
Topology-dependent Abstractions of

Broadcast Networks

Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson

Informatics and Mathematical Modelling
Technical University of Denmark

{nanz,nielson,riis}@imm.dtu.dk

Abstract

Broadcast semantics poses significant challenges over point-to-point communication
when it comes to formal modelling and analysis. Current approaches to analysing
broadcast networks have focused on fixed connectivities, but this is unsuitable in
the case of wireless networks where the dynamically changing network topology is
a crucial ingredient. In this paper we develop a static analysis that automatically
constructs an abstract transition system, labelled by actions and connectivity in-
formation, to yield a mobility-preserving finite abstraction of the behaviour of a
network expressed in a process calculus with asynchronous local broadcast. Fur-
thermore, we use model checking based on a 3-valued temporal logic to distinguish
network behaviour which differs under changing connectivity patterns.

1 Introduction

Broadcast communication, in contrast to point-to-point message passing, is
employed in a wide range of networking paradigms such as Ethernet and
wireless LAN, mobile telephony, or mobile ad-hoc networks. These can be
further distinguished into approaches where broadcast is taken to be global,
i.e. all nodes of the network receive a broadcast message, or local, such that
only neighbours of the broadcasting node are able to receive. In order to obtain
a formal model for the latter case, the network topology has to be encoded
by the chosen modelling formalism to express the notion of a neighbourhood.
Furthermore, the connectivity may change over time, caused by node mobility
or similar changes in environment conditions which are not controlled by the
nodes’ protocol actions.

This mix of broadcast behaviour and mobility has turned out to be a challenge
for automated verification and analysis techniques. For instance, model check-
ing of mobile ad-hoc networks, in a line of work started by [2], has remained

IMM-Technical Report-2007-11, Technical University of Denmark, 2007

limited to fixed connectivities. In our previous work on static analysis of mo-
bile ad-hoc networks [15], topology changes are considered in the modelling,
but abstracted into a fixed representation for the sake of the analysis, hence
achieving a safe description of the network, but losing the ability to expose
network behaviour related to connectivity change.

In this paper we address these deficiencies by defining abstract transition sys-
tems which provide finite abstractions of the behaviour of broadcast networks
specified in the broadcast calculus bKlaim, which is also introduced in this
paper. The abstractions preserve mobility in the sense that their transitions
depend on connectivity information, and hence reflect changes in connectiv-
ity. We present a 3-valued interpretation of formulae of Action Computation
Tree Logic (ACTL) [17] on abstract transition systems, which correctly cap-
tures the nature of the abstraction by evaluating to “unknown” whenever the
abstraction prevents definite conclusions about the concrete behaviour of the
related bKlaim network.

We also show how abstract transition systems can be algorithmically con-
structed from networks specified in bKlaim. This is done using a static ana-
lysis, based on the idea of Monotone Frameworks [18], which also gives us
fine-grained control over the coarseness of the abstraction. This analysis has
been implemented, and we show how the complete framework enables us ex-
pose the influence of the network dynamics on the resulting network state.

The conference publication [16] contains part of the material of this paper in
preliminary form. The remainder of the paper is structured as follows. In §2 we
present the syntax and operational semantics of bKlaim. In §3 we introduce
abstract transition systems and describe 3-valued ACTL and its relation to the
concrete transition system of bKlaim. In §4 we define a Control Flow Analysis
to describe the name bindings arising from message passing. The result of this
analysis is passed as a parameter to a Monotone Framework, defined in §5,
which allows us to approximate how analysis information evolves as a result
of network evolution steps. In §6 we develop a worklist algorithm that uses
the Monotone Framework to construct abstract transition systems for bKlaim
networks. We conclude with a discussion of related and future work in §7.

2 bKlaim

Process calculi of the Klaim family [1] are centred around the tuple space
paradigm in which a system is comprised by a distributed set of nodes that
communicate by placing tuples into and getting tuples from one or more shared
tuple spaces. In this paper we use this basic paradigm to model systems com-
municating via local broadcast, i.e. only nodes within the neighbourhood of

2

the broadcasting node may receive a sent message tuple; this distinguishes
bKlaim from the broadcast calculus CBS [25], where all broadcast is global.
In contrast to the standard Klaim semantics, where tuple spaces are shared
resources among all nodes, we instrument this approach for the modelling of
local broadcast: broadcast messages are output into the tuple spaces of neigh-
bouring nodes to the sending node, where they can be picked up only by the
processes residing at the respective locations; this yields an asynchronous ver-
sion of local broadcast, in contrast to the calculi CBS] [15] and CMN [13]
which both feature synchronous behaviour. The notion of neighbourhood is
expressed by connectivity graphs, which specify the locations currently con-
nected with a sender and may change during the evolution of the network.

2.1 Syntax

N ::= l ::P located node

| l ::S located tuple space

| N1 ‖ N2 net composition

P ::= nil null process

| a`.P action prefixing

| P1 | P2 parallel composition

| A process invocation

a` ::= bcst`(t) broadcast output

| out`(t) output

| b-eval`(P) broadcast migration

| in`(T) input

| read`(T) read

| abs`(T) absent

T ::= F | F, T templates

F ::= f | !x template fields

t ::= f | f, t tuples

f ::= v | l | x tuple fields

Table 1: Syntax of bKlaim

The bKlaim calculus comprises three parts: networks, processes, and actions.
Networks give the overall structure in which processes and tuple spaces are
located, and processes execute by performing actions. An overview of the
syntax is shown in Table 1.

Tuples are finite lists of tuple fields, which comprise values v ∈ Val, locations
l ∈ Loc, and variables x ∈ Var. We assume in general that locations are just
distinguished values, i.e. Loc ⊆ Val. Templates are used as patterns to select
tuples in a tuple space. They are finite lists of tuple fields and formal fields
!x which are used to bind variables to values (x ∈ Var); within a template, if
x ∈ Var occurs in a formal field, it must not occur in another formal field or
as a variable as well. The sets fv(t) and fv(T) containing the free variables of

3

tuple t and template T are defined as usual, and the definition of fv can be
extended to actions and processes. In contrast, all values are free as there are
no binding statements for them.

Networks consist of located processes and tuple spaces. In contrast to Klaim,
a tuple space S is taken to be a multiset (rather than a set) of tuples, i.e. a
total map from the set of tuples into N0. We say that a tuple t is in the domain
dom(S) of S if S(t) > 0, and use the following notation to express that a copy
of tuple t is added to or removed from a multiset S:

S[t]↑ = λu.

 S(u) + 1 if u = t

S(u) otherwise

S[t]↓ = λu.

 S(u)− 1 if u = t ∧ S(u) > 0

S(u) otherwise

We also introduce below a well-formedness condition which ensures that there
is exactly one tuple space per location. This is because tuple spaces in bKlaim
are not seen as freely shared among nodes, but as private components (stores)
associated with the processes residing at the same location. Furthermore, hav-
ing only one tuple space per location enables us to introduce the abs`(T)-
action, which executes only if there is no tuple matching T available at the
location.

A process is either the terminated process nil, a process prefixed with an action
to be executed, a parallel composition, or a process invocation to express
recursive behavior. Process definitions are of the form A , P , where P is
closed, i.e. contains no free variables. As an abbreviation, we may sometimes
use the notation A(t) , P and have P parameterized in the free variables of t.

Actions are equipped with labels ` ∈ Lab which are necessary for the analysis
of §5. The action bcst`(t) places a tuple t into the set of tuple spaces belonging
to the current neighbors of the sending node, thus describing local broadcast.
Neighborhoods are defined at the semantic level via the notion of connectivity
graphs. The action out`(t) models the output of a tuple to the private tu-
ple space of the node performing this action. The action b-eval`(P) remotely
evaluates a process P at all nodes in the current neighborhood. Using in`(T)
and read`(T), processes can retrieve tuples which match the template T from
their private tuple space, either removing it or leaving it in place respectively.
Action abs`(T) describes the absence of any tuple matching the template T at
the private tuple space; for the process abs`(T).P we require fv(T)∩fv(P) = ∅
because if the continuation P is executed, no tuple t will have been matched
against T . Note that there is no statement corresponding to Klaim’s creation
of new locations newloc(l) because we want to deal with a given set of located
nodes which cannot spawn themselves by process actions.

4

Example 2.1 We describe a simple protocol for information retrieval in mo-
bile ad-hoc networks. A mobile ad-hoc network is a special kind of wireless
network, where participating nodes form temporary multi-hop connections and
may act as both host and router, i.e. both sending own requests and relaying
messages for others. The protocol is specified in bKlaim as follows:

Snd(x) , bcst1(ask, x).Rec(x)

Rec(x) , in2(has, !l , x , !y).Rec(x)

Prc(l) , in3(ask, !x).(in4(x , !y).bcst5(has, l , x , y) | bcst6(ask, x).Prc(l))

Rel , in7(has, !l , !x , !y).bcst8(has, !l , x , y).Rel

Net , l1 ::Snd(t) ‖ l2 :: (Prc(l2) | Rel) ‖ l2 :: [[t, i2] 7→ 1]

‖ l3 :: (Prc(l3) | Rel) ‖ l3 :: [[t, i3] 7→ 1]

The protocol is initiated on network Net when node l1 executes the process
Snd to search for information on topic t. Node l1 then enters a state where it
waits for (possibly multiple) answers of the form (has, l , x , y), meaning that
the node at location l sent content y concerning topic x .

Nodes l2 and l3 can process ask-messages using Prc. Upon reception, each
of the nodes check whether they have content available in their tuple spaces
which match topic x . If so, they broadcast a has-message containing this
content. In order to make sure that the ask-message is propagated across the
whole of the network, they also rebroadcast this message, and restart process
Prc to be ready to receive other requests.

Rel is a simple relay process for has-messages. Note further that l2 and l3
have tuple spaces with contents i2 and i3 associated with topic t.

2.2 Operational Semantics

As a prerequisite for defining the operational semantics of bKlaim, we have to
give a notion of connectivity between nodes. A connectivity graph as in [15,14]
is a directed graph G on a subset of the set of locations Loc. As usual, V (G)
denotes the set of vertices of G and E(G) its set of edges. Given a graph G,
we write

G(l) = {l′ : (l, l′) ∈ E(G)}
to denote the neighborhood of a location l.

In this way, a connectivity graph G gives a straightforward notion of con-
nectivity to a network N : a node at location l′ may receive a message sent
by a node at location l if and only if (l, l′) ∈ E(G). Because the graph is
directed, both unidirectional and bidirectional links can be expressed. Note

5

that by separating connectivity from process actions (which most readily dis-
tinguishes bKlaim from the bπ-calculus [9] for example) we are able to express
the behavior of a variety of networks in which the connectivity may change
through changes in the environment conditions, which are not expressed by
process actions. Wireless networks are one example, where node movements
(which should be clearly separated from the actions of their protocol processes)
trigger both link failures and the establishment of new links.

Connectivity graphs provide a snapshot of the network connectivity. In con-
trast, a network topology T is a set of connectivity graphs which share the
same set of vertices. We use network topologies to express the set of possible
configurations a particular network may be in.

