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Karl Sjöstrand

Kongens Lyngby 2007
IMM-PHD-2007-182



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192



Preface

This thesis was prepared at the department of Informatics and Mathematical
Modelling (IMM) of the Technical University of Denmark (DTU), in partial
fulfillment of the requirements for acquiring a Ph.D. degree in mathematical
modelling.

The thesis deals with the application and development of regularized statistical
methods to the analysis of anatomical structures, predominantly in the human
brain. The thesis consists of a review of methods for regularization in regression,
classification and data decomposition, ranging from classic to current. This is
followed by a collection of five research papers written during the period 2003–
2007, and elsewhere published.

The work has been carried out in collaboration with the Danish Research Cen-
tre for Magnetic Resonance (DRCMR) of the Copenhagen University Hospital,
Hvidovre, Denmark. Part of the research was conducted at the San Francisco
Veterans Affairs Medical Center of the University of California San Francisco
(UCSF), USA.

The project was supervised by Associate Professor Rasmus Larsen (IMM) and
partly supervised by Dr. Colin Studholme (UCSF). Funding was provided by the
Technical University of Denmark, and partly by the ITMAN graduate school,
also of the Technical University of Denmark.

Kgs. Lyngby, June 2007

Karl Sjöstrand
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colleague and friend, who agreed to proofread this thesis at a time where she
herself was busy finishing her Ph.D. project. I can only hope to be able to return
the favor. Thanks also to Søren G. Erbou who encrypted the abstract of this
thesis into Danish.

Finally, I extend my gratitude to Karin Sjöstrand, not just for being my wife
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Abstract

This thesis presents the application and development of regularized methods for
the statistical analysis of anatomical structures. Focus is on structure-function
relationships in the human brain, such as the connection between early onset
of Alzheimer’s disease and shape changes of the corpus callosum. One of the
comprehensive goals of this type of research is to use non-invasive imaging de-
vices for the detection of diseases which are otherwise difficult to diagnose at
an early stage. A more modest but equally interesting goal is to improve the
understanding of the brain in relation to body and mind. Statistics represents
a quintessential part of such investigations as they are preluded by a clinical
hypothesis that must be verified based on observed data.

The massive amounts of image data produced in each examination pose an im-
portant and interesting statistical challenge, in that there are many more image
features (variables) than subjects (observations), making an infinite number of
solutions possible. To arrive at a unique and interesting answer, the analysis
must be constrained, or regularized, in a sensible manner. This thesis describes
such regularization options, discusses efficient algorithms which make the anal-
ysis of large data sets feasible, and gives examples of applications.
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Resumé

Denne afhandling beskriver udvikling og anvendelse af regulariserede metoder til
statistisk analyse af anatomiske strukturer. Fokus er p̊a strukturer og funktion-
alitet i den menneskelige hjerne, s̊asom sammenhængen mellem tidlige tegn p̊a
Alzheimers sygdom og ændringer i formen af hjernebjælken (corpus callosum).
Ofte er det overordnede m̊al for denne type forskning, at anvende ikke-invasive
billeddannende tekniker til at, p̊a et tidlig stadie, detektere sygdomme der ellers
er svære at diagnosticere. Et mere beskedent men lige s̊a interessant m̊al eri
at forbedre forst̊aelsen af hjernen i forhold til krop og sind. Statistik er et es-
sentielt værktøj til s̊adanne undersøgelser da man har en klinisk hypotese der
ønskes verificeret p̊a baggrund af observerede data.

Den omfattende mængde af billeddata der produceres i hver undersøgelse udgør
en vigtig og interessant statistisk udfordring, da den medfører mange flere
variable end observationer, hvilket igen giver en uendelig mængde af mulige
løsninger. For at udlede entydige og interessante svar m̊a løsningen nødvendigvis
regulariseres p̊a en passende m̊ade. Denne afhandling beskriver s̊adanne regu-
lariseringsmuligheder, diskuterer effektive algoritmer som gør analysen af store
datamængder mulig, samt giver eksempler p̊a anvendelser af disse.
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• K. Sjöstrand, M.B. Stegmann, R. Larsen. Sparse Principal Component
Analysis in Medical Shape Modeling. International Symposium on Medical
Imaging - SPIE. 2006.
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Resumé vii

List of Published Papers ix

Contents xiii

1 Introduction 1

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5



xiv CONTENTS

I Regularized Statistical Methods 7

2 Regression 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 What can be Inferred? . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Centering, Normalization and Standardization . . . . . . 15

2.3 Regression by Ordinary Least Squares . . . . . . . . . . . . . . . 16

2.3.1 The Gram-Schmidt Procedure . . . . . . . . . . . . . . . 18

2.4 Bias and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 The Gauss-Markov Theorem . . . . . . . . . . . . . . . . 23

2.5 Pointwise Regression . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.2 Relation to Pointwise Regression . . . . . . . . . . . . . . 30

2.7 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 All Subsets . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.2 Stepwise Regression . . . . . . . . . . . . . . . . . . . . . 34

2.8 Least Angle Regression . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 The LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.9.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 Elastic Net Regression . . . . . . . . . . . . . . . . . . . . . . . . 46

2.11 The Non-negative Garrote . . . . . . . . . . . . . . . . . . . . . . 51

2.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



CONTENTS xv

3 Classification 57

3.1 Linear and Quadratic Discriminant Analysis . . . . . . . . . . . . 58

3.2 Optimal Separating Hyperplanes . . . . . . . . . . . . . . . . . . 60

3.2.1 Non-linear Generalization . . . . . . . . . . . . . . . . . . 63

3.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Computation . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Support Vector Domain Description . . . . . . . . . . . . . . . . 76

3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Principal Component Analysis 79

4.1 Sparse Principal Component Analysis . . . . . . . . . . . . . . . 84

4.1.1 Estimation using Truncation . . . . . . . . . . . . . . . . 85

4.1.2 Direct Estimation using the Elastic Net . . . . . . . . . . 85

4.1.3 Estimation using the SPCA Criterion . . . . . . . . . . . 86

4.1.4 Bounds and Optimality . . . . . . . . . . . . . . . . . . . 88

4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Varimax Rotated Principal Components . . . . . . . . . . . . . . 91

4.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

II Contributions 95

5 Sparse Modeling of Landmark and Texture Variability using
the Orthomax Criterion 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



xvi CONTENTS

5.3.1 Principal Component Analysis . . . . . . . . . . . . . . . 101

5.3.2 Sparse Modeling Using the Orthomax Criterion . . . . . . 101

5.4 Details on Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Sparse Principal Component Analysis in Medical Shape Mod-
eling 117

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Regression Techniques . . . . . . . . . . . . . . . . . . . . 121

6.2.2 Sparse Principal Component Analysis (SPCA) . . . . . . 123

6.2.3 Ordering of principal components . . . . . . . . . . . . . . 124

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Sparse Decomposition and Modeling of Anatomical Shape Vari-
ation 137

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.1 Principal Component Analysis . . . . . . . . . . . . . . . 141

7.2.2 Sparse Principal Component Analysis . . . . . . . . . . . 142

7.2.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 145

7.2.4 Application to Shape Analysis . . . . . . . . . . . . . . . 147



CONTENTS xvii

7.2.5 Alternative Methods . . . . . . . . . . . . . . . . . . . . . 149

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.4.2 Clinical Application . . . . . . . . . . . . . . . . . . . . . 158

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8 Sparse Statistical Deformation Model for the Analysis of Cran-
iofacial Malformations in the Crouzon Mouse 161

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.2 Data Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.3.1 Atlas Building and Registration . . . . . . . . . . . . . . . 164

8.3.2 A Sparse Statistical Deformation Model . . . . . . . . . . 164

8.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 165

8.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . 166

9 A Path Algorithm for the Support Vector Domain Description
and its Application to Medical Imaging 171

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.2.1 The Regularization Path . . . . . . . . . . . . . . . . . . . 178

9.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 182

9.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.3.1 Commonality-based Ordering of Observations . . . . . . . 184

9.3.2 Ischemic Segment Detection from Cardiac MR Images . . 186



xviii CONTENTS

9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

List of Tables 193

List of Figures 200

List of Algorithms 201

Bibliography 212



Chapter 1

Introduction

This thesis presents the application and development of regularized statistical
methods to the analysis of anatomical structures, predominantly in the human
brain. The presentation is divided into two parts.

The first part provides a review of a selection of statistical methods in which
regularization is used to make the analysis of large and/or difficult data sets
possible. This part consists of three chapters, dealing with regression, classifi-
cation and data decomposition respectively, of which the latter is confined to
a discussion of sparse and regular principal component analysis. In large, each
chapter is organized such that each section leads up to the next, introducing
increasingly involved methods.

The second part presents a few applications of these methods to the analysis of
anatomy. This part of the thesis consists of original research papers published
over the course of the Ph.D. project.

1.1 Scope

The range of subjects touched upon in this thesis is broad, ranging from classical
(frequentist) statistics to modern statistical methods pertinent to e.g. pattern
recognition and machine learning. The area of application, medical image anal-



2 Introduction

ysis, draws upon results from e.g. shape analysis (morphometry) and image
registration and segmentation. Most image data come from magnetic resonance
(MR) imaging devices. Handling such data requires basic knowledge of MR
physics. Other clinical and cognitive data may for instance arise from stan-
dardized test batteries of physical performance and psychiatric investigations of
mental health, which overlaps with other areas of statistics such as behavioral
science and epidemiology.

Working at the crossroads of these fields of research is both a trying and a
rewarding experience. A simple analysis of an MR data set may take years to
perfect, taking the breadth of necessary knowledge into account. For the same
reason, this thesis does not attempt to cover more than fragments of the topics
listed above. The discussion is mainly focused on a small set of regularized
statistical methods for regression, classification and data decomposition, most
of them developed within the last decade. Some earlier work is also reviewed to
provide a sound basis for the rest of the thesis.

The use of these statistical methods in the analysis of anatomical structures
is deferred to the contributions in Part II, where short introductions to image
acquisition, clinical and cognitive data, shape analysis etc. are given.

1.2 Purpose

The purpose of this thesis, besides being a mandatory part of a Ph.D. degree, is
to provide a comprehensive reference to useful statistical methods and to show
how these can be applied in the area of medical image analysis, with focus on
morphometric analysis of brain anatomy. For some methods, we have attempted
to give alternative derivations and interpretations to complement the original
publications. Most methods are summarized using pseudo-code, facilitating
and encouraging implementation by the reader. Matlab code for most of these
methods have been made available and can be found on the home page of the
author, www.imm.dtu.dk/~kas.

1.3 Definitions

Throughout this thesis the following notation is used, unless otherwise stated.

The number of observations The number of observations is denoted by n.

The number of variables The number of variables are denoted p, unless a

www.imm.dtu.dk/~kas
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change of variables is performed, in which case the number of variables is
denoted k.

Scalars Scalars are denoted using lower-case lightface letters such as x or y.

Vectors Vectors are denoted using lower-case boldface letters such as x and y.

Matrices Matrices are denoted using upper-case boldface letters such as X and
Y.

Random variables Random variables are represented by capital italic light-
face letters such as X or Y . Random model coefficients are denoted using
Greek letter such as βi, where the index i usually refers to the coefficient
corresponding to the ith variable.

Observed variables Realizations of random variables are denoted using the
same letters as those for random variables, but in lower-case boldface for-
matting for vectors and lightface for scalars. Observed model coefficients
are denoted using the Latin letter corresponding to the Greek letter used
to denote a random variable. For instance, the vector of observations
pertaining to the random coefficient βi is denoted bi.

Errors and residuals The error ε is a measure of the difference between an
observation and its expected value. The term is therefore a misnomer. A
residual r denotes the difference between an observation and its average
value in a sample, and is therefore an estimate of ε. In regression analyses,
ε denotes the error term when random variables are regarded while the
residual vector r is the estimated ditto.

Expectation The expectation of a random variable or the mean of a vector is
denoted E(X) and E(x) = n−1

∑
i xi respectively.

Variance The variance of a random variable and the sample variance of a vector
is denoted var(X) = E

(
(X − E(X))2

)
and var(x) = (n − 1)−1

∑
i(xi −

E(x))2 respectively.

Standard deviation The standard deviation is denoted std(X) =
√

var(X)
or equivalently std(x) =

√
var(x).

Covariance The covariance between two random variables X and Y is de-
noted cov(X, Y ) = E ((X − E(X))(Y − E(Y ))). For vectors x and y of
observations, the covariance is estimated by

cov(x,y) =
1

n− 1

∑
i

((xi − E(x))(yi − E(y))) =
(x− x̄)T (y − ȳ)

n− 1
.

When cov is applied to a centered matrix of observations, it denotes the
variance-covariance matrix cov(X) = (n− 1)−1XT X.
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Correlation The correlation coefficient between two variables x and y is de-
noted

corr(x,y) =
cov(x,y)

std(x)std(y)
=

∑
i(xi − E(x))(yi − E(y))√∑

i(xi − E(x))2
√∑

i(xi − E(x))2
.

For a centered and normalized matrix X the correlation matrix is simply
corr(X) = XT X.

The identity matrix The identity matrix is denoted I, or Ik indicating its
size (k × k).

The unit and zero vector. A vector of ones is denoted 1 or 1k indicating its
size (k × 1). Similarly for the zero vector 0 and 0k.

Hadamard product The Hadamard (element-wise) product of two matrices
A and B is denoted A◦B. The notation Ak denotes the Hadamard prod-
uct of k matrices A. Further, A−k is convenient notation for (A−1)k, the
Hadamard product of k matrices A−1, where A−1 represents the standard
matrix inverse.

Vector norms A norm is a measure of the size of a vector or matrix. We adopt
the vector norm definitions of the Matlab software. Norms are denoted
using the symbol `, where for instance `2 is called the ”two-norm”.

`p(a) = ‖a‖p = (
∑n

i=1 |ai|p)
1
p

`2(a) = ‖a‖ =
√∑n

i=1 a2
i

`∞(a) = ‖a‖∞ = maxi |ai|
`−∞(a) = ‖a‖−∞ = mini |ai|

The two-norm is of course just a special case of the p-norm but is usually
written without subscript.

Matrix norms Matrix norms are similar in notation to vector norms but differ
in calculation.

`2(A) = ‖A‖ = maxi di

`1(A) = ‖A‖1 = maxi

∑n
j=1 |aji|

`∞(A) = ‖A‖∞ = maxi

∑p
j=1 |aij |

`f (A) = ‖A‖f =
√∑p

i=1 xT
i xi

Here, di is the ith singular value of A. The norm `1(A) is the largest
column sum of A while `∞(A) is the largest row sum. The norm `f is
called the Frobenius norm.
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Diagonal matrices The function diag(a) turns a length-n vector a into an
(n×n) diagonal matrix A which has the elements of a along its diagonal.
Rarely, we also use the notation diag(A) which produces a vector a con-
sisting of the diagonal elements of A, regardless of whether A is diagonal
or not.

1.4 Formulae

(ABC)−1 = C−1B−1A−1 (1.1)

var(X) = E
(
(X − E(X))2

)
= E(X2)− E(X)2 (1.2)

cov(X, Y ) = E ((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y ) (1.3)
E(a + bX) = a + bE(X) (1.4)

var(a + bX) = b2var(X) (1.5)
E(A + BXC) = A + BE(X)C (1.6)

var(A + BX) = Bvar(X)BT (1.7)
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Regularized Statistical
Methods





Chapter 2

Regression

2.1 Introduction

Use of the word regression was first reported in the 14th century, stemming from
the Latin word regressus, describing the act of going back to a previous place
or state. This is a reasonably accurate description of the word in its statistical
sense. It is assumed that there is a true model describing the relation between
sets of variables which has been perturbed by random noise, thus forming the
observed data. The term is accurate in the sense that a regression analysis
represents an attempt of going back from the observed data to the true model.

The mathematical formulation of a regression model under squared error loss is
contained in the regression equation,

Y = E(Y |X = x) = f(x) + ε, (2.1)

where Y is the random variable we wish to characterize, X is a (possibly multi-
variate) random variable denoting the input data, f is an arbitrary function of
X, and ε is an error term. The regression equation is conditioned on X, that
is, the observed input data is considered fixed. The variables X and Y have a
range of different names, largely depending on the field of research. As medical
image analysis is an interdisciplinary field, there is a variety of terms used in
research papers. Some of the most common ones are presented in Table 2.1.
The terms response variable (Y ) and predictor variable (x) are used here. We
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Y x
dependent variable independent variable

response variable predictor variable
explained variable explanatory variable

regressand regressor
endogenous variable exogenous variable

output variable input variable
criterion variable

covariate
outcome variable

Table 2.1: Common terms for the output variable Y and the input variable(s) x. In
this thesis, we refer to these as response and predictor variables.

will refer to a clinical or cognitive variable, for instance stemming from tests of
muscle strength (clinical) or a rating of depression (cognitive), as an outcome
variable, regardless of whether it enters the model as a response or a predic-
tor variable. Predictor variables which relate both to other predictors and the
response variable and which must be included in the model to obtain reliable
results are called confounding variables, but may be referred to as covariates
elsewhere.

This chapter has the following layout. In Section 2.2 we introduce the linear
model which is the basis for all methods described in this thesis, and provide a
short review of what the model represents and what information it may provide.
We also remind the reader that linear modeling does not limit the analysis to
linear regression functions. The following sections concern the estimation of
the regression coefficients. Section 2.3 describes the standard non-regularized
approach to this end from a geometrical viewpoint. Section 2.4 introduces the
terms bias and variance and discusses how these interact. We conclude the
section with a review of the Gauss-Markov theorem, which serves to introduce
and motivate the use of regularization in a statistical method. Section 2.5 pro-
vides a brief explanation of the use of univariate, or pointwise, regression for
high-dimensional problems. Section 2.6 introduces ridge regression and exposes
pointwise regression as a strongly regularized form of this technique. In Sec-
tion 2.7 we introduce two classic variable selection methods. The following
sections presents more recent methods that combine regularization and variable
selection in a single framework. Section 2.8 discusses least angle regression, a
geometrically motivated method. The LASSO, a closely related method is then
presented in Section 2.9. Section 2.10 presents the Elastic Net, a combination
of ridge regression and the LASSO. The chapter is concluded with a similar
method known as the non-negative garrote (Section 2.11).
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2.2 The Linear Model

Throughout this thesis, we will assume that the phenomenon under study can
be described using a linear model. This means that the relationship between
the response and the predictors can be reasonably accurately formulated as

Y = E(Y |X = x) = β0 + β1x1 + . . . + βpxp + ε =
= β0 + Xβ + ε, (2.2)

where the fixed predictor variables are denoted xi, Y is the random response,
β are the regression coefficients (β0 is known as the intercept), and the random
errors are denoted ε. Most often, we will write this equation using vectors of
observations y and xi,

y = b0 + b1x1 + . . . + bpxp + r =
= b0 + Xb + r, (2.3)

where X (n×p) is called the data matrix and the response y and the residuals r
are (n× 1) vectors. Performing a regression analysis amounts to the calculation
of the regression coefficients b which preferably are as close as possible to the
real (unknown) coefficients β.

Assume, for instance, that we wish to measure the dependence between height
of a group of (adult) sons and the height of their fathers1. The hypothesis
is that short fathers have short sons and vice versa, and we assume that this
relationship is approximately linear. Figure 2.1 shows a synthetic collection of
height measurements. The green line represents the hypothesis Y = x while the
red line represents the fitted regression function. As can be seen, there is strong
correlation between the two variables, and a linear model seems appropriate.
We conclude that the expected height of a son is closely related to the height
of his father. The next section discusses why such conclusions should be drawn
with caution.

2.2.1 What can be Inferred?

Assuming a linear model is appropriate, the observed data in Figure 2.1 de-
viate from the hypothesis Y = x for two reasons. First, uncertainties in the
measurements may perturb the variables. When measuring a person’s height,
this factor is assumed negligible but may be significant in more complex in-
vestigations. Second, the variance of the response variable can usually not be

1This was in fact one of the first regression analyses in history and was carried out by
statistician Karl Pearson
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Figure 2.1: A linear fit of the height of sons onto the height of their fathers (synthetic
data). The plot suggests that a linear model is appropriate and the fitted regression
line (red) is close to the true function (green).

fully explained by the predictor variables. The remaining set of variables that
relate to the response is either not known, or is deliberately excluded from the
model to simplify the analysis. There are, however, reasons for including vari-
ables that are not of immediate interest. When such variables are significantly
correlated with both the response and the predictors, their inclusion into the
model may weaken, strengthen, or alter the significance of the results, giving
a better understanding of the predictor variables of interest and their relation
to the response. Variables that are not of primary interest but which must be
included to obtain interpretable results are known as confounding variables (or
simply confounders). In our example, such variables may for instance include
environmental and genetic effects, and history of disease. When conducting an
experiment, correct identification of confounding variables is an important part
of the analysis to make sure that the results are correctly interpreted. A simple
example gives more insight into the importance of including a suitable set of
variables.

Imagine an investigation into the relationship between monthly ice-cream sales
and drowning accidents. We don’t expect these to be related, but to our sur-
prise, a regression analysis points to a strong connection. Obviously, we failed
to identify one or several important confounders. Assume one such variable
is the monthly average temperature. Adding this variable to the analysis, the
relationship between ice-cream sales and drowning accidents vanishes. The key
point is that there is no causal relationship between the two. High tempera-
ture causes an increase in ice-cream sales and increased frequency of drowning
accidents, but ice-cream sales does not cause drowning accidents.
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The example shows that care must be taken when interpreting the results from
a regression analysis. A strong mathematical connection between variables does
not imply a causal relationship. There is no principled way of finding out
whether an observed relationship between two variables is causal or due to unob-
served variables. Instead, the analysis is commonly done the other way around.
A hypothesis is made on the causal relationship between a response variable and
one or more predictor variables, and we perform a regression analysis to see if
the collected data support the hypothesis.

2.2.2 Linearity

The assumed linear model stated in Equation 2.2 is linear in terms of the regres-
sion coefficients but not necessarily its variables. This means that the models
(excluding residual terms and intercept for brevity)

y = b1x2
1 y = b1e

x1 y = b1 log x1 + b2 sin(
√

x2 + 5) (2.4)

are also considered linear in this respect. This means that we are not necessar-
ily restricted to regression functions that are straight lines. Suppose we suspect
that the relationship between our measured response variable and a single in-
dependent variable is third order polynomial. This is modeled using a linear
model by,

y = b0 + b1x1 + b2x2
1 + b3x3

1 + r. (2.5)

This is an important technique for generalizing linear statistical methods such
that non-linear functions for regression, classification or clustering may be used.
In Figure 2.2, a set of data points (black dots) has been created using Equa-
tion 2.5 with true parameters β0 = 5, β1 = −2, β2 = 9, β3 = −8, to which
noise is added with r drawn from N(0, 0.1). The green line represents the true
function, while the red line represents a third order polynomial fit (using or-
dinary least squares fitting, see Section 2.3). The recovered parameters are
b = [5.09 −2.83 10.3 −8.67]T . This technique, where a single variable is
transformed and included in a model several times, is known as a basis expan-
sion. We will return to this topic in Sections 3.3 and 3.4.

In the analysis of a real data set, the true form of the model is most often
unknown. If a polynomial model is used, what is the appropriate order? If
the chosen order is too low, the fitted regression function will not be able to
capture the variance of the response. If the order is too high, the model will
fit not only to the variance of interest, but also to the noise. This is known
as overfitting and is avoided by careful model selection. Figure 2.3 shows an
example of overfitting, where a tenth order polynomial is fitted to third-order
data. Model selection is a central concept in regularized statistical analyses and
thus, also in this thesis.
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Figure 2.2: Example showing that linear modeling does not restrict the set of possible
regression functions to straight lines. Here, a third-order polynomial (red) is fitted to
a data set constructed from a noisy function of the same type (green).
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Figure 2.3: Example showing the importance of careful model selection. Here, a
tenth-order polynomial (red) is fitted to perturbed third-order data (green), resulting
in a poor match. Flexible models should be used with caution as they frequently suffer
from overfitting, the ability to fit not only to the function of interest, but also to the
noise.
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2.2.3 Centering, Normalization and Standardization

In the remainder of this thesis, unless otherwise stated, all variables (predictors
and responses) are assumed to be mean centered. For the observation of a
variable xi this means that

x̄i =
n∑

j=1

xji = xT
i 1n = 0. (2.6)

In some cases, we further assume that the variables have been normalized or
standardized. The meaning of these terms may differ slightly between researchers
and research topics. Here, we define a normalized variable to be centered and
of unit Euclidian length, √√√√ n∑

j=1

x2
ji =

√
xT

i xi = 1, (2.7)

and a standardized variable to be centered and with unit standard deviation,

1
n

√√√√ n∑
j=1

x2
ji =

1
n

√
xT

i xi = 1. (2.8)

The difference between a normalized and a standardized variable is a simple
scaling, which is sometimes chosen to be 1/(n − 1) rather than 1/n as this
leads to an unbiased estimate of the standard deviation (cf. Section 2.4). We
usually settle for normalized variables as the inner products xT

i xi = 1 frequently
simplify the expressions of which they are part.

Using the linear model, we can safely assume that the predictor variables have
been centered and normalized and that the response has been centered. If the re-
gression coefficients corresponding to the original variables are of interest, these
can easily be obtained from the estimated coefficients. To see this2, consider
again the linear model in Equation 2.3,

y = b0 + b1x1 + . . . + bpxp + r ⇔

y − ȳ + ȳ = b0 +
p∑

i=1

bi
‖xi − x̄i‖
‖xi − x̄i‖

(xi − x̄i + x̄i) + r ⇔

y − ȳ =

[
b0 +

p∑
i=1

bix̄i − ȳ

]
+

p∑
i=1

bi
xi − x̄i

‖xi − x̄i‖
‖xi − x̄i‖+ r. (2.9)

2Here, we show the case where the predictors have been normalized. The proof for stan-
dardized variables proceeds in the same way.
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Taking expectations of sides of this expression, we see that the equation inside
the square brackets must equal zero. Therefore,

b0 = ȳ −
p∑

i=1

bix̄i. (2.10)

Performing a regression analysis using the linear model on centered and nor-
malized predictors and a centered response corresponds to the model

y − ȳ =
p∑

i=1

b̃i
xi − x̄i

‖xi − x̄i‖
+ r, (2.11)

where the notation b̃i is used to emphasize that b̃i 6= bi. From the differences
between this model and the original linear model, we infer that the transfor-
mation bi = b̃i/‖xi − x̄i‖ can be used to obtain the untransformed regression
coefficients for i = 1 . . . p. Thus, the intercept is obtained by,

b0 = ȳ −
p∑

i=1

b̃i
x̄i

‖xi − x̄i‖
(2.12)

Regardless of the method used to estimate the regression coefficients, the above
exposition shows that we are free to center and normalize or standardize the
variables as we see fit as long as a linear relationship between the response and
the predictors is assumed. Again, the response and the predictors are assumed
to be mean centered from this point onwards. This means that we can disregard
the intercept and state the linear model,

y = Xb + r. (2.13)

2.3 Regression by Ordinary Least Squares

The linear model of Equation 2.13 describes the mathematical relationship be-
tween the variables of interest. To complete the description, we also need to
specify how the regression coefficients are estimated. This amounts to defining
an objective function measuring the merit of a particular solution. The most
common approach is that of ordinary least squares (OLS), a method due to
Carl Friedrich Gauss and dating back to the early 19th century. The formal
description of OLS is,

bOLS = arg min
b
‖y −Xb‖2 (2.14)
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We will motivate and derive an expression for the optimal solution to this mini-
mization problem from a geometrical viewpoint. Consider a problem with three
observations of a response variable y and two predictor variables x1 and x2.
These variables can be visualized as vectors in a three-dimensional space, see
Figure 2.4. The predictors span a plane P in R3. In the general case, the pre-
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r = y − ŷ

ŷ = Xb

x1

x2

x1b1

x2b2

P

Figure 2.4: Geometry of the OLS solution for a problem with three observations
in two dimensions. OLS attempts to minimize the (squared) length of the residual
vector r. The shortest such vector must be orthogonal to the plane P spanned by the
predictor variables x1 and x2, ensuring a unique solution.

dictors span a p-dimensional hyperplane in Rn. Each point in P defines a linear
combination of the predictor variables and thus a solution ŷ for the regression
equation. The OLS criterion states that the best solution is achieved where
the squared length of the residual vector r is shortest. As can be realized from
Figure 2.4, the residual vector is shortest when it is orthogonal to P, yielding
a unique point in P. This means that the residual vector is orthogonal to both
x1 and x2, or the columns of X in the general case. Two vectors are orthogonal
if and only if their inner (dot) product is zero; we therefore have the following
relationship,

XT (y −Xb) = 0. (2.15)

Solving this expression for b gives the minimizing parameters for OLS,

bOLS = (XT X)−1XT y. (2.16)

Using this expression, we can express the fit of the response variable as

ŷ = XbOLS = X(XT X)−1XT y = Hy, (2.17)
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where the matrix H = X(XT X)−1XT is known as the ”hat” matrix as it puts
the hat on y. Another term for H is the ”projection” matrix as it projects y
onto P. A fitting method that can be written in this way is linear in terms of the
random variable Y . Note the distinction here, all regression models considered
in this chapter are linear, but the optimization problem used to establish b does
not necessarily have a solution that can be written as an explicit function of
y, and obviously, even fewer functions have an optimal solution that is a linear
function of y. OLS is however linear in this regard, and another such regression
method will be presented in Section 2.6.

For the OLS solution bOLS to be defined, the (p × p) gram matrix XT X must
be invertible. The rank of the gram matrix is at most min(n, p), which means
that the number of observations n must be equal to or greater than the number
of variables p for the gram matrix to be full rank. Further, the rank is reduced
if there are linearly dependent columns (variables) of X. This is known as
multicollinearity in the regression setting. Regularization can be used to improve
the condition of analyses where lack of observations and/or multicollinearity
make OLS infeasible. Before regularized procedures for regression are regarded,
we will go into more details about the OLS solution.

2.3.1 The Gram-Schmidt Procedure

To gain more insight into the machinery of OLS regression we will review the
case where the predictor variables are orthogonal. Assuming this is the case,
the gram matrix XT X is diagonal of the form

XT X =

x
T
1 x1 0

. . .
0 xT

p xp

 . (2.18)

Using this matrix to solve the OLS Equation (2.16), we see that each bi is a
function of the ith variable xi and y only such that,

bi = (xT
i xi)−1xT

i y. (2.19)

Such a regression equation, where a single independent variable is considered is
called univariate, as opposed to the more general multiple3 regression approach
of Equation 2.13. It is also seen that univariate regression amounts to an or-
thogonal projection of y onto xi, where bi is the length of the image of y on xi.
The conclusion is that the OLS estimates are particularly simple to calculate in
the univariate case. In the non-orthogonal case, we cannot regard the variables

3The term multivariate regression is perhaps more suitable here, but is reserved for proce-
dures that regard multiple response variables at once.
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one by one, as several variables contribute to the description of y in a particular
direction. Figure 2.5 depicts these two situations. The left example has orthog-
onal predictors z1 and z2. Here, each multiple regression coefficient is given by
univariate regression on each variable independently. In the right example, the
predictors are linearly dependent. Trying to determine the multiple regression
coefficients using univariate regression leads to overestimation of each bi in this
case as indicated by the dashed projection lines.

 

y y
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Figure 2.5: Regression on orthogonal predictors (left) versus the usual non-
orthogonal case (right). In the orthogonal design, each multiple regression coefficient
bi can be obtained by regressing y on zi alone, whereas in the non-orthogonal case,
the sum of the vectors obtained through univariate regression will not give the correct
ŷ.

In cases where the predictor variables are non-orthogonal, new variables can
be derived which span the same hyperplane P as the original variables and
which are orthogonal. Since the same hyperplane is regarded, the fitted vec-
tor ŷ will be the same regardless of whether the original or derived orthogonal
variables are used. The procedure that yields the orthogonal variables is sim-
ple. Let the first original variable be the first orthogonal direction, z1 = x1.
Next, remove the presence of z1 in x2, forming the second orthogonal variable
z2 = x2 − z1(zT

1 z1)−1zT
1 x2. The third orthogonal variable is fashioned in the

same way, through orthogonalization first with respect to z1, then to z2. The
process is repeated until p orthogonal variables are obtained. This procedure
is known as Gram-Schmidt orthogonalization, and we present it in more detail
in Algorithm 2.1, where we also create a matrix G, specifying the mapping
between X and Z such that X = ZG.

Algorithm 2.1 Gram-Schmidt orthogonalization
1: Initialize Z = x1

2: for j = 2 to p do
3: Add column xj − Z(ZT Z)−1ZT xj to Z
4: end for
5: G = (ZT Z)−1ZT X
6: Output Z and G.
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The ith column of G specifies the linear combination of the derived variables
z1 . . . zp that gives xi. By inspection of the Gram-Schmidt process, it is seen
that this matrix is upper triangular. Inserting X = ZG into Equation 2.16 and
simplifying, the OLS solution can be written

bOLS = G−1(ZT Z)−1ZT y = G−1b̃, (2.20)

where b̃ represents the OLS regression coefficients of y with respect to Z. This
shows that we can obtain the multiple regression solution bOLS by first deriving
the orthogonal predictor variables Z by the Gram-Schmidt process, then finding
b̃ through univariate regression of y on each zi and then transforming the
obtained coefficients using G−1.

This process may appear cumbersome, but is computationally efficient for large
problems, where inversion of the gram matrix XT X can be avoided as the entire
process can be expressed in terms of univariate regression problems and a single
inversion of the matrix G, which can be done efficiently since G is triangular.
This thesis contains several examples of techniques related to the Gram-Schmidt
process.

The algorithm also sheds light on the meaning of the multiple regression coef-
ficient bi. Noting that both G and G−1 are upper triangular with ones along
the diagonal, Equation 2.20 shows that the last coefficient bp = b̃p. This finding
leads to the following interpretation of bi as described by Hastie et al. [59].

The multiple regression coefficient bi represents the additional con-
tribution of xi on y, after xi has been adjusted for x1, . . . ,xi−1,
xi+1, . . . ,xp.

The matrices Z and G can be efficiently calculated using the orthogonal-trian-
gular (QR) decomposition of the data matrix X,

X = QR, (2.21)

where Q is an orthogonal matrix such that QT = Q−1 and R is upper triangular.
The matrices Z and G can be obtained from Q and R using the diagonal scaling
matrix D with diag(D) = diag(R). The decomposition can then be written
X = QDD−1R = ZG. Using the QR representation of X, the OLS solution
can be simplified into

bOLS = R−1QT y, ŷ = QQT y. (2.22)
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2.4 Bias and Variance

To this point, the only assumption about the model has been that the true rela-
tionship between Y and X is approximately linear. We now state two additional
assumptions that are necessary for measuring the accuracy of a solution.

• E(ε) = 0

• The errors ε are independent. This implies that observations yi of the
response Y are also independent. If, for instance, measurements are made
over time, there must be no dependence of the yi on time.

• The errors must have finite constant variance var(ε) = σ2 (homoscedas-
ticity). This implies that Y is also homoscedastic.

Armed with these assumptions, we now discuss the accuracy of a general esti-
mator, and the OLS estimator in particular.

To measure the accuracy of a solution, we are not only interested in the magni-
tude of the regression coefficients. One must also estimate the extent to which
a regression coefficient is expected to vary between trials. In general, we have
less faith in coefficients which vary enough to switch signs when an experiment
is repeated. The variance-covariance matrix of b is easily derived (cf. Equa-
tion 1.7),

var(bOLS) = var
[
(XT X)−1XT Y

]
= (XT X)−1XT X(XT X)−1var(Xβ + ε)

= (XT X)−1var(ε). (2.23)

The error variance var(ε) ≡ σ2
ε can be approximated by the sum of squared

residuals normalized by the number of degrees of freedom of the residuals,

σ2
ε ≈ σ̂2

ε =
rT r

n− p
. (2.24)

The estimate of the variance of a regression coefficient is used to measure the
reliability with which one can assume that the true coefficient is zero. In short,
the procedure is as follows. The estimated coefficient bi is normalized by its
standard deviation, thus forming a standardized coefficient or z-score,

zi =
bi

std(bi)
, (2.25)

where std(bi) is the ith diagonal value of var(b). Under the hypothesis βi = 0,
the z-score is approximately normal with mean zero and unit variance. Placing
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the z-score on this distribution, a measure of the probability that zi comes from
this distribution is given. The farther zi is from zero, the smaller the probability
and the greater the confidence with which the null hypothesis can be rejected.
A test where both negative and positive values of zi are regarded is called two-
sided whereas a test where either positive of negative values are regarded is
called one-sided.

The bias of an estimator is the difference between the average estimator over a
large set of trials and the true regression function. Denote the (unknown) true
regression function f(X) and the estimated regression function f̂(X|D), where
D denotes the data set of a single trial. Averaging over many trials amounts
to taking the expectation of f̂ over all possible data sets, EDf̂(X|D). For the
OLS estimator the expectation yields,

ED(f̂(X|D)) = ED(Xb) = X(XT X)−1XT ED(Y |X) = Xβ = f(X). (2.26)

The measure ED(f̂(X|D))− f(X) is the bias. The equation shows that OLS is
an unbiased estimator. Obviously, this is a desirable property, but as we shall
see, there are biased estimators which may be preferred.

Biased or not, the most wanted property of an estimated regression function is
that it describes the phenomenon under study well and is able to do predictions
with high accuracy. The expected prediction error (EPE) of a function f̂ can
be written EPEf̂ (X) = ED,Y

[
(Y − f̂(X|D))2

]
, where the expectation is taken

over both all data sets D and all responses Y . The EPE can be decomposed
into quantities that help us understand the ways in which an estimator can be
improved. Augmenting the EPE by addition and subtraction of f(X), we get,

EPEf̂ (X) =ED,Y

[
(Y − f̂(X|D))2

]
=ED,Y

[
(Y − f(X) + f(X)− f̂(X|D))2

]
=EY

[
(Y − f(X))2

]
+ ED

[
(f(X)− f̂(X|D))2

]
+

2ED,Y

[
(Y − f(X))(f(X)− f̂(X|D))

]
=σ2

ε + ED

[
(f(X)− f̂(X|D))2

]
. (2.27)

The double product term vanishes using that Y = f(X) + ε, f(X) constant,
E(ε) = 0, and ε and f̂(X|D) are independent and hence ED,Y (f̂(X|D)ε) = 0.
The derivation shows that the EPE is a function of the noise variance var(ε) = σ2

ε

and the mean square error between the true and estimated regression functions.
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Using the augmentation trick a second time on the latter term yields,

ED

[
(f(X)− f̂(X|D))2

]
=

ED

[
(f(X)− EDf̂(X|D) + EDf̂(X|D)− f̂(X|D))2

]
=

ED

[
(f(X)− EDf̂(X|D))2

]
+ ED

[
EDf̂(X|D)− f̂(X|D))2

]
+

2ED

[
(f(X)− EDf̂(X|D))(EDf̂(X|D)− f̂(X|D))

]
=

(f(X)− EDf̂(X|D))2 + ED

[
(EDf̂(X|D)− f̂(X|D))2

]
. (2.28)

Again, the double product vanishes using that EDf̂(X|D) is constant. Putting
the pieces together, we get the following expression for the EPE,

EPEf̂ (X) = σ2
ε + (f(X)− EDf̂(X|D))2 + ED

[
(EDf̂(X|D)− f̂(X|D))2

]
= σ2

ε + bias(f̂(X|D))2 + var(f̂(X|D)), (2.29)

that is, the EPE is a sum of the noise variance, the squared bias and the variance
of the estimated function. The variance σ2

ε of the errors can only be lowered
by changing the model, usually through the inclusion of confounding variables.
Assuming the model is fixed, the only way to decrease prediction error is to work
with the bias and variance terms. Below, we show that if we require that the
estimator is unbiased, we cannot get lower variance and hence lower EPE than
we get with OLS. The conclusion is that we must introduce bias to improve our
estimator.

