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Abstract

Ambient occlusion is the concept of shadows that accumulates at surfaces where
the surface is partially hidden from the environment. The more the surface is
hidden, the more ambient occlusion we have. The result is a subtle but realistic
shadow effect on objects.

Ambient occlusion is implemented. To achieve this, existing methods are eval-
uated and utilized. Ray-tracing is used for casting rays from surfaces. The
amount of rays that intersect the surrounding environment is used to find am-
bient values. The more rays that hit, the more shadow we get at the surface we
are working on.

We use textures for storing and displaying the ambient values. Overlapping tex-
tures are implemented to eliminate visible seams at texture borders. A blending
between the textures is introduced. The blending factor is the normal vector at
the surface. We have three textures at the surface that each contain ambient
values. To eliminate the possibility of having visible borders and seams between
textures we suggest that the contribution of each texture will be values from
each normal vector. The normal vector is normalized, and then we know that its
values squared will sum up to 1. This is according to the well known Pythagoras
theorem. We then consider each of these values to be a percentage and we know
that they sum up to be 100%. This allows for us to control the contribution of
each ambient texture, assigning one texture color with one normal vector value.
The result of this is a smooth blending of ambient values over the entire surface
of curved objects.



ii



Preface

This thesis has been prepared at the Section of Computer Graphics, Depart-
ment of Mathematical Modelling, IMM, at the Technical University of Denmark,
DTU, in partial fulfillment of the requirements for the degree Master of Science
in Engineering, M.Sc.Eng. The extent of the thesis is equivalent to 30 ETCS
credits.

The thesis covers illumination of graphical models. In particular a shadow effect,
called ambient occlusion. The reader is expected to have fundamental knowledge
of computer graphics, illumination models and shadows.

Lyngby, May 2007

Ingvi Rafn Hafthorsson
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Chapter 1

Introduction

1.1 General Thoughts

There are many reasons why we want to model the world around us. There can
be educational purposes, recreational or simply curiosity. By creating models
we present the possibility of exploring objects that would be beyond our reach
in real life. For example we can model molecules and simulate their behavior,
and thereby explore something that would be hard to do otherwise. There is
also the possibility of modeling a fictional world that has only the restraints of
the imagination of its creator.

If we want to simulate the real world we have to consider physics and try to
incorporate them in our model. This can be the physics of how light transports
and reflects or how objects interact with each other. It could also be a global
effect like the earths gravity pull. The possibilities are endless. It would be
impossible to simulate exactly the real life physics in to a virtual world, the
computer power needed for that would be enormous. Instead it is common to
simulate physics by “cheating” and trying to consider only things that affect the
viewer and not consider anything that the viewer can’t see anyway. Another
way of trying to simulate the real world is by simplifying the physics and thereby
simulate something that looks realistic to a viewer but does in fact not obey the
rules of physics.
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Shadows are something that are everywhere around us, they are so common
that we usually don’t think about them, they simply are there. If we draw a
scene that has some lights in it but we don’t draw the shadows that would be
cast by the light, the observer immediately identifies that there is something
wrong. The image would look unrealistic and it would be hard to identify the
objects in the model, their appearance and placement. This can bee seen on
figure 1.1 where a man is hanging in a rope above a surface.

Figure 1.1: The importance of shadows. On the left it is hard to identify the
location of the man and what the surface looks like. On the right we see that
the man is hanging slightly above the surface and the surface is rippled.
(Image source: http://artis.inrialpes.fr/Publications/2003/HLHS03a/)

A special property of the things around us is the fact that they cast shadows on
themselves and on objects close to them. If you are in an area with no special
light sources, this effect can be seen. Figure 1.2 illustrates this, where we have
a computer generated image of a living room. Notice the accumulated shadows
in the corners and under or around objects. In computer graphics this effect is
called ambient occlusion and this effect is the main concept of the paper. The
name ambient occlusion refers to the ambient light that was first presented in
the Phong illumination model[23] and occlusion which is the fact that objects
can occlude or be occluded by other objects. The ambient term introduced by
Phong is a constant illumination value that is applied to all areas in a scene.
When the ambient value is used, it can make images look dull and that is the
reason why we have ambient occlusion. Its purpose is to generate ambient values
for areas in a scene based on how much they are shadowed by the environment.

Ambient occlusion can be simulated by considering the surrounding environment
at each point in a model and thereby we are simulating real-life characteristics.

Ambient occlusion is a kind of global illumination and also a soft shadow effect.
Therefore some discussion on these topics is needed.

http://artis.inrialpes.fr/Publications/2003/HLHS03a/
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Figure 1.2: Computer generated image of a living room. The only illumination
applied to this scene is ambient occlusion. The scene looks realistic even though
it has no light sources.
(Image source: http://www.icreate3d.com/services/lounge-visualisation-large.jpg)

1.2 Shadow Effects

Shadows are an important aspect of graphical scenes. They help us visualize the
geometry of objects, their position and size. There are two kinds of shadows,
which are hard shadows and soft shadows. Hard shadows appear when there
is a single point light source and they can be thought of as having two states.
Either a point is in shadow or it is not. This can give interesting results but
isn’t a very realistic approach. Soft shadows, on the other hand, are created
when light comes from an area or multiple light sources. Then points can be in
full shadow, when not seeing the light source, or they can be partially shadowed
when seeing a part of the light source. This creates a soft shadow effect and it
is this that we are used to from real life. Figure 1.3 illustrates the difference
between hard shadows and soft shadows.

Soft shadows are especially interesting since they add a realistic view of a scene.
Hasenfratz et al.[16] offer a detailed description of shadow effects and real-
time soft shadow algorithms. A more general survey of shadow algorithms is
presented by Woo et al.[27]. Here many types of algorithms are examined and
discussed which aids users in taking an informed decision that suits for a given
task.

Two popular real-time shadowing algorithms are Shadow Maps introduced by

http://www.icreate3d.com/services/lounge-visualisation-large.jpg
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Figure 1.3: On the left we see hard shadows with one light source. On the right
we see soft shadows with multiple light sources. (Image created with Softimage|XSI�)

Lance Williams in 1978 [26] and Shadow Volumes introduced by Frank Crow
in 1977 [12]. Shadow mapping can be very fast but can give unrealistic results,
while shadow volumes give more accurate results but can be slower than shadow
mapping. These two methods have been combined by Chan et al.[8] where the
benefits of both are used such that shadows maps are used where accuracy is
not important and shadow volumes where it is important. This is done by
identifying the pixels that will have a more visual effect on the viewer than
others.

As we have seen, ambient occlusion is the accumulation of shadows at areas that
are blocked by the environment. Therefore we can say that ambient occlusion
is a soft shadow effect.

1.3 Global Illumination

Global Illumination models illuminate a scene, by calculating how much light
or shadow should be at any given point. They are called global illumination
algorithms because they do not only consider the light coming directly from
light sources, but also any light that is reflected from other objects in a scene.
The models can vary in complexity, going from photorealistic images to a more
dynamic approach, which is more suited for where ever human interactions
are required. Examples of global illumination algorithms are Ray-tracing[25],
Radiosity[15] and Photon Mapping[18] which are all widely used.

Ray-tracing shoots rays from the viewer through each pixel that should be ren-
dered. Each ray will then possibly hit some objects, and if it does the color value
of the pixel will be updated. The ray can then be reflected from the object and
to other objects, thus contributing to the color of the pixel from all the objects
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it has bounced off.

Radiosity is based on splitting the scene into patches and then a form factor is
found for each pair of patches, indicating how much the patches are visible to
one another. The form factors are then used in rendering equations that lead to
how much each patch will be lit and then we have the whole scene illuminated.

In Photon Mapping, photons are sent out into the scene from a light source.
When a photon intersects the scene, the point of intersection is stored along
with the photons directions and energy. This information is stored in a photon
map. The photon can then be reflected back into the scene. This is usually
a preprocess step and then at rendering time, the photon map can be used
to modify the illumination at each point in the scene when using for example
ray-tracing.

We can think of ambient occlusion as a simple kind of global illumination algo-
rithm, since it considers the surrounding environment but does not consider any
light sources. Remember that typically, global illumination models consider all
light sources and also light bouncing from other surfaces. Ambient occlusion is
a relatively new method and has been gaining a lot of favor in the gaming and
movie industry and is now being used extensively.

1.4 Ambient Occlusion

It is best to describe what ambient occlusion is by imagining a real-life circum-
stances. A good example is the shadows that appear in corners of a room. It is a
shadow that objects cast on itself or on objects that are close to them, and this
effect is the main concept in the report. Figure 1.4 shows a complex computer
generated molecule with ambient occlusion shadows as the only illumination
applied to it. Notice that the depth of the image is clear, we instantly identify
the structure of the object.

Details about ambient occlusion can be found in chapter 3 where general thoughts
about why and when to use it and how it is implemented are discussed. The
origins of ambient occlusion is discussed in chapter 4 along with a discussion
on how it has evolved and some advanced ambient occlusion implementations.
This finally leads to a discussion of the solution for ambient occlusion presented
in this paper which can be found in chapter 5.
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Figure 1.4: Ambient occlusion in a large molecule model. (Image source:

http://qutemol.sourceforge.net/sidetoside/)

1.5 Contributions

Ambient occlusion is evaluated, what it is and how is it generally implemented.
Existing ambient occlusion implementations are evaluated which leads to the
approach introduced in this paper.

First ambient occlusion is found for each vertex in an object and the values
associated with each vertex so they can be displayed when the object is rendered.

This idea is expanded such that textures are applied on an object. The polygons
of the object are clustered together and a texture is applied to each cluster.
Ambient values are now found for each part of the texture. The texture stores
the ambient values and at render time, each texture is displayed on the object
and we get an overall ambient occlusion.

Next step is to make the textures overlap each other. This is done by having
the polygon clusters overlap, meaning that one polygon can belong to more
than one cluster. Now the textures are overlapping and we are therefore finding
ambient values more than once for some locations on an object.

http://qutemol.sourceforge.net/sidetoside/
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This leads to us going to blend between the ambient values in an effort to
get a smooth looking ambient occlusion. The blending will be done by using
the values of the normal vectors as to how much each ambient value will con-
tribute to the final color for each texture. Overlapping textures and blending
between them using the normal vectors has not been implemented before, to my
knowledge. Details about how this is done is discussed in details in chapter 7 -
Implementation.

The main contribution is to create textures that contain ambient
values, make them overlap each other and blend between them using
the normal vectors at each point as the blending factor.

We have many textures for complex objects and therefore we will create a texture
atlas from all the cluster textures, to lower texture memory needed. A texture
atlas is one texture that contains many small independent textures.

1.6 Thesis Overview

In chapter 2 there is a discussion about why we would want to implement
ambient occlusion, along with the goal that we want to achieve.