In order to ensure that a network topology and a network agree, we introduce a
well-formedness condition. We first extend the definition of the vertex function
V from graphs to networks:

V (l ::P) = V (l ::S) = {l} and V (N1 ‖ N2) = V (N1) ∪ V (N2)

We say that the pair (N, T) of a network N and network topology T is well-
formed if there is exactly one located tuple space l ::S for each l ∈ V (N), and
if furthermore T contains only connectivity graphs G with V (G) = V (N).

Example 2.2 Continuing Example 2.1, we define the following network
topologies over V (Net):

Network topology T1 Network topology T2

?>=<89:;l2 ?>=<89:;l3
?>=<89:;l1

aaBB !!BB ?>=<89:;l2 ?>=<89:;l3
?>=<89:;l1

==||
}} ||

?>=<89:;l2 // ?>=<89:;l3
?>=<89:;l1

aaBB
?>=<89:;l2 ?>=<89:;l3
?>=<89:;l1

==||
}} ||

G1 G2 G3 G2

We give the operational semantics of bKlaim by a reduction relation of the

form T ` M
l−→G N , defined in Table 2, together with a structural congruence

M ≡ N in Table 3. Derivations of a network N via the reduction relation are
with respect to a network topology T where (N, T) are well-formed; the opera-
tional semantics ensures that well-formedness is preserved over all derivations.
A derivation is parametrized with a connectivity graph G ∈ T to express that
the derivation holds under the connectivity expressed by G. We may drop the

parameter G and write T ` M
l−→ N when a transition does not depend on

the actual choice of G ∈ T . For the sake of the analysis in §5, transitions are
labelled with labels l of the form (l, `) and (l, `[t]), to express that the action
labelled ` has executed at location l, and – in the case of the in`-action only –
that the tuple t has been input at location l.

6

G ∈ T
T ` l ::bcst`(t).P ‖ ∏

l′∈G(l) l′ ::Sl′
(l,`)−−→G l ::P ‖ ∏

l′∈G(l) l′ ::Sl′(t)
↑

T ` l ::out`(t).P ‖ l ::S
(l,`)−−→ l ::P ‖ l ::S(t)↑

G ∈ T
T ` l ::b-eval`(Q).P

(l,`)−−→G l ::P ‖ ∏
l′∈G(l) l′ ::Q

S(t) > 0 match(T, t) = σ

T ` l :: in`(T).P ‖ l ::S
(l,`[t])−−−→ l ::Pσ ‖ l ::S(t)↓

S(t) > 0 match(T, t) = σ

T ` l :: read`(T).P ‖ l ::S
(l,`)−−→ l ::Pσ ‖ l ::S

∀ t. match(T, t) ⇒ S(t) = 0

T ` l ::abs`(T).P ‖ l ::S
(l,`)−−→ l ::P ‖ l ::S

T ` M
l−→ M ′

T ` M ‖ N
l−→ M ′ ‖ N

N ≡ M T ` M
l−→ M ′ M ′ ≡ N ′

T ` N
l−→ N ′

Table 2: Reduction relation of bKlaim

The bcst-rule puts a tuple t into all tuple spaces in the current neighborhood
G(l) of the sender location l, where the current neighborhood is nondetermin-
istically chosen from the network topology T . Rule out puts a tuple t into the
private tuple space at location l. Rule b-eval puts a process Q into all nodes in
the current neighborhood G(l) of the sender location l, where it can be evalu-
ated. The in-rule inputs (deletes) a tuple contained in the private tuple space
S if it matches to the template T , and continues with the process Pσ, where σ
captures the bindings introduced by the template matching. Rule read works
in the same fashion, but leaves the contents of S unchanged. The rule for abs
executes if there is no tuple in the private tuple space S that would match the
template T .

The structural congruence provides rules for reordering networks and pro-

7

N1 ‖ N2 ≡ N2 ‖ N1

(N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

l ::P ≡ l ::P | nil

l ::A ≡ l ::P if A , P

l ::P1 | P2 ≡ l ::P1 ‖ l ::P2

Table 3: Structural congruence of bKlaim

match(v, v) = ε match(!x, v) = [v/x]

match(F, f) = σ1 match(T, t) = σ2

match((F, T), (f, t)) = σ1 ◦ σ2

Table 4: Template matching

cesses. It is defined as the least equivalence relation satisfying the rules given
in Table 3. The first two rules state commutativity and associativity of parallel
composition of networks. Furthermore, the empty sum nil is a neutral element
for parallel composition of processes, process invocations can be expanded,
and parallel composition of processes naturally corresponds to parallel com-
position of networks.

The semantics for template matching is given in Table 4. As in original Klaim,
a template matches against a tuple if both have the same number of fields
and corresponding fields match; two values match if they are identical while
the formal field !x matches against any value. On success, the function match
returns a substitution associating the variables of the formal fields of the
template with the corresponding values in the tuple.

3 Abstract Transition Systems

For a given network, the operational semantics of bKlaim gives rise to a (pos-
sibly infinite) transition system where the transitions are determined by the
actions performed at each step and the connectivity the network has to abide
by when performing a step. For the sake of analysis, we are interested in
transforming this transition system into a finite one which still preserves the
influence of the network topology on the resulting network states. For this
purpose this section introduces abstract transition systems, and a version of

8

Action Computation Tree Logic (ACTL) [17] to describe their properties. In
order to accommodate the notion of abstraction in the logic, we use a 3-valued
interpretation of formulae on abstract transition systems. The use of 3-valued
logic for this purpose has first been recognised by [26], and we adapt it to our
setting by having a formula evaluate to “unknown” whenever the abstraction
prevents us from obtaining a definite result; if a formula evaluates to “true” or
“false” however, an embedding theorem ensures that the same formula holds
(resp. fails) in its 2-valued interpretation on the concrete transition system.

3.1 Exposed Actions

This section introduces the notion of exposed actions which is used to express
abstract network configurations; abstract transition systems, introduced in
the following section, will then describe transitions between such abstract
configurations, which are related to transitions between concrete networks.

An exposed action is an action (or tuple) that may participate in the next
interaction. In general, a process may contain many, even infinitely many,
occurrences of the same action (all identified by the same label) and it may
be that several of them are ready to participate in the next interaction.

To capture this, we define an extended multiset M as an element of:

M = Loc× (Lab ∪Val∗) → N ∪ {∞}

The idea is that M(l, `) records the number of occurrences of the label `, and
analogously M(l, t) the number of occurrences of the tuple t, at a location l;
there may be a finite number, in which case M(ll) ∈ N, or an infinite number,
in which case M(ll) = ∞ (where ll ranges over (l, `) or (l, t)). The set M is
equipped with a partial ordering ≤M defined by:

M ≤M M ′ iff ∀ ll. M(ll) ≤ M ′(ll) ∨M ′(ll) = ∞

The domain (M,≤M) is a complete lattice, and in addition to least and great-
est upper bound operators, we shall need operations +M and −M for addition
and subtraction, which can be defined straightforwardly.

To calculate exposed actions, we shall introduce the function

E : Net → M

which takes a network and calculates its extended multiset of exposed actions;
this function is defined in Table 5. In the case for tuple spaces, every tuple
t ∈ S is recorded with according multiplicity S(t) at location l. Processes

9

EJN1 ‖ N2K = EJN1K +M EJN2K
EJl ::P K = ElJP KenvEl

EJl ::SK =
∑

M,t ⊥M[(l, t) 7→ S(t)]

ElJnilKenv = ⊥M

ElJa`.P Kenv = ⊥M[(l, `) 7→ 1]

ElJP1 | P2Kenv = ElJP1Kenv +M ElJP2Kenv

ElJAKenv = env(A)

where FEl
(env) = [A1 7→ ElJP1Kenv , . . . , Ak 7→ ElJPkKenv]

and env⊥M
= [A1 7→⊥M, . . . , Ak 7→⊥M]

and envEl
=

⊔
j≥0F j

El
(env⊥M

)

Table 5: Exposed actions for let A1 , P1; . . . ; Ak , Pk in N0

invoke a local function

El : Net → (PNam → M) → M

which takes as an additional parameter an environment env ∈ PNam →
M holding the required information for the process names. In the case of
actions a`.P , the label ` is recorded at location l with multiplicity 1. For
process names we simply consult the environment env . The remaining cases
are straightforward.

As shown in Table 5, this defines a family of functionals FEl
: (PNam →

M) → (PNam → M). Since the operations involved in the definition of each
FEl

are all monotonic, we have monotonic functional on a complete lattice and
Tarski’s fixed point theorem ensures they it has a fixed point which is denoted
envEl

. Since all processes are finite, it follows that all FEl
are continuous and

hence that the Kleene formulation of the fixed point is permissible.

Example 3.1 Continuing Example 2.1, it is easy to check that

EJNetK = [(l1, 1) 7→ 1, (l2, 3) 7→ 1, (l2, 7) 7→ 1, (l3, 3) 7→ 1,

(l3, 7) 7→ 1, (l2, [t, i2]) 7→ 1, (l3, [t, i3]) 7→ 1].

We can show that the exposed actions are invariant under the structural con-
gruence and that they correctly capture the actions that may be involved in
the first reduction step.

10

Lemma 3.2 If M ≡ N , then EJMK = EJNK. Furthermore, if T ` M
l−→G N

and l = (l, `), then l ∈ dom(EJMK); and if l = (l, `[t]), then (l, `), (l, t) ∈
dom(EJMK).

Proof. The first result is shown by induction on the rules of structural con-
gruence in Table 3, using the definitions for exposed actions in Table 5. In
the rule for recursion unfolding, we have to show that envEl

(A) = ElJP KenvEl
,

which follows from envEl
=

⊔
j≥0F j

El
(env⊥M

) and FEl
(env)(A) = ElJP Kenv .

The remaining cases are straightforward.

For the second part, we proceed by induction on the rules of the tran-
sition system in Table 2. In the case for input it suffices to show that
(l, `), (l, t) ∈ dom(EJl :: in`(T).P ‖ l :: SK) where S(t) > 0. We have
(l, `) ∈ dom(ElJin`(T).P KenvEl

), and (l, u) ∈ dom(EJl ::SK) for all u ∈ dom(S),
by the definitions for exposed actions in Table 5. The cases for the other ax-
ioms are simpler. For the rule involving the congruence use Lemma 3.2. Then
these two cases and the case for the parallel rule can be solved by application
of the induction hypothesis. 2

3.2 Abstract Transition Systems

An abstract transition system is a quadruple (Q, q0, δ, E) with the following
components:

• A finite set of states Q where each state q is associated with an extended
multiset E[q] and the idea is that q represents all networks N with EJNK ≤M

E[q];
• an initial state q0, representing the initial network N0; and,
• a finite transition relation δ, where (qs, (G, l), qt) ∈ δ reflects that starting in

state qs, under connectivity G, the action l may execute and give rise to qt.

Definition 3.3 We say that a state denoting the multiset E represents a
network N , written N � E, iff EJNK ≤M E.

Definition 3.4 We say that an abstract transition system (Q, q0, δ, E) faith-
fully describes the evolution of a network N0 if:

M � E[qs] and T ` N0 →∗ M
l−→G N,

imply that there exists a unique qt ∈ Q such that

N � E[qt] and (qs, (G, l), qt) ∈ δ.

