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Summary
A reent artile written by Rasmussen and Clausen [13℄ publishes interestingresults for mortgage loan portfolio optimization seen from the perspetive ofan individual mortgagor, for the Danish mortgage market. The purpose of thisthesis is to develop a house prie model to extend their results for multistagestohasti programming, by adding the option of selling the real estate as wellas re-balaning the bond portfolio.The purpose of this projet is to get aquainted with the eonomi and eono-metri methods used for house prie modeling, apply the methods to a simplebenhmark relation and extend the results to a senario tree struture. Seondlya more elaborate and eonomially real model is disseted and reprodued togive a relation able of foreasting house pries, with only a limited number ofinput variables available. The error of the redued model is simulated and theresulting model applied to a senario tree struture.The �nal produt should then be a senario tree prediting the expeted houseprie with known variane, using only interest rates and previous house priesas input.
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Chapter 1
Introdution

1.1 BakgroundOver the last half entury or so there have been great strides in the advane ofoptimization and �nanial theory. Portfolio diversi�ation strategy, ombiningthe two �elds, has been used for quite some time by investors in many parts ofthe �nanial setor with great suess.Purhasing real estate is one of the biggest �nanial deision an individual willmake during his life. In Denmark there is an elaborate and diverse seletion ofmortgage loans allowing great �exibility when it omes to the �naning of realestate investment.In a reent artile by Rasmussen and Clausen [13℄ the portfolio optimizationtehnique is applied to the Danish mortgage loan system. The perspetive is ofa person whih is faed with �naning a real estate investment and has a diverseseletion of mortgage loans available. They �nd that by reating a portfolio ofbonds, instead of the urrent pratise of only one bond, the investor an bene�tby re-balane the portfolio at optimal points through to horizon.



2 Introdution1.2 Aim of ThesisInitially the aim of this thesis was divided into two main parts, that is1. To get aquainted with both the eonomis and eonometris of houseprie estimation and from a real model develop a simpli�ed house priemodel and apply it to a senario tree format.2. To apply the house prie trees along with a mortgage loan diversi�ationoptimization.As the work on this thesis evolved part 1 took more time than expeted and itwas deided to drop part 2. Instead, more are would be taken in explainingand implementing the house prie model as a predition model and the theorybehind suh models.It an therefore be said that the aim of this thesis is to deliver a house priesenario tree able to extend the Rasmussen and Clausen model by giving theinvestor a new option of selling the house, as well as the option of ontinuing byre-balaning the bond portfolio. This hanges their problem sine at horizon theobjetive was to minimize the ost of �naning, while when adding the houseprie senario tree the objetive will be to maximize the pro�t from selling thehouse and paying the loans. The integration of house pries in Rasmussen andClausen remains as further work.1.3 Outline of ThesisA �ow diagram depiting the progression of the work done for the thesis isshown in Figure 1.1. Two main models were inspeted, i.e. the simple Nykreditbenhmark model and the MONA house prie relation, taken from the DanishNational Banks maro model alled MONA. The up-down �ow in the diagramrepresents the time line of the projet work.The struture of the thesis is as follows:Chapter 1: Introdution. The bakground to the thesis is presented,as well as listing what is to be ahieved by the work done and giving anoverview of the material hapter by hapter.



1.3 Outline of Thesis 3Chapter 2: House Prie Models. A disussion of house prie devel-opment from the stand point of eonomis, showing a well known longterm relationship for the development of house pries, the role of demandand supply in determining the prie is also disussed. A short disussionof market expetation and real house prie development in Denmark isalso presented.Chapter 3: House Prie Dynamis I. The Nykredit Relation.The simple house prie relationship, i.e. the Nykredit relation, is presentedand formulated for a single time line. The de�nition of a senario tree ispresented. The one dimensional results are extended to a senario treestruture and the results are investigated.Chapter 4: Time Series and Eonometri Theory. Before mov-ing into more evolved and applied house prie models a listing of the basitime series and eonometrial de�nitions and methods are presented. Thehapter gives a disussion on the relevant topis providing examples whenneessary to demonstrate usability.Chapter 5: House Prie Dynamis II. The MONA Model. Themore ompliate House prie model, adapted from the MONA model, isintrodued. Numerous topis regarding the model are disussed suh asdata handling, theoretial derivation, parameter estimation and preditionapabilities. The hapter ends on a short disussion of the weaknesses ofthe model and the problem with out-of-sample data.Chapter 6: Applying The MONA house prie relation. Mattersregarding aggregation of house prie hange, how to deal with missing ex-planatory data in the out-of-sample predition and the estimation of thepredition error for out-of-sample foreasting.Chapter 7: House Prie Dynamis III Statistial Model. A newmodel is presented by modeling the data as is, i.e. dropping the long termeonomi intuition embedded in the MONA presentation. The MONAerror-orretion model, presented in Chapter 4, is used for the model.Chapter 8: Validation and Results. The models are ompared, �rstas single path models and later by inputting interest rate senario trees.Results are analyzed and disussed.Chapter 9: Conlusion. The onlusion of the modeling is summarizedlisting the pros and ons of the house prie models, as well as a disussionof usability and further work is presented.Appendix: Programming. The problem of implementing the senariotrees in a programming language is disussed, presenting solutions bothin an objet orientated language, i.e. C#, as well as a non objetive



4 Introdutionorientated language, suh as R and Matlab. Finally some examples ofsripts showing how to use the numerous R funtion written for analysisof senario trees and parameter estimation.
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Figure 1.1: An abstrat view of the work performed for this thesis.



Chapter 2 House Prie Models
2.1 IntrodutionThe main objetive of this hapter is to give an introdution to the theoretialonepts used in eonomi house prie models. As with most eonomi relation-ships the house prie model is ontrolled by the supply and demand equilibrium.Both the demand and supply will be disussed in setion 2.2 along with showingwhih variables are most relevant in eah relationship. The equilibrium, reatedby demand and supply, is also disussed in setion 2.2 where a visual exampleof the house prie relation is given. The e�ets market expetations an haveon the house prie market are disussed brie�y in setion 2.3 along with a shortdesription of real house prie development in Denmark over the last 30 years.2.2 House Prie Eonomis BakgroundMost eonomi relationships depend on the equilibrium reated between supplyand demand to determine the prie of a produt and house prie models are noexeption. House prie relations are usually formulated as stok-�ow models,where the term stok refers to the amount of real estates on the market. Byusing supply and demand relationship for this stok the real estate prie an



6 House Prie Modelsbe derived. The �ow term refers to the �ow or input of new assets added tothe stok. The rest of this setion fouses on how the theoretial supply anddemand relation an be formulated for a stok-�ow model.2.2.1 Long Term DemandA basi long term model for the housing demand an be seen e.g. in an artileby Barot and Yang [1℄ and also in a report from the National Bank of Ieland[4℄ as
HD = f

(
PH

P
, R, Y D, WA, D

) (2.1)where the terms on the right are the explanatory variables for the e�etor response variable on the left. The response variable is housing demand(HD). The explanatory variables are house prie (PH), the long term interestrate (R), disposable inome (Y D), wealth other than real estate (WA), thedebt of individual or household (D) and the onsumption de�ator (P ). Ineonomis in�ation adjustment, or "de�ation", is aomplished by dividing atime series by a prie index suh as the onsumption de�ator. The de�atoris then representative of onsumer pries at eah time. In the MONA reportthe onsumption de�ator is modeled espeially. For further disussion see [12℄1.
PH/P , or house prie divided by the onsumption de�ator is therefore the realhouse prie.In housing models it is usually assumed that inome elastiity is one in thelong run. Inome elastiity is de�ned as the ratio between the hange in somedemand, housing demand in this ase, and the hange in inome. If the inomeelastiity is one, then the long run hanges in inome will result in proportionalhanges in demand. The idea behind this orrelation has a strong intuitivenature sine people will always need a plae to live and what is more they musta�ord it, house prie an therefore not inrease more than proportional to wagesin the long run. Empirial grounds for this assumption an be seen in MONAmodel from the Danish National Bank [12℄2. Making use of inome elastiityonstraint, the house prie formula from Eq.(2.1) an be expressed as

HD

Y D
= φ

(
PH

P
, R,

WA

Y D
,

D

Y D

) (2.2)where the inome elastiity has been applied to both WA and D, sine thesetwo variables also have a long term elasti relationship with disposable inome.1On page 96 the omponents that make up the onsumption de�ator are desribed in detail.2On page 43, in the MONA model [12℄, Chart II.3.1 it is shown that Real disposable inomeas a ratio of stok of houses has been approximately 1 the last 30 years in Denmark.



2.2 House Prie Eonomis Bakground 7Isolating the real house prie term (PH/P ) from Eq.(2.2) gives
PH

P
= θ

(
HD

Y D
, R,

WA

Y D
,

D

Y D

) (2.3)whih is sometimes alled the inverted demand funtion. Eq.(2.3) desribesthe development of house pries in the long run, derived from the demandrelationship in Eq.(2.1).2.2.2 Long Term SupplyThe fundamental assumption made onerning the �ow of new assets into thehousing market is by use of a onept alled Tobin's Q, see Barot and Yang [1℄.Tobin�s Q desribes the ratio between the value of ertain assets and the ostof replaing those assets, or onstrution ost in the ase of the housing marketQ =
PH

PB
=

asset priesonstrution ost . (2.4)In the long run the Q should have an equilibrium of around one. If Q>1 thereis an inentive to build more houses, sine market value of the assets is higherthan the ost to build new assets per stok of houses. If Q<1 residential invest-ment will derease. Aording to Barot and Yang using Tobin's Q along withinorporating interest R, also known as the ost of �nane, gives the relationship
IH

H
= h(Q, R) (2.5)whih is alled the Augmented Tobin�s model of housing investment. InEq.(2.5), IH and H represent housing investment and stok of house, respe-tively. IH and H are measured in monetary value, prie adjusted to some �xedpoint. The assessment of IH and H di�ers between ountries, the estimationfor Denmark an be seen in Lunde [8℄.3If Q in Eq.(2.5) inreases, housing investment also inreases. This an easilybe seen from the de�nition of Tobin�s Q given before, i.e. an inentive forhouse builders is present sine Q>1. If interest rates go up, on the supply side,housing investment will derease sine house builders need funding and interestrates in�uene their deision of onstrution.The development of stok of houses, i.e. the supply of houses is given with thefollowing error orretion form

HS = IH + (1 − δ)Ht−1 (2.6)3Box B on page 8.



8 House Prie Modelswhere the supplied stok of houses (HS) omprised of new houses , i.e. housinginvestment (IH) together with last periods stok of houses (Ht−1) after depre-iation (δ). More preisely, the supply of houses is the stok of houses from lastperiod adjusted for depreiation plus the housing investment.2.2.3 EquilibriumThe fundamental equilibrium relationship in the housing market is reated where
HD = H = HS, i.e. when housing demand HD, also known as the wanted stokof houses, is equal to the supply of houses HS . There is however a onsiderablelag in the supply side sine it takes some time to adjust from when there is asurge in demand until the �ow is delivered. In the interval when the supply isworking on inreasing stok it is normal for house pries to go up, to maintainthe equilibrium. This an be best explained with an example.Example 2.1 (Example of Equilibrium)Figures 2.1 and 2.2 show two possible situations on a housing market. Figure2.1 shows an equilibrium situation where the y-axis desribes the prie of houses(PH) and the x-axis shows stok of houses (H). Equilibrium is at point A wherethe prie is PH = PH∗ = PB and the stok of house on the market is H = H∗,i.e. where the demand and supply lines interset. To aount for the lag insupply there are three supply lines. The supply for the short term horizon isompletely vertial to represent that no �ow is delivered in the short term. Forthe medium term demand some of the �ow initiated by the surge in demand hasbeen delivered and �nally the long term demand when all the requested houseshave been delivered.In Figure 2.2 there has been a shift in demand. Demand line D has shiftedupward and the new demand is now desribed by the line D∗. In the shortterm the shift in demand auses an inrease to the prie PH∗∗, to maintain theequilibrium the pries rise sine demand has inreased while there is no supplyto meet the new demand. In this new equilibrium point B there is a stronginentive to start building houses, i.e. Q >1.Looking to the medium term supply urve the supply has managed to partiallysatisfy the demand, resulting in a deline in pries to PH∗∗∗ along with ainrease in stok of houses to H∗∗, i.e. the delivered supply initiated by thedemand shift. At the new medium term, equilibrium point C, there is howeverstill an inentive to build houses sine asset pries are higher than onstrutionost, i.e. Q>1. Looking to the long term supply response, the supply hasservied all of the demand, and the pries have returned to the initial value,



2.2 House Prie Eonomis Bakground 9
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Figure 2.1: Shows a housing market in equilibrium at point A. The x-axis is the stok ofhouses H while the y-axis show the house prie PH. Equilibrium is at the point PH∗ = H∗.
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10 House Prie ModelsThe example above assumes that there is a su�ient supply of land for on-strution. Aording to the Ielandi National Bank [4℄ if land for onstrutionis severely limited a permanent shift in the supply urve would take plae andthe long term equilibrium should take plae at a higher prie, e.g. C in Figure2.2.The short term supply is said to be ompletely inelasti, i.e. vertial, sine theimmediate supply of houses ompared to the existing amount of houses on themarket is negligible. The long term supply is onsidered ompletely elasti,i.e. horizontal, beause Tobin�s Q ontrols the long term equilibrium, i.e. inthe long term an equilibrium will be ahieved at Q=1. Reall that elastiitymeasures the ratio of hange between two elements.Beause of the steepness of the short term supply urve house pries are expetedto osillate greatly, espeially if the demand urve is also steep. The dynaminature of the system indiates that new hanges in demand will usually haveourred before the supply �ow from the previous hange have arrived. Thisleads to an ever hanging house prie.The power that interest rates have in this equilibrium is interesting. Interestrates have a dissuasive e�et on both sides of the relation. For example highinterest rates have a repelling e�et on buyers on the demand side and also onontrators who need apital for their onstrutions on the supply side. There-fore it is obvious that the interest rate is an important fator in house priemodeling.The theoretial model above provides the maro eonomi long term relation forboth the supply and demand side of the house prie market. Applying the theoryto data to get a viable applied house prie model is however more ompliatedand requires the use of eonometri methods, to apture the short term dynamisof the data. A well known problem with eonomi data is that it is often non-onsistent with time and a limited amount of data is available, whih ausesfurther di�ulty when modeling. The road from theory to appliation an oftenalter models drastially. However, the same main fators are always present inone form or another. The proess of moving from theory to appliation in houseprie models is disussed further in setion 5.4.



2.3 Market Expetation 112.3 Market ExpetationMarket expetations deserve speial attention. The in�uene of market expeta-tions on house pries is very hard to model. Usually market expetations shouldnot present a problem in house prie modeling sine the market usually makesuse of the information at hand, the fators mentioned before, whih desribe themarket at eah time. However, at times investors believe that the market hassome untapped potential, or they expet it to rise even more and try to "ride"the rise to the end whih is also known as herd behavior. This an resultin prie hanges whih are inonsistent with the values of the other variables.This kind of behavior an in the long-run lead to the reation of a house priebubble, whih is a prie inrease not founded by the data believed to desribethe development of house pries.Reently in Denmark there has been a long run of rising real house pries,where before the market had behaved in ylial periods, see Figure 2.3. Thedevelopment of real house pries the last ten years or so has lead to an inreasein disussion whether a house prie bubble exists in the Danish housing market,or ertain spei� parts of it. Bubbles are quite hard to detet and the fullextent of them is often not known until after they burst. A burst is when thepries return to "normal" behavior from their over in�ated state usually with asharp deline. Aording to Lunde [8℄ the Danish housing market shows somesigns of a housing bubble in some spei�ed �eld of the housing market, suh asurban �ats and summer houses. This topi of herd behavior will be revisitedwhen foreasting for out of sample house pries in subsetion 5.6.1.



12 House Prie Models
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Figure 2.3: The development of real house pries the last 30 years in Denmark. Notie thebreak from the yle around '97.



Chapter 3
House Prie Dynamis IModeling the Nykreditrelationship

3.1 IntrodutionIn this hapter a simple benhmark relation for a house prie dependant solely oninterest rates will be formulated. Along with modeling the interest relation, thesenario tree struture whih will be used through out this report is introdued.In setion 3.2 a short aount is given of the simple relation whih will bemodeled in this hapter. In setion 3.3 the simple interest relation is appliedto a one path, i.e. a single time line senario, to better realize the dynamis ofthe relation. Setion 3.4 introdues the senario tree onept along with a briefomment on the appliation of suh a model. In setion 3.5 the one path ase isexpanded to the senario tree ase. Finally in setion 3.6 the model is omparedto a simpler model, as well as giving examples of house prie trees.



14 House Prie Dynamis IModeling the Nykredit relationship3.2 The Nykredit RelationThis �rst relationship between interest rates and house pries will be modeledand implemented to a trinomial senario tree. The relationship used here isbased on a very simple interest only relation, taken from a report published byNykredit in May 2006 [10℄, whih states:Nykredit result: 



1% ↑ in short rates, 5% ↓ in house pries after one year;
11% ↓ in house pries after two years;

1% ↓ in short rates, 5% ↑ in house pries after one year;
11% ↑ in house pries after two years;This is a very simpli�ed model where the only ause of hanges in house priesis a hange in interest rates, i.e. the only explanatory variable is hange ininterest rates. Although the relation is simple it will give a good idea of how tomodel more omplex house prie senario trees and the programming done forthis model will easily be extended to more omplex models.3.3 Modeling for one PathInitially the Nykredit house prie relation was onsidered as a single path re-lation, that is on a one dimensional time line. At eah time on the time linethere is a node holding observed and predited information. Eah node has anumber, period, house prie and interest rate. The modeling involves developinga relation for house pries based on interest rates and house pries from pastperiods, this sort of formulation is also known as a reursive relationship.To alulate the e�et of interest rate hanges in the house prie a few variablesare needed. Firstly the hange in interests rate between years is de�ned as∆SRt.More preisely, the interest rate hange between any two points at time=t andtime=t − 1 an be expressed as

∆SRt = SRt − SRt−1 (3.1)The ∆ operator is alled a di�erene operator and will be disussed further insetion 4.2. Two other variables are also de�ned to express the hange in housepries, i.e. the hange after one year (OneYearEffectt) and the hange after twoyears (TwoYearEffectt). These two house prie hanges are expressed as follows
OneYearEffectt = −5HPt(SRt − SRt−1) = −5HPt · ∆SRt (3.2)
TwoYearEffectt = −11HPt(SRt − SRt−1) = −11HPt · ∆SRt (3.3)



3.3 Modeling for one Path 15In Eq.(3.2) and (3.3) it is assumed that interest rates are expressed as deimalfrations. The minus is to aount for the negative relationship between hangesin interest rates vs. hanges in house pries. If there is a hange in interest ratesbetween periods t and t+1 the e�et of that hange will not in�uene the housepries until at time t + 2. The base house prie, i.e. the prie the hange isapplied to at eah time, will be the house prie from the previous period, e.g. atperiod t the base prie is set to the result from period t− 1. Eq.(3.2) and (3.3)along with knowledge of how muh start up time the house prie vs. interestrate lag needs, give the onditional formula for house pries, derived as
HPt =





HP0 if t < 2
HPt−1 − 5HPt−1 · ∆SRt−1 if t = 2
HPt−1 − 5HPt−1 · ∆SRt−1 − 11HPt−2 · ∆SRt−2 if t > 2

(3.4)Eq.(3.4) assumes that time indexing (t) starts from 0. HP0 is the startup houseprie, usually this would be set to 1 or 100. By using Eq.(3.2) and (3.3), Eq.(3.4)an be expressed as
HPt =





HP0 if t < 2
HPt−1 + OneYearEffectt−1 if t = 2
HPt−1 + OneYearEffectt−1 + TwoYearEffectt−2 if t > 2

(3.5)The dynami nature of Eq.(3.5) an best be viewed by showing the �rst speialases t ∈ {0, 1, 2} along with the �rst general ase t = 3 on a node graph.
0 1 2 3

ΔSR�
HP�

ΔSR�
OneYearEffect�

HP�HP� OneYearEffect�TwoYearEffect�

Figure 3.1: Visual representation of the �rst 4 periods in the onditional relationship,between interest rates and house pries, shown in Eq.(3.5).Figure 3.1 shows the development of house prie for the �rst 4 periods, inludingthe speial ases for t < 3. At time 0 the only input is the initial house prieor HP0. Between period 0 and 1 there is a hange in interest rate, this hange



16 House Prie Dynamis IModeling the Nykredit relationshipwill e�et the house prie both at time 2 and 3, the hange in interest rates willnow be alulated at eah period. At time 1 only HP0 ontributes to the newhouse prie HP1. The house prie at time t = 2 has the �rst interest rate e�et(OneYearE�et1) whih is added to HP0.
HP2 = HP0 + OneYearEffect1At time 3 the �rst general ase ours, whih means that the lag for HP vs.

∆SR is su�ient to give both the one and two year e�ets. At time 3 thebase, or input, house prie is the one from the previous year or HP2. TheOneYearE�et2 from year two and the TwoYearE�et1 from year one also a�etthe house prie at HP3

HP3 = HP2 + OneYearEffect2 + TwoYearEffect1whih is an example of the general ase, i.e. when t > 2.3.4 The Senario TreeExtending the model, in Eq.(3.5), to a tree struture is relatively easy. Therelationship is still onditioned on the periods (t) as it was in Eq.(3.5). Toaount for the more omplex reursive nature when dealing with the senariotree format a new index is added along with formulating the tree struture in thissetion. The following notation for a senario tree is borrowed from Rasmussenand Clausen [13℄.A �nite probability spae (Ω,F , P ) is de�ned where the outomes are a sequeneof real-values (interest rates) over some disrete time period t = 0, · · · , T . T isalso sometimes alled horizon.A senario tree is generated by mathing the probability outomes ω ∈ Ω tothe orresponding nodes n ∈ Nt at time t in the tree.Eah node in the senario tree n ∈ Nt for 1 ≤ t ≤ T has a unique parent nodedenoted by a(n) ∈ Nt−1. Every node n ∈ Nt for 0 ≤ t ≤ T − 1 also has anon-empty set of hild nodes denoted by C(n) ⊂ Nt+1.The nodes at horizon, n ∈ NT , are alled leaf nodes. The initial node n ∈
N0 is alled the root node. From eah leaf node there is a unique reursiverelationship to the root node, eah suh relationship is alled a path.The reursive nature of the paths orresponds to the formula given in Eq.(3.5),



3.4 The Senario Tree 17the parent-hild relationship must therefore be inluded into the Eq.(3.5) topreserve the senario tree dynamis.3.4.1 Example and ImplementationA full senario tree an be of di�erent types, these types are deided by thenumber of hild nodes eah parent node produes. For example if n = 1 is theroot node then |C(1)| = 2 is a binomial tree while |C(1)| = 3 is a trinomial treeand so on. Using the tree type along with
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Figure 3.2: Example of a |C(1)| = 2 tree or binomialtree. Here N = 20 + 21 + 22 + 23 = 15 and T = 3.

the period t an tell how manynodes are in an arbitrary setNtby
|Nt| = |C(1)|t 0 ≤ t ≤ TThe total number of nodes inthe tree N is therefore easilyfound by summing over all pe-riods.

N =

T∑

t=0

|Nt| (3.6)Figure 3.2 shows an exampleof senario tree with t ∈ {0, 1, 2, 3}and n ∈ {1, · · · , 15}. It an beseen that the tree is binomialsine eah node, exept for theleaf nodes, has two hild nodes.The set of leaf nodes is shownas NT , the root node set, in-luding only n = 1, is shown as
N0.When programming the senario tree struture, two di�erent methods wereused. Originally an indexing method was applied in Matlab and R, whih de-pends highly on the parent relationship as well as 3.6. The �rst version waslater expanded by using an objet oriented approah. The programming partof the senario trees is given a thorough disussion in appendix A.



18 House Prie Dynamis IModeling the Nykredit relationship3.5 Applying to a Senario TreeThe path onept from the tree struture orresponds very well with the singletime line implementation given in Eq.(3.5).Nodes in the senario tree struture inherit house pries from the node in theprevious period. This is the same as in the single path ase, however sine thereare now multiple nodes at eah time the reursive nature is preserved throughthe parent-hild relationship as well as time. More preisely nodes inherit housepries from the parent node in the senario tree.The house prie is now expressed as HPn,t where the n index indiates the nodenumber and t, as before, indiates the period. Using the new indexing the treean be expressed as |NT |, i.e. the number of leaf nodes, ases of a single pathtype. For example Figure 3.2 gives 23 = 8 paths where the top path, in termof node indexes, is 1 − 2 − 4 − 8 and the bottom path is 1 − 3 − 7 − 15. Theinterest rate hange between nodes is de�ned for the senario tree as
∆SRn,t = SRn,t − SRa(n),t−1 1 ≤ t ≤ T (3.7)Reall that a(n) gives the parent of node n. Eq. (3.2) and (3.3) also beomenode dependant, shorten the names to One and Two

Onen,t = −5HPn,t(SRn,t − SRa(n),t−1)

= −5HPn,t · ∆SRn,t (3.8)
Twon,t = −11HPn,t(SRn,t − SRa(n),t−1)

= −11HPn,t · ∆SRn,t (3.9)Finally the model stated in Eq.(3.5), extended to the senario tree beomes
HPn,t =





HPn=1,t=0 if t < 2
HPa(n),t−1 + Onea(n),t−1 if t = 2
HPa(n),t−1 + Onea(n),t−1 + Twoa(a(n)),t−2 if t > 2

(3.10)Where n stands for the node number, a(n) is the parent node of node n, a(a(n))is the parent of a(n) and the grandparent of n. Initially at HPn=1,t=0 a initialhouse prie is set, e.g. HP = 100. Beause of the lag between interest rates andhouse pries, an interest rate tree of length T will result in a house prie tree oflength T + 1.



