
Model Predictive Control
for an arti�cal pancreas

B.Sc. Thesis

Matias Sørensen og Simon Kristiansen

Technical University of Denmark

Kongens Lyngby 2007

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Supervisor: John Bagterp Jørgensen, IMM

Summary

This thesis deals with linear Model Predictive Control, MPC, with the goal of
making a controller for an arti�cial pancreas. A diabetic is simulated by a math-
ematical model, and based on this model the MPC will compute the optimal
insulin input, taking constraints, disturbances and noise into account. Below is
a brief description of each chapter.

Chapter 2 describes linearization of di�erential equations in continuous time.
These are converted into a linear state-space model with discrete time represen-
tation, which is a requirement for linear MPC.

In Chapter 3, the basic idea for MPC is reviewed. By starting of with MPC on
basic form, the control model is extended step by step. Constraints are imposed
on the input and on the input rate of movement, which makes sure the input
appears in a controlled volume and speed.
Soft constraints are used for the output, to ensure the output are held inside
the wanted boundaries, but, if needed, the boundaries can be violated. In some
cases it would be impossible to stay within the constraints, and this would make
the problem infeasible, if soft constraints wasn't used.
Feedforward and feedback is also described. These two approaches will make
the system more robust, and gives a better reaction speed on changes in the
process, such as disturbances and noise.

Chapter 4 is the implementation of the MPC problem in MATLAB. This is
divided into three di�erent phases: Design, simulation and evaluation. The
user calls a �le, where the wanted test scenario is initialized. This includes
properties such as constraints and meal disturbances. After all the needed pa-
rameters are speci�ed, the MPC controller is designed, and the simulation is
completed. Finally the simulation is evalutated by various plots.

This implementation is used on a modi�ed version of Bergmans �minimal model�
in Chapter 5. This model consists of �ve di�erential equations, which simulates
a type 1 diabetic patient. The knowledge from the previous chapters is used to
transform the model into a linear state space model with discrete time repre-
sentation, and then use this with MPC. This chapter also discuss the selection

ii

of noise and weight matrices. Furthermore simulations are done, to �nally test
the functionality of the controller.

The thesis concludes that, it is possible that MPC can be used for the purpose
of an insulin pump, but severe testing, and a better model would be needed.

Resumé

Formålet med dette projekt er at undersøge om Model Predictive Control, MPC,
kan bruges som kontrolanordning til en insulinpumpe, hvilket kan blive brugt
til at udvikle en kunstig bugspytkirtel til mennesker som ikke producerer insulin
selv.
De basale idéer for lineær MPC vil blive gennemgået og implementeret, og
anvendt på en matematisk model for en type 1 diabetiker. Dette inkluderer
begrænsninger på insulin input og input-hastigheden, hvilket sørger for der ikke
bliver injiceret for meget insulin, og/eller dette foregår for hurtigt.
På systemets output, patientens blodsukker niveau, bruges der �bløde� begræn-
sninger, hvilket betyder at grænserne kan blive krydset, for at sikre at kontrol
problemet ikke bliver uløseligt. Dette betyder at der er en risiko for at patien-
tens blodsukker niveau ikke ligger på et sundt niveau i en kortere periode, men
som det vil blive vist, sker dette kun i ekstreme tilfælde.

Kontrolleren håndterer forstyrelser i systemet vha. feedforward og feedback.
Feedback får kontrol algoritmen til at evaluere det målte output og dermed
basere det kommende insulin input på dette, mens feedforward kan komme
fremtidige forstyrrelser, såsom indtagelse af mad og drikke, i forkøbet. Sådan
håndtering af forstyrrelser gør at systemet bliver mere robust og hurtigt rea-
gerende.

I simuleringerne bliver patienten udsat for forskellige scenarier med forskellige
størrelser måltider. Her bliver kontrollerens ydelse testet, og det viser sig at
den håndterer de �este scnearier godt, dog skal det haves i mente at den �ktive
patient er baseret på en noget mangelfuld model.

iv

Contents

Summary i

Resumé iii

1 Introduction 1

2 Linearization 3

2.1 Continuous-Discrete Time Conversion 4

2.2 Summary . 7

3 Model Predictive Control 9

3.1 Unconstrained MPC . 9

3.1.1 Regularization . 12

3.1.2 Disturbance . 14

3.1.3 Feed-forward/feedback . 17

3.2 Constrained MPC . 19

3.2.1 Input constraints . 19

3.2.2 Constraints on input rate of movement 20

3.2.3 Output constraints . 22

vi CONTENTS

3.2.4 Soft output constraints 23

3.3 Kalman �lter . 26

3.4 Summary . 28

4 Implementation 29

4.1 ScenaX.m . 30

4.2 MPCControl.m . 30

4.2.1 MPCDesign.m . 30

4.2.2 MPCSimulate.m . 31

4.2.3 MPCPlot . 34

5 Case study - A �minimal model� 35

5.1 Linearization . 38

5.2 MPC . 39

5.2.1 Weight matrices . 39

5.2.2 Horizon and sampling time 42

5.2.3 Noise . 43

5.3 Simulations . 44

5.3.1 Scenario I . 44

5.3.2 Scenario II . 54

5.3.3 Scenario III . 56

6 Conclusion 59

CONTENTS vii

A Impulse-response method 61

B Matlab programs 63

B.1 Scena1.m . 63

B.2 Scena2.m . 64

B.3 Scena3.m . 65

B.4 MPCControl.m . 66

B.5 MPCDesign.m . 66

B.6 DesignKalman.m . 68

B.7 DesignDiscreteMatrices.m . 68

B.8 DesignParameters.m . 69

B.9 DesignConstraints.m . 69

B.10 DesignMPCMatrices.m . 70

B.11 MPCSimulate.m . 72

B.12 MPCCompute.m . 73

B.13 BergmanMinimalModel.m . 74

B.14 MPCPlot.m . 75

B.15 InvestSampling.m . 77

B.16 InvestWeights.m . 78

Bibliography 81

viii CONTENTS

Chapter 1

Introduction

In year 2000 there were around 171 mio. people with diabetes in the world.
WHO has estimated that this number will be 366 mio. in 2030, i.e. diabetes is
a rising problem.
In the USA alone, there is used 130 billion USD a year on diabetes, which is
10% of the health care budget.
There are two types of diabetes, type 1 and type 2. Type 1 is called the insulin

Figure 1.1: The diabetes-
glucose-regulation

dependent diabetes and occur when the cells
in the pancreas, which producess insulin, are
destroyed.
The human body needs insulin to move glu-
cose from the food into cells, throughout
the body, so the energy in the food can be
used.
Figure 1.1 illustrates how the pancreas works
in a healthy body.
When there isn't produced any insulin, the
glucose is accumulated in the blood, which
can cause serious damage. Therefore peo-
ple with diabetes needs to have an external
source of insulin, which means injections into
the veins.

These injections are done with a needle several times at day, with the cor-
rect proportioning of insulin for the individual. If the patient gets too much
insulin he can go into hypoglycemia, and too little can cause hyperglycemia.
Hyperglycemia can lead to blindness, kidney failure and other long terms com-
plication, while hypoglycemia can lead to loss of consciousness and coma. A
device which could automate the injection of insulin would obviously be a big
advantage for the patient.

2 Introduction

A comparatively new device for type 1 diabetes is an insulin pump, which makes
the injection for the diseased person.
The pump consists essentially of three components: A sensor, which measures
the blood glucose concentration in the body, a controller that estimates the
needed insulin quantity, and a pump which makes the injection. See Figure 1.2.
This project will deal with a control algorithm for an insulin pump, for which
linear Model Predictive Control will be used.

MPC is a controller build on a model for the speci�c case. The controller
calculates the optimal quantity of insulin based on measurements of the blood
sugar on the subcutaneous layer. In theory, MPC could be used to make a de-
vice, which could act as an arti�cial pancreas, reducing the impact the disease
has on the patients life.

Figure 1.2: The insulin pump

Chapter 2

Linearization

This chapter will show how to convert a model consisting of �rst order di�eren-
tial equations, into a linear model with discrete time representation, and thereby
making it possible to use this model with linear MPC.
Such a system of di�erential equations in continuous time is denoted by;

dx(t)
dt

= ẋ(t) = f(x(t), u(t), d(t)) (2.1)

The �rst step is to identify an equilibrium point, a steady-state, (xs, us, ds),
i.e. f(xs, us, ds) = 0. Making a Taylor expansion around this point yields an
approximation to the system (2.1);

ẋ(t) = f(x(t), u(t), d(t))

' f(xs, us, ds) +
∂f

∂x

∣∣∣∣
(xs,us,ds)

(x(t)− xs) +
∂f

∂u

∣∣∣∣
(xs,us,ds)

(u(t)− us)

+
∂f

∂d

∣∣∣∣
(xs,us,ds)

(d(t)− ds)

= Ā (x(t)− xs) + B̄ (u(t)− us) + Ē (d(t)− ds) , (2.2)

where;

Ā =
∂f

∂x

∣∣∣∣
(xs,us,ds)

, B̄ =
∂f

∂u

∣∣∣∣
(xs,us,ds)

, Ē =
∂f

∂d

∣∣∣∣
(xs,us,ds)

, (2.3)

ẋ(t) is transcribed so it containes xs:

ẋ(t) =
dx(t)
dt

=
d (x(t)− xs)

dt
=

dx(t)
dt
− dxs

dt
(2.4)

4 Linearization

Introducing the deviation variables, X(t) = x(t) − xs, U(t) = u(t) − us and
D(t) = d(t)− ds, gives;

d (x(t)− xs)
dt

= Ā (x(t)− xs) + B̄ (u(t)− us) + Ē (d(t)− ds) ⇔

dX(t)
dt

= ĀX(t) + B̄U(t) + ĒD(t) ⇔

Ẋ(t) = ĀX(t) + B̄U(t) + ĒD(t) (2.5)

This is a system of linear time invariant di�erential equations.
The solution to this system is given in [7];

X(t) = eĀ(t−t0)X(t0) +
∫ t

t0

eĀ(t−s) (B̄U(s) + ĒD(s)
)
ds (2.6)

Where e denotes the matrix exponential function.

2.1 Continuous-Discrete Time Conversion

Having the linearized system, the next step is to convert it from continuous
time to discrete time. Considering equation (2.6), and let xk, uk and dk still be
deviation variables;

xk+1 = eĀ(tk+1−tk)x(tk) +
∫ tk+1

tk

eĀ(tk+1−s)
(
B̄u(s) + Ēd(s)

)
ds

⇒ eĀTsx(tk) +
∫ Ts

0

eĀ(tk+1−s)
(
B̄u(s) + Ēd(s)

)
ds

Ts = tk+1 − tk

⇒ eĀTsx(tk) +
∫ Ts

0

eĀτ
(
B̄u(τ) + Ēd(τ)

)
dτ

τ = tk+1 − s

⇒ eĀTsxk +
∫ Ts

0

eĀτ B̄ dτ uk +
∫ Ts

0

eĀτ Ē dτ dk

⇒ Axk +B uk + E dk (2.7)

where the matrices A, B and E are;

A = eĀTs , B =
∫ Ts

0

eĀτ B̄ dτ, E =
∫ Ts

0

eĀτ Ē dτ (2.8)

2.1 Continuous-Discrete Time Conversion 5

Ts is the sampling time.
A practical way to �nd A, B and E, is to solve the equation (see [1]);[

A B E

0 I I

]
= eM ·Ts , M =

[
Ā B̄ Ē

0 0 0

]
(2.9)

Let tk be the time de�ned as tk = t0 + kTs and let x(tk) = xk, u(tk) = uk and
d(tk) = dk, for t ≤ tk < tk+1, be the states at time tk.
Then the evolution of the states is governed by the di�erence equation, as above;

x(tk+1) = Ax(tk) +B u(tk) + E d(tk)⇒ xk+1 = Axk +B uk + E dk
(2.10)

Over a time-interval, from 1 to k, the values of x are;

x1 = Axs +B us + E ds

x2 = Ax1 +B u1 + E d1

= A (Axs +B us + E ds) +B u1 + E d1

= A2 xs +ABus +AEds +B u1 + E d1

x3 = Ax2 +B u2 + E d2

= A
(
A2 xs +ABus +AEds +B u1 + E d1

)
+B u2 + E d2

= A3xs +A2Bus +A2Eds +ABu1 +AEd1 +Bu2 + Ed2

...

xk = Ak xs + (Ak−1B)us + (Ak−1E)ds + · · ·+Buk−1 + Edk−1

= Ak xs +
k−1∑
j=0

(
Ak−1−jB

)
uj +

k−1∑
j=0

(
Ak−1−jE

)
dj (2.11)

By de�ning the output vector z as the measurable states, the output in k-time
is;

zk = C xk

= C Ak xs +
k−1∑
j=0

C
(
Ak−1−jB

)
uj +

k−1∑
j=0

(
Ak−1−jE

)
dj

= C Ak xs +
k−1∑
j=0

Hk−juj +
k−1∑
j=0

Hk−j,d dj , (2.12)

Hk is the k'th Markov parameter. Hk and Hk,d are denoted below.

Hk =
{

0, k = 0
CAk−1B, k ≥ 1

, Hk,d =
{

0, k = 0
CAk−1E, k ≥ 1

(2.13)

6 Linearization

These parameters will be of use in later sections.

The system can be set up as a linear discrete-time state-space model of the
form;

Linearized discrete time state-space model (2.14)

xk+1 = Axk +B uk + E dk
zk = C xk

2.2 Summary 7

2.2 Summary

In this chapter it has been shown how to convert a system of �rst order di�er-
ential equations in continuous time, into a linear model in discrete time. This
process is summarized below.

• Linearization of model,

- Given a system of di�erential equations, ẋ(t) = f(x(t), u(t), d(t)),
indentify a steady-state point (xs, us, ds).