11

Figure 1: Example 3.5: Part of an abstract transition system for Net

In §5 we shall show how to construct an abstract transition system that faith-
fully describes the evolution of a given network N .

Example 3.5 For the network (Net, T1) of Example 2.1, the static analysis
of §5 generates an abstract transition system with 27 states and 46 transi-
tions; Figure 1 depicts a part of this transition system. We look at one of its
transitions in detail, namely (q3, (∗, (l2, 4[t, i2])), q6) ∈ δ; the star ∗ stands
for any connectivity graph from T1, as label 4 denotes a (local) input action
which thus does not depend on connectivity. For the states q3 and q6 involved
in this transition, it holds that

dom(E[q3]) = {(l1, 2), (l2, 4), (l2, 6), (l2, 7), (l3, 3), (l3, 7), (l2, [t, i2]), (l3, [t, i3])}
dom(E[q6]) = {(l1, 2), (l2, 5), (l2, 6), (l2, 7), (l3, 3), (l3, 7), (l3, [t, i3])}

and therefore state q3 represents a network of the form

l1 :: in2(...).Rec(t) ‖ l2 :: (in4(...).bcst5(...) ... | bcst6(...).Prc(l2)) ‖ l2 :: [(t, i2) 7→ 1] ‖ ...

and after a transition with action (l2, 4[t, i2]), we end up in state q6 that
represents

l1 :: in2(...).Rec(t) ‖ l2 :: (bcst5(...). ... | bcst6(...).Prc(l2)) ‖ l2 :: [(t, i2) 7→ 0] ‖

3.3 Interpretation of ACTL Properties

In order to express properties about a network, we propose to use a model
checking approach which allows us to describe properties in some temporal
logic. We are using a variant of Action Computation Tree Logic (ACTL) [17],
which allows us (in contrast to other branching time logics) to utilise the

12

labels (G, l) on the edges of an abstract transition system to constrain the
set of paths we are interested in; in this way we may for example determine
which properties hold if only node movements specified by a subset T ′ ⊆ T
of the original topology are considered. The syntax is defined by the following
grammar describing path formulae φ and state formulae γ:

φ ::= tt | ll | ¬φ | φ ∧ φ | ∃γ | ∀γ
γ ::= XΩ φ | φ UΩ φ

Here, ll denotes (l, `) or (l, t), ∃ and ∀ are path quantifiers, Ω is a set of
transition labels (G, l) and will be used to constrain the paths a formula is
evaluated on, and XΩ and UΩ are next and until operators, respectively. We
shall give two interpretations of this logic; the first relates to the concrete
semantics of §2.

We define two judgements N � φ and Π � γ for satisfaction of φ by a network
N , and γ by a path Π. A path Π is of the form (N0, (G0, l0), N1, (G1, l1), . . .)

where Π(i)
li−→Gi

Π(i+1) for i ≥ 0 (we write Π(i) for Ni, and Π[i] for (Gi, li)).
The judgements are displayed in Table 6.

N � tt

N � ll iff ll ∈ EJNK
N � ¬φ iff N 6� φ

N � φ1 ∧ φ2 iff N � φ1 ∧N � φ2

N � ∃γ iff there exists a path Π such that Π(0) = N and Π � γ

N � ∀γ iff Π � γ holds for all paths Π with Π(0) = N

Π � XΩ φ iff Π(1) � φ and Π[0] ∈ Ω

Π � φ1 UΩ φ2 iff there exists k ≥ 0 such that Π(k) � φ2 and

for all 0 ≤ i < k : Π(i) � φ1 and Π[i] ∈ Ω

Table 6: Satisfaction relation for networks

Thus the semantics of formulae closely resembles that of ACTL, with the
exception that for the novel clause ll to evaluate to satisfy network N , ll must
be exposed in N .

Clearly, we cannot directly establish satisfaction of a formula on a network
because the related transition system might be infinite. We therefore propose
to check formulae on the basis of abstract transition systems, and formally
relate the results obtained to the concrete network evolution.

The important question is how to represent the nature of the abstraction. A

13

natural way to model the uncertainty of whether an abstract edge is present in
the concrete transition system is to use a 3-valued logic. Here the classical set of
truth values {0, 1} is extended with a value 1/2 for expressing the uncertainty;
0 and 1 are called definite truth values, and 1/2 an indefinite truth value.
Several choices of 3-valued logics exist and we choose here to use Kleene’s
strongest regular 3-valued logic [11]; this is in line with the developments
of [5,26]. Formulae defined over the abstraction may make use of all three
truth values, but unlike e.g. [26,19], the abstraction itself will only make use
of the value 0 and 1/2.

A simple way to define conjunction (resp. disjunction) in this logic is as the
minimum (resp. maximum) of its arguments, under the order 0 < 1/2 < 1.
We write min and max for these functions, and extend them to sets in the
obvious way, with min ∅ = 1 and max ∅ = 0. Negation ¬3 maps 0 to 1, 1 to
0, and 1/2 to 1/2. Other operations can be lifted from the classical setting to
the 3-valued setting using the method of [20].

Let L(q, ll) = 0 if ll /∈ E[q], and 1/2 otherwise. Furthermore, let
DΩ(G, l) = 0 if (G, l) /∈ Ω, and 1/2 otherwise. A path π is of the form
(q0, (G0, l0), q1, (G1, l1), . . .) where (π(i), π[i], π(i + 1)) ∈ δ for i ≥ 0. The sat-
isfaction relations [q �3 φ] and [π �3 γ] for states q and paths π are defined in
Table 7.

[q �3 tt] = 1

[q �3 ll] = L(q, ll)

[q �3 ¬φ] = ¬3([q �3 φ])

[q �3 φ1 ∧ φ2] = min([q �3 φ1], [q �3 φ2])

[q �3 ∃γ] = max {[π �3 γ] : π(0) = q}
[q �3 ∀γ] = max {min {[π �3 γ] : π(0) = q}, 1/2}
[π �3 XΩ φ] = min([π(1) �3 φ], DΩ(π[0]))

[π �3 φ1 UΩ φ2] = max {[π �3 φ1 Uk
Ω φ2] : k ≥ 0}

[π �3 φ1 Uk
Ω φ2] = min(min({[π(k) �3 φ2]} ∪ {[π(i) �3 φ1] : i < k}),

min {DΩ(π[i]) : i < k})

Table 7: Satisfaction relation for states

Recall that our abstract transition systems constitute an overapproximation
of the concrete transition relations, and that we therefore expect to be able
to decide universal properties only. In the case of the ∃ path quantifier, we
therefore evaluate to a definite value only if there does not exist a path such
that a property γ holds, and for ∀ only if for all paths γ indeed holds. This is

14

expressed by the following definitions:

[q �3 ∃γ] = min {max {[π �3 γ] : π(0) = q}, 1/2}
[q �3 ∀γ] = max {min {[π �3 γ] : π(0) = q}, 1/2}

However, it turns out that we can do better in the case for ∃, which leads
to a simplification of this case, and the asymmetry in Table 7. The following
lemma enables us to do this:

Lemma 3.6 If [π �3 γ] = 1 then [π′ �3 γ] = 1 for all π′ with π′(0) = π(0).

Proof. It is easy to see that [π �3 XΩ φ] cannot evaluate to 1 because DΩ(π[0])
never evaluates to 1. If [π �3 φ1 UΩ φ2] = 1, then [π �3 φ1 Uk

Ω φ2] must
evaluate to 1 for some k, and this is only possible for k = 0 where {DΩ(π[i]) :
i < k} is the empty set and [π(0) �3 φ2] = 1. Hence for all π′ with π′(0) = π(0)
we have [π′(0) �3 φ2] = 1 and thus [π′ �3 φ1 Uk

Ω φ2] = 1 for k = 0 which
establishes the claim. 2

We therefore know that if a path formula γ holds on one path starting from a
state q, then it holds in all such paths. Therefore the property would hold as
well in any concrete transition path, and we do not have to evaluate to 1/2 in
this case.

In [5], a stronger result in the ∀-case can be achieved as well, because there the
Egli-Milner powerdomain ordering (over- and underapproximation) is assumed
to produce the abstract transition system, where we use the Hoare ordering
(overapproximation). Our approach is justified by the fact that we are actually
providing a practical method (see §6) which can generate our abstractions for
concrete systems. Using two transition relations as in [12,8] – one representing
the Hoare ordering, the other the Smyth ordering (underapproximation) –
could likewise be used to strengthen the result for the ∀-case.

We lift the notion of representation � from states to paths by defining:

Π � E[π] iff ∀ i ≥ 0. Π(i) � E[π(i)] ∧ Π[i] = π[i]

Furthermore, we define an information order v on truth values by 1/2 v 0,
1/2 v 1, and x v x for all x ∈ {0, 1/2, 1}. Using this, we can formulate an em-
bedding theorem, which allows us to relate the 2- and 3-valued interpretations
of ACTL:

Theorem 3.7 Suppose (Q, q0, δ, E) faithfully describes the evolution of net-
work N0, and T ` N0 →∗ N . Then:

(1) If N � E[q] then [q �3 φ] v [N � φ].
(2) If Π � E[π] then [π �3 γ] v [Π � γ].

15

Proof. By induction on the length of the formula, simultaneously over both
parts of the theorem. By the definition of the information ordering, there is
nothing to show for [q �3 φ] = 1/2 or [π �3 γ] = 1/2, we therefore distinguish
only the cases where these judgements evaluate to definite truth values.

Case φ = tt. Clearly, [q �3 tt] v [N � tt].

Case φ = ll. If [q �3 ll] = 0 then ll /∈ E[q]. Because N � E[q], we also have
ll /∈ EJNK, and hence N 6� ll. Furthermore, [q �3 ll] can never evaluate to 1.
Thus, [q �3 ll] v [N � ll].

Case φ = ¬φ. If [q �3 ¬φ] = 0 then [q �3 φ] = 1 because of the semantics of
¬3. We can apply the induction hypothesis to have q � φ which is equivalent
to q 6� ¬φ. The case [q �3 ¬φ] = 1 is analogous.

Case φ = φ1 ∧ φ2. If [q �3 φ1 ∧ φ2] = 0 then [q �3 φ1] = 0 or [q �3 φ2] = 0. By
the induction hypothesis we thus have N 6� φ1 or N 6� φ2, hence N 6� φ1 ∧ φ2.

If [q �3 φ1 ∧ φ2] = 1 then [q �3 φ1] = 1 and [q �3 φ2] = 1. By the induction
hypothesis we thus have N � φ1 and N � φ2, hence N � φ1 ∧ φ2.

Case φ = ∃γ. If [q �3 ∃γ] = 0 then [π �3 γ] = 0 for all π with π(0) = q.
Suppose there exists a path Π such that Π(0) = N and Π � γ. Then this path
would be faithfully described by the abstract transition system, and hence
Π � E[π′] would hold for some π′ with π′(0) = q. By the induction hypothesis
we have [π′ �3 γ] v [Π � γ], where we know that [π′ �3 γ] = 0. Hence Π 6� γ,
a contradiction. Therefore we have Π 6� γ for all Π with Π(0) = N , which
establishes N 6� ∃γ.