Chapters 3, 4 and 5 cover details about ambient occlusion in general, the prede-
cessor of ambient occlusion, existing implementations and the proposed solution
presented in this paper.

Chapters 6 and 7 cover the design and implementation details.

In chapters 8 and 9 the testing of the algorithm is discussed which is followed
by results discussion.

The general idea of ambient occlusion and the path that was taken in this report
is discussed in chapter 10.

In chapter 11 there is a talk about extensions and improvements of the imple-
mentation.

Finally in chapter 12 we conclude the thesis.
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Chapter 2

Motivation and Goal

2.1 Motivation

Generating visually pleasing graphical images can be a difficult task. We need
to consider many factors to gain the result that is needed, often using a complex
global illumination model to achieve this. This can be a time consuming task.

Objects and scenes need to look realistic, at least that much it will let the
observer feel like it possesses real-life characteristics. This can be achieved in
many ways e.g. by passing objects through an illumination model algorithm
which calculates light and shadows for any given point, taking into consideration,
existing lights and other things that affect the scene.

When complex objects are in equally distributed light, such as regular daylight,
they will cast shadows on parts of themselves. Some parts will be less visible
to the surrounding environment and will therefore not get as much illumination
as others, thus being in more shadow. As mentioned earlier this effect is called
ambient occlusion, and can be seen in figures 1.2 and 1.4.

If we have a static object, an object with no moving internal parts, then it is well
desirable to think of these shadows as constant. Meaning that no matter the
surrounding objects or lights, these shadows will always be the same. Of course
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the surrounding light will have an effect, but these shadows are still there.

The motivation would be to create a simple to use algorithm that finds ambient
occlusion in objects and stores it in a convenient way. Then the ambient occlu-
sion values can be accessed fast and be used again and again. This is thought of
as a preprocessing step, meaning that the algorithm should be used on objects,
the output stored and used later for rendering. Possibly in real-time rendering.

2.2 Goal

The main objective will be to generate a natural looking illumination. Mainly
the shadow effect, called ambient occlusion, which are the shadows that accu-
mulate on locations on objects that are occluded by the surrounding geometry.
There will be a discussion about how this has been implemented before which
will lead to the method introduced in this report.



Chapter 3

Ambient Occlusion in Practice

In order to implement ambient occlusion, we first need to discuss what it is,
in what circumstances we benefit from using it, and how it is generally imple-
mented.

3.1 What is it

One special property of the things in the environment around us is the fact that
they cast shadows on themselves or other things close to them. This property is
best described by imagining the shadows that accumulates in corners of rooms
or the shadow on the ground beneath an object such as a car. When objects
cast shadows on themselves it is called self-occlusion but when casting shadows
on the surrounding environment it is called contact shadows. Contact shadows
are a positive side-effect of ambient occlusion, since generally it is designed to
handle only self-occlusion. Self-occlusion and contact shadows are illustrated in
figure 3.1.

Ambient occlusion is the shadows that accumulates on places of objects, which
are not fully visible to the environment. Figures 1.2 and 1.4 in chapter 1 both
catch the visual effects of ambient occlusion.
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Figure 3.1: On the left we see self-occlusion where a torus occludes its inside.
On the right we see contact shadow. The torus is casting shadow on the plane
beneath.

3.2 When to use it

The main reason for using ambient occlusion is to achieve visually pleasing soft
shadows, which make objects look real, without the effort of a more complex
global illumination model. Since ambient occlusion does not consider any light
sources but still can generate realistic images, it can be used early in develop-
ment process to aid in visualizing a scene. Also developers can use less lights if
ambient occlusion has been applied which would save time in the development
process. It can be a tedious and time consuming task to place lights in good
locations for getting realistically lit scenes.

Ambient occlusion is view-independent, meaning that calculations are made
on all parts of an object and then they can be used even though the object
is moved around and rotated. In other words we only have to calculate the
occlusion values once for each object and then use them again and again, since
the values will not change even though some global lighting effects change.
This fact also allows the ambient occlusion values to be shared amongst many
instances of the same object. It is popular to create texture maps that holds
the ambient occlusion values. The texture maps can then be shared amongst
multiple instances of an object.

Contact shadows are a positive side effect of ambient occlusion. If we have a
static scene with many objects and it is known that some of the objects will
never move, we can apply ambient occlusion on that objects together. This
would give us shadows between objects that are close to one another. This
can for example be applied to a static scene in a video game. Then ambient
occlusion is applied to the whole scene and we get pleasing soft shadows where
objects in the scene are close to one another. Right side of figure 3.1 illustrates
contact shadow.
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One property of ambient occlusion is that it can be used to simulate effects, like
rust or dirt that would accumulate on an object. We tweak some settings in the
algorithm such that we could shoot few random rays and perhaps apply a color
to our shadow such that it will look like dirt that accumulates in a corner of a
room. Figure 3.2 shows a gargoyle that looks worn and weathered after ambient
occlusion has been applied to it.

Figure 3.2: Ambient occlusion has been applied to the gargoyle model to get a
worn effect.
(Image source: http://vray.info/features/vray1.5_preview/gargoyle_worn.png)

In general it can be a good choice to apply ambient occlusion to objects and
scenes. The effect of it can greatly enhance images without to much effort,
especially given the fact that no light sources are needed and that it is view-
independent.

3.3 How is it implemented

The basic approach for calculating the ambient occlusion value at each point is
with the help of ray-tracing. Rays are traced inside a hemisphere around each
points normal vector and the amount of occlusion will be a value depending on
how many of the rays hit other surfaces in the scene. Figure 3.3 illustrates this.

http://vray.info/features/vray1.5_preview/gargoyle_worn.png
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These values are pre-computed and stored for each point for later reference. Here
we have the possibility of choosing how many rays are cast for each point, the
more we use the better looking ambient occlusion we would get. Also distance
can be used, such that if a ray hits but it is far away then it would not count as
much compared to if it were closer. Last we could find the angle that is between
the normal vector and a ray, and the wider it is the less that ambient occlusion
value should count.

Figure 3.3: Rays are shot out from a point and a ratio is found indicating how
many rays hit the scene. The ratio represents the ambient occlusion value for a
given point. (Image source: http://www.christopher-thomas.net)

http://www.christopher-thomas.net


Chapter 4

Previous Work

This chapter covers the predecessor of ambient occlusion, going from the first
model based on obscurances The model is refined and leads to the popular
ambient occlusion that is now widely used in the gaming and movie industries.
Last there is a discussion about advanced implementations.

4.1 Ambient Light Illumination Model

The predecessor of the ambient occlusion used in this paper is the Ambient Light
Illumination Model introduced by Zhukov et al.[28]. The purpose of the model
is to account for the ambient light, presented in the Phong reflection model[23],
in a more accurate way.

The classic ambient term1 introduced by Phong, illuminates all areas of a scene,
whether it would actually have some “daylight” reaching it or not. The Phong
reflection model is a local illumination model and does not count for second-
order reflection in contrast with Ray-tracing[25] or Radiosity[15]. The classic
ambient term has been extended by Castro F. et al.[6], where the polygons in a

1See Advanced Animation and Rendering Techniques[24], page 42, for details of the Phong
reflection model.
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scene are classified into a small number of classes with respect to their normal
vectors. Each class gets a different ambient value and then polygons will get
the ambient value from the class that they belong to. The method introduced
offers a considerably better looking images with a relatively small increase in
computation time compared to the Phong reflection model.

The idea of the Ambient Light Illumination Model lies in computing the obscu-
rance of a given point. Obscurance is a geometric property that indicates how
much a point in a scene is open. The model is view independent and is based
on subdividing the environment into patches similar to radiosity. Obscurance
for a given patch is then the part of the hemisphere that is obscured by the
neighboring patches. This gives us visually pleasing soft shadows in corners of
objects or where objects are close to one another. A big advantage of the model
is that scenes look realistic without any light sources at all.

The definitions of the model are as follows: P is a surface point in the scene,
and ω is a direction in the normal hemisphere Ω with center P , aligned with the
surface normal at P and lying in the outer part of the surface. This is described
on figure 4.1.

Figure 4.1: The variables introduced in the Ambient Light Illumination Model.

A function L(P, ω) is defined as:

L(P, ω) = {distance between P and the first intersection point of the ray Pω with the scene
+∞ if the ray Pω does not intersect the scene.

(4.1)

Obscurance at point P is then defined as follows:

W (P ) =
1
π

∫
ω∈Ω

ρ(L(P, ω)) cos αdω (4.2)
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Where:

• ρ(L(P, ω)) is an empirical mapping function that maps the distance L(P, ω)
to the first obscuring patch in a given direction to the energy coming from
this direction to patch P . The function takes values between 0 and 1.

• α is the angle between the direction ω and the normal at point P .

For any surface point P , W (P ) will always take values between 0 and 1. Ob-
scurance value 1 means that the patch is fully open, thus it had no intersection
on the visible hemisphere and 0 means fully closed.

4.2 The Model Refined

The Ambient Light Illumination Model has been refined and simplified over the
years by the gaming and movie industries and is now commonly called Ambient
Occlusion.

In the ambient light illumination model, obscurance is defined as the percentage
of ambient light that should reach each point P . Recent implementations[4,
9, 19, 20] reverse the meaning of this and define ambient occlusion to be the
percentage of ambient light that is blocked by the surrounding environment of
point P .

Ambient occlusion is then defined as:

A(P ) =
1
π

∫
ω∈Ω

V (P, ω) cos αdω (4.3)

Where V (P, ω) is the visibility function that has value 0 when no geometry is
visible in direction ω and 1 otherwise. Note that this is opposite of the obscu-
rance formula. The biggest difference is that the distance mapping function is
not used in particular. We only get the value 0 or 1 from V (P, ω) for any ω.

There is in fact no particular difference between the words obscurance and oc-
clusion. Objects can be obscured from light, thus being in shadow. Objects can
be occluded by other objects and then being in shadow. The ambient light illu-
mination model only talks about obscurances and never occlusion. Somewhere
along the way the word occlusion gained popularity and ambient occlusion be-
came well known.
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There are many recent implementations that use either the ambient light illu-
mination model or the simplified ambient occlusion. Many times there are some
enhancements introduced, where often the goal is a real-time ambient occlusion
solution.

4.3 Advanced Ambient Occlusion

In [19] the suggested solution is to approximate the occluder by a spherical
cap when finding the ambient occlusion on the receiving object. A field is
pre-computed around each object which represents the occlusion caused by that
object on the surrounding environment. Then at run-time, the average direction
of occlusion 2, along with the distance, is retrieved and evaluated to find ambient
occlusion on the receiving object.

Similarly in [21] the average occluded direction is used. Here a simple method for
storing ambient occlusion is presented, which is easy to implement and uses little
hardware resources. A grid is constructed around each object. Then for each
grid element, ambient occlusion values that the object would cast in the specific
location, can be pre-calculated and stored for later reference. The benefits are
faster run-time computations and shorter precomputation times which makes it
suitable for real-time rendering.