- Calculate Ā = ∂f
∂x

∣∣∣
(xs,us,ds)

, B̄ = ∂f
∂u

∣∣∣
(xs,us,ds)

, and

Ē = ∂f
∂d

∣∣∣
(xs,us,ds)

- The corresponding linear model is Ẋ(t) = ĀX(t) + B̄U(t) + ĒD(t),
with X, U and D as deviation variables.

• Converting to discrete time,

- Calculate A = eĀTs , B =
∫ Ts

0
eĀτ B̄ dτ, and E =

∫ Ts
0
eĀτ Ē dτ .

- Model in discrete time is xk+1 = Axk +B uk +E dk., where x, u and
d are deviation variables.

- The output is zk = C xk, with C indicating the measureable states.

8 Linearization

Chapter 3

Model Predictive Control

Linear Model Predictive Control will now be introduced.
Figur 3.1 illustrates the basic idea for the MPC.

Figure 3.1: The basic MPC

Where z is the actual output and y is the measured output. The controller
manipulates the input, u, to achieve an output as close to the setpoint, r,
as possible. This basic control model will be expanded step by step in this
chapter, for instance by adding disturbance and di�erent sorts of constraints. It
will also be shown how these extended control problems can be formulated as a
Quadratic Programming (QP) problem, since QP problems are easily solved by
known algorithms.

3.1 Unconstrained MPC

In this section focus will be on the basic control model, the unconstrained MPC.
The goal of the controller is, as mentioned, to make the di�erence between the
output, zk, and the reference, rk, as small as possible. This can be done by
using a least squares problem. The weighted 2-norm is used:

1
2

N∑
k=0

||zk − rk||2Qy (3.1)

10 Model Predictive Control

Since z0 can't be in�uenced, the term 1
2 ||z0− r0||2Qz is discarded. This gives the

�rst control problem;

Basic control problem (3.2)

min φz =
1
2

N∑
k=1

||zk − rk||2Qz

s.t. xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1
zk = Cxk, k = 0, 1, . . . , N

From (2.12) it's known that;

zk = CAkx0 +
k−1∑
j=0

Hk−juj +
k−1∑
j=0

Hk−j,d dj

= zx0 + zuj + zdj (3.3)

For now the term zdj is discarded, such that;

zk = zx0 + zuj = CAkx0 +
k−1∑
j=0

Hk−juj (3.4)

This can be written as;

z0 = Cx0 (3.5)
z1

z2

z3

...

zN

︸ ︷︷ ︸
Z

=

CA

CA2

CA3

...

CAN

︸ ︷︷ ︸

Φ

x0 +

H1 0 0 · · · 0
H2 H1 0 · · · 0
H3 H2 H1 · · · 0
...

...
...

. . .
...

HN HN−1 HN−2 · · · H1

︸ ︷︷ ︸

Γ

u0

u1

u2

...

uN−1

︸ ︷︷ ︸

U

(3.6)

⇒ Z = Φx0 + ΓU (3.7)

By introducing R as a vector containing the setpoints

R =

r1

r2

...

rN

 (3.8)

3.1 Unconstrained MPC 11

the objective function can be written as;

φz =
1
2

N∑
k=1

||zk − rk||2Qz =
1
2
||Z −R||2Qz (3.9)

Where the weight matrix Qz is given by;

Qz =

Qz 0 · · · 0
0 Qz · · · 0
...

...
. . .

...

0 0 0 Qz

 (3.10)

Plugging equation (3.7) into (3.9) gives;

φz =
1
2
||Z −R||2Qz (3.11)

=
1
2
||Φx0 + ΓU −R||2Qz (3.12)

=
1
2
||ΓU − (R− Φx0)||2Qz (3.13)

=
1
2
||ΓU − b||2Qz , b = R− Φx0 (3.14)

To make this problem easier to solve, it is convenient to express it as a QP
problem;

φz =
1
2
||ΓU − b||2Qz

=
1
2

(ΓU − b)TQz(ΓU − b), by de�nition of weighted norm

=
1
2
UTΓTQzΓU − (ΓTQzb)TU +

1
2
bTQzb

=
1
2
UTHzU + gTz U + ρz (3.15)

where Hz, gz and ρz are given by;

Hz = ΓTQzΓ (3.16)

gz = −ΓTQzb
= −ΓTQz(R− Φx0)

= ΓTQzΦx0 − ΓTQzR
= Mx0x0 +MRR (3.17)

ρz =
1
2
bTQzb (3.18)

12 Model Predictive Control

This is the QP problem equivalent to problem (3.2);

QP formulation of problem (3.2) (3.19)

min
U

φz =
1
2
UTHzU + gTz U

Hz = ΓTQzΓ
gz = Mx0x0 +MRR

ρz is discarded since it doesn't in�uence the solution to the problem. Note that
the gradient is dynamic and needs to be updated for every timestep, as opposed
to the Hessian, which is static.

3.1.1 Regularization

Regularization is done by introducing a new term, φ∆u, in the objective function,
where ∆uk = uk − uk−1;

Control problem, with regularization (3.20)

min φ = φz + φ∆u =
1
2

N∑
k=1

||zk − rk||2Qz +
1
2

N−1∑
k=0

||∆uk||2S

s.t. xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1
zk = Cxk, k = 0, 1, . . . , N

This new term minimizes the di�erence between two consecutive steps in u,
which gives more �smooth� input, ie. tries to ensure that steps in u are either
continously decreasing or continously increasing.
Again this should be formulated as a QP problem. Compared to problem (3.2),
the only di�erence is a new term in the objective function, so to formulate as a

3.1 Unconstrained MPC 13

QP problem, this new term has to be rewritten;

φ∆u =
1
2

N−1∑
k=0

||∆uk||2S

=
1
2

N−1∑
k=0

||uk − uk−1||2S

=
1
2

N−1∑
k=0

(uk − uk−1)TS(uk − uk−1)

=
1
2

u0

u1

u2

...

uN−1

T
2S −S
−S 2S −S

. . .
. . .

. . .

−S 2S −S
−S S

︸ ︷︷ ︸

HS

u0

u1

u2

...

uN−1

+

−

S

0
0
...

0

︸ ︷︷ ︸
Mu−1

uT−1

u0

u1

u2

...

uN−1

+
1
2
u−1Su−1

=
1
2
UTHSU + (Mu−1u−1)T U +

1
2
u−1Su−1 (3.21)

This shows, that introducing φ∆u extends the QP problem by the following
terms;

H∆u = HS (3.22)

g∆u = Mu−1u−1 (3.23)

Like with ρz, the term
1
2u−1Su−1 is discarded, because of the lack of in�uence

on the solution to the problem. The new QP problem is;

QP formulation of problem (3.20) (3.24)

min
U

φ =
1
2
UTHU + gTU

H = Hz +H∆u = ΓTQzΓ +HS

g = gz + g∆u = Mx0x0 +MRR+Mu−1u−1

14 Model Predictive Control

3.1.2 Disturbance

The MPC problem will now be extended by adding disturbance. Virtually
every system has some disturbance. Figure 3.2 illustrates how the disturbance
d in�uences the MPC problem.

Figure 3.2: MPC with disturbance

The disturbance in this model is relatively easily handled by including the last
term, zdj , from equation (3.3), in the problem;

Control problem with regularization and disturbance (3.25)

min φ = φz + φ∆u =
1
2

N∑
k=1

||zk − rk||2Qz +
1
2

N−1∑
k=0

||∆uk||2S

s.t. xk+1 = Axk +Buk + Edk, k = 0, 1, . . . , N − 1
zk = Cxk, k = 0, 1, . . . , N

As mentioned in Chapter 2.1, Hi is analogous to Hi,d, so zdj must then be
analogous to zuj . Therefore it's easy to see that including the term zdj yields a
new term, analogous to ΓU , in Z. This new term is named ΓdD;

Z = Φx0 + ΓU + ΓdD (3.26)

3.1 Unconstrained MPC 15

Where;

Γd =

H1,d 0 0 · · · 0
H2,d H1,d 0 · · · 0
H3,d H2,d H1,d · · · 0
...

...
...

. . .
...

HN,d HN−1,d HN−2,d · · · H1,d

 , D =

d0

d1

...

dN−1

 (3.27)

The introduction of this new term in Z means, that φz has to be rewritten as a
QP;

φz =
1
2

N∑
k=1

||zk − rk||2Qz

=
1
2
||Z −R||2Qz

=
1
2
||ΓU − (R− Φx0 − ΓdD)||2Qz , by using (3.26)

=
1
2
||ΓU − b||2Qz , b = R− Φx0 − ΓdD

=
1
2

(UTΓT − bT)Qz(ΓU − b)

=
1
2
(
UTΓTQzΓU − bTQzΓU − UTΓTQzb+ bTQzb

)
=

1
2
UTΓTQzΓU − (ΓTQzb)TU +

1
2
bTQzb

=
1
2
UTHzU + gTz U + ρz (3.28)

Where;

Hz = ΓTQzΓ (3.29)

gz = −ΓTQzb
= −ΓTQz(R− Φx0 − ΓdD)
= Mx0x0 +MRR+MDD (3.30)

ρz =
1
2
bTQzb (3.31)

16 Model Predictive Control

The QP problem is summarized below. Compared to (3.24), the problem has
been expanded by a new term in the gradient.

QP formulation of problem (3.25) (3.32)

min
U

φ =
1
2
UTHU + gTU

H = ΓTQzΓ +HS

g = Mx0x0 +MRR+MDD +Mu−1u−1

3.1 Unconstrained MPC 17

3.1.3 Feed-forward/feedback

Two important aspects in a MPC controller is feedforward and feedback. They
both react on changes in the process, and can therefore make the controller
better in terms of reaction speed and robustness.
The feedback approach is illustrated on Figure 3.3.

Figure 3.3: MPC with feedback

Feedback is often used to control the dynamic behavior of the system. When
providing a system with feedback, the measured output, y, and thereby the po-
tential occurring disturbance, is fed back to the controller.
This ensures that the measured output is approximately the same as the wanted
value, the reference, r, which means the system will be more robust. The draw-
back with feedback is slow reaction speed, since output has to be measured
before it can be used.

The feedforward approach is illustrated on Figure 3.4. Feedforward is a loop
in the system, which takes some known disturbance and forward it to the con-
troller.

Figure 3.4: MPC with feedforward

When a system exhibits feedforward behavior, it responds to disturbances which
are prede�ned and therefore known.
This means, that the system can respond more quickly to the disturbance and
the measured output will be more robust.

18 Model Predictive Control

But meanwhile there is a relatively big chance that the output isn't comparable
to the wanted values, the references, r, since it cannot do much about novel
disturbance.

When combining these two appoaches, the system will be aware of both the
known and the unmeasured disturbance, so the system in theory will be trust-
worthy and fast. Figur 3.5 illustrates a controller where both these approaches
are used.

Figure 3.5: The MPC-model with feed-forward/feedback

3.2 Constrained MPC 19

3.2 Constrained MPC

The MPC will be extended such that it contains constraints.
The MPC problem has to take the limits of the physical system into considera-
tion. It's infrequent that a system has no boundaries. Constraints are imposed
on the input quantity, the input rate of movement and on the output. For all
constraints it's assumed that, for every timestep k, the boundaries are the same.

3.2.1 Input constraints

The input constraints are limitations to the maximum and minimum input vol-
ume.

MPC with input constraint (3.33)

min φ =
1
2

N∑
k=1

||zk − rk||2Qz +
1
2

N−1∑
k=0

||∆uk||2S

s.t. xk+1 = Axk +Buk + Edk, k = 0, 1, . . . , N − 1
zk = Cxk, k = 0, 1, . . . , N

umin ≤ uk ≤ umax k = 0, 1, . . . , N − 1

To formulate this as a QP problem this new constraint is put in vector form;

umin ≤ uk ≤ umax ⇔

umin

umin

...

umin

︸ ︷︷ ︸
Ůmin

≤

u0

u1

...

uN−1

 ≤

umax

umax

...

umax

︸ ︷︷ ︸
Ůmax

(3.34)

This yields a constrained QP problem;

QP formulation of problem (3.33) (3.35)

min
U

φ =
1
2
UTHU + gTU

s.t. Ůmin ≤ U ≤ Ůmax

The Hessian and gradient for this problem are the same as in problem (3.32).

20 Model Predictive Control

3.2.2 Constraints on input rate of movement

It is also possible to have constraints on how fast the input constraints can
change. The input rate of movement is the change from k to k + 1 and is
therefore called ∆uk. The control problem is extended again;

MPC with constraints on input and input rate (3.36)

min φ =
1
2

N∑
k=1

||zk − rk||2Qz +
1
2

N−1∑
k=0

||∆uk||2S

s.t. xk+1 = Axk +Buk + Edk, k = 0, 1, . . . , N − 1
zk = Cxk, k = 0, 1, . . . , N

umin ≤ uk ≤ umax, k = 0, 1, . . . , N − 1
∆umin ≤ ∆uk ≤ ∆umax, k = 0, 1, . . . , N − 1

This new constraint for ∆uk can be written as;

∆umin ≤ ∆uk ≤ ∆umax ⇔
∆umin

∆umin

...

∆umin

 ≤

u0 − u−1

u1 − u0

...

uN − uN−1

 ≤

∆umax

∆umax

...

∆umax

⇔

∆umin + u−1

∆umin

...

∆umin

 ≤

I

−I I
. . .

. . .

−I I

u0

u1

...

uN−1

 ≤

∆umax + u−1

∆umax

...

∆umax

Since the �rst row contains u−1 this can be written as;

∆umin + u−1 ≤ u0 ≤ ∆umax + u−1 ∧ (3.37)
∆umin

∆umin

...