3.6 Data 193.6 DataIn this setion a brief disussion will be given on implement Eq.(3.10) for optimalmemory usage and omparability to the interest tree. Comparison of Eq.(3.10)to a simpler form of the relation is done and tests performed to see the di�erenebetween the two. The distribution of the node mass at time T is also inspetedfor both methods.3.6.1 Lagged House Prie TreeWhen it omes to programming the relation in 3.10 it is a good idea to shiftthe house prie tree, i.e. lag it by one time unit. Lagging the HP tree resultsin it being the same size as the interest rate tree, i.e having T periods insteadof T + 1. The one period lagged version of Eq.(3.10) for the house prie tree istherefore ahieved by moving the house prie as follows:
One∗(n,t) = −5HP(a(n),t−1) · ∆SR(n,t) (3.11)
Two∗(n,t) = −11HP(a(n),t−1) · ∆SR(n,t) (3.12)So the �rst node is ut of and the HP tree moved bak one period. The resultingupdated version of Eq.(3.10) is

HPn,t =





HPn=1,t=0 if t < 1
HPa(n),t−1 + One∗N,t if t = 1
HPa(n),t−1 + One∗N,t + Two∗a(n),t−1 if t > 1

(3.13)This is possible beause of the HP lagged dependane on ∆SR and beause thetree grows by qt as time passes, where q is the tree type |C(1)| = q. Beauseof the lag ∆SR results in q idential house prie nodes when using Eq.(3.10),i.e. eah prie is repliated to q hild nodes. This repliation is not ideal as itmakes the house prie trees di�erent from the interest rate trees in size as wellas being a waste in memory, sine there are only qT unique nodes and qT+1−qTare therefore wasted.By shifting the tree bak one period qT+1−qT nodes are saved whih is importantwhen alulating for big trees. In Figure 3.3 an example of a full tree and alagged tree is given for a n = 3 and T = 3 interest rate tree. Both trees areidential in shape and information, exept for the redundant �rst node whihhas been ut out in the lagged tree. This method of lagging is the one that wasapplied. The HP trees will however be displayed with their right time horizonand be noted as T + 1 trees.
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0 1 2 3Figure 3.3: Here is an example of the original tree, trinomial and T = 3, using Eq.(3.10) tothe left while the augmented version Eq.(3.13) is to the right. Both of these house prie treesare so alled non-reombining path trees.3.6.2 Reombining Paths vs. Non-Reombining PathsA reombining path senario tree, also known as a lattie senario tree, iswhere an up-down move in the senario tree will result in the same value as adown-up move. This is best explained by a visual example see Figure 3.4 fora lattie tree, while Figure 3.3 shows an example of a non-reombining pathtree, i.e. where a up-down move does not have to end in the same value as anup-down move. Reombining trees are often used in derivative priing theory,as well as in dynami programming and as deision trees. The main bene�tthat reombining trees have over non-reombining trees is that they are morereursively tratable and for the same horizon T have far fewer nodes than anon-ombining tree.In the next subsetion, lattie as well as non-reombining, interest rate trees willbe used as input to see what e�et that has on the house prie development.3.6.3 ∆HP methodFor ontrast another method of modeling is ompared to the relation in Eq.(3.10).The method used for omparison desribes the perentage hange in house prieat eah time irrelevant to the urrent house prie at that time. The omparisonmethod will be noted as ∆HP , while Eq.(3.10) will be noted as HP . To get
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Figure 3.4: An example of a lattie or reombining tree, left panel is a binomial tree whilethe right show a trinomial tree. Notie that up-down and down-up result in the same houseprie.the hange from start to a ertain period t where 0 ≤ t ≤ T +1 the relation anbe expressed as
∆1n,t = −5∆SRn,t ∆2n,t = −11∆SRn,t

∆HPn,t =





0 if t < 2
∆HPa(n),t−1 + ∆1a(n),t−1 if t = 2
∆HPa(n),t−1 + ∆1a(n),t−1 + ∆2a(a(n)),t−2 if t > 2

(3.14)Whih an be viewed as hange from some beginning index I by
HPn,t = I · (1 + ∆HPn,t) (3.15)The di�erene between these methods in essene is that the ∆HP method showsthe hange in house prie from t = 0 to times t = 1, ..., T + 1 in one step, i.e.without updating the base at eah time. A short example for the two methods,given a vetor of house prie hanges alled ∆kp = [0.1,−0.1, 0.05] and an initialprie of kp0 = 1. Using the ∆HP and HP methods gives

∆HP : HP :

kp1 = kp0(1 + 0.1) = 1.1 kp1 = kp0(1 + 0.1) = 1.1

kp2 = kp0(1 + 0.1 − 0.1) = 1 kp2 = kp1(1 − 0.1) = 0.99

kp3 = kp0(1 + 0.1 − 0.1 + 0.05) = 1.05 kp3 = kp2(1 + 0.05) = 1.04This small example shows that the ∆HP method should give linear transfor-mation of lattie interest rate trees resulting in lattie house prie trees, sine



22 House Prie Dynamis IModeling the Nykredit relationshipup-down result in the same value as down-up moves. The HP method is how-ever more omplex and has a ompound nature. In the next subsetion thesetwo methods will be ompared by using interest trees.
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0 1 2 3 4 5Figure 3.5: The upper half shows the house prie trees. Upper left is the House Prie treewhere hange is based on the house prie at eah time. Upper right is the ∆HP relation with
I = 100. The lower graphs show the interest trees where eah hange is a = 0.0075, resultingin range of 0.1175 − 0.0425 interest at time T .
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0 1 2 3 4 5Figure 3.6: The upper half shows the house prie trees. Upper left is the House Prie treewhere hange is based on the house prie at eah time. Upper right is the ∆HP relation with
I = 100. The lower graphs show interest rate trees .3.6.4 ComparisonThe two methods, HP and ∆HP , were tested together using idential trino-mial interest rate trees. Both lattie trees as well as more diverse and real likeinterest trees were used as input. For the lattie tree interest rates an at eahtime rise by a, fall by a or stay the same. The range (2a) of eah hange for the



24 House Prie Dynamis IModeling the Nykredit relationshipase shown in Figure 3.5 is �xed to 2a = 0.015. From Figure 3.5 it an be seenthat using the HP method at eah time introdues a ertain nonlinearity to therelation, while using the ∆HP onserves the interest tree proportion to the HPtree, giving a lattie house prie tree. The median, the red dot, whih marksthe enter of density for the distribution of the nodes at time T + 1 has slightlymoved down for the HP ase whih is to be expeted sine ompounding makesit harder to inrease the house prie one it has delined. The results maximum,minimum and median values an be seen in Tables 3.1 and 3.2 for the HP and
∆HP methods respetively, when using the lattie tree.

t 1 2 3 4 5 6Max 100.00 103.75 115.89 128.80 143.19 159.18Med 100.00 100.00 100.00 99.55 99.55 98.56Min 100.00 96.25 84.39 73.29 63.57 55.14Table 3.1: The maximum, median and minimum house prie values for eah period, usingthe HP method orresponding to Figure 3.5, upper left panel.
t 1 2 3 4 5 6Max 100.00 103.75 115.75 127.75 139.75 151.75Med 100.00 100.00 100.00 100.00 100.00 100.00Min 100.00 96.25 84.25 72.25 60.25 48.25Table 3.2: The maximum, median and minimum house prie values for eah period, usingthe ∆HP method orresponding to Figure 3.5, upper right panel.In Figure 3.6 the input interest tree is a so alledMean reversion interest ratetree. Mean reversion is based on the mathematial premise that the initial prieis not the mean but with time the proess will eventually move bak towardsthe mean or in this ase some average interest rate.The results for the house pries in Figure 3.6 show the same e�ets as theprevious omparison, i.e. the HP method redues (damps) the down turn andrises higher than the ∆HP tree. The median, for the HP tree, as before showsthat the HP tree tends to bring the enter of node density down, whih isto be expeted with the ompounding e�et. The median for ∆HP howeverrepresents the enter of the interest rates tree. The orresponding maximum,minimum and median values, for eah period, an be seen in Tables 3.3 and3.4 for the ∆HP and HP methods respetively, when using the mean reversioninterest rate tree. In Figure 3.7 a histogram for Figure 3.6, i.e. the houseprie when using mean reversion interest rates, is shown. It an be seen fromthe histogram how the transformation of the ∆HP is a linear transformationwhile the HP skews the the node distribution downward, giving an upward tail.



3.7 Summary 25
t 1 2 3 4 5 6Max 100.00 102.65 110.53 116.64 121.41 125.16Med 100.00 98.30 93.21 89.24 86.24 83.88Min 100.00 93.95 75.94 61.95 51.07 42.55Table 3.3: The maximum, median and minimum house prie values for eah period, usingthe ∆HP method orresponding to Figure 3.6, upper right panel.
t 1 2 3 4 5 6Max 100.00 102.65 110.58 116.98 122.34 126.78Med 100.00 98.30 93.23 89.38 84.58 82.18Min 100.00 93.95 76.22 63.73 55.79 50.54Table 3.4: The maximum, median and minimum house prie values for eah period, usingthe HP method orresponding to Figure 3.6, upper left panel.

∆HP onserves the form of the interest rate tree, shown on the lower half, muhbetter.To summarize, three observation about the house prie trees have been notiedfrom the above omparison. Firstly a sequene of downward hanges in interestrates will give a higher house prie with HP than ∆HP , i.e. the HP showsexponential growth while ∆ onserves the interest hange. A sequene of risesin interest rates will give a dampened deline in HP ompared to the ∆HP onewhih again onserves the interest rate tree. Lastly the density mass of nodeswill move downward at horizon T + 1 for HP , while ∆HP will onserve theinterest rate tree density. All of these di�erenes between HP and ∆HP anbe explained by the ompounding e�et when using HP . For short periods,e.g. (T + 1) < 4, the ∆HP relation proves a good estimation to the HPompounding relation. However as T + 1 inreases the di�erene between thetwo also inrease. The long term hange of the leafs, given a lattie tree with
2a = 0.015, is shown in Figure 3.8. As a, i.e. the hange in interest rates,inreases so does the di�erene between HP and ∆HP .3.7 SummaryThe onlusion of this analysis is that the Nykredit relation modeled in Eq.(3.10)is a rather rude relation for modeling the house prie to interest rate relation.The relation is probably not meant to run over many years with ompounding,without yearly orretion to atual data. It is a good idea to plot the HP with-out ompounding, i.e. ∆HP as expressed in Eq.(3.15) to benhmark Eq.(3.10)
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Figure 3.8: Shows the long term development of the leafs for the two ways of omputinghouse pries, given a lattie tree with 2a = 0.015.to a linear transformation of the interest rate tree, when using the Nykreditrelation. In subsequent hapters a more sophistiated relation for house prieto interest rate relation will be inspeted.



Chapter 4
Time Series andEonometri Theory

4.1 IntrodutionBefore moving into statistial analysis of the MONA house prie model in thenext setion a few important onepts used frequently in time series and eono-metri analysis are listed and disussed. Most of the de�nitions and exampleslisted in this hapter are in�uened or adapted from three time series books, i.e.Madsen [9℄, Tsay [15℄ and Hamilton [3℄.In setion 4.2 an aount of basi eonometri and time series onepts, neededto understand the models and terms used in empirial modeling of house priesis presented. Setion 4.3 introdues two important time series models frequentlyenountered in eonometri and �nanial analysis. Setion 4.4 shows three wellknown methods for estimating parameters in time series models. Finally insetion 4.6, methods of heking the quality of the estimated parameters areintrodued.



28 Time Series and Eonometri Theory4.2 Time Series AnalysisEonomi time series data, as was mentioned in 2.2, often has some non idealfeatures making it hard to model, e.g. long term trends, periodi trends or evenmore general time varying behavior. Series exhibiting this sort of behavior arealled non-stationary series, foring a series to be "stationary" is thereforeimportant for analysis and modeling of the data. So alledWeak Stationarity, whih will be noted as stationarity from now on, is formally de�ned as;Definition 4.1 (Weak Stationarity)A series {rt} is said to be weakly stationary of order k if all �rst k momentsare invariant to hanges in time. A weakly stationary proess of order 2 is simplyalled weakly stationary.
♦If the mean and variane, the �rst two moments, are time invariant the series isstationary. Stationary series an be evaluated with lassial time series methodsand used to predit for future values.Another de�nition used frequently is that of white noiseDefinition 4.2 (White Noise)A series {εt} is said to be ompletely random or white noise, if εt is asequene of mutual unorrelated identially distributed stohasti variables withmean value 0 and onstant variane σ2

ε . This implies that
µt = E[εt] σ2

t = V [εt] = σ2
ε

γǫ(k) = Cov[εt, ǫt+k] = 0 for k 6= 0

♦To illustrate the stationarity along with white noise a small example is dis-played, largely adapted from Madsen [9℄1, showing a speial ase of a lag oneautoregressive proess (AR(1)) also known as random walk.Example 4.1 (AR(1) - Random Walk Series)Let {εt} be a normally distributed white noise sequene where E[εt] = 0 and1see page 101



4.2 Time Series Analysis 29
V [εt] = σ2. Let {εt} also be the input to dynami relationship de�ned by adi�erene equation as

rt = φrt−1 + εt (4.1)whih then de�nes a new stohasti series {rt}. By suessively substituting
rt−1 = φrt−2 + εt−1, rt−2 = φrt−3 + εt−2,... and so on, it is seen that Eq.(4.1)an be written as

rt = εt + φεt−1 + φ2εt−2 + · · · + φiεt−i + · · · (4.2)From Eq.(4.2) it an be seen that
µr = E[rt] = 0and

σ2
r = V [rt] = (1 + φ2 + φ4 + · · · + φ2i + · · · )σ2 =

σ2

(1 − φ2)
(4.3)onditioned that |φ| < 1. If |φ| ≥ 1 the variane is unbounded and the series isnon-stationary, e.g. see Figure 4.1. A speial ase is when φ = 1 where Eq.(4.1)is the so-alled random walk series, whih is non-stationary.The bounded variane in Eq.(4.3) is ahieved by using the well known geomet-rial series

1

1 − x
=

∞∑

n=0

xn = 1 + x + x2 + x3 + · · · for |x| < 1. (4.4)
2The oe�ient φ ats as the memory of the proess. For φ values lose to 1 thereis a long memory, small values of φ result in a short memory. The memory of aproess is usually examined by the autoorrelation funtion (ACF), whihgives a indiation of how orrelated, dependant, a series is to previous, lagged,values.Example 4.2 (ACF and AR(1))Consider the series shown in Figure 4.1, where four AR(1) series with φ ∈

{0, 0.5, 0.9, 1} have been simulated with white noise at ∼ N(0, 1). The auto-orrelation funtions for eah of the four di�erent series is displayed in Figure4.2. For φ = 0 the series beomes rt = at i.e. only white noise. The ACFfor φ = 0, depited in the upper left panel, shows that there is no dependenyon previous values of rt i.e. this proess is without memory. The upper rightand lower left panels show AR(1) with φ = 0.5 and φ = 0.9, respetively. Theinreasing height of the stems with inreasing lags, i.e. previous observations,indiates that the two series are more dependant on previous values. The lowerright panel shows the random walk with φ = 1 whih is non-stationary, notiehow dependant the value at time t is to previous, lagged, values.
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Figure 4.1: A simulation of a AR(1) proess as desribed in Example 4.1 with di�erentlevels of the oe�ient φ. The sequene {at} is white noise where at ∼ N (0, 1)

2The random walk model is listed in detail sine it is onsidered as the model formany �nanial and eonomi series. The random walk series is also a perfet ex-ample of a speial kind of non-stationarity alled unit-root non-stationarity.Given the unit-root non-stationary random walk series
rt = rt−1 + atit is seen that the urrent value rt is based ompletely on the last value rt−1plus the value of the equally likely plus/minus e�et from the white noise (at).See Tsay [15℄2 for a more detail desription of unit-root non-stationarity.An important operation used when analyzing unit-root non-stationary time se-ries is alled di�erening. The di�erene operator ∆ is de�ned as

∆rt = rt − rt−1i.e. observing the hange in level rt instead of the level.Example 4.3 (AR(1) Differening)Given the random walk proess from Example 4.1 (φ = 1) and taking the2 See hapter 2.7
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LagFigure 4.2: Autoorrelation funtions for a simulated AR(1) proess with di�erent values of
φ. Shows the di�erent memory of a proess.di�erene of the left side of Eq.(4.1) it beomes

rt − rt−1 = rt−1 + at − rt−1

rt − rt−1 = at

∆rt = atBy di�erening the unit-root non-stationary series {rt} it beomes a new series
pt = ∆rt whih is stationary. Removing the aggregation e�et and giving therandom e�et at eah time.

2In the example above the series beame stationary after one level of di�erening,however this does not always apply.Definition 4.3 (Integration I(d))A series whih is non-stationary but beomes stationary after d levels of di�er-ening is de�ned as being integrated of order d noted as I(d).
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♦The AR(1) series in Example 4.3 is therefore said to be I(1), or integrated oforder one.The terms above are all fundamental de�nitions in basi time series analysisand eonometris, needed to understand the rather omplex nature of the ap-plied house prie model inspeted in the following hapters. In the followingsubsetion the error orretion model (ECM) whih is used to model manymaro-eonomi relationships is presented.4.3 Error-Corretion Model (ECM)For two stationary variables rt and zt, where zt is the response of rt, e.g. zt ishouse pries and rt is interest rates. Then the following an be assumed:

zt = δ + θzt−1 + φ0rt + φ1rt−1 + εt (4.5)If εt is assumed white noise independent of zt−1, zt−2, ... and rt, rt−1, ... thenEq.(4.5) is sometimes known as an autoregressive distributed lag model(ADL). To estimate the parameters in the model, (δ, θ, φ0, φ1), ordinary leastsquares (OLS) an be used, see setion 4.4.1 for OLS. What is however of moreinterest is another form of ADL or the so alled error-orretion model(ECM). Following is the dedution of the ECM along with a disussion of themodel properties, the dedution has been adopted largely from Verbeek [16℄3.By looking at Eq.(4.5) it is seen that zt is desribed by lagged values zt−1 andby the hange in rt. Taking the partial derivative of zt, zt+1 and zt+2 withregards to rt gives:
∂zt/∂rt = φ0

∂zt+1/∂rt = θ ∂zt/∂rt + φ1= θφ0 + φ1

∂zt+2/∂rt = θ ∂zt+1/∂rt = θ(θφ0 + φ1)Continuing on like this and summing up over t, t+1, t+2, ... a long run multiplier3See e.g. hapter 9.1.



4.4 Parameter Estimation 33an be derived or:
∞∑

a=0

∂zt+a

∂rt
= φ0 + (θφ0 + φ1) + θ(θφ0 + φ1) + · · ·

= φ0 + (1 + θ + θ2 + · · · )(θφ0 + φ1)

=
φ0 + φ1

1 − θ
where |θ| < 1 (4.6)The long run multiplier desribed by Eq.(4.6) was gotten by using the geometri-al series in Eq.(4.4). The relation in Eq.(4.6) therefore desribes the long termhange in zt for a hange in rt.There is another way of writing the ADL model desribed in Eq.(4.5), by sub-trating zt from both sides in Eq.(4.5) it beomes

∆zt = δ − (1 − θ)zt−1 + φ0∆rt + (φ0 + φ1)rt−1 + ǫtor as the error-orretion model (ECM)
∆zt = φ0∆rt − (1 − θ)[zt−1 − α − γrt−1] + εt (4.7)where

γ =
φ0 + φ1

1 − θ
and α =

δ

1 − θEq.(4.7) has two main terms. The �rst term, i.e. the dynami part is desribedby φ0∆rt. The seond term, known as the error orretion term, inludes thelevels inside the brakets, i.e. the atual levels not the di�erened values. Theterms inside the braket maintain the long run equilibrium for zt. The ECMimplies that zt is deided by the hange in rt adjusted by the error orretionterm in the braket, whih speed of orretion is ontrolled by (1 − θ).In subsetion 5.6.3 the long run multiplier is applied to the house prie modelto derive what e�et a small hange in the variables, orresponding to rt here,have on the response variable, zt, in the long run.4.4 Parameter EstimationGiven data and having prepared a model for the data, the model oe�ients,or parameters, are estimated so the model desribes, �ts, the data as well aspossible. There are di�erent ways of performing parameter estimation. In thissetion two of the main methods, Ordinary Least Squares (OLS) and Maxi-mum Likelihood Estimation (ML), are disussed in subsetions 4.4.1 and 4.4.3



34 Time Series and Eonometri Theoryrespetively. In subsetion 4.4.2 a speial ase of OLS is desribed where linearonstraints are implemented on the oe�ients (ROLS). The derivation of theestimator for ROLS is largely borrowed from Judge et. al. [6℄.Definition 4.4 (Linear Regression Model)The linear regression model, in matrix form, is expressed as
y = Xβ + ε (4.8)where

y =




y1

y2...
yn


 , X =




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k... ... ... ...
1 xn1 xn2 · · · xnk




β =




β0

β1...
βk


 and ε =




ε1

ε2...
εn


where y is a (n × 1) vetor of observations also sometimes noted as the re-sponse variable, X is (n × p) matrix of levels of the independent variablesalso noted as the design- or explanatory matrix, where p = k + 1 i.e. thenumber of regressors k plus the interept (β0). The (p × 1) vetor β holds theregression oe�ients and ε is an (n × 1) vetor of random errors, whitenoise.

♦4.4.1 Ordinary Least Squares (OLS)Isolating the error term from Eq.(4.8) it an be rewritten as
ε = y − XβA vetor of least square estimators β̂ is sought so as it minimizes the followingfuntion S(β)

S(β) =

n∑

i=1

ε2
t = ε′ε = (y − Xβ)′(y − Xβ) (4.9)Where prime (′) indiates the transpose of a vetor or matrix. By multiplyingthe matries in the brakets, keeping in mind the fundamental matrix rule of
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(AB)′ = B′A′, Eq.(4.9) beomes

S(β) = y′y − y′Xβ − β′X ′y + β′X ′Xβ (4.10)
= y′y − 2β′X ′y + β′X ′Xβ (4.11)The step between Eq.(4.10) and Eq.(4.11) is explained by

y′Xβ = y′(X ′)′(β′)′ = y′(β′X ′)′ = (β′X ′y)′and the fat that the term β′X ′y is a salar as an be seen by
1 × n · p × n · n × 1 = 1 × n · n × 1 = 1Taking the derivative of Eq.(4.11) with regards to β gives
∂S

∂β
=

∂

∂β
(y′y − 2β′X ′y + β′X ′Xβ)

=
∂

∂β
(−2β′X ′y + β′X ′Xβ)

= −2X ′y + 2X ′XβSetting the derivative ∂S/∂β equal to zero, inserting β = β̂ and solveing for β̂

∂S

∂β

∣∣∣∣
β=β̂

= −2X ′y + 2X ′Xβ̂ = 0

X ′Xβ̂ = X ′y

(X ′X)−1X ′Xβ̂ = (X ′X)−1X ′y

β̂ = (X ′X)−1X ′y (4.12)Eq.(4.12) is the ordinary least square estimator (OLS) of β, i.e. β̂ holds theestimated oe�ients to eah of the fators in the relationship between X and
y, minimizing the seond norm of the estimated standard error. An example ofestimation of parameters by use of OLS in a eonomi relationship is shown inExample 4.4.While the OLS method is easy to use and e�etive it is not as general as theMaximum Likelihood method mentioned in subsetion 4.4.3. Furthermore OLSworks only for problem that an be written on the regression model format.Example 4.4 (Example of OLS)Imagine a typial eonomi relationship of the following form

Qt = ALα
t Kγ

t eεt



36 Time Series and Eonometri Theorywhere Qt is output, Lt is labor, Kt is apital, A is some onstant and εt is theerror term, independent of Kt and Lt over the time period t ∈ {1, ..., n}. Theparameters that are to be estimated are γ and α. Taking the logarithm (ln) of
Qt gives

ln(Qt) = ln(A) + α ln(Lt) + γ ln(Kt) + εtIt is easy to see that this relation an be transformed to the regression formatas
yt = β0 + β1xt1 + β2xt2 + εtor in matrix form orresponding to Eq.(4.8) as

y = Xβ + εwhere
y =




ln(Q1)
ln(Q2)...
ln(Qn)


 , X = [ I, xt1, xt2] =




1 ln(L1) ln(K1)
1 ln(L2) ln(K2)... ... ...
1 ln(Ln) ln(Kn)




β =




ln(A)
α
γ


 and ε =




ε1

ε2...
εn


and an be solved for β̂ by using Eq.(4.12).

24.4.2 Restrited Least Squares (ROLS)In this subsetion a speial ase of OLS is disussed. When a linear onstraint,one or more, has been imposed on the oe�ients in the β vetor theRestritedOrdinary Least Squares (ROLS) method is used for estimating β.The objetive funtion S(β) given in Eq.(4.9) is the same exept now it mustbe solved subjet to the onstraints presented as
Rβ = r (4.13)Where R is a (q×p) matrix, where p is the number of parameters, while q is thenumber of onstraints, r is a (q × 1) vetor of salars. A oe�ient vetor β̂∗ issought so as to minimizes S(β), in Eq.(4.9), subjet to the onstraints imposedon β expressed in Eq.(4.13).



4.4 Parameter Estimation 37If the onstraints in Eq.(4.13) are linear a Lagrange optimization proess maybe applied suh that
L(β, λ) = e′e − λ′(r − Rβ)

= y′y − 2β′X ′y + β′X ′Xβ − λ′(r − Rβ) (4.14)Where the Lagrangianmultiplier λ is a (q×1) vetor. The derivative of Eq.(4.14)w.r.t. β and λ is taken, and set to 0, to �nd the optimal value of β

L′ =





∂L
∂β

∣∣∣∣
β=β̂∗,λ=λ∗

= −2X ′y + 2X ′Xβ̂∗ + R′λ∗ = 0 (i)

∂L
∂λ

∣∣∣∣
β=β̂∗,λ=λ∗

= −r + Rβ̂∗ = 0 (ii)

(4.15)Using (i) and (ii) to solve for λ∗ it an be seen that
λ∗ = −2(R(X ′X)−1R′)−1(r − R(X ′X)−1X ′y)or if using the OLS result β̂ = (X ′X)−1X ′y

λ∗ = −2(R(X ′X)−1R′)−1(r − Rβ̂) (4.16)Combining Eq.(4.15) (i) and Eq.(4.16) and solving for β̂∗ gives
β̂∗ = (X ′X)−1X ′y + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂) (4.17)Or �nally by using the OLS result again it beomes

β̂∗ = β̂ + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂) (4.18)whih is the restrited ordinary least squares estimator giving the esti-mated values of β∗.Example 4.5 (Re-Parameterizations vs. ROLS)Reall the regression model from Example 4.4, i.e.
ln(Qt) = ln(A) + α ln(Lt) + γ ln(Kt) + εtImagine now there exists a relationship between L and K, i.e. if both K and

L inrease with e.g. 10% then so will Q, (this is known in eonomis as aCobb-Douglas funtion). This relation is equivalent to the onstraint α+γ = 1.Sine this linear onstraint is not very omplex there is a re-parametrizationalternative to the ROLS method.



38 Time Series and Eonometri TheoryUsing re-parameterizations ξ: Using ξ instead of β. The onstraint an beexpressed as γ = 1 − α giving a new regression model as
ln(Qt) = ln(A) + α ln(Lt) + (1 − α) ln(Kt) + εt

ln(Qt) − ln(Kt) = ln(A) + α(ln(Lt) − ln(Kt)) + εtwhih an be expressed as
yt = ξ0 + ξ1xt1 + εtwhere

y =




ln(Q1) − ln(K1)
ln(Q2) − ln(K2)...
ln(Qn) − ln(Kn)


 , X = [ I, xt1] =




1 ln(L1) − ln(K1)
1 ln(L2) − ln(K2)... ...
1 ln(Ln) − ln(Kn)




ξ =

[
ln(A)

α

] and ε =




ε1

ε2...
εn


 .Solve ξ̂ = (X ′X)−1X ′y where E[ξ] = ξ̂.Using ROLS β∗: Sine there is only one onstraintR is a (1×p) vetor, p = 3,and r only a salar. The onstraint equation Eq.(4.13), Rβ = r, beomes

[
0 1 1

]



ln(A)
α
γ


 = 1and an then be solved for β̂ by Eq.(4.18)

β̂∗ = β̂ + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂)

2In Example 4.5 it an be seen that the re-parametrization method is muh eas-ier to handle for one onstraint. However, for a higher number of onstraints(q), regression oe�ients (p) or both, the re-paramiterization method quiklybeomes di�ult to implement while the ROLS method with the matrix repre-sentation is onsistent in implementation.