2.4.1 The Gauss-Markov Theorem

In Section 2.3, we established that the OLS estimator produces a reconstruction
ŷ that is as close as possible to the response variable y in terms of the (squared)
residual length. It is also optimal in another sense. If we repeat the regression
analysis with new input data from the same experiment, we would prefer it if
small differences among the predictor variables result in the smallest possible
differences in the corresponding response variable. Translated into statistical
terms, this corresponds to minimal variance of f̂(X). The Gauss-Markov the-
orem states that among all unbiased linear estimators, OLS is the one with
minimal variance. In Figure 2.6, we attempt to provide an intuitive explanation
of this property.

The green sphere has been positioned at y and represents the variance of Y .
This representation is correct, since the variance of Y is the same in all directions
according to the assumption of homoscedasticity above. In the plane spanned
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Figure 2.6: Geometry of the Gauss-Markov theorem. OLS represents the projection
of y that gives minimal variance of the fitted vector ŷ. The variance of y is represented
by a green sphere, while the OLS projection and two non-orthogonal projections of
this sphere onto the plane spanned by the predictors are represented by a circle and
two ellipses respectively.

by the predictor variables, three solutions are shown, the OLS solution and
two non-orthogonal alternatives. At each solution, the (parallel) projection of
the variance of y shows the corresponding variance of ŷ. This suggests the
Gauss-Markov property of the OLS estimator, the smallest variance of ŷ is
achieved at the OLS solution where the projection is a circle with the same
radius as the variance sphere. At the other solutions, this projection becomes
ellipses, all which are big enough to encompass the OLS variance circle. Minimal
variance of the fitted vector ŷ implies that the variance is also minimal for the
regression coefficients bi since, according to Equation 2.23, the variance of bi is
var(bi) = (XT

i Xi)−1var(Y ) = (XT
i Xi)−1σε.

2.5 Pointwise Regression

Previous sections serve to motivate the use of regularization in regression models.
We have seen that no linear unbiased method outperforms OLS. However, if
some bias is tolerated we can potentially lower the variance of the estimates and
the prediction error considerably as well as handle cases where p > n and/or
data plagued by multicollinearity. The question is how bias is added to the
model in a sensible way.

A simple but often used regularization approach is given by the assumption that
the independent variables are uncorrelated. Under this assumption, the analysis
is simplified into that of the orthogonal design described in Section 2.3.1. We will
reiterate the computational implications of this here. The assumption represents
a type of regularization that will result in an invertible gram matrix also in cases
where p > n. Unless any of the variables have zero variance, the augmented
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gram matrix has positive values along its diagonal and zeros elsewhere,

XT X =

x
T
1 x1 0

. . .
0 xT

p xp

 . (2.30)

Such a matrix is positive definite and therefore invertible. Using this gram
matrix to solve the ordinary least squares problem of Equation 2.16, we see that
each regression coefficient bi is a function of the ith variable xi and y such that,

bi = (xT
i xi)−1xT

i y. (2.31)

If the original ill-posed problem consists of, say, 900 variables and 100 obser-
vations, pointwise regression splits the analysis into 900 separate ordinary least
squares analyses, each well-posed with 100 observations and a single variable.

In Section 2.3.1, we referred to Equation 2.31 as univariate while we opt for
the term pointwise here. Multivariate analyses with p >> n usually occur in
problems where the majority of variables are of the same type, such as spa-
tial variables in image analysis, or gene expression measurements in microarray
analysis. In addition to such variables, a small set of confounding variables may
be included. In such cases, the analysis is split up such that each analysis con-
tains a single variable of interest along with the full set of confounding variables.
This makes each analysis a multivariate, albeit small, regression problem, mak-
ing use of the term univariate misleading. To clarify, let X̃i = [xi c1 . . . cpc

]
be a data matrix which includes the ith variable of interest and let cj be the
jth confounding variable, j = 1 . . . pc. A single pointwise analysis is then per-
formed using this matrix and the OLS approach of Section 2.3.

2.6 Ridge Regression

Many regularization methods use a technique called coefficient shrinkage to
lower the variance of y (and b). This means that the regression coefficients
bi are shrunk from their corresponding OLS estimates. Obviously, this will
lower the variance of the estimates; if the coefficients are shrunk all the way to
b = 0, the variance is zero. Although such a model is pointless, the idea of
coefficient shrinkage methods is that for a moderate amount of shrinkage, both
lower variance and lower prediction error may be obtained. In the presence
of multicollinearity, the OLS coefficients pertaining to two strongly correlated
variables may differ wildly. For instance, a large coefficient on one variable can
be cancelled by an equally large negative coefficient on the other. By restricting
the size of the regression coefficients, this is prevented from happening. This is
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one reason why the OLS estimates, having the lowest variance of all unbiased
estimators, have rather high variance compared to suitably biased estimators.

A simple form of coefficient shrinkage is implemented by the addition of a
quadratic penalty term on the regression coefficients,

bridge = arg min
b
‖y −Xb‖2 + λ‖b‖2, (2.32)

where λ ≥ 0 is a parameter that controls the amount of regularization. A
positive value of λ emphasizes solutions with regression coefficients of smaller
magnitude. This shrinkage is strengthened as λ grows, and excessive regular-
ization will force all coefficients to zero. The cost function above is specified in
the loss + penalty form, where the loss function is the residual sum of squares
term of OLS, and the penalty function is the squared `2-norm of the regression
coefficients.

We derive the optimal bridge by differentiating Equation 2.32 and equaling zero,

∂

∂b

[
‖y −Xb‖2 + λ‖b‖2

]
=

∂

∂b

[
yT y − 2bT XT y + bT (XT X + λI)b

]
=

−2XT y + 2b(XT X + λI) = 0, (2.33)

and solving for b,

bridge = (XT X + λI)−1XT y, (2.34)

where I is the p×p identity matrix. The computational effect of ridge regression
is evident; a small constant is added to the diagonal of the gram matrix. In cases
where the gram matrix is not invertible, this augmentation gives the resulting
matrix full rank which therefore can be inverted. Further, λ = 0 gives the
ordinary least squares solution, in cases where the gram matrix can be inverted.
Ridge regression represents a linear projection of y, similar to OLS. The hat
matrix is

H = X(XT X + λI)−1XT . (2.35)

Figure 2.7(a) shows coefficient values obtained using ridge regression for a range
of values of λ on a data set with 442 observations and 10 variables. This type of
plot is known as a ridge trace. The data set is from a study of diabetes where
the response variable measures disease progress one year after baseline4. The

4The word baseline refers to the start of a clinical investigation that runs over a certain
time span. Such a study is known as a longitudinal study as opposed to a cross-sectional
study where a data is gathered at a single occasion. This study falls somewhere in between,
as data for each variable is gathered once, but at different time points.
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predictor variables are gathered at baseline and consist of age, sex, body mass
index (BMI), blood pressure and six blood serum measurements5. The goal is to
construct a model that can be used to predict disease progression from baseline
data. The data set was divided into three parts; a training set (the first 221
observations), a validation set (the next 111 observations) and a test set (the
final 110 observations). The training set was used to estimate ridge regression
coefficients for 100 values of the regularization parameters λ, ranging between
10−4 and 103 on a logarithmic scale. The validation set was then used to select a
suitable model based on a measure of prediction error using the sum of squared
residuals rT r = ‖y − Xb‖, where y and X represent the validation data set,
and b is estimated from training data. Figure 2.7(b) shows the resulting plot
of prediction errors. The plot shows that the coefficient shrinkage introduced
by ridge regression indeed lowers the prediction error for certain values of λ.
Finally, a fair estimate of the true prediction error can then be calculated using
the test set. In this example, the prediction error was 3.33 · 105, only slightly
higher than the corresponding validation error 3.30 · 105.

Similarly to the OLS estimates, an expression for the variance of the ridge
regression coefficients can be derived. This proceeds in the same manner as in
Equation 2.23, yielding,

var(bridge) = (XT X + λI)−1XT X(XT X + λI)−1σ2
ε . (2.36)

The estimation of the error variance σ2
ε requires some attention. In Equa-

tion 2.24, the sum of squared residuals are normalized by the number of degrees
of freedom for the residuals, estimated by n−p. In ridge regression, the regular-
ization parameter controls the complexity of the model, creating an increasingly
fixed model for growing values of λ. The result is that the number of degrees
of freedom of the residuals grows with λ. This makes clear the need for a bet-
ter estimate of the number of parameters of the model than p. Moody [102]
discusses a measure called the effective number of parameters for this purpose,

Df (λ) = trace(H), (2.37)

where H is the hat matrix defined in Equation 2.35. Working out the algebra,
it is seen that Df (0) = p, the number of parameters of the OLS solution. For
λ →∞, Df (λ) = 0. The estimate of error variance becomes

σ̂2
ε =

rT r
n−Df (λ)

. (2.38)

Figure 2.7(c) shows the variance of each bi as a function of λ computed according
to Equation 2.36. As expected, the variances shrinks for growing values of λ;

5This data set is distributed with the R statistical computing environment and is part of
the lars package for least angle regression (cf. Efron et al. [40] and Section 2.8). The software
is freely available from www.r-project.org.

www.r-project.org
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(a) Ridge trace for the diabetes training data. Stars denote
the OLS solution and the vertical dashed line denote the op-
timal solution according to the validation data. Coefficients
vary considerably with λ and may change signs before being
shrunk to zero.
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(b) Prediction error for the diabetes validation data. The
vertical dashed line marks the location of the minimal error.
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(c) Variance of the ridge regression estimates versus the vari-
ance of the OLS estimates (stars). The variance is consider-
ably lowered at the optimal value of λ.

Figure 2.7: Ridge regression on the diabetes data set. The parameter λ is defined
by 100 equidistant points on a logarithmic scale.
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the variance of the optimal model is considerably lower than the corresponding
OLS estimate.

2.6.1 Computation

In Section 2.1, we saw that the QR decomposition could be used to simplify
computation of the OLS estimates. Here, we present a similar technique, based
on the singular value decomposition (SVD). The SVD of a matrix X expresses
X in terms of two orthogonal matrices U and V, and a diagonal matrix D,

X = UDVT , (2.39)

where the diagonal elements of D are typically sorted in descending order and
are called the singular values of X. Using the SVD, the ridge estimate can be
written

bridge = (VDUT UDVT + λI)−1VDUT y

= (V(D2 + λI)VT )−1VDUT y

= V(D2 + λI)−1DUT y, (2.40)

noting that V−1 = VT and using Equation 1.1. The advantage of this formu-
lation is that D2 + λI is a diagonal matrix and, as such, easy to invert. Using
this formulation, the hat matrix can be written

H = UD(D2 + λI)−1DUT =
p∑

i=1

ui
d2

i

d2
i + λ

uT
i , (2.41)

and the effective number of parameters is simplified into

Df (λ) =
p∑

i=1

d2
i

d2
i + λ

. (2.42)

Finally, the variance of the parameters can be efficiently computed using the
SVD transform,

var(bridge) = V2diag
[
D2(D2 + λI)−2

]
σ̂2

ε . (2.43)

So far, the advantage of using the SVD transform in the formulation of ridge
regression is that D2+λI is a diagonal matrix which is straightforward to invert.
In cases where p > n, another advantage arises. The corresponding data matrix
in such cases has rank(X) = k ≤ n. The last p − k singular values of X are
therefore zero and we can express X using the economy size SVD.

X = U
n×k

D
k×k

VT

k×p
(2.44)
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Using this decomposition of X, Equation 2.40 still renders the ridge solution in
Equation 2.34. The formulation does, however, result in a significant computa-
tional difference. While the diagonal matrix to be inverted has size (p × p) in
Equation 2.34, it has size (k × k) in Equation 2.40.

2.6.2 Relation to Pointwise Regression

The variance estimates of Equation 2.43 can be used to turn the ridge regression
coefficients into z-scores as described in Equation 2.25. Figure 2.8 shows the
obtained z-scores for different values of λ. For low values of λ, the scores are
rather stable and close to the z-scores of the OLS solution (stars). For high
values of λ the scores again converge to stable values. A relevant question
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Figure 2.8: Plot showing the z-scores of each regression coefficient as a function of λ.
Results seem to gain in significance as λ grows, and converges for λ sufficiently large.

concerns the meaning of the ridge regression solutions in the limit λ → ∞.
It turns out that the solutions have a strong relation to those of pointwise
regression. This result, presented in the following, is intuitive. Both methods
focus on the variance of the variables rather than their covariance. Studying the
ridge trace in Figure 2.7(a), it is seen that the coefficients are shrunk as λ grows,
and depart from the coefficients of pointwise and OLS regression which have
similar magnitudes. However, the corresponding z-scores behave differently,
and turn out to be roughly equal to those of pointwise regression in the limit.
The results from pointwise regression are shown in Figure 2.8 at the far right
using the symbol ×. We investigate the equivalence between ridge regression
and pointwise regression in the following theorem.

Theorem 2.1 In the limit λ → ∞, the normalized coefficients of ridge regres-
sion and pointwise regression are equivalent.
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Proof. Let Ω = (XT X + λI)−1 and let ωi be the ith column of Ω. The
ith z-score resulting from ridge regression is then

zi(λ) =
βi(λ)
σβi

(λ)
=

ωT
i XT y

σε

√
ωT

i XT Xωi

(2.45)

We note that Ω → I/λ as λ → ∞. This means that ωi simplifies to a zero
vector with the ith entry equal to 1/λ. The expression for zi(λ) becomes

lim
λ→∞

zi(λ) =
1
λxT

i y
1
λσε

√
xT

i xi

=
(xT

i xi)−1xT
i y

σε

√
(xT

i xi)−1
(2.46)

This expression is equivalent to the pointwise estimation of zi.

This finding points to an important property of ridge regression; OLS regression
and pointwise regression are special cases of ridge regression. Whereas OLS
represents an unbiased ridge regression analysis, pointwise regression is severely
biased. This motivates the use of ridge regression in cases where pointwise
regression is normally used; it is unlikely that the amount of bias introduced in
pointwise regression yields the lowest prediction error. Instead, consideration
of cases with less bias, where correlation information is allowed to some extent,
may be beneficial. The result also makes clear that values of λ over a certain
threshold are uninteresting, as the ridge solutions have converged to pointwise
regression at that point. In fact, we can derive an expression for an upper limit
of λ. This limit can be defined in terms of the value dmax = maxi di as

λmax = d2
max

1− ε

ε
. (2.47)

For this choice of λ, the elements of the matrix (D2 +λI)−1 will deviate at most
100ε % from the matrix I/λ, where ε is a small number 0<ε<1.

The derivation in Theorem 2.1 assumes that the error variance σ2
ε is measured

in the same way for both methods. This is usually not the case. Equation 2.36
gives this estimate for ridge regression while the estimate for pointwise regression
is σ2

ε = rT
i ri/(n− p) where p = 1 + pc (ignoring intercept) and pc is the number

of confounding variables, if any. However, performing the same asymptotic
analysis as above for the error variance of ridge regression gives,

lim
λ→∞

σ2
ε(λ) =

(y −Xβ(λ))T (y −Xβ(λ))
n−Df (λ)

=
yT y
n

= var(y), (2.48)

a measure that is known to be reasonably close to rT
i ri/(n− p).
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2.7 Variable Selection

In previous sections we have briefly mentioned the possibility of testing whether
a single variable contributes significantly to the description of the response vari-
able y. This points to the fact that a subset of the variables included in a model
may constitute a model that performs as well or better than the full model.
In general, we prefer a more compact model over a redundant one for reasons
relating to the principle of Occam’s razor6. The principle is perhaps best para-
phrased as ”all things being equal, the simplest solution tends to be the best
one”. A more precise statistical motivation is that the error variance tends to
be lower for a more parsimonious model than for a larger, redundant, model.
Revisiting Equation 2.24 for the error variance,

σ̂2
ε =

rT r
n− p

, (2.49)

we see that as p gets smaller, the error variance shrinks, assuming all models
describe y equally well. This ultimately leads to a more powerful analysis with
lower p-values for non-zero coefficients.

Another motivation of particular interest in this thesis is that smaller models
are easier to interpret. A regression model is mainly used for two purposes; pre-
diction and interpretation. A model solely used for prediction can be allowed
to include a large number of variables, relevant or not, as long as the prediction
accuracy is sufficiently high. If one also wishes to understand the factors gov-
erning the response, interpretation will become easier with fewer variables in the
model. A model for disease progression that contains variables for body-mass
index and age alone is easier to interpret and draw clinical conclusions from
than a model with, say, ten variables. Furthermore, variable selection can be
used to replace the standard statistical test of whether a regression coefficient is
zero. Variable selection may have an edge over classic testing procedures as the
latter places assumptions on the variables that do not necessarily hold. Instead,
the variables included by the variable selection procedure may be reported as
the important ones.

Out of a set of candidate models, we must define criteria for selecting the most
appropriate model. In Section 2.6 we used one such criterion — prediction
error measured on a validation data set which was separate from the training
data set used to construct the various models. This is a simple criterion which
works in cases where there are plenty of observations compared to the number
of variables. A rule-of-thumb is that any data set (training, validation, test)
should contain a number of observations that is at least 10–15 times the number

6The name and principle is due to the 14th -century English logician and Franciscan friar
William of Ockham. The principle’s Latin name lex parsimoniae is sometimes used.
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of variables. This is not the case for most models; in fact, statistical analyses in
e.g. image analysis frequently contain many more variables than observations.
For such models, we cannot afford to split the data into separate training and
test sets. Instead, one may attempt to estimate the prediction error directly
from the training data. Many methods exist for this purpose. We will list some
common ones here for reference, but refrain from explaining them in any detail.
Refer to e.g. Hastie et al. [59] for an in-depth discussion of these and other
criteria. The measures concern Gaussian models under squared-error loss.

Akaike’s Information Criterion (AIC) [1]. The Akaike information crite-
rion combines a measure of the training error (prediction error calculated
from the training data set) with an estimate of the optimism of validating
a model on training data,

AIC = rT r + 2σ2
εDf , (2.50)

where the training error rT r is adjusted by the optimism 2σ2
εDf .

Mallows’ Cp [96]. Mallows proposed a metric known as Cp with similar prop-
erties as the AIC,

Cp =
rT r
σ2

ε

− n + 2Df . (2.51)

This expression for Cp for a Gaussian model under squared-error loss can
be seen to be a scaled and translated equivalent to AIC.

Bayesian Information Criterion (BIC). The Bayesian information criteri-
on (also known as the Schwartz criterion [129]) takes a different approach
to formulating an estimate of the prediction error, but arrives at an ex-
pression similar to the AIC.

BIC = rT r + log(n)σ2
εDf (2.52)

Cross-validation. When the available data set is too small for creating sepa-
rate training, validation and test sets, a measure of the prediction accuracy
can nevertheless be established with a similar technique. The data set is
split into equal parts, each containing roughly n/K observations where K
is the number of subsets. The model is then fitted to K−1 of these subsets
and the prediction accuracy is measured on the Kth set. Letting each of
the subsets act as the validation set once, we obtain K measures of predic-
tion accuracy which are then pooled, e.g. by taking their mean value, into
a single estimate of prediction accuracy. Five or ten-fold cross-validation
(K = 5 or K = 10) are common choices. With K = n, the procedure
is known as leave-one-out cross validation, where a single observation is
used to probe the prediction accuracy for each subdivision.
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The AIC generally chooses better models when the true model is not among
the candidates, while BIC often chooses the right model if the true model is
present. The error variance σ2

ε , if unknown, is commonly based on the largest
model in question, usually the full OLS model. The measure of the number
of parameters in the model Df is simply p for OLS, but should be augmented
for methods that include regularization. For ridge regression, an appropriate
measure is given in Equation 2.37. For least angle regression and the LASSO,
introduced in Sections 2.8 and 2.9, an unbiased estimate of Df is the number
of non-zero variables. Several different forms of the criteria listed above exist in
the literature, but most are equal under scaling and translation.

In summary, the goal of variable selection is to select a subset of the available
variables such that included variables contribute to the description of the re-
sponse and such that no important variables are left out. The threshold defining
which variables are interesting and which are redundant or irrelevant is tuned
such that a suitably sparse model is obtained. In the following sections, several
such methods will be presented. In the remainder of this section, we will outline
two classic approaches.

2.7.1 All Subsets

All subsets regression is a particularly simple but computationally demanding
approach to variable selection. As the name implies, all possible subsets of p
variables are regarded. There are 2p such combinations of variables, including
the null model with zero variables. This follows since each variable takes on
one out of two states — included or excluded, or active/inactive as we prefer to
call them here. Since there are p variables, we have a total of 2p combinations.
For the diabetes data set, this is a feasible strategy as there are 210 = 1024
combinations to evaluate. However, assuming we accept to evaluate 10 000
models at most, the limit is a mere 13 variables (yielding 8192 models). For a
full model of 64 variables, the number of combinations of variables is 1.8 · 1019.

2.7.2 Stepwise Regression

A feasible strategy in cases with many variables is given by stepwise procedures.
Variables are included in or excluded from the model according to some statis-
tical criterion, and the variable to be included or excluded in a certain step
depends on the set of currently active (included) variables. In this way, the set
of solutions follow a path going from e.g. the null (empty) model to the full
(OLS) model. Forward selection implements this case where a single variable
is included in each step until the full model is reached. Backward elimination
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does the opposite; starting with the full model, variables are dropped one by
one until the null model is reached. There are also algorithms that both include
and exclude variables along the path. Here, we turn our attention to forward
selection, as it bears close resemblance to the more recent methods of coming
sections.

Following the theme of this thesis, we will present forward selection from a
geometrical viewpoint. First, some notation is introduced. Variables are indexed
from 1 to p. The set of such indices that are currently active (included in the
model) is denoted A, while the complement of this set contains the inactive
variables and is denoted I. A subset of the variables contained in the data
matrix is denoted using a subscript set variable, e.g. XA for the currently active
variables. The fitted response variable in each step is denoted µ, with µ = ŷ
at the OLS solution. The residual, measured from the current position to the
response variable, is denoted rk = y − µk. The vector connecting the fitted
variable in one step with the fitted variable in the next is denoted dk = µk+1−
µk. Examples of these variables are given in Figure 2.9, a case with two variables
and three observations akin to Figure 2.4.
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Figure 2.9: A small example of the forward selection procedure. The current position
after one step of the algorithm is at µ1, where r1 = y − µ1. The correlation between
r1 and currently inactive variables is measured, resulting in the inclusion of x2 as this
is the sole inactive variable. A step d1 taken from the current position to the full OLS
solution concludes the process.

At each step of the algorithm, a variable is included according to some statis-
tical criterion. There are a range of measures that are suitable here, including
significance tests (t or F-tests), AIC, BIC and correlation, of which the latter is
employed here. The correlation is measured between the current residual and
each variable.

The algorithm starts at the origin representing the null model. The variable
strongest correlated with r1 = y is the first variable to enter A. A step is then
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taken in the direction of this variable such that the solution of the partial OLS
regression of y onto the first variable is reached. The residual r2 is now measured
from this point to y. The process is then repeated. The correlation between rk

and inactive variables is measured, a second variable becomes active, and a new
step is taken from the current position to the partial OLS solution including
the two active variables. The process continues until the full OLS solution is
reached. Algorithm 2.2 summarizes the procedure.

Algorithm 2.2 Stepwise Regression
1: Initialize the coefficient vector b0 = 0p and the fitted vector µ = 0n,
2: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}
3: for k = 1 to p do
4: Update residual r = y − µ
5: Find maximal correlation c = maxi∈I xT

i r
6: Move variable corresponding to c from I to A.
7: Calculate the partial OLS solution bAOLS = (XT

AXA)−1XT
Ay

8: Calculate current direction d = XAbAOLS − µ
9: Save the regression coefficients bk = bAOLS

10: Update the fitted vector µ = µ + d
11: end for
12: Output the series of coefficients B = {b0 . . .bp}

Figure 2.10 shows the results from applying forward selection to the diabetes
data set. Figure 2.10(a) plots the values of the regression coefficients along the
selection process from k = 0 to k = p variables. The abscissa (”x-axis”) runs in
a direction of less regularization, opposite to the path of ridge regression. Al-
though this type of variable selection is normally regarded as a discrete process,
where variables are either included or excluded, we choose to plot the values of
the coefficients as a trace, or regularization path. This provides a better basis
for comparison with continuous methods such as ridge regression, and interest-
ing solutions can indeed be found between steps. Figure 2.10(b) shows part of
the corresponding error curves along the path using AIC (red), BIC (blue) and
five-fold cross-validation (green). At the minimum of each curve, the minimal
value of the corresponding all-subsets procedure is marked with a star. The
BIC tends to pick a sparser model than AIC and cross-validation. Indeed, BIC
retains five variables here, while AIC and cross-validation selects a model with
six variables.

Forward selection is known to be very sensitive to small perturbations of the
input variables. This is an effect of the greedy nature of the procedure. Once
a variable has become active, all the information contained in the active vari-
ables is used to fit the response, frequently resulting in overfitting. Also, subtle
combinations of variables are often overlooked. In the following sections, more
careful variants of forward selection will be introduced which address such short-
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(a) Regularization path of the forward selec-
tion procedure for variable selection.
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Figure 2.10: Results of applying forward selection to the diabetes data set. Although
the solution set is usually considered discrete, the path is presented in a continuous
fashion here. The models selected by each criterion contain 50-60 % of the total
number of variables, creating a more manageable model which is easier to interpret.

comings.

2.8 Least Angle Regression

Least angle regression (LAR) is a geometrically motivated regression method
that provides a gentler version of forward selection. Its implementation, de-
scribed in detail below, requires some work while the conceptual outline of the
algorithm is straightforward. As with forward selection, the algorithm proceeds
from zero ”active” variables and adds a single variable in each step until all
variables are active and the full OLS solution is reached. In contrast to forward
selection, variables are not either fully included or excluded in each step; in-
stead they are gradually entering the model in a continuous fashion, producing
a proper regularization path similar to that of ridge regression (cf. Figure 2.7(a)).

The name least angle regression describes the core idea of the algorithm. Start-
ing with the empty set of active variables, the angle between each variable and
the response is measured, and the variable with the smallest angle becomes the
first variable included into the model. Walking along the direction of this vari-
able, the angles between the variables and the residual vector are measured,
where the residual is the vector from the current position along the walk to y.
Along this walk, the angles will change; in particular, the angle between the
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residual vector and the active variable will grow monotonically towards 90 de-
grees, a point where the partial OLS solution is reached as for forward selection.
At some stage before this point, another variable will obtain the same angle with
respect to the residual vector as the active variable. The walk is then halted
and the new variable is added to the active set. The new direction of the walk
is towards the partial least squares solution obtained through OLS regression of
the response onto the two active variables. Again, before this walk reaches the
partial OLS solution (where the two angles reaches 90 degrees), a new variable
will obtain the same angle as the two active variables. This variable enters the
model at this point and a new direction is calculated. After p steps, the full least
squares solution will be reached ending the trace of the regularization path. A
schematic overview of the algorithm is shown in Figure 2.11.
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(a) Least angle regression of y (blue)
onto two variables x1 and x2.
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(b) Least angle regression of y (blue) onto
three variables x1, x2 and x3.

Figure 2.11: Outline of the geometry of least angle regression with two and three
variables. Starting at the origin, the fitted vector moves in a piecewise linear fashion
along directions µ1, . . . , µp of minimal angle/maximal correlation between the residual
vector and the variables. At each breakpoint, the next step is taken in the direction
of the OLS solution ŷk using the currently active variables.

Figure 2.11(a) shows the process for p = 2 and n = 3, showing the variables x1

and x2 ”from above”, where the response vector y, shown in blue, is sticking
out of the page. At the start of the algorithm, the current position is at the
origin and r1 = y. The smallest angle is between r and x1 at this point; x1

therefore becomes the first active variable. Walking along x1, we reach a point
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µ1 where ∠(x1, r) = ∠(x2, r), where r = y − µ1. At this point x2 enters the
model. The next direction is towards the OLS projection of y onto x1 and x2.
Since there are only two variables in this model, the new direction is towards
the full OLS solution where the algorithm is terminated. The walk from µ1 to
the full OLS solution is denoted µ2.

A schematic setup with three variables is shown in Figure 2.11(b). Variables
are added in the order x2, x1 and x3. The variables ŷ1, and ŷ2 represent the
partial OLS solutions on x2 and {x1,x2} respectively, while ŷ represents the
full OLS solution.

A number of questions arise from this description of the LAR algorithm. First,
what is the rationale of measuring angles between variables? The cosine of the
angle between two vectors a and b can be expressed using inner products as

cos ∠(a,b) =
aT b

√
aT a

√
bT b

. (2.53)

Treating a and b as variables rather than vectors, and assuming that a and b
have been mean centered, the correlation between a and b is

corr(a,b) =
aT b

√
aT a

√
bT b

, (2.54)

the exact same expression. Angles therefore have a direct correspondence to
correlation, where small angles correspond to high correlation and vice versa.
An equivalent name for LAR could therefore be ”strongest correlation regres-
sion”, where the current fitted vector always points in the direction of maximal
correlation.

A more involved question concerns the directions calculated at each breakpoint.
As a breakpoint is reached and a new variable enters the model, the angles
between the response and each active variable are equal. The new direction is
taken towards the least squares solution defined by y and the active variables.
At this OLS solution, the angles are also equal, as the residual is at right angles
with all active variables. The question is whether the angles remain equal as
we travel from the breakpoint towards the partial OLS solution. Since the
endpoints of this vector are equiangular, it is sufficient to show that the angles
change linearly along the walk. Figure 2.12 shows a view of the problem with
two active variables where the current position is at µ1, x2 just entered the
model, and we wish to estimate µ2. The current residual vector is denoted
r. The partial OLS solution involving x1 and x2 is denoted µOLS. The walk
along µ2 towards µOLS can be formulated γ(µOLS−µ1) + µ1 where 0 ≤ γ ≤ 1;
estimating µ2 then amounts to estimating γ. Denoting the set of currently active
variables A and assuming normalized variables, the correlation (or cosine of the
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angle) between the active variables and the residual vector as we walk along µ2

is xT
i∈A(y − γ(µOLS − µ1) − µ1). This is a linear function of γ, meaning that

the angles between the residual and the variables in A will change, but remain
equal along each direction.

 

y

x1

x2

rOLSr

µ1
µ2

µOLS

Figure 2.12: Least angle regression case showing the solution obtained after a single
step of the algorithm. The second active variable x2 has just been included and the
next direction will be towards the OLS solution µOLS representing the regression of y
onto x1 and x2. The residual vector at the current position is denoted r while rOLS is
the residual vector at the OLS solution.

We have now come a long way towards describing the entire algorithm formally.
For some value of γ, a new variable will enter the set of active variables. This
happens when the angles corresponding to the active variables (which are all
equal) become equal to one the angles corresponding to an inactive variable.
Denoting the set of inactive variables I, we seek the smallest γ such that

xT
i∈I(y − γ(µOLS − µ1)− µ1) = xT

j∈A(y − γ(µOLS − µ1)− µ1). (2.55)

Solving this expression for γ, we get

γ =
(xi − xj)T (y − µ1)

(xi − xj)T (µOLS − µ1)
=

(xi − xj)T r
(xi − xj)T d

(2.56)

where d = µOLS − µ1 is the direction of the walk. Now, d is the orthogonal
projection of r onto the plane spanned by the variables in A, therefore we
have xT

j r = xT
j d ≡ c, representing the angle at the current breakpoint (µ1).

Furthermore, the sign of the correlation between variables is irrelevant in LAR.
Therefore, we must also check where the correlations of opposite signs become
equal to the correlation of the active variables. In terms of angles, we also
have this sign distinction, as the angles are defined within the interval [−90, 90]
degrees. Working through the derivation above for correlations of opposite signs,
it is seen that the next active variable and the step length γ can be found by

γ = min
i∈I

{
xT

i r− c

xT
i d− c

,
xT

i r + c

xT
i d + c

}
, 0 < γ ≤ 1, (2.57)
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where the two terms are for correlations/angles of equal and opposite sign re-
spectively.

Keeping track of the LAR regression coefficients at each breakpoint, the coeffi-
cients at the next step is given by γ,

bk = γ(bAOLS − bk−1) + bk−1 (2.58)

Now that the key pieces of the LAR puzzle are in place, we state the entire LAR
regression process in Algorithm 2.3.

Algorithm 2.3 Least Angle Regression
1: Initialize the coefficient vector b0 = 0p and the fitted vector µ = 0n,
2: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}
3: for k = 1 to p− 1 do
4: Update residual r = y − µ
5: Find maximal correlation c = maxi∈I |xT

i r|
6: Move variable corresponding to c from I to A.
7: Calculate the partial OLS solution bAOLS = (XT

AXA)−1XT
Ay

8: Calculate current direction d = XAbAOLS − µ

9: Calculate the step length γ = mini∈I

{
xT

i r−c

xT
i d−c

,
xT

i r+c

xT
i d+c

}
, 0 < γ ≤ 1

10: Update regression coefficients bk = γ(bAOLS − bk−1) + bk−1

11: Update the fitted vector µ = µ + γd
12: end for
13: Let bp be the full OLS solution bp = (XT X)−1XT y
14: Output the series of coefficients B = {b0 . . .bp}

To further illustrate the method, we apply it to the diabetes data set. As be-
fore, the observations are divided into a training set with 221 observations, a
validation set with 111 observations and a test set consisting of the last 110
observations. The LAR algorithm is applied to the training data producing 11
(p + 1) coefficient vectors b, including the all-zeros vector. Knowing that the
coefficient paths are linear between breakpoints, we plot the resulting regular-
ization path in Figure 2.13(a). The coefficient values are plotted against the
quantity

∑
j |bji|, the sum of absolute coefficients at each breakpoint. The rea-

son for this choice of abscissa will become clear in Section 2.9. The regularization
path ranges from the all-zeros vector on the left, to the full OLS solution on the
right. The advantage of LAR over ridge regression is that LAR implements both
coefficient shrinkage and variable selection. As regularization is increased, coef-
ficients do not merely approach zero as is the case for ridge regression. Instead,
they are shrunk to exactly zero, in effect excluding them from the regression
model. Figure 2.13(b) shows the prediction error of the LAR model calculated
using the validation data set at 200 locations along the regularization path. At
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(a) Regularization path of the least angle regression algorithm.
The vertical dashed line denotes the selected model.
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(b) Prediction error along the LAR path.

Figure 2.13: The piecewise linear nature of the LAR algorithm, and the associated
prediction error curve. Curves range from the all-zeros (b = 0) solution on the far
left, to the OLS solution on the far right.

the point of minimal error, the model consists of approximately eight predictors
instead of the ten predictors of the full model. The price one pays for a parsi-
monious model is usually an increase in prediction error, although this increase
may be small enough to motivate the use of a smaller model. In this example,
we have the unusual case where the achieved prediction error was lower for LAR
than for ridge regression. The test error is 3.26 ·105, compared to the validation
error 3.23 · 105.
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2.9 The LASSO

The least absolute shrinkage and selection operator (LASSO) method is in defi-
nition closely related to ridge regression. The ordinary least squares problem is
augmented to include a constraint on the regression coefficients b. While ridge
regression formulates this constraint as an upper bound on the squared length
of b, the LASSO measures the size of b by the sum of absolute coefficients bi.
The corresponding cost function is

bLASSO = arg min
b
‖y −Xb‖2 + λ‖b‖1, (2.59)

where ‖b‖1 =
∑

i |bi| denotes the `1-norm. The difference between the LASSO
and ridge regression is in other words due to the choice of penalty term; ridge
regression uses the squared `2-norm whereas LASSO uses the `1-norm. This dif-
ference may seem insignificant as both implement forms of coefficient shrinkage
leading to decreased variance of the estimates. The LASSO does, however, have
another benefit. The form of the penalty function is such that coefficients are
not merely shrunk towards zero, they are forced to exactly zero, one by one, as
the amount of regularization is increased. Through this property, the LASSO
implements both shrinkage and variable selection, leading to models which are
easier to interpret.

We will provide an intuitive explanation of why the LASSO implements variable
selection while ridge regression does not. Figure 2.14 shows the geometry of
each regression problem. In Figure 2.14(a) the penalty function of the LASSO
is shown in green and the ridge ditto is shown in red. For small values of b, the
penalty gradually decreases for ridge regression and vanishes for b sufficiently
small. The LASSO also penalizes variables with small magnitude less than larger
variables, but uses a penalty that is directly proportional to the magnitude
of b. Figure 2.14(b) provides another view of the LASSO and ridge penalty
terms. Here, the OLS solution of a two-variable problem is marked with a black
dot. Around this dot, concentric ellipses represent values of the loss function
‖y−Xb‖2 for different choices of b. The shape of these ellipses are determined
by the variance-covariance structure of X. Both ridge regression and the LASSO
can be formulated in equivalent forms where the penalty function enters the
equation as a separate constraint,

‖y −Xb‖2 subject to ‖b‖2 ≤ t2 (2.60)

‖y −Xb‖2 subject to ‖b‖1 ≤ t, (2.61)

where each value of t corresponds to a unique value of λ in Equations 2.32 and
2.59. Using this formulation, we see that each penalty term defines a region in
which we require the regression coefficients to reside. In Figure 2.14(b), these
regions are shown for the ridge and LASSO penalties. The ridge penalty has the
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form of a circle, where t is the radius, whereas the LASSO penalty is diamond-
shaped with ”radius” t at its corners. Solving the respective regression problem
amounts to finding the values of b inside the region defined by the penalty
function that lie closest to the OLS solution. The outer two ellipses of the loss
function are tangent with the penalty regions of each method. The pointed
geometry of the LASSO penalty makes it common for the ellipses to touch one
of the corners rather than one of its sides. At the corners, one variable is zero.
In higher dimensions, the ellipsoids of the loss function are more likely to hit
either a corner, where a single variable is active, or a ridge connecting two
corners, where one or several variables are inactive, than one of its faces. Ridge
regression does not share this property, as the positions on the ridge penalty
region corresponding to the corners of the LASSO region are no different from
any other positions along the boundary. In Figure 2.14(b), the ridge solution is
non-zero for both coordinates whereas the LASSO solution has b1 = 0.

b

LASSO

ridge

(a) The geometry of the LASSO penalty
function (green) versus the ridge penalty
(red) in one dimension. The LASSO con-
straint consistently penalizes values until
they reach exactly zero, whereas the ridge
regression penalty vanishes for small values
of b.

b1

b2

(b) The geometry of the LASSO and ridge
regression in two dimensions. The dia-
mond represents the constraint region of the
LASSO, whereas the light yellow region rep-
resents the ridge constraint. The OLS solu-
tion is marked with a black dot and values
of the loss function are indicated using con-
centric ellipses.

Figure 2.14: Geometry of the LASSO versus ridge regression.
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2.9.1 Computation

In Section 2.6, we derived the optimal ridge coefficients bridge by finding zero-
crossings of the derivative of the cost function. However, the expression in
Equation 2.59 is not differentiable since the derivative of the penalty function
is undefined at b = 0. When the LASSO method [157] was presented, the esti-
mates bLASSO were calculated using numerical optimization procedures. Several
algorithms exists for this purpose. One such approach is given here in brief.

The regression coefficients can be formulated b = b+ − b−, where b+ contains
the positive elements of b (with zeros elsewhere) and b− contains the positive
representations of the negative elements. In this way, an (n× p) OLS problem
can be restated as

y = [X −X]
[

b+

b−

]
+ r, (2.62)

a problem with n observations and 2p variables. The LASSO constraint can now
be formulated using the 2p + 1 inequalities b+

i ≥ 0, b−i ≥ 0, ∀i and
∑p

i=1(b
+
i +

b−i ) ≤ t. This is a quadratic optimization problem with linear constraints, which
can be solved using iterative techniques for convex optimization [164].

The drawback of such procedures is that they provide a LASSO estimate for a
single value of t, or correspondingly, λ. Typically, solutions for a range of values
of t are calculated to provide a basis for model selection. Besides the large
computational cost this implies, it may be difficult to select an appropriate
number of values of t as well as its range.