∆umin

︸ ︷︷ ︸

∆Umin

≤

−I I

−I I
. . .

. . .

−I I

︸ ︷︷ ︸

Λ

u1

u2

...

uN−1

 ≤

∆umax

∆umax

...

∆umax

︸ ︷︷ ︸

∆Umax

(3.38)

3.2 Constrained MPC 21

An input constraint for u0 is already given in (3.34), combining with (3.37)
gives;

u0 ≤ ∆umax + u−1

u0 ≤ umax

u0 ≥ ∆umin + u−1

u0 ≥ umin

⇒

{
u0 ≤ min(umax,∆umax + u−1)

u0 ≥ max(umin,∆umin + u−1)
(3.39)

So the input constraints becomes;
max(umin,∆umin + u−1)

umin

...

umin

︸ ︷︷ ︸

Umin

≤

u0

u1

...

uN−1

 ≤

min(umax,∆umax + u−1)
umax

...

umax

︸ ︷︷ ︸

Umax

(3.40)

The QP problem becomes;

QP formulation of problem (3.36) (3.41)

min
U

φ =
1
2
UTHU + gTU

s.t. Umin ≤ U ≤ Umax

∆Umin ≤ ΛU ≤ ∆Umax

Note that Umin and Umax are dynamic and needs to be re-calculated for every
timestep.

22 Model Predictive Control

3.2.3 Output constraints

Output constraints are analogous to the input constraints, i.e. limitations to
the maximum and minimum output.

MPC with output and input constraints (3.42)

min φ =
1
2

N∑
k=0

||zk − rk||2Qz +
1
2

N−1∑
k=0

||∆uk||2S

s.t. xk+1 = Axk +Buk + Edk, k = 0, 1, . . . , N − 1
zk = Cxk, k = 0, 1, . . . , N
umin ≤ uk ≤ umax, k = 0, 1, . . . , N − 1
∆umin ≤ ∆uk ≤ ∆umax, k = 0, 1, . . . , N − 1
zmin ≤ zk ≤ zmax, k = 1, 2, . . . , N

The output at k = 0 cannot be a�ected, so the constraint here is disregarded.
This leads to:

zmin ≤ zk ≤ zmax ⇒
zmin

zmin

...

zmin

︸ ︷︷ ︸
Zmin

≤

z1

z2

...

zN

︸ ︷︷ ︸
Z

≤

zmax

zmax

...

zmax

︸ ︷︷ ︸
Zmax

(3.43)

Using Z = Φx0 + ΓU + ΓdD from equation (3.26) yields;

Zmin ≤ Z ≤ Zmax ⇔
Zmin ≤ Φx0 + ΓU + ΓdD ≤ Zmax ⇔
Zmin − Φx0 − ΓdD︸ ︷︷ ︸

Z̄min

≤ ΓU ≤ Zmax − Φx0 − ΓdD︸ ︷︷ ︸
Z̄max

(3.44)

3.2 Constrained MPC 23

The problem transforms into;

QP formulation of problem (3.42) (3.45)

min
U

φ =
1
2
UTHU + gTU

s.t. Umin ≤ U ≤ Umax

∆Umin ≤ ΛU ≤ ∆Umax

Z̄min ≤ ΓU ≤ Z̄max

3.2.4 Soft output constraints

It can occour that the control problem will be infeasible. This is mainly due to
the use of constraints greatly complicating the problem. In some cases it can
simply be impossible to stay within the boundaries.
A solution to this problem is to soften the constraints, meaning the boundaries
can be violated occasionally, if needed. In this case, soft output constraints are
used. The easiest way to softening output constraints is to introduce a new
slack variable, ψ.

MPC with input and soft output constraints (3.46)

min φ = φz + φψ + φ∆u

=
N∑
k=1

1
2
||zk − rk||2Qz +

1
2
||ψk||2Sψ + sTψψk +

1
2

N−1∑
k=0

||∆uk||2S

s.t. xk+1 = Axk +Buk + Edk, k = 0, 1, . . . , N − 1
zk = Cxk, k = 0, 1, . . . , N
umin ≤ uk ≤ umax, k = 0, 1, . . . , N − 1
∆umin ≤ ∆uk ≤ ∆umax, k = 0, 1, . . . , N − 1
−∞ < zk − ψk ≤ zmax, k = 1, 2, . . . , N
zmin ≤ zk + ψk <∞, k = 1, 2, . . . , N
0 ≤ ψk <∞, k = 1, 2, . . . , N

If it's not neccesary to violate output constraints, the solution to the problem

24 Model Predictive Control

will simply have ψ = 0, and will be equivalent to the solution with hard output
constraints. If it's not possible to use hard constraints, ψ is selected as small as
possible, so the output constraints are only violated by a minimum.

The approach to formulate (3.46) as a QP problem is a little di�erent than
for the previous problems. First Ψ is introduced;

Ψ =

ψ1

ψ2

...

ψN

 (3.47)

The new term in the objective function, φψ, is formulated as QP;

φψ =
1
2
||ψk||2Sψ + sTψψk =

1
2

ΨTS̄ψΨ + s̄TψΨ (3.48)

where;

S̄ψ =

Sψ . . .

Sψ

 , s̄ψ =

sψ...
sψ

 (3.49)

For this problem the Hessian is S̄ψ and the gradient is s̄ψ. The QP problem
should be formulated in terms of the vector Ū ,

Ū =
[
U

Ψ

]
(3.50)

Which means the objective function for the QP should be 1
2 Ū

TH̄Ū + ḡTŪ . The
Hessian and gradient for this problem are;

H̄ =
[
H 0
0 S̄ψ

]
, ḡ =

[
g

s̄ψ

]
(3.51)

The constraints for U and Ψ should then be written as;[
Umin

0

]
︸ ︷︷ ︸
Ūmin

≤
[
U

Ψ

]
︸︷︷︸
Ū

≤
[
Umax

∞

]
︸ ︷︷ ︸
Ūmax

(3.52)

It's obvious that as in the previous QP problem, (3.45), the constraint
∆Umin ≤ ΛU ≤ ∆Umax should still be imposed. Formulated in terms of Ū
yields;

∆Umin ≤
[
Λ 0

] [U
Ψ

]
≤ ∆Umax (3.53)

3.2 Constrained MPC 25

The upper bound on zk needs to be transcribed;

−∞ < zk − ψk ≤ zmax ⇔
−∞ < Z −Ψ ≤ Zmax ⇔
−∞ < Φx0 + ΓDD + ΓU −Ψ ≤ Zmax, using (3.26) ⇔
−∞ < ΓU −Ψ ≤ Zmax − (Φx0 + ΓDD) ⇔
−∞ < ΓU −Ψ ≤ Z̄max ⇔

−∞ <
[
Γ −I

] [U
Ψ

]
≤ Z̄max (3.54)

Equivalently, this can be done for the lower bound, which gives;

Z̄min ≤
[
Γ I

] [U
Ψ

]
<∞ (3.55)

Combining equations (3.53), (3.54), and (3.55) in matrix formulation yields;∆Umin

−∞
Z̄min

︸ ︷︷ ︸

bmin

≤

Λ 0
Γ −I
Γ I

︸ ︷︷ ︸

A

[
U

Ψ

]
≤

∆Umax

Z̄max

∞

︸ ︷︷ ︸

bmax

(3.56)

So the QP problem is;

QP formulation of problem (3.46) (3.57)

min
U

φ =
1
2
ŪTH̄Ū + ḡTŪ

s.t. Ūmin ≤ Ū ≤ Ūmax

bmin ≤ AŪ ≤ bmax

26 Model Predictive Control

3.3 Kalman �lter

The basic ideas behind the Kalman �lter will now be introduced. Kalman Filter
is used to minimize the impact of noise in the problem. For further and more
detailed information, see [8] and [9].
To make the simulations more realistic, noice is assumed on both process and
output. This noise is denoted wk and vk, respectively;

xk+1 = Axk +Buk + wk (3.58)

yk = Cxk + vk (3.59)

Both wk and vk are assumed to be white noise and normal distributed, with
mean zero and covariance Qw and Rv, respectively.

wk ∼ N(0, Qw) (3.60)

vk ∼ N(0, Rv) (3.61)

An estimate of x is given by:

x̂k+1|k = E {xk+1|yk, yk−1, . . . , y0}
= E {xk+1|Y}
= E {Axk +Buk + wk|Y}
= A E {xk|Y}+Buk + E {wk|Y}
= Ax̂k|k +Buk + ŵk|k (3.62)

Since the mean of wk is equal to 0, the noise estimate becomes:

x̂k+1|k = Ax̂k|k +Buk (3.63)

This means that xk|k is normal distibuted with mean x̂k|k and error covariance
Pk|k, i.e:

xk|k ∼ N
(
x̂k|k, Pk|k

)
(3.64)

The system can be augmented by adding an integrated disturbance, ηk, to
achieve o�set-free performance;

xk+1 = Axk +B (uk + ηk) + wk (3.65)

ηk+1 = Iηk + ξ (3.66)

yk = Cxk + vk (3.67)

Transformed into matrix form gives;[
xk+1

ηk+1

]
=
[
A B

0 I

] [
xk
ηk

]
+
[
B

0

]
uk +

[
wk
ξ

]
(3.68)

y =
[
C 0

] [xk
ηk

]
+ vk (3.69)

3.3 Kalman �lter 27

where ηk is normal distributed with zero mean and covariance Qη,k and ξ is
disturbance noise and normal distributed with ξ ∼ N (0, Qξ).

Now the Kalman Filter is used to estimate the state x̂k+1|k.
First phase of the Kalman �lter is the �time update�. It is used to produce an
estimate of the current state, using the estimate of the previous state;

x̂k|k−1 = Ax̂k−1|k−1 +Buk (3.70)

Pk|k−1 = APk−1|k−1A
T +Qw (3.71)

The second phase of the �lter, the �measurement update�, re�nes measurement
information from the current timestep to get a new, more accurate, estimate;

ek = yk − Cx̂k|k−1 (3.72)

Sk = CPk|k−1C
T +Rv (3.73)

KkSk = Pk|k−1C
T, (optimal Kalman gain, solve for Kk) (3.74)

x̂k|k = x̂k|k−1 +Kkek (3.75)

Pk|k = (I −KkC)Pk|k−1 (3.76)

An illustration of the Kalman Filter is shown on �gure 3.6.

Figure 3.6: The Kalman Filter cycle

28 Model Predictive Control

3.4 Summary

This chapter derived the MPC problem (3.46) shown on Figure 3.7.

Figure 3.7: The MPC-model

The goal of the MPC controller is to make the output, z, as close to the refer-
ence, r, as possible. This is done by calculating the optimal input, u, for each
time-step. Feedback is used, such that the controller analyzes the measured
output, y. When feedforward is used, the controller analyzes the future distur-
bances, d. Feedback and feedforward can well be used simultaneously.

The described MPC algorithm also takes care of input constraints, constraints
on input rate of movement, and soft output constraints. The soft output con-
straints keeps us from ending up with an infeasible problem, but can also violate
the physical limitations for the output, which may cause the system to malfunc-
tion and should therefore be used with concern.
Also the use of the Kalman Filter is described. The �lter makes an estimate of
x, when there is an addition of noise on the output measurements and/or the
process.

Formulating the control problem as a QP problem makes it relatively easy solv-
able.

Chapter 4

Implementation

This chapter will describe the implementation of the MPC problem (3.46) in
MATLAB.
The process tree is seen on Figure 4.1.

Figure 4.1: MPC tree

The individual MATLAB �les will now be described in detail. Names in
typewriter font nominates MATLAB entries.

30 Implementation

4.1 ScenaX.m

SceneX.m is the �le which is called by the user. The X speci�es the name of
the scene. The idea is that, all parameters the user should have in�uence on,
can be adjusted in this �le. Table 4.1 shows the basic variables which this �le
initializes.

Parameters(s) MATLAB name(s) Describtion

N N Size of prediction horizon.

umin, umax umin, umax Bounds on u.

∆umin, ∆umax udmin, udmax Bound on rate of change in u.

zmin, zmax zmin, zmax Bounds on z.

Q, S, Sψ, sψ Q, S, Spsi, spsi Weight matrices.

Table 4.1: Basic MPC variables initialized in SceneX.m

Additionally, this �le introduces the following:

• The timevector t, which speci�es timesteps in terms of the starttime t0,
the sampling time Ts, and the ending time tf.

• A vector mealsv, which de�nes at which points in time a meal is consumed.

• sigmaw and sigmav, which is used to scale the simulated noise, and the
seed parameter, which de�nes what set of random numbers to be used.

• feed determines if feedforward should be used. This will be described in
details later.

4.2 MPCControl.m

This is a wrapper script, which simply calls the three scripts needed for the
di�erent phases of MPC: Design, simulation and evaluation.

4.2.1 MPCDesign.m

In this design �le, everything is prepared for the actual simulation. This mainly
consists of setting up the many matrices found in Chapter 3.

4.2 MPCControl.m 31

First the function ParameterDesign.m is called, which assigns the basic model
parameters, shown in Table 5.1, to a vector p, to make handling of these easier.
Several new variables are initialized;

Parameters(s) MATLAB name(s) Describtion

∞ big Large number which acts as in�nity.

xs, us, ds, zs xs, us, ds, zs Steady-state point for the system.

x0, u0 x0, u0 Starting points for the simulation.

R, D R, D Vectors of lenght N.

x, u, y, Ū x, u, y, ubar Initialized to zero.

Ā, B̄, C̄, D̄ Ac, Bc, Cc, Ec System matrices in continous time.

Table 4.2: Basic MPC variables initialized in MPCControl.m

MPCDesign also performs the following operations;

• The constraints for u and z are transformed into deviation constraints.

• The vectors w and v are generated by the randn command and scaled, so
they have the desired standard deviation. The seed option is used so it is
possible to reproduce the same noise vector.