In chapter 14 from NVIDIA’s GPU Gems[4] a dynamic approach for finding
ambient occlusion is suggested. Each vertex in an object is converted to a
surface element, which means that a disk is created at each vertex. A disk
is defined by its position, normal and the area it covers. Then when finding
ambient occlusion, an accessibility value is found at each element based on
angles and distances between elements.

The Ambient Light Illumination Model is taken to another level in [22]. Here an
important feature in Radiosity[15] is added to the model, which is color bleeding.
A technique is presented which combines color bleeding with obscurances with
no added computational cost. An important feature is that depth peeling[13]
is used, which extracts layers from the scene and for each pair of consecutive
layers, the obscurance is computed between them. This allows for real-time
updates of moving objects, using depth peeling and ray-casting.

The method introduced in [17] simulates a global illumination solution by using
the ambient light illumination model. It estimates ambient light more accurately
than the Phong reflection model, without the expense of Radiosity[15]. The

2The average direction of occlusion is sometimes called the bent normal.
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illumination computations are stored in obscurance map textures, which are
used together with the base textures in the scene. By storing the occlusion
values in textures, fine shading details and faster rendering can be achieved.
This model generates patches, similar to radiosity, by first assigning polygons to
clusters according to a certain criteria and then the clusters are subdivided into
patches. Then, similar to methods described earlier, the distance and direction
is used to find the incoming ambient light at each point, using the previously
generated patches.

Industrial Light and Magic have developed a lighting technique which includes
what they call Reflection Occlusion and Ambient Environments[20]. Both tech-
niques use a ray-traced occlusion pass that is independent of the final lighting.
The latter, Ambient Environment, consists of two things which are Ambient
Environment Lights and Ambient Occlusion. The purpose of ambient environ-
ments is to eliminate the need of using a lot of fill lights. Ambient occlusion is
an important element in the creation of realistic ambient environment. There is
an ambient occlusion pass and the results are baked into an ambient occlusion
map for later reference.
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Chapter 5

Occlusion Solution

As has been discussed, the goal is to create a natural looking overall illumination
effect, ambient occlusion to be precise. Following is the flow of how the goal is
achieved.

5.1 General Approach

We will calculate ambient occlusion with the use if ray-tracing or specifically,
ray casting. This means that for a given point on a surface, rays will be cast in
random directions relative to that points normal vector. We keep track of how
many rays intersect the scene and find the ratio with the total number of rays
that were shot. This would give us a good approximation of how much each
point is obscured from the rest of the scene. This can be seen on figure 3.3 on
page 14. By doing it like this we only need two know two things for any given
point of a surface, which is the location of the point and the normal vector of
the point. Details of how this is implemented is discussed in section 7.4.
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5.1.1 Alternatives

We could use the extended ambient term[6] for finding ambient values. This is
not an ambient occlusion approach but still a possibility for obtaining decent
ambient values on an object. When using the extended ambient term, the
triangles in the mesh would be classified into a small number of classes according
to their normal vectors. Each class will have a different ambient value that is
associated with the triangles in the class. A triangle will then get the ambient
value that his class has and the result will be a better result than only using one
constant ambient value for the whole scene like when using the ambient term
in the Phong reflection model[23]. This is a simple approach and is just a small
enhancement from the constant ambient value in the Phong model. We want
to get more detailed ambient values.

We have the possibility to go all the way and apply e.g. radiosity[15] to our
object. Then we would get a very realistic illumination including the ambient
occlusion effect. Radiosity is a computationally expensive algorithm and is
therefore avoided here. We are aiming at a simple ambient occlusion solution
but not an overall global illumination that considers light sources and reflections.

We will use the general approach which is ray casting. Now we need to decide
how to apply ray casting on an object for calculating ambient values.

5.2 Using Vertices

We state that we want to find ambient occlusion for a mesh. A mesh is a way to
describe how a model looks like. It contains at least some vertices and normals
along with information about how the vertices are structured so that they can
form the object. Now we need to identify what approach we can use to find
the ambient occlusion that we want. We start by considering using the vertices
directly, since then we have the values needed, which are the vertex locations
and the normal vector for each vertex. We traverse the vertices in the object
and find how much each vertex is obscured from the rest of the scene. Rays
are cast out from each vertex and we find a ratio between how many rays hit
the scene and the total number of rays, which will be our ambient value. Each
ambient value is then associated with the corresponding vertex and the object
can be shaded with ambient occlusion.

By using the vertices we introduce a problem. Imagine a complex object that
has some parts that are highly tesselated for details but also has areas that are
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defined with very few vertices. In this case we have high calculation time on
some parts and very little calculation on other parts. Ambient occlusion would
in many cases be very detailed where it is not necessary and not detailed enough
where it should in fact be more detailed. In other words, we restrict us to much
when using the vertices as points for finding the ambient occlusion, since they
are defined in a way we do not know about in forehand and have little control
over. This is best described in figure 5.1. There it can be seen that the sphere
is defined with many vertices but the floor beneath has only vertices in the
corners. This looks unrealistic since the floor should have some shadows cast on
it by the sphere. This leads to the sphere getting decent ambient occlusion but
the rest does not.

Figure 5.1: Here the ambient occlusion has been found for each vertex. The
sphere has many vertices and therefore the shadows look fine. The ground
beneath has only vertices defined in the corners and therefore does not get any
shadows. This makes the image look unrealistic.

Possible solutions:

• We could have the restriction that the imported model should be tesselated
evenly, meaning that there should be similar distance between every vertex
in the model. Then applying ambient occlusion on vertices should look
good. Modeling tools, for example Softimage|XSI�, have the possibility
of subdividing polygons and edges which allows the modeler to create an
evenly tesselated object.

• We could apply our own polygon subdivision algorithm on the object. The
algorithm would be designed to add vertices and edges such that it evens
out the distance between vertices.
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• Another possibility is that we apply a texture manually to the model.
Then we calculate ambient values for relevant parts of the texture by
casting rays and store the values in the texture for display. This would
give us evenly distributed ambient occlusion on an object no matter the
underlying triangle structure.

• It would be possible to create a solid 3D texture to store the ambient
values. Then for points at the surface of the object, ambient values will
be found and stored in the solid texture and displayed.

• One possibility could be to change the topology of the object by for exam-
ple splitting it up in to individual pieces. Then we apply separate texture
on each piece that ambient values are found for.

• We could use multiple textures. Then we cluster triangles together and
each cluster will have a local texture mapped to it. This sound similar to
splitting up the object but is in fact a little bit different since here we are
not changing the structure of the model.

It is not desirable to have the restriction that the model should be evenly tesse-
lated, since then the model would possibly be defined with more vertices than
would be needed. The number of vertices greatly affects rendering time and the
fewer they are the faster the image will be rendered. Similarly, applying our
own polygon subdivision algorithm will cause the same problem.

Applying a texture manually and finding ambient values for the applied texture
would be a suitable solution. The downside is that we are restricting the modeler
to do more work than he would like. It is a good practice not to put to much
restrictions on the user, but keep implementations as simple and automatic as
possible.

Applying a 3D texture to the entire object is very inefficient and therefore not
a desirable option.

Last we have the possibility of applying multiple textures on an object. One
way would be to split the model into parts and treat each part independently
and apply a texture on each part. Other way is to keep the object intact but
still have multiple textures that are each applied on different parts of the object.
The latter is more appealing since then we keep our model intact.
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5.3 Using Textures

We will use multiple local textures which we assign to polygon clusters. We then
need to cluster the polygons together and apply separate local textures to each
cluster. This leads to us getting continuous texture mapping for each cluster.
This approach is similar as before but eliminates using the vertices for finding
and storing the ambient occlusion. The idea is based on an idea presented in
[17] where the polygons are clustered together. We now find ambient occlusion
for each texel in a texture. A texel is one part of a texture. This will lead
to us finding ambient values evenly over the whole object, no matter how the
underlying polygon structure is. Finally we assign texture coordinates to the
vertices in the clusters.

By using multiple textures to store and display the ambient values, we introduce
a new problem. We will have textures joining at cluster borders making the
texture seams visible in some cases. This can give unpleasing results as can be
seen on figure 5.2 where the texture seams can be seen. This problem needs to
be addressed.

Figure 5.2: Here the ambient occlusion has been found for polygon clusters and
stored in textures. The texture seams can be seen.

Possible solutions:

• We could evaluate the borders of each texture and find where a border
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is connected to another texture border. Then we could share the borders
between two textures or blend between the ambient values at the bor-
ders, where the textures are adjacent to one another. Similar approach is
suggested in [17].

• As before we could create a 3D texture. For points at the surface of the
object, ambient values will be found and stored in the solid texture and
displayed. There should not be any visible seams since we are working on
one continuous texture in 3D and therefore the object would get a smooth
overall ambient occlusion.

• Like before we could apply a texture manually on the object and find
ambient values for it.

• Instead of applying a texture manually we could use another approach
which is called pelting[5]. Pelting is the process of finding an optimal
texture mapping over a subdivision surface[7]. The result from pelting is
a continuous texture over most of the object but there will still be places
where a cut is made where seams can be seen.

• We could let the textures overlap. Then we are finding ambient values
more than once on some parts of an object which would lead to us wanting
to blend between the values.

The problem with sharing or blending between texture borders is that we still
have multiple textures that are adjacent to one another. Since the textures are
not continuous, and hardware is designed to work in continues texture space,
the seams could still be visible.

As before we conclude that using 3D textures is inefficient and do not consider
that anymore.

By applying texture manually we still have the problem of visible texture seams.
On many objects, we can’t create a texture where all points have unique texture
coordinates and then we can’t have continuous texture over the whole object.
This results in us getting places where there will be visible seams. For example
there is no way to assign continuous texture coordinates on a sphere so that
every point is assigned a unique pair of texture coordinates.

If we would use pelting we will almost have a continuous texture space over
the whole object. A temporary cut is made in the object and there texture
seams can be visible when the texture is applied. In [5], a scheme is introduced
that blends smoothly over the cut, between different texture mappings on the
subdivision surface. The final result is a seamless texture on an object.
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The pelting approach would therefore solve our problem of having visible texture
seams. The idea of making multiple textures overlap and blend between them
would also work and since we already have multiple textures we will continue
in that direction. Therefore our solution would be to introduce the overlapping
of textures that then needs to be blended.

5.4 Blending Textures

The suggested solution for the texture seam problem is to make the textures
overlap. This will lead to places on objects where the ambient occlusion values
will be found more than just once. We then blend between these values to get
smooth ambient values where the textures are overlapping.

We now need to evaluate how the blending should occur:

• One way to blend would be to look at the textures color values and average
them such that we display the average of the values.

• We introduce using the normal vectors at each point on objects to blend
between different textures. Then each value of the normal vector will
control how much each of the textures that need blending, will contribute
to the final color.