The purpose of the development of least angle regression (cf. Section 2.8) was
not only to devise a novel method for regression and variable selection, but also
to shed light on the LASSO. Remarkably, it was shown that the LASSO and
LAR, although conceptually different, produce very similar results, and that a
LAR-type algorithm exists for computing the entire regularization path of the
LASSO. Via a simple modification of the LAR algorithm, the LASSO solutions
for all possible values of t can be obtained. The modification is due to the
finding that the signs of the regression coefficients always agree with the signs
of the current correlations XT (y−µ) for the LASSO. This is not true for LAR,
but the LAR algorithm can be modified to uphold this property.

The modification proceeds as follows. An important observation is that the
current correlations do not change signs within a single LAR step. In fact, their
signs are constant along the entire path as angles corresponding to active vari-
ables are equal (disregarding signs) and monotonically increase to 90 degrees at
the end of the path where the OLS solution is reached. Studying the coefficient
paths in Figure 2.13(a) we see that one coefficient changes sign within the final
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step towards the OLS solution. This represents a violation of the LASSO rule,
as the coefficient and the corresponding correlation will take on different signs
once b crosses zero. In the LASSO modified LAR algorithm, we check whether
any coefficients cross zero within each step. If so, the step length is chosen
such that the coefficient in question just reaches zero, and is subsequently ex-
cluded from the active set of variables. The step length at which each variable
hits zero is easily found by setting the update expression for the coefficients
bk+1 = γ̃(bAOLS − bk) + bk equal to zero and solving for γ̃,

γ̃i =
bi

bi − bAi OLS

,∀i ∈ A. (2.63)

We denote these step lengths γ̃ to separate them from the LAR step lengths
γ. If any γ̃i > 0 is smaller than the next value of γ, a LASSO modification
will occur in the next step. The step length is then adjusted and the relevant
variable is excluded from A. Algorithm 2.4 presents the resulting algorithm
including the LASSO modification.

The proof of the agreement of signs between the coefficients and the current
correlations, and that the modified LAR algorithm renders all possible LASSO
solutions is given by Efron et al. [40]. The proof is rather extensive, with several
lemmas leading up to the final theorem. Given the technical level of this thesis,
we choose to avoid discussing the validity of the modification here, and simply
present the resulting algorithm.

Figure 2.15(a) shows the resulting LASSO regularization path. As mentioned
above, the LASSO condition occurs only once, during the last LAR step. This
leads to the exclusion of a variable, which is included again at the end of the
following step. In the iteration after, the OLS solution is reached. Figure 2.15(b)
shows the Cp measures of prediction error along the path. Using this heuristic,
a model with 7 variables is selected.

2.10 Elastic Net Regression

Ridge regression has the benefit of handling cases where there are more variables
p than observations n, and is known to produce models with good prediction
error. Procedures such as the LASSO implements variable selection and efficient
algorithms exists for obtaining the entire set of possible solutions, but does not
handle cases where p > n. The Elastic Net attempts to combine the strengths
of these methods while eliminating their respective shortcomings. The setup
is straightforward. The penalty terms of ridge regression and the LASSO are
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Algorithm 2.4 The modified LAR algorithm for computation of the LASSO
1: Initialize the coefficient vector b0 = 0p the fitted vector µ = 0n, and an

iteration counter k = 0.
2: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}
3: while |I| > 0 do
4: Update residual r = y − µ
5: Find maximal correlation c = maxi∈I |xT

i r|
6: if drop condition then
7: Set drop condition to FALSE.
8: else
9: Move variable corresponding to c from I to A.

10: end if
11: Calculate the partial OLS solution bAOLS = (XT

AXA)−1XT
Ay

12: Calculate current direction d = XAbAOLS − µ
13: Calculate drop condition step length γ̃ = mini∈A bik/(bik − bAi OLS), 0 <

γ̃ < 1
14: if |I| = 0 then
15: Let the LAR step length γ = 1 (go all the way to the full OLS solution)
16: else
17: Calculate LAR step length γ = mini∈I

{
xT

i r−c

xT
i d−c

,
xT

i r+c

xT
i d+c

}
, 0 < γ ≤ 1

18: end if
19: if γ̃ < γ then
20: γ = γ̃
21: Set drop condition to TRUE.
22: end if
23: Update regression coefficients bk+1 = γ(bAOLS − bk) + bk

24: Update the fitted vector µ = µ + γd
25: if drop condition then
26: Move variable corresponding to γ̃ from A to I.
27: end if
28: k = k + 1
29: end while
30: Output the series of coefficients B = {b0 . . .bk}

simply combined, yielding the following cost function,

bnaive = arg min
b
‖y −Xb‖2 + λ‖b‖2 + δ‖b‖1, (2.64)

where the optimal coefficients bnaive represent the solution for a particular choice
of λ and δ. The name naive will be described below.

The geometric interpretation of the (combined) penalty term is shown in Fig-
ure 2.16. The constraint region defined by the Elastic Net consists of a combina-
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(a) The LASSO regularization path for the diabetes data set.
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Figure 2.15: LASSO results for the diabetes data set, using all 442 observations
as training data. The Cp measure estimates the prediction error as if tested on an
independent validation set.

tion of the disc of ridge regression and the diamond of the LASSO. The relation
between λ and δ determines the geometry of the region. Letting δ = 0 results in
the ridge solution, while λ = 0 leads to a pure LASSO procedure. The Elastic
Net region region shown in red in Figure 2.16 has roughly δ = λ. For δ > 0,
the region will be singular at each corner along the axes of b, thus producing
sparse solutions similarly to the LASSO.

Computation of the Elastic Net estimates is simple, given the path algorithm for
the LASSO (cf. Algorithm 2.4). First, we review an alternative formulation of
ridge regression. Instead of the loss+penalty formulation of Equation 2.32, ridge
regression can be solved using OLS regression on an augmented data matrix and
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b1

b2

Figure 2.16: The regions defined by the constraints in ridge regression (yellow), the
LASSO (blue), and the Elastic Net (red). The Elastic Net region is made up of some
combination of the other two.

response vector,

bridge = (X̃
T
X̃)−1X̃

T
ỹ where X̃ =

[
X√
λIp

]
, ỹ =

[
y
0p

]
. (2.65)

This provides another explanation why ridge regression is able to provide an
answer also in cases where p > n. The original (n× p) data matrix is expanded
through the inclusion of p synthetic observations yielding the ((n + p)× p) aug-
mented matrix X̃. Obviously, this matrix has more rows (”observations”) than
columns (variables), and the corresponding gram matrix can thus be inverted.

Using this technique, the Elastic Net can be formulated as a LASSO problem
on augmented matrices,

arg min
b
‖ỹ − X̃b‖2 + δ‖b‖1, (2.66)

For a fixed value of λ, the path corresponding to all relevant choices of δ can
now be obtained using the LASSO algorithm. This does, however, mean that a
suitable value of λ must be determined beforehand. Figure 2.17 shows results on
the diabetes data set for three such values of λ, λ = 0.001, λ = 0.1 and λ = 1000.
The first choice represents a lightly regularized version of the LASSO, handling
cases where p > n. As n > p in this case, the result is close to that of the pure
LASSO. The second choice of λ shows a more strongly regularized model, where
coefficients tend to follow simpler paths from their point of entry. This effect
is taken to an extreme for λ = 1000. Each plot has an associated prediction
error plot, estimated using 15-fold cross-validation. While the two first choices
of λ produce seemingly useful models, the model corresponding to λ = 1000
perform only slightly better than the null model at its optimal value of δ (or
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Figure 2.17: Results from using the Elastic Net on the diabetes data set for dif-
ferent values of the ridge-type regularization parameter λ. The top row shows the
resulting coefficient paths, while the bottom row contains the corresponding 15-fold
cross-validation error curves.

its corresponding value of t =
∑

j |bji|) — clearly this model is too rigid to be
practical.

The inventors of the Elastic Net call the solution to Equation 2.64 the naive
Elastic Net. In this form, the model has poor performance with regards to pre-
diction, and is mainly useful for selecting a proper set of interesting variables. In
[175], it is argued that the naive Elastic Net incurs a double amount of shrink-
age. This statement is intuitively plausible; for a certain value of λ, we have
the ridge regression solution at δ = 0. For increasing values of δ, this already
shrunk estimate is further shrunk, while uninteresting variables are excluded
one by one. We wish to keep the results from variable selection, but adjust the
coefficients for the shrinkage either incurred by the ridge penalty or the LASSO
penalty. By multiplying the naive estimates by 1 + λ, the ridge shrinkage is
counteracted. More specifically,

belastic = (1 + λ)bnaive. (2.67)

All coefficients in the paths of Figure 2.17 have been adjusted accordingly. In
[175], more details are given regarding the appropriateness of this transforma-
tion, and several examples on different data sets show that the resulting predic-
tion performance is comparable, if not better, than that of ridge regression and
the LASSO.
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2.11 The Non-negative Garrote

According to the English dictionary, a garrote is a method of capital punish-
ment of Spanish origin in which an iron collar is tightened around a condemned
person’s neck until death occurs by strangulation or by injury to the spinal
column at the base of the brain. This is (perhaps) reminiscent of the way re-
gression coefficients are forced to exactly zero in this statistical namesake, the
non-negative garrote. The idea of the Garrote is to take an initial estimate of
the regression coefficients binit and shrink these towards zero. The shrinkage
concept is equivalent to previous methods in this chapter; the difference is that
the estimation is guided by a fixed set of target coefficients. The most com-
mon choice of the initial (target) estimate binit consists of the standard OLS
coefficients. Let Z = [x1b

init
1 . . . xpb

init
p ] be the matrix of component-wise con-

tributions to the fitted vector ŷ, such that ŷ = Xbinit = Z1p. The non-negative
garrote is then,

arg min
s

1
2
‖y − Zs‖2 + λ

p∑
i=1

si subject to si ≥ 0, ∀i. (2.68)

The result is a set of shrinkage coefficients s that determine the extent to which
each component of ŷ, or equivalently, each regression coefficient binit

i , is shrunk
towards zero. Once the optimal shrinkage coefficients are obtained, the corre-
sponding regression coefficients bgarrote are given by bgarrote

i = sib
init
i ,∀i.

For values of λ sufficiently large, the Garrote produces sparse solutions similar to
LAR, the LASSO and the Elastic Net. Part of the explanation for this behavior
is given by the solution to Equation 2.68 in the case of orthogonal (centered,
unit length) predictors, in which case minimization can be carried out separately
for each variable,

∂

∂sj

[
1
2
‖y − xjbjsj‖2 + λsj

]
= 0 ⇔

−yT xjbj + djb
2
jx

T
j xj + λ = 0 ⇔

−b2
j + djb

2
j + λ = 0 ⇔

dj = max

(
0, 1− λ

b2
j

)
. (2.69)

If the (initial) estimate bj is large, the shrinkage coefficient will be close to 1,
whereas it will be clamped to zero if bj is small.

For λ = 0, the shrinkage constraint is not active. If the initial estimate consists
of the OLS coefficients bOLS, the optimal s is the length-p vector of ones, in
which case the OLS solution is returned. For other choices of binit, what is
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the setup in Equation 2.68 with λ = 0 solving? The shrinkage coefficients may
take on any positive value in this case, yielding arbitrary values of the resulting
estimators bgarrote but forcing them to be consistent in sign with binit. Further,
bgarrote
i = 0 whenever binit

i = 0. Both the sparsity and sign patterns of binit are
in other words preserved. However, it is important to note that binit will not
be returned for λ = 0 unless binit = bOLS. Instead, the solution is likely to be
closer to bOLS than to the initial estimates, but being restricted to follow the
structure of binit. As λ grows, signs are preserved, while the solutions become
increasingly sparse.

The Garrote has been shown to have desirable properties related to consistency.
In general, a consistent estimator, for instance a vector of regression coefficients,
is consistent if, with probability tending to 1, the estimates become equal to the
true (unknown) parameters as the number of observations approaches infinity.
In other words, a consistent estimator is sure to be close to the correct parame-
ters if the underlying assumptions are met and we have enough observations. A
regularized method is called path consistent if the regularization path contains
the correct parameters as n →∞. For path algorithms that implement variable
selection, such as the Garrote, we also require that the correct set of non-zero
variables is identified at the position of the correct parameters. The Garrote is
path consistent if the initial estimate is consistent. In contrast, LAR is not path
consistent except under rather particular circumstances. Similar results exists
for the LASSO and the Elastic Net. This does not, however, imply that these
methods give poor estimates. While consistency apply in cases with n → ∞,
it is possible for e.g. the LASSO to achieve better results than the Garrote in
cases with a limited number of observations.

At this point it should come as no surprise that a path algorithm exits for
computing the entire solution set of the non-negative garrote. While other al-
gorithms calculate the path of the regression coefficients directly, the Garrote
establishes the path of the shrinkage coefficients s. The procedure closely par-
allels the corresponding algorithm for the LASSO, where variables may both
enter and leave the set of active variables. For the LASSO, a variable bi leaves
A if it becomes zero between two breakpoints. Similarly, the Garrote excludes
a shrinkage coefficient si if it reaches 0 between breakpoints, as we require
si > 0,∀i according to Equation 2.68. Using the OLS coefficients as the initial
estimates, the algorithm terminates when the inactive set I becomes empty and
all si reach 1. For other initial estimates, the algorithm is terminated when
there is no feasible step length γ such that 0 < γ < 1. In this case, γ is set
to 1, a final step is taken before the procedure finishes. Algorithm 2.5 gives
pseudo-code for the Garrote path algorithm.

Figure 2.18 shows results of using the Garrote on the diabetes data set using
the OLS coefficients as initial estimates. Figure 2.18(a) shows the resulting
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Algorithm 2.5 Path Algorithm for Breiman’s Non-negative Garrote

1: Let Z = [b1x1 . . . bpzp] where binit = [b1 . . . bp]T .
2: Initialize the vector of shrinkage factors s0 = 0p, the fitted vector µ = 0n,

and an iteration counter k = 0.
3: Initialize the active set A = ∅ and the inactive set I = {1 . . . p}
4: while γ 6= 1 do
5: Update residual r = y − µ
6: Find maximal covariance c = maxi∈I zT

i r
7: if drop condition then
8: Set drop condition to FALSE.
9: else

10: Move variable corresponding to c from I to A.
11: end if
12: Calculate the partial OLS solution sAOLS = (ZT

AZA)−1ZT
Ay

13: Calculate current direction d = ZAsAOLS − µ
14: Calculate drop condition step length γ̃ = mini∈A sik/(sik − sAi OLS), 0 <

γ̃ < 1
15: Calculate step length γ = mini∈I

xT
i r−c

xT
i d−c

, 0 < γ ≤ 1. If no such value of γ

exists, set γ = 1.
16: if γ̃ < γ then
17: γ = γ̃
18: Set drop condition to TRUE.
19: end if
20: Update shrinkage factors sk+1 = γ(sAOLS − sk) + sk

21: Update the fitted vector µ = µ + γd
22: if drop condition then
23: Move variable corresponding to γ̃ from A to I.
24: end if
25: k = k + 1
26: end while
27: Output the series of shrinkage factors S = {s0 . . . sk}

non-negative trace or the shrinkage coefficients. Individual si may be larger
than 1 before reaching the OLS solution where s = 1p. The quantity

∑
i si

is monotonically increasing along the path. Once this path is obtained, the
corresponding path for the Garrote regression coefficients is easily obtained by
weighting the initial estimates using the shrinkage coefficients. Figure 2.18(b)
shows the resulting trace. Figure 2.18(c) presents a plot of the Cp measure of
prediction error. A model with eight non-zero variables is selected using this
method. The calculation of Cp requires a measure of the number of parameters
of a particular solution along the Garrote path. One such measure is given in
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[170] and again in [169],

Df = 2
p∑

i=1

[I(si > 0)− si] , (2.70)

where I(·) is 1 if its argument is true and 0 otherwise.

2.12 References

Discussion and explanation of the linear model and its variants can be found
in most textbooks on multiple regression analysis. An old but useful reference
is Cohen and Cohen [21]. Many such books also provide information on the
bias-variance decomposition and the Gauss-Markov theorem. These properties
are for instance carefully explained by Hastie et al. [59].

Pointwise regression is also a commonplace technique and a natural choice of
analysis for high-dimensional problems where p >> n. Such problems frequently
arise in image analysis where there are typically more voxels/pixels (variables)
than images (observations). Karl Friston and members of the Wellcome Depart-
ment of Imaging Neuroscience in London have been instrumental in developing
techniques for analysis and inference in such problems. Friston et al. [46] pro-
vides a good starting point.

Ridge regression, the earliest of the continuously regularized methods presented
in this chapter, was developed and presented concurrently by Hoerl and Kennard
[65] and Marquardt [97]. Its efficient computation using matrix decomposition
has appeared in several papers. Hastie and Tibshirani [58] provide an overview
of statistical techniques with quadratic regularization with such computational
advantages, including ridge regression. The passage on the relation between
strongly regularized ridge regression and pointwise regression is previously un-
published.

The presentation of stepwise procedures such as forward selection is included
here since it provides a basis for Least Angle Regression and related methods.
Several authors do, however, argue against its use. Babyak [4] provides a par-
ticularly pleasant discussion.

Least Angle Regression (LAR) was developed by Efron et al. [40]. In their mon-
umental paper, they propose the LAR method, develop an efficient algorithm,
investigate its relation to the LASSO and to stagewise regression (cf. [59], Algo-
rithm 10.4), and provide modifications to the LAR algorithm such that the entire
regularization path of the LASSO and stagewise regression can be obtained at
low computational cost, all backed up by careful theoretical justification.
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(a) The regularization path for the non-negative shrinkage
coefficients of the Garrote on the diabetes data set using
binit = bOLS. The OLS solution corresponds to s = 1p.
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(b) Trace of the non-negative garrote regression coefficients.
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(c) Prediction error measured by the Cp estimate along the
path.

Figure 2.18: Results for the non-negative garrote on the (entire) diabetes data set.
Using Cp, a model with 8 non-zero coefficients was selected.
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The LASSO regression procedure was suggested by Tibshirani [157]. It became
known for its consistency in selecting a reasonable set of important variables,
but was hampered by its complex computation. The LAR paper [40] changed
this, such that the entire LASSO path could be obtained at roughly the same
computational cost required to solve a single OLS problem. Preceding work by
Osborne et al. [109] presents a similar, but less direct, algorithm for the LASSO.
The estimate of the number of degrees of freedom for the LASSO mentioned
in Section 2.7 was proposed by Efron et al. [40], and further discussed and
consolidated by Zou et al. [176]. Suggestions for extensions of the LASSO have
been proposed by e.g. Tibshirani et al. [158] and Zou [174].

The Elastic Net regression method was proposed by Zou and Hastie [175].

The non-negative garrote was proposed by Breiman [16], and represents a prede-
cessor of the LASSO. Yuan and Lin [170] develop an extension of this and similar
algorithms for handling of categorial variables such as gender or car make. They
also develop the estimate for the degrees of freedom of the Garrote, given here
in Equation 2.70. In a follow-up paper [169], the basis for Algorithm 2.5 is de-
scribed in detail, along with an investigation into the consistency of the Garrote
and related methods.

The list of regularized statistical methods presented in this chapter is far from
exhaustive. Other methods have been presented by George and McCulloch [49],
Fu [47], Ojelund et al. [105], George and Foster [48], Fan and Li [42], and Shen
and Ye [131]. Rosset and Zhu [122] discuss sufficient conditions such that a
regularized method in the loss+penalty form has a piecewise linear solution
path, and present examples.



Chapter 3

Classification

Classification is the act of separating observations into groups according to char-
acteristics of the population. One example is the separation of people into males
and females according to their length, weight and hand size. In linear regres-
sion, we estimate a regression equation, forming a hyperplane that models the
response variable as a function of the predictors. In linear classification, we seek
the hyperplane(s) that discriminates best between groups. A classifier is built
from a training data set consisting of the measured data X of size (n× p) with
n being the number of data points and p being the number of variables1, and a
corresponding vector of labels y, defining class belonging for each observation.
The labels must be distinct, but are otherwise arbitrary; although choosing -1
and +1 as labels in a two-class problem frequently simplifies the mathematical
modus operandi. We will limit the exposition in this chapter to linear classifi-
cation with two classes. Problems with two or more classes are usually handled
by establishing a discriminant function for each class separately or between
each pair of classes, and subsequently picking the class that most prominently
separates from the others, given an unclassified input data point x.

In the first section of this chapter, we will review classic ways of discriminating
between groups, dating back to work by Fisher [44]. The discussion follows the
one given by Hastie et al. [59] closely, both in derivation and notation.

1In classification, the variables are sometimes known as traits, or characters.
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3.1 Linear and Quadratic Discriminant Analysis

One way of discriminating between classes is to estimate the quantity

P (G = k|X = x). (3.1)

Given an unclassified observation x, this measures the probability that x belongs
to class k. Here, G is a random variable denoting group belonging, and we
assume that there are K classes in total. Point indices that are associated with
a group i are collected in the set Gi. Bayes theorem states that

P (G = k|X = x) =
P (X = x|G = k)P (G = k)

P (X = x)
. (3.2)

To classify x, the probability in relation to each class is calculated and the most
probable class is picked. The denominator in Equation 3.2 will be the same
in each of these calculations and can therefore be omitted. The probability of
observing x given a class label k is denoted P (X = x|G = k) and is called the
class-conditional probability function, while the a priori probability of a specific
class is denoted P (G = k) ≡ πk. In linear and quadratic discriminant analysis,
the class-conditional probability functions are assumed to be continuous and
Gaussian with a separate mean and variance-covariance matrix for each class.
In this form, each such function is a probability density function which we denote
fk(x). This yields P (G = k|X = x) ∝ fk(x)πk. The Gaussian density fk(x)
has the form

fk(x) =
1

(2π)p/2|Σk|1/2
exp

[
−1

2
(x− µk)Σ−1

k (x− µk)T

]
, (3.3)

where Σk is the variance-covariance matrix of class k and µk is the ditto mean,
or centroid.

Since we are considering two classes G = k and G = l at a time, a suitable
decision function can be defined by the ratio P (G = k|X = x)/P (G = l|X = x).
This function will be 1 for equal probabilities, larger than 1 if class k is more
probable and less than 1 if class l is more probable. To arrive at a decision
function that is zero for equal probabilities, we take the logarithm of this ratio.
As seen in the following derivation, this also has the benefit of simplifying the
calculations to a large extent.

log
fk(x)πk

fl(x)πl
= log

|Σl|1/2 exp
[
− 1

2 (x− µk)Σ−1
k (x− µk)T

]
πk

|Σk|1/2 exp
[
− 1

2 (x− µl)Σ
−1
l (x− µl)T

]
πl

= δk(x)− δl(x)

(3.4)

where

δi(x) = −1
2

log |Σi| −
1
2
(x− µi)Σ

−1
i (x− µi)

T + log πi, i ∈ {k, l} (3.5)
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The function δi(x) is called the discriminant function. There is one such function
for each class and Equation 3.4 shows that point x is assigned to the class
with the largest value of the corresponding discriminant function. Furthermore,
the decision function δk(x) − δl(x) = 0 is quadratic. Hence, the classification
procedure in this form is known as quadratic discriminant analysis (QDA). If
we make the additional assumption that the group-specific variance-covariance
matrices are equal, that is Σk = Σl ≡ Σ, then the expression further simplifies
into

log
fk(x)πk

fl(x)πl
= −1

2
(µk + µl)Σ

−1(µk − µl)
T + xΣ−1(µk − µl)

T + log
πk

πl

= δk(x)− δl(x), (3.6)

now with

δi(x) = −1
2
µiΣ

−1µT
i + xΣ−1µT

i + log πi, i ∈ {k, l}. (3.7)

As seen, this additional assumption leads to linear discriminant functions and
indeed, the procedure is known as linear discriminant analysis (LDA). If the
relevant assumptions are met for each method, and the population means and
dispersion matrices are known, these methods can be shown to be optimal,
meaning that they will do better on average than any alternatives in such cases.
Naturally, there are difficulties in making sure that the distributions are Gaus-
sian and in the proper estimation of Σi, µi and πi for all classes i. The standard
approaches to estimating these are

πi =
ni

n
(3.8)

µi =
1
ni

∑
j∈Gi

xj (3.9)

Σi =
1

ni − 1

∑
j∈Gi

(xj − µi)
T (xj − µi) (3.10)

Σ =
1

n−K

K∑
i=1

∑
j∈Gi

(xj − µi)
T (xj − µi). (3.11)

Figure 3.1 shows example results from using LDA and QDA on a data set with
two classes containing 150 observations each. The elements of each group has
been drawn from Gaussian distributions with parameters{

µ1 = [ 0.5 0.5]
µ2 = [−0.5 −0.5] Σ1 =

[
3 0
0 1

]
Σ2 =

[
1 −0.8

−0.8 1

]
. (3.12)

The figures show the estimated decision boundary in black. This boundary uses
Equations 3.8–3.11 to estimate the parameters. Shown in green are the optimal
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decision boundaries where the population parameters in (3.12) have been used.

x1

x2

(a) Linear discriminant analysis.

x1

x2

(b) Quadratic discriminant analysis.

Figure 3.1: Classification using linear and quadratic discriminant analysis. Shown in
blue and red are group 1 and group 2 respectively. Optimal boundaries are shown in
green. The boundary estimated by QDA according to the equation δ1(x)− δ2(x) = 0
has split up, forming two ridges of zero-crossings isolating class 2 inside the more
dispersed class 1.

3.2 Optimal Separating Hyperplanes

The type of discriminant analysis presented in the previous section is simple
to implement and interpret, and often performs well. However, we note two
properties that arguably limit the method.

• The decision boundary is estimated using information from the entire data
set. This means that observations that are far from the boundary have as
much influence on the results as observations that are close to the interface
between the two classes. A method that focuses on this interface region,
rather than the entire sample space is of interest.

• In relation to the former point, a weakness of LDA is that points in the
training data set may be misclassified, also in cases where the data are
separable using a single linear decision boundary. A sensible requirement
of a classification method is that the estimated boundary separates the
training data whenever this is possible.

The Optimal separating hyperplane (OSH) represents a classification method
that attempts to resolve these limitations. As before, classes are separated using
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a hyperplane. However, while LDA uses the centroid and variance-covariance
structure of each class to define this plane, the optimal separating hyperplane
is positioned and oriented such that the separation between classes becomes
maximal. This separation is defined as the distance from the hyperplane to the
closest point in each class.

Before we give a formal explanation of OSH, a quick review of the distance from
a point to a plane is reviewed. Given the plane P : xb + b0 = 0, the signed
distance from an arbitrary point x0 to P is

DP(x0) =
x0b + b0

‖b‖
. (3.13)

To see this, note first that b is a normal vector to P. Denote an arbitrary
vector from P to x0 by v = x−x0. The projection of v onto b gives vb/‖b‖ =
(x0 − x)b/‖b‖ = DP(x0), where the latter follows since xb + b0 = 0.

It is convenient to define class labels by -1 and +1, such that the expression
yiDP(xi) is positive for a correctly classified point xi, regardless of which class
it belongs to, and negative for misclassified points. That is, the class in the
direction of the normal vector b, for which DP(xi) is positive, is assigned la-
bel +1 and conversely for the other class. In practice, it is irrelevant which
class is assigned which label, since b is optimized upon in the OSH method; b
will therefore take on a suitable direction to fit the chosen class labels at the
optimum.

Using the above definitions, OSH can be formulated as a constrained maximiza-
tion problem,

arg max
b,b0

C subject to yi
xib + b0

‖b‖
≥ C, ∀i. (3.14)

In words, this optimization problem translates to ”adjust plane parameters b
and b0 such that the smallest distance from the resulting plane to any point xi

is maximized”. Classification is implied by this procedure, as any misclassified
points result in negative distances and thus, a lower value of C.

Dropping the normalization term from Equation 3.13 we obtain a distance mea-
sure which is dependent on the length of b. A short normal vector will result
in relatively larger distances than if a longer normal vector is used as a metric
for the distance calculation. This introduces another degree of freedom to the
OSH optimization problem. However, we can instead choose to fix C (at C = 1
here) and write the setup as a minimization problem on the length of b.

arg min
b,b0

1
2
‖b‖2 subject to yi(xib + b0) ≥ 1, ∀i. (3.15)
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We choose to minimize the squared length of b divided by 2 rather than ‖b‖
since this simplifies the coming expressions. Trying to paraphrase this equivalent
optimization problem would result in something along the lines of ”find the
smallest possible metric ‖b‖ such that the smallest distance from the plane to
a point is equal to or greater than 1”.

Equation 3.15 consists of a quadratic minimization criterion with affine con-
straints, yielding a convex optimization problem. This is a desirable property
as this tells us that the solution is unique. However, a solution does not neces-
sarily exist. If the data are not separable, there is no unique choice of b and b0

such that the constraints in Equation 3.15 can be fulfilled.

Convex problems can often be reformulated in an equivalent (dual) manner
which is easier to solve. Using Lagrange multipliers, we can incorporate the
constraints into the criterion function, creating an unconstrained minimization
problem. The resulting criterion function is

LP =
1
2
‖b‖2 −

n∑
i=1

αi [yi(xib + b0)− 1] . (3.16)

We do, however, require that αi ≥ 0∀i. As for any ”unconstrained” function
that is to be minimized, the derivatives are zero at the optimum. This yields,

∂LP

∂b
= b−

n∑
i=1

αiyixT
i = 0 ⇔ b =

n∑
i=1

αiyixT
i (3.17)

∂LP

∂b0
=

n∑
i=1

αiyi = 0 (3.18)

Using these results, Equation 3.16 can be written in its dual form,

LD =
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjxixT
j = α1n −

1
2
αT YXXT Yα, (3.19)

where Y = diag(y). The resulting optimization problem is

arg max
α

= α1n −
1
2
αT YXXT Yα subject to αi ≥ 0, ∀i. (3.20)

Efficient solvers for quadratic programming problems such as this are available,
or are part of larger computing environments. Once a solution α has been
obtained, b can be recovered using Equation 3.17. To recover b0 we use that
the constraint in Equation 3.15 is active for those points that are closest to P.
Denoting this set of points M, the intercept is given by

b0 =
1− yixib

yi
for some i ∈M, (3.21)
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which, since yi ∈ {−1,+1}, can be expressed

b0 = yi − xib i ∈M, (3.22)

The remaining question is how the set M is established. A useful identity is
given by the complementary slackness condition

αi [yi(xib + b0)− 1] = 0 ∀i. (3.23)

If αi > 0 then yi(xib+b0)−1 must be equal to zero which means the constraint
is active for this point — it belongs to M. Conversely, if yi(xib + b0)− 1 > 0,
αi must be equal to zero. Such a point is not in M.

Figure 3.2 shows results from applying OSH to a data set with two classes.
The black line represents the hyperplane, while the thinner green lines show the
resulting margin with width 2C = 2/‖b‖. Points in M are marked using black
squares. The LDA decision function is also shown in red. LDA misclassifies one
point in this data set.
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Figure 3.2: Optimal separating hyperplane for a small data set using a linear kernel.
The hyperplane is shown in black, while the boundaries of the resulting margin are
green. The LDA boundary is shown in red, misclassifying one training data point.

3.2.1 Non-linear Generalization

As for any statistical method, we can generalize the procedure to model non-
linear decision boundaries using basis expansions. The idea is to solve the
classification problem in an expanded space, and use the resulting boundary
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function to classify observations in the original space. If the dimensionality of
the problem is increased in a sensible way, it becomes increasingly simple to
separate between classes. In fact, in a sufficiently high-dimensional space, any
data set without duplicate points is separable. Expanding each point using the
transformation h(xi), Equation 3.20 becomes

arg max
α

= α1n −
1
2
αT Yh(X)h(X)T Yα subject to αi ≥ 0, ∀i. (3.24)

The basis expansion h(xi) increases the dimensionality of xi from one to an
arbitrary number of dimensions. Regardless of the dimensionality of h(x), the
resulting matrix of inner products h(X)h(X)T will have size (n×n). This means
that the complexity of the resulting optimization problem is unchanged. It also
means that we not necessarily have to specify the form of h(x). Instead it is
sufficient to specify the form of the inner product h(xi)h(xj)T . This scalar value
is commonly denoted K(xi,xj) or simply Ki,j . The matrix of all combinations
of i and j is denoted K and is called the kernel matrix. Common choices of
kernels are

Linear kernel: Ki,j = xixT
j

Polynomial kernel: Ki,j = (1 + xixT
j )d

Gaussian kernel: Ki,j = exp(−‖xi − xj‖2/σ).

The linear kernel is equivalent to a first degree (d = 1) polynomial kernel and
represents the original non-transformed formulation. Gaussian kernels are the
most common choice for methods that can be fully specified using kernels. The
width of the Gaussian kernel is tuned by the parameter σ. Large values of σ lead
to smooth and coherent boundary functions while small values lead to wiggly
and clustered results. For some kernels, there is a corresponding basis function
h(x) that can be specified. For other kernels such as the Gaussian kernel, this
basis function is more difficult to specify, and may even be infinite-dimensional.

To classify an observation xi, we simply evaluate the resulting plane equation
xib + b0 and check the sign of the result. For visualization, it is of interest to
obtain a functional expression for the resulting decision boundary in the original,
non-expanded space. However, this is difficult for most kernels. Instead, the
plane equation is evaluated over a fine grid of points covering the area of interest.
We then find the approximate positions where this function changes sign and
thus obtain a set of points on the boundary. The kernel formulation of the plane
equation is

P :
n∑

i=1

αiyiK(x,xi) + b0 = 0 (3.25)
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where

b0 = yi −
n∑

j=1

αjyjK(xi,xj) i ∈M. (3.26)

Note that we cannot recover an explicit representation of b unless the basis
function corresponding to the employed kernel is known.

Figure 3.3 shows the classification problem from Figure 3.2 computed using
OSH with a Gaussian kernel with σ = 15. For this rather large value of σ, the
solution is not vastly different from the one obtained using a linear kernel. For
smaller values of λ, the boundary becomes increasingly compact, surrounding
one of the classes which is thereby separated from ”everything else”. Such a
boundary will generalize poorly as new observations are classified.
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Figure 3.3: Optimal separating hyperplane for the same data set as in Figure 3.2
using a Gaussian kernel with σ = 15.

Returning to the reason we considered using basis expansions for OSH, we
now consider overlapping data. In this case, we must use a sufficiently high-
dimensional basis expansion. Here, we will exclusively use the Gaussian kernel,
for which sufficiently high-dimensional translates to a sufficiently small value of
σ. Figure 3.4 shows two cases. The data in Figure 3.4(a) have small overlap,
and the resulting boundary for σ = 500 has a rather smooth shape, except in
cases where a small detour must be made to avoid misclassifications. We have
good reason to suspect that such small deviations from a more general shape are
due to overfitting. In Figure 3.4(b) the overlap is more prominent, resulting in a
severely overfit decision boundary, even with σ set as high as is computationally
feasible at σ = 1.5. Clearly, this boundary will not be of much use as novel
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observations are to be classified, and is difficult to interpret.
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Figure 3.4: Using optimal separating hyperplanes to separate overlapping data.
When the overlap is small, useful boundaries may be obtained, while severe overfitting
is unavoidable if the overlap is large.

The following section presents a regularized form of optimal separating hyper-
planes which is better equipped to deal with overlapping data.

3.3 Support Vector Machines

One way of dealing with overlapping data is to use the framework provided by
optimal separating hyperplanes, but allowing a small set of points to be misclas-
sified. If sufficiently many points are allowed on the wrong side of the decision
boundary, the classification problem will have a solution, also in the original
space using a linear kernel. One such approach is the support vector machine
(SVM). Similarly to optimal separating hyperplanes, the SVM maximizes the
margin between the classes, but allows observations to fall on the wrong side
of the margin. If the distance between such an observation and the margin is
greater than 1, the point is on the wrong side of the decision boundary and
the point is misclassified. If a point xi is on the wrong side of the margin, the
corresponding distance is denoted ξi. Figure 3.5 introduces this notation. For
points on the correct side of the margin, ξi = 0.

To minimize the misclassification rate, we would like the total distance
∑

i ξi

to be as low as possible. At the same time, the margin should be made as
large as possible to ensure good separation between classes. These objectives
work against each other, and a weighting term λ is introduced to balance this
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Figure 3.5: Notation and geometry of the support vector machine. Apart from the
decision boundary, a margin with total width 2 is created where each point inside
the margin has an associated distance measure ξ. Points with ξ > 1, e.g. x3, are
misclassified. Distances are measured relative to the size of the normal b of the
decision boundary.

trade-off. The resulting optimization problem is

arg min
b,b0

n∑
i=1

ξi +
λ

2
‖b‖2 subject to yi(xib + b0) ≥ 1− ξi, ξi ≥ 0 ∀i.

(3.27)

Most points xi will reside on the correct side of the decision boundary at a
distance greater that 1. For such points, ξi will be zero. For points closer to
the boundary, ξi > 0. For large values of λ, focus is on constructing a large
margin, and the ξi will become larger to make such a solution possible. For
smaller values of λ, the focus is on minimizing the size of the ξi, resulting in a
more narrow margin.

Standard computation of the SVM proceeds along the same lines as optimal
separating hyperplanes. A primal optimization function is first constructed
using Lagrange multipliers,

LP =
n∑

i=1

ξi +
λ

2
‖b‖2 −

n∑
i=1

αi [yi(xib + b0)− 1 + ξi]−
n∑

i=1

γiξi

subject to αi ≥ 0, γi ≥ 0, ∀i. (3.28)

This function is then differentiated and set to zero, resulting in the following
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expressions,

∂LP

∂b
= λb−

n∑
i=1

αiyixT
i = 0 ⇔ b =

1
λ

n∑
i=1

αiyixT
i (3.29)

∂LP

∂b0
=

n∑
i=1

αiyi = 0 (3.30)

∂LP

∂ξi
= 1− αi − γi = 0 ⇔ αi = 1− γi (3.31)

We also have the useful complementary slackness conditions,

αi [yi(xib + b0)− 1 + ξi] = 0 (3.32)
γiξi = 0 (3.33)

Points on the correct side of the margin, with distances larger than 1, are thought
of as being outside the margin, and are collected in a set O. Points inside the
margin are in the set I. Some points will fall exactly on the edge of the margin,
and are assigned to a set M. From Equation 3.31, we see that 0 ≤ αi ≤ 1,∀i.
Further, from Equation 3.32 we see that αi∈O = 0. From Equations 3.30 and
3.33 we conclude that αi∈I = 1. A multiplier αi can be shown to be a continuous
function of the regularization parameter λ, αi∈M will therefore travel from 1 to
0 as point xi passes the edge of the margin from the inside and out, and vice
versa.

Inserting Equations 3.29, 3.30 and 3.31 into Equation 3.28 and simplifying, we
obtain the following dual function,

LD = α1n −
1
2λ

αT YXXT Yα, (3.34)

where Y = diag(y). This function is remarkably similar to the corresponding
function for optimal separating hyperplanes (cf. Equation 3.19). We see that
this representation lends itself to the use of kernels, and kernel notation will be
used from this point on. The resulting optimization problem is

arg max
α

= α1n −
1
2λ

αT YKYα subject to αi ≥ 0, ∀i. (3.35)

The equation for the hyperplanar decision boundary is denoted f(x), and is
equally similar to that of optimal separating hyperplanes,

P : f(x) =
1
λ

n∑
i=1

αiyiK(x,xi) + b0 = 0 (3.36)
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where

b0 = yi −
1
λ

n∑
j=1

αjyjK(xi,xj) i ∈M. (3.37)

Typically, this quadratic programming problem is solved for a particular value
of λ using standard optimization software. Figure 3.6 shows results on the
overlapping data set from Figure 3.4(b) using various values of λ. In the top
row, a linear kernel has been used while the bottom row shows results from
using a Gaussian kernel with σ = 10.

x1x1x1

x1x1x1

x2x2x2

x2x2x2

λ = 5.0

λ = 5.0 λ = 100.9 λ = 499.5

λ = 0.2 λ = 24.6

Figure 3.6: Classification of an overlapping data set using the support vector ma-
chine. In the top row, a linear kernel has been used while a Gaussian kernel with
σ = 10 has been used in the bottom row. Black lines represent the decision function
f(x) = 0, while green lines represent the boundaries of the margin where f(x) = ±1.