• DesignConstraints.m assigns the constraints for u, ∆u, z, and Ū to

vectors, i.e. Umin =
[
umin umin · · · umin

]T
, etc.

See equations (3.38), (3.40), (3.43), and (3.52).

• DesignDiscreteMatrices.m converts the system matrices Ā, B̄, C̄, Ē
into the equivalent matrices in discrete time, A, B, C, E. This is done by
equation (2.9).

• The Kalman Filter matrices is designed in DesignKalman.m. See section
3.3.

• DesignMPCMatrices.m designs the matrices H̄, Γ, Γd, Φ,Mx0,Mu−1,MR,
MD, Λ, s̄ψ. These are all created by basic MATLAB matrix operations.

• Finally xp is formed, which is the augmented system with integrated dis-
turbance, corresponding to equation (3.68).

4.2.2 MPCSimulate.m

Now the actual simulation is started. This consists of a loop which runs over the
timesteps de�ned in t. First noise is simulated on model x and measurement y,

32 Implementation

by adding values of vectors w and v. Meals are simulated by adjusting Dm(t),
and are assumed to span only one timestep, that is from tk to tk+1. For instance,
a meal at t = 420 min (7 hours) is simulated by adding the size of the meal to
Dm(420), see Figure 4.2.

6.5 7 7.5 8 8.5 9

D
(t

)
[m

g/
dL

/m
in

]

t [hour]

Figure 4.2: Modelling meals, change in Dm

On Figure 4.3 is shown how the implementation treats D when feedforward is
used and when it isn't. See Section 3.1.3 for further details of these.

4.2 MPCControl.m 33

(a) Feedforward in use, D is updated with meals

(b) Feedforward not in use, D is kept to all-zeros at all
times

Figure 4.3: Implementation of feedforward

Now comes the actual control step, where the optimal u is calculated for this
timestep, this is done in MPCCompute.m. Below is the outline of MPCCompute.m;

• First y, u−1, R and D are transformed into deviation variables and the
current prediction for x is updated with the Kalman gain Kfx.

• The gradient g is updated.

• Matrix system (3.56) is formed.

• Starting guess for Ū is made by forming
Ūinit = [uk uk+1 · · · uk+N−1 uk+N−1 · · ·

φk φk+1 · · · φk+N−1 φk+N−1]T.

• Then Ū is found by solving the QP problem (3.57) byMATLAB's quadprog
or John Bagterp Jørgensens qpsolver.m, where qpsolver.m has shown
itself to greatly outperform quadprog.
The �rst element of Ū is used as uk. If the solver fails, uk−1 is used as uk.

• xp is updated.

34 Implementation

• The found u is returned as a physical variable (as opposed to deviation
variable).

The program now returns to MPCSimulate.m, where xk+1 is found by evaluating
the Bergman model using the MATLAB Ordinary Di�erential Equation solver
ode15s.

4.2.3 MPCPlot

After the simulation-loop is �nished the results are plotted in convenient ways.
The results include the state vector x, the calculated input u and the meal
disturbances Dm. Plots are made with x-axis in hours, and constraints are
shown where applicable.

Chapter 5

Case study - A �minimal

model�

In this case study, the Bergman �minimal model� will be used with the imple-
mented MPC.
Based on measurements of the glucose level in the subcutaneous layer, the con-
troller will calculate the optimal amount of insulin to inject into the patient.
To model the patient, a modi�ed version of Bergmans �minimal model� is used.
As the name implies, this model is small, and is mainly used to test the MPC.
It would be unrealistic to think of it as an accurate model of a real patient.
The model consists of �ve di�erential equations, (see [2] for further details):

dG

dt
= −P1(G+Gb)−XrG+Dm(t) (5.1)

dXr

dt
= −P2Xr + P3(I − Ib) (5.2)

dI

dt
= −nI +

U(t)
VI

(5.3)

dGsc
dt

=
G−Gsc

5
−Rutln (5.4)

dDm

dt
= −αDm(t) (5.5)

36 Case study - A �minimal model�

A very brief description of the �ve states;

• G (mg/dL): Blood plasma glucose concentration above basal value.

• Xr (mU/L): Insulin in the remote compartment.

• I (mU/L): Plasma insulin concentration above basal value.

• Gsc (mg/dL): Glucose concentration on the subcutaneous layer. This state
approximates G, and is the one which are measurable.

• Dm (mg/dL/min): Meal glucose disturbance.

and the input is the manipulated insulin infusion rate (U(t), mU/min). The
time variable t is measured in minutes. The standard parameters for the model
can be found in Table 5.1. Gb, Xbr, Ib, Gbsc and Dm denote the basal values for
the system.
The parameters are assumed to be optimal, so they will not be inspected in this
project.

37

Name Value

P1 0.028735 min−1

P2 0.028355 min−1

P3 5.035 · 10−5 mU/L

n 5/54 min−1

VI 12 L

Rutln 0.7400mg/dL/min

α 0.05
Gb 81.3 mg/dL

Xbr 0

Ib 15mU/L

Gbsc Gb − 5Rutln
Dbm 0

Table 5.1: Bergman model parameter values

Boundaries on the blood sugar level is needed to avoid the person going into
hyperglycemia or hypoglycemia. These limits corresponds to output constraints.
The input constraints restricts how much, and how fast, the insulin can be
injected, and ensures the system obeys physiological and physical limits.
The chosen constraints are shown below, respectively;

60 mg/dL ≤ z ≤ 180 mg/dL (5.6)

0 mU/min ≤ u ≤ 100 mU/min (5.7)

−16.7 mU/min ≤ ∆u ≤ 16.7 mU/min (5.8)

Neither these will be investigated during this project.
To use the equations in MPC, let u and d be the inputs U(t) and D(t), and let
x be the system of equations (5.1-5.5);

x =

G

Xr

I

Gsc
D

 ⇒ ẋ =

Ġ

Ẋr

İ

Ġsc
Ḋm

 (5.9)

A steady-state point for the system is given by;

xs =

Gb
Xbr

Ib
Gbsc
Dbm

 , us = n Ib VI , ds = 0 (5.10)

38 Case study - A �minimal model�

This model will now be used with MPC.
First step is to linearize the model.

5.1 Linearization

By using the procedure shown in Chapter 2, it's clear that this system of di�er-
ential equations can be set up like this;

Ẋ = ĀX + B̄U + ĒD (5.11)

where X, U and D are deviation variables, X = x − xs, U = u − us and
D = d− ds.
In this case, X is the state vector, U is the input variable for insulin injection,
and D is the input variable for meal consumption. The matrices Ā, B̄ and Ē
are the partial derivatives of the model:

Ā =
∂f

∂x

∣∣∣∣
(xs,us,ds)

, B̄ =
∂f

∂u

∣∣∣∣
(xs,us,ds)

, Ē =
∂f

∂d

∣∣∣∣
(xs,us,ds)

(5.12)

which for this system gives;

Ā =

−P1 −Xb −Gb 0 0 1

0 −P2 P3 0 0
0 0 −n 0 0

0.2 0 0 −0.2 0
0 0 0 0 −α

 (5.13)

B̄ =
[
0 0 1

VI
0 0

]T
(5.14)

Ē =
[
1 0 0 0 −α

]T
(5.15)

Converting to discrete time yields (referring to Section 2.1);

Xk+1 = AXk +BUk + EDk (5.16)

By using parameter values from Table 5.1, the matrices A, B and E can be
evaluated by equation (2.9). These matrices are not evaluated here since they
depend on the used sampling time Ts.

The model is now linearized and converted to discrete time, and ready to be
used with the MPC controller.

5.2 MPC 39

5.2 MPC

The goal for the controller is to keep the glucose level, for the diabetic, at a
healthy level at all times.
The sensor in the insulin pump is able to measure the glucose on the sub-
cutaneous layer, that is, the state Gsc. Since this is the only state which is
measureable, the vector C is given by C =

[
0 0 0 1 0

]
. The setpoint for

this state is selected as it's basal value, Gbsc.
The constraints used are giving in equations (5.7-5.8), and it should be noted
that the output constraints are implemented as soft constraints.

5.2.1 Weight matrices

There are four weigths used in the objective function: Qz, Sψ, sψ and S. These
can be chosen to �tune� the controller.
Sψ and sψ are weights for the slack variable ψk, which are property of the soft
output constraints, and are kept constant as identity matrices.
Qz and S matrices are weights for the output and regularization term, respec-
tively. Tuning can be done by keeping one of these constant while varying the
other, since it's the ratio of these that actually matters in the objective function.
Qz is selected as identity matrix, and S is varied, see Figures 5.1 and 5.2. The
patient is given a meal at t = 1 hour.
For the very low values for S, there is close to no regularization, which means
that u varies greatly between timesteps. If the value of S is set too high, the
controller responds too slow. S is selceted to 10−2, since this values gives some
regularization and is still low enough to provide a decent response from the
controller in regards of speed.

It would also be possible to tune the Kalman Filter, in this thesis the weights
are selected as; Qw = 10−2 and Qξ = 10−2.

The seleted weights are summarized below;

Qz = 1, S = 10−2, Sψ = 1, sψ = 1, Qwse = 10−2, Qξ = 10−2

(5.17)

40 Case study - A �minimal model�

1 1.2 1.4 1.6 1.8 2
−10000

−5000

0

5000

u(
t)

 [m
U

/m
in

]

t [hour]

1 1.2 1.4 1.6 1.8 2

70

80

90

100

110

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(a) S = 10−5

1 1.2 1.4 1.6 1.8 2
−4000

−2000

0

2000

4000

u(
t)

 [m
U

/m
in

]

t [hour]

1 1.2 1.4 1.6 1.8 2

70

80

90

100

110

120

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(b) S = 10−4

1 1.2 1.4 1.6 1.8 2
−2000

−1000

0

1000

2000

u(
t)

 [m
U

/m
in

]

t [hour]

1 1.2 1.4 1.6 1.8 2

80

100

120

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(c) S = 10−3

1 1.2 1.4 1.6 1.8 2
−500

0

500

1000

u(
t)

 [m
U

/m
in

]

t [hour]

1 1.2 1.4 1.6 1.8 2

80

100

120

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(d) S = 10−2

1 1.2 1.4 1.6 1.8 2
−200

0

200

400

u(
t)

 [m
U

/m
in

]

t [hour]

1 1.2 1.4 1.6 1.8 2

60

80

100

120

140

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(e) S = 10−1

1 1.2 1.4 1.6 1.8 2
−50

0

50

100

150

200

u(
t)

 [m
U

/m
in

]

t [hour]

1 1.2 1.4 1.6 1.8 2
60

80

100

120

140

160

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(f) S = 1

Figure 5.1: Weight matrix S varied, without feedforward

5.2 MPC 41

0.5 1 1.5 2 2.5
−5000

0

5000

u(
t)

 [m
U

/m
in

]

t [hour]

0.5 1 1.5 2 2.5

70

80

90

100

110

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(a) S = 10−5

0.5 1 1.5 2 2.5
−2000

−1000

0

1000

2000

3000

u(
t)

 [m
U

/m
in

]

t [hour]

0.5 1 1.5 2 2.5

70

80

90

100

110

120

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(b) S = 10−4

0.5 1 1.5 2 2.5
−1000

−500

0

500

1000

1500

u(
t)

 [m
U

/m
in

]

t [hour]

0.5 1 1.5 2 2.5

80

100

120

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(c) S = 10−3

0.5 1 1.5 2 2.5
−400

−200

0

200

400

600

u(
t)

 [m
U

/m
in

]

t [hour]

0.5 1 1.5 2 2.5

80

100

120

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(d) S = 10−2

0.5 1 1.5 2 2.5
−200

0

200

400

u(
t)

 [m
U

/m
in

]

t [hour]

0.5 1 1.5 2 2.5

60

80

100

120

140

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(e) S = 10−1

0.5 1 1.5 2 2.5
−50

0

50

100

150

200

u(
t)

 [m
U

/m
in

]

t [hour]

0.5 1 1.5 2 2.5
60

80

100

120

140

160

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Constrains

(f) S = 1

Figure 5.2: Weight matrix S varied, with feedforward

42 Case study - A �minimal model�

5.2.2 Horizon and sampling time

An appropriate horizon N , and a sampling time Ts, are now selected. This is
done by investigating how a stepchange in the meal-disturbance, Dm, and in
u(t) will e�ect the non-linearized system. See Appendix B.15 for the implemen-
tation of this.

0 1 2 3 4 5 6 7 8
t [hour]

Figure 5.3: Stepchange

Figure 5.3 illustrates what is meant by
stepchange.

The e�ect of this stepchange on the output z
is seen on Figure 5.4. This Figure shows that,
for the stepchange in Dm, the system reaches
a new steady-state after approximately three
hours (180 minutes), which is slightly faster
than for the stepchange in u.
A general rule-of-thumb says, that one should
use a sampling time of about 180 min/12 sam-
ples = 15 min. Since computational speed is
not an issue for this problem , the used sam-
pling time is Ts = 8 min.
The horizon should be at least three hours, so N = 25 is chosen.

0 1 2 3 4 5 6
0

500

1000

1500

2000

2500

3000

3500

4000

z(
t)

 [m
g/

dL
]

t [hour]

(a) Stepchange in Dm

0 1 2 3 4 5 6 7 8
45

50

55

60

65

70

75

80

z(
t)

 [m
g/

dL
]

t [hour]

(b) Stepchange in u

Figure 5.4: E�ect of stepchange

5.2 MPC 43

5.2.3 Noise

As described in Section 3.3, noise can be simulated on output measurement
and/or the model itself;

xk+1 = Axk +Buk + Edk + wk ⇒ x̂k+1 = Axk +Buk + Edk

yk = Cxk + vk ⇒ ŷk = Cxk

where w and v are both assumed to be Gaussian distributed;

w ∼ N(0, Qw)
v ∼ N(0, Rv)

These vectors of noise are created in MATLAB by use of the randn function,
which is able to create random numbers with mean zero and standard deviation
one.
To obtain the desired distribution for the noise, the noise is scaled with σ. Ex-
periments are required to determine the size of σw and σv. By use of the �seed�
parameter for randn, it's possible to reproduce the same �random� vectors of
noise, and thereby produce simulations with the same noise vectors scaled dif-
ferently.