If [q �3 ∃γ] = 1 then there exists a path π with π(0) = q such that [π �3 γ] = 1.
Because of Lemma 3.6, [π �3 γ] = 1 holds for all π with π(0) = q. Suppose
for all paths Π with Π(0) = N we have Π 6� γ. Then all these Π would be
faithfully described by the abstract transition system, and hence Π � E[π′]
would hold for some π′ with π′(0) = q. By the induction hypothesis we have
[π′ �3 γ] v [Π � γ], where we know that [π′ �3 γ] = 1. Hence Π � γ, a
contradiction. Therefore we have that there exists a Π with Π(0) = N such
that Π � γ, which establishes N � ∀γ.

Case φ = ∀γ. Because of Definition 7, [q �3 ∀γ] can never evaluate to 0.

If [q �3 ∀γ] = 1 then, by Definition 7, [π �3 γ] = 1 for all π with π(0) = q.
Suppose there exists a path Π such that Π(0) = N and Π 6� γ. Then this path
would be faithfully described by the abstract transition system, and hence
Π � E[π′] would hold for some π′ with π′(0) = q. By the induction hypothesis
we have [π′ �3 γ] v [Π � γ], where we know that [π′ �3 γ] = 1. Hence Π � γ,
a contradiction. Therefore we have Π � γ for all Π with Π(0) = N , which

16

establishes N � ∃γ.

Case γ = XΩ φ. If [π �3 XΩ φ] = 0 then [π(1) �3 φ] = 0 or DΩ(π[0]) = 0.
Because Π � E[π] gives π[0] = Π[0] and because of the definition of DΩ,
whenever DΩ(π[0]) = 0 also Π[0] /∈ Ω. If [π(1) �3 φ] = 0, then Π(1) 6� φ by the
induction hypothesis. In both cases we can conclude Π 6� XΩ φ as required.

Because min([π(1) �3 φ], DΩ(π[0])) depends on DΩ(π[0]) which cannot evalu-
ate to 1, [π �3 XΩ φ] cannot evaluate to 1 either.

Case φ = φ1 UΩ φ2. If [π �3 φ1 UΩ φ2] = 0 then [π �3 φ1 Uk
Ω φ2] = 0 for

all k ≥ 0. Hence either min({[π(k) �3 φ2]} ∪ {[π(i) �3 φ1] : i < k}) = 0 or
min {DΩ(π(i), π(i + 1)) : i < k} = 0. If the latter holds, then there exists an
i < k such that DΩ(π[i]) = 0; because Π � E[π] gives π[i] = Π[i] for all i ≥ 0
and because of the definition of DΩ, whenever DΩ(π[i]) = 0 also Π[i] /∈ Ω. If
the former holds, either {[π(k) �3 φ2]} = 0 or {[π(i) �3 φ1] : i < k} = 0,
and thus by the induction hypothesis either Π(k) 6� φ2 or Π(i) 6� φ1 for some
i < k; hence Π 6� φ1 UΩ φ2.

If [π �3 φ1 UΩ φ2] = 1, then [π �3 φ1 Uk
Ω φ2] must evaluate to 1 for some k,

and this is only possible for k = 0 where {DΩ(π[i]) : i < k} is the empty
set and [π(0) �3 φ2] = 1. By the induction hypothesis we thus have Π(0) � φ2

and hence Π � φ1 UΩ φ2. 2

Example 3.8 For the abstract transition system for (Net, T1) of Example 2.1
and 2.2, and an Ω containing all possible transition labels, we have

[q0 �3 ¬∃[tt UΩ ((l1, [has, l2, t, i2]) ∧ (l1, [has, l3, t, i3]))]] = 1

while on (Net, T2) we get the result 1/2. Using Theorem 3.7, this means that
(Net, T1) has no evolution such that both [has, l2, t, i2] and [has, l3, t, i3] are
exposed tuples at location l1. In other words, under topology T1, the node l1
requesting information on topic t cannot get replies from both l2 and l3. For
(Net, T2) the analysis states that the abstraction prevents a definite answer.

4 Control Flow Analysis

Control Flow Analyses have been used in order to analyze a variety of process
calculi, e.g. [4,3], and we have used it in particular in [15,14] to establish
security properties of broadcast networks. In this earlier work we have however
abstracted away the dynamics of the system, i.e. the network topology T was
replaced by a single connectivity graph which contains all possible edges, i.e.
any edges that might occur in a G ∈ T . While this is a safe view (as it yields

17

an overapproximation of the messages that may be sent in the network), it
prevents the analysis result from exposing the influence of topology changes.

In this paper, our main analysis is based on a Monotone Framework (see §5)
and an worklist algorithm (see §6), which enables us to construct abstract
transition systems as described in §3. However, the variable bindings for a
network have to be supplied to the Monotone Framework. Therefore we still
define a Control Flow Analysis for bKlaim in order to deal with this aspect
of the analysis, the results of which become a parameter in the Monotone
Framework.

The Control Flow Analysis uses the following abstract domains:

ρ̂ : Var → ℘(Val) Variable environment

Ŝ : Loc → ℘(Val∗) Store environment

The variable environment ρ̂ records for every variable occurring in a network
N the set of values it may be bound to during the evolution of N . The variable
environment can be extended to tuples by defining:

ρ̂JvK = {v} and ρ̂JxK = ρ̂(x) and ρ̂Jf, tK = ρ̂JfK× ρ̂JtK

The store environment Ŝ records for every location the set of tuples that may
reside at the tuple space belonging to that location during the evolution of N .

We define the analysis using the Flow Logic framework [22], that takes a
specification oriented approach to determining whether or not a given analysis
estimate correctly describes all configurations reachable from a given initial
network. The correctness result is given by a subject reduction result, which
means that analysis estimates can be “too large”. The next step therefore is
to use standard techniques (not covered here, but see e.g. [21]) to turn this
specification into a form where “the least” acceptable analysis estimate can
be computed in polynomial time.

The flow logic uses three main judgments:

(ρ̂, Ŝ) �G N Judgment for networks

(ρ̂, Ŝ) �G
l P Judgment for processes

(ρ̂, Ŝ) �G
l a Judgment for actions

Note that the judgments for processes and actions are parametrized with the
location at which they are executing. Furthermore, the three main judgments
are parametrized with a connectivity graph G. In order to achieve an overap-
proximation of all possible variable bindings that may occur in (N, T), this G
must be chosen to contain all possible edges that might arise during compu-

18

(ρ̂, Ŝ) �G N1 ‖ N2 iff (ρ̂, Ŝ) �G N1 ∧ (ρ̂, Ŝ) �G N2

(ρ̂, Ŝ) �G l ::P iff (ρ̂, Ŝ) �G
l P

(ρ̂, Ŝ) �G l ::S iff ∀ u ∈ dom(S). u ∈ Ŝ(l)

(ρ̂, Ŝ) �G
l nil iff true

(ρ̂, Ŝ) �G
l a`.P iff (ρ̂, Ŝ) �G

l a` ∧ (ρ̂, Ŝ) �G
l P

(ρ̂, Ŝ) �G
l P1 | P2 iff (ρ̂, Ŝ) �G

l P1 ∧ (ρ̂, Ŝ) �G
l P2

(ρ̂, Ŝ) �G
l A iff (ρ̂, Ŝ) �G

l P where A , P

(ρ̂, Ŝ) �G
l bcst`(t) iff ∀ l′ ∈ G(l). ρ̂JtK ⊆ Ŝ(l′)

(ρ̂, Ŝ) �G
l out`(t) iff ρ̂JtK ⊆ Ŝ(l)

(ρ̂, Ŝ) �G
l b-eval`(Q) iff ∀ l′ ∈ G(l). (ρ̂, Ŝ) �G

l′ Q

(ρ̂, Ŝ) �G
l in`(T) iff ∃ T̂ . ρ̂ �1 T : Ŝ(l) . T̂

(ρ̂, Ŝ) �G
l read`(T) iff ∃ T̂ . ρ̂ �1 T : Ŝ(l) . T̂

(ρ̂, Ŝ) �G
l abs`(T) iff true

Table 8: Control Flow Analysis for bKlaim

tation:

(∃ G′ ∈ T . (m, n) ∈ E(G′)) iff (m, n) ∈ E(G)

We write G =
⊔ T for a connectivity graph constructed in this manner, and

call it the abstract connectivity graph corresponding to T .

The main judgments are defined in Table 8. The judgment for networks pro-
ceeds in a syntax-directed manner and is straightforward. Note that in the
case for tuple spaces all tuples t which are in the domain of the multiset S
(i.e. where S(t) > 0, see §2.1) are taken to be in the store environment at
location l.

Also the judgment for processes proceeds in a mainly syntax directed manner,
except for the need to unfold recursive processes. This does not invalidate
our axiomatization, as in general we take a co-inductive rather than inductive
interpretation of a Flow Logic [22].

The rule for summation invokes the judgment for actions. In the case for bcst,
it is made sure that the estimation for the tuple t according to ρ̂ is included
in the estimation for all tuple stores in the neighborhood G(l) of location
l. For the local out-action, only the estimation for the tuple space at l is
affected. For action b-eval, the judgment to evaluate the migrating process
Q is invoked at all locations in the neighborhood of l. The two rules for in
and read update the variable environment ρ̂ with the new possible bindings

19

calculated by an auxiliary judgment for pattern matching ρ̂ �1 T : Ŝ(l) . T̂ .
This auxiliary judgment expresses informally that T̂ is a safe estimate to the
tuples contained in Ŝ(l) that match with template T under bindings ρ̂ (new
bindings can be introduced by the matching); we formally define the judgment
below. To achieve safety, the rule for abs always holds.

The main judgments use the following auxiliary judgment

ρ̂ �i T : Ŝ◦ . T̂• Auxiliary judgment for pattern matching

which is defined in Table 9. This judgment traverses the template in a forward
direction (starting at index i that is supposed not to exceed the length of
T) and then in a backward direction (stopping at index i). In the forward
direction the tuples in Ŝ◦ are tested against the relevant component of the
template T and only tuples satisfying the requirements are carried forward. In
the backward direction the tuples in T̂• are those that passed all requirements
and the values in the relevant component are used for defining the names (of
the form !x) to be matched in that component.

ρ̂ �i ε : Ŝ◦ . Ŝ• iff {t ∈ Ŝ◦ : |t| = i− 1} v Ŝ•

ρ̂ �i v, T : Ŝ◦ . T̂• iff ρ̂ �i+1 T : Ŝ• . T̂• ∧ {t ∈ Ŝ◦ : prji(t) = v} v Ŝ•

ρ̂ �i x, T : Ŝ◦ . T̂• iff ρ̂ �i+1 T : Ŝ• . T̂• ∧ {t ∈ Ŝ◦ : prji(t) ∈ ρ̂(x)} v Ŝ•

ρ̂ �i!x, T : Ŝ◦ . T̂• iff ρ̂ �i+1 T : Ŝ• . T̂• ∧ Ŝ◦ v Ŝ• ∧ prji(T̂•) v ρ̂(x)

Table 9: Abstract matching

The correctness of the main judgment (ρ̂, Ŝ) �G N is formulated as a subject
reduction result which is proved below. Two auxiliary lemmas are required,
the first one stating a property of the judgment for matching.