4.5 Properties of the OLS and ROLS Estimators 394.4.3 Maximum Likelihood (ML)Maximum likelihood (ML) estimation is a more general method of parame-ter estimation than that of OLS. The downside to using ML is that it anbe ompliated to derive the so alled Likelihood funtion whih is optimizedfor the estimated parameters. ML an be used to solve for oe�ient in veryompliated relations, using numerial optimization methods.Maximum likelihood estimation was not used in this thesis but represent aninteresting alternative to the OLS and ROLS methods and therefore warrantsmentioning. For more information on ML estimation see Madsen [9℄4, for anintrodution, and Hamilton [3℄5 for a more advaned treatment, inluding opti-mization methods.4.5 Properties of the OLS and ROLS EstimatorsGiven an estimated β̂ oe�ient, the �tted data (ŷ) an be expressed as
ŷ = Xβ̂ (4.19)The residual (e), i.e. the di�erene between the �tted data and the observeddata is denoted as

e = y − ŷ (4.20)it an be seen that if E[ε] = e then E[β] = β̂ so the ondition that the residualbehave like ε, i.e. white noise, is ruial if β̂ is to be a orret estimation of β.See subsetion 5.5.1 for more on residual analysis.The variane of the residual is often alled the error or residual sum ofsquares (σ2), it has n−p number of degrees of freedom, where n represents thenumber of observations as before and p is the number of regression oe�ientsplus the interept, as before. The σ2 is estimated by
σ̂2 =

n∑

i=1

(yi − ŷi)

n − p
=

e′e

n − p
(4.21)The ovariane matrix is a symmetri matrix representing the variane be-tween di�erent regression oe�ients β̂i and β̂j at the (ij) and (ji) elements in4setion 2.2.25Chapter 5



40 Time Series and Eonometri Theorythe matrix. The diagonal, of the ovariane represent the variane of estimatedregressor βii where 1 ≤ i ≤ p. The ovariane matrix for OLS is expressed as
Σβ = σ2(X ′X)−1 (4.22)The ovariane matrix for the restrited ase ROLS is

Σ
β̂∗ = σ2M∗(X ′X)−1M∗′ (4.23)where

M∗ = I − (X′X)−1R′(R(X ′X)−1R′)−1RThe proof for the OLS ovariane matrix an be seen in Madsen [9℄6. The ROLSovariane matrix, whih is more involved, an be found in Judge et. al [6℄7.4.6 Goodness of FitThe Goodness of �t is a measurement of how well the �tted data using theestimated oe�ients β̂ manage to represent the data. One measurement ofgoodness of �t is R2 or R-squared alulated as follows
R2 =

n∑

i=1

(ŷi − ȳ)2

n∑

i=1

(yi − ȳ)2where ȳ, also know as the sample mean, is alulated as ȳ = (
∑n

i=1 yi)/n. Thegoodness of �t estimator R2 gives a value in the interval 0 ≤ R2 ≤ 1, where
0 and 1 represent no and perfet orrelation between the �tted data and theobserved data, respetively.The R2 statisti is however biased to the number of regressors, i.e. the �t willbeome better as the number of regressors is inreased. therefore another wayof alulating the �t is R2

adj adjusted R square whih adjusts the statisti forthe number of regressors used by taking p the number of regressor into aount.
R2

adj = 1 −
(

n − 1

n − p

)
(1 − R2)The R2 is not without fault and must by used with are and is not to be used asthe only measure of goodness of �t or validation. For example R2 will onvergeto one for a �t of an unit-root non-stationary proesses, modeled diretly, givinga good �t but useless parameters for foreasting.6See page 35.7See pages 238-239.



Chapter 5House Prie Dynamis IIThe MONA model
5.1 IntrodutionIn this hapter an atual house prie model will be inspeted, dupliated andused for predition. The model under inspetion is the house prie relation fromMONA-a quarterly model of the Danish eonomy [12℄, or the MONAmodel as it will be referred to here after. The MONA model was developedby Danmarks entral bank, the Nationalbank, as a maro-eonomi model toforeast numerous eonomi relations and parameters. One of the many thingsthe MONA model looks at is the development of house pries in Denmark. Theidea behind maro models like MONA is to get a omplete piture of how theeonomy works.In setion 5.2 a disussion of how the model is oneived is given, as well as listinga few of the well known elements and relationships that in�uene house pries.Setion 5.3 desribes the data used in the house prie model, as well as givingan example of how the non-stationarity of the data an be handled. Setion 5.4deals with the modeling aspets of the relation from theory to appliation, theonstraints in the model are also explained. In setion 5.5 the results for theparameter estimation are presented, as well as the residual analysis for the �t isonduted. Setion 5.6 fouses on how to use the model for predition, as well



42 House Prie Dynamis IIThe MONA modelas giving a short disussion of how general the MONA house prie model resultsare and �nally estimating the long term oe�ients in the error-orretionmodelformat.5.2 The MONA Model BakgroundOn pages 41 to 52, in the MONA model [12℄, a relation for the Danish housingmarket is presented. The MONA house prie relation is derived by using a the-oretial model as a basis, while adding more elements where deemed neessaryby the analysis of house prie data.Muh like the model presented in setion 2.2 the MONA house market model issplit up into two parts. The �rst part is a house prie relation whih is the sameas the demand side in setion 2.2. The seond part is a model of residentialinvestment, equivalent to the supply side in setion 2.2. As in the theoretialmodel the supply �ow, in the MONA model, is ontrolled by the ratio betweenhouse pries and onstrution ost, also known as Tobin�s Q, or:"On a fall in interest rates both house pries and housing onstru-tion go up, and the expanded supply of housing gradually foreshouse pries bak towards equilibrium where they orrespond to on-strution osts."1Muh like the theoretial relation given in setion 2.2 the main fators for houseprie development in the MONA model are onsidered to be interest rates,inome and stok of houses.Using data from the Danish eonomy from 1971 to 2001 it an be seen howinterest rates, house pries, stok of houses and inome have progressed. Agraphial representation of the relationship between interest rates and housepries an be seen in Figure 5.1. The relationship between negative hange ininterest rates has been slowed down to show yearly hange instead of quarterlyhange, i.e. the proesses have been di�erened 4 time periods to show orre-lation better graphially. The one period di�erened orrelation is ρ = 0.6334,where −1 ≤ ρ ≤ 1, one being ompletely positively orrelated, minus one be-ing ompletely negatively orrelated and 0 showing no orrelation. Anotherfundamental relationship between house pries, inome and stok of houses isdisplayed in Figure 5.2. A ratio between inome and stok of houses is alu-1page 42, MONA-a quarterly model of the Danish eonomy [12℄
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Figure 5.1: Shows the orrelation between negative hange in interest rates (red, right axis)and hange in house pries (blak). The data is di�erened 4 periods to show the hangebetter visually.
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Figure 5.2: Shows the orrelation between real disposable inome over stok of house(red,right axis) against hange in house pries (blak).lated and plotted against hange in house pries. The orrelation between thesetwo time series is ρ = 0.4095.Figure 5.1 shows that there is learly a negative orrelation between hanges in



44 House Prie Dynamis IIThe MONA modelinterest rates and hange in house pries. Figure 5.2 shows on the other handthat there is also a orrelation between hange in house pries and inome asa ratio of stok of houses. What is more, Figure 5.2 shows that a high inomeratio is usually followed by inreases in house pries.By inspeting the data as above, along with knowing in theory whih are themain fators in house prie modeling, the National Bank of Denmark has reatedan applied house prie model whose derivation and assumptions are listed in thenext setions.5.3 The DataThis setion is divided into two parts, �rstly the data used is presented, givinga short desription for eah omponent. Seondly an example of how the seriesare analyzed from a time series point of view is shown.5.3.1 Desription of DataFollowing is a listing of the omponents used in the house prie model, for om-parison the theoretial house prie model, Eq.(2.3) from setion 2.1 is repeatedas
PH

P
= θ

(
HD

Y D
, R,

WA

Y D
,

D

Y D

)The data used in the MONA model is as follows
{kpt} : This term desribes the house prie at time t, in Eq.(2.3) this is equiv-alent to PH .
{rentet} : This is the interest rate term at time t, i.e. bond yield after tax.
{ssatst} : The orresponding tax term for the bond yield term rentet at time

t.
{pcpt} : This is the level of the onsumption de�ator at time t reall the def-inition for onsumption de�ator in subsetion 2.2.1, also the pp term isthe same as P is in Eq.(2.3).
{ipvt} : This series represents the private investment at time t.
{ypdt} : Private disposable inome at time t.
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{fwht} : This is the stok of houses at t whih is noted as H = HD = HS inEq.(2.3).
{dkpet} : The expeted inrease in house prie from t to t − 1.
{dpcpet} : The expeted inrease in private de�ator from t to t − 1.The added terms rentet + ssatst, i.e. interest rate plus tax rate, are noted asuser ost and also referred to as {ibvt} in the MONA model. All these variablesare observed hanges exept for the last two (dkpe, dpcpe) whih are internalvariables to the MONA model, i.e. they are estimated with other relations atanother plae in the model2.The data is available quarter-yearly from 1971-2002, however not all data isavailable in this period and beause of lagged data and di�erening the so-alled in-sample period, also known as training period and o�-line period,i.e. the period where the models parameters are estimated, is from 1974:q1 to
1997:q4. The out-of-sample period, also known as the on-line period, usedfor validation and predition, is from 1997:q4 to 2001:q4.A quik inspetion of the level plots along with the autoorrelation funtionsreveals that the proesses shows signs of unit-root non-stationarity, i.e. a highorrelation to lagged values. The next setion shows an example of how toaddress the unit-root issue for the response series i.e. kpt (house pries).5.3.2 House Prie DataAs an be seen from e.g. Eq.(2.1) a detailed house prie model an inlude manyelements. Although many series are also used in the MONA model only one willbe shown here in detail i.e. the house prie series {kpt} while similar methodswere applied to the other series when modeling the MONA model.The ln(kpt) series is depited in Figure 5.3 (a), along with the orrespondingauto orrelation funtion in (). From the two graphs it an be seen how highlyorrelated the present values are to lagged values. The two panels show that theproess has a long memory, whih an indiate a unit-root behavior or trendstationarity, whih is when, using the AR(1) ase for example, a onstant hasbeen added giving

rt = µt + θrt−1 + atwhere at is white noise and µt is a onstant having a drift e�et on the model.The drift e�et an be estimated via OLS and removed to give the underlying2 see MONA [12℄ Page 196 and 197 for the estimation of dkpe and dpcpe.



46 House Prie Dynamis IIThe MONA modelproess. The MONA report however uses the method of di�erening, therebyremoving the aumulation of values and modeling the hange ∆ln(kpt) insteadof the level kpt.In Figure 5.3 (b) the one period hange in the ln(kp) series, i.e. ∆ln(kp), isdisplayed. Figure 5.3 (d) shows the autoorrelation funtion for the di�erenedseries. It is obvious how muh the memory of the proess has been dereasedby only one di�erening.
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Figure 5.3: Log series of house pries (kp) from 1974:q1-2002:q1 : (a) log(kp), (b) time plotof the �rst di�erened series log(kp) () sample auto orrelation funtion for the log(kp) series,and (d) the sample partial auto orrelation funtion for the di�erened series.A more aurate way of loating unit-roots, other than di�erening one andviewing ACF plots, is by use of so-alled Augmented Diky Fuller3 tests(ADF) whih test whether a series is dependant on previous values with φ = 1,i.e. if it has a unit-root, for more details of ADF see Tsay [15℄4.Using the statistial software pakage R it an be seen that the test for unit-rootin ln(kp) by the ADF method gives a Dikey-Fuller value = 1.6864 and p-value3See e.g. the funtion adfTest() in pakage {fMultivar} in R.4see e.g. hapter 2.7.
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= 0.9768, the p-value indiates that the hypothesis presented, in this ase thatthere is a unit-root, an be rejeted with approx 2.3% probability, i.e. it an notbe rejeted. If the series is di�erened one the Dikey-Fuller value is −2.3078with a p-value = 0.02214 indiating that the hypothesis of a unit-root an berejeted with aproximately 98% probability, therefore it an be said that ln(kpt)is I(1), i.e. integrated of level one. Sine there may be a unit-root in the levels(ln(kpt)) the �rst di�erened levels (∆ln(kp)) are modeled, the transformationbak to ln(kpt) is performed by

ln(kpt) = ∆ ln(kpt) + ln(kpt−1) (5.1)Further disussion will be given on the aggregation of the modeled di�erenesin setion 6.3.5.4 The ModelThis setion fouses on numerous pratial and theoretial items needed to un-derstand and use the MONA house prie relation. In subsetion 5.4.1 the the-oretial model is stated and derived to an initial regression format, along withsome disussion of the onstraints used in the model. The following subsetionsummarizes the model omponents, or explanatory variables, used to evaluatethe models oe�ients and presents the regression form of the model. Lastlythe applied form of the onstraint is presented in format suitable for solvingwith ROLS.5.4.1 The Theoretial ModelReall the house prie relation presented in subsetion 2.2.1 where the stok ofhouses an be expressed as
HD = f

(
PH

P
, R, Y D, WA, D

) (5.2)Similar to this relation the theoretial relationship for long term house priedevelopment in the MONA5 model is derived from the knowledge that the mainfators are inome, interest rates and stok of houses. A long term demandrelation for the stok of houses in MONA is presented as
ln(stok of houses) = ln(inome) − a · ln

( user ostonsumer prie) (5.3)5See the MONA model page 43.



48 House Prie Dynamis IIThe MONA modelIt an be seen that the two relations have ertain elements in ommon, althoughthis form of Eq.(5.3) has fewer terms than Eq.(5.2) and seems more simple. The�rst mutual fator is wanted stok of houses (HD) whih is the same as theobserved fwh or H . Other mutual elements are inome (Y D), user ost (R)and a prie element (PH/P ).By rearranging the terms in Eq.(5.3) the relation beomes
ln(inome) − ln(stok of houses) = a · ln

( user ostonsumer prie) (5.4)On the left side the stok of houses and inome, using the MONA variablesdesribed in subsetion 5.3.1, beome
= ln(inome) − ln(stok of houses)
= ln((ypd − ipv)/pcp)− ln(fwh) (5.5)where inome has been modeled as real inome, i.e. ydp the private disposablegross inome minus ipv the private investment will give the net inome, anddividing by the onsumption de�ator pcp adjusts the value to the urrent period,giving real inome.It an be seen on the right side of Eq.(5.4) that the terms user ost and onsumerprie an be approximately expanded as follows, using the variables desribedin subsetion 5.3.1

= a · ln
( userostonsumerprie)

≈ a0 + a1 ln

(
kp

pcp

)
+ a2 · (rente + ssats − infl)

= a0 + a1 ln

(
kp

pcp

)
+ a2 · (rente + ssats) − a2 · infl (5.6)In the �rst step an approximation is made so that the user ost divided byonsumer prie beomes real house prie and real user ost, real user ost isuser ost plus in�ation (infl). In Eq.(5.6) the in�ation term of the real userost rate has been isolated. Next a relation is derived to simulate the in�ationterm, it is omprised of the elements that re�et the prie inrease

−a2 · infl ≈
[
a3∆ln(pcp) + a4dpcpe + a5dkpe + a6∆ln(kp)

] (5.7)In�ation is therefore represented by four prie hanges. The hange in on-sumption de�ator from the last period (∆ln(pcpt−1)), the expeted hange inonsumption de�ator from the last period (dpcpet−1), expeted hange in house



5.4 The Model 49pries from last period (dkpet−1) and the hange in house pries from last pe-riod (∆ln(kpt)). This onstraint is meant to ensure a real interest rate behavior,whih is ahieved by onneting the user ost oe�ient a2 to the weighing ofthe oe�ients used in the estimation of the in�ation. The onstraint ensuresthat if there is a prie inrease of one perent it will result in a one perent fallin interest rates after tax, in the long run. The prie oe�ient onstraint willbe given more disussion in setion 5.5.Combining Eq.(5.5), Eq.(5.6) and Eq.(5.7) and isolating the house prie termfrom the in�ation onstraint gives
a6∆ ln(kp) = −

�
a0 + a1 ln

�
kp

pcp

�
+ a2(rente + ssats)

− (a3∆ln(pcp) + a4dpcpe + a5dkpe)

�
+ ln((ydp − ipv)/pcp) − ln(fwh)whih when dividing through with a6 beomes

∆ln(kp) = −
a0

a6

−
a1

a6

ln

�
kp

pcp

�
−

a2

a6

(rente + ssats) +
a3

a6

∆ln(pcp)

+
a4

a6

dpcpe +
a5

a6

dkpe +
1

a6

�
ln((ydp − ipv)/pcp) − ln(fwh)

� (5.8)This theoretial relation is then �tted to the available data by statistial analysis,i.e. using lagged values, inluding di�erened values and levels where signi�ant,resulting in a spei� model whih is desribed in the next subsetion.5.4.2 MONA Model ComponentsReall the regression model in De�nition 4.4 i.e.
y = Xβ + εThe response variable y and the olumn xi of the explanatory matrix X where

(n × p) and 1 ≤ i ≤ p are expressed as
y : ∆ ln(kp)The modeled relation is hanged from modeling house pries, or kp, to modelingthe one period hange in the log of house pries, or ∆ ln(kp) to see why this isdone see 5.3.2.
x1 : ∆ ln(pcp)Change in the onsumption de�ator.
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x2 : ∆(rente + ssats)First di�erened series of interest plus tax, i.e. user-ost hange.
x3 : ∆(rente−1 + ssats−1)Lagged �rst di�erened series of interest plus tax, i.e. lagged user-ost hange.
x4 : rente−1 + ssats−1 + 0.01Lagged user ost plus a logarithmi element (0.01). Interest rate plus tax ele-ment.
x5 : dpcpe−1Expeted hange in onsumption, from last period, i.e lagged.
x6 : dkpe−1Expeted hange in house prie, lagged.
x7 : ln(kp−1/pcp−1)Real house prie, i.e. house pries lagged adjusted with the lagged onsumptionde�ator.
x8 : ln((ydp−1 − ipv−1)/pcp−1) − ln(fwh−1)Inome elastiity onstraint to stok of houses ahieved by modeling togetherwith only one regressor.The new applied model an then be expressed as a regression model as follows
∆ ln(kpt) = β0 + β1∆ln(pcpt) + β2∆(rentet + ssatst) + β3∆(rentet−1 + ssatst−1)

+ β4(rentet−1 + ssatst−1 + 0.01) + β5dpcpet−1 + β6dkpet−1 (5.9)
+ β7 ln(kpt−1/pcpt−1) + β8(ln((ydpt−1 − ipvt−1)/pcpt−1) − ln(fwht−1)) + εtThe oe�ients β have replaed the a oe�ients and need to be estimatedby the restrited least squares method sine there is a onstrition on theirestimation.The ConstraintsIn the MONA house prie relation two onstraints are applied. Firstly there is aonstraint implemented by re-parameterization by modeling stok of houses andreal inome together, i.e. their ratio has only one regressor and will thereforealways a�et the prie by the same weight.The seond onstraint is not as easily implemented and requires the use of therestrited ordinary least squares method for the parameter estimation. Reall



5.5 The Results 51the in�ation onstraint modeled above to assure real interest rate behavior as
−a2 · infl ≈

[
a3∆ln(pcp) + a4dpcpe + a5dkpe + a6∆ln(kp)

]Now the theoretial a oe�ients have been replaed by the β oe�ient inthe applied model. Where the orresponding β oe�ient to the previous aoe�ient an be found by omparing explanatory omponents x e.g. theprevious a2 oe�ient to (rente + ssats) is now β4 the applied oe�ient to
(rentet−1 + ssatst−1 + 0.01). The onstraint represented with β oe�ients istherefore

−β4 =
β1

4
+ β5 + β6 −

1

4Where the salar (1/4) represents the house prie inrease quarter-yearly, nowhouse prie and onsumption de�ator hanges always go hand in hand therefor
β1, the hange in onsumption de�ator oe�ient, is also divided by four to geta quarter-yearly hange. The onstraint an be used to alulate the expetedin�ation by dividing through with −a2 and −β4 in the theoretial and appliedases, respetively.The onstraint on Rβ = r format for ROLS, is expressed asConst R1 R2 R3 R4 R5 R6 R7 R8 r[0 0.25 0 0 1 1 1 0 0℄ · β = [0.25℄The optimal oe�ients an then be ahieved by solving

β̂∗ = β̂ + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂) (5.10)where β̂ is the unonstrained oe�ients estimated by OLS. This relation wasderived in subsetion 4.4.2.Degrees of freedom, whih are used for many statistial tests and estimators,must be handled with are when using ROLS. Degrees of freedom are usuallydesribed as n− p where n is number of observations used in the modeling and
p = k + 1 is the number of regressors inluding the onstant. By deiding β̂∗

4impliitly from other oe�ients it does not get a degree of freedom, this willhave to be kept in mind when alulating test statistis and goodness of �t forthe estimation.5.5 The ResultsSolving Eq.(5.10) with the onstraint desribed above results in estimates of theoe�ients displayed in Table 5.1. In the table there are three data olumns,



52 House Prie Dynamis IIThe MONA modelthe �rst one shows the estimated value of the regression oe�ient. The seondolumn shows the estimated standard error for the oe�ients, i.e. is the squareroot of the diagonal of the ovariane matrix Σ
β̂∗ , expressed in Eq.(4.23). Thethird olumn shows the t-values alulated from the standard error and indiateswhether the oe�ient is signi�antly di�erent from zero. For a 95% on�deneinterval |t| > 1.96. ROLS

X β̂∗ Estimate Std. Error t value
I β̂∗

0
0.0663 0.0192 3.463

x1 : ∆ln(pcp) β̂∗

1
0.3074 0.2122 1.449

x2 : ∆(rente + ssats) β̂∗

2
−3.7811 0.4358 −8.677

x3 : ∆(rente−1 + ssats−1) β̂∗

3
−0.7791 0.4468 −1.744

x4 : rente−1 + ssats−1 + 0.01 β̂∗

4
−0.7927 0.3187 −2.488

x5 : dpcpe−1 β̂∗

5
0.7709 0.3575 2.156

x6 : dkpe−1 β̂∗

6
0.1949 0.0671 2.905

x7 : ln(kp−1/pcp−1) β̂∗

7
−0.1026 0.0268 −3.827

x8 : ln((ydp−1 − ipv−1)/pcp−1) − ln(fwh−1) β̂∗

8
0.0554 0.0282 1.963Table 5.1: The oe�ients in MONA house prie relation estimated with restrited ordinaryleast squares (ROLS). The period for whih this is estimated is 1974:q2 - 1997:q4 or 95 periods.

MONA ROLS Model In−Sample Fit

Time

dl
og

(H
ou

se
 P

ric
e)

1975 1980 1985 1990 1995

−
0.

05
0.

00
0.

05
0.

10

Figure 5.4: The blak line is the atual y = ∆ ln(kp) while the broken red line shows the�tted ŷ = Xβ̂∗ using the estimates for β̂∗ alulated in Table 5.1.The F-test statisti, whih is a test of signi�ane for all regression oe�ients,indiates that the MONA model regression oe�ients are very signi�ant with
F (7, 87) = 27.9214 and a very small p-value < 1e-13.



5.5 The Results 53The R-square,adjusted R-square and error are shown in Table 5.2. The estimatedmodel seems to �t the data quite well with a R2 = 0.692. The adjusted R-square gives a lower value of R2
adj = 0.6672, sine it is adjusted to the numberof regressors. ROLS
R2 0.6920
R2

adj 0.6672
σ̂ 0.0169Table 5.2: The R2, R2

adj
and σ̂2 for the ROLS �t shown in Table 5.1.Example 5.1 (Calulations of hange in house prie)Eah line in the in-sample explanatory matrix X an be expressed as vetor ofall explanatory variables at a ertain time t, where 1 ≤ t ≤ n. More preisely

x′

t,1...p =




1
∆ ln(pcpt)

∆(rentet + ssatst)
∆(rentet−1 + ssatst−1)

(rentet−1 + ssatst−1 + 0.01)
dpcpet−1

dkpet−1

ln(kpt−1/pcpt−1)
ln((ydpt−1 − ipvt−1)/pcpt−1) − ln(fwht−1)


for a ertain period or time the �tted hange in house prie an be alulatedas follows

ŷt = x(t,1...p)β̂
∗where β̂∗ is the estimated ROLS oe�ients displayed in Table 5.1.For a spei� time e.g. if t = 1987:q4 �tted house prie hanges an be alulatedas follows

ŷ1987:q4 = x(1987:q4,1...p)β̂
∗where

x′

(1987:q4,1...p) =




1
0.00892
0.00148
0.00193
0.0848
0.0222
0.0622
0.125-0.492




, β̂∗ =




0.0663
0.3074-3.7811-0.7791-0.7927
0.7709
0.1949-0.1026
0.0554




.giving a �tted value of ŷ1987:q4 = −0.01602. The di�erene in �t and observed



54 House Prie Dynamis IIThe MONA modelhange, i.e. the residual, is then alulated as
e1987:q4 = y1987:q4 − ŷ1987:q4

= −0.00826− (−0.01602)

= 0.00776By exhanging the X matrix for the vetor x a �t for the whole in-sample periodan be ahieved, whih is depited as the broken red line in Figure 5.4.
25.5.1 Residual AnalysisWhen analyzing the results from a regression model the residuals deserve at-tention sine they need to be randomly distributed with mean 0 and onstantvariane σ2

res. In the MONA report two well known eonometri tests are usedfor analyzing the residuals. The �rst test is the so-alledDurbin Watson6 testwhih tests for autoorrelation in the residuals, the seond test is the Jarque-Bera7 test whih is intended to hek whether the residuals are normally dis-tributed by using the third and fourth moments, skewness and kurtosis. Adetailed aount of these tests is outside the sope of this report but for moreinformation see Kyhl & Nielsen [7℄ on the DW-test and Verbeek [16℄8 for theJB-test. The ROLS model passes both of these tests. There is no signi�antautoorrelation in the residuals, DW = 1.6924 giving a p-value of 0.02, it an beasserted with 98% on�denes that there does not exist autoorrelation amongthe residuals. The Jarque-Bera test gives a statisti of JB = 0.8034 and thenull hypothesis, that the residuals are normally distributed, an not be rejetedfor all reasonable levels of on�dene with a p-value = 0.6692.Other ways of analyzing residuals, espeially in engineering statistis and timeseries analysis, is by visual inspetion of standardized residuals. Figure 5.5 showsfour plots often inspeted when analyzing residuals. In the upper left panel theresiduals are plotted against the orresponding �tted value. The panel doesnot indiate anything suspiious suh as funnel forming, whih would indiatean inreased variane with inreased �tted values. The fat that the lusteris not taking on any obvious form indiates that the model is su�ient andno systemati e�et (more regressors) are needed. The upper right plot showthe so-alled QQ-plot whih is a normal probability plot of the standardizedresiduals, de�ned by
di =

ei√
σ̂26See R, pakage lmtest, funtion dwtest() .7See R, pakage tseries, funtion jarque.bera.test() .8See e.g. page 174
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Figure 5.5: Visual residuals analysis from the e = y − ŷ.Using the standardized residuals also reveals whether the there are any outlierspresent, i.e. sine all di should be inside the interval −3 ≤ di ≤ 3, or else theymay be having an outlier e�et on the regression. The residuals on the QQ-plot should fall to a straight line from -3 to 3 if they are normally distributed,this seems to be the ase whih has also been indiated by the JB-test. Thebottom left plot shows the square root of the absolute value of the standardizedresiduals, whih makes it easier to see if there is any trend in the residual luster,same as for the for di no suspiious lustering an be seen in the bottom leftgraph. The bottom right plot shows the Cook distane for the residuals, Cooksdistane measures the e�et a single observation an have on the regression,i.e. it �nds the outliers. Aording to Montgomery and Runger [11℄9 the Cookdistane with a value of Di > 1 indiates that a single outlier is in�uential in9See setion 12-5.1 Residual Analysis.