3.3.1 Computation

In line with the theme of this thesis, we will now review an algorithm that
computes the entire regularization path of the SVM, using the fact that the
Lagrange multipliers αi are piece-wise linear functions of the regularization pa-
rameter λ. The proof and the algorithm takes an alternative but equivalent
route compared to the original account by Hastie et al. [60]. The derivation
presented here is arguably more direct and better suited for implementation.

We will begin by stating some useful definitions. We define the set A as the
set including the indices of all training data points, i.e. A = I ∪ O ∪M. Using
indices and sets of indices, we define submatrices as A{rows},{columns}. For
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instance, the submatrix Ki,A corresponds to the ith row of the kernel matrix K.
The breakpoints at which the piecewise linear functions αi(λ) change are called
events. There are four types of events.

1. A point with index i joins the margin from the inside, I →M.

2. A point with index i joins the margin from the outside, O →M.

3. A point with index i leaves the margin for the inside, M→ I.

4. A point with index i leaves the margin for the outside, M→O.

Between events, the sets do not change.

The specification of the SVM path algorithm consists of three parts. First, we
derive the functional form of the multipliers αi(λ) between events. We then
discuss at what value of λ the next event occurs. This makes it possible to trace
the multipliers along the path. In the third part, we take a look at how to find
a suitable starting point on the path.

To derive an expression for the multipliers, we begin by specifying the distance
function (plane equation) f(x) evaluated for points in the training data set in
matrix form,

f(xj) =
1
λ
Kj,AYα + b0 = (3.38)

=
1
λ

(Kj,A −Ki,A)Yα + yi i ∈M (3.39)

Next, we note that yjf(xj) = 1 ∀j ∈ M. This results in |M| equations that
again can be summarized in matrix form,

1
λ
YM,M

[
KM,A − 1|M|Ki,A

]
Yα + yMyi = 1|M| i ∈M (3.40)

Using that αj = 0 ∀j ∈ O and αj = 1 ∀j ∈ I, this expression can be
expanded and rearranged into

YM,M
[
KM,M − 1|M|Ki,M

]
YM,MαM = λ(1|M| − yMyi)

−YM,M
[
KM,I − 1|M|Ki,I

]
YI,I1|I| i ∈M (3.41)

By defining a matrix H = Y [K− 1nKi,A]Y we can reduce this rather cum-
bersome expression into

HM,MαM = λ(1|M| − yMyi)−HM,I1|I| i ∈M (3.42)
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For j = i, the ith row of H will be zero, making the system of equations rank
deficient. However, we can replace this degenerate equation by the relation in
Equation 3.30. Writing this equation

yT α = yT
MαM + yT

I 1|I| (3.43)

we see that it is sufficient to replace the ith row of H by yT . We call this
augmented matrix H̃. This matrix and its relevant submatrices are now full
rank and we can obtain the following expression for the Lagrange multipliers as
functions of λ,

αM = λH̃
−1

M,M(1− yMyi)− H̃
−1

M,MH̃M,I1|I| = λpM + qM (3.44)

This shows that the multipliers are linear functions of λ. The equation for the
complete set of multipliers is α = λp+q where the elements of p and q for sets
I and O are zero, except for qI = 1, which ensures αI = 1|I|.

Now that we have derived the behavior of the multipliers between events, we
seek a value λl+1 of λ where the next event occurs. For reasons that will be
explained below, we trace the path backwards, starting at a large value of λ and
moving towards smaller values. The value of λ where the last event occurred is
denoted λl. We are therefore seeking the value λl+1 < λl of the next event. We
treat each of the four events defined above separately.

1. When the first event (I → M) occurs for a point xj , the distance from
xj to the decision boundary will be exactly 1. For each point in I we can
derive the value of λ at which this event occurs by solving the equation
yjf(xj) = 1, j ∈ I for λ,

1
λ
Hj,A(λp + q) + yjyi = 1, i ∈M, j ∈ I ⇔

λ =
HI,Aq

1− yIyi −HI,Ap
, i ∈M. (3.45)

The result is |I| candidate values of λ.

2. Equivalently, the second event (O →M) occurs at the following values of
λ,

λ =
HO,Aq

1− yOyi −HO,Ap
(3.46)

3. When the third event (M → I) occurs for a point xj , its corresponding
multiplier will obtain αj = 1. For all points inM, we can find the values of
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λ where this event occurs be setting Equation 3.44 equal to 1 and solving
for λ,

λ =
1− qM

pM
(3.47)

4. Similarly, the final event (M→ O) occurs as αj = 0. The corresponding
values of λ are

λ = −qM
pM

(3.48)

A candidate value of λ is calculated for each point and each relevant event,
resulting in one candidate value for each point in I and O, and two candidate
values for each point in M. Out of these candidates, the value of λ where the
next event occurs must be the largest candidate value λl+1 such that λl+1 < λl.

Finally, we define a suitable starting point for the path. Using the standard
quadratic programming technique to obtain values of the multipliers αi for a
particular value of λ allows us to start the algorithm at any point along the
path. However, we would like to start the algorithm at one of the endpoints
of the path and work our way towards the other. Computationally beneficial
solutions occurs for very large values of λ, corresponding to a very large margin.
There are two types of behavior of the SVM for large values of λ, depending on
whether there are equally many observations in each class or not. As in [60], we
let n− and n+ denote the number of observations in each class, and I− and I+

denote the corresponding indices for points inside the margin.

If n− = n+, there is a large value of λ at which one observations from each class
enters M from I, while the rest of the observations remain in I. The two must
enter concurrently — otherwise we have a violation of Equation 3.30. If the plane
equation (3.38) for the decision boundary was known, we could identify these
observations by finding the most remote observation in each class. However,
λ and b0, which are the unknown elements of this expression, are equal for all
observations. Further, we have α = 1. Hence, we have,

f(xj) ∝ Kj,AYα = Kj,Ay. (3.49)

Therefore, the first observation from each class to enter M is the one with
the maximal distance according to this equation with j ∈ I− and j ∈ I+

respectively. Now that the indices of the elements in M have been disclosed,
we can find the corresponding values of λ and b0, again using Equation 3.38,
yielding two equations with two unknowns. The system of equations is

yM[KM,Ay 1]
[

1/λ
b0

]
= 1, (3.50)
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which can be solved to obtain λ and b0.

The unbalanced case where e.g. n+ > n− is both computationally and theoret-
ically more difficult. For large values of λ and n+ > n−, the plus-side margin
will stay positioned among the most remote observations in I+ while the de-
cision boundary and the opposite margin moves closer as λ shrinks. The αi

remain constant until the minus-side margin reaches one of the observations in
I+. We wish to find the value of λ at which this event occurs. Up to this point,
αi = 1, i ∈ I−, meaning that yT

I−αI− = −n−. As always, we require Equa-
tion 3.30 to hold. Therefore,

∑n
i=1 αi = 2n−. This sum will remain constant

until the first event occurs. Maximizing the dual in Equation 3.28 is therefore
equivalent to the following minimization problem in this case,

arg min
α

αT YKYα

subject to αi = 1 ∀i ∈ I−, 0 ≤ αi ≤ 1 ∀i ∈ I+,
n∑

i=1

αi = 2n− (3.51)

Using that αi = 1 ∀i ∈ I−, the setup can be further simplified. To see this,
we expand the criterion function into parts belonging to each class.

αT YKYα

=
[
αT

+ αT
−
] [ Y+ 0

0 Y−

] [
K+ K+−
K−+ K−

] [
Y+ 0
0 Y−

] [
α+

α−

]
= αT

+Y+K+Y+α+ + 2yT
−K−+Y+α+ + yT

−K−y− (3.52)

This results in the reduced minimization problem

arg min
α+

yT
−K−+Y+α+ +

1
2
αT

+Y+K+Y+α+

subject to 0 ≤ αi ≤ 1 ∀i ∈ I+,
∑
i∈I+

αi = n− (3.53)

The corresponding setup for the case where n− > n+ is equivalent, but with a
change of signs.

Studying the values of α that we obtain from this procedure, we can identify
points in M if 0 < α < 1. Points in I are harder to identify, as we cannot
distinguish these from points that have just entered M from I. The same goes
for points in O which cannot be separated from points on the interface between
M and O. However, there are other ways to classify the remaining points.
There are two possible cases. The first is when M is empty and the surplus
of multipliers from I+ are in O+. In this case, we end up with the balanced
situation where |I|− = |I|+. At this instant, one element from each class has
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just entered M from I, otherwise Equation 3.30 would be violated. We identify
these variables in the same way as for the balanced initialization procedure
described above. Note that Equation 3.49 is used with the current vector of
multipliers instead of α = 1. The other possibility is that M is nonempty
and contains positive elements with 0 < αi < 1. In this case, a single element
from I− has just entered M and has αi = 1. To identify which element this
is, Equation 3.49 is used to calculate the distances for all elements in I−, and
the most remote observation is singled out. The calculation of λ and b0 then
proceeds as above, using Equation 3.50.

At any point along the path, the margin set M may become empty. Two new
points will then join M in the next event, one from each class. This is the same
situation as for the balanced initialization procedure described above, but where
the current states of I and α are used.

After this ordeal, we arrive at a complete algorithm for computing the SVM
path. Algorithm 3.1 states the procedure.

Figure 3.7 depicts the paths corresponding to the two rows of images in Fig-
ure 3.6. In the top path, a linear kernel as been used, while a Gaussian kernel
with σ = 10 was employed in the bottom path. Typically, less constrained solu-
tions, such as those obtained using a Gaussian kernel, lead to more complicated
paths.

50 150 200 250 300 350 400 450 500

10 15

λ

λ

α

α

Linear kernel

Gaussian kernel, σ = 10

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

0

0

20

100

1

1

5

Figure 3.7: Example paths of the support vector machine, corresponding to the rows
of images in Figure 3.6. The top path corresponds to a linear kernel, while a Gaussian
kernel with σ = 10 has been used in the bottom path.
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Algorithm 3.1 Path Algorithm for the Support Vector Machine
1: Init I = A, B = ∅, O = ∅, α = 1.
2: if classes are balanced such that n+ = n− then
3: For all elements in I, calculate distances from margin according to Equa-

tion 3.49.
4: Find most remote element in I+ and I−.
5: Move indices corresponding to these elements from I to M.
6: Calculate λ and b0 corresponding to this event using Equation 3.50.
7: else
8: if n− > n+ then
9: Switch the sets I+ and I− by setting y = −y and switching n+ and n−.

10: end if
11: Calculate α using the quadratic programming setup of Equation 3.3.1
12: Update sets according to the values of α.
13: if M = ∅ then
14: Add the most remote point in I+ to M as done in the balanced case

above.
15: end if
16: Add the most remote point in I− to M as done in the balanced case

above.
17: Calculate λ and b0 according to Equation 3.50, negating the answer if the

sets I+ and I− were switched above.
18: end if
19: while λ > λmin do
20: if M = ∅ then
21: Move elements to M and find new values of λ and b0 according to the

balanced case above.
22: else
23: Compute p and q according to Equation 3.44.
24: Calculate λ candidates according to event 1 using (3.45).
25: Calculate λ candidates according to event 2 using (3.46).
26: Calculate λ candidates according to event 3 using (3.47).
27: Calculate λ candidates according to event 4 using (3.48).
28: Choose candidate λl+1 with the largest value smaller than λl.
29: Calculate new coefficients, α = λl+1p + q and b0 = yi −Ki,AYα for

some i ∈M.
30: Update sets accordingly.
31: end if
32: end while
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3.4 Support Vector Domain Description

The support vector domain description (SVDD) is a technique that is strongly
related to the support vector machine, but is solving a different type of classi-
fication problem. Previous classification methods in this chapter discriminate
between known classes, using a training data set to build a classifier which is
then used to classify new observations. Clustering is another class of statistical
methods that also divides the input data into regions according to characteris-
tics of the data set, but whereas classification methods depend on the training
set of paired observations and labels, clustering methods estimate regions di-
rectly from the properties of the data in X; there is no vector y of labels to
guide the process. The SVDD is a method that falls somewhere in-between
classification and clustering. The goal of the method is to separate trustworthy
data from outliers. This process is known as one-class classification as we try
to isolate one class from ”everything else”. Another name is data description or
domain description. The resulting decision boundary will encapsulate interest-
ing observations and leave out uninteresting ones, leading to a geometry that is
characteristic for the support of the data set. Similar to clustering, there are no
labels to guide the process; instead it relies on differences found in the variables
themselves.

The SVDD models the decision boundary using a hypersphere. Observations
enclosed by this function are considered trustworthy data while points on the
outside are treated as outliers. The hypersphere is specified by its p-dimensional
center a and its scalar radius R. Figure 3.8 outlines the geometry of one solution
for the SVDD in p = 2 dimensions. The variable ωi represents the perpendic-
ular distance from the boundary to an exterior point xi. For interior points,
and points positioned exactly on the boundary, ωi = 0. The distance ωi corre-
sponding to an exterior point i can be written ωi = ‖xi − a‖ − R, however, in
the following we will use the closely related measure ξi = ‖xi− a‖2−R2. Simi-
larly to support vector machines, the SVDD is defined through an optimization
problem that estimates the parameters a, R and ξ such that the volume of the
hypersphere is as small as possible, but also such that the sum of distances ξ to
points outside the boundary is kept low,

arg min
R,a,ξi

n∑
i=1

ξi + λR2, subject to ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i,

(3.54)

In Sections 3.2 and 3.3, we turned this type of problem into a simpler, dual,
problem using Lagrange multipliers. The same procedure applies here,

Lp : arg min
R,a,ξi

n∑
i=1

ξi + λR2 +
n∑

i=1

αi(‖xi − a‖2 −R2 − ξi)−
n∑

i=1

γiξi. (3.55)
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Figure 3.8: The geometry of the SVDD in two dimensions. Red, blue and black dots
represent boundary points (3), data (20) and outliers (2) respectively. The hypersphere
radius and center is denoted R and a respectively while ω is the distance from the
boundary to an exterior point.

We take derivatives of this function to obtain the following useful relations,

∂Lp

∂R
= 0 ⇔ λ =

∑
i

αi, (3.56)

∂Lp

∂a
= 0 ⇔ a =

∑
i αixi∑

i αi
=
∑

i αixi

λ
, (3.57)

∂Lp

∂ξi
= 0 ⇔ αi = 1− γi. (3.58)

The complimentary slackness conditions are,

αi(‖xi − a‖2 −R2 − ξi) = 0, (3.59)
γiξi = 0. (3.60)

Inserting Equations (3.56-3.58) into (3.55) results in the dual formulation which
is to be maximized with respect to (3.56-3.58),

Ld : arg max
αi

n∑
i=1

αixixT
i −

1
λ

n∑
i=1

n∑
j=1

αiαjxixT
j : 0 ≤ α ≤ 1,

n∑
i=1

αi = λ.

(3.61)

Again, we arrive at a compact quadratic optimization problem with linear con-
straints which can be solved using standard software. In Chapter 9 we present
a detailed description of a path algorithm for the SVDD. Examples and results
are also deferred to this section.
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3.5 References

In this chapter, we have merely scratched the surface on the body of available
methods for classification. Other methods include logistic regression and other
generalized linear models, naive Bayes classification, k-nearest neighbor clas-
sification, boosting, classification trees, neural networks and Gaussian mixture
models, most of which are discussed by Hastie et al. [59]. Another good reference
for a variety of classification methods is Ripley [119].

An example of a regularized classification method is given by Friedman [45],
who propose a trade-off between linear and quadratic discriminant analysis to
deal with problems with many variables and few observations.

Linear and quadratic discriminant analysis were pioneered by R.A. Fisher [44].
LDA is also known as Fisher’s linear discriminant.

The optimal separating hyperplane is an improvement over Rosenblatt’s percep-
tron algorithm [121] from 1958, and is discussed by Vapnik [165]. Vapnik also
developed the support vector machine which is presented in the same reference.

The support vector domain description was developed by Tax and Duin [151]
and again with a more thorough treatment in [152].



Chapter 4

Principal Component Analysis

In this chapter, we will review the third class of statistical methods addressed
in this thesis, techniques for data decomposition and dimensionality reduction.
Several classes of such methods exits, and we mention a few of them among the
references in Section 4.4. Focus is, however, on a family of methods related to
principal component analysis (PCA), the most widely applicable and popular
of such methods.

In order to motivate the use of PCA to accomplish a reduction of the number
of dimensions of a data set, we take a look at a phenomenon known as the
curse of dimensionality. Imagine a set of data points in a single dimension.
Partitioning this dimension within a finite range into, say, 100 bins, our data
may occupy most of these if we have a few hundred observations. If we consider
higher-dimensional data, and additional dimensions are partitioned in the same
fashion, the total number of bins is 100p. For p = 10 dimensions, we have
10010 = 100 000 000 000 000 000 000 bins. In such a case, a data set consisting
of hundreds of observations will occupy an infinitesimal part of the total input
space, and it seems unlikely that such a sparse representation of the world
it inhabits can provide meaningful information. Put in a different way, if n
observations occupy 75 % of the bins in a single dimension, we would need
n10 observations to get the same approximate coverage. If our observations
for instance consist of hospital patients followed over several years in a study
of aging (cf. Chapter 7), where tens or hundreds of variables are collected,
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we cannot get anywhere near the number of observations necessary to densely
populate the predictor space. Instead, a few hundred such observations must
be considered an unusually large data set. The question is if all hope of a
reliable high-dimensional analysis is lost? Luckily, it turns out that a data set
may occupy a much larger space in structured ways. If such a structure is
known or can be modelled sufficiently accurately, the analysis can be restricted
to this subspace. For instance, it can be shown that a regression analysis can be
performed with high-dimensional data if the assumptions stated in Section 2.4
are met and the noise variance is sufficiently low; the expected prediction error
increases linearly as a function of p with slope σ2

ε/n is such cases [59], compared
to an exponential increase in the non-structured case. PCA can be used to find
an explicit representation of such subspace structures.

Dimensionality reduction and PCA can also be described as the search for pat-
terns of behavior in the data. A familiar example of a high-dimensional system
is the weather, which is influenced by parameters such as location, temperature,
humidity, wind speed, seasons, moon phases, etc. When we discuss or try to
predict the weather, it is natural to simplify the analysis by using knowledge
of relations between variables. Summers are generally hot, cold weather is ac-
companied by low humidity while thunderstorms occur when hot and cold air
streams meet. By considering such connections, the apparent dimensionality of
the problem is reduced.

PCA in its standard form is applicable to Gaussian data, but is fairly robust
to deviations from normality as long as the data is reasonably symmetric about
its centroid. The shape of a set of observations in Rp is given by the variance-
covariance matrix. If cov(X) = Σ is some multiple of the identity matrix, this
corresponds to a spheroidal distribution, while a general diagonal matrix corre-
sponds to a point cloud that is elongated along the direction of each coordinate
axis. For an arbitrary variance-covariance matrix, the non-zero covariances ro-
tate (and scale) the point cloud. From a geometrical viewpoint, the goal of
PCA is to establish this rotation and scaling, such that we can find the most
important directions through the data set — the axes of the ellipsoid it de-
scribes. To pin down the terminology, these axes are called the principal axes.
The length-n vector of observations obtained by projecting the data onto the
ith principal axis is the ith principal component (PC). The variance of the ith PC
is proportional to the length of the ith major axis of the ellipsoid. Figure 4.1
shows this geometry, using a Gaussian data set in p = 2 dimensions of n = 1000
observations. The ellipse shows the shape of the distribution as specified by the
variance-covariance matrix and encloses 2.5 standard deviations of the data in
each direction, corresponding to 98.8 % of the total variance. The red arrows
represent the original coordinate axes while the green arrows denote the princi-
pal axes of the data, or equivalently, the major axes of the ellipse. These arrows
extend three standard deviations (99.7 % of the total variance).
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Figure 4.1: The geometry of PCA for a Gaussian data set in two dimensions. The
ellipsoid extends 2.5 standard deviations along each derived coordinate axis an captures
98.8 % of the total variance.

The principal components can be viewed as a new set of observed variables which
describe the data in an informative manner. First of all, they are uncorrelated,
roughly meaning that we can talk about one component without having to
refer to others. Second, the new variables consist of (linear) combinations of
the original variables, which is why we may interpret each PC as a typical
behavior of the system the data portray. Another important property of the
principal components is that they exhibit a natural ordering according to the
variance they describe. The first component describes the largest portion of
the total variance. The second component contains as much information as
possible without referring to the first, and so on. The variance described by
each component quickly drops as we regard more directions, often making the
contribution of later components insignificant. This leads to the dimensionality
reduction property of PCA. We can simply disregard components with variances
below some threshold. The number of dimensions of the new problem is denoted
k, where k ≤ p.

After this introduction to PCA, we now review approaches to computing the
principal components and axes. In line with previous chapters, let X be the
(n×p) data matrix with n observations and p variables. Similar to Chapter 2, we
assume the variables have been mean centered, but not necessarily normalized.

We formulate PCA as the search for a rotation matrix B with BT B = I which
rotates the cloud of observations such that the principal axes of the data becomes
aligned with coordinate axes. If the data is rotated in such a manner, the
variances are easily obtained along each axis, and the covariances will be zero.
We denote the matrix of rotated variables Z with Z = XB. The diagonal
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variance-covariance matrix of Z is (n − 1)−1ZT Z = (n − 1)−1BT XT XB =
BT ΣB. Regarding the first component alone, we wish to maximize the variance
along this direction. This can be formulated

arg max
b

bT Σb subject to bT b = 1. (4.1)

This problem is easily solved by incorporating the constraint using a single
Lagrange multiplier α 6= 0,

arg max
b

bT Σb− α(bT b− 1) (4.2)

Differentiating this expression, setting to zero and rearranging gives,

Σb = αb (4.3)

This is recognized as an eigenvalue problem. The criterion function in Equa-
tion 4.1 is maximized for b equal to the eigenvector of Σ corresponding to the
largest eigenvalue α. The variance along this direction is bT Σb = bT αb = α.
Regarding the second component, we maximize the variance along the second di-
rection subject to being orthogonal to the first. In general for the ith component
we have,

arg max
bi

bT
i Σbi subject to bT

i bi = 1, bT
i bj = 0, j = 1 . . . i− 1

(4.4)

The solution to this problem can be obtained by factoring out the variance ex-
plained by earlier components, and then solving Equation 4.1 using the resulting
data matrix. The solution is exactly given by the ith eigenvector of Σ, with the
variance explained by the ith eigenvalue. In summary, PCA can be performed
through an eigenanalysis of the variance-covariance matrix where the eigenvec-
tors are the principal axes and the eigenvalues are the variances explained along
each direction. The (p × p) matrix B of eigenvectors is the rotation matrix
discussed above. By defining a threshold on the variances αi, we can reduce
this matrix to size (p× k) giving the following system of equations,

Z
n×k

= X
n×p

B
p×k

. (4.5)

The dimensionality reduction is evident here, Z will be much smaller than X if
k << p. The matrix Z is called the scores matrix. Equation 4.5 can be viewed as
a system of linear equations. Each PC (column of Z) is a linear combination of
the variables in X. The coefficients of the linear combination pertaining to the
ith PC are given by the ith column of B. For this reason, the matrix B describing
the principal axes is called the loading matrix with individual coefficients known
as loadings while the elements of Z are called scores, measuring the position of
the observations on the derived axes in B. Figure 4.2 motivates these definitions.
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Figure 4.2: Graphical explanation of the PCA notation. The single observation
regarded here is called x = [2 3] in the original coordinate system and z = [3.5 0.71]
when projected onto the principal axes. The axes are assumed to be tilted at 45
degrees, resulting in the loading (rotation) matrix shown.

PCA can be calculated using a singular value decomposition (SVD) of the data
matrix X. The (economy size) SVD of X yields matrices U ((n×k), orthogonal
columns), D ((k × k), diagonal), and V ((p × k) orthogonal columns) with
k = rank(X) such that

X = UDVT . (4.6)

Using UT U = I and VT V = I, we can write the variance-covariance matrix
Σ = (n− 1)−1VD2VT . Multiplying each side of this expression by V from the
right, we get,

ΣV = V
D2

n− 1
, (4.7)

representing the complete set of eigenvalue-eigenvector pairs of Σ. Evidently,
through an SVD of X we get B = V and α = (n− 1)−1diag(D2).

To warm up for coming sections, we give an alternative formulation of PCA in
terms of fitting a linear manifold to the data as presented by Hastie et al. [59].
Consider a hyperplane spanned by k ≤ p orthogonal vectors in Rp,

f(µ,w) = µ + Aw. (4.8)

We choose the hyperplane parameters µ (intercept) and A (orientation) such
that, using an appropriate vector wi of coefficients for each point, the sum of
squared distances from the observations in X to f(µ,w) is minimized,

arg min
µ,A,W

n∑
i=1

‖xT
i − (µ + Awi)‖2 subject to AT A = I (4.9)

with xi being the ith observation (row) of X. Differentiating with respect to wi

and µ, setting to zero and rearranging gives

µ = x̄T (4.10)

wi = AT (xi − x̄)T , (4.11)
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where x̄ is the average of all observations in X. Since X is mean centered, x̄ = 0.
The problem reduces to one of finding the optimal basis A,

arg min
A

n∑
i=1

‖xT
i −AAT xT

i )‖2 subject to AT A = I (4.12)

A standard result of the SVD is that the expression VVT xT
i with V from

Equation 4.6 provides the best rank(k) approximation to xi, which is exactly
what is sought in Equation 4.12. From this, we conclude that A = V = B, the
principal axes.

In summary, PCA finds an orthogonal rotation (loading) matrix B which is
used to rotate the coordinates of the data in X such that the resulting data set
(scores matrix) Z has orthogonal variables (columns). In the following, we will
study augmented, or regularized, variants of PCA. Standard PCA is the only
transformation of X where the new coordinate system is orthogonal and where
the data projected onto these variables has uncorrelated variables [72]. Any
modification of PCA must therefore surrender at least one of these properties.

4.1 Sparse Principal Component Analysis

A drawback of PCA is that the all loadings of the matrix B are typically non-
zero, meaning that each new variable (column of Z) is a linear combination of all
original variables in X. This makes interpretation of the principal components
difficult. If we wish to try and understand the behavioral patterns of the present
data set as discussed above, we require each PC to be dependent on a limited
set of variables. This is the goal of sparse PCA (SPCA), to approximate the
properties of PCA with a constraint on the cardinality1 of each loading vector
(column of B). Estimating the leading2 such loading vector amounts to the
maximization problem

arg max
b

bT Σb subject to bT b = 1, card(b) ≤ m, (4.13)

where card(b) is the cardinality of b and m is an upper bound on the number
of non-zero elements. Solving this non-convex optimization problem is provably
difficult (NP-hard) and must therefore be regularized in some manner [31, 99].
Below, we will review methods that give approximate solutions to this problem.

1The cardinality of a vector is here taken to represent the number of non-zero elements.
2The leading loading vector is the eigenvector corresponding to the largest eigenvalue.
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4.1.1 Estimation using Truncation

The simplest way to obtain sparse loading vectors is to interpret the results
of standard PCA as approximately sparse and enforce sparsity by setting suffi-
ciently small loadings to zero. To achieve a certain upper cardinality bound m,
it may be necessary to set loadings with significant magnitude to zero. Remain-
ing loadings are unaltered. This augmentation results both in non-orthogonal
loading vectors and correlated principal components. Also, after truncation,
there is almost certainly some adjustment of the remaining non-zero loadings
that will lead to a better solution. Such an adjustment is, however, usually
not considered for this method. Cadima and Jolliffe [17] show that truncation
leads to solutions far from the optimal value, discouraging use of this method
for SPCA.

4.1.2 Direct Estimation using the Elastic Net

To improve on the truncation method, we seek an approach that is able to
adjust the non-zero loadings as other loadings are forced to zero. In Chapter 2,
we reviewed several such methods for regression. It turns out that we can use
these for the estimation of sparse principal components. Consider the following
approximation of a PC using ridge regression,

bridge = arg min
b
‖zi −Xb‖2 + λ‖b‖2, (4.14)

where we have replaced the response variable with the ith PC. We seek the load-
ing vector b that best approximates this variable under the coefficient shrinkage
of the penalty term. An approximation ẑi of the ith PC can be obtained using
the SVD in the manner of Equation 2.40 with y = zi = Xvi = uidii,

bridge = V(D2 + λI)−1DUT uidii = vi
d2

ii

d2
ii + λ.

(4.15)

This shows that the optimal coefficient vector bridge is a scaled version of the
standard PCA loading vector vi. If we normalize this result to unit length, we
get the exact PCA solution. For λ = 0, we get the same solution, but this
requires n > p. The purpose of the ridge penalty is to fix the solution also in
cases where p > n. Choosing any value of λ > 0 always ensures a solution.

Having formulated PCA in this manner, it is straight-forward to impose sparsity
via the `1 (LASSO) penalty, yielding an Elastic Net regression problem (cf.
Section 2.10),

bSPCA = arg min
b
‖zi −Xb‖2 + λ‖b‖2 + δ‖b‖1. (4.16)
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The additional constraint drives some loadings to exactly zero, while others are
adjusted to reconstruct the standard PC as well as possible. With normalization
of the results, we get the ith original PC for δ = 0 and increasingly sparse rep-
resentations with growing values of δ. This problem is no longer independent of
the value of λ, but solutions have been shown to be insensitive to this parameter
[134, 177].

4.1.3 Estimation using the SPCA Criterion

A drawback of the method presented in the previous section is that the re-
sults are heavily guided by regular PCA. Instead of approximating the actual
loadings, we would prefer an estimation criterion for SPCA that approximates
the properties of PCA while imposing sparsity. These properties are successive
maximization of variance, orthogonality of principal axes and uncorrelatedness
of the principal components. Building on the Elastic Net procedure from the
previous section, we wish to find a self-contained expression that does not rely
on PCA.

The derivation starts with the alternative formulation of PCA in Equation 4.12.
It is possible to prove that this expression can be relaxed by changing the term
AAT xT

i to ABT xT
i where B is an arbitrary (p × k) matrix, and still get the

original principal axes at the optimum if the problem is regularized using a
ridge regression-type term. The new formulation of PCA becomes,

arg min
A,B

n∑
i=1

‖xT
i −ABT xT

i )‖2 + λ
k∑

j=1

‖bj‖2 subject to AT A = I.

(4.17)

In other words, at the optimum we have A = B, the loading matrix of PCA.

As in the previous section, a second constraint on the `1-norm of the loading
vectors is now added to obtain sparse solutions,

arg min
A,B

n∑
i=1

‖xT
i −ABT xT

i )‖2 + λ
k∑

j=1

‖bj‖2 + δ
k∑

j=1

‖bj‖1

subject to AT A = I. (4.18)

This formulation of SPCA is called the SPCA criterion. It is seen that while
orthogonality is not imposed on B, its columns will generally exhibit limited
deviance from orthogonality since B can be seen as a regularized non-square
inverse of A, where A is orthogonal due to the extra constraint.
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4.1.3.1 Computation

The remaining question is how to solve the SPCA criterion to obtain an estimate
of the sparse loading matrix B. To obtain B, we must also determine A yielding
a difficult high-dimensional optimization problem. To simplify the process, an
alternating optimization scheme is employed. Assume A is known and fixed,
then (after a fair bit of algebra) it is possible to show that the estimation of B
amounts to solving k independent Elastic Net problems,

arg min
bi

‖Xai −Xbi)‖2 + λ‖bi‖2 + δ‖bi‖1, i = 1 . . . k. (4.19)

The level of sparsity is chosen at this stage. Two approaches apply here, one
where a value of δ is chosen for either each component separately or one value
for all vectors. The alternative approach is to specify the cardinality m of the
solution. This is easily implemented since it amounts to stopping the Elastic Net
path algorithm as soon as the active set contains m variables (cf. Section 2.10).

If B is considered fixed and we wish to estimate A, the penalties in Equation 4.18
amount to a simple translation and can therefore be omitted. The remaining
optimization problem is,

arg min
A

n∑
i=1

‖xT
i −ABT xT

i )‖2 subject to AT A = I. (4.20)

The solution to this problem can be obtained by computing the SVD of the
matrix XT XB such that,

XT XB = UDVT ⇒ A = UVT . (4.21)

Again, we omit the proof which is detailed in [177]. The iterative scheme pro-
ceeds by alternately estimating A and B until convergence. The entire SPCA
algorithm is given in Algorithm 4.1.

Algorithm 4.1 Sparse Principal Component Analysis
1: Initialize A to the k leading principal axes of standard PCA.
2: while not converged do
3: Given A, estimate a suitably sparse loading matrix B by solving k Elastic

Net regressions according to Equation 4.19.
4: Normalize the loading vectors (columns) in B to unit length.
5: Using the obtained matrix B, calculate A using Equation 4.21.
6: end while
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4.1.4 Bounds and Optimality

There are several interesting results with respect to SPCA which help to improve
and understand the quality of obtained solutions. We will mention a few of these
here, discussed in detail by Moghaddam et al. [99]. In this section, we assume
that the eigenvalues are sorted in ascending order, i.e. αmin = α1 and αmax = αp.

We focus on two questions:

1. For a certain cardinality m and distribution of the non-zero coefficients
in a length-p loading vector, what is the maximal variance that can be
explained and what are the corresponding loadings?

2. Likewise, what is the smallest variance that can be obtained?

Central to investigating these issues is the Rayleigh-Ritz theorem which we
review below for real matrices,

Theorem 4.1 Let M ∈ Rp×p be a symmetric matrix. Then the Rayleigh quo-
tient

R(x) =
xT Mx
xT x

(4.22)

has critical points3 equal to the eigenvectors of M and critical values equal to
the corresponding eigenvalues.

A consequence of this theorem is that the maximal and minimal eigenvalues of
M correspond to the global maximum and minimum of the Rayleigh quotient
respectively.

Returning to the formulation of PCA from Equation 4.1 we see that the criterion
function indeed is a Rayleigh quotient given the constraint.

To answer the first question, assume we knew the correct set of non-zero vari-
ables of the sparse leading loading vector x, and assign indices corresponding to
these variables to the set A. Then the Rayleigh quotient from the formulation
of PCA can be reduced using the following subvectors and submatrices,

R(b) = bT
AΣA,AbA subject to bT

AbA = 1 (4.23)

3A function f(x) has critical points at all points x0 where ∇f(x0) = 0 or f(x0) is not
differentiable.
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The Rayleigh-Ritz theorem tells us that the maximum of this ”quotient” is
given by the maximal eigenvalue at the critical point given by the correspond-
ing eigenvector. Quite simply, this reveals the optimal solution given the true
set of non-zero indices A. It also suggests a simple all subsets-type algorithm
(cf. Section 2.7) for finding the best possible sparse leading loading vector of car-
dinality m, when the number of dimensions is limited. By exhaustively trying
all p!/(m!(p−m)!) combinations of m non-zero variables, the optimal solution is
given for the combination with the largest eigenvalue. When the leading loading
vector is found, the variance explained along this direction can be factored out
from the data set, and the process is repeated to find the second loading vector.
Factoring out the contribution along a pricipal axis can either be done through
the orthogonalization process described in the Gram-Schmidt Algorithm 2.1 or
equivalently, by downdating Σ according to,

Σ = Σ− αbbT , (4.24)

where α and b are the optimal eigenvalue and eigenvector respectively. Cases
where the number of variables make an all subsets approach infeasible also
benefit from these results. Given a pattern A of non-zero indices, be it through
simple truncation or the SPCA criterion, we can always adjust the loadings of
each principal axis to achieve an increase in explained variance by finding the
leading eigenvector of the submatrix ΣA,A.

The Rayleigh-Ritz theorem shows that no vector x, sparse of full, can lead to a
larger value of R(x) than the largest eigenvalue of M. This provides a reference
upper bound suitable for comparing SPCA solutions. Further, we have

αi(Σ) ≤ αi(ΣA,A) ≤ αi+p−m(Σ), (4.25)

that is, the eigenvalues of any submatrix of Σ are bounded by the eigenvalues
of Σ. In particular, this means that αm(Σ) is a lower bound for the leading
eigenvalue of the submatrix ΣA,A, providing an answer to question two above.
This bound is an important aid in selecting a suitable cardinality for the loading
vectors. By studying the eigenvalue spectrum of the full variance-covariance
matrix, we can select the cardinality that guarantees, at minimum, a certain
amount of variance, e.g. 70%. The recipe for this process is as follows. Plot the
eigenvalues of Σ in ascending order normalized by the largest eigenvalue. Find
the index of the smallest eigenvalue larger than the desired fraction of variance.
The index is the cardinality that guarantees this fraction.

4.2 Application

In this section we present results on the small diabetes data set from Chapter 2.
Performing PCA or variants thereof on the data matrix of this data set may
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reveal relations between variables that give new clinical insight, or may be used
to simplify a subsequent regression analysis by deriving a small set of descriptive
variables. For interpretation, there is a clear benefit of using sparse PCA in the
analysis, as the interpretation of combinations of e.g. four variables is far easier
than regarding the full set of ten variables. At p = 10, this data set is sufficiently
small to lend itself to the all subsets approach to find the optimal leading loading
vector for a given cardinality. Interestingly, we will see that when more than
one loading vector is estimated, this method is no longer optimal in terms of
unique, or adjusted, variance, a term which will be explained below.

Figure 4.3 shows the amount of variance explained by the leading loading vector
for each method. Also shown is the eigenspectrum of Σ (regular PCA), forming
a lower bound for each choice of cardinality. For this data set, this bound is
rather loose and does not help much in choosing a suitable level of sparsity.
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Figure 4.3: Variance of the leading loading method for the optimal all subsets
method, the SPCA criterion and simple thresholding. The ordinate measures frac-
tions (%) of the upper bound α10 of PCA. The black line shows the lower bound for
each choice of cardinality; regardless of the method being used, variances cannot fall
short of these values.

Table 4.1 gives the variance (α) explained by each principal component and the
loading matrix B. All coefficients are non-zero and interpretation of the linear
combinations that govern each principal component is difficult. In Table 4.2,
we show the sparse loading matrix and corresponding variances of the all sub-
sets procedure with cardinality m = 4. The loading vectors created using this
approach are not orthogonal. While all eigenvectors of a single submatrix of Σ
are orthogonal, the eigenvectors of different submatrices are not. The correla-
tion between loading vectors can be quite significant. As a result, the variance
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explained along one direction is partly present along other directions. To obtain
a fair estimate of the unique amount of variance explained along each direction
we employ a Gram-Schmidt-type procedure. The first direction is taken to be
the one that explains the most (unadjusted) variance. The presence of this di-
rection is then factored out from other directions, and the process is repeated
until an ordering and a set of adjusted variances are obtained. See Chapter 6
for more details on this procedure. The variances shown in Table 4.2 and Ta-
ble 4.3 are adjusted in this fashion. After adjustment, the all subsets procedure
is no longer certain to be optimal, except for the leading eigenvector which
remains unadjusted. This leads to the suspicion that methods that explicitly
seek near-orthogonal directions, such as with the SPCA criterion, may achieve
better performance. The variances in Table 4.3 suggest that this may be true.
Figure 4.4 investigates this question more carefully. Here, the total amount of
variance explained by all ten loading vectors is plotted as a function of car-
dinality for each method. It is seen that for very sparse solutions, the SPCA
criterion outperforms the all subsets procedure for this data set. It is also seen
that simple thresholding does quite well for high cardinalities.
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Figure 4.4: Total variance explained by all ten loading vectors for each method and
cardinality.

