-
ment of the (i, j)-node, respectively. By substitut-
ing the displacements d with the g mapping with a
suitable threshold τ this deformation model will no
longer be able to generate non-di�eomorphisms.

For notational simplicity the displacement in the
ith direction will represented by

ui(x, ti) = a(x)>gτ (ti), (10)

and the warp function is written in the form

ϕ(x, t) = x+ u(x, t). (11)

3.1 Image registration
To drive the registration between a reference image
R and a target image I we apply the sum-of-squared-
di�erences (SSD) as our similarity measure and the
regularization term is given byD(φ) = d(e, φ) = ‖t‖2,
where e is the identity map corresponding to t =
0. The SSD comparison leads us to calculate the
reference image as the arithmetic mean of the warped
target images, as this is the optimum SSD solution
to (1) [5].

F (t) =
1
2

∑
x

(R(x)− I(ϕ(x, t))2 + α‖t‖22(12)

=
1
2

∑
x

E2(x, t) + α‖t‖22. (13)

To achieve a fast optimization we apply the inverse
compositional optimization approach by Baker et al.
[1] to the cost function. Thus, we obtain a minimum
by iteratively minimizing

Fic(t) =
1
2

∑
x

(R(ϕ(x,∆t))− I(ϕ(x, t))2

+α‖t− ∂t′

∂∆t
∆t‖2 (14)

with respect to ∆t and updating t according to
ϕ(x, t′)← ϕ(x, t) ◦ϕ−1(x,∆t). (15)

In Appendix B it is shown how t′ is derived from (15).
By performing a �rst-order Taylor-expansion on

R(ϕ(x,∆t) around x in (14), taking the derivatives
wrt. ∆t and setting them equal to zero we get

∆t = H−1

[∑
x

SD(x)>E(x, t) + α
∂t′

∂∆t

>
t

]
(16)

where
SD(x) = ∇R(x)

∂ϕ(x,0)
∂t

(17)
and

H =
∑
x

SD(x)>SD(x)+α
[
∂t′

∂∆t

]> [
∂t′

∂∆t

]
. (18)

The advantages with this inverse compositional ap-
proach is that SD(x) can be pre-computed as it is
not dependent on t.
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4 Validation: corpus callosum
model

To demonstrate our approach we have created a de-
formation model of the Corpus Callosum from 62
two dimensional MR images of the mid-sagittal cross-
section of the corpus callosum brain structure. This
data set is part of the LADIS (Leukoaraiosis and DIS-
ability) study [8], a pan-European study involving 12
hospitals and more than 700 patients. Furthermore,
each corpus callosum have manually been annotated
with 72 landmark by a clinician, which we will later
use for validation.

Prior to the non-rigid registration a rigid registra-
tion was performed to �lter out non-anatomical vari-
ation. This was achieved by performing Procrustes
analysis on the sets of annotation. After the rigid reg-
istration an initial reference was created by comput-
ing a mean image of the rigid registered images. All
corpus callosum images were then non-rigidly regis-
tered to the reference, and a new reference was com-
puted by averaging. This was done multiple times
until the reference stabilized. For the non-rigid reg-
istration the cosine kernel k(r) = 0.5(1 + cos(πr))
was applied [2]. The non-rigid warps were modelled
by composing three grid based di�eomorphisms in a
�ne-to-coarse maner. The dimension of the applied
grids were 5 × 4, 10 × 8 and 20 × 16. The non-rigid
registrations were carried out in coarse to �nd or-
der. After each level ϕi of the warp was estimated
the target image was updated by warping the tar-
get image back into the reference coordinate frame
by Tn+1(x) = Tn(ϕ(x)). This was done to ensure
that di�erent parameters from di�erent warps could
be compared [2]. ai of the g mapping was set pro-
portional to the inverse of the squared grid node dis-
tance because the grid was 2 dimensional. The im-
age registration was validated using the Dice mea-
sure, which is twice the intersecting area between the
ground truth shape outline of the warped image and
the outline of the reference shape divided by the to-
tal area inside the two outlines. The ground truth
was obtained from the expert annotations. The Dice
measure was 0.884 ± 0.048. In Fig. 2 we show an
example of a typical registration of an image. In

Fig. 3 the cumulative overlap of the aligned corpus
callosum shapes before and after a rigid registration
is illustrated, showing a clear improvement in corre-
spondences between the shapes.

To create a compact deformation model, PCA was
applied to the parameters after the groupwise regis-
tration of the images. 13 modes of variation could
describe 95 % of the observed variation in the pop-
ulation as observed in Figure 4, and the �rst three
modes are illustrated in Fig. 5. The �rst mode of
variation is seen to be related to a vertical stretch
and in particular to the size of the septum pellucidum
(the dark area between the bright corpus callosum
and the bright Fornix), the second mode is related to
the kink of the corpus callosum and the thickness of
the structure and the same goes for the third mode
but with a di�erent bending of the Fornix. Rueckert
et al. have also analyzed the corpus callosum and
they found modes quite similar to the ones found in
the current study [9]
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Figure 4: Plot relating described variance with num-
ber of modes included in the model.