By experiments, σw and σv are chosen to be;

σw =
[
0.7 10−3 0.4 0.8 0

]
, σv = 0.8 (5.18)

These have shown themselfs to give simulations with a reasonable level of noise.

44 Case study - A �minimal model�

5.3 Simulations

The performance of the controller will now be tested with three di�erent sce-
narios. In the �rst test scenario our virtual patient is given three regular meals.
This is the main test scenario, and here the e�ect of feedforward will be investi-
gated, as well as measurement noise and process noise. In the last two scenarios
the size of the meals are varied. Scenario II models a patient eating big meals,
and in Scenario III the patient ingests alot of meals throughout the day.

The main objective for the controller is to keep the patient within healthy blood
sugar limits at all time.

5.3.1 Scenario I

Tabel 5.2 shows at what hours the patient ingests meals;

Time (hours) D(t) (mg/dL/min)

8 5

12 7

18 10

Table 5.2: Scenario I meal disturbances

This is the basic simulation scenario. This is now tested with and without
feedforward.

5.3 Simulations 45

5.3.1.1 Feedforward

The feedforward approach was described in Section 3.1.3. In this section the
controller will be equiped with this approach, which simulates a controller where
the patient informs of future incoming meals.
The simulations are done without any process or measurement noise. Figures
5.5 and 5.6 illustrates the evolution of the states and the input/output, respec-
tively, without feedforward, while Figures 5.7 and 5.8 illustrates the case with
feedforward.

0 3 6 9 12 15 18 21 24
0

5

10

15

D
m

(t
)

[m
g/

dL
/m

in
]

t [hour]
0 3 6 9 12 15 18 21 24

50

100

150

200

t [hour]

G
(t

),
 G

sc
(t

)
[m

g/
dL

]

G
G

sc

0 3 6 9 12 15 18 21 24
−0.01

0

0.01

0.02

0.03

X
r(t

)
[m

U
/L

]

t [hour]
0 3 6 9 12 15 18 21 24

0

10

20

30

40

50

I(
t)

 [m
U

/L
]

t [hour]

Figure 5.5: The evolution of states without feedforward

46 Case study - A �minimal model�

0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100

u(
t)

 [m
U

/m
in

]

t [hour]

u(t)
Constraints

0 2 4 6 8 10 12 14 16 18 20 22 24
50

100

150

200

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Setpoint

Figure 5.6: Insulin input and output without feedforward

0 3 6 9 12 15 18 21 24
0

5

10

15

D
m

(t
)

[m
g/

dL
/m

in
]

t [hour]
0 3 6 9 12 15 18 21 24

50

100

150

200

t [hour]

G
(t

),
 G

sc
(t

)
[m

g/
dL

]

G
G

sc

0 3 6 9 12 15 18 21 24
−0.01

0

0.01

0.02

0.03

X
r(t

)
[m

U
/L

]

t [hour]
0 3 6 9 12 15 18 21 24

0

10

20

30

40

50

I(
t)

 [m
U

/L
]

t [hour]

Figure 5.7: The evolution of states with feedforward

5.3 Simulations 47

0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100

u(
t)

 [m
U

/m
in

]

t [hour]

u(t)
Constraints

0 2 4 6 8 10 12 14 16 18 20 22 24
50

100

150

200

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Setpoint

Figure 5.8: Insulin input and output with feedforward

Using feedforward, the controller knows when there is going to be an increase
in the glucose value, because of meal consumption. That means that before the
consumptions are made, the controller injects some insulin. The glucose level is
held on a lower value than without feedforward and therefore it is more likely
for the patient to maintain a heathy blood glucose level.

From now, on all simulations are done with feedforward.

48 Case study - A �minimal model�

5.3.1.2 Measurement noise

As mentioned in Section 5.2.3, the system can be simulated with measurement
noise and/or process noise. In this section only the measurement noise, noise
on y, will be used .
A way to think of measurement noise, is how well the sensor, that measure the
glucose level in the subcutaneous layer, works.
Figure 5.9 illustrates the evolution of the �ve states for the model, Figure 5.10
the input and the outputs, while 5.11 illustrates the di�erence between the mea-
sured output and the real output.

0 3 6 9 12 15 18 21 24
0

5

10

15

D
m

(t
)

[m
g/

dL
/m

in
]

t [hour]
0 3 6 9 12 15 18 21 24

60

80

100

120

140

160

t [hour]

G
(t

),
 G

sc
(t

)
[m

g/
dL

]

G
G

sc

0 3 6 9 12 15 18 21 24
−0.01

0

0.01

0.02

0.03

X
r(t

)
[m

U
/L

]

t [hour]
0 3 6 9 12 15 18 21 24

0

10

20

30

40

50

I(
t)

 [m
U

/L
]

t [hour]

Figure 5.9: The evolution of states with measurement noise

5.3 Simulations 49

0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100

u(
t)

 [m
U

/m
in

]

t [hour]

u(t)
Constraints

0 2 4 6 8 10 12 14 16 18 20 22 24
50

100

150

200

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Setpoint

Figure 5.10: Insulin input and output with measurement noise

0 5 10 15 20 25
60

70

80

90

100

110

120

130

140

150

t [hour]

z
y

Figure 5.11: The measured and real output with measurement noise

50 Case study - A �minimal model�

Compared to Figures 5.7 and 5.8, Figures 5.9 and 5.10 does show some oscil-
lations, which means the control problem is harder, though, the controller still
performs nicely, as the output is kept within the given blood glucose limits. On
Figure 5.11 the measured output y is compared to the real output z. It shows
that these two accompanies each other pretty good, even though oscillations are
present here too.

5.3.1.3 Process noise

This section will handle the process noise, that is, noise on x.
Process noise could simulate physiological aspects the model doesn't consider.

0 3 6 9 12 15 18 21 24
0

5

10

15

D
m

(t
)

[m
g/

dL
/m

in
]

t [hour]
0 3 6 9 12 15 18 21 24

50

100

150

200

t [hour]

G
(t

),
 G

sc
(t

)
[m

g/
dL

]

G
G

sc

0 3 6 9 12 15 18 21 24
−0.01

0

0.01

0.02

0.03

X
r(t

)
[m

U
/L

]

t [hour]
0 3 6 9 12 15 18 21 24

0

10

20

30

40

50

I(
t)

 [m
U

/L
]

t [hour]

Figure 5.12: The evolution of states with process noise

5.3 Simulations 51

0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100

u(
t)

 [m
U

/m
in

]

t [hour]

u(t)
Constraints

0 2 4 6 8 10 12 14 16 18 20 22 24
50

100

150

200

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Setpoint

Figure 5.13: Insulin input and output with process noise

0 5 10 15 20 25
40

60

80

100

120

140

160

t [hour]

z
y

Figure 5.14: The measured and real output with process noise

52 Case study - A �minimal model�

Again the controller handles the noise nicely.

5.3.1.4 Measurement and process noise

Virtually every system has both measurement noise and process noise, here they
are both applied to the scenario. This is expected to be the most realistic sim-
ulation, as these types of noise would be present in the physical system.

0 3 6 9 12 15 18 21 24
0

5

10

15

D
m

(t
)

[m
g/

dL
/m

in
]

t [hour]
0 3 6 9 12 15 18 21 24

50

100

150

200

t [hour]

G
(t

),
 G

sc
(t

)
[m

g/
dL

]

G
G

sc

0 3 6 9 12 15 18 21 24
−0.01

0

0.01

0.02

0.03

X
r(t

)
[m

U
/L

]

t [hour]
0 3 6 9 12 15 18 21 24

0

10

20

30

40

50

I(
t)

 [m
U

/L
]

t [hour]

Figure 5.15: The evolution of states with process and measurement noise

5.3 Simulations 53

0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100

u(
t)

 [m
U

/m
in

]

t [hour]

u(t)
Constraints

0 2 4 6 8 10 12 14 16 18 20 22 24
50

100

150

200

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Setpoint

Figure 5.16: Insulin input and output with process and measurement noise

0 5 10 15 20 25
50

60

70

80

90

100

110

120

130

140

150

t [hour]

z
y

Figure 5.17: The measured and real output with process and measurement noise

54 Case study - A �minimal model�

5.3.2 Scenario II

In the next two scenarios, the simulations will be done with both measurement
and process noise. Here the diabetic eats �ve big meals.

Time (hours) D(t) (mg/dL/min)

8 7

12 10

15 5

18 13

22 6

Table 5.3: Scenario II meals disturbances

Figures 5.18 and 5.19 illustrates the states and the input/output respectively.

0 3 6 9 12 15 18 21 24
0

5

10

15

D
m

(t
)

[m
g/

dL
/m

in
]

t [hour]
0 3 6 9 12 15 18 21 24

50

100

150

200

t [hour]

G
(t

),
 G

sc
(t

)
[m

g/
dL

]

G
G

sc

0 3 6 9 12 15 18 21 24
−0.01

0

0.01

0.02

0.03

0.04

X
r(t

)
[m

U
/L

]

t [hour]
0 3 6 9 12 15 18 21 24

0

10

20

30

40

50

I(
t)

 [m
U

/L
]

t [hour]

Figure 5.18: The evolution of states with process and measurement noise

5.3 Simulations 55

0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100
u(

t)
 [m

U
/m

in
]

t [hour]

u(t)
Constraints

0 2 4 6 8 10 12 14 16 18 20 22 24
50

100

150

200

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Setpoint

Figure 5.19: Insulin input and output

Even with these big meals, the controller manages to keep the blood sugar at a
healthy quantity. Figure 5.19 does show that z comes close to both the upper
and lower bound, and at t ≈ 20 the lower bound is violated for a very short
period of time. This is the e�ect of soft output constraints, and is to be expected
when the ingested meals are big.

56 Case study - A �minimal model�

5.3.3 Scenario III

In this scenario the diabetic eats meals all day long.

Time (hours) D(t) (mg/dL/min)

8 7

10 5

12 5

13 7

14 4

15 5

16 6

18 13

20 5

21 3

22 4

Table 5.4: Scenario III meals disturbances

Again, Figures 5.20 and 5.21, illustrates the states and the input/output

0 3 6 9 12 15 18 21 24
0

5

10

15

D
m

(t
)

[m
g/

dL
/m

in
]

t [hour]
0 3 6 9 12 15 18 21 24

50

100

150

200

t [hour]

G
(t

),
 G

sc
(t

)
[m

g/
dL

]

G
G

sc

0 3 6 9 12 15 18 21 24
−0.01

0

0.01

0.02

0.03

0.04

X
r(t

)
[m

U
/L

]

t [hour]
0 3 6 9 12 15 18 21 24

0

10

20

30

40

50

I(
t)

 [m
U

/L
]

t [hour]

Figure 5.20: The evolution of states with process and measurement noise

5.3 Simulations 57

0 2 4 6 8 10 12 14 16 18 20 22 24

0

20

40

60

80

100

u(
t)

 [m
U

/m
in

]

t [hour]

u(t)
Constraints

0 2 4 6 8 10 12 14 16 18 20 22 24
50

100

150

200

t [hour]

z(
t)

 [m
g/

dL
]

z(t)
Setpoint

Figure 5.21: Insulin input and output

Again the controller performs good, but, like with Scenario II, the lower bound-
ary on the output is violated brie�y.

58 Case study - A �minimal model�

Chapter 6

Conclusion

What the simulations show, is that the MPC controller, based on Bergmans
�minimal model�, does a good job keeping the patient inside the blood glucose
limits. This is the case for both Scenario I, where meals of ordinary size is
simulated, Scenario II, where the patient is assumed to eat relatively big meals,
and Scenario III, where big meals combined with many small meals are ingested.

The simulations also show, that the controller handles noise, on both the mea-
surements and on the process, well. This is important since a practical imple-
mentation of the system should de�nitely be expected to contain noise.

Feedforward showed itself to be an advantage, as the controller is able to take
precaution of future meals, and thereby making it more likely for the patient
to stay within the healthy blood glucose limits. This can be seen by comparing
Figures 5.6 and 5.8. Though it should be kept in mind, that if a controller
on a real diabetic should use feedforward, it would require the patient to tell
the device what hours a day he would eat, and how big the meals would be.
Therefore feedforward may not be very useful in practice.

It should be kept in mind that the model used for simulations is a �minimal
model�, so what can be concluded is that there is a change the MPC would
work for the insulin pump case, but the model used is too inadequate to draw
any de�nite conclusion. Another reason why MPC wouldn't be used is seen on
Figure 5.19 for Scenario II at t ≈ 20, where the the e�ect of soft constraints
reveals itself. The amount of blood glucose slightly violates it's lower boundary,
which is potentially disastrous for the patient. On the other hand, soft con-
straints are needed to make sure the control problem stay feasible.

MPC is an interesting tool to use as controller in an insulin pump, but the
model of the patient must be improved to make it really useful.