4.3 Varimax Rotated Principal Components

Previous methods for SPCA in this chapter produce strictly sparse solutions.
If approximately sparse loading matrices are considered, it is possible to find
orthogonal loading (rotation) matrices that achieve this. Rearranging Equa-
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α1 α2 α3 α4 α5 α6 α7 α8 α9 α10
0.085 0.78 4.3 5.3 6.0 6.6 9.5 12 14 40

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
-0.21 0.044 0.49 -0.41 -0.68 0.22 -0.10 0.014 -0.0081 -0.0033
-0.18 -0.38 -0.10 -0.67 0.37 -0.041 -0.067 0.44 0.0021 -0.0037
-0.30 -0.15 0.16 0.49 0.12 0.40 -0.51 0.39 -0.042 -0.0082
-0.27 -0.13 0.51 -0.019 0.48 0.27 0.32 -0.47 -0.027 0.0032
-0.34 0.57 -0.068 -0.068 0.12 -0.0054 0.073 0.12 0.042 -0.70
-0.35 0.45 -0.26 -0.16 0.11 0.13 -0.23 -0.19 0.35 0.56
0.28 0.50 0.38 -0.076 0.24 -0.10 -0.0075 0.32 -0.48 0.31
-0.42 -0.068 -0.38 0.0079 -0.14 0.033 0.071 -0.18 -0.77 0.090
-0.37 -0.026 0.063 0.26 -0.15 -0.17 0.64 0.44 0.18 0.26
-0.32 -0.084 0.27 0.087 0.031 -0.80 -0.35 -0.16 0.015 -0.0026

Table 4.1: Variance (% of total variation) along each direction (top) and the corre-
sponding loading vectors (bottom) for standard PCA.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10
0.051 0.22 3.0 4.7 4.9 6 7 11 13 27

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
0 0 -0.51 0 -0.76 0 0 0.40 0 0.26
0 0.81 0 0 0 -0.34 0 0.34 0.43 0
0 0 0 0.50 0 0 0.67 0.59 0 0
0 0.32 -0.59 0 0 0 0.50 0 -0.29 -0.28

0.53 0 0 0 -0.30 -0.39 0.38 0 0 0
0.52 0 0 0 -0.38 0 0.37 0 0.65 0
0 -0.39 0 -0.56 0 -0.47 0 0 0 -0.71

0.50 0.28 0 0.44 0 0 0 0 0 0
0.42 0 -0.42 0 0.41 0 0 0.60 0 0.58
0 0 -0.43 0.47 0 -0.71 0 0 0.53 0

Table 4.2: Adjusted variances (% of total variation) (top) and loading matrix (bot-
tom) for the all subsets method.

α1 α2 α3 α4 α5 α6 α7 α8 α9 α10
0.0002 0.10 3.7 4.1 6.1 8.0 8.7 11 16 22

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
0 0 0 0 -0.98 -0.16 0 0 0 0
0 0 0 -0.96 0 0 0 0 0 0
0 0.44 0.22 0 0 0 0 0.97 -0.085 -0.075
0 0 0.93 -0.045 -0.17 0 0 0 0 0

0.65 0 0 0 -0.022 -0.081 0.38 0 0 0
0.69 0 0 0 0 0 0.0044 0 0 0
0 -0.73 0 0.22 0 0 0 0 0.08 0.79

0.28 0.51 0 -0.13 0 0 0.26 0.027 -0.45 -0.56
0 0.092 0.18 0 -0.013 -0.27 0.88 0.16 0 -0.20

0.0070 0 0.19 0 0 -0.94 0 0.12 -0.88 0

Table 4.3: Adjusted variances (% of total variation) (top) and loading matrix (bot-
tom) resulting from estimation via the SPCA criterion.
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tion 4.5, (with k = p), we have the following expression for the data matrix,

X = ZBT . (4.26)

Just as each PC is a linear combination of the original variables, each original
variable is a linear combination of the principal components. However, the
expression

X = ZRT RBT = Z̃B̃
T
, (4.27)

where R is any (p×p) orthogonal is an equivalent expression for X. Going back
to the PCA formulation of Equation 4.5, we have,

Z̃ = XB̃
T

= ZRT = XBRT (4.28)

Multiplication by the matrix R will rotate the coordinate system in B but the
columns remain orthogonal. The columns of the scores matrix do, however,
become correlated from this rotation, as a result of Z having columns in Rn

while the rotation is in Rp. Note again that PCA is the only transformation
with both orthogonal loading vectors and uncorrelated scores.

The matrix R can be chosen such that the variance of the columns of B̃ is
maximized. To do this, it is beneficial to have some large loadings and some
close to zero, rather than a more even distribution of loadings. Therefore, this
criterion, called the Varimax criterion, leads to an approximately sparse loading
matrix. Algorithms for estimating R for Varimax and other types of orthogonal
rotations are given in Chapter 5, where we also give examples of their application
to medical image analysis.

4.4 References

A comprehensive reference for principal component analysis and related meth-
ods is the book of Jolliffe [73]. A more detailed discussion on the curse of
dimensionality is provided by Bellman [7] and by Hastie et al. [59].

The formulation of sparse PCA in Equation 4.13 is adopted from the work of
d’Aspremont et al. [31] who proposed a convex relaxation of the cardinality
constraint leading to an algorithm that can be solved using semidefinite pro-
gramming. Jolliffe et al. [74] replace the cardinality constraint with a LASSO
penalty on the loading vectors, driving some loadings to exactly zero. The
resulting optimization problem is, however, computationally difficult to handle.

The direct approach using the Elastic Net and the SPCA criterion are both due
to Zou et al. [177] who give detailed explanations of the algebra leading up to
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these formulations. It is also shown that if the regularization parameter λ is set
to infinity, the Elastic Net procedure for estimating B reduces to a soft thresh-
olding rule. We investigate the resulting, efficient, algorithm in Chapter 8. Zou
et al. [177] also proposed the adjustment procedure of the variances obtained
from non-orthogonal (oblique) rotation matrices. An equivalent method was
independently proposed by Gervini and Rousson [50]. In Chapter 6 we pro-
pose a forward selection-type technique for a more reproducible variant of this
approach.

The discussion on eigenvalue bounds and optimality is adopted from the work
of Moghaddam et al. [99], who provide several other bounds, algorithms and
theorems.

The component rotation technique briefly introduced in Section 4.3 and investi-
gated more thoroughly in Chapter 5 is among the earliest methods for obtaining
a loading matrix that is approximately sparse, and thus, simpler to interpret.
The Varimax rotation is due to Kaiser [76] and belongs to the class of orthomax
rotations, described by Harman [57].

Other approaches to sparse PCA have been put forth by e.g. Chennubhotla and
Jepson [18], Vines [166], Hausman [61], and Rousson and Gasser [123].

Other methods for data decomposition and dimensionality reduction include in-
dependent component analysis [68], maximum autocorrelation factors [82, 150],
and non-negative matrix factorization [89].



Part II

Contributions





Chapter 5

Sparse Modeling of Landmark
and Texture Variability using

the Orthomax Criterion

Mikkel B. Stegmann, Karl Sjöstrand and Rasmus Larsen

Abstract

In the past decade, statistical shape modeling has been widely popularized
in the medical image analysis community. Predominantly, principal compo-
nent analysis (PCA) has been employed to model biological shape variabil-
ity. Here, a reparameterization with orthogonal basis vectors is obtained
such that the variance of the input data is maximized. This property drives
models toward global shape deformations and has been highly successful in
fitting shape models to new images. However, recent literature has in-
dicated that this uncorrelated basis may be suboptimal for exploratory
analyses and disease characterization. This paper explores the orthomax
class of statistical methods for transforming variable loadings into a simple
structure which is more easily interpreted by favoring sparsity. Further,
we introduce these transformations into a particular framework tradition-
ally based on PCA; the Active Appearance Models (AAMs). We note that
the orthomax transformations are independent of domain dimensionality
(2D/3D etc.) and spatial structure. Decompositions of both shape and
texture models are carried out. Further, the issue of component ordering
is treated by establishing a set of relevant criteria. Experimental results
are given on chest radiographs, magnetic resonance images of the brain,
and face images. Since pathologies are typically spatially localized, either
with respect to shape or texture, we anticipate many medical applications
where sparse parameterizations are preferable to the conventional global
PCA approach.
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5.1 Introduction

Due to the frequent noisy and highly complex nature of many medical imaging
modalities, constrained solutions are often required. One popular class of con-
strained image analysis is the various forms of shape models. Here, a top-down
approach is taken to the localization of a structure in a medical image using an
explicit model of the geometrical layout of the structure supplemented by a set
of associated variation patterns. Combined, these two entities should optimally
be able to represent the given variability of the structure and nothing apart from
that. Hence, only valid solutions can be produced, provided that the model can
be fitted with a sufficiently high likelihood. Further, in many applications it
may be desirable to be able to extend the use of such models from the classic
segmentation or registration scenario, to a level where the model parameteriza-
tion possesses inherent interpretive powers where latent variables are expressed
directly. An example of such is disease characterization by surrogate markers,
see e.g. Mitchell et al. [98]

Decomposition of shape and texture variability is predominately carried out by
principal component analysis (PCA), which produces a reparameterization with
orthogonal basis vectors such that the variance of the input data is maximized.
Although this basis is in many senses optimal, recent literature indicate that it
might not posses a sufficiently expressive basis for some medical interpretation
scenarios [148, 149, 161, 162]. Since PCA maximizes variance, new variables (i.e.
the principal components) will typically affect the shape or texture globally. In
turn, this may lead to confounding of effects due to the chance correlation in-
herent to limited medical data sets. Interestingly, it has been observed that
independent component analysis (ICA) of shape produces new variables show-
ing more localized effects, and thus being able to describe specific pathologies
[148, 149, 161, 162]. We note that localization is often a desirable property
for a basis aimed at explaining complex latent relations between pathology and
geometry/texture. Consequently, it seems natural to promote transformations
favoring locality directly, rather than indirectly. In this paper we explore the
orthomax criterion for optimizing sparsity corresponding to new variables being
associated to localized modes of variation.
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5.2 Related Work

Although orthomax rotations are well-known within the statistical discipline
factor analysis, this work is arguably among the first within medical image
analysis to explore a method that directly optimizes sparsity. This can be
seen as a natural continuation of the previously mentioned work on ICA shape
modeling by Üzümcü et al. [161], Üzümcü et al. [162] and Suinesiaputra et al.
[148, 149] in addition to the general literature on alternative parameterizations
of shape.

Even for complex biological phenomena, principal component analysis typically
yields a very good decomposition of shape variability in a cohort. However, sig-
nificant non-linearities exist in some cases, which render the implicit assumption
of a multivariate Gaussian distribution invalid. Thus, PCA models will yield a
poor specificity, leading to potential synthesis of implausible shape configura-
tions. Some of these problematic cases are designed synthetically to emphasize
the limitations of a PDM, while others are demonstrating actual, real-world ex-
amples of shape variability with dominating non-linearities. Attempts to deal
with such non-linearity include the polynomial regression PDM, PRPDM, by
Sozou et al. [135]. Later, Sozou et al. [135] outperformed this using a back
propagation neural network employing a multi-layer perceptron, which resulted
in another xPDM acronym; the MLPPDM. A different approach is to employ
a kernel-based density estimation of the shape distribution. This was proposed
by Cootes and Taylor [22, 23] along with a computationally more attractive
variant using a Gaussian mixture model to approximate the density function.
Building on similar ideas, Heap and Hogg [62] proposed a hierarchical PDM,
the HPDM, also based on multiple Gaussian models. Non-linear shape models
are also treated in depth by Bowden [14].

Advances within machine learning that allow working implicitly in infinite di-
mensional spaces have also been utilized in shape modeling using kernel meth-
ods. By employing a variant of non-linear PCA called Kernel PCA (KPCA),
complex non-linear shape distributions can be modeled. This was demonstrated
on shapes from projections of varying-angle faces by Romdhani et al. [120] Fur-
ther developments of this work were presented by Twining and Taylor [160] on
synthetic shapes, and shapes from images of nematode worms.

While PCA decomposes variation by maximization of variance, other measures
may also be of interest when a shape basis is to be chosen. For example, Larsen
[81, 82] and Larsen et al. [84] chose to maximize autocorrelation along 2D shape
contours using the maximum autocorrelation factors (MAF) due to Switzer
[150]. Hilger et al. [63] later employed MAF as texture basis in Active Ap-
pearance Models (AAMs). The MAF approach was further extended to three-
dimensional PDMs by Hilger et al. [64], Larsen and Hilger [83], and Larsen



100
Sparse Modeling of Landmark and Texture Variability using the Orthomax

Criterion

et al. [85]. Interestingly, it turns out that Molgedey-Schusters algorithm for
performing ICA [101] is equivalent to MAF analysis, see Larsen et al. [84].

Turning to the specific use of the orthomax criterion, Ramsay and Silverman
[116] give an instructive case study on varimax rotation of principal components
based on one-dimensional temperature curves. Related to this is also the work
by Peterson et al. [114] where two-dimensional contours of the brain structure
corpus callosum were decomposed using PCA and subsequently rotated using
the varimax criterion. While a similar corpus callosum case is presented here,
the two papers are contrasted by the depth in which the rotation method is
treated, and the depth in which the case study is analyzed, e.g. w.r.t. functional
correlates such as IQ, handedness, et cetera.

Chennubhotla and Jepson [18] developed a sparse PCA method1 bearing re-
semblance to the original varimax algorithm [76] by employing a sequence of
bi-variate rotations. However, rather than optimizing variance, a function com-
posed of the projected data and the basis vectors were investigated. This was
carried out with a weight term controlling the transition from a PCA solution
to a sparse solution. Examples were given on images, vector fields, and one-
dimensional curves.

Regular PCA extracts new variables, the principal components, as linear com-
binations of the original variables. For interpretation purposes, the problem is
that each new variable is a linear combination of all original variables. Sparse
PCA aims at approximating the properties of regular PCA, while keeping the
number of dependent variables, or equivalently, the number of non-zero load-
ings, small. Recently, Zou et al. [177] presented an algorithm for computing
sparse loading matrices. It is heavily based on variable selection methods from
regression analysis, primarily the elastic net [175]. Similarly to the SCoTLASS
[74] method, a constraint is imposed on each loading vector, limiting the sum
of absolute loadings. This drives some loadings to exactly zero, producing a
sparse loading matrix in the strict sense. Results are given for the classic ”pit-
props” data set, some simulated data, and the Ramaswamy microarray data
set. Results on medical shape data can be found in Sjöstrand et al. [134].

1This method is different from the sparse PCA method by Zou, Hastie and Tibshirani
described below.
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5.3 Methods

5.3.1 Principal Component Analysis

Consider a set of n vectors {xi}n
i=1 ∈ Rp having sample dispersion matrix Σx.

These could denote shape given by landmarks, or texture given by image in-
tensities. Principal component analysis (PCA) transforms these vectors into a
decorrelated basis b with dispersion matrix Σb = diag(λ) by b = ΦT (x − x̄),
where Φ denotes the eigenvector solution to ΣxΦ = ΦΣb and x̄ denotes the
sample mean. Each eigenvector holds a variation pattern referred to as a de-
formation mode, where each of the original p variables is loaded by a given
amount. Consequently, the terms eigenvectors, deformation modes, and vari-
able loadings will be used interchangeably in the following. Let eigenvalues, λi,
and corresponding eigenvectors be ordered so that λ1 ≥ · · · ≥ λn = 0 (when
n < p). The deformation modes given by the higher order part of b are typ-
ically discarded by a variance-based criterion retaining e.g. 95% of trace(Σb)
in k modes. A new example in Rp given by b can now be synthesized by the
projection x = x̄ + Φb. Examples of using this generative property of PCA for
image interpretation include inter-point distance models [25] and the later point
distribution models (PDMs) [26].

5.3.2 Sparse Modeling Using the Orthomax Criterion

Orthomax rotations of a principal component basis reintroduce component cor-
relation to obtain a simple structure of the final basis. Let Φ be a p×k orthonor-
mal matrix (of column eigenvectors) and R be an orthonormal rotation matrix
in Rk, i.e. RT R = Ik, where Ik denotes the k × k identity matrix. Further, let
Rij denote the scalar element in the ith row and jth column in matrix R. The
class of orthomax rotations can now be defined as

Rorthomax = arg max
R

 k∑
j=1

p∑
i=1

(ΦR)4ij −
γ

p

k∑
j=1

(
p∑

i=1

(ΦR)2ij

)2
 , (5.1)

where Rorthomax denotes the resulting rotation and γ denotes the type. This
paper investigates γ = 1 (varimax[76]) and γ = 0 (quartimax, e.g. [57]). Further
rotations include: γ = k/2 (equamax), and γ = p(k−1)/(p+k−2) (parsimax).
Orthomax rotations are traditionally computed using a sequence of bi-variate
rotations [57, 76]. However, since varimax and quartimax are the only cases



102
Sparse Modeling of Landmark and Texture Variability using the Orthomax

Criterion

treated here, this work employ an iterative method based on singular value
decomposition (SVD) for solving Equation 5.1, which is given in Algorithm 5.1.
Notice that this returns the rotated basis, rather than Rorthomax. The algorithm
is also employed in the statistical language R and the computational system
Matlab. It was first described by Horst [66] and independently shortly after in
a different – albeit equivalent [155] – formulation by Sherin [132]. The relation
between Equation 5.1 and Algorithm 5.1 is detailed in Section 5.4.

Algorithm 5.1 Estimation of Orthomax Rotation for γ ∈ [0; 1]

Require: Φ ∈ Rp×k, γ, q, tol, Diag(·) (sets off-diagonal elements to zero), ◦
Hadamard (element-wise) product

1: R = Ik

2: d = 0
3: for i = 1 to q do
4: dold = d
5: Λ = ΦR
6: [U,S,V] = svd( ΦT (Λ ◦Λ ◦Λ− γ

pΛ ·Diag(ΛT Λ)) )
7: R = UVT

8: d = trace(S)
9: if d/dold < tol then

10: break
11: end if
12: end for
13: Λ = ΦR
14: return Λ

Let us investigate the varimax variation a bit more closely. Let Λ denote the
orthomax-rotated basis, ΦR, and let Λ̄2

j denote the mean of the jth column of
Λ having its elements squared. From Equation 5.1 we see that choosing γ = 1
will yield the maximal variance of the squared rotated variable loadings summed
over all modes;

p
k∑

j=1

1
p

p∑
i=1

(Λ2
ij)

2 − 1
p2

(
p∑

i=1

Λ2
ij

)2
 = p

k∑
j=1

(
1
p

p∑
i=1

(
Λ2

ij − Λ̄2
j

)2
)

. (5.2)

Since R is an orthonormal matrix, and thus cannot change the squared sum
of the new basis vectors in Λ, the variance of each column in Λ can only be
increased by bringing some variable loadings close to zero, and let others grow
large. Hence, a more simple structure of Λ is obtained. This tends to make the
components, or the basis vectors, easier to interpret. The cost is that compo-
nent correlation will be introduced for any rotation of the PCA basis, except for
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180 degrees, in which case the variance would remain unchanged. Relaxing Φ to
be orthogonal, rather than orthonormal, will lead to both non-orthogonal vari-
able loadings (i.e. ΛT Λ not diagonal), as well as to correlated variables [72]. It
should be added that subgroups of Φ can be rotated, while other modes are left
unchanged. Thus, dispersions with block diagonals will be obtained. Such sub-
groups could be determined by identifying clusters in the eigenvalue spectrum
of an initial PCA transformation [71]. However, Φ will remain orthonormal and
all components will be rotated in this paper.

Setting γ = 0 yields the special case denoted quartimax ; a method introduced
almost simultaneously by several researchers [57], and which preceded the vari-
max approach by a few years. In the quartimax case, Equation 5.1 becomes:

Rorthomax = arg max
R

k∑
j=1

p∑
i=1

(ΦR)4ij . (5.3)

It turns out that this expression minimizes the parsimony criterion put forward
by Ferguson (see Harman [57]),

p∑
i=1

k∑
j=1

j−1∑
q=1

(ΛijΛiq)2, (5.4)

since R remains orthonormal and therefore does not change the squared sum of
loadings. If this sum is squared, then for a single variable, i, we have

 k∑
j=1

Λ2
ij

2

=
k∑

j=1

Λ4
ij + 2

k∑
j=1

j−1∑
q=1

Λ2
ijΛ

2
iq. (5.5)

Consequently, as Equation 5.5 remains constant when summed over all variables,
Equation 5.4 is minimized when Equation 5.3 is maximized. In other words, by
emphasizing simplicity within rows of Λ, quartimax is contrasted to varimax
that emphasizes simplicity within columns of Λ. Refer to Harman [57] for
further details on the various, but similar, quartimax formulations.

When focusing on shape variability, one important – albeit rare – situation
deserves mentioning. Imagine that k is close to p. Then Λ will approach the
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identity matrix, I. This will happen even when the starting point is a very
uneven eigenvalue spectrum. Such behavior is of course entirely correct; we
should obtain a maximally sparse solution for a set of eigenvectors that span
Rp. But the implication for a shape model based on shapes in Rd (d = 2 or
d = 3 typically) is that the solution depends solely on the original orientation
of the d-dimensional coordinate system. The solution is in other words not
rotation invariant and this fact becomes very apparent when k approaches p. In
summary, choice of k will greatly influence the level of obtained sparsity, when
all modes are rotated. This issue was also commented by Suinesiaputra et al.
[148, 149]

Obviously, texture models are not affected by the above issue, since d = 1.
Although the computations in Algorithm 5.1 becomes substantial when p is
very large (say p = 30000 for a texture model) the growth is fortunately linear
in p. Notice that the costly singular value decomposition is carried out on a
k × k matrix, which does not pose a problem, as k � p for such models.

Another issue is the ordering of the new variables stemming from an orthomax
rotation. To this end, we discuss a set of criteria below that all order compo-
nents by decreasing value of the criterion.

Component variance. This is the normal ordering of the principal compo-
nents. Using this criterion, very sparse modes will tend to reside among
the last components due to the orthonormality of Λ. That is, sparse
modes will be scaled more than dense, and consequently lead to smaller
component scores.

Variance of squared loadings. As this is the criterion being optimized by
the varimax rotation, this ordering may be a natural choice for having
sparsity concentrated among the first modes.

Locality. Favorable if prior knowledge is available regarding interesting sub-
parts of the original p-dimensional space. Used by Üzümcü et al. [161],
Üzümcü et al. [162] and Suinesiaputra et al. [148, 149] when ordering
sparse, ICA-based shape modes according to their effects along near-
circular endo- and epicardial borders in cardiac magnetic resonance im-
ages.

Correlation. This ordering is suitable if k has been chosen to produce an
appropriate amount of sparsity in the resulting modes and the objective
is to find sparse, yet weakly correlated, modes. Those will thus be present
in the latter part of the ordered modes.

Autocorrelation. Although, sparsity typically is obtained by fairly well-defi-
ned coherent parts of the original p dimensional domain, this behavior
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is not required by design. Ordering by autocorrelation will discriminate
between abrupt changes and more smooth coherent modes. However, care
has to be taken when estimating the autocorrelation for multi-part or
open-contour shapes and for textures.

Clustering. If numerically large variable loadings are localized in several clus-
ters e.g. along a contour in a shape model, then ordering according to the
numbers of clusters and cluster size may be interesting.

Section 5.5 will demonstrate the use of three of the above criteria.

5.4 Details on Algorithm 1

This section serves to demonstrate the validity of Algorithm 5.1 in relation to
Equation 5.1. Let ◦ denote the Hadamard (element-wise) product, let Aj de-
note the jth column of A, and let Γ = Λ ◦ Λ (remember Λ = ΦR). Further,
the following two Hadamard relations [103] will be used:

Let A, B, C and DT denote m × n matrices and let 1q be a column vector of
q ones. Then

trace((A ◦B)(CT ◦D)) = trace((A ◦B ◦C)D) (5.6)

and

1T
m(A ◦B)(CT ◦D)1m = trace(C Diag(AT B)D). (5.7)

Equation 5.1 can now be written in matrix form,

Rorthomax = arg max
R

 k∑
j=1

p∑
i=1

Γ2
ij −

γ

p

k∑
j=1

(
p∑

i=1

Γij

)2


= arg max
R

trace(ΓT Γ)− γ

p

k∑
j=1

(
1T

p Γj

)2
= arg max

R

trace(ΓT Γ)− γ

p

k∑
j=1

1T
p ΓjΓT

j 1p


= arg max

R

(
trace(ΓT Γ)− γ

p
1T

p ΓΓT 1p

)
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= arg max
R

(
trace((Λ ◦Λ)T (Λ ◦Λ))− γ

p
1T

p (Λ ◦Λ)(Λ ◦Λ)T 1p

)
= arg max

R

(
trace(

(
ΛT ◦ΛT ◦ΛT

)
Λ)−

γ

p
trace(Λ ·Diag(ΛT Λ)ΛT )

)
= arg max

R

(
trace(RT ΦT (Λ ◦Λ ◦Λ))−

γ

p
trace(ΛT Λ ·Diag(ΛT Λ))

)
= arg max

R

(
trace(RT ΦT (Λ ◦Λ ◦Λ)− γ

p
RT ΦT Λ ·Diag(ΛT Λ))

)
= arg max

R

(
trace(RT Q)

)
where Q = ΦT (Λ ◦Λ ◦Λ− γ

p
Λ ·Diag(ΛT Λ)). (5.8)

In Algorithm 5.1, an iterative approach is taken to solving Equation 5.1. Here,
the part where R enters non-linearly, i.e. Q, is kept fixed using the current esti-
mate of R. Then, the singular value decomposition, in line 6 of Algorithm 5.1,
produces the optimal R for the linear part as shown in Equation 5.8 which sub-
sequently replaces the current estimate. The initial estimate of R is the identity
matrix.

By assuming that Q does not depend on R, then Equation 5.8 would be maxi-
mized if and only if RT Q is symmetric and positive semi-definite2. This can be
accomplished by choosing R = UVT , where U and V are taken from the sin-
gular value decomposition Q = USVT . That RT Q is symmetric and positive
semi-definite can been seen by the following substitution3:

RT Q = RT USVT = (UVT )T USVT = VUT USVT = VSVT . (5.9)

This concludes our presentation of the background of Algorithm 5.1 based on
Neudecker [103] and ten Berge [154]. Further details can be found in [66, 103,
132, 155, 156].

2See the compact proof of Theorem 2 in [154] on Procrustes analysis.
3Remember that S is a diagonal matrix of singular values, and U and V hold orthogonal

singular vectors.
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5.5 Experimental Results

To illustrate the effects of orthomax rotation, three different cases have been
selected and decomposed by principal component analysis and subsequently
rotated using the varimax criterion. Two shape studies were carried out on con-
tours stemming from chest radiographs and magnetic resonance images (MRI)
of the human brain. Normal perspective images of frontal faces formed basis
for a case study of sparse texture variability. Varimax-rotated components are
compared to principal components in all three cases.

Figure 5.1 shows a decomposition of 247 chest radiograph annotations of the
lungs, heart and clavicles based on 166 landmarks. This data is described in
detail in [138] and [163]. In our case, the 16 largest principal components were
retained. All varimax modes in Figure 5.1(b) were sorted by the absolute sum of
the correlation coefficients in order to probe for localized yet weakly correlated
modes, see Figure 5.2(c). We see that varimax mode 4 is related to the position
of the aortic arch. Modes 3 and 5 relate to heart size, while modes 8 and 10 relate
to clavicle orientation. These localized modes are contrasted by the conventional
PCA modes shown in Figure 5.1(a). Another way of visualizing the variable
loadings in each case is to relate gray-scales to the magnitudes of the elements
in Φ and Λ. This is carried out in Figure 5.2(a), which clearly demonstrates
the sparsity of the varimax solution. The ’flattening’ of the eigenvalue spectrum
carried out by the varimax rotation is illustrated in Figure 5.2(b) where the
respective variances are plotted.

Figure 5.3 shows a decomposition of 62 annotations of the corpus callosum in
mid-sagittal brain MRI using 78 landmarks. This data is described in more
detail in [138, 142, 145]. Varimax ordering is similar to the previous case study.
In Figure 5.3(b) we observe that varimax mode 1 relates to the isthmus area,
mode 2 to bending of the splenium, mode 3 to the truncus area, while mode
4 is clearly related to the area of the rostrum and genu. In contrast, PCA
mode 1 describes a simultaneous bending of the entire corpus callosum with
an area change of the rostrum, genu and splenium. Again, the sparsity of the
varimax-rotated components can also be appreciated in Figure 5.4(a).

Figures 5.5 and 5.6 show the results of a decomposition of 37 gray-scale face
images. Further analyses of this data set can be found in [141] and [137]. Prior
to our analyses, all images were compensated for any variation in shape by a
piece-wise affine image warp similar to the one usually carried out in Active
Appearance Models [24, 28]. While the PCA modes in Figures 5.5(a–j) demon-
strate several effects within each mode, the varimax modes in Figures 5.5(k–t)
show nicely isolated effects. The first principal component for example, shows
absence/presence of beard as well as nostrils. Notice that Figures 5.5(a–t) show
the magnitude of the variable loadings of each pixel position of the model, rather
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than the actual values of the basis vectors. Black and white represents high and
low magnitude, respectively. Varimax modes are in this case ordered according
to the sparsity criterion, namely the variance of the squared loadings of a mode.
Interpretations of the first five varimax modes are as follows, absence/presence
of i) nostrils, ii) lip spacing, iii) eyebrow thickness/shadow, iv) shadow below
lower lip, and v) mustache. Each of these modes are shown in Figure 5.6 as
modifications of the mean texture. Here it becomes more apparent that the
modes, albeit being sparse, also carries additional information outside the areas
mentioned above. This further indicates that even subtle changes to the texture
can carry substantial changes to the perceived identity.

Orthomax rotations have also been implemented in a complete Active Appear-
ance Models framework [141] with the aim of assessing their potential in future
registration studies. A preliminary cross-validation study in the face data set
showed a slight, though presumably insignificant, increase in accuracy4 when
employing varimax rotation to the texture model, compared to standard PCA-
based texture model. To this end it is important to stress that uncoupled shape
and texture models must be employed. If not, the third PCA traditionally used
in AAMs will diagonalize the covariance matrices and yield a combined basis
identical to that of the standard AAM.

Quartimax rotations were also carried out in the two former case studies. Al-
though the deformation modes by design should show more exclusive changes5

this behavior was not very clear. Due to the lack of differentiation from the
varimax case, we have chosen not to show the quartimax modes.

5.6 Discussion

The medical image analysis literature is surprisingly devoid of references to
sparse modeling using the orthomax criterion. The main contribution of this
paper is therefore three-fold, i) broadening the knowledge of this simple, yet
powerful, modification of principal components, ii) discussing its merits, and iii)
providing a diverse range of examples on its use in medical applications.

We have found the method to be conceptually simple to understand as well as
to implement. This is partly due to being a well-understood and well-described
method within factor analysis. We further note that orthomax transformations
are independent of domain dimensionality (2D/3D etc.) and spatial structure.

4Measured using the point to point distance between the ground truth shape and the
converged model shape.

5In the sense that if one subpart of the shape is affected in one mode, it should not be
much affected in the remaining modes.
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An additional benefit is that many common computational frameworks already
provide an implementation, e.g. R, S-plus, Matlab, et cetera. Considering the
selection of k (the number of retained components) to lie with PCA, orthomax
rotations are parameter-free. This is obviously a two-edged sword; while it leaves
no frustrating choices up to the operator, it lacks the fine-grained flexibility,
found in e.g. the sparse PCA method by Zou et al. [177]. Compared to sparse
PCA, orthomax rotations have the benefit of being computationally feasible even
for very high-dimensional spaces, found in e.g. texture modeling. Unfortunately,
and unlike sparse PCA, orthomax rotations will rarely provide entirely sparse
components. This is also illustrated by the examples in this paper. However,
the relative differences in magnitude within orthomax modes may in practice
be considered sufficiently sparse in many cases. As hinted earlier, the resulting
amount of sparsity is directly related to the rank of the variation and the number
of principal components subjected to orthomax rotation.

A long term goal for sparse modeling in relation to image interpretation and
registration is to be able to separate inherent variation sources from chance cor-
relation, thus providing greater – and justifiable – model flexibility, and in addi-
tion provide parameterizations that capture latent structures more accurately.
The latter aspect could be of crucial importance in highly flexible, non-linear
regression methods sensitive to initialization.

Application-wise, we note that pathologies are typically spatially localized, ei-
ther with respect to shape or texture. Thus, we anticipate many medical appli-
cation areas where sparse parameterizations, similar to the presented approach,
are preferable to the conventional global PCA approach.

5.7 Conclusion

We have explored a computationally simple approach for rotation of princi-
pal components using the orthomax criterion, which directly optimizes sparsity
leading to localized modes of variation suitable for medical image interpretation
and exploratory analyses. We have found that both high-dimensional sparse
modeling of shape variability (p ≈ 300), as well as extremely high-dimensional
sparse modeling of texture variability (p ≈ 30000) are feasible. Case studies on
radiographs, brain MRI, and face images showed local modes of natural variation
contrary to global PCA modes. Applications include computer-aided diagnosis
in terms of exploratory analyses, disease characterization, et cetera.
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PC 9 PC 10 PC 11 PC 12

(a) PCA modes (0,±2.5 std.dev. overlaid)

VM 1 VM 2 VM 3 VM 4

VM 5 VM 6 VM 7 VM 8
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(b) Varimax modes (0,±2.5 std.dev. overlaid)

Figure 5.1: Shape modes calculated from 247 chest radiograph annotations of the
lungs, heart and clavicles.



112
Sparse Modeling of Landmark and Texture Variability using the Orthomax

Criterion

Mode

Lo
ad

in
g

PCA

5 10 15

50

100

150

200

250

300
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Mode

Lo
ad

in
g

Varimax

5 10 15

50

100

150

200

250

300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) Loadings

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mode

V
ar

ia
nc

e

PCA
Varimax

(b) Mode variances

Mode

M
od

e

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(c) Correlation coefficients

Figure 5.2: Loadings, variances and correlation coefficients for PCA and varimax,
calculated on the lung data set.
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(a) PCA modes (0,±2.5 std.dev. overlaid)

VM 1 VM 2 VM 3
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VM 10 VM 11 VM 12

(b) Varimax modes (0,±2.5 std.dev. overlaid)

Figure 5.3: Shape modes calculated from 62 corpus callosum annotations in mid-
sagittal brain magnetic resonance images.
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(c) Correlation coefficients

Figure 5.4: Loadings, variances and correlation coefficients for PCA and varimax,
calculated on the corpus callosum data set.
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(a) PC 1 (b) PC 2 (c) PC 3 (d) PC 4

(e) PC 5 (f) PC 6 (g) PC 7 (h) PC 8

(i) PC 9 (j) PC 10 (k) VM 1 (l) VM 2

(m) VM 3 (n) VM 4 (o) VM 5 (p) VM 6

(q) VM 7 (r) VM 8 (s) VM 9 (t) VM 10

Figure 5.5: The magnitude of eigenvectors calculated from 37 face images arranged
as eigenimages. PCA modes are ordered according to the variance of corresponding
principal score. Varimax modes are ordered according to sparsity given by the variance
of the squared loadings.
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(a) Mean (b) VM 1 (c) VM 2

(d) VM 3 (e) VM 4 (f) VM 5

Figure 5.6: Varimax texture modes calculated from 37 face images. (a) mean texture.
(b–f) mean texture modified by 2.5 standard deviations of the corresponding mode
scores.



Chapter 6

Sparse Principal Component
Analysis in Medical Shape

Modeling

Karl Sjöstrand, Mikkel B. Stegmann, and Rasmus Larsen

Abstract

Principal component analysis (PCA) is a widely used tool in medical image
analysis for data reduction, model building, and data understanding and
exploration. While PCA is a holistic approach where each new variable
is a linear combination of all original variables, sparse PCA (SPCA) aims
at producing easily interpreted models through sparse loadings, i.e. each
new variable is a linear combination of a subset of the original variables.
One of the aims of using SPCA is the possible separation of the results
into isolated and easily identifiable effects. This article introduces SPCA
for shape analysis in medicine. Results for three different data sets are
given in relation to standard PCA and sparse PCA by simple thresholding
of small loadings. Focus is on a recent algorithm for computing sparse
principal components, but a review of other approaches is supplied as well.
The SPCA algorithm has been implemented using Matlab and is available
for download. The general behavior of the algorithm is investigated, and
strengths and weaknesses are discussed. The original report on the SPCA
algorithm argues that the ordering of modes is not an issue. We disagree on
this point and propose several approaches to establish sensible orderings.
A method that orders modes by decreasing variance and maximizes the
sum of variances for all modes is presented and investigated in detail.
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6.1 Introduction

Few computational methods for data understanding, exploration and reduction
has found more use than principal component analysis (PCA). PCA takes an
(n×p) data matrix X, n being the number of observations and p being the num-
ber of variables, and transforms it by Z = XB such that the derived variables
(the columns of Z) are uncorrelated and correspond to directions of maximal
variance in the data. The derived coordinate axes are the columns of B, called
loading vectors with individual elements known as loadings. These are at right
angles with each other; PCA is simply a rotation of the original coordinate sys-
tem, and the (p×p) loading matrix B is the rotation matrix. The new variables
(the columns of Z) are known as principal components (PCs). Usually only the
first k components, k < p, are retained since these explain the majority of the
sample set variance. This makes Z (n× k) and B (p× k). The loading matrix
can be calculated using a singular value decomposition of the data matrix X or
through an eigenanalysis of the corresponding covariance or correlation matrix.

Another way of viewing PCA is by treating each new variable as a linear com-
bination of the original variables. The loadings then translate to coefficients
and may be investigated in detail to determine the important factors behind
each PC. The problem is that each new variable is a linear combination of all
variables, and the loadings are typically non-zero. This makes interpretation
difficult. Sparse principal component analysis aims at approximating the prop-
erties of regular PCA while keeping the number of non-zero loadings small.

The most straight-forward way of obtaining sparse loadings is by simple thresh-
olding, where sufficiently small loadings are truncated to zero. The threshold
can be chosen using e.g. Jeffers’ criterion [69] of excluding, disregarding signs,
loadings below 70% of the largest loading for each PC. Thresholding can be
misleading in several respects, as discussed by Jolliffe [17]. The influence of a
variable on a specific PC is not dependent on the magnitude of the correspond-
ing loading only, but is governed by a series of relationships, such as variable
size, or analogously, variance.

Among the earliest methods for obtaining a simple structure of the loadings of
the original variables is the class of orthomax rotations [57], where an initial basis
is rotated due to some objective criterion. The basis can for example be provided
by a PCA. Let B be a p× k orthonormal matrix (of column eigenvectors) and
Ω be an orthonormal rotation matrix in Rk, i.e. trace(Ω)Ω = I. Then, the class



6.1 Introduction 119

of orthomax rotations can be defined as

Ωo = arg max
Ω

 k∑
j=1

p∑
i=1

(BΩ)4ij −
γ

p

k∑
j=1

(
p∑

i=1

(BΩ)2ij

)2
 , (6.1)

where Ωo denotes the resulting rotation and γ denotes the type. In the orthomax
class we find the Varimax [76] case where γ = 1. Here, Equation 6.1 simplifies
to a sum of variances. The variances are calculated for each loading vector
where the individual loadings are squared. This emphasizes sparsity within each
loading vector by clustering loadings into an approximate bimodal distribution
of large and very small loadings. Although the resulting components may not be
strictly sparse, one benefit of the Varimax method is that it is computationally
feasible in high-dimensional cases, see e.g. [139]

Chennubhotla and Jepson [18] present another criterion for finding a suitable
rotation matrix based on the entropy of the loading matrix. A cost function,

C = C1 + λC2,

is minimized where C1 =
∑k

j=1−dj log dj and dj is the relative variance of

the jth principal component. Next, C2 =
∑p

i=1

∑k
j=1−b2

i,j log b2
i,j , were bi,j

denotes the elements of the (p × k) loading matrix. Optimizing C1 alone gives
the standard PCA solution, while C2 is minimal for the identity matrix, thus
promoting sparsity. Similarly to the Varimax criterion, suppressed loadings will
be small but non-zero. To achieve strict sparsity, thresholding of small loadings
is performed as discussed above. The resulting loading vectors will, contrary
to those constructed using the Varimax criterion, explain a decreasing amount
of variance of the original data set; a feature it has in common with regular
PCA. Additionally, the number of non-zero loadings also decrease, making a
multi-scale interpretation possible.