By taking the average of the texture color values we will have each texture con-
tribute the same amount. This can lead to us having some textures more visible
than others since then the jump between textures where they start blending,
could be significant and therefore be visible.

If we would use pelting[5] to create a texture that contains the ambient values,
then we could possibly skip to have to blend at all. Pelting works such that
if we have an object we choose a cut place and there the object will be cut
temporarily in an effort to flatten out the model and apply texture coordinates
to the vertices. Then we could choose the cut place to be a location on the object
that we would identify as not getting any ambient values at all. This means
that the vertices around the cut should all be totally open to the environment.
Then we would get a continuous texture mapping except where the cut is, but
there the seam should not be visible since there are no ambient values there.

We will introduce using the normal vectors as the blending factor. We use the
normal vector at each point to blend between different texture values to get a
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smooth transition on the surface. When we are evaluating the blending between
three textures we will look at the normal vector for the point. The normal vector
has three values which are the x, y and z coordinates. The normal vector needs
to be normalized and then we can take advantage of the property of normalized
vectors that the sum of their values squared is equal to 1 (Pythagoras Theorem).
We use one normal value as the blending factor for one texture and then sum
that values up to get the final ambient value at each point. This is described
better in chapter 7.5 and illustrated visually on figure 7.9.

5.5 Combining Textures

One problem that arises with using many textures is that texture memory
needed can be very high. If we have a complex object then we can have many
clusters, and each cluster having its own texture. We are therefore creating
many textures for complicated objects.

Since this is not a part of the main goal that we are concentrating on, we will
create a simple texture packing algorithm. We stack each texture in a texture
atlas that is large enough to contain the textures. Efficiency will be minimal,
meaning that there can be large part of the texture that are not used. This
should be optimized and is discussed in chapter 11 - Future Work.

Now we have discussed the approach that we take in implementing ambient
occlusion, how we calculate, store and display the relevant data. next step is to
design and implement the solution.
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Design

6.1 Import/Export

There are many ways for exchanging digital assets. Usually developers have their
own format which means that exchanging the assets can be difficult when they
need to be used by other applications than from the developer that created it.
COLLADA[3] is an effort to eliminate this problem, by providing a schema that
allows applications to freely exchange digital assets without loss of information.
COLLADA stands for COLLAborative Design Activity. Here we will discuss
the available data representation in COLLADA along with what we choose for
this implementation. More details about COLLADA and some history can be
found in appendix A.

The geometry data is imported from a COLLADA file. The name of the file is
defined at runtime and the scene can then be imported and used in the ambient
occlusion calculations. When the calculations are done, the new data will be
exported in a new COLLADA file that the user has defined at runtime.
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6.2 Data Representation

Geometry in COLLADA can be defined in many ways and can therefore be
fairly complex. In general there are many forms of geometric descriptions such
as B-Splines, Meshes, Bezier and Nurbs to name some. Current version of COL-
LADA1 only supports splines and meshes. Here we will concentrate on using
meshes for describing our geometry as that is a simple and common way to
do it. Each mesh can contain one or more of each of the following elements:
lines, linestrips, polygons, polylists, triangles, trifans and tristrips. To simplify
our implementation we will concentrate on using triangle elements. With that
assumption we restrict our COLLADA schema to have a geometry mesh, rep-
resented with simple triangles. Further we restrict us to have one object in
one schema, meaning that we can only have one mesh that is defined with one
triangle element. Discussion on how to expand this can be found in chapter 11.

6.3 Algorithms

There are a number of algorithms that need to identified and implemented and
when combined the result will be the ambient occlusion solution.

The most obvious algorithm that needs to be implemented is the one that finds
the ambient occlusion values. The algorithm will work in such a way that for a
given point on an object, rays will be shot out inside a cone around the points
normal vector. The ambient value that the rays find will be a value between zero
and one. One meaning that the point is fully occluded by the environment and
zero meaning that the point is totally open such that there is nothing occluding
the point. On figure 3.3 on page 14, five rays are shot and two of them hit the
surrounding environment. Then the ambient value for that point would be 2

5 .
We will introduce two factors that will modify the ambient value further. They
are distance and an angle factor. The longer the ray has traveled, the less the
ambient value will be since a ray that hits the scene that has traveled a long
way would not have much fact in real life. The angle factor is an angle between
each ray and the normal vector of the point. The wider the angle is, the less
ambient value the point will get, since the point that the ray hit is not right
above the point. Details of how the algorithm is implemented can be found in
section 7.4.

We need to create clusters. Each cluster will contain a number of triangles. The
clusters will be able to overlap each other meaning that one triangle can belong

1Version 1.4.1
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to one or more clusters. When creating a cluster we start by finding a triangle
that has not been assigned to a cluster already. We evaluate the plane that the
starting triangle lies in. We then use that plane as a comparing plane for the
remaining triangles that will be added in the cluster. Clusters also have to cover
a continuous space, meaning that a triangle can only be added to the cluster
if it is adjacent to some other triangle in the cluster. Details of the clustering
algorithm is in section 7.3.

For the clustering algorithm to work, we need to find what triangles are adjacent
to each other. This means that each triangle will know what other triangles are
adjacent to him. This is done by looking at all triangles and if two triangles
have two of the same vertices then they are adjacent to one another. This can
be a time consuming task for a large mesh. Details of how this is implemented
can be found in section 7.2.

When we have created the clusters and found the ambient occlusion values we
will have many textures. We will create a texture atlas which is a texture that
contains all the other textures. This will be done by copying each textures
values to the texture atlas. The textures size will be based on the size of all the
cluster textures so that they will fit in one texture. The texture coordinates for
each triangles vertex will be updated so that we have correct mapping to this
newly created texture atlas. Details of how this is implemented can be found in
section 7.6.

When the texture atlas has been created we need to export it as an image
so that the texture can be used later. The texture values are exported in an
uncompressed bitmap image file.

After we have applied the identified algorithms, we have a texture image and new
texture coordinates for each vertex in the mesh. This information is exported
to a COLLADA file.

The algorithms that have been identified are:

• Finding Ambient Occlusion

• Clustering Algorithm

• Finding Adjacent Triangles

• Texture Packing Algorithm

• Exporting Texture Image

• Exporting new COLLADA data
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6.4 Objects

The design is object oriented. Therefore the objects needed for the implemen-
tation need to be identified.

First we will need triangle objects that store the data that defines one triangle
in three dimensions. A triangle will contain three vertices and normal vectors
for each vertex. That information is enough to define a triangle but we need
something more. It is possible to obtain the center of the triangle which is
found using the vertices. Since a triangle always lies in a plane, we will be able
to access the normal vector of the triangles plane. Each triangle will have a
unique integer ID and it will also contain the IDs of the cluster that it belongs
to. Each vertex in a triangle can have three texture coordinates associated with
them. Triangles need to know which triangles are adjacent to them and therefore
they will have a list of adjacent triangles. Finally there are two variables that
are used when triangle clusters are created. These are a variable indicating if
the triangle has been assigned to a cluster or not, and a value indicating the
state of the triangle.

We have patches that similar to the triangles, will have their center point and
normal accessible. Patches will contain triangles and the triangles will be used
to define each patches center and normal. If the patch contains only one triangle
then we simply use thats triangle center and normal for the patch. If there are
many triangles we average the centers and the normals over all the triangles
in the patch. The special case of a patch containing no triangles needs to be
considered. Each patch can store the ambient occlusion value that is associated
with it. Finally a patch will need to know if it is actually used or not.

We then have clusters that consist of triangles and patches. Each cluster creates
a set of patches. Every triangle in the cluster will then be assigned to a patch in
that cluster. There are no triangles without a patch, but we can have a patch
with no triangles. This can happen in two circumstances. Either the patch is
not used at all, this can e.g. happen if the patch is around the edge of the
cluster (See figure 7.4). This can also happen if we are so unfortunate to have
no triangle mapped to the patch. Then we need to find the center and normal
of the patch in another way. This is discussed in section 7.1.3.

Data importer will import the data from a COLLADA file and manipulate in
a way such that it will be convenient to work with the data. The importer will
locate the triangle mesh in the document and load the relevant data.

Controller will handle user input along with assigning the data to relevant lo-
cations using the algorithms that are implemented.
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The objects that have been identified and will be implemented are:

• Triangles

• Patches

• Clusters

• Data Container

• Controller

6.5 Final Structure

The structure and relations between objects can bee seen in the UML diagram
on figure 6.1.

The algorithms mentioned earlier will all be located in the myMain class except
the ambient occlusion algorithm, which will be located in a myCluster object.

myMain is the controller. He starts by instantiating a myDAEdata object with
the COLLADA file as input. myDAEdata loads the data into a database with
use of a helper class called myMesh. What myMesh does is that he loads a
COLLADA mesh element and extracts information from it that can then be
retrieved from myMesh. The information needed from the COLLADA input file
are the vertices, normals and faces of the triangle mesh. After the file has been
loaded and the relevant data extracted from it the controller will start creating
myTriangle objects and from the triangles he creates myCluster objects. Then
each cluster will create a number of myPatch objects. Now all the objects have
been created. Implementation details about the objects are discussed in chapter
7.

There are two other helper classes in the diagram which are myRandomRays
and myQueue. The first class will create a certain number of random rays that
are used for finding ambient occlusion. The queue class is used by the controller
when the clusters are created. The random ray generator is discussed in section
7.4.1 and the queue class in section 7.3.1.
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Figure 6.1: UML Diagram showing the objects in the solution and the relation-
ship between them.



Chapter 7

Implementation

We need to implement the objects and algorithm that have been identified in
the design chapter. First we discuss the flow of the data relative to the objects.
Then we go into details about each object that is implemented. Following that
is a dedicated section for each of the algorithms that have been identified.

7.1 Data Structure

We have interactions and connections between objects which can be seen on the
UML diagram presented in section 6.5. The basic flow of the program relative
to the data is as follows. After importing a model we use it to create triangle
objects. The model has to be defined with simple triangles. Softimage|XSI�
was used when creating models for rendering and testing. Softimage has the
possibility of exporting scenes in a COLLADA document and it offers the possi-
bility of converting all polygons to triangles. Softimage is discussed in appendix
A. Each of the imported triangles will be associated with one or more clusters.
Each cluster will then contain a set of triangles along with a set of patches. Each
patch will be assigned a number of triangles belonging to that cluster, so that
each patch will have zero or more triangles. Then ambient occlusion values are
found for each patch in a cluster and the values stored as textures. After this is
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done we create one texture from the cluster textures, export the texture image
and write the new COLLADA data back to a file. We will now discuss each
object that makes up our data structure, the important variables and methods.

7.1.1 Triangle

A triangle can be thought of as the most primitive object in the data structure.
Each triangle has a unique integer ID. To define a triangle we need to set its
three vertices and the normal vector for each vertex.