60 Conclusion

Appendix A

Impulse-response method

The MPC method solves the control problem using a model. Instead of using a
linear model, the impuls-response method and the step response could be used
[1].
The idea behind these methods, is that the process can apply an impuls at any
input, and then measure the response. Thereby the name impuls-response.
Related to the state-space model from the previous chapters:

xk+1 = Axk +B uk (A.1)

yk = C xk (A.2)

where yk is a vector of measured outputs.
E dk is neglected from the equation, due the fact that we only want make an
impuls at one input statement, and in this case it is uk.
Now assuming that x0 = 0 and then applying that there only is a change in the
input at, t0, such that u is an integer, u0 6= 0 and uk = 0 for k ≥ 1. I.e the
vector u will look like;

u =
[
u0 0 0 · · · 0

]T
. (A.3)

By using these assymptions the following outputs, zk, at the di�erent states,
xk, is;

x0 = 0 y0 = H0 u0 = 0 (A.4)

x1 = B u0 y1 = H1 u0 = C Bu0 (A.5)

x2 = ABu0 y2 = H2 u0 = C ABu0 (A.6)

...
... (A.7)

xk = Ak−1Bu0 yk = Hk u0 = C Ak−1Bu0 (A.8)

Where Hk = C Ak−1B is called the k'th Markov parameter, as mentioned in
the previous chapters, and the impuls response sequence is indicated by Hk for

62 Impulse-response method

State Output Impulse response Step response

sequence sequence sequence sequence

x0 = 0 y0 = 0 H0 = 0 S0 = 0
x1 = Bu0 y1 = C Bu0 H1 = C B S1 = C B

x2 = ABu0 y2 = C ABu0 H2 = C AB S2 = C AB + C B
...

...
...

...

xk = Ak−1Bu0 yk = C Ak−1Bu0 Hk = C Ak−1B Sk =
∑k−1
i=0 C A

iB

Table A.1: Relation between the di�erent sequences

k = 0 . . . N .
Step responce is then the summerize of all the values ofHi in the input sequence.
I.e. the step response can be de�ned as;

Sk =
k−1∑
i=0

Hi (A.9)

The relation between the sequences is outlined in Table A;

Using these terms, there can be achived an output using a single input at a
given time ts. It is also possible to use the other inputs variable, dk, as inputs
instead of uk.
B is replaced with E, and u0 with d0. The state and the Impulse response
sequence would be;

x0 = 0 H0 = 0 (A.10)

x1 = E d0 H1 = C B (A.11)

x2 = AEu0 H2 = C AB (A.12)

...
... (A.13)

xk = Ak−1Ed0 Hk = C Ak−1B (A.14)

And it's easily to �nd the sequences for the output, y, and the step response, S,
from this.

The impuls-responce method can be used, when the MPC does not have a
model to build the controller on. Then the method is used to make the Markov
parameter and then solve the problem in an indirect way.

Appendix B

Matlab programs

This appendix contains the complete listing of the MATLAB scripts used.

B.1 Scena1.m

1 %Scena1 .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Scenar io I . Three normal meals are s imulated .
12 %
13 %−−−
14
15 c l e a r a l l
16 c l o s e a l l
17
18 %Time
19 t0 = 0 . 0 ; %[min] Sta r t
20 Ts = 8 ; %[min] Sampling time
21 t f = 60∗24; %[min] End
22 t = (t0 : Ts : t f) ' ; %Time vector
23
24 %S iz e o f hor i zon
25 N = 25 ;
26
27 %Const ra int s
28 umin = 0 ; umax = 100 ;
29 udmin = −16.7; udmax = 16 . 7 ;
30 zmin = 60 ; zmax = 180 ;
31
32 %Meals (d i s turbance)
33 mealsv = ze ro s (1 , l ength (t)) ;
34 mealsv (8∗60/Ts) = 5 ;
35 mealsv (12∗60/Ts) = 7 ;

64 Matlab programs

36 mealsv (18∗60/Ts) = 10 ;
37
38 %Noise
39 sigmaw = [0 . 7 1e−3 0 .4 0 .8 0] ;
40 %sigmaw = [0 0 0 0 0] ;
41 sigmav = 0 . 8 ;
42 %sigmav = 0 ;
43 seed = 3507; %Choice f o r randn
44
45 %Use feed forward ?
46 f eed = 0 ; %1 = yes , 0 = no
47
48 %Weight matr i ce s
49 Q = eye (1) ;
50 S = eye (1)∗1 e−2;
51 Seta = eye (1) ;
52 s e ta = eye (1) ;
53
54 %Star t MPC
55 MPCControl

B.2 Scena2.m

1 %Scena2 .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Scenar io I I . Five big meals are s imulated .
12 %
13 %−−−
14
15 c l e a r a l l
16 c l o s e a l l
17
18 %Time
19 t0 = 0 . 0 ; %[min] Sta r t
20 Ts = 8 ; %[min] Sampling time
21 t f = 60∗24; %[min] End
22 t = (t0 : Ts : t f) ' ; %Time vector
23
24 %S iz e o f hor i zon
25 N = 25 ;
26
27 %Const ra int s
28 umin = 0 ; umax = 100 ;
29 udmin = −16.7; udmax = 16 . 7 ;
30 zmin = 60 ; zmax = 180 ;
31
32 %Meals (d i s turbance)
33 mealsv = ze ro s (1 , l ength (t)) ;
34 mealsv (8∗60/Ts) = 7 ;
35 mealsv (12∗60/Ts) = 10 ;
36 mealsv (round (15∗60/Ts)) = 5 ;
37 mealsv (18∗60/Ts) = 13 ;
38 mealsv (22∗60/Ts) = 6 ;
39

B.3 Scena3.m 65

40 %Noise
41 sigmaw = [0 . 7 1e−3 0 .4 0 .8 0] ;
42 sigmav = 0 . 8 ;
43 seed = 3507; %Choice f o r randn
44
45 %Use feed forward ?
46 f eed = 1 ; %1 = yes , 0 = no
47
48 %Weight matr i ce s
49 Q = eye (1) ;
50 S = eye (1)∗1 e−2;
51 Seta = eye (1) ;
52 s e ta = eye (1) ;
53
54 %Star t MPC
55 MPCControl

B.3 Scena3.m

1 %Scena3 .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Scenar io I I I . Many meals throughout the 24 hour per iod .
12 %
13 %−−−
14
15 c l e a r a l l
16 c l o s e a l l
17
18 %Time
19 t0 = 0 . 0 ; %[min] Sta r t
20 Ts = 8 ; %[min] Sampling time
21 t f = 60∗24; %[min] End
22 t = (t0 : Ts : t f) ' ; %Time vector
23
24 %S iz e o f hor i zon
25 N = 25 ;
26
27 %Const ra int s (bequette a r t i c l e)
28 umin = 0 ; umax = 100 ;
29 udmin = −16.7; udmax = 16 . 7 ;
30 zmin = 60 ; zmax = 180 ;
31
32 %Meals (d i s turbance)
33 mealsv = ze ro s (1 , l ength (t)) ;
34 mealsv (round (8∗60/Ts)) = 7 ;
35 mealsv (round (10∗60/Ts)) = 5 ;
36 mealsv (round (12∗60/Ts)) = 5 ;
37 mealsv (round (13∗60/Ts)) = 7 ;
38 mealsv (round (14∗60/Ts)) = 4 ;
39 mealsv (round (15∗60/Ts)) = 5 ;
40 mealsv (round (16∗60/Ts)) = 6 ;
41 mealsv (round (18∗60/Ts)) = 13 ;
42 mealsv (round (20∗60/Ts)) = 5 ;
43 mealsv (round (21∗60/Ts)) = 3 ;

66 Matlab programs

44 mealsv (round (22∗60/Ts)) = 4 ;
45
46 %Noise
47 sigmaw = [0 . 7 1e−3 0 .4 0 .8 0] ;
48 sigmav = 0 . 8 ;
49 seed = 3507; %Choice f o r randn
50
51 %Use feed forward ?
52 f eed = 1 ; %1 = yes , 0 = no
53
54 %Weight matr i ce s
55 Q = eye (1) ;
56 S = eye (1)∗1 e−2;
57 Seta = eye (1) ;
58 s e ta = eye (1) ;
59
60 %Star t MPC
61 MPCControl

B.4 MPCControl.m

1 %MPCControl .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Wrapper f i l e f o r the three MPC phases .
12 %
13 %−−−
14
15 MPCDesign
16 MPCSimulate
17 MPCPlot

B.5 MPCDesign.m

1 %MPCDesign .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Design phase , i n i t i a l i z e s the MPC matr i ce s by c a l l i n g
12 %var ious des ign f i l e s .
13 %
14 %−−−
15
16 %Retr i eve parameters
17 p = DesignParameters () ;
18 P1 = p (1) ;

B.5 MPCDesign.m 67

19 P2 = p (2) ;
20 P3 = p (3) ;
21 n = p (4) ;
22 VI = p (5) ;
23 Rutln = p (6) ;
24 alpha = p (7) ;
25 Gb = p (8) ;
26 Xb = p (9) ;
27 Ib = p (1 0) ;
28 Gbsc = p (1 1) ;
29 Db = p (1 2) ;
30
31 big = 10^10; %Acts as i n f i n i t y
32
33 %Steady−s t a t e va lues (basa l va lues)
34 xs = [Gb; Xb; Ib ; Gbsc ; Db] ;
35 us = VI∗n∗ Ib ;
36 ds = Db;
37 zs = Gbsc ;
38
39 %Sta r t i ng po in t s
40 x0 = xs ;
41 u0 = us ;
42
43 %I n i t i a l i z e v a r i a b l e s
44 x = ze ro s (5 , l ength (t)) ; x (: , 1) = x0 ;
45 u = ze ro s (l ength (t) , 1) ; u (1) = u0 ;
46 ubar = ze ro s (2∗N, 1) ; ubar (1) = u0 ;
47 y = ze ro s (l ength (t) , 1) ;
48
49 %Disturbance
50 D = ze ro s (N, 1) ;
51
52 %Set po int
53 R = repmat (Gbsc , N, 1) ;
54
55 %Generate no i s e
56 randn (' seed ' , seed) ;
57 w = randn (5 , l ength (t)) ;
58 f o r k = 1 :5
59 w(k , :) = w(k , :) ∗ sigmaw (k) ;
60 end
61 randn (' seed ' , seed) ;
62 v = randn (l ength (t) , 1)∗ sigmav ;
63
64
65 %Transform into dev i a t i on va r i a b l e s
66 umin = umin − us ; umax = umax − us ;
67 zmin = zmin − zs ; zmax = zmax − zs ;
68
69 %Set up c on s t r a i n t s
70 [Umin , Umax, Udmin , Udmax, Zmin , Zmax , ubarmin , ubarmax] = . . .
71 Des ignConstra ints (umin , umax , udmax , udmin , zmin , zmax , big , N) ;
72
73 %Matr ices in cont inous time
74 Ac = [−P1−Xb −Gb 0 0 1 ; . . .
75 0 −P2 P3 0 0 ; . . .
76 0 0 −n 0 0 ; . . .
77 0 .2 0 0 −0.2 0 ; . . .
78 0 0 0 0 −alpha] ;
79 Bc = [0 ; 0 ; 1/VI ; 0 ; 0] ;
80 Ec = [1 ; 0 ; 0 ; 0 ; −alpha] ;
81 Cc = [0 0 0 1 0] ;
82
83 %Matr ices in d i s c r e t e time

68 Matlab programs

84 [A,B,E,C] = Des ignDi sc re teMatr i c e s (Ac , Bc , Ec , Cc , Ts) ;
85
86 %Kalman F i l t e r des ign
87 [Kfx , A, B, C, E] = DesignKalman (A, B, C, E) ;
88
89 %MPC matr i ce s
90 [Hbar ,Gamma,Gammad, Phi ,Mx0,Mum1,MR,MD,Lambda , bar se ta] = . . .
91 DesignMPCMatrices (A,B,E,C,Q, S ,N, Seta , s e ta) ;
92
93 xp = [x0−xs ; 0] ;

B.6 DesignKalman.m

1 %Des ignConstra ints .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Designs matr i ce s needed f o r the Kalman F i l t e r , and extends
12 %A,B,E and C such they conta in the i n t eg r a t ed no i s e .
13 %
14 %−−−
15
16 func t i on [Kfx , Ae , Be , Ce , Ee] = DesignKalman (A, B, C, E)
17
18 n = s i z e (A, 1) ;
19 m = s i z e (C, 1) ;
20
21 %Kalman des ign
22 Qw = eye (n , n)∗1 e−2;
23 Qxi = eye (m,m)∗1 e−2;
24 Rv = eye (m,m) ;
25 Ad = eye (m,m) ;
26 Ae = [A B; z e ro s (m, n) Ad] ;
27 Be = [B; z e ro s (m,m)] ;
28 Ee = [E; z e ro s (m,m)] ;
29 Ce = [C ze ro s (m,m)] ;
30 Qe = [Qw ze ro s (n ,m) ; z e r o s (m, n) Qxi] ;
31
32 P = dare (Ae ' , Ce ' , Qe , Rv) ;
33 Re = Ce∗P∗Ce'+Rv ;
34 Kfx = P∗(Ce ' / Re) ;
35 %keyboard

B.7 DesignDiscreteMatrices.m

1 %Des ignConstra ints .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−

B.8 DesignParameters.m 69

9 %F i l e d e s c r i p t i o n :
10 %
11 %Converts matr i ce s A,B,E and C into d i s c r e t e time .
12 %
13 %−−−
14
15 func t i on [Ad,Bd ,Ed ,Cd] = Des ignDi sc re teMatr i ce s (Ac , Bc , Ec , Cc , Ts)
16
17 M1 = [Ac Bc Ec ; z e ro s (2 , 7)] ;
18 M2 = expm(M1∗Ts) ;
19 Ad = M2(1 : s i z e (Ac , 1) , 1 : s i z e (Ac , 2)) ;
20 Bd = M2(1 : s i z e (Ac , 1) , s i z e (Ac ,2)+1: s i z e (Ac , 2)+1) ;
21 Ed = M2(1 : s i z e (Ec , 1) , s i z e (Ac,2)+ s i z e (Bc ,2)+1: end) ;
22 Cd = Cc ;