Simple principal components [166] is a technique for producing particularly sim-
ple, and possibly sparse, loading vectors. It uses a series of in-plane rotations
affecting two loading vectors at a time such that the resulting directions explain
maximal variance subject to being represented by integers. The end result is
a set of orthogonal loading vectors represented by (primarily small) integers.
Empirical evidence shows that the correlations between the resulting PCs are
low. Small loadings will typically be translated to zeros, resulting in a sparse
loading matrix structure. Similar ideas have been put forth by Hausman [61]
and Rousson and Gasser [123].

d’Aspremont et al. [31] take a variational approach to sparse PCA. The PCs
are estimated separately by approximating a positive semidefinite symmetric
matrix (the covariance or correlation matrix) by a rank-one matrix, bbT . To
impose sparsity, a constraint is added on the maximum number of non-zero



120 Sparse Principal Component Analysis in Medical Shape Modeling

elements of b, known as the cardinality of b. This direct formulation results
in a non-convex optimization problem that is difficult to solve. The problem
is therefore relaxed by replacing the cardinality constraint with a convex one,
making the computation feasible. The resulting PCs are reported to explain a
larger proportion of variance than competing algorithms, but the complexity of
the formulation grows quickly with the number of variables.

This article focuses on a method for computing sparse loading vectors using
concepts from variable selection in regression. A method coined SCoTLASS
[74] (Simplified Component Technique-LASSO) predates this method and is
based on similar ideas. Maximizing the expression

bT
i Rbi,

where R denotes the covariance matrix of X, subject to

bT
i bi = 1 and bT

j bi = 0, j 6= i,

renders the solution of a regular PCA. The authors propose to add the constraint

‖bi‖1 =
p∑

j=1

|bij | ≤ t, t ∈ R+, ∀i.

The parameter t controls the sparsity of the loading vectors bk. The addition
of this constraint was inspired by the LASSO [157] regression method described
below. However, this necessitates the use of a numerical optimization method.
The problem formulation contains p parameters which is a potentially large
number, and the cost function contains several local minima. The authors use a
simulated annealing approach for optimization, which adds a number of tuning
parameters in itself.

The following section presents the theory of the present method of sparse PCA,
hereafter simply denoted SPCA. Section 6.3 shows results on shape data from
three different data sets along with results on the general properties of SPCA.
Section 6.4 discusses the obtained results, debates the advantages and drawbacks
of SPCA and proposes a range of different possibilities for ordering of modes.
Section 6.5 concludes the paper.

6.2 Methods

This section gives a brief description of the SPCA algorithm and discusses its
relation to variable selection methods in regression. For a complete treatment,
consult [177] and the preliminary papers [40, 157] and [175].



6.2 Methods 121

6.2.1 Regression Techniques

The regression methods presented here all originate from ordinary least squares
(OLS) approximations. The response variable y is approximated by the pre-
dictors in X. The coefficients for each variable (column) of X are contained in
b,

bOLS = arg min
b
‖y −Xb‖2, (6.2)

where ‖ · ‖ represents the L2-norm. This is the best linear unbiased estimator
given a number of assumptions, such as independent and identically distributed
(i.i.d.) residuals. However, if some bias is allowed, estimators can be found with
lower mean square error than OLS when tested on an unseen set of observations.
A common way of implementing this is by introducing some constraint on the
coefficients in b. The methods described here use constraints on either the
L1-norm or the L2-norm of b, or both. Adding the L2 constraint gives

bridge = arg min
b
‖y −Xb‖2 + λ‖b‖2. (6.3)

This is known as ridge regression. Any positive λ will shrink the coefficients of
b; if λ is chosen carefully, this may lead to improved prediction accuracy and
better numerical properties. Replacing the L2-norm in the constraint with the
L1-norm gives

bLASSO = arg min
b
‖y −Xb‖2 + δ‖b‖1, (6.4)

where ‖b‖1 =
∑p

i=1 |bi|. This method is coined LASSO [157], the least absolute
shrinkage and selection operator. As the name implies, using the L1-norm not
only shrinks the coefficients, but drives them one by one to exactly zero as δ
grows. This implements a form of variable selection, as minor coefficients will
be set to zero in a controllable fashion, while the remaining coefficients will
be altered to mimic the response in the best possible way. The relation to the
problem of setting small PCA loadings to zero is already evident, but some more
theory is needed before this can be properly handled.

LASSO has proven to be a very powerful regression and variable selection tech-
nique, but it has a few limitations. If p > n, i.e. there are more variables than
observations, LASSO chooses a maximum of n variables. If there is a group of
strongly correlated predictors, LASSO tends to choose a single predictor from
that group only. The elastic net regression method [175] was developed to ad-
dress these shortcomings. It uses a combination of the constraints from ridge
regression and LASSO,

bnEN = arg min
b
‖y −Xb‖2 + λ‖b‖2 + δ‖b‖1, (6.5)



122 Sparse Principal Component Analysis in Medical Shape Modeling

where nEN is short for naive elastic net for reasons described below. The elastic
net can be formulated as a LASSO problem on augmented variables,

b∗nEN = arg min
b∗

‖y∗ −X∗b∗‖2 +
δ√

1 + λ
‖b∗‖1, (6.6)

where

X∗
(n+p)×p =

1√
1 + λ

[
X√
λIp

]
, y∗n+p =

[
y
0p

]
, b∗ =

√
1 + λb.

The authors argue that the formulation in Equation 6.6 incurs a double amount
of coefficient shrinkage, which is why the solution of Equation 6.5 is referred to
as naive. The excessive shrinkage is compensated for in the final solution for
bEN which is

bEN =
√

1 + λb∗nEN = (1 + λ)bnEN. (6.7)

The resulting LASSO problem has more observations (p+n) than variables (p),
which is why cases where p > n are handled gracefully. If λ > 0, the elastic net
constraint function λ‖b‖2 + δ‖b‖1 is strictly convex. It can be shown [175] that
the difference between coefficients of highly correlated variables in such a system
is very small. The elastic net therefore has a tendency of grouping variables,
contrary to the LASSO. These are two properties that are desirable in a PCA
framework. Problems where there are more variables than observations are
common, and principal components built from highly correlated and significant
variables are easier to interpret.

Ordinary least squares and ridge regression have closed-form solutions, that is,
bOLS and bridge can be expressed as simple functions of X, y and λ. This is not
true for the LASSO and elastic net methods. For many years, LASSO solutions
were found using standard optimization techniques, which made for long com-
putation times. In 2002, Efron et al. [40] published a report on a new regression
method called least angle regression (LARS). The terminal S in LARS refers
to its close relation to stagewise regression and LASSO. Although conceptually
different, the method is shown to be very similar to LASSO, and through a
small modification, the exact LASSO solution can be computed. The method
is built on a powerful geometric framework, through which a computationally
thrifty algorithm is conceived. The algorithm starts with all coefficients at zero,
and successively adds predictors until all variables are active and the ordinary
least squares solution is reached. In other words, LARS returns the solutions
for all possible values of δ. What remains is to pick a suitable solution, a proper
value of δ. This can for instance be done using cross-validation or prior knowl-
edge of the desired number of non-zero coefficients. In the elastic net setting,
LARS returns the solutions corresponding to all possible values of δ given a
value of λ. Zou and Hastie [175] describes a further development of the LARS
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algorithm tailor made to suit the elastic net framework. This extension is called
LARS-EN.

In summary, a regression approach has been presented through which a relevant
subset of variables can be selected, which handles the case of more variables
than observations gracefully, and which can be computed efficiently. We now
turn to the problem of calculating sparse PCs. Note that ”sparse PCs” refers to
principal components formed by linear combinations of sparse sets of variables.

6.2.2 Sparse Principal Component Analysis (SPCA)

The simplest approach to SPCA using regression is by treating each principal
component as a response vector and regressing this on the p variables. Denoting
the ith PC and loading vector by zi and bi respectively, and inserting this into
the elastic net framework gives

b̂i = arg min
bi

‖zi −Xbi‖2 + λ‖bi‖2 + δ‖bi‖1. (6.8)

The principal component zi is calculated using regular PCA. The regression
procedure will calculate a loading vector bi such that the resulting PC is close
to zi while being sparse. The weakness of this approach is that all solutions
are constrained to the immediate vicinity of a regular PCA. A better approach
would be to approximate the properties of PCA, rather than its exact results.
Specifically, the loading matrix B should be near orthogonal, and the correla-
tions between the PCs of the scores matrix Z should be kept low. Zou and Hastie
propose a problem formulation called the SPCA criterion [177] to address this.

(Â, B̂) = arg min
A,B

n∑
i=1

‖xi −ABT xi‖2 + λ
k∑

j=1

‖bj‖2 +
k∑

j=1

δj‖bj‖1

subject to AT A = Ik (6.9)

To clarify this expression, it will be broken down into components. First, BT xi

takes the variables of observation i and projects them onto the principal axes
(loading vectors) of B. Note that xi denotes the ith column of XT . Only k
PCs are retained, meaning that some information is lost in this transformation.
Further, ABT xi takes the scores of BT xi and transforms them back into the
original space. The orthogonality constraint on A makes sure B is near orthog-
onal. The whole term

∑n
i=1 ‖xi −ABT xi‖2 measures the reconstruction error.

The remaining constraints are the same as for elastic net regression, driving the
columns of B towards sparsity. The constraint weight λ must be chosen before-
hand, and has the same value for all PCs, while δ may be set to different values
for each PC, offering good flexibility. It can be shown [177] that for δj = 0 ∀j,
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the SPCA criterion is minimized by setting A and B equal to the loading ma-
trix of ordinary PCA. Hence, the solutions of the present formulation of SPCA
conveniently range from ordinary PCA on one end, to the (maximally sparse)
zero matrix on the other.

Equation 6.2.2 resembles the elastic net formulation but there is a significant
difference. Instead of estimating a single coefficient vector, this problem has two
matrices of coefficients, A and B. A reasonably efficient optimization method
for minimizing the SPCA criterion is presented in [177]. First, assume that A
is known. By expanding and rearranging Equation 6.2.2, it is shown that B
can be estimated by solving k independent naive elastic net problems, one for
each column of B. Referring to Equation 6.5, the data matrix is X as usual
while y = Xai for the ith loading vector. On the other hand, if B is known,
A can be calculated using a singular value decomposition; if XT XB = UDVT ,
then A = UVT . Since both matrices are unknown, an initial guess is made and
A and B are estimated alternately until convergence. Zou et al. [177] suggests
initializing A to the loadings of k first ordinary principal components.

6.2.3 Ordering of principal components

One goal of PCA is to recover latent variables that are as descriptive as possible.
This is done by maximizing the variance of each PC subject to being orthogonal
to higher order PCs. The performance of PCA methods is commonly measured
by the amount of variance explained by each PC, and the total amount of
variance for k modes. Regular PCA is the only linear transformation that
produces both orthogonal loadings and uncorrelated scores [72]. For methods
that produce correlated scores, variances cannot be calculated directly, as some
of the variance explained by one PC will be present in others. This calls for
a fair evaluation method. Several such methods are presented in [50], where it
is concluded that the most powerful method is to measure adjusted variance,
a term used by Zou and Hastie who suggest the same method in [177]. The
idea is that the variance of each PC should be adjusted for the variance already
explained by higher order components. For mean centered variables, such as
those derived by PCA, correlation is equivalent to the cosine of the angle between
vectors. Zero correlation corresponds to a 90◦ angle between vectors while fully
correlated variables are parallel. Adjustment of a PC therefore amounts to a
transformation such that the resulting vector is at right angles with all higher
order PCs. This is also known as Gram-Schmidt orthogonalization.

The variance of the jth PC is proportional to its squared length, var zj = zT
j zj

n ∝
zT

j zj . Any ordering that maximizes the total variance therefore also maximizes
the sum of squared lengths. For ease of notation, squared lengths are considered
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in the following equations.

A vector zj may be orthogonalized, or adjusted with respect to another vector
z using orthogonal projection by

ẑj = zj − z(zT z)−1zT zj .

The jth PC should be adjusted for all higher order PCs. Assume that the
variables, the columns of Z, have been sorted according to decreasing order.
The adjustment can then be carried out for all higher order PCs simultaneously
by

ẑj = zj − Z(j−1)(Z
T
(j−1)Z(j−1))−1ZT

(j−1)zj ,

where Z(j) = [z1 . . . zj ] [50].

The SPCA criterion (6.2.2) keeps the loading matrix near orthogonal by forcing
A to be orthogonal, but does nothing to encourage uncorrelated scores. This
makes an orthogonalization process central to SPCA. Zou and Hastie argue that
the order of the components is not an issue; the order is left unaltered, making
it possible for lower order modes to explain more variance than higher order
modes. Furthermore, the amount of total adjusted variance is dependent on the
ordering of the PCs, and may not be maximal in this case.

Formally, the variable ordering that maximizes the total variance can be estab-
lished by maximizing

∑
j ẑT

j ẑj and allowing for permutations,

arg max
P∈Pk

z̃T
1 z̃1 +

k∑
j=2

z̃T
j z̃j − z̃T

j Z̃(j−1)(Z̃
T

(j−1)Z̃(j−1))−1Z̃
T

(j−1)z̃j , (6.10)

where Z̃ = ZP is the permuted scores matrix and Pk is the set of permutation
matrices of size k. Note that the supremum of Equation 6.10 is the sum of
unadjusted variances which is equal to the maximum iff Z is orthogonal. The
simplest way of finding the optimal permutation is by trying all k! possible
permutations, which is feasible for a low number of PCs. This paper proposes
a forward selection-type rule for picking an ordering with two properties; the
variance of a PC is less than or equal to the variances of higher order PCs, and
the expression in Equation 6.10 is maximized in most cases. The rule is simple.
Treat one PC at a time. At each step, choose the PC with largest (adjusted)
variance, and adjust the scores matrix for this PC. This means that in the first
step, we calculate the variances of all (unadjusted) PCs and choose the one with
greatest variance. All PCs (Z) are then adjusted with respect to the chosen PC
(zj) using

Ẑ = Z− zj(zT
j zj)−1zT

j Z. (6.11)



126 Sparse Principal Component Analysis in Medical Shape Modeling

In the second step, the adjusted variances from the first step are considered.
Again, the PC with greatest variance is chosen, and all PCs are updated using
Equation 6.11. This process is repeated for all PCs. This results in a zero
Z matrix, however, a sensible ordering has been established. This ordering is
finally applied to the loading vectors and the original scores matrix.

The first property of this rule, which states that variances are decreasing, is
easily realized since the longest vector is chosen in each step and since the
squared length cannot grow as the vector is adjusted for some other vector.
The second property of maximal total variance is empirically shown below to
be fulfilled to a large extent, but as shall be seen, there are counter examples,
e.g. Z = [[0 1.5]T [1 1]T [1 −1]T ].

6.3 Results

The SPCA algorithm has been applied to medical shape analysis. The shape
data is contained in a data matrix X (n×p) where each shape corresponds to one
row (observation) and the variables consist of the different landmark positions.
Landmarks are defined by two coordinates (2D data); these are treated sepa-
rately such that one coordinate is one variable. This project is concerned with
2D data only, although the techniques described herein are directly applicable
to data of any dimensionality.

Three data sets were used in this study. The first consists of 37 annotations of
the human face. Each face is represented by 58 landmarks. The second data
set is a shape model of the lungs, the heart and the clavicles. The set contains
247 observations, each with 166 landmarks. The final data set represents the
corpus callosum brain structure. This is the bundle of nerve fibers connecting
the two cerebral hemispheres of the brain. The structure is well defined in the
mid-sagittal plane, the plane that separates the left hemisphere from the right
[144]. Further away from this plane, the structure dissolves into separate fibers,
which is why it is best analyzed in 2D. The set has 62 observations, each with
78 landmarks.

Figure 6.1 shows regular and sparse decompositions of the face data set. Each
set of figures shows the first 12 modes of variation1, ordered by the method
described above. It is evident that regular PCA produces holistic modes of vari-
ation, each describing a series of effects at once, making interpretation difficult.
SPCA, on the other hand, manages to display more or less separate effects for

1Modes of variation is a commonly used term where the jth mode denotes movements
along the axis defined by the jth loading vector. The mean shape defines the origin and
perturbations are measured offset to this.
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each mode. SPCA modes 2, 8 and 12 correspond to mouth opening/closing,
upper lip thickness and smile/frown respectively. SPCA modes 4, 6 and 7 show
differing eyebrow configurations. Figure 6.2 shows corresponding images for the
lungs, heart and clavicles data set. SPCA mode 2 depicts the length of the clav-
icles, while most other modes are concerned with either lung or heart geometry,
or both (e.g. SPCA mode 5). Figure 6.3 presents results for the corpus callosum
data set.

Table 6.1 shows variance proportions for ten modes of variation of the corpus
callosum data set. The top row contains results for a regular PCA, while the
second row represents sparse PCA using thresholding. The third row presents
the adjusted variances of SPCA with no reordering of modes, and the results in
the bottom row are for SPCA using the proposed forward selection-type rule for
mode ordering. It is seen that reordering the modes increases the total explained
variance and ensures that the variances are decreasing.

Variance (%) PC 1 PC 2 PC 3 PC 4 PC 5
PCA 43.27 18.55 13.74 7.71 4.93

threshold PCA 14.36 8.86 4.89 2.46 3.10
SPCA 13.21 7.51 5.18 3.44 2.27

reordered SPCA 15.12 7.88 7.10 3.37 1.35

Variance (%) PC 6 PC 7 PC 8 PC 9 PC 10
∑

PCA 2.01 1.58 1.36 0.98 0.78 94.92
threshold PCA 0.90 0.66 0.57 0.32 0.24 36.37

SPCA 0.60 0.26 0.90 0.11 0.03 33.50
reordered SPCA 1.06 0.42 0.32 0.11 0.03 36.77

Table 6.1: Explained proportion of variance for each mode and method for the corpus
callosum data set. The last column shows the cumulative variance for all ten modes.
Each sparse mode is set to affect 20 coordinates exactly (total 78), explaining the low
proportions of variation.

The simplest alternative to SPCA is straight-forward truncation of loadings as
described in the introduction. Some results of this scheme is found in Figure
6.4. The difficulties of this method are clear from these images; the modes of
variation are merely pruned versions of those of regular PCA. Hence, the effects
are scattered and hard to interpret.

Figure 6.5 shows an important property of SPCA. The results vary slowly with
values of λ, the weighting term on the L2 norm of the loadings. Here, vastly
different values are chosen, but with similar results.
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PC 1 PC 2 PC 3 PC 4

PC 5 PC 6 PC 7 PC 8

PC 9 PC 10 PC 11 PC 12

(a) PCA modes (0, ±2.5 std. dev. overlaid)

SPC 1 SPC 2 SPC 3 SPC 4

SPC 5 SPC 6 SPC 7 SPC 8

SPC 9 SPC 10 SPC 11 SPC 12

(b) SPCA modes (0, ±2.5 std. dev. overlaid)

Figure 6.1: PCA (left) versus SPCA (right) shape models of the human face. Each
mode describes an identifiable effect, such as smile/frown, nose size and shape, and
eyebrow configurations.
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PC 1 PC 2 PC 3 PC 4

PC 5 PC 6 PC 7 PC 8

PC 9 PC 10 PC 11 PC 12

(a) PCA modes (0, ±2.5 std. dev. overlaid)

SPC 1 SPC 2 SPC 3 SPC 4

SPC 5 SPC 6 SPC 7 SPC 8

SPC 9 SPC 10 SPC 11 SPC 12

(b) SPCA modes (0, ±2.5 std. dev. overlaid)

Figure 6.2: Lungs, heart and clavicles. Mode 3, 5, 6 and 9 depict the heart geometry
while mode 8 describes the position of the aortic arch.
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PC 1 PC 2 PC 3 PC 4

PC 5 PC 6 PC 7 PC 8

PC 9 PC 10 PC 11 PC 12

(a) PCA modes (0, ±2.5 std. dev. overlaid)

SPC 1 SPC 2 SPC 3 SPC 4

SPC 5 SPC 6 SPC 7 SPC 8

SPC 9 SPC 10 SPC 11 SPC 12

(b) SPCA modes (0, ±2.5 std. dev. overlaid)

Figure 6.3: PCA (left) and Sparse PCA (right) models of the corpus callosum brain
structure.
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SPC 1 SPC 2 SPC 3 SPC 4

Figure 6.4: SPCA using simple thresholding. Although the same L1 constraint has
been used, these images do not show the same amount of separation as those in Figure
6.1(b).

Figure 6.5: The first four modes of variation for the corpus callosum data set. Rows
correspond to λ-values 0.001, 1, and 1000 (top to bottom). Note the insensitivity to
values of λ.

The relatively strong correlations among the PCs produced by SPCA are evident
in Figure 6.6 where correlations are plotted for the PCs, next to the angles
between the loading vectors. The correlations become considerable, while most
angles are in the vicinity of 90◦, although with a few clear exceptions. These
properties follow from the definition of the SPCA criterion as discussed earlier.
The implication of the high correlations is that it becomes impossible to refer
to one PC without referring to others. This is what motivates the discussion on
ordering of modes.

The proposed method for ordering the principal components and the corre-
sponding loading vectors proved successful in the majority of cases. To test the
performance of the method, 100 random scores matrices were used as input and
the average total amount of adjusted variance was measured in three different
ways; using no reordering, the proposed method, and, by trying all possible
combinations, the average maximal adjusted variance. This test was carried out
for a number of combinations of the number of observations n, and the number
of PCs k. Table 6.2 shows the complete set of results. The test matrices were
all random, but to produce relevant scores matrices, a predefined covariance
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Figure 6.6: Correlations of PCs and angles between loading vectors for the lungs
data set, using the SPCA method. Regular PCA produces an orthonormal loading
matrix and uncorrelated principal components. SPCA typically results in significant
correlations, while angles are relatively close to 90◦.

structure was used, and all variables had zero mean. The covariance structure
from the SPCA calculations on the face data set was used. Similar results were
obtained using other SPCA covariance matrices.

The A matrix is initialized to the first k loading vectors of a regular PCA. In
the first SPCA iteration, the values of B will be influenced by this. However,
as Figure 6.7 shows, as the iterations progress, the values of B converge to
very different values; the resulting B seems to be independent of regular PCA.
Tests with initialization of A to the identity matrix gives slightly different, but
acceptable results.
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Figure 6.7: Coefficient values as functions of iteration number for the face data set.
Typically, coefficients vary considerably before convergence.
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no reordering
n = 10 n = 100 n = 1000

k = 3 14.0 (98.8) 0 0
k = 4 46.0 (97.9) 16.0 (99.8) 5.0 (100.0)
k = 5 57.0 (97.6) 21.0 (99.8) 2.0 (100.0)
k = 6 76.0 (96.4) 39.0 (99.8) 4.0 (100.0)
k = 7 87.0 (96.8) 46.0 (99.8) 5.0 (100.0)
k = 8 95.0 (96.2) 50.0 (99.8) 2.0 (100.0)

forward selection reordering
n = 10 n = 100 n = 1000

k = 3 1.0 (98.8) 0 0
k = 4 0 0 0
k = 5 0 0 0
k = 6 6.0 (98.7) 4.0 (99.8) 0
k = 7 9.0 (98.3) 6.0 (99.9) 0
k = 8 6.0 (99.1) 16.0 (99.5) 0

Table 6.2: Results of the proposed ordering method (right) versus no reordering
(left) for k n-dimensional random PCs with a static covariance structure. Numbers
represent the average proportion (%) over 100 trials where the optimal ordering was
not found. The optimal ordering was established by an all-subsets calculation in each
case. The parenthesized numbers denote the average proportion of maximal variance
reached in cases of failure. Note that the average proportion of maximal variance over
all trials is higher.

6.4 Discussion

The results presented in this article provide evidence that the presented SPCA
algorithm is able to produce separate and easily identifiable modes of variation.
We anticipate that SPCA will find good use in many clinical applications. In
particular, the ability of SPCA to extract latent variables that are easily in-
terpreted and visualized may help to understand the present variability. For
instance, studies of atrophic processes in the human brain due to aging, demen-
tia, Alzheimer’s disease etc. may benefit from this treatment.

The algorithm requires k + 1 parameters, λ and one δi for each PC. From the
results, it can be seen that the resulting loading vectors vary slowly with λ. The
values of δi are, however, crucial. In this project, δ is set such that precisely 20
coordinates are affected in each mode, but any other choice is equally valid, and
results would differ greatly. This makes the algorithm flexible, but parameter
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tuning requires knowledge of the problem at hand.

The computational complexity of SPCA for n > p is at most np2 + mO(p3)
where m is the number of iterations before the algorithm converges. If p > n,
the complexity is of order mkO(pln + l3) where l is the number of non-zero
loadings, see [177] for a more thorough discussion. Typical computation times
for the examples in this article are less than one minute on a standard laptop
computer. However, the number of iterations grows rapidly with the number
of PCs, and computation times for each elastic net problem grow with the
number of non-zero loadings. Memory consumption depends mostly on the
number of non-zero loadings, as the algorithm creates an (l × l) matrix in each
iteration. This makes it difficult to handle e.g. texture data in this setting,
where thousands of non-zero loadings may be of interest. The SPCA article
[177] presents a designated SPCA algorithm where λ is set to infinity. Each
elastic net computation is replaced by a single matrix multiplication, allowing
for much lower memory consumption and computational complexity. Results
on this extension are, however, yet to come.

This article presents one simple way of ordering principal components. This
method sorts the PCs according to descending variance and maximizes the total
explained (adjusted) variance in most cases. Table 6.2 shows that the fail rate
increases dramatically with increasing k if no reordering is performed, especially
for a low number of observations. With reordering, this effect is considerably
lower. It is also apparent that the negative impact of a failure drops with the
number of dimensions, n. The shape data used in this article has approximately
k = 12 and 37 ≤ n ≤ 247. Without reordering the PCs, there is a considerable
risk that the resulting total adjusted variance is sub-maximal, and, as shown in
Table 6.1, the individual variances may not be sorted in descending order.

The proposed method of measuring the performance of SPCA is convenient,
as it resembles the results of a regular PCA. However, other ways of ordering
modes can be beneficial.

Sparsity Modes can be ordered according to the amount of sparsity of the
corresponding loading vectors. Several SPCA calculations may be carried
out, each with different sparsity constraints. The modes are then ordered
according to sparsity, e.g. from highly local modes to more global effects.

Spatially Modes may also be ordered according to spatial locality. The center
of attention is calculated for each mode. These are then ordered along the
contour of the object.

Entropy Although the resulting loading vectors are sparse, each mode may
describe more than one effect. Using results from information theory, the
entropy of each mode can be calculated, effectively giving a measure on
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the amount of clustering. Modes can be ordered accordingly, for instance
going from low entropy, where a mode describes a single effect and has
limited spatial extent, to high entropy, where effects are scattered and/or
affect a larger proportion of the contour.

Combinations To obtain a more thorough library of modes, they may be or-
dered according to two criteria simultaneously and put in a two-dimensio-
nal grid. For instance, a combination of sparsity and a spatial ordering
may be useful, especially in an exploratory setting. It is plausible that an
examiner has some idea of the spatial location and extent of the relevant
effect. The search may then be constrained by isolating relevant modes
by defining for instance a rectangle in the two-dimensional grid.

6.5 Conclusion

This article has introduced sparse principal component analysis (SPCA) to med-
ical shape modeling. Results, shown on three different data sets, provide some
evidence that SPCA manages to isolate relevant sparse effects in each mode of
variation. The inherent design of SPCA keeps loading vectors near orthogonal,
while correlations between principal components are typically high. This mo-
tivates a discussion on the ordering of PCs. A method that orders the modes
according to descending variance was discussed in detail and shown to improve
the estimates of adjusted variances notably, while a few other possibilities where
mentioned briefly. The convergence of SPCA was shown to be irregular and
slow at times, but results are superior to those of the more straight-forward
approaches, such as thresholding of loading vectors.

Future work includes using SPCA for other applications, such as exploratory
analysis of fMRI data. The main obstacle in such analyses is the large number
of variables. An examination of the discriminative power of SPCA calculations
in medical shape modeling is also planned.

Source code for the statistics software S-Plus and its freeware sibling R has been
written and made available by H. Zou and T. Hastie, see www.r-project.org.
The first author of this article has made a corresponding implementation for
Matlab, available on www.imm.dtu.dk/~kas/software/spca/.

www.r-project.org
www.imm.dtu.dk/~kas/software/spca/
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Abstract

Recent advances in statistics have spawned powerful methods for regres-
sion and data decomposition that promote sparsity, a property that facili-
tates interpretation of the results. Sparse models use a small subset of the
available variables, and may perform as good as or better than their full
counterparts if constructed carefully. In most medical applications, mod-
els are required to have both good statistical performance and a relevant
clinical interpretation to be of value. Morphometry of the corpus callosum
is one illustrative example. This paper presents a method for relating spa-
tial features to clinical outcome data. A set of parsimonious variables is
extracted using sparse principal component analysis, producing simple yet
characteristic features. The relation of these variables with clinical data is
then established using a regression model. The result may be visualized as
patterns of anatomical variation, related to clinical outcome. In the present
application, landmark-based shape data of the corpus callosum is analyzed
in relation to age, gender, and clinical tests of walking speed and verbal
fluency. To put the data-driven sparse principal component method into
perspective we consider two alternative techniques, one where features are
derived using a model-based wavelet approach, and one where the original
variables are regressed directly on the outcome.
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7.1 Introduction

Traditional morphometric investigations in medicine make use of simple metrics
such as volume, area, length and various ratios to evaluate relations between
structure and function. The outcomes of such studies provide the examiner with
an indication of the characteristic anatomy of a clinical population, or spatial
features related to for example pathology. More intricate features provide more
information for interpretation, but require a more detailed hypothesis of the
process under study. For a clinical investigation that is exploratory in nature,
it makes sense to use an exploratory method to extract features. Such variables
should ideally have a clear relation to the relevant morphology, while imposing
as few assumptions on the data as possible. During the last two decades, meth-
ods for extracting more complex representations of anatomy from image data of
increasingly higher resolution have evolved. This has led to the development of
methods that allow for the computation of more abstract features such as the
mean shape and typical deformation patterns according to the latent shape dis-
tribution. Derived variables may be concretized as examples of anatomy, which
allows for more detailed investigation and interpretation. Furthermore, the re-
lationship between structural and clinical variables can be analyzed in a formal
statistical framework, making the investigation of certain clinical hypotheses
possible.

The challenge posed by increasingly complex anatomical representations is to
extract physically intuitive parameterizations of spatial variation. Conventional
statistical techniques tend to extract global decompositions of spatial data.
However, the effects of many biological processes of interest are expected to
be anatomically localized, even if the particular location, extent and frequency
are usually unknown.

This paper presents a methodology in which a statistically defined spatially
localized representation of anatomy is automatically extracted. The approach
is built on a generic statistical method known as sparse principal component
analysis. The paper further describes a way of relating these spatial variables
to some clinical outcome variable, producing a characteristic deformation of the
present anatomy and indicating its statistical relevance.
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Related Work

Increasingly advanced techniques for analyzing the shape of anatomical struc-
tures have emerged during the last two decades [11]. A suitable choice of shape
parameterization is crucial to ensure a correct and efficient analysis, and several
techniques have been developed to accurately describe the variability of hu-
man anatomy. These techniques include corresponding landmarks [12, 27, 38],
representations in the frequency domain in two [136] and three [15] dimensions,
skeleton-based techniques [10, 51], distance transforms [13, 92], and deformation
fields resulting from the registration of a set of images to a common reference
[3, 147].

Most of these methods produce a large number of spatial features. To devise a
more manageable model, the features are often arranged into groups according
to some spatial or statistical criterion. [27] pioneered the use of principal com-
ponent analysis (PCA) to decompose sets of landmarks. This provides compact
and powerful models for shape-driven segmentation and registration. A more
recent example is [35], who decomposed sets of landmarks with optimized corre-
spondences using PCA, and used the resulting shape features in a classification
study of the hippocampus. PCA has also been used to decompose other shape
descriptors. For instance, [77] presented a framework similar to that of [27] for
frequency domain descriptors applied to the segmentation of the hippocampus,
and [87] applied PCA to deformation fields extending throughout the entire
brain.

The use of PCA as an explanatory basis for interpretation in clinical appli-
cations has been limited ([114] is one exception). While PCA is an excellent
tool for efficient data representation, the global nature of the derived variables
makes interpretation difficult. This motivates the use of an extension to PCA
known as sparse PCA (SPCA). While the variables derived by PCA consist
of linear combinations of all original variables, SPCA forces the weights on
some variables towards zero, while others are adjusted to uphold the variance-
maximizing properties of PCA. The idea in studies of anatomy is that each
variable will describe a spatial pattern of variation that has a simple structure
and a clinically relevant interpretation [134]. Although conceptually simple, the
calculation of SPCA has proved difficult and several algorithms have been pro-
posed [18, 31, 61, 74, 99, 123, 166]. The approach advocated here was developed
by [177] and formulates PCA as a regression problem, using a recent variable
selection algorithm [175] to achieve sparsity. The selection of important vari-
ables is achieved by penalization of the weights on each variable using the `1
norm, a methodology introduced with the LASSO regression framework [157],
along with a method for its efficient computation [40].

Examples of other statistical decomposition techniques used in shape analy-
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sis are factor analysis [95], varimax rotated principal components [139], and
independent component analysis [161]. The latter two typically produce ap-
proximately sparse representations, but lack the flexibility of most SPCA im-
plementations.

In medical image analysis, the use of variable selection algorithms to aid in-
terpretation is gaining momentum. [171], employed a support vector machine
classification algorithm that incorporates variable selection to select subregions
of the hippocampus that separates schizophrenic patients from normal controls.
A similar algorithm was used by [146] on SPECT imagery to find regions of the
brain that differentiate between healthy subjects and patients with Alzheimer’s
disease. [43] used variable selection on deformation field data in a study of
schizophrenia.

The methodology introduced in this paper is applied to a data set of 569 outlines
of the corpus callosum (CC) brain structure, obtained from a study on atrophy
in an elderly population [110]. The CC provides an illustrative example of a
structure that may benefit from a localized analysis. The white matter fibers
defining the CC are organized according to an anterior-posterior topographical
organization; tissue loss and discrepancies can therefore be expected to be con-
strained to specific regions [70]. The CC is perhaps the most popular single
nervous structure for morphometric analysis and a wide range of applications
in shape analysis exist. [12] characterized deformations of the CC using partial
thin-plate spline warps. [33], [94] and [39] used deformation field features to find
gender differences in the CC. [52, 53] takes a classification approach to finding
anatomical discrepancies between populations where group differences are char-
acterized by the gradient of the classifier function and applies the method to a
study of the CC in affective disorder. [75] extract predefined global and local
shape features of the CC using a multi-scale medial shape representation. The
features are used for classification of schizophrenic and normal subjects.

The advantage of the method presented in this paper over previous work is the
extraction of interpretable localized features governed by few and weak assump-
tions. The central assumption is on the extent of the deformations, however, we
propose to alleviate this assumption by extracting features on several scales.

To put the SPCA method into perspective, we provide a comparison with two
alternative analysis methods, one where the original shape features (landmarks)
are analyzed directly to provide a sparse representation of anatomy. The second
method challenges a potential shortcoming of a data-driven process such as PCA
or SPCA in that minor but clinically relevant variation may be omitted. We
therefore include a model-based method for decomposition based on the wavelet
transform. Multi-scale representation of curves using the wavelet transform has
found applications in both computer graphics [118] and image analysis [34].
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The wavelet transform decomposes the anatomy into coefficients of both scale
and localization [32] and offers a sparse orthogonal shape basis with acceptable
interpretability.

Characteristic deformation patterns of the CC are derived for four different
clinical variables. Focus is on shape differences of the CC due to gender [2, 9,
20, 33, 39, 94, 167]), but results are also given for age effects, verbal fluency and
walking speed. Using the same data set, atrophy of the CC has previously been
shown to correlate with general cognitive and physical decline [70, 126].

7.2 Methods

To understand and quantify a complex process such as the variability of ana-
tomy, one has to balance a trade-off between a model that is both general and
compact. The first property means that it should be possible to model any
conceivable deformation pattern, while the second property ensures that the
number of variables used to do so is kept small, allowing more power to the
subsequent statistical analysis. If the intended use of the model goes beyond
prediction, interpretability adds to this list of requirements. Many anatomical
processes are expected to be localized, leading to high correlations between
spatially neighboring features. This property can be used to derive variables
where a single variable may describe deformations across several features in an
anatomically plausible fashion. Furthermore, restricting the analysis to relevant
variation only, the number of variables can be reduced. In the following, we will
review two methods for deriving such variables.

7.2.1 Principal Component Analysis

The first method is perhaps the most well-known and widely used method for
data decomposition in general; principal component analysis (PCA). To intro-
duce the method, as well as the notation and terminology used throughout the
rest of this paper, a brief explanation will be given here.

PCA takes a mean centered (n×p) data matrix X, n being the number of obser-
vations and p being the number of variables, and transforms it by Z = XB such
that the derived variables (the columns of Z) are uncorrelated and correspond
to directions of maximal variance in the data. The derived coordinate axes
are the columns of B, called loading vectors with individual elements known as
loadings. These are at right angles with each other; PCA is simply a rotation of
the original coordinate system, and the (p× p) loading matrix B is the rotation
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matrix. The new variables (the columns of Z) are known as principal compo-
nents (PCs). Usually only the first k components, k < p, are retained since
these explain the majority of the sample set variance. This makes Z (n×k) and
B (p× k). The loading matrix can be calculated using singular value decompo-
sition of the data matrix X or by eigenanalysis of the corresponding covariance
or correlation matrix.

7.2.2 Sparse Principal Component Analysis

Sparse PCA (SPCA) can be described as an extension of PCA, where a con-
straint on the number of non-zero loadings is added. The recent development in
statistical methods for variable selection in regression has resulted in an SPCA
approach described by Zou and Hastie [177]. This method is used throughout
this paper and the idea will be described here in brief. For a complete treatment,
consult [177] and the preliminary papers [40, 157] and [175]. Refer to [134] for
an introduction on using SPCA to decompose shape data.

The regression methods used in the calculation of SPCA all originate from
ordinary least squares (OLS) approximations. The independent variable y is
approximated by a linear combination of the dependent variables in X. The
coefficients for each variable (column) of X are contained in b.

bOLS = arg min
b
‖y −Xb‖2, (7.1)

where ‖ · ‖ represents the `2 norm. This is the best linear unbiased estimator
given a number of assumptions, such as independent and identically distributed
(i.i.d.) residuals. However, if some bias is allowed, estimators can be found with
lower mean square error than OLS when tested on an unseen set of observations.
A common way of implementing this is by introducing some constraint on the
coefficients in b. The methods described here use constraints on either the `1
norm or the `2 norm of b, or both. Adding the `2 constraint gives

bridge = arg min
b
‖y −Xb‖2 + λ‖b‖2. (7.2)

This is known as ridge regression [65]. Sufficiently large values of λ will shrink
the coefficients of b. The shrinkage introduces bias, but lowers the variance of
the estimates. Careful selection of λ may lead to improved prediction accuracy,
but of more interest here are the improved numerical properties, making estima-
tion in cases where p > n feasible [59]. Replacing the `2 norm in the constraint
with the `1 norm gives

bLASSO = arg min
b
‖y −Xb‖2 + δ‖b‖1, (7.3)
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where ‖b‖1 =
∑p

i=1 |bi|. This is the LASSO method [157]. Using the `1 norm
not only shrinks the coefficients, but drives them one by one to exactly zero as
δ increases. This implements a form of variable selection, as minor coefficients
will be set to zero in a controllable fashion, while the remaining coefficients will
be used to minimize the size of the regression residuals.

A third possibility is to use a combination of the constraints from ridge regression
and the LASSO. This approach is known as the elastic net [175] and has the
form

bEN = arg min
b
‖y −Xb‖2 + λ‖b‖2 + δ‖b‖1. (7.4)

The main benefit of the elastic net is that it better handles cases where p > n.
The elastic net can be formulated as a LASSO problem on augmented variables,
and is solved using the same algorithm, outlined below.