56 House Prie Dynamis IIThe MONA modelthe regression. As the bottom right graph shows all Di < 0.25, the suggestionof ertain outliers a�eting the regression is dismissed.5.6 PreditionThe subjet of using the regression models to foreast for new variables is oneof the main reasons the MONA house prie model has been listed and dissetedin suh detail. Sine there is data available from 1972:q2 to 2001:q3 the out-of-sample period, 1998:q1 to 2001:q3, will be used to show how a predition ismade when new observations for the explanatory variables are available. Thefollowing is largely adopted from Montgomery and Runger [11℄10 and Madsen[9℄11.When prediting l-steps ahead, where 1 ≤ l ≤ k and k is the predition horizon,given the estimated oe�ients the predited response value an be expressedas
ŷt+l = E[yt+l|Xt+l = xt+l] = xt+lβ̂ (5.11)where xt+l represent a vetor of new observed values for the explanatory vari-ables. Eq.(5.11) gives the so-alled point estimates for the future responseorresponding to xt+l. The predition error et+l = yt+l − ŷt+l has the vari-ane

VOLS [et+l] = V [yt+l − ŷt+l] = σ2(1 + x′
t+l(X

′X)−1xt+l)for the OLS method, this an be seen from
V [yt+l − ŷt+l] = V [x′

t+lβ + εt+l − x′
t+lβ̂]

= V [x′
t+l(β − β̂) + εt+l]

= x′
t+lV [β̂]xt+l + σ2 + 2Cov[x′

t+l(β − β̂), εt+l]

= σ2 + x′
t+lV [β̂]xt+lwhere V [β̂] is the ovariane matrix Σ

β̂
= σ2(X′X)−1. This result an beextended to the ROLS method by inserting the ROLS ovariane matrix whihgives

VROLS [et+l] = σ2(1 + x′

t+lM
∗(X′X)−1M∗′

xt+l) (5.12)A 100(1 − α)% on�dene interval for future values of ŷt+l is given by
ŷt+l ± t(α/2,n−p)

√
V [εt+l] (5.13)10Setion 12-4, Predition of new observations.11Setion 2.3



5.6 Predition 57whih for ROLS beomes
ŷt+l ± t(α/2,n−p+q)σ̂

√
(1 + x′

t+lM
∗(X′X)−1M∗′

xt+l) (5.14)when using the estimate σ̂ for the residual variane of error. The term tα/2,n−p+qis from the t-distribution with (n−p+q) degrees of freedom, where q is the num-ber of onstraints sine q regressors are linear ombinations of other regressorsand therefore q of the p regressors return their degrees of freedom.Using the out-of-sample period 1998:q1 to 2001:q3 the point estimate, alongwith a 95% predition interval is alulated and plotted in Figure 5.6.
MONA ROLS Model Out−Of−Sample Prediction
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Figure 5.6: The in-sample estimation is represented with a red whole line ŷ, the blak lineis the atual observed hange y, the red broken line is the point estimate for new observations
ŷnew along with a 95% predition interval shown by the broken blue lines. The vertial linemarks where the in-sample ends and the new observations (out-of-sample) begins.Figure 5.6 shows that the out-of-sample predition seems to be performingpoorly, a measure often used for analyzing preditions is the Mean squareerror de�ned as

MSE(ŷt+k) =
1

k

k∑

l=1

(yt+l − ŷt+l)
2. (5.15)Calulating the MSE for the predition in the out-of-sample an estimate ofthe error σ̂ an be found. The error in the out-of-sample period gives an errorestimate of 0.0213, whih is higher than the in-sample error of σ̂ = 0.0169. Theout-of-sample performane is onsiderably worse than for the in-sample, suh a



58 House Prie Dynamis IIThe MONA modelbig shift in auray indiates that the out-of-sample data is di�erent from thein-sample data. This will be disussed further in the next subsetion.5.6.1 MONA Out-Of-Sample failureThe out-of-sample performane is not expeted to be as good as the in-sample,sine that is where the oe�ients are estimated, however a large shift in errorsuggest that the out-of-sample data is signi�antly di�erent from the in-sampleperiod. This seems to be the ase for the out-of-sample data, a large shift inerror and visual analysis of the out-of-sample data shows that the variane ofthe house prie hange has dereased dramatially and the mean has inreased,see Figure 5.7. All observed house prie hanges after 1994:q4 are inrementsand the variane has hanged onsiderably from the in-sample variane, seeyan olored broken lines in Figure 5.7. The explanatory variables suggest thatthe prie of houses should drop while it does not, this ontinues for some timereating a gap between the predited prie and observed house prie, whih istypial of a housing bubble suh as was mentioned in setion 2.3. The fat
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Figure 5.7: Shows the strange behavior of the house prie data after 1994:q4 the proessseems to slow down onsiderably resulting in less variane and higher mean. Only inrementsafter 1994:q4.that the data seems to be non-homogenous between the in- and out-of-sampleperiods makes validation, of the parameter estimation, in the out-of-sampleperiod useless. In the theoretial eonomi models the bubble-free ondition isassumed.



5.6 Predition 59Ways of dealing with this disrepany ould e.g. be to inlude the abnormaldata period in the parameter estimation. The parameters will then be able todeal better with presene of suh behavior. However, the goodness of �t willdrop and all the data is then used for estimation whih makes validation hard.Another way to deal with the bubble behavior is to move the time window, i.e.inlude more of reent years and less of the previous years, however that wouldalso result in out-of-sample validation problems sine the out-of-sample datawould then most likely not resemble the in-sample data.Yet another method would be to use another parameter estimation method,i.e. so-alled reursive least squares (RLS) where the parameter estimation isonsistently being updated with a rolling time window, or a forgetting fatorwhih redues the impat of old data has on the parameter estimation givingever hanging, but relatively aurate estimations, see Madsen [9℄12.5.6.2 MONA model and ertain marketsSomething to keep in mind when looking at the results of the MONA modelis that the house prie data is an average of diverse house markets. For ex-ample the urban �ats markets in Copenhagen may behave di�erently than therural or summerhouse market. The di�erene in these two markets an e.g. betraed bak to the theoretial model desribed in hapter 2 where house prieis onsidered to ahieve a higher equilibrium prie where onstrution land islimited. There are however many other things other than loation that in�uenethe prie suh as building age, building style, size, number of bathrooms and soon. If a predition is sought for a ertain part of the market, that setion of themarket has to be modeled spei�ally, with orresponding data aquired fromsales pries in that region.The MONA is thought of as a general maro model to indiate the long termdiretion of the Danish house prie market as a whole, not to give dynami shortterm preditions for spei� parts of the Danish market.5.6.3 The ECM with the ROLS modelAs was mentioned before in setion 4.3, the ROLS oe�ients are used in anerror-orretion model format to give an idea of the long term e�ets in thehousing market. These long term trends are shown in the MONA report [12℄13.12e.g. page 278.13See top of page 45.



60 House Prie Dynamis IIThe MONA modelReall the ECM format given in setion 4.3 as
∆zt = φ0∆rt − (1 − θ)[zt−1 − α − γrt−1] + ǫtwhere zt is some response variable and rt−1 is a explanatory omponent. TheECM relation is divided into a dynami part, i.e. the φ0∆rt part, and the errororretion part, i.e. (1 − θ)[zt−1 − α − γrt−1].To use the error orretion form for the MONA house prie relation the ompo-nents of the explanatory matrix X needed to be sorted into dynami parts andthe error orretion or long term e�ets. The short term hanges are indiatedby modeling the hange (di�erened omponents) while the long term e�etsare taking into aount the level at eah time (nominal series).The i-th omponent of the explanatory matrix X and estimated oe�ientvetor β∗ are noted as xi and β∗

i respetively. The estimated hange in houseprie is alulated as ŷ = Xβ̂∗. The ECM format of ŷ is therefore
ŷ =

�
β̂∗

1x1 + β̂∗

2x2 + β̂∗

3x3 + β̂∗

5x5 + β̂∗

6x6

�
− β̂∗

7

�
x7 −

β̂∗

4

β̂∗

7

x8 −

β̂∗

8

β̂∗

7

x4 −

β̂∗

0

β̂∗

7

� (5.16)In Eq.(5.16) the terms inside the [ ℄ braket represent the dynami part of themodel i.e. prie and interest hanges. The seond part, or the () braket, has theterms whih ause a deviation from ŷ in a long run equilibrium, i.e. the levelsand the part whih orresponds to the long run multiplier γ, derived in setion4.3. Reall that β̂∗
7 is the oe�ient for real house prie, while β̂∗

4 orresponds touser ost and β̂∗
8 is for real inome over stok of houses. Inserting the estimatedoe�ients from Table 5.1 gives the following long run multipliers for the levelsof x4 and x8:

−

β̂∗

4

β̂∗

7

= −

−0.7927

−0.1026
= −7.726, −

β̂∗

8

β̂∗

7

= −

0.0554

−0.1026
= 0.540.If either of the elements orresponding to β∗

4 or β∗
8 were to inrease by somesmall dx element the house prie hange will in the long run hange by the dxtimes the ratios above, given that all other things stay �xed.The nature of the error-orretion format is to inlude levels and di�erenedvalues, even though the level is non-stationary as long as the response variableis stationary.



Chapter 6
Applying The MONA houseprie relation
6.1 IntrodutionThe purpose of this hapter is to get an applied version of the MONA houseprie relation. To get a robust predition model from the MONA house prierelation some relaxations must be made, this hapter disusses the onessionsmade and what results they have in regards to preision in predition.In setion 6.2 a regression model based only on the interest terms in the MONAmodel is formulated, whih will be used to benhmark other models. Setion6.3 disusses the aggregation of house prie hanges, using updating with orwithout observed house pries, to get house prie levels. Setion 6.4 addressesthe fat that when prediting, only interest rates are available, other explana-tory variables must therefore be �xed in some sensible way. In setion 6.5 theaggregate error is simulated and ompared for three di�erent models.



62 Applying The MONA house prie relation6.2 Interest Rate RegressionUsing only the interest rate terms from the MONA house prie model a smaller,simpler, benhmark model is developed. The main reason for performing thissimpler regression is to get a model where all the information is available, i.e.the model will only be dependent on interest rates, whih are available throughthe interest rate tree. Later when the MONA model as whole will be used, it anbe seen that all the missing data has to be �xed to some level whih inreasesthe error of the house prie estimate. The fat that missing observations ofthe explanatory variables do not have to be �xed also allow for simpler erroralulations that an be alulated via analytial methods ompared to thesimulated error for the �xed model.The simpli�ed regression model based on the MONA house prie relation isexpressed as follows
̂∆ln(kpt)

I
= β̂I

0 + β̂I
1∆rentet + β̂I

2∆rentet−1 + β̂I
3rentet−1 (6.1)Where ∆rentet and rentet are the hange in interest rates and atual interestrate respetively. Notie that the tax rate ssats has also been removed from theinterest relation. From this redued model two results an be expeted. Firstlya lower value for both goodness of �t estimators R2 and RR

adj, in omparisonto the MONA model. Seondly the residuals are more likely to show signs ofautoorrelation sine it is known from the MONA house prie relation that thissmaller model is missing many proven systemati e�ets, e.g. inome over stokof houses (x8) and the onsumption de�ator (x1) to name only two.Using the in-sample period, 1974:q2-1997:q4, that was used in the MONA houseprie relation, an ordinary least squares (OLS) regression is performed to esti-mate the oe�ients βI′

= [βI
0 , βI

1 , βI
2 , βI

3 ] by solving
β̂I = (XI′

XI)−1XI′

ywhere the explanatory matrix XI is only omposed of interest terms as follows
XI =




1 ∆rente2 ∆rente1 rente1... ... ... ...
1 ∆renten ∆renten−1 renten−1


After having performed the regression the t-statisti shows that β̂I

3 is not sig-ni�antly di�erent from zero, with p-value = 0.9965. When the regression isrepeated, leaving β̂I
3 out, it gives the estimated oe�ients β̂I shown in Table6.1



6.2 Interest Rate Regression 63Estimate Std. Error t value Pr(>|t|)
β̂I

0 0.0125 0.0023 5.37 0.0000
β̂I

1 −3.6539 0.5885 −6.21 0.0000
β̂I

2 −1.6934 0.5767 −2.94 0.0042Table 6.1: The estimated oe�ients in the redued MONA house prie relation, using onlyinterest rates, estimated with ordinary leat squares (OLS). Estimated for the sample period1974:2 - 1997:4 or 95 periods. The �rst olumn is the estimate, seond is the standard errorof the estimate, third is the t-statisti and fourth is the p-value.All the oe�ients estimate in Table 6.1 are highly signi�ant, i.e. all p-valuesare less than one perent whih indiates that all oe�ients are signi�antwith a on�dene of > 99%. The F-statisti also indiates that the model issigni�ant with F (2, 92) = 32.72 whih gives a p-value = 1.854e − 11.ROLS OLSInt

R2 0.6920 0.4156
R2

adj 0.6672 0.4029√
σ̂2 0.0169 0.0226Table 6.2: Comparison of the the goodness of �t, R2 and R2

adj
, for the MONA house prierelation (ROLS) and the redued interest rate only regression (OLSInt).The goodness of �t statistis an be seen in Table 6.2, the results from theMONA house prie �t is also displayed for omparison. As expeted there isa onsiderable fall in R2 sine many known explanatory variables are skippedin the redued model. When omparing two regression models with di�erentnumber of oe�ients the R2

adj is a better way of omparing the two �ts than
R2. The di�erene in R2

adj is not as muh as for R2 but is still onsiderable orapproximately 0.165.The Jarque-Bera and Durbin Watson tests indiate whether or not the residualspass the laim of being normally distributed and without any signi�ant auto-orrelation. The Jarque-Bera statisti is JB = 2.42, i.e. the hypothesis that theresiduals are normally distributed an not be rejeted sine p-value= 0.2978.The Durbin Watson test is used to detet any autoorrelation in the residuals,i.e. is the residual et dependant on previous residuals et−1,...,0. The DurbinWatson gives DW = 2.0274 and a p-value = 0.6098 whih means that thehypothesis of no-autoorrelation in the residuals an not be dismissed. Whenomparing Figure 6.1 to the residual plot in Figure 5.5, whih is for the fullmodel, it an be seen that the variane of the residuals seems to be bigger inthe redued model. The left panels in Figure 6.1 also show less dispersion in the
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Figure 6.1: Visual residuals analysis from the e = y − ŷI.luster than in 5.5, whih might indiate autoorrelation. The normality urveis not visually di�erent from the full model. The Cook plot shows that thereare bigger outliers in the redued model, but still nothing to be worried aboutaording to the Di > 1 limit.As expeted there appearers to be some autoorrelation in the residuals, for thisredued regression, however judging by the QQ-plot and the JB it is safe to saythat the residuals an be viewed as approximately normal distributed.Sine no �xing of any explanatory variables is performed the point estimateand predition interval for new observations an be ahieved by using Eq.(5.14),although beause of the autoorrelation the predition will most likely not begood. The results for suh a point estimate along with predition intervals isshown in Figure 6.2.



6.3 Aggregated House Pries 65
Interest OLS Model Out−Of−Sample Prediction
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Figure 6.2: The sample period is the period 1974:q2-1997:q4 and is shown by the green wholeline. The blak whole line represents the atual hange at eah time. During 1997:q4-2001:q4,the out of sample period, the broken green line is the point estimation, while the red linesrepresent a 95% predition interval for future observations.The redued regression model is not as aurate as the MONA house prierelation. It does not represent the data as well as the MONA model and alleonomi intuition used in the MONA is dropped. Despite these shortomingsthe redued model will be used to benhmark the �xed MONAmodel throughoutthis hapter.6.3 Aggregated House PriesThe estimated hange, aording to the MONA house prie model, at some time
t an be expressed as

ŷt = ̂∆ln(kpt) = β̂∗
0 +

k∑

i=1

β̂∗
i xti t = 1, 2, ..., nwhere ŷt is the estimated hange in house pries, from t − 1 to t, by usingthe regression oe�ients β̂∗

i times the orresponding explanatory variable xti.The house prie senario tree, whih is to be produed, is meant to hold thenominal value of house pries not the hange in house pries between periods.The MONA results must therefore be aumulated over the predition period.



66 Applying The MONA house prie relationThe transformation from house prie hange, to aggregated house prie hangewill be disussed in this setion.As was mentioned in subsetion 5.3.2 the di�erened series must be aumulatedto give the atual house prie. Aording to MONA [12℄1 the observed houseprie an be alulated from house prie hange by
ln(kpt) = ∆ ln(kpt) + ln(kpt−1) (6.2)i.e. by adding the house prie hange to last periods house prie.There are two ways of performing this transformation. The �rst method in-volves updating the estimate of aggregated house pries with atual observedhouse pries (kpt−1), this greatly redues the error and gives a very stable pre-dition, i.e. basially a one step predition with updating at eah step. Theseond way, whih will be of interest in this thesis, is omparable to a k steppredition without updating, i.e. the predition is updated not with observedvalues but last periods predited values (k̃pt−1) . Both methods will be givensome disussion, beginning with the one step updating.6.3.1 Updating with observed house pries, k=1Reall that the di�erene between the atual hange and the estimated hangeis the residual, i.e.

et = yt − ŷt

= ∆ ln(kpt) − ̂∆ln(kpt)

= (ln(kpt) − ln(kpt−1)) − ̂∆ln(kpt)When rearranging the terms in the last relation and ln(kpt) is isolated on theleft side it beomes
ln(kpt) = ∆ ̂ln(kpt) + ln(kpt−1) + et (6.3)Whih is the relation for one step updating for the house prie level using themodeled house prie hange. Sine the residuals should follow et ∼ N(0, σ̂2) it iseasy to see that the aggregation should give an expeted value, point estimate,of

ln(k̃pt) = ̂∆ln(kpt) + ln(kpt−1) (6.4)Where ln(k̃pt) represents the point estimate of ln(kpt) for one period and up-dating with last periods observed house pries. The aumulation has no e�et1See page 196.



6.3 Aggregated House Pries 67on the variane of ln(k̃pt), i.e. the only ontribution to the error is from theurrent estimation of ̂∆ln(kpt). Predition intervals for the one step aggregatehouse prie an be alulated in the same way as was done in setion 5.6 us-ing Eq.(5.14). Figure 6.3 shows how the one step method has very little e�etwhen transforming to the aggregate house prie both for the MONA house prierelation and the relatively inaurate interest rates only model.
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Figure 6.3: The graph shows how the umulative house prie develops when updating withatual observed house prie values at eah time. The blak line is the atual house prie, redline is the MONA ROLS model and the green line is the interest rate only regression fromsetion 6.2.
6.3.2 Updating with estimated house pries, k>1If the observed house prie is not available at eah period, or only oasionally,the hange in house prie must be ompounded and last periods estimated houseprie level used for updating.Given some initial house prie, A = ln(kp0), and using the updating formula



68 Applying The MONA house prie relationgiven in Eq.(6.2), the following an be shown:
ln(k̃p0) = A

ln(k̃p1) = A

ln(k̃p2) = A + ̂∆ln(kp2)

ln(k̃p3) = ln(k̃p2) + ̂∆ln(kp3) = A + ̂∆ln(kp2) + ̂∆ln(kp3)

ln(k̃p4) = ln(k̃p3) + ̂∆ln(kp4) = A + ̂∆ln(kp2) + ̂∆ln(kp3) + ̂∆ln(kp4)... =
...

ln(k̃pt) = A +

t∑

i=2

̂∆ln(kpi) where t ≥ 2 (6.5)Eq.(6.5) shows the relation for house prie development when using last periodsestimated house prie as base for the hange for t > 2. Notie that 2 periodsare needed before the house prie an be evaluated. The reason for this startup time is that for the evaluation of ̂∆ln(kpt), the lagged hange in user ost(x3) is needed. More preisely
β̂3

∗
xt3 = β̂3

∗ · ∆(rentet−1 + ssatst−1)

= β̂3
∗ · (rentet−1 − rentet−2 + ssatst−1 − ssatst−2)The relation above shows the alulation of the third term, lagged user ost,the one whih requires the most start up time and therefore deides the startup for the evaluation of both ̂∆ln(kpt) and thereby k̃pt. The onditional formfor aggregate house pries, updating with preditions, is therefore

ln(k̃pt) =





A if t < 2

A +

t∑

i=2

̂∆ln(kpi) if t ≥ 2
(6.6)Eq.(6.6), is very important sine it desribes how to alulate the one path asefor house pries, given an initial index prie of A and using the MONA houseprie relation. In Figure 6.4, upper panel, the development of aggregate housepries using the ompounding method in Eq.(6.6) an be seen for both Interestrate only regression, green line, and the MONA ROLS house prie relation,red line. Comparing the upper panel from Figure 6.4 to the development inFigure 6.3 it an be seen how the aggregation of error has a muh bigger e�et,espeially for the interest only regression whih has a onsiderably higher error,

σ̂, see Table 6.2.The main problem with using the relation shown in Eq.(6.6) is the estimationof the error. The relation shown in Eq.(6.6) is atually the point estimate, i.e.
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Development Of Aggregated Change In House Price
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Figure 6.4: The lower panel shows the development of the modeled variable ∆ln(kpt). Theupper panel shows the aggregated hange without updating. The red line is the MONAROLS, green line is the interest only model desribed in setion 6.2 and blak is the observedhange. The blak vertial line represent the boundary between the in-sample and out-of-sample periods. The point estimates, for the out of sample period, are shown as brokenlines.
the expeted value of the estimation, sine E[et] = 0. If the residual element



70 Applying The MONA house prie relationfor eah estimation is inluded, Eq.(6.6) has the following form
ln(kpt) = A +

t∑

i=2

[ ̂∆ln(kpi) + ei] where t ≥ 2The point estimate represents the expeted value of the foreast and is sim-ple to alulate as was shown above, however the variane of the predition isnon-trivial. The e�et of aggregating the MONA house prie hange estimateswill lead to an ever growing variane of the predition in aumulated houseprie estimates. Simulation was used to evaluate the aggregate variane for theompound method. A detailed disussion of how the simulation is performed isgiven in setion 6.5.6.3.3 Analogy to interest ompoundingBefore ontinuing with the disussion of applying the MONA house prie relationto a tree struture, a short digression to give an intuitive analogy is presented.The method desribed in subsetion 6.3.2 an be ompared to an interest rateompounding relation i.e.
V = A · (1 + r)n (6.7)where A is the initial amount, r is the interest rate and V the total value after

n years. By taking the exponential of Eq.(6.5) it beomes
k̃pt = A ·

t∏

i=2

e
̂∆ ln(kp

i
) where t ≥ 2The term e

̂∆ln(kp
t
) expresses all hanges based from one, sine e0 = 1, byhanging this suh that all hanges are base from zero

rt = e
̂∆ln(kp

t
) − 1where rt is the perentage hange, or rate, from time t−1 to t. It an therefore beseen that the exponential form of Eq.(6.5) is the same as Eq.(6.7) with di�erentrates for eah period.̃

kpt = A ·
t∏

i=2

(1 + rt) where t ≥ 2 (6.8)6.3.4 Numerial ExampleTo demonstrate the aggregate house prie development, using the two methodsmentioned above, i.e. updating with observed values and updating with previous



6.3 Aggregated House Pries 71preditions, a small numerial example has been prepared. All the data used inthe example is �tional.An initial house prie of A = 100 is given at time t = 0. Interest rate time series
It start at t = 0 and ends at t = 6, so the di�erened interest series starts at
t = 1, i.e.

[
I

∆I

∆I−1

]
=

[
I0 I1 I2 I3 I4 I5 I6

∆I1 ∆I2 ∆I3 ∆I4 ∆I5 ∆I6
∆I1 ∆I2 ∆I3 ∆I4 ∆I5 ∆I6

]As was mentioned before the MONA house prie relation needs the laggedhange of interest rates, whih is available at time t = 2, to alulate the esti-mated hange in house pries.The house prie hanges have been alulated using the MONA house priemodel, with all explanatory variables available. The estimated hange an beseen as e
d∆ln (kp) based from one or as r based from zero

e
d∆ln (kp) =

�
1 1 1.03 0.99 1.01 0.97 0.98

�
r = [ 0 0 0.03 -0.01 0.01 -0.03 -0.02 ]Using the exponential form of the ompounding equation given in Eq.(6.8), i.e.using previous preditions as basis for future estimates (ompounding method),gives an aggregate house prie as followsfkp0 = A = 100fkp1 = A = 100fkp2 = A · (1 + 0.03) = 103fkp3 = A · (1 + 0.03)(1 − 0.01) = 101.97fkp4 = A · (1 + 0.03)(1 − 0.01)(1 + 0.01) = 102.99fkp5 = A · (1 + 0.03)(1 − 0.01)(1 + 0.01)(1 − 0.03) = 99.9fkp

6
= A · (1 + 0.03)(1 − 0.01)(1 + 0.01)(1 − 0.03)(1 − 0.02) = 97.90Now imagine that the observed house pries from last period are available for

t = 0, ..., 5 suh as
kp = [ 100 98 99 101 99.5 102 ]Using the one period updating given in Eq.(6.4), taking the exponential andinserting rt gives
k̃pt = e

̂∆ln(kp
t
) · kpt−1 = kpt−1(1 + rt) (6.9)whih when used with the data above gives the following, i.e. estimated housepries with one period updating.