B.8 DesignParameters.m

1 %DesignParameters .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Contains ba s i c parameters f o r the Bergman model .
12 %
13 %−−−
14
15 func t i on p = DesignParameters ()
16
17 %Model parameters
18 P1 = 0 .028735 ; %[min^(−1)]
19 P2 = 0 .028344 ; %[min^(−1)]
20 P3 = 5.035 e−5; %[mU/L]
21 Gb = 81 . 3 ; %[mg/dL]
22 Ib = 15 ; %[mU/L]
23 VI = 12 ; %[L]
24 n = 5/54 ; %[min^(−1)]
25 Rutln = 0 . 7 4 ; %[mg/dL/min]
26 Gbsc = Gb−5∗Rutln ; %[mg/dL]
27 alpha = 0 . 0 5 ; %[]
28 Xb = 0 ; %[mU/L]
29 Db = 0 ; %[mg/dL/min]
30
31 %Parameter vektor
32 p = [P1 ; P2 ; P3 ; n ; VI ; Rutln ; alpha ; Gb; Xb; Ib ; Gbsc ; Db] ;

B.9 DesignConstraints.m

1 %Des ignConstra ints .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %

70 Matlab programs

8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Ass igns c on s t r a i n t s f o r u , Delta_u , z and ubar in to vec to r s ;
12 %
13 %−−−
14
15 func t i on [Umin , Umax, Udmin , Udmax, Zmin , Zmax , ubarmin , ubarmax] = . . .
16 Des ignConstra ints (umin , umax , udmax , udmin , zmin , zmax , big , N)
17
18
19 Umin = repmat (umin , N, 1) ;
20 Umax = repmat (umax , N, 1) ;
21
22 Udmin = repmat (udmin , N−1, 1) ;
23 Udmax = repmat (udmax , N−1, 1) ;
24
25 Zmin = repmat (zmin ,N, 1) ;
26 Zmax = repmat (zmax ,N, 1) ;
27
28 ubarmin = [Umin ; z e ro s (N, 1)] ;
29 ubarmax = [Umax; ones (N, 1)∗ big] ;

B.10 DesignMPCMatrices.m

1 %DesignMPCMatrices .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Designs var i ous matr i ce s needed f o r the MPC algor i thm .
12 %Credit : John Bagterp Jørgensen
13 %
14 %−−−
15
16 func t i on [barH ,Gamma,Gammad, Phi ,Mx0,Mum1,MR,MD,Lambda , bar se ta] = . . .
17 DesignMPCMatrices (A,B,E,Cz ,Qz , S ,N, Seta , s e ta)
18
19 nx = s i z e (A, 2) ;
20 nu = s i z e (B, 2) ;
21 nd = s i z e (E , 2) ;
22 nz = s i z e (Cz , 1) ;
23
24 % Form Gamma, Gammad, Phi
25 Gamma = ze ro s (N∗nz ,N∗nu) ;
26 Gammad = ze ro s (N∗nz ,N∗nd) ;
27 Phi = ze ro s (N∗nz , nx) ;
28
29 T = Cz ;
30 kz = 0 ;
31 f o r k=1:N
32 Gamma(kz+1:kz+nz , 1 : nu) = T∗B;
33 Gammad(kz+1:kz+nz , 1 : nd) = T∗E;
34 T = T∗A;
35 Phi (kz+1:kz+nz , 1 : nx) = T;
36 kz = kz+nz ;
37 end

B.10 DesignMPCMatrices.m 71

38
39 f o r k=2:N
40 Gamma((k−1)∗nz+1:end , (k−1)∗nu+1:k∗nu) = Gamma(1 : (N+1−k)∗nz , 1 : nu) ;
41 Gammad((k−1)∗nz+1:end , (k−1)∗nd+1:k∗nd) = Gammad(1 : (N+1−k)∗nz , 1 : nd) ;
42 end
43
44 % Form QZ
45 QZ = ze ro s (N∗nz ,N∗nz) ;
46 kz = 0 ;
47 f o r k=1:N
48 QZ(kz+1:kz+nz , kz+1:kz+nz) = Qz ;
49 kz = kz+nz ;
50 end
51
52 % Form HS
53 HS = ze ro s (N∗nu ,N∗nu) ;
54
55 i f N == 1
56 HS = S ;
57 e l s e
58 k=0;
59 HS(1 : nu , 1 : nu) = 2∗S ;
60 HS(1+nu : nu+nu , 1 : nu) = −S ;
61
62 f o r k=1:N−2
63 ku = k∗nu ;
64 HS(ku−nu+1:ku , ku+1:ku+nu) = −S ;
65 HS(ku+1:ku+nu , ku+1:ku+nu) = 2∗S ;
66 HS(ku+nu+1:ku+2∗nu , ku+1:ku+nu) = −S ;
67 end
68
69 k=N−1;
70 ku = k∗nu ;
71 HS(ku−nu+1:ku , ku+1:ku+nu) = −S ;
72 HS(ku+1:ku+nu , ku+1:ku+nu) = S ;
73 end
74
75
76 % Form Mum1
77 Mum1 = [−S ; z e ro s ((N−1)∗nu , nu)] ;
78
79 barSeta = eye (N)∗ Seta ;
80 bar se ta = ones (N, 1)∗ s e ta ;
81
82 % Form H,Mx0,MR,MD
83 T = Gamma'∗QZ;
84 H = T∗Gamma + HS;
85 H = (H+H') / 2 ;
86 Mx0 = T∗Phi ;
87 MR = −T;
88 MD = T∗Gammad;
89
90 % barH , barg
91
92 z = ze ro s (N,N) ;
93 barH = [H z ; z barSeta] ;
94
95 % Form Lambda
96 Lambda = ze ro s ((N−1)∗nu ,N∗nu) ;
97 T = [−eye (nu , nu) eye (nu , nu)] ;
98
99 f o r k=1:N−1
100 Lambda ((k−1)∗nu+1:k∗nu , (k−1)∗nu+1:(k+1)∗nu) = T;
101 end

72 Matlab programs

B.11 MPCSimulate.m

1 %MPCPlot .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Simulat ion phase , l oops over each t imestep and f i nd s the optimal
12 %i n s u l i n u , and uses t h i s as input to the Bergman model .
13 %
14 %−−−
15
16 %I t e r a t e
17 f o r k=1: l ength (t)−1
18 d i sp l ay (k)
19
20 %−−− Noise −−−
21 %Measurement no i s e
22 y (k) = x (4 , k) + v(k) ;
23
24 %Model no i s e
25 x (1 , k) = x (1 , k) + w(1 , k) ;
26 x (2 , k) = x (2 , k) + w(2 , k) ;
27 x (3 , k) = x (3 , k) + w(3 , k) ;
28 x (4 , k) = x (4 , k) + w(4 , k) ;
29 %−−− Disturbance −−−
30 %Meal d i s turbance at t h i s po int in time
31 x (5 , k) = x (5 , k) + mealsv (k) ;
32
33 %Without feed forward
34 i f f e ed == 0
35 % Do nothing
36 %With Feedforward
37 e l s e i f f e ed == 1
38 n = length (t)−1−k ;
39 i f N <= n ;
40 %Assign fu tu r e meals to D
41 D(1 :N) = mealsv (k : k+N−1);
42 e l s e
43 %Simulat ion i s ending , a s s i gn ze ro s to D
44 D = ze ro s (N, 1) ;
45 D(1 : n) = mealsv (k : k+n−1);
46 end
47 e l s e
48 d i sp l ay (' Fe j l i f e ed parameter ')
49 re turn ;
50 end
51
52 %Dummy statement to handle u0
53 i f k == 1
54 un = u0 ;
55 e l s e
56 un = u(k−1);
57 end
58
59 %MPC step
60 [unow , xp , i n f o] = MPCCompute(y (k) , un ,R,D, Zmin ,Zmax , . . .
61 zs , zs , us , ds , xp , ubar , . . .
62 Hbar ,Mx0,Mum1,MR,MD, barseta , . . .
63 Phi , Gammad, Gamma, Lambda , big , . . .

B.12 MPCCompute.m 73

64 umin , umax , udmin , udmax , . . .
65 ubarmin , ubarmax , . . .
66 Udmin , Udmax, . . .
67 Kfx , . . .
68 A, B, E, C, N) ;
69
70
71 %Check f o r e r r o r
72 i f i n f o == 1
73 d i sp l ay (' Error in QP so l v e r ! ') ;
74 re turn
75 end
76
77 %Simulate s tep
78 [T,X] = ode15s (@BergmanMinimalModel , [t (k) t (k+1)] , x (: , k) , . . .
79 [] , p , unow) ;
80
81 % Remember v a r i a b l e s
82 x (: , k+1) = X(end , :) ;
83 u(k) = unow ;
84 end

B.12 MPCCompute.m

1 %MPCCompute .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Ca l cu l a t e s the i n s u l i n input f o r t h i s t imestep , u0 .
12 %
13 %−−−
14
15 func t i on [u0 , xp , i n f o] = MPCCompute(y , um1,R,D, Zmin ,Zmax , . . .
16 ys , zs , us , ds , xp , ubar , . . .
17 Hbar ,Mx0,Mum1,MR,MD, sbareta , . . .
18 Phi , GammaD, Gamma, Lambda , big , . . .
19 umin , umax , dumin , dumax , . . .
20 ubarmin , ubarmax , . . .
21 dUmin , dUmax, . . .
22 Kfx , . . .
23 A, B, E, C, N)
24
25 nu = length (um1) ;
26 nd = length (ds) ;
27 nz = length (zs) ;
28 %Form dev ia t i on va r i a b l e s
29 dy = y − ys ;
30 dum1 = um1−us ;
31 dR = R−repmat (zs , N, 1) ;
32 dD = D−repmat (ds , N, 1) ;
33 dd = dD(1 : nd , 1) ;
34
35 %Kalman F i l t e r
36 e = dy − C∗xp ;
37 x0 = xp + Kfx∗e ;
38

74 Matlab programs

39 %Update g rad i ent
40 g = Mx0∗x0 + MR∗dR + MD∗dD + Mum1∗dum1 ;
41 gbar = [g ; sbare ta] ;
42
43 %Create bounds f o r ubar
44 ubarmin (1 : nu , 1) = max(umin , dumin+dum1) ;
45 ubarmax (1 : nu , 1) = min (umax , dumax+dum1) ;
46
47 %Create bounds f o r Z
48 c = Phi∗x0 + GammaD∗dD;
49 Zbarmin = Zmin − c ;
50 Zbarmax = Zmax − c ;
51
52 %Setup matrix system f o r boundar ies
53 bmin = [dUmin ; −big ∗ones (N, 1) ; Zbarmin] ;
54 bmax = [dUmax ; Zbarmax ; b ig ∗ones (N, 1)] ;
55 Abar = [Lambda ze ro s (N−1, N) ; Gamma −eye (N,N) ; Gamma eye (N,N)] ;
56
57 %Create s t a r t gu e s s
58 uba r i n i t = [ubar (nu+1:N∗nu , 1) ; ubar ((N−1)∗nu+1:N∗nu , 1) ; . . .
59 ubar (nu∗N+nz+1:end , 1) ; ubar (nu∗N+(N−1)∗nz+1:end)] ;
60
61 % −−
62 % QPSOLVER
63 % −−
64 [ubar , i n f o]= qpso lve r (Hbar , gbar , ubarmin , ubarmax , Abar , bmin , bmax , uba r i n i t) ;
65
66 i f i n f o == 0
67 du0 = ubar (1 : nu , 1) ;
68 e l s e
69 du0 = dum1 ;
70 end
71 % −−
72
73 % −−
74 % QUADPROG
75 % −−
76 % Abar2 = [Abar ; −Abar] ;
77 % bbar = [bmax ; −bmin] ;
78 %
79 % [ubar , f eva l ,EXITFLAG] = . . .
80 % quadprog (Hbar , gbar , Abar2 , bbar , [] , [] , ubarmin , ubarmax , uba r i n i t) ;
81 %
82 % i f EXITFLAG == 1
83 % du0 = ubar (1 : nu , 1) ;
84 % in f o = 0 ;
85 % e l s e
86 % du0 = dum1 ;
87 % in f o = 1 ;
88 % end
89 % −−
90
91
92 % Update Kalman F i l t e r
93 xp = A∗x0 + B∗du0 + E∗dd ;
94
95 % Form phys i c a l v a r i ab l e
96 u0 = du0 + us ;

B.13 BergmanMinimalModel.m

1 %BergmanMinimalModel .m

B.14 MPCPlot.m 75

2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Implementation o f the Bergman ' ' minimal model ' ' , which c o n s i s t s o f f i v e
12 %d i f f e r e n t i a l equat ions .
13 %
14 %−−−
15
16 func t i on xdot = BergmanMinimalModel (t , x , p , u)
17
18 xdot = ze ro s (5 , 1) ;
19
20 G = x (1 , 1) ;
21 X = x (2 , 1) ;
22 I = x (3 , 1) ;
23 Gsc = x (4 , 1) ;
24 D = x (5 , 1) ;
25
26 P1 = p (1) ;
27 P2 = p (2) ;
28 P3 = p (3) ;
29 n = p (4) ;
30 VI = p (5) ;
31 Rutln = p (6) ;
32 alpha = p (7) ;
33 Gb = p (8) ;
34 Xb = p (9) ;
35 Ib = p (1 0) ;
36 Gbsc = p (1 1) ;
37 Db = p (1 2) ;
38
39 xdot (1 , 1) = −P1∗(G−Gb) − X∗G + D;
40 xdot (2 , 1) = −P2∗X + P3∗(I−Ib) ;
41 xdot (3 , 1) = −n∗ I + u/VI ;
42 xdot (4 , 1) = (G−Gsc)/5 − Rutln ;
43 xdot (5 , 1) = −alpha∗D;