Ordinary least squares and ridge regression have closed-form solutions, that
is, bOLS and bridge can be expressed as functions of the random variable y;
bOLS = (XT X)−1XT y and bridge = (XT X + λI)−1XT y. This is not true for
the LASSO and elastic net methods. For many years, LASSO solutions were
found using standard optimization techniques, which made for long computation
times. In 2002, [40] published a report on a new regression method coined
least angle regression (LARS). Although conceptually different, the method is
shown to be very similar to LASSO, and through a small modification, the exact
LASSO solution can be computed. The method is built on a powerful geometric
framework, through which a computationally thrifty algorithm is conceived.
The paper shows that the coefficients b are piecewise linear with respect to
the regularization parameter δ, with breakpoints as variables enter or leave the
model. The breakpoints can be established using standard linear algebra. Using
this property, the entire regularization path can be computed. Starting with the
empty model (b = 0), variables are added and occasionally subtracted as δ grows
until all variables are non-zero and the full least squares solution is reached.
Hereby, the LARS path algorithm returns the solutions for all possible values of
δ. The computational cost for obtaining the entire LASSO regularization path
is the same as for a single least squares fit.

PCA and SPCA are strongly related to these regression algorithms. One way
of describing PCA using regression is by treating each principal component as
a response vector and regressing this on the p variables using ridge regression,

b̂i = arg min
bi

‖zi −Xbi‖2 + λ‖bi‖2. (7.5)

The minimizing coefficient vector b̂i normalized to unit length is exactly the ith
principal loading vector, independent of the choice of λ [177]. A direct approach
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to sparse PCA is obtained by adding the `1 (LASSO) constraint,

b̂i = arg min
bi

‖zi −Xbi‖2 + λ‖bi‖2 + δ‖bi‖1. (7.6)

The regression procedure will calculate a loading vector b̂i such that the re-
sulting PC is close to zi while being sparse. The weakness of this approach is
that all solutions are constrained to the immediate vicinity of a regular PCA.
A better approach would be to approximate the properties of PCA, rather than
its exact results. Specifically, the columns of the loading matrix B should be
near orthogonal and describe directions of high variance in the data set. Zou
and Hastie propose a problem formulation called the SPCA criterion [177] to
address this.

(Â, B̂) = arg min
A,B

n∑
i=1

‖xi −ABT xi‖2 + λ
k∑

j=1

‖bj‖2 +
k∑

j=1

δj‖bj‖1

subject to AT A = Ik (7.7)

To clarify this expression, it will be broken down into components. First, BT xi

takes the variables of observation i and projects them onto the principal axes
(loading vectors) of B. Note that xi denotes the ith column of XT . Only k PCs
are retained, meaning that some information is lost in this transformation. Next,
ABT xi takes the scores of BT xi and transforms them back into the original
space. The orthogonality constraint on A makes sure B is near orthogonal.
The whole term

∑n
i=1 ‖xi −ABT xi‖2 measures the reconstruction error. The

remaining constraints are the same as for elastic net regression, driving the
columns of B towards sparsity and ensuring good numerical properties in cases
where p > n. Some further insight into this criterion is given by considering the
loss function alone, with the additional constraint B = A,

Â = arg min
A

n∑
i=1

‖xi −AAT xi‖2 subject to AT A = Ik. (7.8)

The minimizer of this function is given by the first k loading vectors of a standard
PCA; this equation is in fact the basis for a derivation of PCA [59] other that the
standard variance-maximization approach. One of the key results of the SPCA
paper [177] is that the constraint B = A can be omitted given the addition of
an `2 penalty term,

(Â, B̂) = arg min
A,B

n∑
i=1

‖xi −ABT xi‖2 + λ

k∑
j=1

‖bj‖2 subject to AT A = Ik

(7.9)
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The columns of B (normalized to unit length) will still give the exact PCA
solution. The SPCA criterion then augments this formulation by the addition
of the `1 term, making it possible to estimate loading vectors that range from
the results of a standard PCA to various sparse approximations.

The constraint weight λ must be chosen beforehand and has the same value
for all PCs, while δ may be set to different values for each PC, offering good
flexibility. The level of sparsity can also be defined by specifying a target number
of active variables. This is done by terminating the elastic net estimation when
a suitable number of variables have entered the model. This stopping criterion
is very useful in practice.

Equation 7.7 resembles the elastic net formulation, but there is a significant
difference. Instead of estimating a single coefficient vector, this problem has two
matrices of unknown coefficients, A and B. A reasonably efficient optimization
method for minimizing the SPCA criterion is presented in [177]. First, assume
A is known. By expanding and rearranging Equation 7.7, it is shown that B can
be estimated by solving k independent elastic net problems, one for each column
of B (loading vector). Referring to the elastic net formulation in Equation 7.4,
the predictor matrix is X as usual while y = Xai, where ai is the ith column of
A. On the other hand, if B is known, A can be calculated using a singular value
decomposition; if XT XB = UDVT , then A = UVT . Since both matrices are
unknown, an initial guess is made and A and B are estimated alternately until
convergence. The standard option is to initialize A to the loadings of the k first
ordinary principal components.

7.2.3 Statistical Analysis

The goal of the analysis is to determine the relationship between the derived
variables (loading vectors) and some clinical outcome variable. Clinical variables
are here assumed to consist of a single score for each patient (e.g. age) and are
therefore n-dimensional. However, methods such as PCA and SPCA derive new
variables that are p-dimensional, that is, each variable can be interpreted as a
perturbation of the mean observation. As a preliminary step, the presence of
each PCA/SPCA variable in each subject must be measured. We propose to do
this via univariate regression. The following model formulates the idea, where
the presence z of deformation mode j is determined for the shape corresponding
to subject i (row vector) by,

xT
i = zbj + ε. (7.10)

The loading vectors bj have unit length for both PCA and SPCA, yielding the
least squares estimate z = xibj . This is simply the (i, j)th entry of the n × k
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scores matrix Z, which, as described in Section 7.2.1, is estimated by Z = XB,
also for SPCA. The presence z can be interpreted as a measure of correlation
between shape i and deformation j.

The scores matrix provides k n-dimensional variables that can be related to
clinical outcome. In this paper, we propose to establish this relation via a series
of univariate tests. This approach is similar to those used in e.g. analysis of
functional images and deformation/tensor based analysis [39], where separate
tests are performed at each voxel of an image volume. The statistical properties
of the scores vectors are often better suited for a regression analysis than clinical
variables, which may be categorical or ordinal (ordered categorical). We there-
fore assign the scores vector as the outcome variable. The test for a relationship
between spatial variable i and the clinical outcome y becomes

zi = βiy + ε. (7.11)

Confounding variables enter the model on the right hand side as covariates.
This simple regression model is solved using the least squares criterion, pro-
viding access to a range of statistical properties, most notably t-scores with
corresponding p-values, measuring the probability that a significant relation is
declared when the variables are in fact unrelated.

Using the above analysis, the relationship between the outcome and each spatial
variable is established. A complication with this approach is that significance
levels should be adjusted for the number of comparisons performed. Bonferroni
correction provides one simple procedure, where any test probabilities (p-values)
are multiplied by the number of tests performed. This provides strong control
over the family-wise (type-I) error rate – the probability that one or more tests
are falsely rejected is less than the nominal significance level α. However, this
procedure is generally too conservative, leading to unnecessarily high p-values.
A more powerful alternative, also with strong control over type-I errors, is pro-
vided by nonparametric permutation testing procedures. The specific method
used here is described in detail in e.g. [104], and is based on finding the em-
pirical distribution of a maximal statistic. First, we will review that basics of
permutation testing, and then briefly explain how this may be used to adjust a
set of p-values for multiple comparisons.

The idea of permutation testing is that if two variables are in fact unrelated,
then the results (for instance from a correlation or regression analysis) should
not change notably even though the elements of one of the variables have been
randomly shuffled around [36]. By permuting the dependent variable in the
regression analysis in Equation 7.11 R times, where R is some large integer
number (R > 999), an estimate of the empirical distribution function (EDF)
under the null hypothesis is obtained as the histogram of the corresponding
t-statistics of the independent variable of interest. Calculating the proportion
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of t-values exceeding the t-value obtained from the original (non-permuted)
regression analysis provides a nonparametric estimate of the p-value of the in-
dependent variable. Providing that the standard assumptions of the regression
analysis in (7.11) hold, these p-values will be in close agreement with those
obtained from a classical, parametric analysis.

One advantage of this non-parametric approach is that it provides additional
information that can be used to adjust the obtained p-values for multiple com-
parisons. This information comes in the form of the distribution of the maximal
statistic. This statistic consists of the maximal absolute t-value over all tests
for each permutation. For the ith repetition, we denote this value tmax

i . After R
repetitions, an approximation of the EDF for the maximal statistic is obtained.
The critical value is defined as the bαRc + 1 largest member of this distribu-
tion. Any t-values exceeding this value are deemed significant at the α level. In
practice, we do not need to compute the critical value. An adjusted p-value can
be obtained directly from the EDF of the maximal statistic as the proportion
of values exceeding the t-value t from the original regression analysis. Formally
this corresponds to padjusted = (1 + #{tmax

i > t})/(R + 1), where # denotes the
number of elements in a set [36].

7.2.4 Application to Shape Analysis

In this section, we will describe more specifically how the methods outlined
above are applied to landmark based shape analysis. We adopt the definition
of shape of Kendall [78], stating that shape information is what remains in a
data set, when translational, rotational and scaling effects have been filtered
out. The shapes are therefore aligned using a general Procrustes analysis [38].
The removal of scale differences deserves some attention in this application.
Many anatomical discrepancies, age related changes is one example, are likely
to include a component of pure scale. Obviously, a sparse decomposition is not
suitable for describing global properties with preserved interpretability, which
is why we recommend removing such differences. In the subsequent analysis of
the results, this fact must be taken into consideration. A separate analysis of
area/volume differences may be used to complement the study of local shape
variability.

PCA Application

Global patterns of shape variability are obtained through a principal component
analysis, performed by a singular value decomposition of the centered data ma-
trix X. This matrix consists of the Procrustes aligned shapes, where the mean
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shape has been subtracted from each row. Typically, all landmarks contribute
to the variance of the data set, meaning that each new variable bi (column
of B) will affect the entire outline at once. The usual practice is to truncate
the set of variables to account for e.g. 95 % of the total variation. This can
be done easily, since the variance explained by bi is given directly by the ith
eigenvalue of cov(X). This reduction has a number of advantages. For instance,
it excludes noisy (wiggly) deformation modes and it simplifies and strengthens
the subsequent statistical analysis.

SPCA Application

As for PCA, SPCA is applied to the aligned and centered shapes contained in
the data matrix X. A number of parameters govern the results. Also akin to
PCA, a choice must be made on the number of variables to retain. Unlike PCA,
this must be done in advance here. A rough number is provided by the number
of variables deemed significant in the PCA analysis, since when estimating an
excess of variables, the SPCA algorithm tends to produce highly correlated vari-
ables. The next parameter to set is λ in relation to the `2 constraint. Empirical
evidence [134] supported by some theoretical results [177] suggest that the re-
sults are largely independent on the specific choice of this parameter. Typically,
it is set to a small positive value to ensure good numerical properties. Finally,
the parameters δj must be set, governing the amount of sparsity of the decom-
position. This choice is dependent on the anatomical scale of interest, and must
be carefully chosen for each application. For many purposes, δj will be equal
for all j, resulting in the same deformation size for each bi.

Tabulation and Visualization

The most thorough way of presenting the results is a table showing each de-
formation mode, and the significance level for each of these associated with
each tested clinical outcome variable. Such a presentation minimizes the risk
of misleading the reader, but may also become time consuming and complex
to draw conclusions from. In order to construct a sample anatomy related to
a specific outcome variable, we suggest creating a compound deformation of a
template shape (for most purposes, the mean shape). Each deformation mode
exceeding the nominal significance level α contributes to this deformation with
strength proportional to its corresponding β (regression coefficient) value. If
both the spatial and clinical variables are standardized (zero mean, unit vari-
ance) prior to the regression analysis, the coefficients can be interpreted as the
change (in standard deviations) in the spatial (response) variable introduced by
a unit change in the clinical variable. For interpretational purposes, the use of
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the β values directly as weights on the various deformations may not produce an
anatomically meaningful pattern. Therefore, we instead choose to normalize the
β values within the group of spatial variables being tested such that the maximal
point-to-point distance is set to an appropriate value. The relative sizes of the
deformations will still be correct using this method, but the absolute strengths
of the relationships are lost, a fact that must be taken into consideration when
analyzing the results. This approach is used in the display of deformations in
this paper.

7.2.5 Alternative Methods

This section provides a brief explanation of two alternative methods for relat-
ing clinical outcome to localized representations of anatomy. One represents a
simple and direct analysis, while the other provides a model-based alternative
to the data-driven decomposition of PCA/SPCA.

Direct Analysis of Original Variables

PCA derives variables that capture global properties of the relevant anatomy,
while SPCA provides a more localized alternative. If the analysis is made in-
creasingly localized, the derived variables will in the limit consist of a single
component (x or y coordinate in the case of 2D shape analysis). This results
in an immediate and simple approach where the original spatial variables enter
Equation 7.11 one by one on the left hand side, and their individual relation to
the clinical outcome is established.

Decomposition using the Wavelet Transform

The pitfall of using subspace techniques such as PCA is that subtle but inter-
esting information may be lost. A minor deformation may be strongly related
to a clinical variable, but since the contribution to the sample variance is low,
the effect may not be modeled or simply discarded. It is therefore of interest
to find a basis where each variable is clinically relevant and all the variance of
the original data set is preserved. The wavelet transform may provide one such
basis.

A wavelet is a waveform of limited duration. The wavelet transform breaks
the original signal into scaled and translated versions of a predefined mother
wavelet [32]. The original signal is first divided into two parts of low and high
scale. These representations are known as the approximation (coarse scale)
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and the detail (fine scale). The approximation is then further divided in an
equivalent fashion, and the process is repeated a suitable number of times.
This yields a hierarchy of coefficients organized in a tree structure according
to scale and location depicted in Figure 7.1. Each wavelet coefficient represents
a deformation across several landmarks that is localized in both scale (spatial
extent) and position along the outline. The first order coiflet wavelet is used
here, which was determined suitable for describing local shape changes because
of its low complexity and high symmetry. This particular wavelet is orthogonal,
meaning that the variance and structure of the original shape data are preserved.
In the present analysis, x- and y-coordinates are treated separately as one-
dimensional periodic functions. The two resulting wavelet coordinate vectors
are concatenated into a single observation. This process is repeated for all
shapes in the data set, producing a set of variables of the same size as the
original data.

input

2 2 4 8 16 32

Figure 7.1: The hierarchical representation of a shape in the wavelet domain. Num-
bers represent the number of wavelet coefficients on each level. The leftmost branch
represents the approximation, while other branches correspond to detail at different
scales. At each branch, one example of the resulting shape deformation is shown in
red with the mean shape (black) as reference.

7.3 Results

The proposed method was applied to a large data set of two-dimensional outlines
of the corpus callosum (CC) brain structure. The corpus callosum is the band
of fibers connecting the hemispheres of the brain. These fibers are organized
in the approximate anterior to posterior topographical organization depicted
in Figure 7.2. The data set is part of the longitudinal LADIS (Leukoaraiosis
And DISability in the elderly) study, involving twelve European countries and
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more than 700 patients. Refer to [110] for a complete description of this study
and the project protocol. This paper presents a cross-sectional study based on
baseline data with 569 (312 female) subjects. The shape data was extracted
from the baseline MR images (3D sagittal or coronal T1-weighted MPRAGE,
voxel size 1×1×1 mm). In the mid-sagittal plane, the CC was registered using a
learning-based active appearance model [29, 140], trained on 62 CC examples,
each manually annotated with 78 corresponding landmarks. The automatic
registration was followed by manual inspection and correction by an expert
reviewer, unaware of any clinical status [126].
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Figure 7.2: Subregions and approximate fiber connectivity of the corpus callosum.
The connectivity labels are F (frontal), M (motor), S (somatosensory), A (auditory),
P/T (parieto-temporal), and V (visual). This image is adapted from [172] and is based
on a post-mortem study [167].

Initially, as simple test was performed to see whether the shape of the male
and female corpus callosum differed significantly. The full Procrustes distance
was used to measure the discrepancy between two shapes. This measure is a
normalized sum of point-to-point distances between the aligned shapes w and
y in complex notation [38],

dF (y,w) =
√

1− y∗ww∗y
w∗wy∗y

, (7.12)

where w∗ is the transpose complex conjugate of w. The Procrustes distance
between the male and female mean shapes was found to be dF (x̄male, x̄female) =
0.0167. Placing this value on the null distribution estimated by calculation of
the Procrustes distance based on a large number of permutations of the data
set (cf. [36, 104] and Section 7.2.3), the shapes were found to differ significantly
(p = 0.0015, R = 9999 repetitions). Figure 7.3 shows the female versus the male
mean CC shapes and the corresponding null distribution. The red dashed line
indicates the nominal Procrustes distance dF (x̄male, x̄female).

The described algorithm for sparse principal component decomposition was ap-
plied to the Procrustes aligned shape data. The anatomical scale of any defor-
mations related to the clinical outcome variables of interest is unknown. Three
decompositions on three different scales were therefore calculated. The extent of
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Figure 7.3: The mean female CC shape (red) versus the male (blue). Also shown
is the empirical null distribution function of the Procrustes distance between the two
shapes. The observed distance is represented by the red dashed vertical line, corre-
sponding to p = 0.0015.

the deformations were set to 5, 20 and 50 non-zero components, corresponding to
3%, 13% and 32% of the total number of components (2 ·78 = 156). This choice
of scales provides a relatively large span of deformations, while interpretability
is maintained. A standard PCA was also applied, obviously corresponding to
100% non-zero components. Figure 7.4 shows the resulting deformations. Note
the coherence of the sparse deformation patterns. This property is in no way
enforced by the algorithm and neither are such assumptions desired from a fully
exploratory method. Instead, the coherence is a result of the high correlations
between adjacent landmarks. In theory there is, however, nothing to keep the
deformations from breaking up into an arbitrary number of separate effects, and
this is seen to occur to some extent for SPCA(20) and SPCA(50).

The deformations for each SPCA scale and for PCA were related to four clinical
outcome variables using the univariate regression scheme outlined in Section
7.2.3. The variables are gender (male/female), age (years), walking speed (me-
ters/second) and verbal fluency (words/minute). In the tests for gender and age,
no confounding variables were identified. For walking speed and verbal fluency,
the results were adjusted for age, gender, level of education and the logarithm
of the volume of white matter hyperintensities, as suggested by previous studies
on the same data set [70, 126].

The results for each clinical variable are given in Figure 7.5. As described
in Section 7.2.4, the deformations shown for each scale and variable are the
compounded results for each deformation mode corresponding to an adjusted
p-value below α = 0.05. To provide more specific results in the case of gender
differences, Table 7.1 lists the resulting coefficient values for each deformation
mode and scale with corresponding significance levels.
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Figure 7.4: Example deformation modes. Each group of deformations represents
one scale. The notation SPCA(k) denote a sparse decomposition with k nonzero
components. The mean shape is shown in black, while blue and red lines represent
deformations in the positive and negative direction respectively. The deformations
have been appropriately scaled for visualization.
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SPCA(5) SPCA(20) SPCA(50) PCA
1 −0.0034 −0.0075 −0.0092 −0.0131
2 0.0043 0.0074 ** 0.0100 ** 0.0077
3 −0.0017 0.0043 0.0067 −0.0007
4 0.0025 −0.0036 −0.0032 −0.0041
5 −0.0038 −0.0044 −0.0099 * 0.0018
6 −0.0032 −0.0022 −0.0086 ** 0.0027
7 −0.0030 0.0058 * −0.0083 ** −0.0020
8 0.0040 −0.0039 * −0.0081 * −0.0012
9 0.0024 0.0048 * 0.0068 * 0.0001

10 0.0010 0.0056 0.0105 ** 0.0004
11 0.0009 0.0061 * −0.0089 * −0.0010
12 0.0032 0.0061 0.0077 * 0.0008
13 0.0028 −0.0034 0.0107 * −0.0009
14 0.0041 * 0.0069 * 0.0016 −0.0000
15 0.0011 0.0070 0.0080 0.0007
16 −0.0011 −0.0059 0.0096 * −0.0005
17 0.0041 −0.0064 * −0.0053 −0.0005
18 −0.0048 0.0041 0.0085 −0.0007
19 −0.0042 * 0.0053 −0.0110 * 0.0004
20 −0.0020 −0.0074 0.0099 * 0.0009
21 0.0017 0.0069 −0.0085 −0.0006
22 −0.0047 * 0.0071 −0.0092 0.0004

Table 7.1: Regression coefficients βi (cf. Equation 7.11) from the investigation of CC
gender differences. Significance levels are indicated by * (p < 0.05), ** (p < 0.01), and
*** (p < 0.001), corrected for multiple comparisons using permutation testing. Row
numbers refer to the deformation modes shown i Figure 7.4.



7.3 Results 155

SPCA(5) SPCA(20) SPCA(50) PCA
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Figure 7.5: Results for each clinical outcome variable and scale of decomposition.
The mean shape is drawn using black lines, while red lines represent a more female
CC, old age, and lower scores for walking speed and verbal fluency. The results for
verbal fluency have not been corrected for multiple comparisons. The deformations
show a high degree of consistency over different scales and are sufficiently coherent
and regular for clinical interpretation.

To put the data-driven SPCA method into perspective, tests for each clinical
outcome variable were also investigated through a direct analysis of the original
variables and by using the model-based wavelet approach. Figure 7.6 shows the
results from these tests.

Gender Age Walking Speed Verbal Fluency

Pointwise

Wavelet

Figure 7.6: Results for all four clinical outcome variables using the direct component-
wise approach (top row) and the wavelet coefficient approach (bottom row), showing
the mean shape (black) versus a more female shape (red). The methods seem inferior
to the proposed method in terms of statistical power, specificity, and interpretability.



156 Sparse Decomposition and Modeling of Anatomical Shape Variation

7.4 Discussion

This paper has introduced a method for relating localized, anatomically mean-
ingful patterns of variation to clinical outcome using a method for the estimation
of sparse principal components.

7.4.1 Method

The results presented in Figure 7.4 suggests that the SPCA method is a use-
ful method for deriving localized and interpretable patterns of variability. The
computational complexity is reasonable in the present case of relatively many
observations, but limited dimensionality. Computation times varied from sec-
onds for low scale deformations, to minutes for more complex cases. Conver-
gence seems to vary considerably as well, with almost immediate convergence
in some cases, and slower and more irregular convergence in others. Alternative
or approximate optimization schemes for the SPCA criterion in (7.7) should be
a focus of future work. For application to higher dimensional data, we supply a
discussion below.

Splitting the testing procedure performed to relate spatial deformations to clin-
ical outcome data into a series of univariate tests comes with both benefits and
drawbacks. Most importantly, it provides a strong form of regularization. Each
model contains a low number of variables (one plus any covariates), making
the analysis more stable in cases with few observations. The main disadvan-
tage is that this analysis disregards the correlation structure between variables.
However, PCA scores are uncorrelated and are therefore unaffected by this prop-
erty. SPCA scores generally show stronger patterns of correlation and the SPCA
analysis may be more notably influenced by this limitation. Estimation methods
that take the correlation structure between spatial variables into consideration
is another topic for further investigation.

Two alternative methods for a localized analysis of anatomy was outlined. Ar-
guably, the results obtained using these methods (cf. Figure 7.6) were inferior to
those of the proposed method. The point based method suffers from two appar-
ent disadvantages. The high number of degrees of freedom makes the method
prone to overfitting. Disparate results may be obtained for adjacent points,
leading to variational patterns that are scattered or irregular, and therefore
difficult to interpret. The SPCA method circumvents this problem by mak-
ing sure that each variable represents an anatomically meaningful pattern over
several data points. The second problem is the high number of variables. Proce-
dures for adjustment for multiple comparisons such as Bonferroni correction or
the permutation method outlined in Section 7.2.3 tend to adjust more for more
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high-dimensional models, effectively resulting in lower levels of significance. The
discouraging results obtained using the wavelet representation seems to be due
to the spatial appearance of the derived variables, which look implausible from
an anatomical viewpoint (cf. Figure 7.1). The poor results may therefore be due
to an improper choice of mother wavelet. The first order coiflet was used here,
because of its low complexity and high degree of symmetry. Reissell present a
type of wavelet called pseudocoiflet [118], which are custom designed for curve
and surface representation, and may be a more suitable choice. Further, the
wavelet representation also suffers from multiple testing problems, as the num-
ber of variables involved is equal to the number of variables in the original data.
To alleviate this, the wavelet representation can either be truncated, or separate
analyses can be performed at each wavelet scale. Preliminary tests using the
latter approach did not point to an improvement in the results.

There exists a few interesting alternatives to SPCA to construct sparse rep-
resentations of anatomy, most notably independent component analysis (ICA)
[161] and varimax rotated principal components [139]. Some experiments using
these bases have been carried out, with results similar to those of SPCA. One
disadvantage shared by both ICA and factor rotation is that the patterns pro-
duced are only approximately sparse. The residual variation makes the results
more difficult to interpret.

Extension to 3D and Higher Dimensions

The corpus callosum outlines used here to validate the method are represented
by planar shape data. However, the outline of the method, from the extraction
of spatially sparse and meaningful features to the subsequent analysis of the
relation of these to clinical data, is applicable to data of any dimension, modality
and topology, given that its distribution is suitable for linear modeling. With
an increasing number of variables, such as for shape data in three dimensions,
comes an increase in computational burden and memory requirements. The core
problem for most SPCA algorithms is the need to calculate and store the p× p
covariance matrix of the variables involved. The algorithm presented here uses
sequential up- and downdating of the Cholesky factorization of the covariance
matrix [54], such that only currently active variables are being considered. With
k active variables, this limits the storage requirement to a k × k matrix. The
complexity of the algorithm is therefore more due to the number of non-zero
components, than to the total number variables involved.

In cases where a very large number of variables must be considered, such as for
complex shape representations in three dimensions or for functional MRI analy-
ses, the optimization problem in (7.7) becomes too complex and the alternating
estimation algorithm will not converge. It turns out that the criterion in (7.7)
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is valid for any positive value of λ and that the solutions are not particularly
dependent on the choice of this parameter [134, 177]. Specifically, a compu-
tationally efficient algorithm emerges for λ = +∞. In this case, the complex
elastic net process to estimate B can be replaced by a simpler soft-thresholding
rule,

bj =
(
|aT

j XT X| − δj

2

)
+

Sign(aT
j XT X). (7.13)

where (·)+ = max(0, ·) and aj is the jth column of A. Note that the p × p

matrix XT X does not need to be explicitly calculated and stored if the matrix
operations are properly ordered. Some preliminary results on using this method
for exploratory analyses of fMRI data can be found in [133].

SPCA and its related methods for regression are available as add-on packages
for the statistical environment R. Similar implementations for the Matlab
platform are available from the web page of the first author,
www.imm.dtu.dk/~kas/software/spca.

7.4.2 Clinical Application

We will now comment on the results for the application of the method on the
corpus callosum data. These comments are provided to support the method
only, a more thorough clinical investigation with subsequent interpretation is
deferred to a separate paper.

The sexual dimorphism of the CC is a closely investigated subject that has
yielded disparate results. However, several authors [2, 20, 33, 39] report on
a more bulbous splenium for females. The present results clearly agree with
this finding. The results can also be seen to agree with the male/female mean
shape differences depicted in Figure 7.3. The advantage of using the proposed
method is the additional information on localization. In a number of limited
regions along the boundary, the method quantifies the strength of the rele-
vant discrepancies, giving more detailed anatomical information. Moreover, any
global method such as measures of callosal area or the Procrustes distance mea-
sure used in this paper may not prove to be significant if the differences are
small and highly localized. Using sparse decomposition, such differences can be
identified and quantified correctly.

The deformation of the CC corresponding to the measure of walking speed pro-
vides an example that nicely demonstrates the potential of the method. In the
third row of Figure 7.5, some thinning can be seen in the genu area, but more
interestingly, a clear deformation is also present in the rostral body, correspond-

www.imm.dtu.dk/~kas/software/spca
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ing well to the area of the CC containing fibers related to the motor cortex (cf.
Figure 7.2). All SPCA scales show this effect to some extent.

The results for verbal fluency did not reach significant levels when corrected for
multiple comparisons. In Figure 7.5, the corresponding unadjusted deformations
for p < 0.05 are shown. Although not highly significant, the results again make
anatomical sense. On scales SPCA(5) and SPCA(20), a thinning of the isthmus
subregion occurs. Referring to Figure 7.2, this seems to correspond to atrophy
of fiber tissue connecting to brain regions involved in auditory tasks. This result
is also in accordance with previous results based on the same data set [70], where
verbal fluency was found to correlate exclusively with the rostrum and isthmus
regions. The latter paper used measures of callosal area based on a partitioning
of the CC into subregions, and declared significance at level α = 0.01, not
corrected for multiple comparisons.

The deformation modes extracted using PCA did not provide much interpreta-
tional value in this application. For gender and age, no deformations correlated
significantly with the outcome. For walking speed and verbal fluency, PCA
yielded some significant results, but the limited interpretational power becomes
apparent in the results. Effects are present throughout the entire boundary, and
inference of structure-function relationships become difficult.

7.5 Conclusions

Sparse principal component analysis is introduced as an attractive method for
extracting strictly sparse and anatomically meaningful variables from a data set.
While the results may be interesting for direct analysis, this paper shows how
to relate these spatial variables to clinical outcome data, making it possible to
derive typical deformation patterns related to e.g. pathology. As an illustrative
example, results are presented based on a large data set of corpus callosum out-
lines for several clinical target variables, demonstrating the capabilities of the
method. The method has been compared to both a simple point-based alterna-
tive, as well as decomposition using a wavelet transform. The results suggest
that these methods are either less precise, or offer inferior interpretability com-
pared to the sparse principal component analysis approach.
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Abstract

Crouzon syndrome is characterised by the premature fusion of cranial su-
tures. Recently the first genetic Crouzon mouse model was generated.
In this study, Micro CT skull scannings of wild-type mice and Crouzon
mice were investigated. Using nonrigid registration, a wild-type craniofacial
mouse atlas was built. The atlas was registered to all mice providing pa-
rameters controlling the deformations for each subject. Our previous PCA-
based statistical deformation model on these parameters revealed only one
discriminating mode of variation. Aiming at distributing the discriminat-
ing variation over more modes we built a different model using Independent
Component Analysis (ICA). Here, we focus on a third method, sparse PCA
(SPCA), which aims at approximating the properties of a standard PCA
while introducing sparse modes of variation. The results show that SPCA
outperforms both ICA and PCA with respect to the Fisher discriminant,
although many similarities are found with respect to ICA.
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8.1 Introduction

Crouzon syndrome was first described nearly a century ago when calvarial defor-
mities, facial anomalies, and abnormal protrusion of the eyeball were reported
in a mother and her son [30]. Later, the condition was characterised as a con-
stellation of premature fusion of the cranial sutures (craniosynostosis), orbital
deformity, maxillary hypoplasia, beaked nose, crowding of teeth, and high arched
or cleft palate. Identification of heterozygous mutations in the gene encoding fi-
broblast growth factor receptor type 2 (FGFR2 ) have been found responsible for
Crouzon syndrome [117]. Recently a mouse model was created to study one of
these mutations (FGFR2Cys342Tyr)[41]. Incorporating advanced small animal
imaging techniques such as Micro CT, allows for detailed examination of the
craniofacial growth disturbances. Studying the craniofacial shape differences
in detail contributes to the understanding of the syndrome, surgery planning
and diagnosis in humans. A recent study, performing linear measurements on
Micro CT scans, proved the mouse model applicable to reflect the craniofacial
deviations occurring in humans with Crouzon syndrome [113]. Previously, we
have extended this study to assess the local deformations between the groups by
constructing a deformable shape and intensity-based atlas of wild-type (normal)
mouse skulls. Deforming this atlas to all mice, the craniofacial shape differences
can be analyzed [108].

To analyse and interpret these deformations in a meaningful way, it is desir-
able to reduce the large number of dimensions and at the same time localise
the growth deviations with respect to the atlas. This leads us to statistical
deformation models (SDMs). These are closely related to statistical shape mod-
els but the fact that the whole correspondence field is modelled makes them
more powerful. A standard PCA has been a popular approach to build SDMs
(e.g. [93, 100, 125]) but recently different techniques have been applied, e.g.
wavelet-based PCA [168].

With respect to the mouse study, PCA was previously performed [107]. This
analysis revealed only one discriminating mode of variation, mainly reflecting
global differences between the groups. This kind of variation can be hard to
interpret and in a recent study, we showed that applying Independent Compo-
nent Analysis (ICA) to the deformation fields resulted in several discriminat-
ing modes, revealing the local differences between the groups. Sparse Principal
Components Analysis (SPCA) [177] has proven successful when applied in shape
modelling [134]. In this paper we introduce the use of SPCA to build a Sparse
Statistical Deformation Model and provide a comparison to a standard PCA
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and ICA with focus on the discriminative ability. We believe this is the first
time SPCA is applied to statistically model deformation fields.

8.2 Data Material

Production of the Fgfr2C342Y/+ and Fgfr2C342Y/C342Y mutant mouse (Crou-
zon mouse) has been previously described [41]. All procedures were carried out
in agreement with the United Kingdom Animals (Scientific Procedures) Act,
guidelines of the Home Office, and regulations of the University of Oxford.

For three-dimensional (3D) CT scanning, 10 wild-type and 10 Fgfr2C342Y/+

specimens at six weeks of age (42 days) were sacrificed using Schedule I meth-
ods and fixed in 95% ethanol. They were sealed in conical tubes and shipped
to the Micro CT imaging facility at the University of Utah. Images of the skull
were obtained at approximately 46µm × 46µm × 46µm resolution using a Gen-
eral Electric Medical Systems EVS-RS9 Micro CT scanner. Fig. 8.1 shows an
example of the living mice and the imaging data appearance.

(a) (b) (c)

Figure 8.1: (a) Photo of a Crouzon mouse (left) and a wild-type mouse (right). Skulls
Extracted from CT images of (b) a Crouzon mouse, (c) wild-type mouse.

8.3 Methods

The steps taken to automatically assess the local shape deviations between
groups, statistically, from the Micro CT images are the following.

1. Build a craniofacial wild-type mouse atlas from the Micro CT’s using
nonrigid image registration
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2. Match atlas to all 20 cases (wild-type and Crouzon mice) using nonrigid
image registration

3. Use the resulting deformation parameters as input to a SPCA

8.3.1 Atlas Building and Registration

The first two steps of the procedure were presented in [108]. The nonrigid
registration algorithm based on B-splines [124, 127] was applied. This algorithm
uses a transformation model which is a combination of a global and a local
transformation model, T(x) = Tglobal(x)+Tlocal(x). The global transformation
model consists in our case of a rigid transformation matrix (with 6 degrees of
freedom). The local transformation model describing the nonrigid part of the
model is written by the tensor product of the 1D cubic B-splines,

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n (8.1)

where c are the parameters of the B-splines ordered in a px×py×py lattice. u, v
and w are the (x, y, z) image coordinates translated into the lattice coordinates.

8.3.2 A Sparse Statistical Deformation Model

The third step of the procedure listed above is the main focus of this paper. The
control points (parameters) of the B-splines in Equation 8.1 provide a compact
representation of the correspondence fields. As shown in [125] it is sufficient
to perform a statistical analysis on these control points to obtain a compact
description of the deformations. Using a common reference frame, e.g. an atlas,
as the origin of the registrations, the control points for a subject reflect its local
deviation from this reference frame. Concatenating the 3D control points for
subject i into a row vector Ci = [c1, ..., cp], where p = 3pxpypz, gives the ith
row of the n× p data matrix to analyse (n is the number of observations).

SPCA approximates the properties of a standard PCA while introducing sparsity
in the modes of variation. Zou et al. [177] take advantage of formulating PCA
as a regression problem leading to the SPCA criterion

(Â, B̂) = argminA,B

∑n
i=1 ||xi −ABT xi||2 + λ

∑k
j=1 ||bj ||2 +

∑k
j=1 δj ||bj ||1

s.t. AT A = I
(8.2)
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Here xi denotes the ith column of XT . This formulation assumes k modes
to be retained in the model. The columns of B represent the principal axes
(loading vectors bj , j = 1, ..., k) and B projects observation i onto those axes.
The matrix A takes the observation back to the original space. Hence, the first
term measures the reconstruction error of the model. The second term, the
L2 penalty is included to ensure a unique solution, also in cases where p > n,
and the third term, L1 penalty, introduces sparsity. These two latter terms are
adopted from Elastic Net regression [175]. The constraint weight, λ, must be
chosen beforehand, and has the same value for all PCs, while δ may be set to
different values for each PC, providing good flexibility.

The problem in Equation 8.2 is usually solved iteratively by fixing A in each
iteration, solving for B using the LARS-EN algorithm [175] and recalculating
A. However, when we have p � n as in our case, Zou et al. [177] have shown
that by letting λ →∞, B can be determined by soft thresholding1

bj = (|aT
j XT X| − δj

2
)+ · sign(aT

j XT X), j = 1, 2, ..., k (8.3)

where k is the number of modes and aj is the jth column of A. This approach
was taken here enforcing the same fixed level of sparsity in each loading vector
by dynamically changing (δj) in each iteration. To maximise the total adjusted
variance [177] explained by the SPCA, the modes were ordered allowing for
perturbations as suggested in [134].

Since the aim of our sparse deformation model is to discriminate between the
two groups of mice the final ordering of modes was defined with respect to
the Fisher discriminant. That is, the observations were projected onto the
principal directions, the Fisher discriminant between the groups calculated for
each mode and the principal directions ordered with respect to decreasing Fisher
discriminant score. In general, for class 1 and 2, the Fisher discriminant is
defined as

F =
(µ1 − µ2)2

σ2
1 + σ2

2

, (8.4)

where µi is the mean of class i and σ2
i is the variance of class i.

8.4 Experimental Results

The accuracy of the image registration algorithm (registering the atlas to each
of the 20 cases) is essential for the deformation model to be valid. In [108],

1(z)+ denotes that if z < 0, z is set to 0 and if z >= 0, z is kept unchanged. The term is
denoted hinge-loss.
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the manual annotations from two observers were used to assess the registra-
tion accuracy. Using the optimal transformations from the image registrations,
landmarks were obtained automatically. The landmark positions were statisti-
cally compared to those annotated by the human observers. This showed that
the automatic method provided as good accuracy as the human observers and,
moreover, it was more precise, judged from the significantly lower standard
deviation.

The SPCA was applied to the matrix of control points (p = 21675). A threshold
of 2000 points was used to obtain equal sparsity in each mode of variation. Fig.
8.2 (a-c) shows the observations projected onto the first six sparse principal
directions (ordered by Fisher discriminant score). To evaluate the ability of the
sparse SDM to assess the local group differences, it was compared to a standard
PCA and our previous approach [56] using ICA [67]. Fig. 8.2(d-i) shows scatter
plots of the first six modes for ICA and PCA, sorted with respect to the Fisher
discriminant.

The score plots already give an idea about the discrimination ability of the dif-
ferent approaches. To give a more quantitative measure, the Fisher discriminant
was assessed in a leave-one-out fashion for all three approaches. This is plotted
with error bars for each of the approaches in Fig. 8.3.

With emphasis on the group differences, each mode of the sparse model was
visualised by selecting the extremes from each group in model space (Fig. 8.2)
and project back into the space of control points. This set of control points
generated from the model was then applied to the atlas to obtain the deformed
volumes of the two extremes. Subsequently the surfaces were extracted for
visualisation. Fig. 8.4 shows mode 1,3,4 and 6. Mode 2 was excluded from this
visualisation due to an overlap in variation with mode 1.

Deforming the atlas along the discriminating modes of the ICA model reveals
many similarities between ICA and SPCA. To give an example Fig. 8.5 shows
IC 5 which is closely related to SPC 4.