72 Applying The MONA house prie relationfkp0 = 100fkp1 = kp0 · (1 + 0) = 100 · 1 = 100fkp2 = kp1 · (1 + 0.03) = 98 · 1.03 = 100.94fkp3 = kp2 · (1 − 0.01) = 99 · 0.99 = 98.01fkp4 = kp3 · (1 + 0.01) = 101 · 1.01 = 102.01fkp5 = kp4 · (1 − 0.03) = 99.5 · 0.97 = 96.52fkp6 = kp5 · (1 − 0.02) = 102 · 0.98 = 99.96It is apparent when looking at the results from this small example how de-pendant on the previous house prie value the estimates are when using theompounding method. The one step updating gives house pries that are inde-pendent of the last estimated house prie, sine the observed value is used forupdating. A visual demonstration of this independene is given in Figure 6.5and Figure 6.6 for Eq.(6.4) and Eq.(6.2) respetively.
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6.4 Unavailable Explanatory Variables 73To summarize the disussion on aggregation, when aggregating estimated hange,it is better to have observed values for updating than previous estimates. Up-dating, with observed values, is equivalent to resetting the predition error andthereby resetting the aggregate predition variane. Using observed values there-fore results in a muh more aurate predition, where the hange is equivalentto that of the estimated hange.Compounding the hange without updating will result in di�ulties when esti-mating the variane of the predited, aggregated, variable. Further disussionon the estimation of the aggregated variane is given in 6.5.6.4 Unavailable Explanatory VariablesTo apply the MONA house prie relation as a predition model there are somepratial aspets that need onsidering. The most important of these aspets isthe lak of information. When prediting with the MONA house prie relation,the only new explanatory variables available, during the predition, are the onesinluding interest rate. This setion deals with ways of ompensating for missinginformation and disusses what e�ets the lak of new observations have on thepredition.Reall that the MONA house prie relation regression was performed with thedesign, or explanatory, matrix X whih is of size (n×p), where p is the number ofexplanatory variables and n the number of observations. Eah line t ∈ {1, ..., n}in X an be expressed as
Xt =

[
1 xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8

]When prediting for future observations of house prie hange, using the MONArelation, all eight variables must be available. However, as was mentioned beforeonly the interest rates are available in the house prie senario tree predition.Out of the eight explanatory series in X three inlude interest rates (rentet):
xt2 = ∆(rentet + ssatst)

xt3 = ∆(rentet−1 + ssatst−1)

xt4 = rentet−1 + ssatst−1 + 0.01The other �ve explanatory variables, [ xt1 xt5 xt6 xt7 xt8 ] , along with the taxterms (ssats) in [ xt2 xt3 xt4 ] are unavailable when prediting in a house priesenario tree relation. Ways of ompensating for the lak of new observations,when foreasting, must therefore be devised.



74 Applying The MONA house prie relationDealing with Unavailable VariablesIn setion 5.6 the MONA house prie relation was used to predit for newobservations where all the explanatory variables are present for the foreast.When prediting for some response ŷ+
t , where + indiates out-of-sample period,a orresponding vetor of new explanatory variables an be expressed as

X+
t =

[
1 x+

t1 x+
t2 x+

t3 x+
t4 x+

t5 x+
t6 x+

t7 x+
t8

]for the Full MONA model, i.e. when all variables are available. In the houseprie tree generation, where the MONA model is used as basis but only interestrates are available, the vetor of new explanatory variables is expressed as
A+

t =
[

0 0 ∆rente+
t ∆rente+

t−1 rente+
t−1 0 0 0 0

] (6.10)Subtrating the available A+
t from the full X+

t gives the missing variables, trans-posed to
Ft

′

= (X+
t − A+

t )
′

=




1
x+

t1

x+
t2

x+
t3

x+
t4

x+
t5

x+
t6

x+
t7

x+
t8




−




0
0

∆rente+
t

∆rente+
t−1

rente+
t−1

0
0
0
0




=




1
x+

t1

∆ssats+
t

∆ssats+
t−1

ssats+
t−1

x+
t5

x+
t6

x+
t7

x+
t8




(6.11)
The vetor Ft inludes all the variables not available when foreasting. Thereare numerous ways of dealing with missing or unavailable observations in fore-asting. The most simple and straight forward method is to �x the data toa ertain period. This method involves �xing all the missing variables to theobserved values at time T when prediting for T + k periods ahead, i.e �x allthe variables to their value at the predition origin. This method is a bit um-bersome to apply, sine all variables must be aligned at the predition origin.Fixing missing variables to their values at predition origin will likely give agood approximation, to the ase where new data is available for all explanatoryvariables, but only for short predition horizons k.Example of Fixing at Predition OriginGiven an in-sample explanatory matrix X and a oe�ient vetor β̂, an out-of-sample predition is sought for �ve periods ahead, k = 5. All out-of-sample



6.4 Unavailable Explanatory Variables 75data, exept for the interest rates, is not available and will be �xed to the lastin-sample observations at time t = n. The explanatory variables that are �xedat time t = n are therefore
Fn =

[
1 xn1 ∆ssatsn ∆ssatsn−1 ssatsn−1 xn5 xn6 xn7 xn8

]The available out-of-sample available variables are desribed, as before, by
A+

t =
[

0 0 ∆rente+
t ∆rente+

t−1 rente+
t−1 0 0 0 0

]Adding these two vetor, i.e. the available variables A+
t and the �xed variables

Fn, gives the full out-of-sample ovariate matrix XF
t

′ as
XF

t

′

= (A+
t + Fn)

′

=




1
xn1

∆rente+
t + ∆ssatsn

∆rente+
t−1 + ∆ssatsn−1

rente+
t−1 + ssatsn−1

xn5

xn6

xn7

xn8




(6.12)
where t = n + 1, ..., n + k. Using the �xed out-of-sample explanatory matrix toforeast will give predited hange in house prie aording to

ŷ+ = XF β̂∗E�ets Of FixingBy �xing explanatory variables in preditions a ertain onession to the fullmodel is made. The �xed model, for short predition horizons, should provea good approximation to the full model, however for long predition horizonsthe �xed model should be used with muh are sine it is likely to diverge fromthe full model and thereby the observed response. Figure 6.7 show the pointestimate for out-of-sample preditions using the MONA house prie model �xingexplanatory variables at foreast origin, 1997:q4, for the blue line and using allavailable data for the red line. The out-of-sample period proves very bad forthe MONA model sine this is the period whih onsidered to have very "heardlike" behavior. The �xed model seems to be muh more onservative, whih isas expeted sine many of the variables are �xed and are therefore always givingthe same e�et, the interest rates ontrol the movement. Fixing will inreasethe error estimates for the preditions. Fixing variables also makes it hard to
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Figure 6.7: Predition using �xed variables is shown as the blue line. The full model with alldata available as red, blak is the observed hange. Left panel shows the development of pre-dited values for the hange in house pries. The right panel show the aggregate developmentof house pries.evaluate the predition intervals with traditional analytial methods, suh asthose used in setion 5.6. In setion 6.5 a thorough disussion about the erroris given.The �xing method an be used to show the individual e�et interest rates havein the house pries model, sine when the other variables are �xed they at onlyas a onstant. This an be better realized by splitting Eq.(6.12) again up intothe �xed and time dependant vetors
ŷ+

t = A+
t β̂∗ + Fnβ̂∗ (6.13)Notie that the only time dependant e�et is the interest rates in X+

t
A while

Fn only ontributes onstant value throughout the predition, i.e. for t = n +
1, ..., n + k.6.4.1 Modeling Explanatory VariablesAn alternative to �xing the variables is to model the explanatory variablesand use the predited value, of those models, as the unavailable explanatoryvariables. The degree of sophistiation for modeling of the explanatory variablesan also vary greatly, are must however be taken sine not all of the proessesare stationary. Having to model the explanatory variables also inreases the



6.4 Unavailable Explanatory Variables 77omplexity of the predition model and thereby redues the usability of theapplied senario house prie tree.The main dissuasive fator, for modeling all the explanatory variables, remainshowever that proper eonomi models for these variables tend to have a hainreation e�et, i.e. eonomi models of the explanatory variables need othervariables that also need estimation, requiring new models for those variablesand so on. It is therefore essential to make a sensible ompromise betweenmodel preision and usability. Simple models for the explanatory relationshipsan be derived, however it is arguable whether they are bene�ial or only in-rease omplexity and even the unertainty. The explanatory, in-sample data isdepited in Figure 6.8. As an be seen there is no simple general way of model-ing all these relationships. For example a very simple model ould be devised toapture the the expeted hange in onsumption de�ator xt5 (dpcpe) as a timedependant drift model, i.e.
x̂t5 = θ̂0 + θ̂1thowever to stop the drift from going below zero more elaborate modeling wouldbe required.The deision of modeling explanatory variables was abandoned sine it would beto time onsuming and would have to be done with great are to avoid bad input.Involved modeling would also inrease the omplexity and derease usability ofthe �nal senario tree foreasting produt. The method of �xing variables atpredition origin was therefore used.
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Figure 6.8: The eight series that are �xed. The blak line shows the development of theseries during the sample period. The broken blue line is the mean of the series, broken redlines are µ±σ or mean plus minus one standard deviation. To see what atual eonomi seriesx represents, in the MONA model, see subsetion5.4.2.



6.5 Estimating the Error 796.5 Estimating the ErrorIn this hapter topis regarding the extension of the MONA house prie modelto an aggregated house prie tree struture have been disussed. To ahievethe senario tree struture some onession have had to be made to the originalMONA house prie relation. These onessions have raised question as to howthe error should be estimated. This setion disusses the omponents ontribut-ing to the error and use simulation methods to quantify the predition intervalswhih will give the senario tree preditions more redibility.It should be obvious that the ations desribed in both setion 6.4, i.e �xingunavailable variables, as well as aggregating the estimated hange, disussed insubsetion 6.3.2, will ause an inrease in error for the estimation of preditedvalues. To help quantify and benhmark the house prie preditions three mod-els have been devised.� Model 1: The ideal model. Model for aggregate house prie hange, usingthe MONA house prie model.� All observations available.� Model 2: The applied model. Model for aggregate house prie hange,using the MONA house prie model.� Only interest rates available, other fator �xed at predition origin,see Eq.(6.12).� Interest Only model: The interest only regression performed in setion6.2, i.e. the interest rates modelde with new oe�ients.� Only interest rates explanatory variables needed and are available.Both the predited estimated hange and the predited aggregate house priewill be investigated for all three models. The most interesting results should befrom Model 2 when aggregating the house prie, i.e. sine in that model boththe �xing and the aggregation is applied, also sine Model 2 with aggregatehouse pries is the format that an be applied to the senario tree.An expeted distribution of predited hange and the predited aggregate houseprie for the three models is shown in Figure 6.9. For the predited estimatedhange, in house pries, a �xed variane is expeted, sine no diret reursive orfeedbak relationship is present in the estimation of the hange. The expetedoutome for the predited hange in house pries is depited in Figure 6.9 (a).



80 Applying The MONA house prie relationIn Figure 6.9 (b) the expeted development for aggregate house prie is shown,where the variane is expeted to inrease, mainly beause of the feedbak ef-fet of previous predited values without updating, see subsetion 6.3.2. Thisaggregation will be di�erent for the three models sine di�erent assumptions aremade in eah model, e.g. the �xing of explanatory variables in Model 2 shouldat to inrease the variane even more.�
ˆ ln( )ty kp= ∆

T 1T+

ŷµ

2T+ 3T+

�ln( )kp

T 1T+

�
ln( )kp

µ

2T+ 3T+(a) (b)Figure 6.9: Expeted error behavior for aggregated house prie hanges without updating(b). Panel (a) shows the error given by the estimated hange at eah time.6.5.1 BootstrappingLinear regression models are often used to predit future values. The produtof suh a predition is a point estimate and often a predition interval, suhas was disussed in setion 5.6. The method desribed in setion 5.6 is ananalytial method that uses the variane of the regression to give preditionintervals. When deviation are made to the traditional regression framework,suh as �xing variables as is done in Model 2, the analytial methods desribedin 5.6 no longer apply. Calulations for deriving a formula for the preditioninterval an be made, however the more hanges that are made from the originalframework, the harder and more error prone will its estimation be.The ideal tool for estimating predition intervals, when onsiderable adjustmentsto the original model have been made, is to use so alled bootstrapping methods.The idea behind bootstrapping is to sample from the original data sets to reaterepliated data sets. From the repliated data sets the variability of the variablesof interest an then be estimated without having to dedut long error proneanalytial formulas for the variane. For more information about bootstrapping



6.5 Estimating the Error 81methods in linear regression models see Davidson and Hinkley [2℄2.As was mentioned before the variane analysis will be split into two main se-narios. Firstly the variane for the predited house prie hange, for all threemodels will be estimated. Seondly the hanges will be aggregated by samplingthe in-sample data, i.e. bootstrapping.Predition Interval EstimationThe variane in regression models omes from two terms, i.e. the regressionoe�ients and the residual
σ2

T = σ2
R + σ2

E (6.14)Where σ2
T , σ2

R and σ2
E are the total, regression and error or residual varianes,respetively. The estimate of σ2

E is alulated as σ̂2
E see Eq.(4.21) for the alu-lation in the MONA restrited ordinary least squares (ROLS) ase.Sine the ROLS estimator β̂∗ is a linear ombination of the observations, it anbe seen that β̂∗ is normally distributed with mean β∗ and ovariane matrix

Σβ∗ , whih for ROLS is given as
Σβ∗ = σ2M∗(X ′X)−1M∗′where

M∗ = I − (X′X)−1R′(R(X′X)−1R′)−1RThe diagonal of Σβ∗ gives the variane of the regressors, σ2
R. The square rootof the diagonal of Σβ∗ gives the standard error of the regressors, expressedas se(β∗). Reall that the ROLS oe�ients, β∗, were estimated as β̂∗ anddisplayed in Table 5.5, giving the point estimate and standard error displayedas Estimate and Std.Error respetively. The results are repeated in Table 6.3 .Estimate Std.Error

Int 0.0663 0.0192
β̂1

∗ 0.3074 0.2122
β̂2

∗

−3.7811 0.4358
β̂3

∗

−0.7791 0.4468
β̂4

∗

−0.7927 0.3187
β̂5

∗ 0.7709 0.3575
β̂6

∗ 0.1949 0.0671
β̂7

∗

−0.1026 0.0268
β̂8

∗ 0.0554 0.0282Table 6.3: The oe�ient part of Table 5.1 repeated.2See e.g. hapter 6.



82 Applying The MONA house prie relationThe estimated variane, σ̂2
R and σ̂2

E therefore represent the variane in the dataor the oe�ients and the residual error for the model, respetively. Whenbootstrapping these estimated variane are used to reate empirial distributionthat repliate the behavior of the in-sample data and the model. The empirialdistributions an then be sampled to simulate results of the regression model,what is more speial onditions an be applied and their e�ets observed bysimulation, e.g. how the �xing of some of the explanatory variables e�ets thedevelopment of the predition intervals when foreasting.
6.5.2 Simulating Change In House PriesThe �rst simulation was done without aggregating the estimated house priehange. The main objetive of this simulation is to ahieve predition intervalsfor Model 2, i.e. estimated predited house prie hange when �xing unavailableexplanatory variables. Simulations were also performed for the predited houseprie hange for Model 1 and the Interest rate only regression. The Model 1and Interest only simulation an validate the simulation method by omparingthe results to the ones already alulated by analytial methods in setions 5.6and 6.2. The method used to perform the estimates is presented in Algorithm1.Algorithm 1 estimates the predition for the three models by bootstrapping. Forthe preditions where all explanatory variables are available α and γ, i.e. Model1 and Int Only respetively, no variane of the data needs to be introdued, theresidual variane is however added. Model 2 is estimated by

δr,n+l = A+
n+lβ̂

∗ + Fnβ̂s
r + eδ

rHere ertain data is available A+
t and does therefore not need to added variane.The �xed omponent Fnβ̂s

r is however altered aording to empirial distribu-tion, reated by the observed dispersion of the in-sample data. More preiselyby sampling β̂s
r ∼ N(β̂∗, se(β̂∗)2). The model is then expeted to behave likemodel 1 and the same residual error term an be applied. The simulation startsat the predition origin n where Fn is �xed, k desribes the predition horizon.Eah predition at time t = n+ l is simulated R times. The results for the threepreditions, (α, δ, γ), are then summarized by taking the mean and standard



6.5 Estimating the Error 83Algorithm 1 Re-sampling and bootstrapping of predition for hange in housepries.
X+

t desribes all explanatory variables at time t.
A+

t desribes available variables at time t, see Eq.(6.10).
Fn desribes the explanatory variables �xed at time n, see Eq.(6.11).
αr,t predited full model response, Model 1, at time t and simulation r.
δr,t predited �xed response, Model 2, at time t and simulation r.
γr,t predited Interest rate only response, Model 3, at t and simulation r.
n Predition origin.
k Predition horizon.
R Number of simulations done.for l = 1 to k dofor r = 1 to R doSample the MONA residual error as eα

r ∼ N(0, σ̂2
E)Sample the MONA residual error as eδ

r ∼ N(0, σ̂2
E)Sample the Interest rate only residual error as eI
r ∼ N(0, σ̂2

EI)Sample the oe�ients as β̂s
r ∼ N(β̂∗, σ̂2

R)

αr,n+l = X+
n+lβ̂

∗ + eα
r

δr,n+l = A+
n+lβ̂

∗ + Fnβ̂s
r + eδ

r

γr,n+l = A+
n+lβ̂

I + eI
rend forend fordeviation for eah predited period l, e.g. these alulations for δ are

E[δn+l] = δ̄n+l =
1

R

R∑

i=1

δi,n+l

V ar(δn+l) =
1

R

R∑

i=0

(δi,n+l − δ̄n+l)
2

se(δn+l) =
√

V ar(δn+l)ResultsSimulations were performed using Algorithm 1, where the omponent of Ft are�xed at n = 1997:q4, i.e. the last in-sample period and then F1997:q4. Thepredition horizon was set to k = 10 giving the predition horizon date at n + k



84 Applying The MONA house prie relation= 2000:q2. Eah predition was performed R = 10.000 times. The results forthe three models is displayed in Table 6.4.The most interesting result from Table 6.4 is the omparison of varianes for thethree methods. From Table 6.4 it an be seen, as was speulated in Figure 6.9(a), that the variane of the predition of the estimated hange in house prie isa onstant. The estimated variane for Model 1 is E[se(α)] = 0.0169, for Model2 using �xing E[se(δ)] = 0.0332 and for Interest Only model E[se(γ)] = 0.0226.Whih for Model 1 and Interest Only are the same as the σ̂MONA and σ̂INTthat were estimated earlier, see Table 6.2.The results are displayed in Figure 6.10 were the larger predition variane, forthe same on�dene interval, an be learly seen for Model 2. The analytiallyalulated point estimate and on�dene intervals are also shown in Figure 6.10and it an be seen that the simulated intervals and point estimates of Model 1and Int Only �t them perfetly.Mean Standard Deviationi E[αi] E[δi] E[γi] se(αi) se(δi) se(γi)1998 Q1 0.0194 0.0193 0.0153 0.0167 0.0333 0.02261998 Q2 0.0175 0.0204 0.0151 0.0169 0.0333 0.02271998 Q3 0.0141 0.0212 0.0164 0.0169 0.0330 0.02261998 Q4 0.0134 0.0219 0.0168 0.0168 0.0329 0.02241999 Q1 0.0058 0.0138 0.0083 0.0170 0.0329 0.02271999 Q2 0.0073 0.0185 0.0121 0.0170 0.0331 0.02271999 Q3 −0.0066 0.0063 0.0011 0.0170 0.0329 0.02271999 Q4 −0.0067 0.0078 0.0018 0.0168 0.0336 0.02252000 Q1 −0.0227 0.0013 −0.0008 0.0168 0.0333 0.02262000 Q2 −0.0159 0.0056 0.0037 0.0168 0.0342 0.0226Table 6.4: Results for the simulation aording to Algorithm 1, α ,δ and γ desribe Model1, Model 2 and Int Only respetively. Predition horizon k = 10 .6.5.3 Simulating The Aggregate Change In House PriesThe main onlusion taken from the previous simulation is that the varianefrom a predition of house prie hanges with �xing aording to Model 2 willresult in normally distributed value with standard deviation se(δ) = 0.0332 andthat the variane is �xed for all predition horizons (k).Using the results from the previous simulation the e�ets the aggregation ofpredited values has on the variane an now be inspeted.
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Figure 6.10: Left panel shows the simulated �xed Model 2 (blue dots) and MONA Model 1(red dots) with 95% on�dene of the predition interval, the broken blue line is for Model 2while the broken red line is for Model 1. Right panel show the simulated Interest Only (greendots) model with 95% on�dene of the predition interval. Blak whole line is the observedhange.As was disussed in setion 6.3, foreasting house pries without updating, i.e.using previous foreast as bases will lead to an inrease in predition variane.Here the inreasing predition variane will be estimated by way of bootstrap-ping. By using the aggregation formulas for house pries derived in Eq.(6.5) thehouse prie will be given at eah time from the estimated house prie hange.An empirial distribution will then be generated from the house prie at thattime and a sample from that distribution used as basis for next periods houseprie, see Algorithm 2 for more detail.
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Algorithm 2 Estimating variane in aggregate house prie preditions.
yrt Aggregate house prie at time t simulation r.
urt is any one of three models from Algorithm 1 at time t and rep r.
µ̂yt

mean value of house prie at time t over R.
σ̂yt

standard error of house prie at time t over R.
A initial ln(house prie) at time n, i.e. ln(kpn)
n Predition origin.
k Predition horizon.
R Number of simulations done.for l = 0 to k dofor r = 1 to R doif l = 0 then

yrn = AelseSample last house prie yr,n+l−1 as p∗r ∼ N(µ̂yl
, σ̂2

yl
)

yr,n+l = ur,n+l + p∗rend ifend for
µ̂yn+l

= E[y·,n+l]
σ̂yn+l

= se(y·,n+l)end for



6.5 Estimating the Error 87ResultsAlgorithm 2 was used to investigate the development of house prie preditionintervals. The output from Algorithm 1 was used as input to the simulationperformed listed below. The simulation repliation was set to R = 10.000 forAlgorithm 2 and the initial house prie A = ln(kpn) or A = ln(kp1997:4).Programming was performed with the statistial pakage R, the soure ode anbe seen in Appendix C.2. The results for the three models is displayed in Table6.5. Mean Standard Deviation
t Model 1 Model 2 Int Only Model 1 Model 2 Int Onlyn+0 1997 Q4 0.2370 0.2370 0.2370 0.0000 0.0000 0.0000n+1 1998 Q1 0.2562 0.2566 0.2523 0.0167 0.0331 0.0228n+2 1998 Q2 0.2736 0.2769 0.2669 0.0236 0.0471 0.0322n+3 1998 Q3 0.2872 0.2975 0.2829 0.0291 0.0566 0.0394n+4 1998 Q4 0.3009 0.3206 0.2998 0.0337 0.0658 0.0455n+5 1999 Q1 0.3067 0.3351 0.3084 0.0378 0.0737 0.0507n+6 1999 Q2 0.3139 0.3547 0.3209 0.0415 0.0811 0.0559n+7 1999 Q3 0.3070 0.3594 0.3224 0.0446 0.0877 0.0604n+8 1999 Q4 0.3004 0.3650 0.3238 0.0473 0.0940 0.0639n+9 2000 Q1 0.2771 0.3664 0.3220 0.0498 0.0996 0.0674n+k 2000 Q2 0.2604 0.3710 0.3247 0.0528 0.1053 0.0716Table 6.5: Results for the simulation aording to Algorithm 2 using Model 1, Model 2 andInt Only. Predition horizon k = 10 . First observation 1997 Q4 is not a foreast, initial valueof house pries.The data in Table 6.5 show the mean and standard deviation for the preditedaggregate log(house prie), i.e. ln(k̃pt). Comparing the estimated hange ofhouse prie ̂∆ln(kpt) , i.e. dlog(house prie), in Table 6.4 to those in Table6.5 it an be seen that the variane inreases with predition horizon k, as wasexpeted see e.g. Figure 6.9.The right panel of Figure 6.11 shows how the preditions progress from fore-asting k = 1 period ahead up to k = 10 periods ahead. Although the pointestimate varies greatly the variane of the preditions are only dependant onthe predition horizon or k. The dependane on k is as expeted sine it is anaggregation of the �xed variane of the estimated hange in house pries, shownin setion 6.4.The right panel of Figure 6.11 shows the, k = 1 and k = 10, predition distri-butions for all three models, entered around zero at k = 1 and k = 10. Eah



88 Applying The MONA house prie relationpredition horizon in the out-of-sample data from k = 1, ..., 10 has distributionas is shown in Figure 6.12, for Model 2, entered around zero, i.e. the point esti-mate at any time. Finally the preditions and the predition intervals are givenfor k = 10 �xing n = 1997:q4 in Figure 6.13 with a 95% on�dene intervals forthe predition.
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Figure 6.11: The left panel shows distribution of the foreasted house prie for all threemodels, for one period ahead k = 1 and seondly for ten periods ahead k = 10. The rightpanel show the same distributions as the left only entered around zero.
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Figure 6.13: The left panels show the estimated hange in house pries with ±1.98σ whihorresponds to about 95% on�dene predition intervals. The right panels show the estimatedaggregate house prie development also with 95% on�dene predition intervals.



90 Applying The MONA house prie relation6.5.4 Summary of ResultsThe result from this error estimation is that in the ase of prediting for thehange in house prie a �xed variane an be expeted, irrelevant of the pre-dition horizon k. The predition an therefore be expeted to have an normaldistribution around it�s point estimate with a variane listed in Table 6.6. WhenseMONA no �xing of explanatory variables, Model 1 0.0169MONA with �xing ertain variables to predition origin n, Model 2 0.0332Interest rate only Regression 0.0226Table 6.6: The expeted variane for the predition of hange in house pries, ŷt = ∆̂ lnkpt.aggregating the estimate hange, i.e. alulating the atual house prie withoutupdating the predition is also normally distributed around the point estimate,sine the point estimate is essentially the aumulation of the hange in thehouse prie point estimate. The variane however inreases with an inreasein predition horizon k. For any out-of-sample predition of aggregate housepries, the predition variane an be expeted to be a funtion of k as listedin Table 6.4. The results for the Fixed MONA model are summarized in Figure6.14, for k = 1, ..., 20.When omparing the three models the �xed model will give the highest uner-tainty of the three models when foreasting. The interest rate model is seondand the MONA model with all explanatory variables is likely to give the mostseure predition.

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

Expected Prediction Intervals

 k − Prediction Horizon

S
ta

nd
ar

d 
E

rr
or

MONA Out−Of−Sample fixing at prediction origin

Change
Aggregate

Figure 6.14: The expeted variane for the Fixed MONA model as a funtion of preditionhorizon.