When the vertices have been set we find the center of the triangle by averaging
over the three vertices. Similarly the triangles planes normal vector is found by
using the vertices.

Each triangle will belong to one, two or three clusters. It should not happen
that triangle is assigned to more than three clusters. This could happen if the
comparing angle when creating clusters is to low. Each triangle has a unique ID
and all the IDs of the clusters that the triangle belongs to can be accessed to
know what clusters it belongs to. Also the number of clusters that one triangle
belongs to can be accessed.

Each triangles vertex will have texture coordinates assigned to it. One vertex
will always have three texture coordinates assigned to it, irrelevant of how many
clusters it belongs to. The reason for this is to simplify the implementation. This
allows us to add three texture coordinates to each vertex and create a texture
that contains all the ambient values. In most cases a triangle will belong to one
cluster. So that when a texture coordinate is added for the first time to triangles
vertices, we add those coordinates to all three texture coordinates. This will lead
to us blending between the same values of a texture if the triangle only belongs
to one cluster in the end. When and if the second and third texture coordinates
are added, we add that coordinate to the relevant texture coordinate variables
in the triangle. The three texture coordinates are stored in three variables that
can be accessed globally.

There are two variables that belongs to triangles that are used when we are
creating clusters from the triangles. One is a boolean variable indicating if the
triangle has been assigned to a cluster or not. The other is an integer variable
that can have three states that are used in the Breath-first search algorithm. The
states are white, gray or black and are defined as integer values. All triangles
start with the default value of white, meaning that the triangle has not been
evaluated in the search algorithm. Then when the algorithm is working the state
can go to grey and black. This is discussed in detail in section 7.3.1. There are
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two other variables that are a part of the search algorithm that are not used
here but still implemented. They are the ID of the predecessor of each triangle
and the distance in the search three that this triangle has with the triangle we
began with.

Each triangle needs to know what other triangles are lying adjacent to him.
Therefore each triangle contains a list of IDs of the triangles that are adjacent
to him. This adjacency list is created by the algorithm described in section 7.2.
The adjacency list is then used in the clustering algorithm described in section
7.3

7.1.2 Patch

Patch objects represent location on a surface that we want to find ambient
occlusion for. Patches are created for each cluster and we then find the ambient
values for each patch. We do this instead of using the vertices as was discussed
in chapter 5. Each cluster creates an array of patches of size n ∗ m that will
represent ambient values for that cluster. The size of n and m are chosen to
be the width and height of the cluster when it is mapped to 2D and multiplied
with a value that can be defined at runtime. This allows users to control how
many patches will be created for each cluster, and therefore control the details
of how the overall ambient occlusion will be.

Each patch will have a number of triangle objects associated with it. The
triangles are added to a patch from the outside. There are no restrictions of the
number of triangles that can belong to one patch. We then use the triangles to
define the center and normal of each patch, by taking the average of the centers
and normals of the triangles.

The patch has a boolean variable indicating if it is used or not. By default it is
assumed that patch is used when it is created. After triangles have been added
to a patch we can retrieve the center and normal of the patch. In some cases,
patches will not have any triangles associated with it. This special case needs
to be treated in the cluster that creates the patch, since the patch has now way
of defining its center and normal vector. How this is done is discussed in next
section, section 7.1.3. When the center and normal for a patch is found from
the outside the values can be set for the patch.

There are two reasons for a patch not having triangles:

• No triangle was mapped to the patch. This can happen when the patch



38 Implementation

resolution is set higher than the number of triangles in the cluster.

• The patch is not used at all. This can happen in many cases since a cluster
is usually not exactly formed as a n ∗ m square (See figure 7.4).

In the first case we find the center and normal of the patch in another way, since
the patch is used but has no triangles. In the latter case the patch is not used
and we set a variable in the patch indicating that the patch is not used.

Finally each patch will store the ambient occlusion value that is associated with
it.

7.1.3 Cluster

Each cluster has a unique ID so it can be accessed. A cluster consists of one or
more triangles and is defined by them, meaning that the triangles control in a
certain sense how the cluster behaves. It is therefore possible to add triangles
to each cluster.

Each cluster is created with triangles, and all the triangles are aligned inside a
certain angle with one of the major axis planes. Therefore we can set the plane
that each cluster was created with which is used by the cluster. Details about
how the clusters are created is discussed in section 7.3.

When a cluster has been created with the triangles, we need to set some variables
so that the cluster will behave as we want it to. These are

• The number of random rays to shoot out for each ambient occlusion cal-
culation.

• The distance the rays can travel.

• The angle of the cone around the normal that the rays lie in.

• The texture size factor. This value is multiplied with the width and the
height of the cluster to get the texture size.

Because we are finding ambient occlusion values for each cluster we will have
access to the global object, the BSP tree that represents the whole object. This
is used when finding ambient occlusion for the cluster.
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The object we are working on is a three dimensional object. However each
cluster is thought of as being in two dimensions. We think of it as lying in the
plane that was used when the cluster was created. See figure 7.2 where a cluster
is mapped to 2D. We want to create a texture for this 2-dimensional cluster.
This means that we will always be using only two of the three coordinates that
each triangle in the cluster is defined with. First we set variables that allow us
to access the correct two of the three x, y and z variables. We then need to find
the highest and lowest of each of the values. When we know the minimum and
maximum values we withdraw one from the other and then we have the clusters
texture dimension. That values are then multiplied with the texture size factor
mentioned above to get the final dimension of the texture in a cluster. If the
clusters width is n and height is m and the multiplier is t. Then the clusters
width will be (n∗t) and height will be (m∗t). These values will usually have some
decimal points so therefore they are converted to integer values by dropping the
decimal points. These values are now this clusters texture size.

We now create a 2-dimensional array of patches where its dimensions will be the
texture dimension found above. After the patches are created we start adding
the clusters triangles to them. We do this with the help of a mapping function
which input is coordinates in 2D. The unimportant 3D coordinate is dropped
before calling the mapping function. The function then returns a coordinate to
the texture for the cluster so that the triangle will be associated with the patch
that it lies in.

When the patches have been created and all the triangles are associated with a
patch, we can get to the most important part. This is calculating the ambient
occlusion values for each patch. We loop through each patch and call a function
that finds the ambient occlusion. The input is a point and a normal and it
returns a value indicating the ambient occlusion value for the given patch.

The special case of a patch not having any triangles can cause trouble. This can
happen if the object has few triangles and the patch resolution is high. Then
the problem is that we don’t have the patch center and normal defined. What
we do then is that we find the center in another way using a function in cluster
objects designed for finding patch center. This function will look at the location
of the patch in the n ∗ m array of patches. It then finds the four corners of the
patch and takes the average of them. Then we have the exact center for the
patch.

When we have the center we create a ray and let its starting location be above
the cluster we are working on. This can be done since we know what plane the
cluster lies in. We use the center of the patch, found earlier, move up from the
cluster along the planes normal vector. Then we shoot the ray in the direction
of the cluster and it should hit the cluster exactly in the center we found earlier.
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If it hits then we have the normal of the point we hit. We then set this as the
patch center and normal for the ambient occlusion calculation. If the ray does
not hit the cluster, then it is because the patch that we are looking at is not
used at all. This can happen often in complex objects and happens frequently.
Then we set the patch as not being used and he will not be treated anymore.

When we have found ambient occlusion for each patch in a cluster and stored
it in an array of patches, the array can be accessed from outside. We also can
access the height and width of the texture array.

7.1.4 Data Container

Here we read in a COLLADA file and put the data in a convenient data structure
that allows us to manipulate it in a desired way. The container has a load and
save functions that will load and save COLLADA files.

We load the imported mesh in a Triangle Mesh that is convenient to use. It also
creates a Binary-Search Partition(BSP) tree out of the mesh. The BSP-tree is
used when finding ambient occlusion. It allows for us to conveniently check if a
ray hits the object.

7.1.5 Controller

The controller reads input from user and assigns it to relevant variables. This is
for example the name of the input file, the name of the output file that we will
save to, the number of rays to use for ambient calculations. and more. This is
discussed in section 7.7.

When the input has been read, we start by loading the data in the data con-
tainer. From that we start creating our Triangle objects and following that we
create our Cluster objects. Each cluster creates Patch objects and then finds
ambient values and we access it in the controller to create a texture atlas. This
texture atlas is a texture that contains the ambient occlusion values for all the
clusters. The controller then renders the object using OpenGl and Cg.

The controller also exports a bitmap image of the texture and writes new COL-
LADA data to a file.
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7.2 Finding Adjacent Triangles

Each triangle needs to know which other triangles are adjacent to him, which
is used when creating triangle clusters. This simple algorithm will loop through
all triangles and compare it to all the other triangles. If they share two vertices
then we have two adjacent triangles and they can be added on each others
adjacent triangles list. Actually though this algorithm is simple to implement
it can be very time consuming. If we have N triangles, then for each vertex we
would look at N − 1 triangles, which makes it an algorithm of type O(n2).

The calculation is lowered slightly by using the fact that when working with
triangles, each triangle will have at most three adjacent triangles, and exactly
three when working on a closed mesh. This fact allows us to stop looking at
triangles when we have already found all the triangles adjacent to the one we
are looking at at each time. With this the calculation time is lowered slightly,
since we only consider triangles that we have not found three adjacent triangles
for.

7.3 Clustering Algorithm

Each cluster will be assigned a unique ID which will go from 0 to n − 1 where
n is the number of clusters found. The clustering algorithm loops through all
triangles and registers if they have been processed or not. When all triangles
are processed the algorithm can successfully quit. We now have signed all the
triangles to one or more clusters. The clustering algorithm uses an abbreviation
of the Breadth-first search(BFS) algorithm found in the book Introduction to
Algorithms[11]. The attributes needed when applying it is that each triangle
has an attribute called color which can have the values white, grey or black.
The algorithm is discussed later in the section.

The approach for creating clusters is that we start with a triangle that has not
been assigned to a cluster. We evaluate the triangle in such a way that we
compare the normal of the triangle, with the normal of one of the major axis
planes. The major axis planes are three, the XY -plane, the XZ-plane and the
Y Z-plane. We find what plane, our starting triangle is closest to by comparing
the triangles normal with the axis planes normal. The axis plane that has the
smallest angle will be used as comparison for the rest of the triangles that we
want to put in the current cluster.

When assigning a triangle to a cluster we do it only if the following criteria is
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met:

• The triangle is adjacent to some other triangle in the cluster.

• The triangles plane lies in a certain angle with the comparing axis plane.

When following this criteria we will have a cluster that contains triangles that
are all adjacent to one another and are close to lying in the comparing plane.
This is best illustrated in figure 7.1. The default angle used is 60◦ meaning that
each triangle in a cluster will have an angle less than than 60◦ degrees with the
comparing plane. The comparing angle can be changed at runtime.

Figure 7.1: Here we see a cluster and the plane that it was compared with.