8.5 Discussion and Conclusions

The score plots in Figure 8.2 indicate that both SPCA and ICA are capable of
discriminating between the two groups in up to six deformation modes. The
standard PCA only discriminates between the groups in the first mode. Fig-
ure 8.3 confirms these speculations. It is evident that PCA is only capable of
discriminating between the groups in one mode of variation. SPCA performs
slightly better than the ICA, but the ICA seems to be more robust judged from
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Figure 8.2: Projection of observations into the space of the first six components
(ordered by Fisher discriminant) using (a-c) SPCA, (d-f) PCA and (g-i) ICA. Crosses
denote Crouzon cases while circles denote wild-type cases. (a,d,g) Mode 2 vs. mode
1; (b,e,h) Mode 4 vs. mode 3; (c,f,i) Mode 6 vs. mode 5.

the error bars. Considering the low number of points in the sparse model, this
is understandable.

Visualising the sparse deformation modes in Figure 8.4 indicates that compared
to wild-type mice, the skulls of Crouzon mice are higher and longer (SPC 1),
are asymmetric with respect to zygoma and nose (SPC 3), have different shape
of the middle ear and back of the head (SPC 4), and have an angulated cranial
base (SPC 6). These observations correspond up to some degree with what has
previously been seen in humans using manual measurements (see e.g. [79]). The
asymmetric behaviour seen in SPC 3 can be explained by the full or partial
fusion of cranial sutures at different sides and different times. The different
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Figure 8.3: The Fisher discriminant plotted vs. deformation mode number for PCA,
ICA and SPCA. The values are obtained in a leave-one-out experiment providing the
error bars (one standard deviation).

shape of the middle ear and the increased angulation of the cranial base has not
been reported in humans to our knowledge and may therefore be an important
contribution to the understanding of the growth disturbances. The angulation
was found in mice both using ICA [56] and PCA (with global transformation
model extended to 9 DOFs) [107]. The difference in shape of the middle ear
and back of the head was also captured by the ICA approach as seen in Figure
8.5. In fact SPC 4 and IC 5 are extremely similar, but SPCA seems to create
slightly stronger evidence for the group difference. In general, the ICA modes
introduce more noise than sparse PCA, since many elements are close to 0, while
in SPCA, the sparsity property avoids this. Another advantage of SPCA is that
it is solely based on second order statistics making it less committed than ICA,
which uses higher order statistics.

In conclusion, with respect to discriminative ability, SPCA and ICA give similar
results when applied to model deformations. Both of the approaches outperform
a standard PCA. However, due to the simplicity and flexibility of SPCA, it
should be the preferred method for this type of analysis.
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(a) SPC 1, Wild-type (b) SPC 1, Crouzon

(c) SPC 3, Wild-type (d) SPC 3, Crouzon

(e) SPC 4, Wild-type (f) SPC 4, Crouzon

(g) SPC 6, Wild-type (h) SPC 6, Crouzon

Figure 8.4: Sparse Principal Deformation modes 1,3,4 and 6, visualised on surfaces
after deforming atlas to the extremes of each mode. The colors are intended to en-
hance the regions where changes have occurred in the deformed surfaces. The colors
denote displacement with respect to atlas (in mm), with positive values (red) pointing
outwards.
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(a) IC 5, Wild-type (b) IC 5, Crouzon

Figure 8.5: Independent Deformation mode 5 visualised on surfaces after deforming
atlas to the extremes of the mode. The colors are intended to enhance the regions where
changes have occurred in the deformed surfaces. The colors denote displacement with
respect to atlas (in mm), with positive values (red) pointing outwards.
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Abstract

The support vector domain description is a one-class classification method
that estimates the distributional support of a data set. A flexible closed
boundary function is used to separate trustworthy data on the inside from
outliers on the outside. A single regularization parameter determines the
shape of the boundary and the proportion of observations that are regarded
as outliers. Picking an appropriate amount of regularization is crucial in
most applications but is, for computational reasons, commonly limited to
a small collection of parameter values. This paper presents an algorithm
where the solutions for all possible values of the regularization parameter
are computed at roughly the same computational complexity previously
required to obtain a single solution. Such a collection of solutions is known
as a regularization path. Knowledge of the entire regularization path not
only aids model selection, but may also provide new information about a
data set. We illustrate this potential of the method in two applications;
one where we establish a sensible ordering among a set of corpora callosa
outlines, and one where ischemic segments of the myocardium are detected
in patients with acute myocardial infarction.
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9.1 Introduction

The support vector domain description (SVDD) [151, 152] is a method for one-
class classification where the aim is to obtain an accurate estimate of the support
of a set of observations. Such methods differ from two or multi-class classification
in that we are typically interested in a single object type and want to distinguish
this from ”everything else”, rather than separating one class from other known
classes. There are several benefits and uses for such a method. It is a natural
choice for outlier and novelty detection for two reasons. First, outlier data is
typically sparse and difficult to obtain, while normal data is readily available.
Second, the nature of outlier data may not be known. Even a standard two-class
classification task may be better suited for a one-class method when one class is
sampled very well and the other is not. The SVDD is a non-parametric method
in the sense that it does not assume any particular form of the distribution
of the data. The support of the unknown distribution of the data points is
modeled by a boundary function enclosing the data. This boundary is ”soft” in
the sense that atypical points are allowed outside the boundary. The proportion
of exterior points is governed by a single regularization parameter λ, which must
be tuned for each data set and application. This paper presents an algorithm, in
which the SVDD solutions for all possible values of λ are calculated with roughly
the same computational complexity required by standard algorithms to estimate
a single solution. Such a complete set of solutions is sometimes referred to as
a regularization path. Proper choice of λ, which previously depended on either
ad-hoc rules or probing the regularization path at a sparse set of locations, is
now greatly facilitated since a search through the entire solution set becomes
possible. Further, the regularization path itself provides valuable information
that hitherto has been impractical to obtain. Two such examples are given in
this paper.

The SVDD was presented by Tax and Duin [151] and again in [152] with exten-
sions and a more thorough treatment. The boundary function is modeled by a
hypersphere, a geometry which can be made less constrained by mapping the
data points to a high-dimensional space where the classification is performed.
This leads to a methodology known as the kernel trick in the machine learn-
ing community [165]. Schölkopf et al. [128] presents a conceptually different
approach to one-class classification where a hyperplane is used to separate the
data points from the origin. The solutions are, however, shown to be equivalent
to those of the SVDD when radial basis expansions are used. The Gaussian
kernel is one such function and represents the most frequent choice in the liter-
ature.
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The SVDD has found uses both in a wide range of applications and as a basis
for new methodology in statistics and machine learning. Banerjee et al. [6]
used the SVDD for anomaly detection in hyperspectral remote sensing imagery.
Compared to standard parametric approaches, the SVDD was found to improve
both accuracy and computational complexity. Lee et al. [90] suggest improving
the basic SVDD by weighting each data point by an estimate of its corresponding
density. The density is approximated either by a K-nearest-neighbor or a Parzen
window approach. This modification is shown to improve the basic SVDD in
studies of e.g. breast cancer, leukemia and hepatitis. Other applications include
pump failure detection [153], face recognition [91, 130], speaker recognition [37]
and image retrieval [80].

The ability of the SVDD to focus modelling of the density of a set of observations
to its support makes it a natural alternative to large-margin classifiers such as
the support vector machine (SVM) [165]. Lee and Lee [88] present a method
for multi-class classification built on the SVDD. First, a separate boundary
is estimated for each class. Second, a classifier is built using Bayes optimal
decision theory where the class-conditional densities are approximated from the
respective SVDD representations. The resulting classifier demonstrates similar
or better performance compared to several competing classification techniques.
Similar approaches have been proposed by Choi et al. [19] and Ban and Abe [5].

The kernel formulation of the SVDD may lead to boundaries that split up into
two or more separate closed hypersurfaces. These were interpreted as cluster
boundaries by Ben-Hur et al. [8] who developed an algorithm for the assignment
of cluster labels called support vector clustering. The results are dependent on
the parameters of the chosen kernel and the amount of regularization in the
SVDD, pointing to the usefulness of the results presented in this paper. For
instance, support vector clustering has been applied to exploratory analysis of
fMRI data [159].

The path algorithm presented in this paper is one example of several recent in-
vestigations into the efficient estimation of regularized statistical methods where
the coefficients are piecewise-linear functions of the regularization parameter.
The increasing interest in regularization paths is in part motivated by a sem-
inal paper by Efron et al. [40], where a novel method for penalized regression
called least angle regression (LAR) is presented. It is shown that the LAR co-
efficient paths are piecewise-linear with respect to the regularization parameter
and that these paths can be calculated at the computational cost of a single or-
dinary least squares estimation. Through small modifications to the algorithm,
the regularization path of the least absolute shrinkage and selection operator
(LASSO) [157] and a variant of forward selection can be obtained, circumvent-
ing the need for costly computational techniques such as linear and quadratic
programming. Inspired by this finding, similar algorithms have been developed
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for other statistical methods such as generalized linear models [112] and support
vector machines [60, 173]. Zou and Hastie [175] developed a new method for
regression called the elastic net and suggested a path algorithm for its compu-
tation. Rosset and Zhu [122] discuss necessary and sufficient conditions for the
existence of piecewise-linear regularization paths and supply several examples.
The work by Hastie et al. [60] on the entire regularization path for the support
vector machine was the inspiration for this paper, and we acknowledge the nu-
merous similarities between their work and the description and derivation of the
SVDD path algorithm presented here.

9.2 Methods

In this section, we will give a concise explanation of the support vector domain
description and the standard algorithm for its computation. This is followed
by a description of the proposed path algorithm. The section is concluded by
a detailed discussion on the implementation of the method. Figure captions in
this and later sections refer to the color illustrations available in the electronic
version of this paper.

The support vector domain description models the distributional support of a
data set using a hypersphere. Observations enclosed by this boundary function
are considered trustworthy data while points outside the boundary are treated
as outliers. The hypersphere is specified by its center a and its radius R. Let
X = (xT

1 . . .xT
n )T denote the (n × p) data matrix with n observations and p

variables. This implies that a is a p-dimensional variable while R is scalar.
Figure 9.1 outlines the geometry of one solution for the SVDD in p = 2 dimen-
sions. The variable ωi represents the perpendicular distance from the boundary
to an exterior point xi. For interior points, and points positioned exactly on
the boundary, ωi = 0. The distance ωi corresponding to an exterior point i can
be written ωi = ‖xi − a‖ − R, however, in the following we will use the closely
related measure ξi = ‖xi − a‖2 − R2. To obtain a compact representation of
the data, we wish to minimize both the hypersphere radius and the distances ξi

to any exterior points. A formal description of this is given in the loss-penalty
form known from penalized regression,

arg min
R, a

n∑
i=1

(
‖xi − a‖2 −R2

)
+

+ λR2. (9.1)

Here, the loss function is formulated using the hinge loss function (·)+ [60]
which is positive if its argument is positive, and zero otherwise. The penalty
function is simply the squared radius. The trade-off between the loss and the
penalty is governed by the regularization parameter λ. A large value of λ favors



9.2 Methods 175

ω

R

a

Figure 9.1: The geometry of the SVDD in two dimensions. Red, blue and black dots
represent boundary points (3), data (20) and outliers (2) respectively. The hypersphere
radius and center is denoted R and a respectively while ω is the distance from the
boundary to an exterior point.

a solution with smaller radius and relatively larger ξi. If λ is small, the resulting
hypersphere will be larger while the total distance from the boundary to exterior
points shrinks.

In the following, we will reiterate the formulation and computation of the SVDD
as proposed by Tax and Duin [151, 152]. To begin, Equation 9.1 is written as a
constrained optimization problem using the ξi explicitly.

min
R,a,ξi

n∑
i=1

ξi + λR2, subject to ‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0 ∀i, (9.2)

Fortunately, this seemingly more complex expression can be greatly simplified.
First, the setup in Equation 9.2 is formulated as an unconstrained minimization
problem using Lagrange multipliers αi ≥ 0 and γi ≥ 0,

Lp : min
R,a,ξi

n∑
i=1

ξi + λR2 +
n∑

i=1

αi(‖xi − a‖2 −R2 − ξi)−
n∑

i=1

γiξi. (9.3)

At the minimum, the derivative of each variable is zero, giving

∂Lp

∂R
= 0 ⇔ λ =

∑
i

αi, (9.4)

∂Lp

∂a
= 0 ⇔ a =

∑
i αixi∑

i αi
=
∑

i αixi

λ
, (9.5)

∂Lp

∂ξi
= 0 ⇔ αi = 1− γi. (9.6)
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Carrying on, a set of useful identities are given by the Karush-Kuhn-Tucker
complimentary slackness conditions,

αi(‖xi − a‖2 −R2 − ξi) = 0, (9.7)
γiξi = 0. (9.8)

Inserting Equations (9.4-9.6) into (9.3) results in the dual formulation which is
to be maximized w.r.t. (9.4-9.6),

Ld : max
αi

n∑
i=1

αixixT
i −

1
λ

n∑
i=1

n∑
j=1

αiαjxixT
j : 0 ≤ α ≤ 1,

n∑
i=1

αi = λ. (9.9)

This is a quadratic optimization problem with linear constraints. As such, it
can be solved for a particular value of λ using interior point methods [164].

The Lagrange multipliers αi take on values in a limited range and have a distinct
geometrical interpretation, where each αi is connected to the behavior of a single
observation xi. This can be inferred from the equations above in a number of
steps. First, (9.7) reveals that αi = 0 for interior points. Second, (9.6) and (9.8)
give that αi = 1 for exterior points. The dual problem in (9.9) is strictly concave
and thus has a unique solution. This implies that each αi is a continuous function
of the regularization parameter λ. Too see this, assume that αi is discontinuous
at a point λl. This results in multiple optimal values of αi(λl) and we have a
contradiction. As a result of continuity, αi must travel from 0 to 1 as point i
passes the boundary from inside the hypersphere to the outside. To sum up,
the valid range of the multipliers is 0 ≤ αi ≤ 1. The range of the regularization
parameter λ can now be established from Equation 9.4. The lower bound is
λ = 0 for which all points are inside the boundary (∀αi = 0). The upper bound
is λ = n which occurs when the hypersphere has shrunk to a point where all
points are outside the boundary (∀αi = 1).

The formulation in Equation 9.2 deviates slightly from the original setup of Tax
and Duin [151] who use a regularization parameter C = 1/λ. As in [60] we favor
the description above since 0 ≤ α ≤ 1 instead of 0 ≤ α ≤ C which facilitates
the interpretation of the coefficient paths αi(λ).

A natural question that arises is that of the suitability of using a hypersphere to
model the support of an arbitrary distribution. Clearly, this is most applicable
to approximately spherical data, such as random samples drawn from a Gaus-
sian distribution. The same question applies to support vector machines, where
a hyperplane is not necessarily the best geometry for discriminating between two
classes. The SVDD and SVM have the same remedy for this limitation. First,
the dimensionality of the data is artificially increased using basis expansions
h(x); the classification problem is then solved in this extended space and the
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solution is projected back into the original domain. The result is a more flexi-
ble decision boundary with a geometry that is governed by the choice of basis
function. This methodology applies to any statistical method such as regression
or classification. The particular property of the SVDD and SVM is that its for-
mulation (Equation 9.9) is specified using only the inner products xixT

j . This
makes it possible to replace the expanded inner product h(xi)h(xj)T by a ker-
nel function K(xi,xj), avoiding the explicit specification of the dimensionality
of h. This is commonly known as the kernel trick in machine learning litera-
ture. Whenever possible, we use the more compact notation K(xi,xj) = Ki,j .
Relevant choices of kernels are,

Linear kernel: Ki,j = xixT
j

Polynomial kernel: Ki,j = (1 + xixT
j )d

Gaussian kernel: Ki,j = exp(−‖xi − xj‖2/σ).

The linear kernel is equivalent to a first degree (d = 1) polynomial kernel and
represents the original non-transformed formulation. Gaussian kernels are the
most common choice for the SVDD as they provide a convenient generaliza-
tion to the linear kernel. As σ increases, smoother and more coherent decision
boundaries are obtained. For very large values of σ, the solutions approach
those of a linear kernel [151]. Decreasing values of σ give more wiggly and
clustered results. A polynomial kernel is not an appropriate choice for support
description, as the boundary function is not sufficiently compact [151]. Hastie
et al. [59] discuss a variety of kernels in more depth.

Rewriting Equation 9.9 using the more general kernel formulation yields,

Ld : max
αi

n∑
i=1

αiKi,i −
1
λ

n∑
i=1

n∑
j=1

αiαjKi,j : 0 ≤ α ≤ 1,
n∑

i=1

αi = λ. (9.10)

In the remainder of this paper, this notation will be used.

In Figure 9.2, SVDD solutions are shown for λ = 0, λ = n/3 and λ = 2n/3 (n =
50). The top row contains the solutions obtained using a linear kernel, hence
the circular boundary, while a Gaussian kernel with σ = 1.8 has been used for
the results in the bottom row. In this example, the data is distributed according
to a bi-modal Gaussian distribution with some overlap. The results obtained
using linear kernels are obviously not satisfactory in this case. Referring to the
solutions obtained using a Gaussian kernel; a note is made on the difference of
the modeled geometry of the support. The solutions for λ = 17 exclude a few
atypical points, resulting in a more compact and credible shape of the boundary
function. At λ = 33, the boundary has separated into two clusters corresponding
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Figure 9.2: SVDD solutions for a small data set (n = 50) in two dimensions using
different values of the regularization parameter λ. In the top row, a linear kernel is
used, while a Gaussian kernel is used in the bottom row. Blue and black points denote
interior and exterior points respectively, while squared red points denote points on the
boundary.

to the apparent distribution of the sample. Such differences in the boundary
function point to the usefulness of knowing the entire regularization path, and
hence, all boundary functions.

9.2.1 The Regularization Path

In this section we will prove that the coefficient path of each αi is a piecewise-
linear function of λ, and propose an algorithm for their calculation using stan-
dard matrix algebra.

First, we define a couple of basic functions and notation that will be useful in the
derivation that follows. The squared distance in feature space from the center
of the hypersphere to a point x is,

fλ(x) = ‖h(x)− a‖2 = K(x,x)− 2
λ

n∑
i=1

αiK(x,xi) +
1
λ2

n∑
i=1

n∑
j=1

αiαjKi,j .

(9.11)

The squared radius of the hypersphere can therefore be written R2 = fλ(xk),
where index k belongs to any point on the boundary (αk ∈ (0, 1)). Define
by I, O and B the sets containing indices i corresponding to interior, exterior
and boundary points respectively, and let nI , nO, and nB be the number of
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elements in these sets. The set A = I ∪O∪B contains the indices of all points.
To determine which set a point x belongs to, we define a decision function,

gλ(x) = fλ(x)− fλ(xk)

= K(x,x)−Kk,k −
2
λ

n∑
i=1

αi

(
K(x,xi)−Kk,i

)
k ∈ B, (9.12)

which has gλ = 0 for x on the boundary, gλ < 0 for x interior and vice versa.

As discussed above, αi = 1 for i ∈ O, αi = 0 for i ∈ I, and 0 < αi < 1 for i ∈ B.
There are four types of events where these sets change.

E1 – Point i leaves B and joins I; αi ∈ (0, 1) → αi = 0.

E2 – Point i leaves B and joins O; αi ∈ (0, 1) → αi = 1.

E3 – Point i leaves I and joins B; αi = 0 → αi ∈ (0, 1).

E4 – Point i leaves O and joins B; αi = 1 → αi ∈ (0, 1).

The idea of the algorithm is to start at a state where the solution is particularly
simple to calculate, and then trace the solutions for changing values of λ until
the entire regularization path is known. For reasons that will become clear later
in this section, the most suitable starting point is at the end of the regularization
interval (λ = n), corresponding to the minimal hypersphere radius. In this state,
we know that I = ∅, B = ∅, O = A and α = 1T , a vector of all ones.

We will now derive a general expression for α and λ at the next event, given
an arbitrary configuration of I, O, B, λ and α. From this state, λ is decreased
until the next event occurs. As in [60], let λl be the value of the regularization
parameter at step l. While λl+1 < λ < λl, the sets remain static. Hence,
gλ(xm) = 0,∀m ∈ B in this interval. Using this, Equation 9.12 can be expanded
and rearranged into∑

i∈B
αi(Km,i −Kk,i) =

λ

2
(Km,m −Kk,k)−

∑
i∈O

(Km,i −Kk,i) ∀m ∈ B, k ∈ B.

(9.13)

This results in nB equations with nB unknowns αi, i ∈ B. However, for m = k,
it is seen that (9.13) degenerates into 0 = 0, making the system of equations
rank deficient. We therefore replace the equation for m = k with the auxiliary
condition in Equation 9.4. In this way, we can find a unique solution for αi, i ∈ B.

The procedure can be summarized in matrix form. Let Y be an n × n matrix
where Yi,j = Ki,j −Kk,j , ∀ (i, j) ∈ A and let y be a length n vector with yi =
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Ki,i−Kk,k ∀i ∈ A. With the obvious definitions of submatrices, Equation 9.13
can be written

YB,BαB =
λ

2
yB −YB,O1nO , (9.14)

where 1nO is a vector of ones of length nO. This expression can be expanded
to include the conditions αI = 0 and αO = 1. It also needs to be augmented
to replace the degenerate equation corresponding to index k with the relation
from Equation 9.4. We will now define matrices that implement this.

Let B−k be the boundary set with index k removed. Let Z be the n×n identity
matrix with ZB−k,B = YB−k,B and Zk,A = 1T

n . Let z be the length n zero vector
with zB−k

= yB−k
and zk = 2. Finally, let W be the n × n zero matrix with

WB−k,O = −YB−k,O and WO,O = InO where InO is the identity matrix of size
nO. The complete system of n equations for n unknowns is then

Zα =
λ

2
z + W1n. (9.15)

Providing Z is invertible, the resulting expression for α becomes,

α =
λ

2
Z−1z + Z−1W1n ≡ λp + q, (9.16)

an expression that is linear in λ. This concludes the derivation of an expression
for α between two events.

Now that the functional form of each coefficient between two events is known,
we need to disclose the valid range [λl+1, λl] of λ. That is, we wish to find λl+1

at which the next event occurs. We treat each of the four types of events defined
above separately.

Event E1 occurs for αi, i ∈ B when αi → 0. By setting (9.16) equal to 0 and
solving for each value of λ, we get,

λi = − qi

pi
, i ∈ B. (9.17)

Similarly for E2, αi = 1 when

λi =
1− qi

pi
, i ∈ B. (9.18)

For either E3 or E4 to occur, a point i in either I or O must join the boundary.
At this stage, gλ(xi) = 0. To find the values of λ at which each point joins the
boundary, we insert α = λp + q into (9.12). The resulting expression is then
set to 0 and solved for λi,

λi =
2Yi,Aq

yi − 2Yi,Ap
. (9.19)
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Out of the candidates {λi} for λl+1 from (9.17), (9.18) and (9.19), the largest
candidate smaller than λl must be the point at which the sets first change.
Therefore, λl+1 = maxi λi subject to λi < λl.

The boundary set B may at any stage of the algorithm become empty, resulting
in a violation of Equation 9.4. One or more points from O must therefore join B
concurrently. The calculation of candidates for λl+1 in (9.19) will fail in this case,
as a consequence of the new point not being placed on the current boundary.
This behavior forces a discontinuity in the radius function, which must increase
discretely to encompass the next point. Since α(λ) is a continuous function,
Equation 9.5 shows that the position of the hypersphere center a(λ) is also
continuous. Hence, despite the discontinuity of the boundary function, the next
point to join B can be established by finding the point in O with the smallest
distance to the hypersphere center a, that is, the point i ∈ O that minimizes
Equation 9.11.

The entire process is summarized in Algorithm 9.1.

Algorithm 9.1 SVDD coefficient paths
1: Initialize λ = n and αi = 1 ∀i.
2: while λ > 0 do
3: if nB = 0 then
4: Add index i ∈ O to the boundary set B that minimizes (9.11).
5: Remove i from O.
6: end if
7: Given sets I, O and B, compute p = Z−1z/2 and q = Z−1W1n.
8: Calculate λ candidates according to E1 using (9.17).
9: Calculate λ candidates according to E2 using (9.18).

10: Calculate λ candidates according to E3 using (9.19) with i ∈ I.
11: Calculate λ candidates according to E4 using (9.19) with i ∈ O.
12: Choose candidate λl+1 with the largest value smaller than λl.
13: Calculate new coefficients, α = λl+1p + q.
14: Update sets accordingly.
15: end while

Figure 9.3 shows the paths constructed from the data set presented in Figure 9.2,
using a linear kernel (top) and a Gaussian kernel (bottom, σ = 1.8). Less rigid
boundaries, such as those resulting from the use of a Gaussian kernel, tend to
render more complex path patterns. Interpreting the paths for growing λ, it
can be seen that the most common behavior for a point is to join the boundary
from the inside and shortly after leave for the outside. However, there are several
exceptions to this rule, despite the constant shrinkage of the hypersphere. This
is an effect of the movement of the hypersphere center.
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Figure 9.3: Example paths resulting from the SVDD analysis of the data set in
Figure 9.2. The top figure shows the resulting path from using a linear kernel (spherical
boundary), while a Gaussian kernel has been employed in the bottom figure. Each
color denotes the path of a single observation.

9.2.2 Implementation

The computational complexity of computing the entire path is low. To increase
efficiency, we solve (9.16) for points on the boundary only, i.e. using submatrices
ZB,B, zB and WB,O. The remaining values of αi (i ∈ I ∪ O) remain static.
Referring to Algorithm 9.1, Line 4 has complexity O(n2), Line 7 is O(n3

B) while
Lines 10-11 have complexity O(nOn). Typically, nB << n. In our experience, the
number of iterations is generally less than 2n, although more than 5n iterations
is possible for very dense data sets. The resulting overall complexity is O(knn3

B),
where k is some small value, usually 1 < k < 5. Standard computation of the
SVDD uses a single quadratic programming procedure for estimating a solution
for a single value of λ and has complexity O(n3) [115]. A formal comparison of
the complexities O(knn3

B) and O(n3) is difficult, but our general experience is
that they are roughly equal.

Due to the exclusive use of kernels, the method handles data with many variables
well. The memory usage level is mainly due to the matrix YB,B, which can grow
large for data sets with many observations and the use of very unconstrained
decision boundaries.

A relevant question is whether multiple events can occur simultaneously. Start-
ing at λ = 0 and tracing the path for increasing values of λ, we immediately
come across a situation where multiple events occur. At λ = 0, 2 to p+1 points
enter the boundary simultaneously. At least two points are necessary to com-
pletely specify a minimal hypersphere in an arbitrary space. Each additional
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point on the boundary removes one degree of freedom for the hypersphere, out
of a total of p + 1 degrees of freedom (specified by e.g. a and R). In theory,
more than p + 1 points may enter the boundary, providing that such additional
points are placed at the exact same distance to the center a, as the first p + 1
points. We will assume that the coordinates of the observations are stochastic in
some sense, and that with sufficient numerical precision, this situation does not
occur. This reasoning explains why multiple events are equally unlikely along
the rest of the path. There is, however, one exception. If, at λ = 0, exactly
two points enter the boundary, these will be placed symmetrically on the hy-
persphere, with the line connecting the two observations going through a. In
this situation, pB = [0.5 0.5]T , meaning that both points will exit the boundary
simultaneously at λ = 2. This is the only foreseeable multiple event that may
occur along the path for λ > 0, and we check for it separately in our implemen-
tation (cf. Algorithm 9.2). More than two points being placed symmetrically on
the boundary (such as in the corners of an equilateral triangle in R2) is unlikely
for the same numerical reasons discussed above.

A more practical complication is described here through an example. Assume
the next event was determined to be the addition of a point i from O to the
boundary set B (E4). At this instant, αi = 1 as the point just entered B. In the
following iteration, candidates for the next event are calculated. In particular,
among the candidates for points leaving B for O, point i will correspond to a
value λi = λl, the current value of λ. This point and event (point i, B → O) will
not be considered a valid choice for λl+1 since we require λl+1 < λl. However, in
an implementation where one must deal with finite precision, λi is not necessarily
exactly equal to λl. Instead, it may be slightly lower (typically in the order of
10−15 in our implementation) making point i a valid candidate for the next
event. In fact, this candidate will be selected as λi is so close to λl. One remedy
for this problem is to treat values of λi that are sufficiently close to λl as equal.
This is done by defining a threshold ε such that λi ≡ λl ⇔ |λi − λl| < ε. We
choose to avoid this strategy as the proper size of ε may depend on the size
and characteristics of the data. Instead we identify unrealizable combinations
of events and avoid these explicitly in our implementation. There are four such
combinations listed in the following. Note that these refer to chains of events
concerning the same point.

1. B → I followed by I → B.

2. B → O followed by O → B.

3. I → B followed by B → I.

4. O → B followed by B → O.

These combinations of events are easily verified to be unrealizable; Equations 9.17,
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9.18 and 9.19 all have single solutions for λi, and we know that this solution is
λi = λl in these cases. Thus, the conclusion is that there are no other values
of λi < λl such that these events can occur. By keeping track of the event
that occurred in the previous iteration, points that may cause problems can be
excluded from I, O and B respectively when calculating λi.

Algorithm 9.2 describes a suggestion for a procedure that implements the pro-
posed algorithm including the caveats discussed above. Here, EP and iP denote
the previous event and the previous active point respectively.

9.3 Applications

The SVDD with its original method for computation has found applications in
a wide variety of fields, some of which are mentioned in Section 9.1. A survey
of recent publications based on applications and extensions of the SVDD shows
that interest is increasing. In such practices, the algorithm proposed in this
paper makes it possible to make a more informed choice of the regularization
parameter. While the improvement this offers is significant, we will not give any
examples of this kind here as its application is straightforward. Instead, this
section contains two examples where quantities from the regularization path are
extracted which provide novel information on medical image data.

9.3.1 Commonality-based Ordering of Observations

The concept of this application is the interpretation of the SVDD as the es-
tablishment of an order among the observations of a data set. Tracing the
regularization path from λ = 0 to n, the first observation to leave the boundary
will be the one regarded as the least common observation of the data set by the
SVDD, the next observation to become an exterior point will be regarded the
second least common observation, and so on. Points that rejoin the boundary
from the exterior are registered as they leave the boundary for the last time.
The idea that the order of exclusion is reflecting the sample set density is the
reason we refer to this method as commonality based ; more common objects,
residing in regions of feature space that are more densely populated by similar
observations, will be excluded later along the regularization path than more
uncommon examples. The implementation of this method is elementary, as the
ordering is established directly from O.

To illustrate this application, we have established an ordering in a data set con-
sisting of 62 Procrustes-aligned outlines in two dimensions of the mid-sagittal
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(a) First eight selected (uncommon)

(b) Last eight selected (common)

Figure 9.4: Ordering established by the SVDD regularization path. Note the in-
creased dissimilarity among the outliers, as well as the increased similarity among
later samples.

(a) First 8 selected (uncommon)

(b) Last 8 selected (common)

Figure 9.5: Ordering established by successive maximization of Mahalanobis dis-
tance.

cross-section of the corpus callosum brain structure [111]. Each outline is re-
garded as one observation, consisting of p = 2 ·78 variables (78 landmarks in two
dimensions). We use a Gaussian kernel with σ = 1 for the SVDD estimation.

To put the proposed method into perspective, we have also established an or-
dering using successive maximization of the squared Mahalanobis distance,

d2
M = (xi − x̄)Σ−1(xi − x̄)T . (9.20)

Starting with the full data set, at each step, the observation with the largest
distance with respect to the current data set is removed and the covariance
matrix Σ and the mean x̄ is recalculated. For n shapes, this is performed n− 1
times, thus establishing an ordering.

Figures 9.4 and 9.5 show the first (least common) and last (most common) eight
ordered observations of the SVDD path method and the Mahalanobis method
respectively.

The Mahalanobis distance measure is based on the shape of the covariance
matrix and assumes an ellipsoidal distribution. Due to the use of kernels, the
SVDD is able to model more complex distributions, giving better estimates of
the commonality of each observation. This is particularly apparent among the
common samples in Figure 9.4. The variance is clearly lower for the SVDD-based
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σ = 0.1

σ = 1

σ = 10

σ = 100

σ = 1000

Figure 9.6: Ordering established by the SVDD using various choices of the kernel
parameter σ. The results are surprisingly insensitive to this variable.

ordering than for the Mahalanobis-based counterpart. Moreover, the SVDD
is significantly more efficient; the Mahalanobis-based method has approximate
complexity O(n4).

The ordering is dependent on the kernel parameter σ when using a Gaussian
kernel, and similar parameters for many other types of kernels. As discussed
in Section 9.2 and shown in Figure 9.2, various choices of the kernel parameter
σ lead to significantly different behavior of decision boundary. This invariably
leads to variations in the results of any application using the SVDD together
with hyper parameters. As an illustrative example, Figure 9.6 shows the eight
least common corpus callosum outlines for very dissimilar values of σ. Interest-
ingly, the results are relatively insensitive to the choice of σ in this application.

9.3.2 Ischemic Segment Detection from Cardiac MR Im-
ages

Early treatment of ischemic heart disease requires early detection. Magnetic
resonance imaging (MRI) has emerged as an important tool for assessing my-
ocardial perfusion [86]. The reduction of myocardial perfusion is a sensitive indi-
cator for myocardial ischemia, as myocardial blood flow is directly correlated to
myocardial oxygen supply. In the present study, a set of perfusion MR images
is analyzed with the goal of detecting ischemic segments of the myocardium.
The data set consists of a sequence of 50 myocardial perfusion short-axis MR
images, obtained from ten freely breathing patients, all having acute myocardial
infarction. Each image consists of four spatial slices of the myocardium.

To obtain pixel-wise correspondences between subjects, the perfusion MR im-
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ages have been spatially normalized using a method for image registration based
on the active appearance model with landmark correspondences optimized by
a minimum description length approach [106, 143]. Four different time frames
from one registered slice can be seen in Figure 9.7. Using the pixel-wise corre-
spondence, intensity curves from a selection of pixels may be plotted, reflecting
the passage of the contrast agent as shown in Figure 9.8(a). In the current set-
ting, one observation is represented by the time-series of intensities in a given
voxel (n ≈ 500, p = 50).

(a) Frame 1. (b) Frame 16. (c) Frame 31. (d) Frame 46.

Figure 9.7: Different registered frames of one of the slices of the perfusion MR images.
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Figure 9.8: Intensity curves (experimental and theoretical) for a selection of myocar-
dial segments.

Normally perfusion is assessed using three perfusion parameters; maximum up-
slope, peak and time-to-peak for the detection of ischemic heart segments, as
illustrated in Figure 9.8(b). We propose to replace or complement these pa-
rameters by a quantity estimated from the SVDD regularization path. This
measure is referred to as a generalized distance, and does not require selection
of a particular value of λ. An in-depth description of this method is given by
Hansen et al. [55], but will be briefly reviewed in the following.

It is the hypothesis of the method that the smaller ischemic segments appear as
outliers using the SVDD, and the larger healthy segments as inliers. We do not
know, however, if an ischemic segment is present, nor its size. Analyzing the
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intensity profiles using the SVDD divides the observations into two classes, sep-
arating curves with unusual behavior from more common ones. The parameter
related to the proportion of curves considered abnormal is given by λ. An appro-
priate value of λ is, however, unknown. If λ is too small, the ischemic segments
will be considered normal data, and if it is too large, both ischemic segments
and healthy segments will be considered as outliers. A distance measure that
retains the contrast between inliers and outliers, while ensuring that outliers are
not accepted as inliers is calculated by integrating the distance function fλ(x)
from Equation 9.11 over the whole range of λ,

φ(x) =
∫ n

0

fλ(x)dλ. (9.21)

This can be computed efficiently using the entire regularization path, and is
calculated for each pixel, slice and image. The idea is that ischemic segments
will exhibit larger generalized distances φ(x) compared to healthy tissue.

In Figure 9.9 the intensities from a collection of pixels of a single slice are shown
for all time frames, colored according to their generalized distance. Notice how
the curves that rapidly gain and drop in intensity are also considered outliers
in spite of their large upslope. This was one motivation for the presented work,
to isolate segments with a very noisy response. Such segments are mainly posi-
tioned around the ischemic segment, and they appear to form another feature
in the detection.
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(a) Generalized distances, patient 7.
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(b) Generalized distances, patient 3.

Figure 9.9: Pixel-wise intensity plots. Different pixels are colored according to the
generalized distance, shown in the adjacent color-bar. The pixels are evenly chosen in
the whole range of distances from the 3rd slice.

The generalized SVDD-based distance shown in Figure 9.10(d) is seen to cor-
respond well to the perfusion parameters in Figure 9.10(a-c). A benefit of the
SVDD is that the noise in healthy segments is reduced. The excellent corre-
spondence visible is not always present. In Figure 9.11, the normal (blue) area
is smaller, and the ischemic segment appears less precisely defined and localized.



9.4 Conclusions 189

A caveat of the proposed distance measure is that a relatively large number of
normal observations is needed for the method to work properly. However, many
applications in medical imaging look for sparse effects in large volumes of data,
a setting which fits the proposed method.

(a) Maximum
upslope

(b) Peak values (c) Time to
peak

(d) General-
ized distance
φ(x)

Figure 9.10: Results for patient 7. Colors are chosen to let red indicate abnormal-
ity/ischemia whereas healthy tissue is shown in blue. (a) A low maximum upslope is
an indicator of ischemia. (b) A low peak value reflects ischemia. (c) A long time to
peak measure indicates ischemia. (d) Blue corresponds to small generalized distance
and red to higher generalized distance. This is seen to correspond well to the other
measures.
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Figure 9.11: Results for patient 3. Colors correspond to those in Figure 9.10.

9.4 Conclusions

This paper has presented an algorithm for efficiently calculating the entire reg-
ularization path of the support vector domain description. This means that
the classification results for any conceivable choice of the regularization param-
eter become available. Knowledge of this path was shown to provide new tools
suitable for the analysis of medical image data. First, we demonstrated how
path information can be used to establish a sensible ordering among a set of
clinical observations, based on their commonality. The method resulted in a
visually more pleasing result compared to a Mahalanobis-based alternative, and
has better computational efficiency. Second, a generalized distance measure was
proposed and applied to the detection of ischemic segments of the myocardium
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from cardiac perfusion MR images. The generalized distance approach demon-
strated unsupervised, non-parametric and computationally efficient detection of
such segments in cases where the proportion of infarcted tissue is low.

The obvious application of the algorithm is the possibility of making a more
informed choice of the regularization parameter, and we anticipate that our
results will have an impact on any method for classification, clustering or novelty
detection based on the support vector domain description.
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Algorithm 9.2 Suggestion for an SVDD implementation. EP and iP denote
the previous event and the previous active point respectively.
1: Initialize λ = n and α = 1.
2: Initialize B to i ∈ O that minimizes (9.11) and initialize sets accordingly.
3: EP = E4

4: while nO > 0 do
5: Given sets I, O and B, compute p = Z−1z/2 and q = Z−1W1n.
6: T = B
7: if EP = E3 then
8: T = B − iP
9: end if

10: Calculate λ candidates according to E1 using (9.17) with i ∈ T .
11: T = B
12: if EP = E4 then
13: T = B − iP
14: end if
15: Calculate λ candidates according to E2 using (9.18) with i ∈ T .
16: T = I
17: if EP = E1 then
18: T = I − iP
19: end if
20: Calculate λ candidates according to E3 using (9.19) with i ∈ T .
21: T = O
22: if EP = E2 then
23: T = O − iP
24: end if
25: Calculate λ candidates according to E4 using (9.19) with i ∈ T .
26: Choose candidate λl+1 with the largest value smaller than λl.
27: Calculate new coefficients, α = λl+1p + q.
28: Update sets and EP accordingly.
29: if nB = 0 then
30: if nO ≤ 2 then
31: B = O, O = ∅
32: else
33: Add index i ∈ O to the boundary set B that minimizes (9.11), remove

i from O.
34: EP = E4

35: end if
36: end if
37: p = α/λ, q = 0, α = 0, λl+1 = 0
38: I = A, B = ∅.
39: end while
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[133] K. Sjöstrand, T.E. Lund, K.H. Madsen, and R. Larsen. Sparse PCA, a new method
for unsupervised analyses of fmri data. In Proc. International Society of Magnetic
Resonance In Medicine - ISMRM 2006, Seattle, Washington, USA, Berkeley, CA, USA,
may 2006. ISMRM.
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