Chapter 7House Prie Dynamis IIIStatistial Model
7.1 IntrodutionIn this hapter a new redued statistial model is devised, using the error-orretion model format and the data from MONA. This new model will benoted as HPDIII, the new model fouses more on modeling the house prie tointerest rate relationship than attempting to develop a model whih ompletelyenapsulates the eonomi long term relationship.In setion 7.2 the outline of the Box-Jenkins statistial modeling proess ispresented, the setion also gives a brief disussion of whih steps in the Box-Jenkins framework have been investigate previously in this thesis. Setion 7.3introdues the data and uses orrelation plots to deide the level of di�ereningand beginning level of lags to inlude in the model. Setion 7.4 disusses howthe model is redued from the initial guess, in setion 7.3, to a usable modelinluding only the relevant terms, the parameters of the �nal model are alsoestimated, the �t plotted and goodness of �t investigated. In setion 7.5 theresiduals are investigated as in previous hapters to assert the model quality. Fi-nally in setion 7.6 a short summary is presented on what bene�ts the HPDIIIposes over pervious models.



92 House Prie Dynamis III Statistial Model7.2 Statistial ModelingA method of modeling based on the Box-Jenkins modeling approah is ap-plied to systematially identify, estimate and validate a statistial model forhouse prie development. A �ow diagram, illustrating the Box-Jenkins model-ing proedure, is shown in Figure 7.1. The Box-Jenkins method is desribed bythe following main ideas:1. Identi�ation of the data whih involves asking question suh as, what arethe main fators, does the data need to be transformed, is the stationarityassumption a reasonable one.2. Chose a suitable model type, to �t the data.3. Estimate Parameters in the seleted model.4. Validate model, residual analysis and out of sample �tting.If validation of the model fails something has gone wrong and the model mustbe reevaluated.Throughout this thesis some of these rules have been applied already withoutmentioning the Box-Jenkins framework diretly. For example the identi�a-tion of the fators in the MONA house prie relation, as well as theoretialmodel desribing house prie development were disussed in setions 5.3.1 and5.4, respetively. These ations are equivalent to the �rst step in Box-Jenkins.Estimation of parameters and residual validation has also been performed forprevious models.The goal of this hapter is to develop a model based solely on previous levels, anddi�erened levels, of house pries and interest rates. In doing so the theoretialframework mentioned in setion 5.4 is largely dropped. The statistial modelof hoie for this hapter is hosen as the error-orretion model, inspired bythe use in MONA. The ECM allows for the inlusion of the levels as well as thestationary di�erenes, whih ensures the long term trend is aptured as well asshort term dynamis.The HPDIII model is meant to improve on the shortomings of the reduedMONA models, i.e. the interest only regression model and the MONA �xedmodel, from hapter 6. All the house prie models will be ompared in the nexthapter, �rst for single branh and later for a senario trees.
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1. Identification

  (Specifying the model order)

2. Estimation

  (of the model parameters)

Theory 

physical insight

Data

Applications using model

(prediction, simulations, etc.)

3. Model Checking

   Is the model OK?

Yes

No

Figure 7.1: Box-Jenkins framework for statistial model building. Adopted from Madsen[9℄, page 148.7.3 Data and Identi�ationIn hapter 5 it was shown that there exists a negative relationship between housepries and interest rates. This setion investigates the relationship betweeninterest rates and house prie further, with the intention of onstruting anerror orretion model for the hange in house pries.In Figure 7.2 the level and �rst di�erene of the series House Prie: ln(kpt) andinterest rates: rentet are shown. Both series are I(1), i.e stationary after onelevel of di�erening. The orrelation between the levels and di�erened values



94 House Prie Dynamis III Statistial Model
Levels

Time

ln
(H

ou
se

 P
ric

e)

1975 1980 1985 1990 1995 2000

−
1.

0
−

0.
5

0.
0

0.
5

Difference

Time

1975 1980 1985 1990 1995 2000

−
0.

06
0.

00
0.

04

Time

R
en

te

1975 1980 1985 1990 1995 2000

0.
03

0.
05

0.
07

Time

1975 1980 1985 1990 1995 2000

−
0.

01
5

0.
00

0
0.

01
5

Figure 7.2: Upper left panel shows the ln(kp) i.e. log house pries. Lower left panel showsthe interest rates rentet, the right panels show the hange in the levels on the left or thedi�erened series. The data spans 1974:q3-2001:q1.is shown in Table 7.1, there it an be seen that the respond variable ∆ln(kpt)shows some orrelation to all of the three series.
∆ln(kpt) −∆rentet ln(kpt) −rentet

∆ln(kpt) 1.000
−∆rentet 0.500 1.000

ln(kpt) 0.251 −0.115 1.000
−rentet 0.356 0.050 0.835 1.000Table 7.1: Correlation matrix for the four series used.Investigating the orrelation further, the autoorrelation and ross-orrelationfuntions are shown in Figure 7.3. The graph diagonal in Figure 7.3 representsthe autoorrelation of the four series, while the o�-diagonal represents the or-relation between the row and olumn series, alled ross orrelation. It an beseen from from the top line in Figure 7.3 that some signi�ant orrelation be-tween ∆ln(kpt) and all three other series is present. There also seems to besome autoorrelation as an be seen in the top left panel.



7.3 Data and Identi�ation 95From Figure 7.3 an initial guess to the level of the model an be made asinluding 3 lags from ∆ln(kpt), 2 lags from ∆(rentet), 1 lag of ln(kpt) and 1lag of rentet.
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Figure 7.3: Cross Correlations between the lags of the four series, diagonal is the auto or-relation funtions. KP : {ln(kpt)}, DKP : {∆ ln(kpt)} , RE : {rentet} and DRE : {∆rentet}.



96 House Prie Dynamis III Statistial Model7.4 The ModelUsing the information from Figure 7.3 the initial model an be expressed as
∆ln(kpt) = θ0 + θ1∆ln(kpt−1) + θ2∆ln(kpt−2) + θ3∆ln(kpt−3) + θ4∆(rentet)

+ θ5∆(rentet−1) + θ6∆(rentet−2) + θ7 ln(kpt−1) + θ8rentet−1 + εtWhere the parameter of interest is θ estimated by OLS to give E[θ] = θ̂.Some of the parameters in the initial model may be unneessary, by estimatingthe parameters and removing those whih are not signi�ant, reevaluating themodel, and removing the parameters again, a model inluding only relevantterms an be derived, the proess is desribed in Example 7.1.Example 7.1 (Estimation of initial model)Coeffiients:Estimate Std. Error t value Pr(>|t|)(Interept) 0.031454 0.014811 2.124 0.03660 *Off$DKP.1 0.260881 0.104628 2.493 0.01459 *Off$DKP.2 0.242424 0.105489 2.298 0.02401 *Off$DKP.3 -0.009673 0.084247 -0.115 0.90886Off$DRE -4.115852 0.502050 -8.198 2.26e-12 ***Off$DRE.1 -0.332784 0.661691 -0.503 0.61631Off$DRE.2 0.879325 0.629211 1.398 0.16590Off$KP.1 -0.029084 0.010857 -2.679 0.00887 **Off$RE.1 -0.532613 0.255111 -2.088 0.03981 *---Signif. odes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Residual standard error: 0.01872 on 85 degrees of freedomMultiple R-Squared: 0.6294, Adjusted R-squared: 0.5945F-statisti: 18.05 on 8 and 85 DF, p-value: 1.813e-15The R output above is for the estimation of the oe�ients in the initial model,the stars show the level of signi�ane alulated from the p − value. Theparameter that seems to be ontributing the least to the model is Off$DKP.3or θ3 ln(kpt−3). The next step would be to remove Off$DKP.3, re-estimate theparameters, and removing the "worst" parameter if there are still non-signi�antparameters, until all the parameters left are signi�ant.
2



7.4 The Model 97Using the proess of eliminating non-signi�ant parameters as desribed in Ex-ample 7.1, the following �nal model was derived
∆ln(kpt) = θ0 + θ1∆ln(kpt−1) + θ4∆(rentet)

+ θ7 ln(kpt−1) + θ8rentet−1 + εt (7.1)Estimation for the parameters in the �nal version of the HPDIII model,Eq.(7.1), are displayed in Table 7.2. The omparison of goodness of �t sta-Estimate Std. Error t value Pr(>|t|)(Interept) θ̂0 0.0384 0.0140 2.75 0.0073
∆ln(kpt−1) θ̂1 −0.0343 0.0106 −3.25 0.0017

∆(rentet) θ̂4 −4.0416 0.4799 −8.42 0.0000
ln(kpt−1) θ̂7 0.3421 0.0753 4.54 0.0000
rentet−1 θ̂8 −0.6326 0.2434 −2.60 0.0109Table 7.2: The estimated oe�ients for the HPDIII model based on ECM for hange inhouse prie, estimated with ordinary leat squares (OLS). For the in-sample period 1974:q2- 1997:q4 or 95 periods. First olumn is the estimate, seond is the standard error of theestimate, thirdly is the t-statisti and fourthly is the p-value.tistis is displayed in Table 7.3. From the goodness of �t it an be seen thatthe HPDIII model �ts the data muh better than the naive interest rate onlyregression, see setion 6.2, and not far from the intriate MONA model, seehapter 5. The three models are ompared graphially in Figure 7.4, where itROLS OLSInt HPDIII

R2 0.6920 0.4156 0.6028
R2

adj 0.6672 0.4029 0.5849
σ̂ 0.0169 0.0226 0.0189Table 7.3: Comparison of the the goodness of �t, R2 and R2

adj
, for the MONA house prierelation (ROLS) and the redued interest rate only regression (OLSInt) as well as the HPDIIImodel estimated above.an be seen that HPDIII learly manages to adapt better to the data thanthe interest only regression model. The HPDIII also seems to adapt better tothe out of sample data anomaly, whih an be explained by the autoregressivenature of the HPDIII model.
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Figure 7.4: The bottom graph shows the development of the modeled variable ∆ln(kpt).The upper graph shows the aggregated hange without updating. The red line is the MONAROLS, green line is the interest only model desribed in 6.2, blue is the HPDIII model andblak is the observed hange. The blak vertial line represent the boundary between thein-sample and out-of-sample periods.



7.5 Residual Analysis 997.5 Residual AnalysisSame as in setions 5.5.1 and 6.2 the residuals are investigated to assert themodel dependability. The residual graph an be seen in Figure 7.5. From theresidual plot there appears to be no apparent auto orrelation from examiningthe left panels. The ook plot shows that no outliers are ausing trouble andthe QQ-plot, indiates normality.
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Figure 7.5: Visual residuals analysis from the e = y − ŷECM.The two test performed in previous hapters i.e. DW-test and JB-test, seesubsetion 5.5.1, are also onduted to investigate the behavior of the residuals.The Durbin Watson gives DW = 1.8017 and a p-value = 0.1603 whih meansthat the hypothesis of no-autoorrelation in the residuals annot be dismissed.The fat that there may be autoorrelation in the residuals an be explainedby the fat that important systemati e�et suh as inome and stok of housesare omitted. The Jarque Bera test gives a value JB = 0.1075 with a p-value =
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0.9477 whih indiates the hypothesis that the residuals are normally distributedan not be dismissed for any reasonable level of on�dene. The JB along withthe QQ-plot indiates that the residuals an be onsidered normal.The residual for the HPDIII and interest only regression is shown in Figure7.6, upper panels. There appears to be quite a bit of autoorrelation in thenaive Interest rate only regression model, see lower left panel. The HPDIIIresidual shows signs of small signi�ant autoorrelation on lags 2 and 5. Theautoorrelation an be remedied by modeling the residual, that sort of modelingis alled moving average (MA). However, sine there is very little autoorrela-tion, in HPDIII and adding a MA term inreases omplexity onsiderably thesmall autoorrelation is disregarded. In the ase of the interest only regressionmodel, MA terms would have to be added to given a sensible predition. Formore information about MA see Madsen [9℄.
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7.6 Summary 101a lower estimated error, HPDIII = 0.0189, than the Fixed MONA, Fixed =0.033. The HPDIII model also has some pratial advantages to the FixedMONA model, suh as it is not dependant on as many variables. The downfallsof the HPDIII are that is seems to show some signs of autoorrelation and itneeds alibration to the predition origin, same as the Fixed MONA.The next hapter ompares all the models and applies the best ones to a senariotree struture.
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Chapter 8
Validation and Results

8.1 IntrodutionIn previous hapters numerous house prie models, most based on the MONAhouse prie relation have been devised. So far model heking has mainly beenperformed by residual analysis. Another important aspet of model heking isalled validation, i.e. heking the predition performane of the models. Themain purpose of this hapter is to remove the benhmark models by ompar-ing the models through validation and then apply the models whih pass thevalidation to a house prie senario tree.In setion 8.2 the models are ompared with di�erent predition horizons for asingle path or time line, the predition apabilities of the di�erent models aredisussed and the pros and ons of the models listed. Setion 8.3 extends theone path results by implementing the models whih apture house prie behaviorfrom interest rates. Using interest rate senario trees, house prie senario treesare produed. The house prie trees are validated using observed interest ratesand house pries. Finally in setion 8.4 the results of the hapter are summarizedfor both ases.



104 Validation and Results8.2 One Path ValidationIn this setion the four models, inspeted in previous hapters, i.e. the fullMONA, the Fixed MONA, interest only regression and HPDIII (ECM) areompared for one path, or time line, validation. The purpose of the validationis to see how the predition hanges with inreased predition horizon and toompare the model together. The models that pass the validation will then beimplemented to a senario tree struture in the next setion.Validation involves seeing how the model performs, given new explanatory vari-ables, i.e. how well the model predits for new explanatory observation. Thissort of validation was performed in setion 5.6 where, beause of disrepanybetween the in-sample and out-of-sample data, the model was shown to deliverpoor results.Sine the out-of-sample data is not suited for validation, see subsetion 5.6.1,the in-sample period is used. In-sample validation has some disadvantages andnumerial results should be taken with reserve. The main downfalls of using thein-sample period is that it is the same period as used for parameter estimation,whih will give a very good �t for validation, in fat a too good or misleading�t.Although the in-sample numerial results of the validation should not be takenat fae value, the validation an still give indiations to the quality of the models.More preisely the validation an be used to ompare the models to eah other,the in-sample validation will also show whih models are truly apturing thehouse prie by hanging the initial point of the validations.8.2.1 The ValidationThe validation is performed as follows, all the models have all explanatory infor-mation available. Instead of using the whole period from 1974:q2-1997:q4, thedata is inremented in small periods and a new predition is performed, this wayit an be seen whether the model aptures the house prie or diverges, whihwould be a ause of model inadequay. The error between the observed houseprie and the predited value is measured by the mean square error (MSE), seeEq.(5.15). Two ways of measuring the error are used, �rst the MSE is alu-lated as funtion of di�erent predition horizon k, i.e. how muh error an beexpeted when prediting 1, ..., k periods ahead. Seondly the sum of the meansquare error or the total error of the k predition is alulated.



8.2 One Path Validation 105Two di�erent predition horizons are onsidered for the in-sample validation,�rst a k = 5 period ahead predition. The predition origin is also inrementedby one period through the in-sample period, also known as a rolling time window.The seond predition is a long term or k = 20 predition, also inremented byone period through the in-sample period.The results for the �ve steps ahead in-sample predition, or validation, an beseen in Figure 8.1. Notie how the rolling window progresses through the in-sample data, prediting k = 5 periods ahead, then inrementing the preditionorigin and performing a new predition. From 8.2 it an be seen that the greenline or interest only regression seem not be apturing the dynamis of the houseprie, but only the upward trend of the model. The red and yan, full MONAand HPDIII respetively, seem to apture the drift and the dynamis relativelywell throughout the in-sample predition. The blue line or the Fixed MONAmodel also seems to apture the house prie well, for suh a short horizon. TheFixed MONA however shows that it does not ope well with dynami hanges,whih an be expeted sine 5 of 8 explanatory variables are �xed. The results
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Figure 8.1: The in-sample foreast or validation for a horizon k = 5. The red line is the FullMONA model, the blue line is the Fixed MONA model, the green line is the interest Onlyregression and the yan line is the HPDIII or ECM model.from Figure 8.1 are summarized graphially in Figure 8.2. The left panel shows asatter plot where eah dot represent the aggregate squared error for a preditioninitiated at time t, the lines show the mean error that an be expeted for a
k = 5 predition. The green line, interest only regression, gives the highest error
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Figure 8.2: Left panel shows the aggregate sum of squares for eah foreast, the linesshow the mean of those foreasts. The right panel show the estimated mean square error forpredition horizon l=1,...,k.followed by HPDIII and Fixed MONA shown as yan and blue, respetively. Thered line, whih represent the Full MONA model, has the lowest error.The right panel of Figure 8.2 shows the mean square error, from the preditionsin Figure 8.2, expressed as a funtion of predition horizon. The error inreaseswith predition horizon, for all the methods, as an be expeted. The interestonly method however seems to be giving the highest error for the k = 5 horizons,the HPDIII and Fixed MONA giving very similar results and the full MONAapturing the house prie the best.Performing the predition again using a horizon of k = 20 as a long term pre-dition, i.e. 20 ∗ 0.25 = 5 years ahead. The results for k = 20 are shown inFigure 8.3, omparing the k = 20 and k = 5, in Figure 8.1 it is obvious that forlonger preditions some of the methods seem to be diverging quite a bit fromthe observed value, whih an be expeted for methods where no updating isused.The results from the k = 20 in-sample predition are summarized in Figure 8.4.The left panel shows that the interest only regression method give the worstaggregate error for the k = 20 predition. The right panel however shows thatthe Fixed MONA model has exeeded the interest only regression model after
k = 17.The Interest rate only method obviously only aptures the drift, as an be seen
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108 Validation and Resultsprie and interest rates, are not inluded leaving only the onstant to apture thetrend, the onstant seems however not versatile enough to apture the dynamisof the trend and over �ts the house prie.The full MONA model gives the best performane and the smallest error. How-ever, as has been mentioned before not all data is available for the MONAmodel. The losest math is the Fixed MONA model whih seems to performwell for short predition horizons k = 5 but diverges away with inreased pre-dition horizon. The �xing of the explanatory variables, is equivalent of addinga �xed amount to the onstant, i.e. �xing the ourse of the proess. The al-ternating explanatory variables, interest rates, then osillate around the ourseset by the �xed variables or new onstant. This explains why for long periods,the Fixed MONA house prie model may diverge from the observed house prie.The model does not have the apability to respond to large dynami hanges.However, by estimating the predition interval as was done in setion 6.5.2, theFixed MONA model an be applied.The HPDIII or error-orretion method, also seems to apture both the trendand the short term e�ets relatively well. It does not only represent the trend,as the Interest rate only regression method does for example.8.2.2 Nykredit RelationThe Nykredit relation from hapter 3 was also ompared to the house priedata from the MONA model. Two extreme senarios were onsidered for theNykredit relation, �rst a one period foreast with updating, i.e. k = 1, andseondly a predition for the whole period without updating or k = 120. Theresults for these two validations an be seen in Figure 8.5.From Figure 8.5 it an be seen that for the k = 1 the Nykredit relation per-forms well with a very high level R-square of around R2 ≈ 0.99. However, inthis model the unit-root non-stationarity has been overlooked, whih deems themodel useless for preditions without updating. The long term predition showsthat when the model does not get observed values for updating it performs verypoorly, see red line in Figure 8.5.The onlusion from the validation of the Nykredit relation is that non-stationarityof house pries is not onsidered, resulting in a useless predition model exeptfor very short horizons, e.g. k = 1, 2. This onlusion for the Nykredit model isthe same as disussed in setion 3.7.Despite the downfalls of the Nykredit model it was useful for developing and
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Nykredit relation, Aggregate.
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Figure 8.5: Using the MONA house prie data to validate the Nykredit relation. Blue lineshows the one step predition with updating, the red line shows the Nykredit relation usingprevious predition as bases for new preditions.understanding the more omplex relations, it was espeially useful as a startingpoint for the programming onduted, whih later was extended to the moreelaborate models quite easily.
8.2.3 Cross ValidationAn alternative to the in-sample validation ould be to use ross validation. Crossvalidation in this ase ould be ahieved by dividing the in-sample period intotwo smaller periods, then estimate the parameters on one part of the data andvalidate on the other. Cross validation for this data set however, like the in-sample validation, has some drawbaks. The main of whih is that the number ofobservations are rather low for estimation and validation, if the ross validationmethod would be applied.The idea behind ross validation is to validate the model struture irrelevant ofplaement in data, i.e. validating the terms in the model and not fousing somuh on spei� estimation of the parameters. Obviously for this to work thedata has to be quite homogenous, whih is not the ase for the house pries.



110 Validation and Results8.3 Senario Tree ValidationIn this setion house prie senario trees are developed from the one path ver-sions of the Fixed MONA and HPDIII models. Sine it was shown that theNykredit and interest only relations do not apture the house prie for one path,exept for very short preditions they are not applied to the tree struture.The setion is strutured as follows. First a short desription of how to extendthe two models to the senario tree struture. Seondly a short disussion of theinput interest rate senario trees and a disrepany in time steps. Thirdly theinterest rate trees are applied to give house prie trees, and the results inspetedand disussed.8.3.1 House Prie Formulas For Senario TreesGiven a senario tree of interest rates, and applying eah path from that tree assingle path in the house prie models, a house prie senario tree an be derived.As was disussed in setion 6.3.2 the response of interest is the house prie level,not the hange, the models results must be aumulated.
ln(k̃pt,n) = A +

t∑

i=1

̂∆ln(kpt,n) (8.1)where ln(k̃pt,n) is the aggregate estimated house prie at time t and node n. Ais the initial house prie index at predition start, set to some intuitive value e.g.
A = ln(100). The term ̂∆ln(kpt,n) represents the estimated hange in houseprie, whih is represented by the two modelsFixed MONA model Fixed 5 of 8 at time t = T

̂∆ln(kpt,n) = β̂∗
0 + β̂∗

1∆ln(pcpT ) + β̂∗
2∆(rentet,n + ssatsT )

+ β̂∗
3∆(rentet−1,a(n) + ssatsT−1)

+ β̂∗
4(rentet−1,a(n) + ssatsT−1 + 0.01) + β̂∗

5dpcpeT−1

+ β̂∗
6dkpeT−1 + β̂∗

7 ln(kpT−1/pcpT−1)

+ β̂∗
8(ln((ydpT−1 − ipvT−1)/pcpT−1) − ln(fwhT−1))



8.3 Senario Tree Validation 111HPDIII (ECM)̂
∆ln(kpt,n) = θ̂0 + θ̂1∆ln(kpt−1,a(n)) + θ̂4(∆rentet,n)

+ θ̂7 ln(kpt−1,a(n)) + θ̂8rentet−1,a(n)Notie that for the models above there are only two variables i.e. house prie
(kp) and interest rate (rente), whih are node dependant, all other variables are�xed for all nodes Nt to their value at time t = T .The assumption is made that all data is available before t = 0, i.e. before thepredition start, and an be used as orret input for the �rst node. There afterthe estimates are used, so there is no updating with observed values.8.3.2 Interest Rate Senario TreesThe input variables to the house prie trees are interest rate trees generatedwith a variation of the Vasiek interest rate model, generation of interest ratesenario trees is out side the sope of this thesis, for more detail see Jensen andPoulsen [5℄.The input data used for validation are senario trees of interest rates, where thebonds have a maturity of 0-10, 15, 20, 25 and 30 years. The interest senariotrees are in yearly inrements, while the house prie models use quarter yearlysteps, so to use the estimated models an interpolation is applied to the pathsof the interest rates, to get quarterly rates usable in the models. An explana-tory diagram of the interpolation is shown in Figure 8.6. To the left of t = 0the observed MONA data is available for model initialization, after t = 0 theinterest rates are provided yearly and must be estimated quarter yearly withinterpolation, giving the small nodes on eah path. The horizon on the inputinterest rate trees is 5 years whih is equivalent to 5 · 4 = 20 in the quarterlymodel, i.e. the interest rate senario trees are orrespond to a k = 20 preditiontree for the house prie tree.Having many bonds with di�erent rates is di�erent to the MONA model whereonly one rate is used. The struture of the interest term rente, used in theestimation of the MONA model, ompared to the rates used for input here isnot exatly known. The rente term will be plotted together with the bondsenario trees to see a omparison between the rate modeled as the "true" ratein house pries, and the input generated rates.
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Figure 8.6: Example of a linear interpolation from a yearly data to get quarter yearly data,for a binomial.8.3.3 ResultsThe validation performed here is a way of seeing if the house prie senariotrees apture the house prie, given the house prie models and a senario treeof estimated interest rates.Three models were initially applied to the senario tree struture for validation,i.e. Fixed MONA, HPDIII and interest Only regression. However, both theone path and preliminary senario tree show the interest only model to performpoorly. The results for the Int only regression are omitted here, but shown inAppendix B.1.The next three pages show the senario trees for the 1995 − 2005 interest ratesand the orresponding estimated house pries.
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Figure 8.7: Interest rate senario trees estimated from 1995 − 2000, zbyXX where XXorresponds to the time to maturity on the bonds, 0-10,15,20,25 and 30 years. The blue lineis the development of the MONA interest term rente.
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Figure 8.8: Estimate house prie using the FIXED MONA method, eah panel orrespondsto the interest senario tree in with same header from Figure 8.7. The blue line desribes theobserved house prie. The broken blak lines are the predition error bars for the extremepaths, with 95% on�dene interval.
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Figure 8.9: Estimate house prie using the HPDIII (ECM) method, eah panel orrespondsto the interest senario tree in with same header from Figure 8.7. The blue line desribes theobserved house prie. The broken blak lines are the predition error bars for the extremepaths, with 95% on�dene interval.