The advantage of doing this is that each cluster will now have a plane that it
is aligned with. The cluster can in a certain sense be mapped straight onto
the plane by simply dropping one of the relevant 3D coordinate. See figure 7.2
where one coordinate has been dropped. This helps in the next step.

We now consider how the clustering is achieved with the help of the Breath-first
search algorithm.

7.3.1 Breath-first Search Algorithm

The Breath-first Search(BFS) algorithm uses a class that represents a First-in
first-out(FIFO) queue system. FIFO means that the element that has been the
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Figure 7.2: One coordinate has been dropped and the cluster is now mapped to
2D.

longest in the queue will get out first when the queue is dequeued. The class
has an array of integers which represent the items in the queue. The public
functions available are to add an item in the queue, get an item from the queue,
get the number of elements in the queue and a boolean variable that indicates
if the queue is empty or not. The queue is used in the breadth-first search
algorithm when clusters are created.

The algorithm starts with a random triangle that has not been assigned to a
cluster. This triangle is put in the queue. Then we loop until the queue gets
empty. When the queue is empty we have successfully found all triangles that
we want. We now look at an element in the queue, which in the first iteration is
the first triangle. We get all triangles adjacent to this triangle and loop through
them. If one of the adjacent triangles color is white we set its color as grey
and put in in the queue. By this we will end up with all the triangles in the
mesh. What is done here is that the algorithm is modified such that when we
look at the adjacent triangles we only consider it if its angle is less than the
comparing axis planes normal vector, mentioned earlier. With this we assure
that the triangles are all adjacent and lie in this plane as can be seen on figure
7.1 where one cluster is shown, that was found using the BFS algorithm.

When one iteration of the algorithm is done we will have one cluster. Then we
look at the remaining triangles that have not been assigned to a cluster and
choose one randomly. We now loop through the algorithm again, adding all
triangles that fulfill the criteria as before. Note that we look at all the triangles
each time, not only the ones that have been assigned to a cluster already. The
result of this will be the overlapping clusters that we want. The most important
thing is that when we choose the starting triangle, then we have to choose one
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that has not been assigned to a cluster already. If that restriction were not,
then we could get the same clusters over and over again.

The result when all triangles are processed will be overlapping clusters. See
figure 7.3 where overlapping clusters are shown.

Figure 7.3: On the left side we see clusters on a sphere. On the right side
the clusters are overlapping. The grey parts are where there are two clusters
overlapping and the black parts are where there are three clusters overlapping.

7.4 Finding Ambient Occlusion

Now that we have created clusters of triangles it is time to calculate ambient
occlusion values and associate them with the triangles. We will split each cluster
into parts which will be on the form n ∗ m. These parts are the patches and
the ambient occlusion values will be found for each patch. In order to find the
ambient values we need to know the center of each patch and its normal vector.
To do this we will use the triangles that are assigned to the cluster. Each
triangle will be mapped to one patch. To do this we simply drop one of the
triangles center coordinate like mentioned earlier. Note that we need to drop
the correct coordinate which is found based on the plane that the cluster lies in.
This results in each triangle belonging to one patch and one patch containing
one or more triangles. There is the special case of a patch not containing any
triangles, which is treated in a special way. This has been discussed in section
7.1.3. Since usually a cluster will not be exactly mapped to a square we will
have some patches around borders that are not used. This can be seen on figure
7.4 where the patches around the borders are not used. Now that we have all



7.4 Finding Ambient Occlusion 45

the triangles associated with a patch it is simple to find the center and normal
for each patch. We average each triangles center and normal and then we have
the information needed.

Figure 7.4: Example of cluster patches. Each square is one patch. The blue
patches are not used. The number of patches will vary depending on the texture
size factor. On the left side the factor is 0.5 and on the right side it is 1.0.

Now rays are cast out from each patch and the ambient values found and stored
in the patches. We also create a float array of size n∗m and store each ambient
value there.

7.4.1 Random Rays

How should the rays be chosen? There is the possibility to define a certain
number of rays that are evenly distributed around a normal of a point. This
would give us very even ambient occlusion but it lacks the option of letting
the user define the number of rays at runtime. If we allow for us to define the
number at runtime, it is possible to get a much better result for a large number
of rays or even some other result if we choose to have very few rays. The latter
does not sound good but can in fact be used for some cases. It is possible that
we want to create noise in the image, which would result in a nice looking effect
like for example, rust or dirt that should look random and noisy but not smooth.
See figure 7.5 where using different number of rays is illustrated. We allow for
any number of rays and we choose them randomly. A random ray generator is
implemented.
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Figure 7.5: The number of rays used for each scene were 8 on the left side, 32
in the middle and 64 on the right side.

In the simplest case, each ray will either hit the scene or not, and therefore it
should either have the value of zero or one. One meaning that it has hit and
zero that it has not hit. This would not give us a realistic result, given the
fact that a ray that has traveled a long distance or has large angle with the
normal, would in real-life count very little or nothing. To make this fact count,
we introduce two factors that will effect the ambient occlusion value for each
ray:

• The distance that a ray has traveled.

• The angle between the ray and the normal.

7.4.2 Distance Factor

The distance factor can be defined which would be the maximum distance a
ray can travel if it hits the rest of the scene. If it has traveled longer than the
maximum distance allowed, it will not have any effect. If it has traveled shorter
than the maximum distance then it will have a decreasing effect the longer it has
traveled. This is described on the graph on Figure 7.6. The ambient occlusion
value is 0 for a distance farther than maximum distance and a value between 0
and 1 for a distance between 0 and maximum distance.

7.4.3 Angle Factor

We have the possibility of restricting the angle that rays are shot in inside the
hemisphere Ω. The default value is 90◦ which means that rays are shot above
the plane of the patch.
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Figure 7.6: Here we can see how the ambient occlusion value decreases with
distance.

Figure 7.7: Cosine distribution for angles going from 90 degrees to -90 degrees.
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We introduce a restriction on the angle that each ray has with the normal vector
of each patch. This angle is known as the cone angle, since rays will be shot out
inside a cone with this angle around the normal of each patch.

If we imagine two simple objects that are close to one another. If we then want
to find the ambient occlusion value for a point on one of the objects, and the
other object is located right above the point. Then the ambient occlusion value
for a ray shot out from the point along the normal will hit the other object and
that value should be high as would happen in real life. The angle between the
ray and the normal of the point is low and taking the cosine of that angle would
give us a value very close to 1 thus indicating that the point is highly occluded
by the other object. If the other object is on the other hand located much to
the side of the point, then the angle is high and the cosine value of the angle
gives us a value close to 0, indicating that the point is not much occluded. This
makes sense in real life situations. The cosine distribution for angles can be seen
in figure 7.7 Cosine Distribution.

7.4.4 Combining it all

If we think in the terms introduced in sections 4.1 and 4.2 in relation with the
original obscurance model and ambient occlusion as it is generally implemented,
we get ambient occlusion as before to be:

A(P ) =
1
π

∫
ω∈Ω

V (P, ω) cosαdω (7.1)

Where:

• P is a surface point in the scene.

• Ω is the normal hemisphere with center P .

• ω is a direction in the normal hemisphere Ω with center P .

• α is the angle between the ray Pω and the normal at P

One difference here from the ambient occlusion formula presented in 4.2 is that
the function V (P, ω) is defined as taking values between 0 and 1 based on the
distance at the intersection. That is similar as the original ambient model does
it. The recent approaches do not particularly introduce distance, but rather a
ray just hits or not. Usually the maximum distance is defined such that a hit
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is not recorded if the ray has gone farther than the maximum distance. We
let distance have a decreasing effect the longer a ray has gone if it intersects
the scene. The function then takes values between 0 and 1 as can be seen on
the graph on figure 7.6. The effect of letting distance have decreasing effect on
the ambient values is illustrated on figure 7.8. The effect can be clearly seen in
closed scenes when using a high value for maximum distance. This is a design
decision and varies from implementation to implementation.

Figure 7.8: Distance attenuation. On the left side, rays can travel within the
maximum distance and have an effect on the ambient value if they hit the
scene. On the right side, the same applies except distance has decreasing effect
the longer a ray has traveled within maximum distance. The results of this are
clearly visible.

Ambient values are thought of as being percentage values and therefore we have
the normalization factor 1

π so we get values between 0 and 1 from the formula
A(P ).

Finally we define specific number of rays and then we change the integration to
be a summation over a number of samples N:

A(P ) =
N∑

i=1

V (P, ωi) cosαi (7.2)

Where:

• N is the number of rays shot out.

• αi is the angle between the normal at P and ωi.
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Formula 7.2 is applied with N number of rays to all patches and the resulting
ambient values stored.

7.5 Texture Blending

We need to blend between different texture values to get a smooth transition
between textures. One suggestion was to take the three ambient values that
each triangle will have and simply take the average over them and display that
as the result. This can lead to bad transition between textures. Instead we
will use the normal vectors at each point as the blending factor. This means
that when we are evaluating the blending between three textures we will look
at the normal vector for the point. The normal vector has three values which
are the x, y and z coordinates. When the normal vector is normalized its values
squared will sum up to be 1. This is convenient since then we can use the
values as the blending factor. Then when moving over a surface, we will get a
smooth transition since the normal values are changing slowly from triangle to
triangle. This is best illustrated visually and can be seen on figure 7.9. The
figure illustrates two textures mapped to a circle in 2D. This can be applied
to 3D where we have three textures and three coordinates. On the figure the
texture contributions are controlled by the normal vectors.

To achieve the blending, a Cg[14] fragment program was implemented. Cg is
discussed in appendix A on page 77. The input to the program is a color value,
three texture color values, and a normal vector. The output is a new color
value that is found using the three texture colors and the normal vector at the
point. The normal vectors need to be normalized and then each value is squared
and the values summed up. The sum of the values will the be 1, which makes
it convenient to use them as percentage value that each texture color should
contribute. Each texture color is multiplied with a normal vector value and the
results are summed up. The sum is multiplied with the incoming color and that
is our output color. Now we have added the ambient contributions from three
textures and the blending will be smooth.

7.6 Texture Packing Algorithm

The ambient occlusion values in each cluster will be stored in one texture. That
texture will be of size n ∗n where n can be 32, 64, 128 etc. The size of n will be
based on the area that the ambient values in each cluster will cover. The areas
from each cluster are summed up and then n is chosen to be of size big enough
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Figure 7.9: Here we have two textures, blue and red, mapped to a circle. Con-
tribution of each texture is controlled by the values of the normal vectors at
each point.
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so that the texture can contain all the cluster ambient occlusion values. Then
when packing, the texture with the largest y value is chosen first and put that
ambient array in first. The algorithm tries to use space efficiently but could be
made much more efficient. In figure 7.10 we see an example texture that was
created with the algorithm. Figure 7.11 shows the object that the texture was
created for.