Lemma 4.1 Suppose match(T, t) = σ and t ∈ Ŝ◦ for a ground tuple t and
closed template T . If ρ̂ �1 T : Ŝ◦ . T̂•, then t ∈ T̂• and σ(x) ∈ ρ̂(x) for all
x ∈ dom(σ).

Proof. Let T i denote the template obtained from T by dropping the first i−1
fields (analogously ti). We prove the following stronger result:

Let i ≤ length(T) + 1 and suppose match(T i, ti) = σi and t ∈ Ŝ◦. If ρ̂ �i T i :
Ŝ◦ . T̂•, then t ∈ T̂• and σi(x) ∈ ρ̂(x) for all x ∈ dom(σi).

We proceed by structural induction on T i.

Case T i = ε. This means that T and t have length i − 1. Hence t ∈ T̂• by
the rule for ε in Table 9. Furthermore, σi has an empty domain and there is

20

nothing to show for the second part.

Case T i = v, T i+1. Thus prji(t) = v and therefore t ∈ Ŝ• on the right-hand
side of the rule for values in Table 9, and also match(T i+1, ti+1) = σi (= σi+1)
by the definition of matching. Hence we can apply the induction hypothesis
to ρ̂ �i+1 T i+1 : Ŝ• . T̂• and have t ∈ T̂• and ∀ x ∈ dom(σi). σi(x) ∈ ρ̂(x) as
required.

Case T i = x, T i+1. Does not apply because T is closed.

Case T i =!x, T i+1. We have t ∈ Ŝ• by the rule for formal fields in Table 9,
where Ŝ◦ v Ŝ•. Also match(T i+1, ti+1) = σi+1 where [prji(t)/x] ◦ σi+1 = σi by
the definition of matching. Hence we can apply the induction hypothesis to
ρ̂ �i+1 T i+1 : Ŝ• . T̂• and have t ∈ T̂• and ∀ x ∈ dom(σi+1). σi+1(x) ∈ ρ̂(x).
Because prji(T̂•) v ρ̂(x) and t ∈ T̂• we have prji(t) ∈ ρ̂(x), and thus ∀ x ∈
dom(σi). σi(x) ∈ ρ̂(x). 2

The next lemma says that the judgments for processes, actions, and matching
are invariant under a substitution σ, if the variable environment ρ̂ expresses
all bindings of σ.

Lemma 4.2 (Substitution) Suppose σ(x) ∈ ρ̂(x) for all x ∈ dom(σ). Then
the following implications hold:

(1) If ρ̂ �1 T : Ŝ◦ . T̂• then ρ̂ �1 Tσ : Ŝ◦ . T̂•.
(2) If (ρ̂, Ŝ) �G

l a` then (ρ̂, Ŝ) �G
l a`σ.

(3) If (ρ̂, Ŝ) �G
l P then (ρ̂, Ŝ) �G

l Pσ.

Proof. Ad (1). By structural induction on T . The only interesting case (where
something is actually substituted) is T = x, U . Then we have ρ̂ �i+1 U : Ŝ•.T̂•
and {t ∈ Ŝ◦ : prji(t) ∈ ρ̂(x)} v Ŝ• by the rule for variables in Table 9.
Because σ(x) ∈ ρ̂(x) and ρ̂(σ(x)) = {σ(x)}, we have v ∈ ρ̂(σ(x)) ⇒ v ∈ ρ̂(x)
for all values v. Therefore

{t ∈ Ŝ◦ : prji(t) ∈ ρ̂(σ(x))} v {t ∈ Ŝ◦ : prji(t) ∈ ρ̂(x)} v Ŝ•

By the induction hypothesis we obtain ρ̂ �i+1 Uσ : Ŝ• . T̂•, and thus we can
use the rule for variables again to prove the case.

Ad (2). We proceed by structural induction on a`. For all cases the respective
rules in Table 8 are used. The cases bcst and out follow from the fact ρ̂JtσK ⊆
ρ̂JtK. Case b-eval is proved by applying the induction hypothesis. Cases in and
read follow from part (1) of the lemma. There is nothing to show for abs.

Ad (3). By a straightforward induction on the rules used to obtain (ρ̂, Ŝ) �G
l

P , where part (2) of the lemma is used in the case for actions. 2

21

The main theorem states the invariance of the analysis estimate for networks
under the rules of the structural congruence and the reduction relation.

Theorem 4.3 (Subject Reduction)

(1) If M ≡ N then (ρ̂, Ŝ) �
⊔
T M ⇐⇒ (ρ̂, Ŝ) �

⊔
T N .

(2) If T ` M
l−→G N and (ρ̂, Ŝ) �

⊔
T M , then (ρ̂, Ŝ) �

⊔
T N .

Proof. Ad (1). By a straightforward induction on the rules of the structural
congruence in Table 3.

Ad (2). By induction on the inference of T ` M
l−→G N . For abbreviation

purposes, let Ĝ =
⊔ T .

Case bcst. Then we know that

M = l ::bcst`(t).P ‖ ∏
l′∈G(l) l′ ::Sl′

N = l ::P ‖ ∏
l′∈G(l) l′ ::Sl′(t)

↑.

We have (ρ̂, Ŝ) �Ĝ l :: bcst`(t).P ‖ ∏
l′∈G(l) l′ :: Sl′ by assumption. Using the

rules of Table 8 for parallel composition, nodes, tuple spaces, and bcst, we
have

(∀ l′ ∈ Ĝ(l). ρ̂JtK ⊆ Ŝ(l′)) ∧ (ρ̂, Ŝ) �Ĝ
l P ∧

∧
l′∈G(l)

(∀ u ∈ dom(S). u ∈ Ŝ(l′)).

We know t ∈ ρ̂JtK for all ground t, and G(l) ⊆ Ĝ(l), hence

(ρ̂, Ŝ) �Ĝ
l P ∧

∧
l′∈G(l)

(∀ u ∈ dom(Sl′(t)
↑). u ∈ Ŝ(l′))

which is equivalent to (ρ̂, Ŝ) �Ĝ l ::P ‖ ∏
l′∈G(l) l′ ::Sl′(t)

↑.

Case out. Analogous to case bcst (simpler).

Case b-eval. Then we know that

M = l ::b-eval`(Q).P

N = l ::P ‖ ∏
l′∈G(l) l′ ::Q.

We have (ρ̂, Ŝ) �Ĝ l ::b-eval`(Q).P by assumption which corresponds to

∧
l′∈G(l)

(ρ̂, Ŝ) �Ĝ
l′ Q ∧ (ρ̂, Ŝ) �Ĝ

l P

and this implies (ρ̂, Ŝ) �Ĝ l ::P ‖ ∏
l′∈G(l) l′ ::Q.

22

Case in. Then we know that S(t) > 0, match(T, t) = σ and

M = l :: in`(T).P ‖ l ::S

N = l ::Pσ ‖ l ::S(t)↓.

We have (ρ̂, Ŝ) �Ĝ l :: in`(T).P ‖ l ::S by assumption. Using the rules of Table 8
for parallel composition, nodes, tuple spaces, and in, we have

ρ̂ �1 T : Ŝ(l) . T̂• ∧ (ρ̂, Ŝ) �Ĝ
l P ∧ (∀ u ∈ dom(S). u ∈ Ŝ(l))

Because S(t) > 0, we know that t ∈ Ŝ(l). Together with match(T, t) = σ, this
allows us to apply Lemma 4.1 on ρ̂ �1 T : Ŝ(l).T̂•, thus obtaining σ(x) ∈ ρ̂(x)

for all x ∈ dom(σ). Hence we can apply Lemma 4.2 (3) to have (ρ̂, Ŝ) �Ĝ
l Pσ.

Note that dom(S(t)↓) ⊆ dom(S), and thus:

(ρ̂, Ŝ) �Ĝ
l Pσ ∧ (∀ u ∈ dom(S(t)↓). u ∈ Ŝ(l))

which is equivalent to (ρ̂, Ŝ) �Ĝ l ::Pσ ‖ l ::S(t)↓

Case read. Analogous to case in.

Case abs. Nothing to show.

Case Parallel Composition. By a straightforward application of the induction
hypothesis.

Case Structural Congruence. By a straightforward application of the induc-
tion hypothesis, and use of part (1) of the theorem. 2

5 Monotone Framework

The abstraction function E only gives us the information of interest for the
initial process. Once an action has participated in an interaction, some new
actions may become exposed and some may cease to be exposed. We shall
now present auxiliary functions GG

ρ̂ and K allowing us to approximate how the
information evolves during the execution of the process. These correspond to a
classical approach in Data Flow Analysis, namely the gen and kill components
of Monotone Frameworks, which have been generalised similarly [24] in the
setting of CCS. The relevant information will be an element of:

T = Loc× (Lab ∪Val∗) → M

As for exposed actions it is not sufficient to use sets: there may be more than
one occurrence of an action that is either generated or killed by another action.

23

The ordering ≤T is defined as the pointwise extension of ≤M:

T1 ≤T T2 iff ∀ ll. T1(ll) ≤M T2(ll)

5.1 Generated Actions

To calculate generated actions, we shall introduce the function

GG
ρ̂ : Net → T

which takes a network N and computes an over -approximation of which ac-
tions might be generated in N ; this function is defined in Table 10. Note
that the function carries two more parameters, namely a connectivity graph
G and a variable environment ρ̂. The connectivity graph G is needed because
it determines at which locations tuples are generated when using broadcast.
Likewise, we need ρ̂ to correctly determine which tuples might be output; it
is therefore assumed in the following that (ρ̂, Ŝ) �

⊔
T N0 holds.