116 Validation and ResultsFigure 8.7 shows the estimated senario trees with the observed MONA interestrate for omparison. From the �gure it an be seen that with inreasing bondmaturity the mean level of interest rates inreases while the variane or volatilitydereases. For zcby30, i.e. the 30 year bond, the rate has a relatively lowvolatility and a high mean of a. 8% whih is onsiderably higher than theMONA rate. The MONA rate seems to be dereasing in this period 1995−2000and the rate trees do not seem to represent the rate partiularly, the MONArate might be a downward path in the zcby0 − 5 bond senario trees, i.e. theshort term bonds. For the other senario trees the MONA rate seems representa substantiality lower rate than shown by the trees.Figure 8.8 shows the response from the Fixed MONA model given the orre-sponding senario trees in Figure 8.7 as input, the broken blak lines show theerror bars as alulated in setion 6.5, with k = 1, ..., 20. The Fixed MONAmodel aptures the house prie well for the short term bonds, where the MONArate was also aptured. However, the volatility of the house prie at horizon isquite high, the most extreme being a rise from 100 to 250 in �ve years, witha range from a. 300-80, with 95% predition horizon. This high volatilityan however be expeted from the Fixed MONA model for long preditions, aswas disussed in the one path validation in setion 8.2. What is more, if theprediation origin were to be shifted slightly it might have a onsiderable e�etsine the variables would be �xed to new levels. Obviously the long term bondtrees are not expeted to yield good house prie results, sine the orrespondinginterest rate trees do not apture the MONA rate whih the models uses todesribe the interest rate to house prie relation.Figure 8.9 gives the results from the HPDIII model given the interest ratesenario trees in Figure 8.7. The HPDIII does not seem to be apturing thehouse prie as well as the Fixed MONA. The house prie at horizon howeverhas a muh smaller volatility. In the ases where the HPDIII model apturesthe house prie is on the extreme paths, more preisely the maximum houseprie path. The house prie response is not so strange sine the MONA rateis non-inreasing throughout, and usually lose to the lowest interest rate path,whih in turn should give the max house prie path in the house prie model.The period 1995 − 2000, whih is inspeted in Figure 8.7, is not well suitedfor validation beause of the onstantly inreasing house prie. Reall fromsubsetion 5.6.1 that during this period the data shows abnormal behavior andthe response breaks away from the information of the explanatory variables.Even though the data is not ideal there are two main results that an be deduedfrom this validation1. The house prie model respond diretly to the volatility of the interest



8.3 Senario Tree Validation 117rate trees, i.e. if there is a large variane of rates at horizon there is alsoa large variane of house pries at horizon.2. A seond interesting observation is how the house prie trees respond tothe level of interest rate, if the rate is on average high suh as for 30 yearbond (zcby30) the house pries will yield a downward house prie, whihis in aordane with the eonomial theory of high interest will show adeline in house pries. This ruial relationship between the interest leveland and the trend of house pries is aptured by both the Fixed MONAmodel as well as the HPDIII model, the interest only regression howeverdoes not apture this behavior, see Figure B.1.Another experiment is onduted by approximating the interest rate trees toanother time. That is, instead of being from 1995-2000, the senario trees arenoted as 1989-1994, with orresponding MONA interest rate and observed houseprie.As an be seen in Figure 8.10 during the 1989-1994 period there seem to bemore variation in the MONA rate, than the downward 1995-2000 rate, what ismore the �xing of the MONA model does not give an extreme addition fromthe �xed variables resulting in the �xed model apturing the house prie verywell, see Figure 8.11. The HPDIII form is the same as before sine it is onlydependant on the input interest rate tree. However, where the interest rate treesapture the MONA rate, the house prie trees seems to apture the house prie.8.3.4 Predition ErrorsThe errors or estimated predition intervals were estimated aording to Algo-rithm 2, in subsetion 6.5.3, for k = 20 and the results for all three methods arelisted in Appendix B.2, Table B.1.
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Figure 8.10: Interest rate senario trees estimated from 1989 − 1994, zbyXX where XXorresponds to the time to maturity on the bonds, 0-10,15,20,25 and 30 years. The blue lineis the development of the MONA interest term rente.
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Figure 8.11: Estimate house prie using the FIXED MONAmethod, eah panel orrespondsto the interest senario tree in with same header from Figure 8.10. The blue line desribesthe observed house prie. The broken blak lines are the predition error bars for the extremepaths, with 95% on�dene interval.
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Figure 8.12: Estimate house prie using the HPDIII (ECM) method, eah panel orrespondsto the interest senario tree in with same header from Figure 8.10. The blue line desribesthe observed house prie. The broken blak lines are the predition error bars for the extremepaths, with 95% on�dene interval.



8.4 Summary 1218.4 SummaryThis hapter has listed the validation of the models �rst as single path models,or normal time series models, and later as senario trees. Response relationshipsbetween the interest rates and house pries are developed for the one path andthen applied to a senario tree of interest rate paths. This setion summariesthe main results for the two validations.Single path The validation for the single path reveals the Nykredit and Inter-est Rate only regression models as not suitable for prediting house pries. Thenon-stationary nature of the Nykredit relation results in unreliable results. TheInterest Only regression is missing terms and only aptures the upward trend ofhouse pries. The Fixed MONA model appears to approximate the ideal FullMONA model for short to medium term preditions, see Figure 8.4. Howeverfor longer preditions k > 15 the preision dereases rapidly sine the model isnot well equipped to respond to dynami hange over a long period with manyexplanatory variables �xed. The HPDIII model seems to be performing wellaording to the single path validation. Only the HPDIII and Fixed MONAmodel are applied to the senario tree struture.Senario tree In short if the input interest rate senario trees apture theMONA rate, whih an be modeled from data, the house prie models apturethe house prie. However, this is dependant on the data not being signi�antlydi�erent from the in-sample period, where the models parameters are estimated.A sudden hange in house pries not explained by the model fators, suh as abubble, will likely ause a disrepany between the rates and house pries.Both the Fixed MONA and HPDIII models aptured the house prie well inthe absene of bubble behavior, �xing the MONA and prediting for k = 20 angive very volatile house pries at horizon if the �xed explanatory variables wereindiating a strong hange at the time of �xing, predition horizon.
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Chapter 9 Conlusion"All models are wrong, some are usefull."1In this thesis the problem of modeling house pries to a degree was onsidered.House prie is a non-stationary proess, dependant on many eonomi variables.The three main fators a�eting house prie are interest rates, inome and theamount of houses available.Throughout this thesis the proess of house prie modeling is desribed frombasi eonomi theory to applied house prie senario model, with estimatedpredition interval.Initially a basi theoretial eonomi model was devised. The omplexity of themodel was inreased by repliating and analyzing the house prie relation froma omplex maro model (MONA). The theory and intuition from the MONAmodel was then applied to derive a MONA-like model whih is more suited tothe data available in the mortgagor problem, namely only interest rates. Twosingle path models are devised from the intuition aquired from the MONAmodel. The Fixed MONA model and the HPDIII model.1. The Fixed MONA model, used all the information in the Full MONAhouse prie relation, while �xing many of the explanatory variables usedand using only the interest rate variables as input. This �xing inreasedthe error of the MONA predition, the �xing also maked it hard to estimatethe error with analytial methods. Bootstrapping was used to estimatethe predition error when using the Fixed model.1George Box, one of the most in�uential statistiians of the 20th entury.



124 Conlusion2. The HPDIII model was based on the same time series model as wasused in the MONA house prie relation, i.e. the error orretion model,mixing together both levels and di�erenes to apture both the short termdynamis and the long term trend. The HPDIII model was modeledfrom data and did not use the MONA relation diretly, unlike the �xedmodel.Although these were the only models that were �nally applied to a senario treestruture, other benhmark models were also reated. The benhmark models,The Nykredit relation and the Interest only regression, both served a ertainpurpose but in the end did not apture the house prie well enough suh thatthey ould be used for predition.Validation was espeially hard sine the data was both sare as well as very non-onsistent. This lead to an in-sample validation whih showed that the FixedMONA and HPDIII model were the ones that aptured the house prie best.However both methods have down sides. The Fixed MONA is non-respondentto dynamis hanges, for long predition horizons, and is therefore not very af-fetive for long predition horizons k > 10. This feature was inorporated intothe evaluation of the predition intervals for the Fixed MONA. The HPDIIIshowed small signs of autoorrelation whih did not seem to redue the predi-tion performane signi�antly, e.g. as in the ase of the interest only regression.Both models showed the ability of apturing the two main elements in houseprie movements. Firstly both models aptured the trend, whih is relatedto the interest level at eah time. Seondly and more importantly both modelsshow signs of apturing the dynamis, with estimated predition error. Howevermodeling the short term dynamis with great preision is impossible.Initially all models were treated as one path models or univariate time series.However, to be able to use the results in the Mortgagor problem a house priesenario tree must be devised from the single path model.The house prie trees were tested against interest rates with di�erent maturities.There it ould be seen that the two house prie models apture the house priedevelopment, i.e. if the interest rate tree aptures the interest rate. Morepreisely the output is only as good as the input, where the quality of theinterest rate trees is fundamental in the quality of the house prie trees.The house prie and interest elements in the MONA model are both very ab-strat. More spei�ed models, e.g. for spei�ed setor of the real estate marketand ertain bonds, an however be ahieved quite easily using the same ideasapplied in this thesis. The models developed in this thesis are onsidered as



9.1 Further Work 125"orret models", i.e. they inlude the right terms, giving new parameter esti-mations for di�erent data.The thesis ful�lls the aim that was set out with in the beginning, i.e. to developa house prie senario tree(s), with known predition intervals, that an beapplied to the Danish Mortgagor problem [13℄.9.1 Further WorkThere are numerous aspets that an be investigated further, ontinuing fromthe results given in this thesis. The most interesting of these is to apply thehouse prie trees to the Mortgagor problem and see what a�et the possibilityof adding house prie will have on the results.Another interesting issue is to investigate the omposition of the interest term(rente) used by the National Bank in the estimation of the MONA model.There is obviously no, one, true interest rate and the MONA rate is somesort of weighted average of the rates of the bonds available. Given historialdata of rates, an approximation to the rente term an be made from availablerates. Giving the weights eah bond has in the omposition of the rente term.The weights ould then be used to ombine estimted house prie trees to givea interest rate rente tree, resulting in a more orret senario tree for housepries.
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Appendix A
Programming

A.1 IntrodutionThe main topi of this hapter is the implementation of the senario tree and adesription of the reusable programs written for modeling and analysis.In setion A.2 the senario tree from setion 3.4 is revisited, desribing theproblem less formally as well as the di�erent methods of implementation forsuh a tree. Setions A.3 and A.5 desribe the two di�erent ways the senariotree was implemented. Firstly the indexing method, implemented initially inMatlab, later moved to R, and desribed in setion A.3. A short introdution toobjet oriented programming (OOP) is given in A.4. The seond implementationof the senario tree uses OOP for the more robust method, alled the objetoriented approah, implemented in C# and desribed in setion A.5.The analysis, parameter estimation and simulations performed in this thesis wasperformed in the statistial pakage R. Setion A.3 disusses the programs writ-ten for modeling and analysis. Many of the funtions written in R are highlyreusable and therefore deserve some disussion. Setion A.3 also provides ex-ample sripts, illustrating how to use the numerous funtions written espeiallyfor this thesis.



128 ProgrammingA.2 Senario Tree RevisitedFrom the start of the projet the objetive was to implement the tree struture inan objet oriented language, i.e. C# , see A.4 for further details. However, sinehaving more experiene with Matlab a more brute fore method was attemptedinitially. The initial method is based on applying a tratable indexing sheme tothe senario tree. The purpose of the �rst implementation alled the indexingmethod was initially intended to give insight into the tree struture and meantas a draft for the reation of the C# program.There are two main elements to a senario tree, i.e the shape (q) and numberof periods (T ). For example a binomial tree or trinomial tree would be q = 2and q = 3, respetively. Reall from setion 3.4 that the set of nodes in thetree at any time 0 ≤ t ≤ T an be desribed by the set Nt. Corresponding tothe formal de�nition of the tree the shape an be found from q = C(1). Thetwo fundamental equations for implementing the indexing method an then bede�ned as the number of nodes at eah time
|Nt| = qt (A.1)and the total number of nodes in the tree

N =
T∑

i=0

qi (A.2)whih e.g. for a q = 2, binomial tree, and T = 8 gives
{qt} = {1, 2, 4, 8, 16, 32, 64, 128, 256} N = 511These two equations, i.e. Eq.(A.1) and Eq.(A.2), allow for the formulation ofthe indexing method desribed in the next setion.Although the indexing method was only intended to give an intuition towardsthe senario tree, it beame very useful for validating the C# results, analyzingoutput from plotting the trees. Eventually both methods worked for generatingsenario trees.A.3 The Index MethodMatlab and S, the language used in R, are non objet oriented programminglanguages whih, when used orretly, an be very e�etive. The key to e�e-tive funtion programming is to write small, robust and speialized funtions.



A.3 The Index Method 129The funtions an then be applied inside more omplex funtions to aomplishmore involved tasks. This programming proedure also makes the ode quitetransparent and intuitive.The �nal versions of the indexing method were very valuable in validating theresults from the C# program, sine by then they had aptured most of the C#programs funtionality.The index method was initially implemented in Matlab, however sine all sta-tistial analysis, prediting and simulation was performed in R the indexingprograms were moved to R for onsisteny, sine the syntax of R and Matlab isvery similar the transformation was easy.In this setion a short disussion will be given on the funtionality of the mostimportant indexing funtions. The ode for the following funtions is availablein C.1 in the Appendix.
seq = GeoSequence(q, T) : The �rst funtion that was reated, alulates andreturns a sequene {qi} where i=0,...,T. This sequene shows at time ihow many nodes are at that time. If q=3 and T=5 for example, it wouldgive:

35 = [1, 3, 9, 27, 81, 243]So this is Eq.(A.1) and is used in all of the following indexing funtions.
Sum = GeoSum(n, T) : This is Eq.(A.2) and sums up the results of the sequenegiven by GeoSequene, i.e. gives the total number of nodes in a tree. Forexample if n=3 and T=5 the funtion returns

5∑

i=0

3i = 1 + 3 + 9 + 27 + 81 + 243 = 364

t = WhatPeriod(q, T, i) : This funtion uses GeoSequene and GeoSum to �ndin whih period, i.e. 0 ≤ t ≤ T, node i is positioned. For example givenn=3, T=5 and i=6, the program delivers an output of t=2.
p = Parent(n, T, i) : This funtion is probably the most important program ofthe indexing funtions. The funtion �nds the parent index number p ofa ertain node i given the tree type q and length T. The algorithm usesGeoSequene, GeoSum and WhatPeriod. An example of output from thisfuntion isParent(n=3,T=10,i=3400)=1133Parent(n=3,T=10,i=3401)=1134



130 ProgrammingParent(n=3,T=10,i=3402)=1134Parent(n=3,T=10,i=3403)=1134Parent(n=3,T=10,i=3404)=1135
num = NumBranches(q, T) : This funtion takes the usual tree type q and treelength T as input. It returns a strutured array in Matlab and list in Rwith two variables. The �rst one desribes the number of leafs and theseond the index number of the top leaf. An example of output for thefuntion, all NumBranhes(n=3,T=10), isNBranh: 59049FBranh: 29524i.e. there are 59049 leafs on this tree and i=29524 is the node index ofthe top leaf.
mat = BranchParents(q, T, i) : This funtion uses Parent and NumBranhesand returns index numbers for whole branhes. An example of outputgiven the following funtion all BranhParents(n=3,T=8,i=1), i.e. thei = 1 is the �rst leaf at T, givesmat =Columns 1 through 51 2 5 14 41Columns 6 through 9122 365 1094 3281i.e. the output vetor holds all the node indies of index=1, or the topleafs branh.These are the main sub-funtions used in making a senario tree with the in-dexing method. Initially intended to be a exerise, for the more evolved C#programs, the indexing method evolved into a full �edged senario tree genera-tion method able of validating the results from the C# program. In the end, allhouse prie models had working implementations both in R as well as C#. InR the house prie dynamis are alled HPDI, Nykredit model, HPDINT, Interestonly and HPDFIX, Fixed MONA. An example of using the TreeFuntions.Rbundle of funtions is given below. The TreeFuntions.R ode an be viewedin Appendix C.1.



A.3 The Index Method 131Example of using the Tree Funtion library#################################################################################### ## Example of using the funtions in the TreeFuntions.R file in the Appendix. ## ##################################################################################### Plae the file TreeFuntions.R in diretory or asses via path and soure:soure('TreeFuntions.R')# Now all the funtions in the TreeFuntions.R file are available for use.# Initiatingq = 3 # Tree of type q = 3, i.e. trinomial.T = 5 # Time T = 5, i.e. 0 <= t <= 5.Indexes = Indexer(q,T) # Matrix holding the indexes of a senario tree.# Generate Lattie Tree of test ratesStart.Rate = 0.04; # Begining Rate.Range = 0.014; # Range of hange at eah time.LattTreeV = GenerateRates(q, T, Start.Rate, Range) # Lattie Tree Vetor Format.LattTreeM = TreeForm(Indexes,LattTreeV) # Lattie Tree Matrix Format.# House Prie Tree Generation. Using the lattie tree above.NykreditTree = HPDI(q,T,LattTreeV) # HPDI, the Nykredit House Pries model.MONAFixed = HPDFIX(q,T,LattTreeV) # HPDFIX, MONA fixed.# Fixed model uses 1997:75 values as default, other values an be used for fixing# by adding HPDFIX(...., FIX = new.vetor).InterestOnlyReg = HPDINT(q,T,LattTreeV) # HPDINT, The Interest Only regression.# Simple Plot of house prie.INT.H = InterestOnlyReg$H # The house prie from InterestOnlyReg list objet.INT.H.MAT = TreeForm(Indexes,INT.H) # Get vetor to matrix format.PlotTree(INT.H.MAT) # Plot INT.H.MAT.Data.INT.H.MAT = MMM(INT.H.MAT) # Matrix showing min,max and median at eah time# 0...T in the tree.
The example above handles the senario tree in two formats, i.e. the vetorform (1 × N) and the matrix form (qT × (T + 1)). All alulations use thevetor form whih allows for muh bigger alulations than the heavy matrixform. The matrix form is derived from the vetor format through the funtionTreeFormat. The matrix form is mainly used for plotting the trees, it is notreommended to manipulate big trees in matrix form or plot very big trees.



132 ProgrammingA.4 Objet Oriented ProgrammingAnother more sophistiated approah of programming the house prie senariotrees is by use of so-alled Objet oriented programming (OOP). Objetedorientation is an approah to build programs that mimi how atual objetsare assembled in the real world. OOP proedure is often used along with TheUni�ed Modeling Language (UML) whih is a olletion of suessfullyproven pratises when it omes to programming large and ompliated systems.The idea behind using OOP and UML is to reate more reusable, reliable andunderstandable programs. More preisely objet oriented programming portionsbig problems into more easily understandable parts. OOP�s standardized wayof reduing problems through the use of UML makes it also possible for di�erentpeople to maintain or extend already existing ode with relative ease.Here only a brief disussion will be given to a few OOP terms relative to theprogramming done in the thesis. For further disussion see Bennett, MRobband Farmer [14℄1. These relative onepts here areClass, Objet, Inheritaneand Abstration.Class : is the abstrat de�nition of a "thing", inluding the "things" hara-teristis and what the "thing" an do. An example of this will be given inthe objet de�nition.Objet : is a partiular instane of a lass. An example of a lass objet relationis e.g. if a dog is a lass then Lassie is an objet of that lass, i.e. theLassie is a dog.Inheritane : Often it is onvenient to speify lasses in more detail, whihan be done by reating sub-lasses. The sub lasses then inherit theharateristis and attributes of the super lass. An example of inheritaneis that Lassie is a Collie. Collie an therefore be a sub lass of dog. Sineall Collies have the attributes of dogs, Lassie is therefore a objet of thelass Collie whih inherits from the lass Dog.Abstration : When programming omplex relationship Abstration is agood quality to have. Abstration an be ahieved by working at the ap-propriate level of inheritane, e.g. Lassie is a Animal - Mammal - Dog -Collie, eah lass beomes more spei� when moving down in the hierar-hy, i.e. adding more spei� attributes and funtions.The next setion uses the onepts expressed above when explaining the objetoriented version of the house prie senario tree.1See e.g. hapter 4 alled What Is Objet-Orientation



A.5 C# programming 133A.5 C# programmingAs was mentioned in the previous setions, initial formulations for the senariotrees were drafted using Matlab. From the start the goal was however to builda program in an objetive oriented language. Using the Matlab ideas of howa senario tree struture works, along with the OOP framework a house prietree was programmed in the OOP language C#. There were two versions of thehouse prie tree in C#, the lass diagram for the �rst one an be seen in FigureA.1. The �rst version did not use onepts suh as inheritane and abstrationthere were only two lasses, i.e. Tree and Node. The �rst version begins byinitializing a Tree objet, e.g. HouseTree, next it alls a funtion to import thedata from a XML �le. For eah new input supplied by the XML �le an objetis instantiated from the Node lass, until all the data has been read from theXML �le. Funtions were then used on the HouseTree objet, now holding all theXML data, to alulate orresponding house pries. Comparing to the Matlabversion, whih uses an elaborate indexing sheme to alulate the house priesthe C# is a muh more elegant solution with a muh lower level of involvementrequired before it an be used by someone other than the author. The �rst
TreeNode

Figure A.1: An abstrat lass diagram of the initial version of the senario tree program,performed in C#.implementation had room for improvement, sine the level of abstration was tohigh and there was a possibility of delegating the responsibility of the two lassesfurther. Version one was also quite involved, though not as muh as the Matlabversion, i.e. if some one other than the author would want to edit or extend theprogram, that same person would have to aquire a full understanding of thewhole system �rst.The seond model was developed mainly by re-thinking the responsibilities ofeah lass baring the OOP onepts in mind. As with the simple example givenwith the dog lass above, a re�ned lass for node and tree are derived wherethey only ontain the most abstrat terms ommon to senario trees and nodes.



134 ProgrammingAn example of this is that all nodes in a tree have a number while not all nodesshould have an interest rate attribute. In the seond version a new node andtree type are formulated as IR Tree and IR Node or interest rate tree, sineinterest rates are not ommon to node and tree but needed for alulating housepries. IR Tree and IR Node inherit the basi attributes of a Tree and Noderespetively, same as for the Collie lass does from the Dog lass in the exampleabove. A house prie tree and node are formulated in the same way inheritingfrom the interest tree and node. The seond version lass diagram and the�nal version is displayed in Figure A.2, the arrows in the diagram represent aninheritane relationship. The bene�ts of the seond model should be obvious,
TreeNode

IR TreeIR Node

HP TreeHP Node

Figure A.2: An abstrat lass diagram of the seond, and �nal, version of the senario treeprogram, performed in C#.e.g. if an individual would want to add a new tree say a pension tree, the pensionnode and tree ould inherit from anywhere in the lass hierarhy allowing thedeveloper to ahieve a ertain level of abstration. The developer would nothave to know everything about the programm, only how the super lass works.The full lass diagram is given in Appendix D, for C# ode see also AppendixD.



A.6 R Funtions and Sripts 135A.6 R Funtions and SriptsR is a language and environment for statistial omputing and graphis. It ispart of the GNU Projet and therefore free2. R strengths lie mainly in thestatistial and time series analysis, where it supersedes Matlab. R is also a fully�edged programming language and o�ers a �exible syntax for programmingspeialized funtions. The main power of R omes from the open soure naturewhih leads to very powerful disussion forums for problem solving. R is todayonsidered the de-fato language when dealing with statistis.The R pakage was used for repliating the MONA house prie relation results,as well as for all tests, preditions and error estimation. Following is a sriptdemonstrating the use of the numerous funtions written for R. The ode forthe funtions used an be seen in the Appendix setion C.2.

2For more information see the R home page at http://wwww.r-projet.org/



136 ProgrammingExample of using Modeling Funtions#################################################################################### ## Example of using the funtions in the Funtions.R file in the Appendix. ## ####################################################################################soure('Funtions1.R')zz = read.sv("New.sv",sep = ";") # Importing data from file New.sv.attah(zz)zz = ts(zz,frequeny=4,start=(1971,1)) # Make time series objet.zz = zz[,-1℄# Setting up data.data =list('KP'=ts(KP,frequeny=4,start=(1971,1)),'RENTE'=ts(RENTE,frequeny=4,start=(1971,1)),'PCP'=ts(PCP,frequeny=4,start=(1971,1)),'IPV'=ts(IPV,frequeny=4,start=(1971,1)),'FWH'=ts(FWH,frequeny=4,start=(1971,1)),'SSATS'=ts(SSATS,frequeny=4,start=(1971,1)),'DPCPE'=ts(DPCPE,frequeny=4,start=(1971,1)),'DKPE' =ts(DKPE,frequeny=4,start=(1971,1)),'YDP' =ts(YDP,frequeny=4,start=(1971,1)),'RENTE.SSATS' = ts(RENTE+SSATS+0.01,frequeny=4,start=(1971,1)))time = list( 'Sta' = 1974.25,'End' = 1997.75,'Clo' = 2001.75)# Ordinary Least Squares And ROLS, formulate data.i.m = Int.Only(data,time) # Interest Only model estimated.pi.m = Pred.OLS(i.m,alpha=0.05) # Interest Only model predited.r.m = MONA.Model(data,time) # MONA model estimated.pr.m = Pred.ROLS(r.m,alpha=0.05) # MONA model predited.em = ECM.Model(data,time) # ECM model estimated.pem = Pred.OLS(em,alpha=0.05) # ECM model predited.# Aggregation, moving from differenes to levels.Fit.all = i.m$All$YFit.off = bind(i.m$Hat$Off,r.m$Hat$Off,i.m$Off$Y,em$Hat$Off)Fit.on = bind(i.m$Hat$On,r.m$Hat$On,i.m$On$Y,em$Hat$On)Nom.all = Nominal.Dev(data$KP,Fit.all) # All data.Nom.off = Nominal.Dev(data$KP,Fit.off) # In Sample, Offline.Nom.on = Nominal.Dev(data$KP,Fit.on,time$End) # Out Of Sample, Online.



Appendix BTables and Graphs forResults
B.1 Senario Trees For Interest OnlyThe interest only regression model, did not apture the house prie development,it only seemed to apture the upward trend as an be seen in setion 8.2.The interest only regression on senario tree format is expressed asInterest Only Regression

̂∆ln(kpt,n) = β̂I
0 + β̂I

1∆rentet,n + β̂I
2∆rentet−1,a(n) + β̂I

3rentet−1,a(n)an example of the development of interest only regression house prie senariotrees for the interest rate senario trees in Figure 8.7, an be seen in Figure B.1.The senario trees show how the model does not respond to di�erent levels ininterest rates resulting in a upward trend, from the interept.
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Figure B.1: Interest Only regression model orresponding to the interest rate senario treesin Figure 8.7.



B.2 Error Bars 139B.2 Error BarsThe error bars in the House Prie �gures are simulated aording to Algorthm2 in subsetion 6.5.3. For a �ve year horizon using quarterly data orrespondsto k = 20 periods. The numerial values for the four methods an be seen inTable B.1.t: years k Full MONA Fix MONA Int Only HPDIII0 0 0.0000 0.0000 0.0000 0.00000.25 1 0.0172 0.0351 0.0231 0.01870.5 2 0.0240 0.0492 0.0324 0.02660.75 3 0.0295 0.0608 0.0395 0.03281 4 0.0342 0.0694 0.0454 0.03761.25 5 0.0380 0.0769 0.0505 0.04201.5 6 0.0416 0.0840 0.0560 0.04641.75 7 0.0452 0.0901 0.0612 0.05002 8 0.0477 0.0950 0.0655 0.05362.25 9 0.0508 0.1003 0.0685 0.05762.5 10 0.0536 0.1076 0.0734 0.06042.75 11 0.0562 0.1120 0.0767 0.06283 12 0.0592 0.1163 0.0805 0.06533.25 13 0.0614 0.1218 0.0839 0.06803.5 14 0.0634 0.1269 0.0854 0.06943.75 15 0.0661 0.1322 0.0882 0.07164 16 0.0684 0.1375 0.0921 0.07384.25 17 0.0706 0.1424 0.0950 0.07574.5 18 0.0727 0.1450 0.0973 0.07754.75 19 0.0751 0.1498 0.0997 0.08045 20 0.0763 0.1519 0.1026 0.0823Table B.1: The estimated standard deviations, for aggregate house pries, estimating up to
k = 20. The data is alulated aording to Algorithm 2, in subsetion 6.5.3.
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Appendix C R Code
C.1 Tree Funtions.R################################################################################ Funtions for plotting and analysis of senario trees.# In the following order:## GeoSequene, GeoSum, GenerateProb, Parent, Mod, WhatPeriod,# NumBranhes, BranhParents, Indexer, TreeForm and GenerateRates.###############################################################################GeoSequene = funtion(type,years){# Generates a sequene of numbers i.e. [type^0,...,type^years℄, i.e. the number# of nodes at any time i in the senario tree.u = numeri(years+1)for(i in 0:years){u[i+1℄=type^i; # q^t where 0 <= t <= T}return(u) #Return seq.}GeoSum = funtion(type,years){# Sums up the geometrial sequene [type^0,...,type^years℄. i.e. sum up the seq# from GeoSequene giving the total number of nodes in the tree.