Figure 7.10: Here is a texture that was created with the texture packing algo-
rithm.

In an effort to use texture space efficently, user can set a variable at runtime,
that controls how big the texture should be. If the output shows that the packed
texture could be in a smaller texture, we can set this variable lower and then
the texture should be smaller if we run the whole ambient occlusion algorithm
again.

7.7 User Input

Some variables need to be defined at runtime. It is not necessary but can greatly
affect the ambient occlusion for a given scene. If they are not defined by the
user, default values will be used.
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Figure 7.11: Here is the object that the packed texture on figure 7.10 was created
from.

The name of the input file is the only thing that has to be set at runtime, other
variables have default values that are used if they are not defined at runtime.
This includes the name of the output COLLADA file and the exported texture.
It is preferred that these values are set at runtime though.

The default number of random rays that are used for each ambient occlusion
value is 64. This usually gives a very pleasing ambient occlusion with a small
calculation time. This value can be changed to any positive value and can be
experimented with. In practice, the more rays used should give better looking
images, but when reaching some high number of rays the difference is so little
that it is impossible to see the difference but we still have much higher com-
putation time. The effect of choosing different number of rays can be seen on
figure 7.5.

The maximum distance that a ray can travel and still have an affect on the
ambient occlusion can be defined. Default value is 10. If the scene uses a very
small coordinates for the x, y and z values of vertices, this number is probably
to high and it should be set lower. It is best to experiment with the number
and find a value that gives a pleasing result.

We can set the maximum cone angle around a normal that rays will be cast
in. This value defaults to 90◦, meaning that the rays are all in the hemisphere
above the patch. This can be changed to be lower than 90◦ and changing the
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value can give results that are desired for a given scene.

The size of the textures that each cluster will create can be set at runtime. The
texture size will be a factor of the width and height of each cluster multiplied
with this value. The default value is 3. This can be set much higher if we have
a small object that is highly tesselated. This variable can greatly affect the
outcome of the ambient occlusion in a scene.

The default compare angle that is used when clusters are created is 60◦. This
value can be changed to any value between 50◦ and 70◦ degrees. It is sometimes
necessary to change the default value as we can create clusters that are not
correct. This problem is discussed in chapters 8 and 11.



Chapter 8

Testing

Different scenes were created that tried to catch the aspect of the ambient
occlusion program created here. Four scenes were rendered that tried to cover
the things that an implementation like this should be able to handle.

• Scene 1 is a simple Cornell box. The purpose of the scene is to test the
overall visual effect of our ambient occlusion implementation using a scene
that is well known. Number of triangles is 84.

• Scene 2 is a sphere hovering over a plane. The purpose of this scene is
to test the effect of using different parameters. We change the number of
rays, the cone angle and the distance. Number of triangles is 3.902.

• Scene 3 is an object that tries to catch the effect of overlapping textures
and the blending between them. It has curved surfaces and therefore
overlapping of textures. Number of triangles is 34.548.

• Scene 4 is a Utah teapot. Number of triangles is 24.138.

If we talk generally about the scenes. Scene 1 is very simple and therefore has
low calculation time since it only has 84 triangles. The scene catches the overall
effect of the ambient occlusion solution. Figure 8.1 is a rendered image of the
scene.
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Figure 8.1: Scene 1 - Cornell Box.

In scene 2 we do a comparison using different number of rays, maximum distance
and cone angle. Tweaking these variables can give very different results and can
be chosen to suit for a given task. Figure 8.2 shows the results.

Scene 3 is a high resolution object that was created specifically for the purpose of
testing the blending between overlapping textures. Figure 8.3 shows a rendered
image of the object. Overlapping occurs on all the parts that are standing out.
The object can be seen from different angles and with closeups in appendix B.

Scene 4 is the famous Utah teapot and can be seen on figure 8.4. The purpose
of this scene is to show how the algorithm works on a typical real object. The
teapot was chosen since it is an object that is well known in the graphics industry.

More images of the scenes can be found in appendix B. There the scenes are
shown from different angles, more closeups and higher resolutions.

The results from testing these scenes is discussed in the next chapter.
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Figure 8.2: Scene 2 - Comparison - The top row has maximum distance of 5,
middle row 10 and bottom row 15. The left column has a cone angle of 30◦,
the middle column 40◦ and the right column 50◦. Each column can be seen in
higher resolution in appendix B.
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Figure 8.3: Scene 3 - Texture blending.

Figure 8.4: Scene 4 - Utah teapot.



Chapter 9

Results

There were some problems identified when testing the scenes presented in the
previous chapter. First of all the algorithm is very slow for complex objects. It
greatly depends on the scenes and the variables that can be defined, how fast it
will be. If we set the texture size to be high and choose to have many rays for
each patch, then the algorithm will take long. When the scene contains many
triangles, and we choose the variables to be of reasonable values, the algorithm
that finds adjacent triangles will be by far the most time consuming part. This
should be treated in some way and discussion about that can be found in chapter
11.

The images rendered came out good in most cases. There was one particular
problem that was identified and caused a lot of thinking and testing. When
objects are structured in a certain way, there is the possibility that clusters will
be created incorrectly. Then we will get triangles assigned to the same cluster,
which will be mapped to the same patch, but do in fact not belong together.
In other words, we will have triangles belonging to the same patch in a cluster
but these triangles can be located on totally different parts of the object. Only
thing that the triangles have in common is that they are mapped to the same
cluster and same patch in the cluster. Figure 9.1 illustrates the problem. There
we have two triangles from different parts of an object, but because of how the
object is structured, they are mapped to the same patch. What happens then
is that when finding ambient value for a patch, its center and normal vector will
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Figure 9.1: Triangles with same patch.

be completely wrong. That is because we take the average of the triangles that
belong to the patch and the triangles should not all belong to that patch. This
problem was identified when the Utah teapot was rendered and is now known
as the teapot problem. In this particular case it works to set the the comparing
angle, when clusters are created, to be less than 60◦. An angle of 57◦ worked
well which caused the clusters to be smaller and the problem does not present
itself. This works for this case but can easily be created again if an object is
structured in a certain way. Figure 9.2 shows the teapot rendered with different
angles.

Testing shows that memory needed to run the program can be high for large
objects. This was lowered slightly when the code was optimized, but can still be
improved more. This is mainly when C++ pointer are not released when they
are not in use anymore. The biggest memory usage is when we find ambient
occlusion for each patch, when that is done and we have created one texture
that stores the ambient values, the patch clusters are dropped, and memory is
released.

In general the results indicate that the goal has been achieved. Ambient occlu-
sion works as intended for the test scenes, and especially the most important
part, texture blending is working.
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Figure 9.2: The teapot problem. On the left the clusters were created with
a compare angle of 60◦. Then the problem presents itself. On the right the
compare angle is changed to 57◦ and then we have correct clustering.
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Chapter 10

Discussion

10.1 Summary

The purpose of using ambient occlusion is that we want a more realistic ambient
value than is presented in the Phong reflection model. There a constant ambient
value is added to an entire scene. The result of this can be a dull looking image
since the surrounding environment of a given point on a surface is not considered.
Instead we want to consider each point and add a different ambient value to each
one, based on the surrounding environment.

Ambient occlusion adds a subtle but realistic effect to objects and scenes without
the need of using a more complex global illumination method. We don’t need
to consider any light sources when finding ambient occlusion. This fact can
make development process much easier because developers can apply ambient
occlusion and then be able to use less light sources. Also the complication of
placements of lights will be less because we generally would need fewer light
sources when ambient occlusion has been applied.

Ambient occlusion can be used to simulate other things than just shadows. If the
algorithm is designed in such a way, we can tweak parameters to get interesting
results. This can be for example to simulate dirt or rust that accumulates on
objects or to get a weathered and worn effect. Imagine a statue that has been
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out in all kinds of weather for many years.

It can be a good choice to apply ambient occlusion to scenes. The result can
greatly effect the outcome in rendered images without to much effort. Two
important features are that no light sources are needed and the results is view-
independent, meaning that we only need to find ambient values once for a static
scene.

10.2 Contributions

In this paper we have evaluated ambient occlusion and created an algorithm
that simulates the shadows that accumulate on parts on objects that are not
fully visible to the environment. We find ambient occlusion by casting rays from
points on a surface and the ratio of how many rays intersect the scene is stored.
This value indicates what the ambient value at a given surface point should be.

Textures are used for storing and displaying the ambient values on surfaces. We
create multiple local textures which contain the values. A problem was identified
with this approach which is that texture seams are visible at borders where
textures are adjacent to one another. The problem of having visible texture
seams is well known. 3D Studio Max offers the possibility of applying ambient
occlusion to objects and moreover it offers to render the ambient values to a
texture. Figure 10.1 shows an ambient occlusion texture rendered for a teapot
using 3D Studio Max. The seams are clearly visible on the teapots base and
stout.

Figure 10.1: On the left we have ambient occlusion rendered to texture with 3D
Studio Max. Seams are visible. On the right is a teapot rendered to texture
using the texture blending implemented here.

To overcome the problem of having visible seams we suggested making the
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textures overlap and then we find the ambient values as before. This results
in us getting multiple ambient values on a curved surface which leads to us
blending between these values. We blend using the normal vector at the surface
as the contributing factor. Each of the three normal vector values is used to
decide the color of each of the three textures that are overlapping. This gives
us smooth blending and less visible texture borders over curved surfaces.
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Chapter 11

Future Work

Following is a discussion about what can be extended or fixed.

The imported geometry data should be represented with simple triangles. And
furthermore it should be defined in one polygon mesh, meaning we can only
have one instance of a mesh declared in the imported COLLADA file. These
are design decisions. Other types of geometry data could be e.g triangle strips,
triangle fans and polygons. There are two possible ways to handle other possi-
bilities. Either the implementation should be expanded in such a way that it will
handle these kinds which would not be to much of an effort. Other way would be
to create or use a so called conditioner which would convert the kinds mentioned
earlier in to the preferred type which would be triangles. Often graphic cards
are optimized in such a way that they are optimized to work fast for triangle
strips. Then it would be preferred to convert all data to triangle strips and then
work on that. This is not a goal for this kind of work so simple triangles were
chosen to work with.

The way adjacent triangles are found is very time consuming. If we have a
very complex scene as input, that has many triangles, then this algorithm can
be the most time consuming part of the overall calculations. Usually there is
the need to tweak all the variables for a given scene so that it looks good, and
when we are experimenting with them, we are always changing the variables
and then running the ambient occlusion on it again. Then this time consuming
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algorithm that finds adjacent triangles can be a broblem. One possibility would
be to save the adjacent triangles list in a text file or database and then load
it at runtime. Then we only have to find the adjacency list for the first time
for a given scene. Other possibility would be to allow us to render the scene
with certain parameters, and then change them while rendering to see different
results. Each triangle knows what triangles are adjacent to him and if we do it
like this, we are working on the same triangles, only changing other parameter.