5 Discussion
We have shown how a parametric function can be de-
�ned on the unbounded linear space RM and still pro-
duce di�eomorphic warps. When this is accomplished
by �rst mapping RM into an open bounded subset of
RM , which inevitably leads to an asymptotic behav-
ior at the closure of the bounded set. In our im-
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(a) Template image (b) Warped template (c) Reference image

Figure 2: Registration of an image to the reference.s

(a) Before nonrigid registration (b) After nonrigid registration

Figure 3: Cumulative overlap of the aligned corpus callosum shapes before and after a rigid registration

(a) 1st mode (b) 2nd mode (c) 3rd mode

(d) Reference

(e) 1 st mode (f) 2nd mode (g) 3rd mode

Figure 5: First three modes of the PCA model of the corpus callosum, shown as the reference warped ± 3
std. deviations
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plemented example the parameters of the model by
Cootes et al. asymptotically approach 1

π where sin-
gularities in the warp may occur. We believe that
our distance measure is very reasonable when we are
indeed approaching a singularity, as a small change
in the displacement parameters of the warp will cause
a huge impact on curvature of the warp function. In
Fig. 6, where -6 std. deviations of the �rst mode
is shown. We see that a singularity start to form
in the contracting area but this is highly unlikely as
predicted by our model and metric.

Figure 6: -6 Stnd. deviations of the �rst mode, nor-
mal view and a zoomed view on the beginning singu-
larity.

With the choice of tanh function, the asymptotic
behavior is assumed to be exponential, which may not
always be the case. There are obviously an in�nite
variety of monotonous bounded functions, e.g. arcus
tangent, and we will be investigating the choice of
function in more detail.

A problem, we believe, that may occur with the
proposed method is that we cannot be sure that the
threshold does actually mark a singularity. A simple
translation would for instance be asymptotic as well,
which is why initial rigid alignment is very impor-
tant indeed. Currently we investigate more involved
parameter restrictions than the simple threshold to
circumvent this possible problem.

Our validation on corpus callosum data showed
that we were able to learn the important modes of
variation, similar to previous obtained results, while
the relatively high Dice coe�cient illustrated that
our warp representation was able to capture the large
variations in the data set. We believe it is an advan-
tage that all con�gurations in our parameter space
are valid di�eomorphism, such that all gradients and
derivatives during the optimization are well de�ned.

6 Conclusions
This paper proposed a new warp representation
which allows statistical analysis on unrestricted lin-
ear parameter space. Furthermore, we have shown
that L2-norm the parameter space introduces a rea-
sonable metric in the actual space of modelled di�eo-
morphisms.
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A Warp inversion
Theorem A.1. Consider the function ϕ : RN ×
RM 7→ RN of type ϕ(x, t) = x + u(x, t) and
let ϕt(x) = ϕ(x, t) be a C1-di�eomorphism. If
u(x,0) = 0 and u(x, t) = −u(x, t), ϕ(x,−t) con-
verges with second-order to ϕ−1(x, t).

Proof.

|ξi(ht)| = |ϕi(ϕ(x, ht),−ht)− xi|
= |xi + ui(x, ht)− ui(x+ u(x, ht), ht)− xi|
< |ui(x, ht)− ui(x, ht) +

∂ui
∂x

(x, ht)u(x, ht)|

< |ht> ∂2ui
∂x∂ht

(x,0)
∂u

∂ht
(x,0)ht|

< |c| · |h2| (19)

B Derivation of update function
In general, it is unlikely that ϕ(x, t)◦ϕ−1(x,∆t) can
be parameterized with ϕ(x, t′), and thus it has to be
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approximated.
In Appendix A, it was shown that ϕ(x,−t) is a �rst-
order approximation to ϕ−1(x, t) as the error con-
verges with second-order to zero. The composition
in Eq. 15 is approximated with the parameters t′
which minimizes the SSD between the true composi-
tional warp and the warp ϕ(x, t′)

∑
x

∆ϕ(x)>∆ϕ(x) (20)

where

∆ϕ(x) = ϕ(ϕ(x,∆t), t)−ϕ(x, t′)
= a(x)>(gτ (∆t)− gτ (t′))

+a(ϕ(x,∆t))gτ (t). (21)

If

A =



a(x1)>

...
a(xn)>


 [] , and Aϕ =



a(ϕ(x1,∆t)>

...
a(ϕ(xn,∆t)>


 []

the updated warp parameters t′ can be found by solv-
ing the system

0 = A(gτ (∆ti)− gτ (t′i)) +Aϕgτ (ti). (22)

The least square solution to the system is

t′i = g−1
τ

(
A†Aϕgτ (ti) + gτ (∆ti)

)
(23)

where A† =
[
A>A

]−1
A>.

As Aϕ has to be evaluated on warped points it
is relatively computational expensive to evaluate.
Thus, we perform a �rst-order Taylor expansion on
Aϕ and arrive at

t′i = k−1
(
A†AJiAgτ (∆ti) + gτ (∆ti) + gτ (ti)

)
,

(24)
where

AJi = I + diag(
∂a(xj)
∂xi

>
gτ (ti))j=1...n (25)
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