B.14 MPCPlot.m

1 %MPCPlot .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Evaluat ion phase , p l o t s the s imu la t i on s .
12 %
13 %−−−
14
15 %t should be in hours
16 t = t /60 ;
17

76 Matlab programs

18 %Plot the f i v e s t a t e s
19 f i g u r e ;
20 subplot (2 2 1) ;
21 p lo t (t , x (5 , :)) ;
22 y l ab e l ('D_{m}(t) [mg/dL/min] ') ;
23 x l ab e l (' t [hour] ') ;
24 V = ax i s ; ax i s ([0 t f /60 V(3) V(4)])
25 s e t (gca , 'XTick ' , 0 : 3 : 2 4)
26
27 subplot (2 2 2) ;
28 p lo t (t , x (1 , :) , ' b ' , t , x (4 , :) , ' r ') ;
29 legend ('G' , 'G_{ sc } ' , ' Location ' , ' NorthWest ') ;
30 y l ab e l ('G(t) , G_{ sc }(t) [mg/dL] ') ;
31 x l ab e l (' t [hour] ') ;
32 V = ax i s ; ax i s ([0 t f /60 V(3) V(4)])
33 s e t (gca , 'XTick ' , 0 : 3 : 2 4)
34
35 subplot (2 2 3) ;
36 p lo t (t , x (2 , :)) ;
37 y l ab e l ('X_{ r }(t) [mU/L] ') ;
38 x l ab e l (' t [hour] ')
39 V = ax i s ; ax i s ([0 t f /60 V(3) V(4)])
40 s e t (gca , 'XTick ' , 0 : 3 : 2 4)
41
42 subplot (2 2 4) ;
43 p lo t (t , x (3 , :)) ;
44 y l ab e l (' I (t) [mU/L] ') ;
45 x l ab e l (' t [hour] ')
46 V = ax i s ; ax i s ([0 t f /60 V(3) V(4)])
47 s e t (gca , 'XTick ' , 0 : 3 : 2 4)
48
49 %Plot input and output
50 f i g u r e
51 subplot (2 1 1) ;
52 p lo t (t , u , 'b ')
53 y l ab e l (' u (t) [mU/min] ') ;
54 x l ab e l (' t [hour] ')
55 hold on
56 s t a i r s (t , repmat (umin+us , l ength (t)) , '−−k ' , ' l inewidth ' , 2) ;
57 s t a i r s (t , repmat (umax+us , l ength (t)) , '−−k ' , ' l inewidth ' , 2) ;
58 legend (' u(t) ' , ' Constra ints ' , ' Location ' , 'NorthWest ') ;
59 V = ax i s ; ax i s ([0 t f /60 V(3)−10 V(4) ∗ 1 . 1])
60 s e t (gca , 'XTick ' , 0 : 2 : 2 4)
61
62 subplot (2 1 2) ;
63 p lo t (t , x (4 , :) , 'b ') ;
64 hold on
65 p lo t (t , repmat (Gbsc , l ength (t)) , ' r ' , ' l inewidth ' , 1) ;
66 p lo t (t , repmat (zmin+zs , l ength (t)) , '−−k ' , ' l inewidth ' , 2) ;
67 p lo t (t , repmat (zmax+zs , l ength (t)) , '−−k ' , ' l inewidth ' , 2) ;
68 x l ab e l (' t [hour] ')
69 y l ab e l (' z (t) [mg/dL] ') ;
70 legend (' z (t) ' , ' Setpoint ' , ' Location ' , ' NorthWest ') ;
71 V = ax i s ; ax i s ([0 t f /60 V(3)∗0 . 9 V(4) ∗ 1 . 1])
72 s e t (gca , 'XTick ' , 0 : 2 : 2 4)
73
74
75 %For S i n v e s t i g a t i o n
76 % st = 0 . 5 ;
77 % en = 2 . 5 ;
78 % f i g u r e
79 % subplot (2 1 1) ;
80 % p lo t (t , u , 'b ')
81 % y l ab e l (' u (t) [mU/min] ') ;
82 % x l ab e l (' t [hour] ')

B.15 InvestSampling.m 77

83 % hold on
84 % V = ax i s ; ax i s ([s t en V(3)−10 V(4) ∗ 1 . 1])
85 % %se t (gca , 'XTick ' , 0 : 1 : 2 4)
86 %
87 % subplot (2 1 2) ;
88 % p lo t (t , x (4 , :) , 'b ') ;
89 % hold on
90 % p lo t (t , repmat (Gbsc , l ength (t)) , ' r ' , ' l inewidth ' , 1) ;
91 % x l ab e l (' t [hour] ')
92 % y l ab e l (' z (t) [mg/dL] ') ;
93 % legend (' z (t) ' , ' Constrains ' , ' Location ' , ' NorthEast ') ;
94 % V = ax i s ; ax i s ([s t en V(3)∗0 . 9 V(4) ∗ 1 . 1])
95
96
97 % y vs z
98 f i g u r e
99 p lo t (t , x (4 , :) , ' b ')
100 hold on
101 p lo t (t (1 : end−1) ,y (1 : end−1) , ' r ')
102 legend (' z ' , ' y ')
103 x l ab e l (' t [hour] ')

B.15 InvestSampling.m

1 %InvestSampl ing .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %
8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Scenar io where a stepchange in e i t h e r u or D i s s p e c i f i e d ,
12 %and the sampling time i s i n v e s t i g a t ed by look ing at the
13 %r e s u l t i n g graphs . See t h e s i s f o r d e t a i l s .
14 %
15 %−−−
16
17 c l e a r a l l
18 c l o s e a l l
19
20 p = DesignParameters () ;
21 P1 = p (1) ;
22 P2 = p (2) ;
23 P3 = p (3) ;
24 n = p (4) ;
25 VI = p (5) ;
26 Rutln = p (6) ;
27 alpha = p (7) ;
28 Gb = p (8) ;
29 Xb = p (9) ;
30 Ib = p (1 0) ;
31 Gbsc = p (1 1) ;
32 Db = p (1 2) ;
33
34 t0 = 0 . 0 ;
35 Ts = 1 ;
36 t f = 60∗24;
37 t = t0 : Ts : t f ;
38

78 Matlab programs

39 xs = [Gb; 0 ; Ib ; Gbsc ; 0] ;
40 us = n∗ Ib∗VI ;
41
42 x0 = xs ;
43 u0 = us ;
44
45 N = length (t) ;
46
47 u = ze ro s (1 ,N) ;
48 u (1 : end) = us ;
49 u (60 : end) = us + 10 ;
50
51 x = ze ro s (5 ,N) ;
52 x (: , 1) = x0 ;
53
54 mealsv = ze ro s (l ength (t))∗ 4 ;
55 %mealsv (1 : 6 0) = 0 ;
56
57 f o r k = 1 : N−1
58 d i sp l ay (k) ;
59
60 x (5 , k) = x (5 , k) + mealsv (k) ;
61
62 [T, X] = ode15s (@BergmanMinimalModel , [t (k) t (k+1)] , x (: , k) , [] , p , u(k)) ;
63
64 x (: , k+1) = X(end , :) ' ;
65 end
66
67 f i g u r e
68 en = 8∗60;
69 t = t /60 ;
70
71 p lo t (t (1 : en) , x (4 , 1 : en) , 'b ') ;
72 y l ab e l (' z (t) [mg/dL] ') ;
73 x l ab e l (' t [hour] ') ;
74 hold on
75 s e t (gca , 'XTick ' , 0 : 1 : en /60)
76
77 f i g u r e
78 s t a i r s (t (1 : en) , mealsv (1 : en))
79 x l ab e l (' t [hour] ') ;
80 y l ab e l ('D(t) [mg/dL/min] ') ;
81 s e t (gca , 'XTick ' , 0 : 1 : 2 4)
82 s e t (gca , 'YTick ' , []) ;
83 V = ax i s ; ax i s ([V(1) V(2) V(3)−0.5 V(4)+0 . 5])
84
85 f i g u r e
86 s t a i r s (t (1 : en) , u (1 : en))
87 x l ab e l (' t [hour] ') ;
88 s e t (gca , 'XTick ' , 0 : 1 : 2 4)
89 s e t (gca , 'YTick ' , []) ;
90 V = ax i s ; ax i s ([V(1) V(2) V(3)−0.5 V(4)+0 . 5])

B.16 InvestWeights.m

1 %InvestWeights .m
2 %
3 %Matias Sørensen s042300 and Simon Kr i s t i an s en s042264
4 %Technica l Un ive r s i ty o f Denmark
5 %Spring 2007
6 %B. Sc . Thes i s − Model P r ed i c t i v e Control f o r an A r t i f i c i a l Pancreas
7 %

B.16 InvestWeights.m 79

8 %−−−−−−−−−−
9 %F i l e d e s c r i p t i o n :
10 %
11 %Weight matrix S var i ed .
12 %
13 %−−−
14
15 c l e a r a l l
16 c l o s e a l l
17
18 %Time
19 t0 = 0 . 0 ; %[min] Sta r t
20 Ts = 3 ; %[min] Sampling time
21 t f = 60∗24; %[min] End
22 t = (t0 : Ts : t f) ' ; %Time vector
23
24 %S iz e o f hor i zon
25 N = 25 ;
26
27 %Const ra int s (bequette a r t i c l e)
28 big = 10^10;
29 % umin = 0 ; umax = 100 ;
30 % udmin = −16.7; udmax = 16 . 7 ;
31 % zmin = 60 ; zmax = 180 ;
32
33 umin = −big ; umax = big ;
34 udmin = −big ; udmax = big ;
35 zmin = −big ; zmax = big ;
36
37 %Meals (d i s turbance)
38 mealsv = ze ro s (1 , l ength (t)) ;
39 mealsv (1∗60/Ts) = 10 ;
40
41 %Noise
42 n o i s e f a c t = 0 ; %Standard dev i a t i on o f no i s e
43 seed = 3501; %Choice f o r randn
44
45 %Use feed forward ?
46 f eed = 1 ; %1 = yes , 0 = no
47
48 %Weight matr i ce s
49 Q = eye (1) ;
50 S = eye (1)∗1 e−1;
51 Seta = eye (1) ;
52 s e ta = eye (1) ;
53
54 %Star t MPC
55 MPCControl (t , Ts , t f , umin , umax , udmin , udmax , zmin , zmax , . . .
56 mealsv , no i s e f a c t , Q, S , Seta , seta , N, seed , f e ed)

80 Matlab programs

Bibliography

[1] Jan M. Maciejowski: Predictive Control with Constraints, Prentice Hall,
2001

[2] Sandra M. Lynch, B. Wayne Bequette: Model Predictive Control of

Blood Glucose in Type 1 Diabetics Using Subcutaneous Glucose Mea-

surements, Rensselaer Polytechnic Institute, 2002

[3] Cesar C. Palerm et al.: Hypoglycemia Prediction and Detection Using

Optimal Estimation, Diabetes Technology & Therapeutics, vol. 7, num.
1, 2005

[4] B. Wayne Bequette: A Critical Assessment of Algorithms and Chal-

lenges in the Development of a Closed-Loop Arti�cial Pancreas, Dia-
betes Technology & Therapeutics, vol. 7, num. 1, 2005

[5] H.M. Steil et al.: Modeling Insulin Action for Development of a Closed-

Loop Arti�cial Pancreas, Diabetes Technology & Therapeutics, vol. 7,
num. 1, 2005

[6] Nakhle H. Asmar: Partial Di�erential Equations, second edition, Pren-
tice Hall, 2004

[7] John B. Jørgensen, Sten B. Jørgensen: Model Predictive Control, Tech-
nical University of Denmark, 1998

[8] Greg Welch, Gary Bishop: An Introduction to the Kalman Filter, Uni-
versity of North Carolina,2006

[9] Gabriele Pannocchia, James B. Rawlings: Disturbance Models for

O�set-Free Model-Predictive Control, AIChE Journal Vol.49 No.2, 2003

	Summary
	Resumé
	1 Introduction
	2 Linearization
	2.1 Continuous-Discrete Time Conversion
	2.2 Summary

	3 Model Predictive Control
	3.1 Unconstrained MPC
	3.1.1 Regularization
	3.1.2 Disturbance
	3.1.3 Feed-forward/feedback

	3.2 Constrained MPC
	3.2.1 Input constraints
	3.2.2 Constraints on input rate of movement
	3.2.3 Output constraints
	3.2.4 Soft output constraints

	3.3 Kalman filter
	3.4 Summary

	4 Implementation
	4.1 ScenaX.m
	4.2 MPCControl.m
	4.2.1 MPCDesign.m
	4.2.2 MPCSimulate.m
	4.2.3 MPCPlot

	5 Case study - A ``minimal model''
	5.1 Linearization
	5.2 MPC
	5.2.1 Weight matrices
	5.2.2 Horizon and sampling time
	5.2.3 Noise

	5.3 Simulations
	5.3.1 Scenario I
	5.3.2 Scenario II
	5.3.3 Scenario III

	6 Conclusion
	A Impulse-response method
	B Matlab programs
	B.1 Scena1.m
	B.2 Scena2.m
	B.3 Scena3.m
	B.4 MPCControl.m
	B.5 MPCDesign.m
	B.6 DesignKalman.m
	B.7 DesignDiscreteMatrices.m
	B.8 DesignParameters.m
	B.9 DesignConstraints.m
	B.10 DesignMPCMatrices.m
	B.11 MPCSimulate.m
	B.12 MPCCompute.m
	B.13 BergmanMinimalModel.m
	B.14 MPCPlot.m
	B.15 InvestSampling.m
	B.16 InvestWeights.m

	 Bibliography