The physical memory needed for calculating ambient values in complex scenes
can be high. This is because in some cases, I have neglected to properly get rid
of variables that are not needed anymore, C++ pointers and such. This was
not a major concern for the implementation, but is still something that needs
to be optimized.

Next step would be to apply the ambient occlusion to an object and store the
information such that it can be used later in a final scene. It would be possible
to create some simple animation with the ambient occlusion applied to the
animated object. Then the algorithm would be applied to each frame in the
animation and stored and then used when the scene is rendered.

The texture packing algorithm is somewhat inefficient. The goal there is to
make sure that the local cluster textures fit in one large texture. The texture
sizes are evaluated such that the largest cluster texture is put in first and so on.
The packing could be made more efficient by using some well known texture
packing algorithm.

Texture is exported as an uncompressed bitmap image which is an algorithm I
wrote myself. Since bitmaps are uncompressed, at least in this case, the size of
the texture image can be large. This could be expanded so that the textures
are exported in a different format that supports compression.

There are usually many parts of an object that have no shadows from ambient
occlusion. These parts could be evaluated in such a way that they would have
much smaller part of the ambient texture applied to it, to lower the memory
usage. Same could be done with parts that are highly in shadow or parts where
there are the same shadow values over a large part. We could lower the texture
space needed for that as well.

It can be a difficult task to find the correct parameters to use for a given scene.
The parameters that can have a significant effect on the outcome are the number
of rays to cast, the maximum distance, the cone angle and the texture size in
clusters. It would be a good expansion to allow for the user to see visually if he
makes some changes in the parameters. A graphical user interface(GUI) could
be designed which would load an object with default parameters. Then it would
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be possible to easily change parameters and the results are shown as soon as
they are ready. This can also have good impact on the part that finds adjacent
triangles since then it would be done when the scene is loaded and stored.

The teapot problem identified in the previous chapter needs to be considered.
One possibility would be to look at the location of a triangle when he is being
assigned to a cluster. We would map each triangle to 2D when we are clustering
by dropping the relevant 3D coordinate. Then compare the triangle that we are
considering now, with all the triangles that have been assigned to the cluster. If
some other triangle is located close to this triangle, we compare their values. If
the 3D coordinate that was dropped when the triangles were mapped to 2D is
significantly different, we have a triangle that should not belong to this cluster.
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Chapter 12

Conclusion

In this paper we have implemented an algorithm that adds ambient occlusion on
objects. We find the ambient occlusion with help of ray-tracing by shooting out
rays from the surface of an object. The number of rays that hit the surrounding
environment indicates how much shadow that surface point is in.

Figure 12.1 shows a rendered image using the algorithm implemented here. The
scene is a Cornell box. The results from the implementation can also be seen
on the figures in chapter 8 - Testing and in appendix B - Screenshots.

There are many possible options at each step when implementing something like
has been done here. Some of the options have been evaluated and discussed,
their pros and cons. Many approaches do it similarly as has been done here.
That is to trace rays for finding ambient values and use textures to store and
display the values. The implementation details vary from designs. The biggest
contribution made in this process has been the overlapping textures and how
their values are blended in an effort to have seamless textures on surfaces.

We create clusters that consists of all the triangles in the mesh we are working
on. The clusters overlap each other which leads to us finding ambient values
more than once for some points on an object. This is done so that we can have
a smooth transition between clusters and the overall ambient occlusion will look
realistic.
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Figure 12.1: Cornell box scene rendered with the ambient occlusion algorithm
implemented in this paper.

We apply the ambient values to textures and blend between them using the
normal vectors at each point. This gives us a smooth transition between the
textures. We create one texture that stores all the ambient values, meaning that
we are blending between different locations on the same texture.

There are many aspects of computer graphics that have been looked at. Shadow
algorithms have been discussed, such as shadow mapping and shadow volumes.
Illumination models such as the Phong reflection model which is a local illumina-
tion model. More importantly, global illumination models have been discussed,
such as ray-tracing, radiosity and photon mapping.

The predecessor of ambient occlusion, the ambient light illumination model, was
analyzed. The model leads to the more general approach of ambient occlusion
which is becoming very popular in the gaming and movie industries. Recent
implementation have been discussed which all had a big influence on the solution
presented here.

Textures and texture mapping is used extensively here along with texture blend-
ing and finally rendering of scenes.

COLLADA was used for importing digital assets. It has been a great experience
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learning about COLLADA, what it stands for and how it is used. COLLADA
is an effort in having a common digital asset exchange schema that different
applications can use. It is being adopted by many companies and for example
COLLADA is used in the well known Playstation 3 console from Sony.

The overall process of this thesis has been very informative and most of all fun.
There has been a lot of learning and sometimes wrong assumptions made. When
looking back at some stages in the process and looking at the assumptions made
at some points, it was clearly easy to go in wrong directions.

When thinking about the options available and the way it was done here, I find
that to be a very interesting idea. The idea of overlapping textures and blending
between them using the normal vectors is appealing and can create a realistic
smooth looking images.

We conclude that the goal has been achieved. We have created an algorithm that
creates multiple overlapping textures on an object and finds ambient values for
the textures. When the object is rendered, the blending occurs on overlapping
textures. The images rendered with this algorithm look smooth and usually
there are no abrupt shading changes visible.
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Appendix A

Tools

There are a lot of tools needed to get this kind of project to work. The flow of
the work relative to the tools used is as follows.

Data is represented in COLLADA[3], and imported into the COLLADA Doc-
ument Object Model(DOM)[10]. The COLLADA DOM is an application pro-
gramming interface(API) that provides a C++ object orientation of a COL-
LADA document. It follows that we will be using C++ for programming since
the COLLADA DOM was chosen.

To help visualize the implementation, OpenGL[1] was used to a great extent.
Also Cg[14] has been used to create a fragment program that allow us to use
hardware to calculate values.

Softimage|XSI� was used for creating objects and scenes for testing.

A.1 COLLADA

COLLADA stands for COLLAborative Design Activity which defines an XML-
based schema to enable 3-D authoring applications to freely exchange digital
assets without loss of information[3]. It was created through the collaboration



76 Appendix A

of many companies and was adopted as an official industry standard by the
Khronos group in January 2006. COLLADA is supported by many tools and
is already used by thousands of developers. COLLADA is very young. After
SIGGRAPH ’03, Sony Computer Entertainment, established a working group,
which did a thorough analysis of all existing digital asset formats. Many other
companies in the gaming industry became involved and at SIGGRAPH ’04
the first public presentation of COLLADA 1.0 was made. Since then it has
gone through revisions and current version is 1.4.1. COLLADA has many goals
including to be used as a common data exchange, be adopted by many digital-
content users and provide an easy integration mechanism which enables all data
to be available through COLLADA. It also has the goal of liberating digital
assets from binary formats which is why it was chosen to be an XML-based
schema. Arnaud and Barnes have written a book[2] which covers all aspects of
COLLADA.

A.2 COLLADA DOM

To be able to interact with the data in a COLLADA file, the COLLADA Doc-
ument Object Model[10] will be used. The DOM is a framework to be used for
the development of COLLADA applications. It provides a C++ programming
interface to load, query and translate instance data. The DOM loads the data
into a runtime database which mirrors those defined in the COLLADA schema.

A.3 Softimage XSI

Softimage|XSI� is a 3D animation and modeling software. Many models used
in this report were created with Softimage. Softimage has the possibility of
exporting scenes as a COLLADA schema. It has the option of converting all
geometry to triangles before exporting, which is convenient for the implemen-
tation. When a scene is created in Softimage that we want to find ambient
occlusion for using the algorithm presented here, we first need to convert all
meshes into one polygon mesh object. Then that one object should be exported
as that are the requirements in the implementation.
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A.4 OpenGL and Cg

The implementation requires constant visual representation to see what is going
on and OpenGl[1] is great for that since it allows for a fast visual representation
of the data whenever needed. OpenGL stands for Open Graphics Library and
is a software interface to graphics hardware. It consists of procedures and func-
tions that allow a programmer to specify objects and operations for producing
graphical images. Cg[14] stands for C for graphics. The Cg language allows for
control of objects, their shape, appearance and motion which will be rendered
using graphics hardware. This means that Cg allows us to program the graphics
hardware directly without going into the hardware assembly language. In this
particular case Cg is used to blend between different locations on a texture.
A Cg fragment program is created which input is a pixel color, three texture
colors, possibly from different places on one texture, and the normal vector at
the given point. Each texture color is multiplied with one of the normal vector
values and the colors are then added together. The output is then the input
color multiplied with the texture colors.
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Appendix B

Screenshots

• Scene 1 is a Cornell box. Here we see it with different parameters.

• Scene 2 is a sphere hovering over a plane. This scene was created mainly
to test the different number of rays and cone angle for the rays.

• Scene 3 is an object with smooth surfaces. The purpose is to look at how
the texture blending is working. There are some closeups for identifying
if we can see texture seems.

• Scene 4 is a Utah teapot.
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Figure B.1: Scene 1 - Comparison - The top row has used 16 rays, middle 64
rays and bottom 256 rays. The cone angles are 30◦ in the left column, 50◦ in
the middle column and 70◦ in the right column.
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Figure B.2: Scene 1 - Comparison - The cone angle is 20◦. The top has 16 rays,
middle 64 rays and bottom 256 rays.
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Figure B.3: Scene 1 - Comparison - The cone angle is 50◦. The top has 16 rays,
middle 64 rays and bottom 256 rays.
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Figure B.4: Scene 1 - Comparison - The cone angle is 70◦. The top has 16 rays,
middle 64 rays and bottom 256 rays.
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Figure B.5: Scene 2 - Comparison - The cone angle is 20◦. The top has 16 rays,
middle 64 rays and bottom 128 rays.
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Figure B.6: Scene 2 - Comparison - The cone angle is 35◦. The top has 16 rays,
middle 64 rays and bottom 128 rays.
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Figure B.7: Scene 2 - Comparison - The cone angle is 50◦. The top has 16 rays,
middle 64 rays and bottom 128 rays.
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Figure B.8: Scene 2 - Comparison - The cone angle is 30◦. The top has maximum
distance of 5, middle has 10 and bottom 15.
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Figure B.9: Scene 2 - Comparison - The cone angle is 40◦. The top has maximum
distance of 5, middle has 10 and bottom 15.
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Figure B.10: Scene 2 - Comparison - The cone angle is 50◦. The top has
maximum distance of 5, middle has 10 and bottom 15.
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Figure B.11: Scene 3.

Figure B.12: Scene 3.
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Figure B.13: Scene 3 - Here we zoom in to try to identify texture seems..

Figure B.14: Scene 3 - Here we zoom in to try to identify texture seems.
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Figure B.15: Scene 4.

Figure B.16: Scene 4.



93

Figure B.17: Scene 4.
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