GG
ρ̂ JN1 ‖ N2K = GG

ρ̂ JN1K tT GG
ρ̂ JN2K

GG
ρ̂ Jl ::P K = GG

ρ̂,lJP KenvGG
l

GG
ρ̂ Jl ::SK = ⊥T

GG
ρ̂,lJnilKenv = ⊥T

GG
ρ̂,lJa`.P Kenv = G̃G

ρ̂,lJa`.P Kenv tT GG
ρ̂,lJP Kenv

GG
ρ̂,lJP1 | P2Kenv = GG

ρ̂,lJP1Kenv tT GG
ρ̂,lJP2Kenv

GG
ρ̂,lJAKenv = env(A)

G̃G
ρ̂,lJbcst`(t).P Kenv = ⊥T[(l, `) 7→ ElJP KenvEl

+M (
∑

M,l′∈G(l),u∈ρ̂JtK ⊥M[(l′, u) 7→ 1])]

G̃G
ρ̂,lJout`(t).P Kenv = ⊥T[(l, `) 7→ ElJP KenvEl

+M (
∑

M,u∈ρ̂JtK ⊥M[(l, u) 7→ 1])]

G̃G
ρ̂,lJb-eval`(Q).P Kenv = ⊥T[(l, `) 7→ ElJP KenvEl

+M
∑

M,l′∈G(l) El′JQKenvEl′
]

G̃G
ρ̂,lJa`.P Kenv = ⊥T[(l, `) 7→ ElJP KenvEl

], for a` = in`(T), read`(T), abs`(T)

where FGG
l
(env) = [A1 7→ GG

ρ̂,lJP1Kenv , . . . , Ak 7→ GG
ρ̂,lJPkKenv]

and env⊥T
= [A1 7→⊥T, . . . , Ak 7→⊥T]

and envGG
l

=
⊔

j≥0F j

GG
l
(env⊥T

)

Table 10: Generated actions for let A1 , P1; . . . ; Ak , Pk in N0

24

As in the case for exposed actions, we need a local function

GG
ρ̂,l : Net → (PNam → T) → T

which is invoked by processes. Furthermore note that there is an auxiliary
function G̃G

ρ̂,l for actions. All actions a`.P then expose ElJP KenvEl
, i.e. the

actions of the continuation process. Furthermore, bcst exposes the tuples u ∈
ρ̂JtK for all locations l′ ∈ G(l) in the neighborhood of the sending process.
Simpler, the action out exposes all u ∈ ρ̂JtK only at location l. The migration
b-eval exposes El′JQKenvEl′

, the exposed actions of the migrating process Q,
at all neighboring locations.

Analogously to the argumentation used for exposed actions, this defines a
family of functionals FGG

l
: (PNam → T) → (PNam → T), and each FGG

l

has a fixed point which can be written in the Kleene formulation.

We can show that the the information computed by GG
ρ̂ is invariant under the

structural congruence and that it potentially decreases with the reduction of
the process:

Lemma 5.1 Suppose (ρ̂, Ŝ) �
⊔
T M holds. If M ≡ N , then GG

ρ̂ JMK = GG
ρ̂ JNK.

Furthermore, if T ` M
l−→G N , then GG

ρ̂ JNK ≤T GG
ρ̂ JMK.

Proof. The first result is shown by induction on the rules of structural congru-
ence in Table 3, using the definitions for generated actions in Table 10. In the
rule for recursion unfolding, we have to show that envGG

l
(A) = GG

ρ̂,lJP KenvGG
l
,

which follows from envGG
l

=
⊔

j≥0F j

GG
l
(env⊥T

) and FGG
l
(env)(A) = GG

ρ̂,lJP Kenv .

The remaining cases are straightforward.

For the second part we proceed by induction on the inference of T ` M
l−→G N

as defined in Table 2. The inequality GG
ρ̂ JNK ≤T GG

ρ̂ JMK is straightforward to
show for all outputting actions and for abs. For actions in and read we require
the auxiliary lemma GG

ρ̂,lJPσKenv ≤T GG
ρ̂,lJP Kenv , which is straightforwardly

proved by induction, using the assumption (ρ̂, Ŝ) �
⊔
T M and Lemma 4.1.

The rules for parallel composition and structural congruence are proved by
applications of the induction hypothesis, where in the latter case we also have
to use the first part of the lemma. 2

Note that the function GG
ρ̂ is defined on pairs of locations and actions only. It

can be trivially extended to the general label l = (l, `[t]) which is used in the
reduction rule for in by defining:

GG
ρ̂ JNK(l, `[t]) = GG

ρ̂ JNK(l, `)

25

5.2 Killed Actions

To calculate killed actions, we shall introduce the function

K : Net → T

which takes a network N and computes an under -approximation of which
actions might be killed in N ; this function is defined in Table 11. When actions
a`.P execute at location l, it is clear that one occurrence (l, `) can be killed.

Analogously to the argumentation used for exposed actions, this defines a
family of functionals FKl

: (PNam → T) → (PNam → T), and each FKl
has

a fixed point which can be written in the Kleene formulation.

KJN1 ‖ N2K = KJN1K uT KJN2K
KJl ::P K = KlJP KenvKl

KJl ::SK = >T

KlJnilKenv = >T

KlJa`.P Kenv = >T[(l, `) 7→⊥M[(l, `) 7→ 1]] uT KlJP Kenv

KlJP1 | P2Kenv = KlJP1Kenv uT KlJP2Kenv

KlJAKenv = env(A)

where FKl
(env) = [A1 7→ KlJP1Kenv , . . . , Ak 7→ KlJPkKenv]

and env>T
= [A1 7→ >T, . . . , Ak 7→ >T]

and envKl
=

d
j≥0F

j
Kl

(env>T
)

Table 11: Killed actions for let A1 , P1; . . . ; Ak , Pk in N0

We can show that the the information computed by K is invariant under the
structural congruence and that it potentially increases with the reduction of
the process:

Lemma 5.2 If M ≡ N , then KJMK = KJNK. Furthermore, if T ` M
l−→G N

then KJMK ≤T KJNK.

Proof. The first result is shown by induction on the rules of structural con-
gruence in Table 3, using the definitions for killed actions in Table 11. In the
rule for recursion unfolding, we have to show that envKl

(A) = KlJP KenvKl
,

which follows from envKl
=

d
j≥0F

j
Kl

(env>T
) and FKl

(env)(A) = KlJP Kenv .
The remaining cases are straightforward.

26

For the second part we proceed by induction on the inference of T ` M
l−→G N

as defined in Table 2. The inequality KJMK ≤T KJNK is straightforward to
show for all outputting actions and abs. For actions in and read we require
the result KlJPσKenv = KlJP Kenv , which is immediate since K does not
take tuples into account. The rules for parallel composition and structural
congruence are proved by applications of the induction hypothesis, where in
the latter case we also have to use the first part of the lemma. 2

Analogously to the case of GG
ρ̂ we can define an extension of K by

KJNK(l, `[t]) = KJNK(l, `)+M ⊥M [(l, t) 7→ 1]

i.e. an input action additionally removes a tuple t from the tuple space.

5.3 Transfer Function

In this setting the transfer function from classical Monotone Frameworks takes
the following form

(E −M KJMK(l)) +M GG
ρ̂ JMK(l),

which corresponds to a transition T ` M
l−→G N .

Correctness. The following result states that the transfer function defined
above provides safe approximations to the exposed actions of the resulting
network:

Theorem 5.3 Suppose (ρ̂, Ŝ) �
⊔
T M holds for a network M and a network

topology T . If T ` M
l−→G N , then

EJNK ≤M (EJMK−M KJMK(l)) +M GG
ρ̂ JMK(l).

Proof. By induction of the inference of T ` M
l−→G N .

Case bcst. Then we know that l = (l, `) and

M = l ::bcst`(t).P ‖ ∏
l′∈G(l) l′ ::Sl′

N = l ::P ‖ ∏
l′∈G(l) l′ ::Sl′(t)

↑,

27

and we can calculate:

EJMK = ⊥M[(l, `) 7→ 1] +M
∑

M,l′∈G(l)

∑
M,u ⊥M[(l′, u) 7→ Sl′(u)]

KJMK(l, `) = ⊥M[(l, `) 7→ 1] uM (KlJP KenvKl
)(l, `)

GG
ρ̂ JMK(l, `) = (ElJP KenvEl

+M (
∑

M,l′∈G(l)

∑
M,u∈ρ̂JtK ⊥M[(l′, u) 7→ 1]))

tM(GG
ρ̂,lJP KenvGG

l
)(l, `)

EJNK = ElJP KenvEl
+M

∑
M,l′∈G(l)

∑
M,u 6=t ⊥M[(l′, u) 7→ Sl′(u)]

+M
∑

M,l′∈G(l) ⊥M[(l′, t) 7→ Sl′(t)
↑]

Since t ∈ ρ̂JtK (a consequence of Theorem 4.3), we have

(EJMK−M KJMK(l, `)) +M GG
ρ̂ JMK(l, `)

≥M
∑

M,l′∈G(l)

∑
M,u ⊥M[(l′, u) 7→ Sl′(u)]

+MElJP KenvEl
+M (

∑
M,l′∈G(l)

∑
M,u∈ρ̂JtK ⊥M[(l′, u) 7→ 1])

≥M EJNK.

Case out. Analogous to case bcst (simpler).

Case b-eval. Then we know that l = (l, `) and

M = l ::b-eval`(Q).P

N = l ::P ‖ ∏
l′∈G(l) l′ ::Q,

and it suffices to calculate

GG
ρ̂ JMK(l, `) = (ElJP KenvEl

+M
∑

M,l′∈G(l) El′JQKenvEl′
) tM (GG

ρ̂,lJP KenvGG
l
)(l, `)

EJNK = ElJP KenvEl
+M

∑
M,l′∈G(l) El′JQKenvEl′

to have EJNK ≤M GG
ρ̂ JMK(l, `).

Case in. Then we know l = (l, `[t]), S(t) > 0, match(T, t) = σ, and

M = l :: in`(T).P ‖ l ::S

N = l ::Pσ ‖ l ::S(t)↓,

and we can calculate:

EJMK = ⊥M[(l, `) 7→ 1] +M
∑

M,u ⊥M[(l′, u) 7→ Sl′(u)]

KJMK(l, `[t]) = (⊥M[(l, `) 7→ 1] uM (KlJP KenvKl
)(l, `))+M ⊥M [(l, t) 7→ 1]

GG
ρ̂ JMK(l, `[t]) = ElJP KenvEl

tM (GG
ρ̂,lJP KenvGG

l
)(l, `)

EJNK = ElJPσKenvEl
+M

∑
M,u 6=t ⊥M[(l′, u) 7→ Sl′(u)]

+M ⊥M[(l′, t) 7→ Sl′(t)
↓]28

Because ElJPσKenvEl
= ElJP KenvEl

(exposed actions do not depend on tuples),
it remains to check that

∑
M,u 6=t ⊥M[(l′, u) 7→ Sl′(u)]+M ⊥M[(l′, t) 7→ Sl′(t)

↓]

≤M (
∑

M,u ⊥M[(l′, u) 7→ Sl′(u)])−M ⊥M [(l, t) 7→ 1]

This holds because the count of t in Sl′ is decreased on both sides of the
inequation.

Case read and abs. Analogous to in (simpler).

Case Parallel Composition. Then we know that

M = M0 ‖ N0

N = M ′
0 ‖ N0,

and can calculate:

EJMK = EJM0K +M EJN0K
KJMK(l) = KJM0K(l) uM KJN0K(l)
GG

ρ̂ JMK(l) = GG
ρ̂ JM0K(l) tM GG

ρ̂ JN0K(l)
EJNK = EJM ′

0K +M EJN0K

By the induction hypothesis we have EJM ′
0K ≤M (EJM0K −M KJM0K(l)) +M

GG
ρ̂ JM0K(l). Therefore

EJNK ≤M (EJM0K−M KJM0K(l)) +M GG
ρ̂ JM0K(l) +M EJN0K

≤M ((EJM0K +M EJN0K)−M KJM0K(l) +M GG
ρ̂ JM0K(l)

Case Structural Congruence. This case is proved by a straightforward ap-
plication of the induction hypothesis, where we note that E , K, and GG

ρ̂ are
all invariant under the structural congruence as stated in Lemmas 3.2, 5.1,
and 5.2. 2

As a corollary of the previous theorem, we can state that for an initial network
let A1 , P1; . . . ; Ak , Pk in N0 the transfer function

transfer(G,l),ρ̂(E) = E −M KJN0K(l) +M GG
ρ̂ JN0K(l)

which requires the functions for killed and generated actions only to be com-
puted once for N0, gives a safe description of the transfer of exposed actions
under execution of an action with semantic label l.

Corollary 5.4 Consider the network let A1 , P1; . . . ; Ak , Pk in N0 and

29

suppose (ρ̂, Ŝ) �
⊔
T N0. If T ` N0 →∗ M

l−→G N then

EJNK ≤M transfer(G,l),ρ̂(EJMK)

Proof. A direct consequence of Theorem 5.3, Lemma 5.1, Lemma 5.2, and
Theorem 4.3. 2

Example 5.5 Continuing Example 3.5, we can calculate that

KJNetK(l2, 4[t, i2]) = [(l2, 4) 7→ 1, (l2, [t, i2]) 7→ 1]

GG
ρ̂ JNetK(l2, 4[t, i2]) = [(l2, 5) 7→ 1]

and hence that E[q6] = (E[q3]−MKJNetK(l2, 4[t, i2]))+MGG
ρ̂ JNetK(l2, 4[t, i2]).

6 Worklist Algorithm

We are interested in analyzing networks of the form

let A1 , P1; . . . ; Ak , Pk in N0

where we assume in the following that (ρ̂, Ŝ) �
⊔
T N0 holds. We shall now

construct a abstract transition system which faithfully describes the evolution
of N0 as specified in §3.2.

The key algorithm is a worklist algorithm, which is described in §6.1. It starts
out from the initial state and constructs the automaton by adding more and
more states and transitions. The algorithm makes use of several auxiliary
operations which are further developed in the subsequent sections:

• Given a state qs representing some exposed actions, we need to select those
labels l that represent actions that may interact in the next step; this is
done using the procedure enabled(ρ̂,Ŝ) described in §6.3.

• Once the labels l have been selected, we can use the function transfer(G,l),ρ̂,
which has been introduced already in §5.3.

• Finally, an appropriate target state qt has to be constructed and the transi-
tion (qs, (G, l), qt) must be recorded; this is done using the procedure update
developed in §6.2.

6.1 Worklist Algorithm

The main data structures of the algorithm are:

• A set Q of the current states.

30

• A worklist W being a subset of Q and containing those states that have yet
to be processed.

• A set δ of the current transitions.

1 Q := {q0}; E[q0] := EJN0K; W := {q0}; δ := ∅;
2 while W 6= ∅ do

3 select qs from W; W := W\{qs};
4 foreach G ∈ T do

5 foreach l ∈ enabled(ρ̂,Ŝ)(E[qs]) do

6 let E = transfer(G,l),ρ̂(E[qs]) in update(qs, (G, l), E)

Table 12: Worklist algorithm

The algorithm has the form displayed in Table 12. The initializations are
performed in line 1. Both the set of states and the worklist are initialized to
contain the initial state q0, and q0 is associated with the set of the exposed
actions of the initial network EJN0K. The transition relation δ is empty.

The algorithm then loops over the contents of the worklist W by selecting a qs it
contains, and removing it from W (line 3). For each G ∈ T and enabled action
l ∈ enabled(ρ̂,Ŝ)(E[qs]) (lines 4–5) the procedure transfer(G,l),ρ̂(E[qs]) returns an
extended multiset describing the denotation of the target state. The last step
is to update the automaton to include the new transition step, and this is
done in line 6 by the procedure call update(qs, (G, l), E).

6.2 Procedure update

The procedure update(qs, (G, l), E) is specified in Table 13. Recall that E is
the extended multiset describing the denotation of the target state (to be
called qt) to which there should be a transition labeled (G, l) that emerges
from qs.

First, the state qt is determined in lines 2–6, where it is checked whether one
of the existing states can be used and if not, a new state is created and the
corresponding entry in E is set to ⊥M. To determine the reusability of a state,
we make use of a granularity function H, which is described below.

In lines 7–8 it is checked whether the description E[qt] includes the required
information E, and if not it is updated and the state is put on the worklist for
future processing. The widening operator ∇M makes sure to combine the old

31

1 procedure update(qs, (G, l), E)

2 if there exists q ∈ Q with H(E[q]) = H(E) then

3 qt := q

4 else

5 select qt from outside Q;

6 Q := Q ∪ {qt}; E[qt] :=⊥M;

7 if ¬(E ≤M E[qt]) then

8 E[qt] := E[qt]∇ME; W := W ∪ {qt};
9 δ := δ\{(qs, (G, l), q) : q ∈ Q} ∪ {(qs, (G, l), qt)};

Table 13: Procedure update

and the new extended multiset in such a way that termination of the overall
algorithm is ensured. We shall return to the definition of ∇M below.

The transition relation is updated in line 9. The triple (qs, (G, l), qt) is added,
but we also have to remove any previous transitions from qs with label (G, l),
as its target states may be no longer correct. As a consequence, the automaton
may contain unreachable parts, which can be removed at this point or after
the completion of the algorithm by a simple clean-up procedure for Q, W,
and δ.

Widening Operator. The widening operator ∇M : M×M → M is defined
by:

(M1∇MM2)(ll) =


M1(ll) if M2(ll) ≤ M1(ll)

M2(ll) if M1(ll) = 0 ∧M2(ll) > 0

∞ otherwise

It will ensure that the chain of values taken by E[qt] in line 8 always stabilizes
after a finite number of steps. We refer to [7,18] for a formal definition of
widening and merely note that M1 tM M2 ≤M M1∇MM2.

Granularity Function. Granularity functions have been introduced in [23]
in order to have control over the coarseness of the abstraction and to enforce
termination of the worklist algorithm; we can adapt them to this setting.
The most obvious choice for a granularity function H : M → H might be the
identity function, but it turns out that this choice may lead to nontermination
of the algorithm. A more interesting choice is H(E) = dom(E), meaning that
only the domain of the extended multiset is of interest; we have used this
choice to compute our examples. In general, in order to ensure termination of
the algorithm, we will require that a granularity function H is finitary, i.e. for

32

all choices of finite sets LLfin ⊆ Loc× (Lab ∪Val∗), H specializes to

H : (LLfin → N ∪ {∞}) → Hfin

for some finite subset Hfin ⊆ H.

We are now able to state a general termination result for the construction of
the finite automaton.

Theorem 6.1 If the granularity function H is finitary, then the worklist al-
gorithm always terminates.

Proof. This is proved by contradiction. So let us fix a finite set LLfin as ap-
propriate for the program considered and let us consider a non-terminating
execution of the worklist algorithm. It is immediate that line 3 of Table 12 must
execute infinitely often. It is also clear that Q and E grow in a non-decreasing
manner.

Also the set {H(E[q]) : q ∈ Q} grows in a non-decreasing manner and since
H is finitary, the value of the set will stabilize. Subsequently, the test in line 2
of Table 13 must always succeed and hence lines 4–6 cannot be executed any
more. This shows that also Q stabilizes.

Next consider the vector (E[q])q∈Q which is known to grow in a non-decreasing
manner. It follows from the properties of the widening operator ∇M that
(E[q])q∈Q must eventually stabilize and therefore W does not grow from this
point onwards.

Each subsequent execution of lines 4–6 of Table 12 will remove an element from
the finite set W. It follows that at some point the test in line 3 of Table 12
yields false and that the algorithm terminates. This constitutes our desired
contradiction. 2

6.3 Procedure enabled

We now return to the definition of the procedure enabled(ρ̂,Ŝ)(E) used in
the worklist algorithm; it is shown in Table 14. Recall that E is the ex-
tended multiset of exposed actions in the state of interest, and remember
that (ρ̂, Ŝ) �

⊔
T N0 holds.

First of all, enabled(ρ̂,Ŝ)(E) shall only contain labels l which are exposed in E,
hence l ∈ dom(E). Then we have to distinguish three cases:

• If ` is the label of an outputting action or b-eval, then (l, `) ∈ enabled(ρ̂,Ŝ)(E),
because these actions can always execute.

33

enabled(ρ̂,Ŝ)(E) = dom(E) ∩
({(l, `) : ` is the label of an bcst-, out-, or b-eval-action} ∪
{(l, `[t]) : ρ̂ �1 T : Ŝ(l) . T̂• ∧

` is the label of an in(T)-action and t ∈ T̂• and E(l, t) > 0} ∪
{(l, `) : ρ̂ �1 T : Ŝ(l) . T̂• ∧

((` is the label of an read(T)-action and ∃ t ∈ T̂•. E(l, t) > 0) ∨
(` is the label of an abs(T)-action and ∀ t ∈ T̂•. E(l, t) = 0))})

Table 14: Procedure enabled

• If ` is the label of an in(T)-action, we have to check which tuples t
contained in E match the template T and can be input, and record
(l, `[t]) ∈ enabled(ρ̂,Ŝ)(E). To find the matching tuples we invoke the judg-

ment ρ̂ �1 T : Ŝ(l) . T̂• such that by Lemma 4.1 T̂• contains all matching
tuples of Ŝ(l).

• If ` is the label of an read(T)- or abs(T)-action, we also invoke the judgment
for matching. We record (l, `) ∈ enabled(ρ̂,Ŝ)(E) if there is one matching tuple

in T̂• in the case of read, or if there are no matching tuples in the case of
abs.

The correctness of the definition of enabled(ρ̂,Ŝ) amounts to strengthening
Lemma 3.2:

Lemma 6.2 Suppose (ρ̂, Ŝ) �
⊔
T M holds. If T ` M

l−→G N , then l ∈
enabled(ρ̂,Ŝ)(EJMK).

Proof. We proceed by induction on the rules of the transition system in Ta-
ble 2. For rules bcst, out, and b-eval the result follows directly from Lemma 3.2.
In case in, we know l = (l, `[t]), S(t) > 0, match(T, t) = σ. Using the assump-
tion (ρ̂, Ŝ) �

⊔
T M we can therefore establish ρ̂ �1 T : Ŝ(l) . T̂•, and use

Lemma 4.1 to have t ∈ T̂•. Lemma 3.2 gives (l, t) ∈ EJMK, which establishes
(l, `[t]) ∈ enabled(ρ̂,Ŝ)(EJMK). The cases for read and abs are proved analogously
to the one for in. 2

6.4 Correctness

We can now establish the main result which implies that we can use the work-
list algorithm to produce abstract transition systems for which the embedding
theorem (Theorem 3.7) is applicable. This result is independent of the choice
of the granularity function H:

34

Theorem 6.3 Suppose (ρ̂, Ŝ) �
⊔
T N0 holds for a network let A1 ,

P1; . . . ; Ak , Pk in N0 and a network topology T , and furthermore that the
worklist algorithm terminates and produces an abstract transition system A.
Then A faithfully describes the evolution of N0.

Proof. Consider the last time where the state q was removed from the worklist
W in line 4 of the worklist algorithm in Table 12. Letting δ0 and E0 denote the
corresponding values of the data structures we have E0[q] = E[q] and hence
M � E0[q].

Since T ` M
l−→G N it follows that G ∈ T and also l ∈ enabled(ρ̂,Ŝ)(EJMK) by

Lemma 6.2 and Theorem 4.3, and hence G and l are selected for consideration
in lines 5 and 6 of the algorithm, respectively. By Corollary 5.4 it follows that
E in line 7 of the algorithm is an extended multiset with N � E.

By line 7 and the definition of update in Table 13 it is immediate that we
identify a state q′ in lines 2–5 of Table 13 and that after execution of lines 6–8
of Table 13 we have (q, (G, l), q′) ∈ δ1 and E ≤M E1[q

′], where δ1 and E1 denote
the corresponding values of the data structures at this time.

It is immediate that the values of E[.] grow in a non-decreasing manner. Writ-
ing δ and E for the final values of the data structures, we have (q, (G, l), q′) ∈ δ
and E ≤M E1[q

′] ≤M E[q′], which establishes the claim. 2

7 Discussion

In this paper, we have dealt with the problem of analysing the behaviour of
broadcast networks under changing network connectivity. For networks mod-
elled in the calculus bKlaim, we have defined an algorithm which constructs a
finite automaton such that all transition sequences obtained by the evolution
of a network correspond to paths in this automaton. We captured the nature
of our abstraction by defining a 3-valued interpretation of a temporal logic
such that a formula evaluating to a definite truth value on the automaton
would imply the truth or falsity of that formula on the transition system of
the concrete network. In the following, we conclude this paper by discussing
related and possible future work.

7.1 Related Work

Prasad [25] has introduced the Calculus of Broadcasting Systems (CBS) as the
first process calculus with broadcast as communication primitive; broadcast

35

is taken to be global, inspired by local area networks in which nodes over-
hear all messages. Ene and Muntean [9] describe the bπ-calculus which builds
on the ideas of CBS, but introduces a notion of channels inherited from the
π-calculus. Nanz and Hankin [15] have introduced CBS] which uses a local
version of broadcast in order to be able to model wireless networks. They ex-
press the notion of neighborhoods of nodes by connectivity graphs, an idea
we have adapted for bKlaim. Merro [13] has defined a Calculus of Mobile Ad-
Hoc Networks (CMN) which employs local broadcast as well, but expresses
the neighborhood by a distance function on locations. In contrast to these
works, bKlaim does not strive to be a definitive model for a specific network-
ing paradigm such as LANs or mobile ad-hoc networks, although we use the
idea of wireless networks throughout the paper in order to provide intuition.
Instead we were looking for a rather simple calculus for a more general study
of broadcast. This is supported by the asynchronous nature of bKlaim which
contains as traces the behaviour of the synchronous models.

A number of works is concerned with analysing wireless networks, in par-
ticular mobile ad-hoc networks. Bhargavan, Obradovic, and Gunter [2] have
studied verification of routing protocols for mobile ad-hoc networks. For a
loop-freedom property expressed in temporal logic they can use the model
checker SPIN to expose flaws on a fixed network setup. Chiyangwa and
Kwiatkowska [6] also use model checking in order to check timing properties
of a protocol for mobile ad-hoc networks; they also employ a fixed topology.
In the work of Zakiuddin et al. [27] CSP and a refinement checker have been
applied to model and analyse a self-configuration protocol. They succeed in in-
tegrating the mobility aspect by modelling links as individual processes which
can be either up or down, but soon experience space explosion. Nanz and
Hankin [15] have used static analysis to establish security properties for mo-
bile ad-hoc networks. For these properties they can safely abstracts away the
mobility aspect, and thus define the analysis again over fixed connectivities
only.

A multitude of works have addressed the use of abstraction in the realm of
model checking, most of which are based on property-preserving simulation
relations for state transition systems (see e.g. references in [8]). More recently,
the topic of using the theory of abstract interpretation to compute the ab-
straction (an approach that is more closely related to ours) is receiving con-
siderable attention. Bruns and Godefroid [5] show how to use 3-valued inter-
pretation of modal logic formulae over partial Kripke structures, which provide
a 3-valued interpretation of each atomic proposition associated with a state.
Dams, Gerth, and Grumberg [8] define mixed transtion systems, which use two
separate transition systems to express an over- and an under-approximation
and are thus able to accommodate for the preservation of universal as well
as existential temporal properties. Larsen and Thomson [12] introduce modal
transition systems which also combine two transition relations, referred to as

36

“may” and “must”, where the must-relation is required to be a subset of the
may-relation (in contrast to mixed transition systems). Huth, Jagadeesan, and
Schmidt [10] use a generalisation of modal transition systems and a 3-valued
logic for model checking of partial state spaces. Note that the mentioned ap-
proaches focus much on the general definitions of the abstractions and leave
open the choice of an appropriate abstract domain as well as the algorithmic
construction of the abstraction. We have instead focused on providing a con-
crete, implemented algorithm that provides these choices for the analysis of a
specific language.

7.2 Future Work

As a main direction for future work, we would like to investigate adapting
our approach to construct the abstract transition system as a 3-valued struc-
ture itself [12], in order to model the cases where we can show that progress
is enforced. It would also be interesting to investigate the possibility of con-
structing a model checker in this setting, which would give us – together with
the Standard ML implementation of the Monotone Framework we already
have – a complete automation of the framework. Using such a framework, we
could then analyse concrete application scenarios, for example in a security
setting, where one might show that certain attacks on networks are enabled
or prevented by a given series of topology changes.

References

[1] L. Bettini, V. Bono, R. De Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi,
R. Pugliese, E. Tuosto, and B. Venneri. The Klaim project: theory and
practice. In Proceedings of the IST/FET International Workshop on Global
Computing: Programming Environments, Languages, Security and Analysis of
Systems (GC’03), volume 2874 of Lecture Notes in Computer Science. Springer,
2003.

[2] Karthikeyan Bhargavan, Davor Obradovic, and Carl A. Gunter. Formal
verification of standards for distance vector routing protocols. Journal of the
ACM, 49(4):538–576, 2002.

[3] C. Bodei, M. Buchholtz, P. Degano, H. Riis Nielson, and F. Nielson. Static
validation of security protocols. Journal of Computer Security, 13(3):347–390,
2005.

[4] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson.
Control flow analysis for the pi-calculus. In Proceedings of the 9th International
Conference on Concurrency Theory (CONCUR’98), volume 1466 of Lecture
Notes in Computer Science, pages 84–98. Springer, 1998.

37

[5] Glenn Bruns and Patrice Godefroid. Model checking partial state spaces with
3-valued temporal logics. In Proceedings of the 11th International Conference
on Computer Aided Verification (CAV’99), volume 1633 of Lecture Notes in
Computer Science, pages 274–287. Springer, 1999.

[6] Sibusisiwe Chiyangwa and Marta Kwiatkowska. A timing analysis of AODV.
In Proceedings of the 7th IFIP WG 6.1 International Conference on Formal
Methods for Open Object-based Distributed Systems (FMOODS’05), volume
3535 of Lecture Notes in Computer Science, pages 306–321. Springer, 2005.

[7] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In Conference Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’79),
pages 269–282. ACM, 1979.

[8] Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of
reactive systems. ACM Transactions on Programming Languages and Systems,
19(2):253–291, 1997.

[9] Christian Ene and Traian Muntean. A broadcast-based calculus for
communicating systems. In Proceedings of the 6th International Workshop
on Formal Methods for Parallel Programming: Theory and Applications
(FMPPTA’03), 2001.

[10] Michael Huth, Radha Jagadeesan, and David A. Schmidt. Modal transition
systems: A foundation for three-valued program analysis. In Proceedings
of the 10th European Symposium on Programming Languages and Systems
(ESOP’01), pages 155–169. Springer, 2001.

[11] Steven Cole Kleene. Introduction to Metamathematics, volume 1 of Biblioteca
Mathematica. North-Holland, 1952.

[12] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In
Proceedings of the Third Annual Symposium on Logic in Computer Science
(LICS’88), pages 203–210. IEEE Computer Society, 1988.

[13] Massimo Merro. An observational theory for mobile ad hoc networks.
In Proceedings of the 23rd International Conference on the Mathematical
Foundations of Programming Semantics (MFPS’07), volume 173 of Electronic
Notes in Theoretical Computer Science, pages 275–293, 2007.

[14] Sebastian Nanz. Specification and Security Analysis of Mobile Ad-Hoc Networks.
PhD thesis, Imperial College London, 2006.

[15] Sebastian Nanz and Chris Hankin. A framework for security analysis of mobile
wireless networks. Theoretical Computer Science, 367(1-2):203–227, 2006.

[16] Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson. Topology-
dependent abstractions of broadcast networks. In Proceedings of the 18th
International Conference on Concurrency Theory (CONCUR’07), 2007. To
appear.

38

[17] Rocco De Nicola and Frits W. Vaandrager. Action versus state based logics
for transition systems. In Proceedings of the LITP Spring School on Semantics
of Systems of Concurrent Processes, volume 469 of Lecture Notes in Computer
Science, pages 407–419, 1990.

[18] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer, 1999.

[19] Flemming Nielson, Hanne Riis Nielson, and Mooly Sagiv. A Kleene analysis of
mobile ambients. In European Symposium on Programming (ESOP’00), volume
1782 of Lecture Notes in Computer Science, pages 305–319. Springer, 2000.

[20] Flemming Nielson, Hanne Riis Nielson, and Mooly Sagiv. Kleene’s logic with
equality. Information Processing Letters, 80:131–137, 2001.

[21] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. A succinct solver for
ALFP. Nordic Journal of Computing, 9(4):335–372, 2002.

[22] Hanne Riis Nielson and Flemming Nielson. Flow logic: A multi-paradigmatic
approach to static analysis. 2566:223–244, 2002.

[23] Hanne Riis Nielson and Flemming Nielson. A monotone framework for CCS.
Submitted for publication, 2006.

[24] Hanne Riis Nielson and Flemming Nielson. Data flow analysis for CCS.
In Program Analysis and Compilation. Theory and Practice, volume 4444 of
Lecture Notes in Computer Science. Springer, 2007.

[25] K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer
Programming, 25(2-3):285–327, 1995.

[26] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis
via 3-valued logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’99), pages 105–
118. ACM, 1999.

[27] Irfan Zakiuddin, Michael Goldsmith, Paul Whittaker, and Paul Gardiner. A
methodology for model-checking ad-hoc networks. In Proceedings of the 10th
International SPIN Workshop on Model Checking Software (SPIN’03), volume
2648 of Lecture Notes in Computer Science, pages 181–196. Springer, 2003.

39

	Introduction
	bKlaim
	Syntax
	Operational Semantics

	Abstract Transition Systems
	Exposed Actions
	Abstract Transition Systems
	Interpretation of ACTL Properties

	Control Flow Analysis
	Monotone Framework
	Generated Actions
	Killed Actions
	Transfer Function

	Worklist Algorithm
	Worklist Algorithm
	Procedure update
	Procedure enabled
	Correctness

	Discussion
	Related Work
	Future Work

	References