142 R Codereturn(sum(GeoSequene(type,years))); # Use GeoSequene and sum elements.}GenerateProb = funtion(type,years){# Returns a array with probabilities that fit a tree of type type and of length# suh that a any time t the probabities sum to one and for any node the 1/q^t# for t.twos = GeoSequene(type,years); # Get the sequene of the tree.Sum = GeoSum(type,years); # Get total number of nodes.Prob = rep(0,Sum);b = 1; # ounter.a = 0; # ounter.for(i in 1:length(Prob)){ # Loop over all nodes.if(a == twos[b℄){ # If a has been looped through allb = b+1; # nodes in periods. Move period upa = 0; # and set a to zero.}Prob[i℄ = 1/(twos[b℄); # Add a probability to urrent node.a = a + 1; # Inrement a.}return(Prob) # Return the array Prob.}Parent = funtion(type,years,index){# Return the index of parent to node index. Needs tree type, number of years as# input.Seq = GeoSequene(type,years); # Get the sequene of the tree.Sum = GeoSum(type,years); # Get total number of nodes.Ve = 1:Sum; # A indexing vetor.TotalIndex = index; # Node number.mat = WhatPeriod(type,years,index); # Returns in whih period.if(mat == 0){ # Periods are 0,1,.. so if first Periodparent = (); # the node has no parent.}else{IndexToPrevYear = sum(Seq[0:(mat-1)℄); # Number of nodes to the year before.IndexToYear = sum(Seq[0:mat℄); # Number of nodes to year.IndexOnYear = TotalIndex - IndexToYear; # Nodes index on year.if(Mod(IndexOnYear,type)==0){ # If modulus of type and IndexOnYear is 0.num = IndexOnYear/type; # Parent number in the period before.}else{num = floor(IndexOnYear/type)+1; # parent number in the period before.}parent = IndexToPrevYear + num; # Find total index of parent.}return(parent) # Return index number of parent.}



C.1 Tree Funtions.R 143Mod = funtion(x,m){# Calulates the modulus for x and m.t1<-floor(x/m)return(x-t1*m)}WhatPeriod = funtion(type,years,index){# Returns the period number of whih node number index is in. Also takes type# of tree and number of years as input.Seq = GeoSequene(type,years); # Get the sequene of the tree.Sum = GeoSum(type,years); # Get total number of nodes.ounter = 0; # Counter.for(i in 0:length(Seq)){ # Loop over number of periods.ounter = ounter + Seq[i+1℄; # Add number of nodes for period i+1.if(ounter >= index){ # If ounter is bigger then node num.mat = i; # Return that period and break.break}}return(mat) # Return period.}NumBranhes = funtion(type,years){# NumBranhes returns the index of the top leaf and the number of leafs in a# list objet. Input is type of tree (q) and years (T).num = list(); # Empty list.tmp = GeoSequene(type,years); # Tree sequene.n = length(tmp);num$N = tmp[n℄;num$F = sum(tmp[1:(n-1)℄); # Sum up the number of nodes pervious to T.return(num) # Return list objet.}BranhParents = funtion(type,years,index){# NumBranhes returns the indexes of the branh from leaf of number index. The# input variables are type of tree (q), years (T) and the leaf number, index.num = NumBranhes(type,years); # Find number of leafs and first leaf index.NumberBranhes = num$N;FirstBranh = num$F;mat = rep(0,years+1); # Empty index vetor.index = index + FirstBranh; # Setting orret node index to the leaf index.for(i in (years+1):1){ # Loop bakwards over years.mat[i℄ = index; # Set the index into the branh index vetor.parent = Parent(type,i-1,index); # Find parent of index.index = parent; # Set parent as index.}



144 R Codereturn(mat); # Return the vetor of indexes from leaf index to root note.}Indexer = funtion(type,years){# NumBranhes returns the indexes of the branh from leaf of number index. The# input variables are type of tree (q), years (T) and the leaf number, index.num = NumBranhes(type,years);indexer = matrix(0,nrow=(num$N),nol=years+1);index = (1:(num$N));for(i in 1:length(index)){indexer[i,℄=BranhParents(type,years,index[i℄);}return(indexer)}TreeForm = funtion(Ind,Tree){# Use the output of Indexer to return a indexed matrix form of the Tree vetor.# The input is Ind a matrix of indexes and Tree a senario tree on the vetor# format.n=nrow(Ind)Out = Ind;for(i in 1:n){Out[i,℄=Tree[Ind[i,℄℄;}return(Out) # Return Matrix Out.}GenerateRates = funtion(type,years,first,rang){# This funtion is used to generate lattie interest rate trees for testing.# The input variables are# type : the type of tree, q.# years : the numer of periods, T.# first : from what interst value is the tree to start.# rang : the range of a up to down hange for one node from t-1 to t.Sum = GeoSum(type,years); # Number of nodes.Rates = rep(0,Sum); # Create Rates as 0 vetor.Rates[1℄ = first; # Set first value in Rates.# Generate a vetor from range/2 to -range/2 in type many parts.in = seq(rang/2,-rang/2,length=type);# Repeate a sequene of vetor 1:type in matrix tmp.tmp=rep(seq(1,type),(Sum-1)/2)Ins = (0,in[tmp℄); # Index in by tmp.for(i in 2:length(Rates)){ # Loop over tree.parent = Parent(type,years,i); # Find parent node.# Calulate urrent rate by use of parent rate and hange.Rates[i℄ = Rates[parent℄+Ins[i℄;}



C.1 Tree Funtions.R 145return(Rates) # Return lattie senario tree of interest rates.}################################################################################ Funtions for plotting and analysis of senario trees.# In the following order:## PlotTree, MMM and Pretty.###############################################################################PlotTree = funtion(Tree,lag=1,ylab="",xlab="Period",ex=0.5,lty=3,main="",ylim=(0,0),point=TRUE,year=0){# Plots a matrix of the form from TreeForm.# Input : Tree - a matrix from TreeForm.# lag - the number of lag on the x-axis.# point - swith whether the median point is plotted.# ylab,xlab,ex,lty,main,ylim same as in plot().# All inputs have a default value so only the Tree matrix is needed to plot.n=nrow(Tree);m=nol(Tree);if(ylim[1℄==0 & ylim[2℄ ==0){ # If ylim not speified.ylim = range(Tree); # Set to range of matrix.}xlim = (lag,m-1+lag) # lag x-axis by lag.plot(Tree,xlim=xlim,ylim=ylim,type="n",ylab=ylab,xlab=xlab,main=main,ex=ex,xaxt="n") # Set up empty grahpi devie.axis(1,(0:10),(0:10)+year)Pret = Pretty(Tree) # Removes repetition in Tree for better graphs.n = nrow(Pret)for(i in 1:n){ # For eah line in Pret plot line and point.lines(Pret[i,1:2℄+lag,Pret[i,3:4℄,ol=2,lty=lty,ex=ex*0.7)points(Pret[i,1:2℄+lag,Pret[i,3:4℄,ol=1,ph=19,ex=ex*0.7)}abline(h=Tree[1℄,ol=4,lty=2); # Ad a horizontal line marking the first value.if(point){ # If point=T plot median of leafs.points(m-1+lag,MMM(Tree)[2,m℄,ph=21,ol=1,bg="red",ex=ex*2)}# Returns nothing.}MMM = funtion(Mat){# Simple funtion used for alulating the Min,Max and Median at eah time in the# tree. The input is a tree matrix.Min = apply(Mat,2,min) # apply(Mat,2,operation) mean the opertion is usedMax = apply(Mat,2,max) # on the 2 dimension (olumn) of the Mat objet.Med = apply(Mat,2,median)return(rbind(Max,Med,Min)) # Return matrix (3 x T+1)}



146 R CodePretty = funtion(Ind){# A funtion used to simplify the a Tree matrix for plotting, input is a Tree matrix.# Output is a matrix with four olumns [line1.start line1.end line2.start line2.end℄.# Used to remove repetition in the Tree matrix, making plotting faster and easier.# Possible by inspeting the Ind tree matrix and reduing the Ind matrix to a matrix se# where eah unique line segment only appears one.n = nrow(Ind)m = nol(Ind)tmp = Ind[,1:2℄; # Set tmp as fist two olumns of Ind.tmp1 = Ind[1,1:2℄ # Set tmp1 as the first line segment of# Ind i.e. O to 1se = matrix(0,nrow=1,nol=4) # The redued matrix reated and set to 0.se[1,1℄ = 0; se[1,2℄ = 1; se[1,3:4℄=tmp1;for(i in 1:(m-1)){ # Loop over all olumns exept last.for(j in 1:n){ # Loop over all lines.tmp2 = Ind[j,i:(i+1)℄ # tmp2 the line segment Ind(j,i) to Ind(j,i+1).if(!all(tmp1==tmp2)){ # If tmp1 and tmp2 are not idential then.se=rbind(" "=se,(i-1,i,tmp2)) # Ad tmp2 to se.}tmp1 = tmp2; # Update tmp1 as tmp2.}}return(se) # Return the se matrix.}################################################################################ Senario Tree House Prie Dynami Funions# In the following order:## HPDFIX, HPDI, HDINT and HPDEm###############################################################################HPDFIX = funtion(n,T,Rates,bbb=0,FIX=(1, 0.002713868,0.000111711,8.054e-06,0.01102516,0.01013059, 0.1011561, 0.1757178, -0.3041972),Ti=4){# This funtion is very similar to the fution used in C#.# Calulating the Fixed MONA Relationship for House pries.# n : Type of tree n aka q.# T : Number of periods in the tree, T.# Rates : Tree of interest rates.# FIX : The fixed explanatory matrix F.# bbb : Initial value of laged interest rates.## Mat : List inluding H the house prie tree, DH hanges in house prie and# DSR Delta Rates.SR = Rates; # Interest Rates are SR.NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.I = 100;H = numeri(NodePlusOnePeriod)DH= numeri(NodePlusOnePeriod)D = numeri(NodePlusOnePeriod)



C.1 Tree Funtions.R 147Dtemp.Old = numeri(NodePlusOnePeriod)H[1℄ = 0;DH[1℄ = 0; = (0.06632852,0.30744099,-3.78106433,-0.77908085,-0.79271964,0.77091843,0.19494096,-0.10257190,0.05538029)Ti = Ti +1 ;Dtemp = numeri(Ti)SRtemp = numeri(5)DHtemp = numeri(5)Htemp = numeri(5)Comp = list();HH = numeri(Ti);DHH = numeri(Ti);tt = numeri(Ti);for(i in 2:NodePlusOnePeriod){ # Loop over 2:n^(T+1) nodes.t = WhatPeriod(n,T,i); # Returns the period t of node i.P = Parent(n,T,i); # P is the index of the parent node.GP = Parent(n,T,P); # GP index of the Parent(Parent).# As long as t < (T+1).D[i℄ = SR[i℄ - SR[P℄; # Differene in Current Rate and# Parent rate.DD = (0,rep(D[i℄/4,Ti-1))SS = umsum(DD)+SR[P℄tt = seq(t-1,t,length.out=Ti);DD[1℄ = D[P℄/4HH[1℄ = H[P℄DHH[1℄ = DH[P℄for(j in 2:length(Dtemp)){if(tt == 0.25){int = (0,0,DD[j℄,bbb,SS[j-1℄,0,0,0,0);DHH[j℄ = %*%(FIX+int);}if(t > 0.25){int = (0,0,DD[j℄,DD[j-1℄,SS[j-1℄,0,0,0,0);DHH[j℄ = %*%(FIX+int);}HH[j℄ = DHH[j℄+HH[j-1℄;}H[i℄ = HH[Ti℄;DH[i℄ = DHH[Ti℄;Comp[[i℄℄ = bind("Ti"=tt,"DH"=DHH,"H"=HH,"SS"=SS,"DD"=DD)}Mat = list();Mat$DSR = D;Mat$DH = DH;Mat$H = H;return(Mat); # Return list Mat.}HPDI = funtion(n,T,Rates,I=100)



148 R Code{# This funtion is very similar to the fution used in C#.# Calulating the NyKredit Relationship for House pries.# n : Number indiating branh number, n type of tree.# T : Number of periods in the tree, T.# Rates : Tree of interest rates.## Mat : List inluding HP the house prie tree, DH hanges in house prie,# DSR Delta Rates and H house pries without ompounding.SR = Rates; # Interest Rates are SR.NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.H = numeri(NodePlusOnePeriod)HP = numeri(NodePlusOnePeriod)D1= numeri(NodePlusOnePeriod)D2= numeri(NodePlusOnePeriod)DH= numeri(NodePlusOnePeriod)D = numeri(NodePlusOnePeriod)DeltaRates = numeri(NodePlusOnePeriod)H[1℄ = I;HP[1℄= I;Ti = 5;Comp = list();HH = numeri(Ti);DHH = numeri(Ti);tt = numeri(Ti);for(i in 2:NodePlusOnePeriod){ # Loop over 2:n^(T+1) nodes.t = WhatPeriod(n,T,i); # Returns the period t of node i.P = Parent(n,T,i); # P is the index of the parent node.GP = Parent(n,T,P); # GP index of the Parent(Parent).# As long as t < (T+1).DeltaRates[i℄ = SR[i℄ - SR[P℄; # Differene in Current Rate and# Parent rate.D1[i℄ = -5*DeltaRates[i℄; # One year hange at i.D2[i℄ = -11*DeltaRates[i℄; # Two year hange at i.DD = (0,rep(D[i℄/4,Ti-1))tt[1℄ = t-1;DD[1℄ = D[P℄/4HH[1℄ = H[P℄DHH[1℄ = DH[P℄for(j in 2:Ti){tt[j℄ = t - 1 + 1/(Ti-1)*(j-1)if(t == 1){DH[i℄ = DH[P℄ + D1[i℄;HP[i℄ = HP[P℄*(1 + D1[i℄);}if(t > 1){HP[i℄ = HP[P℄ * (1 + D1[i℄) + HP[GP℄* D2[P℄;DH[i℄ = DH[P℄+ D1[i℄ + D2[P℄;}H[i℄ = I*(1 + DH[i℄);}H[i℄ = HH[Ti℄;DH[i℄ = DHH[Ti℄;Comp[[i℄℄ = bind("Ti"=tt,"DH"=DHH,"H"=HH,"DD"=DD)}



C.1 Tree Funtions.R 149Mat = list();Mat$DSR = DeltaRates; # Delta Short Rates.Mat$H = H;Mat$HP = HP;Mat$DH = DH;return(Mat) # Return list Mat.}HPDINT = funtion(n,T,Rates,Ti=4){# This funtion is very similar to the fution used in C#.# Calulating the Interest Only Regression for House pries.# n : Number indiating branh number, n type of tree.# T : Number of periods in the tree, T.# Rates : Tree of interest rates.## Mat : Stru inluding HP the house prie tree, HP_1 house prie tree# lagged one period and DSR the Delta Rates.SR = Rates; # Interest Rates are SR.NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.I = 100;H = numeri(NodePlusOnePeriod)DH= numeri(NodePlusOnePeriod)D = numeri(NodePlusOnePeriod)Dtemp.Old = numeri(NodePlusOnePeriod)H[1℄ = 0;DH[1℄ = 0;Comp = list();Ti = Ti + 1;HH = numeri(Ti);DHH = numeri(Ti);tt = numeri(Ti);CC=(0.01254567,-3.65385018,-1.69341039);for(i in 2:NodePlusOnePeriod){ # Loop over 2:n^(T+1) nodes.t = WhatPeriod(n,T,i); # Returns the period t of node i.P = Parent(n,T,i); # P is the index of the parent node.GP = Parent(n,T,P); # GP index of the Parent(Parent).D[i℄ = SR[i℄ - SR[P℄; # Differene in Current Rate and.# Parent rate.DD = (0,rep(D[i℄/4,Ti-1))tt = seq(t-1,t,length.out=Ti);DD[1℄ = D[P℄/4HH[1℄ = H[P℄DHH[1℄ = DH[P℄for(j in 2:Ti){int = (1,DD[j℄,DD[j-1℄);DHH[j℄ = CC%*%(int);HH[j℄ = DHH[j℄+HH[j-1℄}H[i℄ = HH[Ti℄;DH[i℄ = DHH[Ti℄;Comp[[i℄℄ = bind("Ti"=tt,"DH"=DHH,"H"=HH,"DD"=DD)}



150 R CodeMat = list();Mat$L = Comp;Mat$DSR = D;Mat$DH = DH;Mat$H = H;return(Mat); # Return list Mat.}HPDEm = funtion(n,T,Rates,I=100,H1=0,DH1=0,Ti=4){# This funtion is very similar to the fution used in C#.# Calulating the NyKredit Relationship for House pries.# n : Number indiating branh number, n type of tree.# T : Number of periods in the tree, T.# Rates : Tree of interest rates.## Mat : List inluding HP the house prie tree, DH hanges in house prie,# DSR Delta Rates and H house pries without ompounding.SR = Rates; # Interest Rates are SR.NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.I = 100;H = numeri(NodePlusOnePeriod)DH = numeri(NodePlusOnePeriod)D = numeri(NodePlusOnePeriod)H[1℄ = H1DH[1℄ = DH1;Comp = list();Ti = Ti + 1HH = numeri(Ti);DHH = numeri(Ti);tt = numeri(Ti);CC = (0.03837,-4.04156,0.34215,-0.03431,-0.63258)for(i in 2:NodePlusOnePeriod){ # Loop over 2:n^(T+1) nodes.t = WhatPeriod(n,T,i); # Returns the period t of node i.P = Parent(n,T,i); # P is the index of the parent node.GP = Parent(n,T,P); # GP index of the Parent(Parent).# As long as t < (T+1).D[i℄ = SR[i℄ - SR[P℄; # Differene in Current Rate and# Parent rate.DD = (0,rep(D[i℄/4,Ti-1))SS = umsum(DD)+SR[P℄tt = seq(t-1,t,length.out=Ti);DD[1℄ = D[P℄/4HH[1℄ = H[P℄DHH[1℄ = DH[P℄for(j in 2:Ti){int = (1,DD[j℄,DHH[j-1℄,HH[j-1℄,SS[j-1℄);DHH[j℄ = CC%*%(int);HH[j℄ = DHH[j℄+HH[j-1℄}H[i℄ = HH[Ti℄;DH[i℄ = DHH[Ti℄;Comp[[i℄℄ = bind("Ti"=tt,"DH"=DHH,"H"=HH,"SS"=SS,"DD"=DD)



C.2 Modeling Funtions.R 151}Mat = list(); # Delta Short Rates.Mat$H = H;Mat$DH = DH;Mat$L = Comp;return(Mat) # Return list Mat.}Error.Cal = funtion(Tree,EB,I=1){ H = MMM(Tree)p1 = Int.Pol(H[1,℄)p2 = Int.Pol(H[3,℄)U = bind('d' = I*100*(1-exp(EB))+p2, 'u' = I*-100*(1-exp(EB))+p1)return(U)}Int.Pol = funtion(X,leng=3){ le = length(X)T2 =()for(i in 1:(le-1)){temp = seq(X[i℄,X[i+1℄,length.out=leng+2)T2 = (T2,temp[1:(leng+1)℄)}T2 = (T2,X[le℄)return(T2)}Read.IntTree = funtion(STRING){# A funtion to import interest rate trees.# header = san(STRING,nlines=1,what=harater(), quiet = TRUE)SS = read.table(STRING,skip=1)names(SS) = ("Year","Node",header)return(SS)}C.2 Modeling Funtions.R################################################################################ Funtions for modeling, estimation and data handeling for time series# models. In the following order:## R.square, R.adj.sqr, Nominal.Dev, Int.Only, ECM.Model, ECM.Model,# MONA.Model, TimePeriod, ECM.4.lag, MONA.ROLS, Pred.ROLS, Pred.OLS###############################################################################R.square = funtion(Y,Y.hat)



152 R Code{# Calulates the R square or Goodness of fit statisti between to series Y# and the fitted serise Y.hat.N = length(Y);R.above.1 = (t((Y.hat-Y)^2)%*%matrix(1,nrow=N)) # Matrix %*% operation.R.below.1 = sum((Y-mean(Y))^2)R.2 =1 - (R.above.1/R.below.1)# Return Goodness Of Fit.return(R.2)}R.adj.sqr = funtion(Y,Y.hat,p){# Calulates the adjusted R square or Goodness of fit statisti between two# series Y and the fitted serise Y.hat.N = length(Y);R = R.square(Y,Y.hat)R.adj = 1 - ((N-1)/(N-p))%*%(1-R)# Return Adjusted Goodness Of Fit.return(R.adj)}Nominal.Dev = funtion(KP,Y.hat,st=1974.25){# Calulates the aggregate house prie for a multivariate series element# Y.hat whih are hanges. KP is the house prie time series objet, st is# the start of aumulation for the house prie. There are two versions of# this funtion Nominal.Dev2 is used for the valdiation of point estimates.temp = dim(Y.hat)if (is.null(temp)){ # If vetor.N = length(Y.hat);M = 1;}else{ # If not vetor, i.e. if Y.hat is matrix.N = temp[1℄;M = temp[2℄;}Y.0 = window(log(KP),st-0.25,st-0.25) # Set KP to the orret houseY.tilde.R = matrix(0,nrow=N,nol=M) # prie at time st to use in# update.if (!is.null(temp)){ # If Y.hat matrix.for(j in 1:M){Y.tilde.R[1,j℄ = Y.hat[1,j℄ + Y.0for(i in 2:N){Y.tilde.R[i,j℄ = Y.hat[i,j℄ + Y.tilde.R[i-1,j℄}}Y.tilde.R = ts(as.data.frame(Y.tilde.R),frequeny=4,start=st)}else{ # If Y.hat vetor.Y.tilde.R[1℄ = Y.hat[1℄ + Y.0for(i in 2:N){Y.tilde.R[i℄ = Y.hat[i℄ + Y.tilde.R[i-1℄}Y.tilde.R = ts(Y.tilde.R,frequeny=4,start=st) # Set as ts objet.}



C.2 Modeling Funtions.R 153# Returns a aggregate timeseries objet from st.return(Y.tilde.R)}Int.Only = funtion(Data,Times){# Calulates the Interest Only Regression Model. Input is Data a list with# all time series data and Times also a list with the start of in-sample# period end of in-sample and end of all data.Sta = Times$Sta; # Start of in-sample or Offline.End = Times$End; # End of in-sample or start of Online.Clo = Times$Clo; # End of all or Offline.diff.off =(Sta,End)diff.on =(diff.off[2℄,Clo)# OfflineOff = TimePeriod(Data,diff.off[1℄,diff.off[2℄)HouseP.Int <- lm(Off$Y ~ Off$I2 + Off$I3) # OLS performed.Y.hat.off = ts(fitted(HouseP.Int),frequeny=4,start=diff.off[1℄)Off$X = as.matrix(data.frame(rep(1,length(Off$I2)),Off$I2,Off$I3))Beta = matrix(oef(HouseP.Int)) # Coeffiients.# OnlineOn = TimePeriod(Data,diff.on[1℄,diff.on[2℄) # Funtion below.On$X = as.matrix(data.frame(rep(1,length(On$I2)),On$I2,On$I3))Y.hat.on = ts(On$X%*%Beta,frequeny=4,start=diff.on[1℄)# AllAll = TimePeriod(Data,diff.off[1℄,diff.on[2℄) # Funtion below.All$X = as.matrix(data.frame(rep(1,length(All$I2)),All$I2,All$I3))Y.hat.all = ts(All$X%*%Beta,frequeny=4,start=diff.off[1℄)# Fitssig = (t(resid(HouseP.Int))%*%resid(HouseP.Int))/(dim(Off$X)[1℄-dim(Off$X)[2℄)Hat = list('Off'=Y.hat.off,'On'=Y.hat.on,'All'=Y.hat.all,'sigma.hat.sq'=sig)# Returns four sublist in the output list objet.return(list('OLS'=HouseP.Int,'Off'=Off,'On'=On,'All'=All,'Hat'=Hat))}ECM.Model = funtion(Data,Times){# Calulates the Error-Corretion Model using only lagged kp and rente, levels# and differened series. Input is Data a list with# all time series data and Times also a list with the start of in-sample# period end of in-sample and end of all data.Sta = Times$Sta; # Start of in-sample or Offline.End = Times$End; # End of in-sample or start of Online.Clo = Times$Clo; # End of all or Offline.diff.off =(Sta,End)diff.on =(diff.off[2℄,Clo)# OfflineOff = TimePeriod(Data,diff.off[1℄,diff.off[2℄)MODEL.ECM = lm(Off$ECM$DKP ~ Off$ECM$DRE + Off$ECM$DKP.1 + Off$ECM$KP.1 + Off$ECM$RE.1)Y.hat.off = ts(fitted(MODEL.ECM),frequeny=4,start=diff.off[1℄)Off$X = ts.union('I'=rep(1,length(Off$ECM$DRE)),'DRE'=Off$ECM$DRE,'DKP.1'=Off$ECM$DKP.1, 'KP.1'=Off$ECM$KP.1,'RE.1'=Off$ECM$RE.1)



154 R CodeBeta = matrix(oef(MODEL.ECM)) # Coeffiients.# OnlineOn = TimePeriod(Data,diff.on[1℄,diff.on[2℄) # Funtion below.On$X = ts.union('I'=rep(1,length(On$ECM$DRE)),'DRE'=On$ECM$DRE,'DKP.1'=On$ECM$DKP.1,'KP.1'=On$ECM$KP.1,'RE.1'=On$ECM$RE.1)Y.hat.on = ts(On$X%*%Beta,frequeny=4,start=diff.on[1℄)# AllAll = TimePeriod(Data,diff.off[1℄,diff.on[2℄) # Funtion below.All$X = ts.union('I'=rep(1,length(All$ECM$DRE)),'DRE'=All$ECM$DRE,'DKP.1'=All$ECM$DKP.1, 'KP.1'=All$ECM$KP.1,'RE.1'=All$ECM$RE.1)Y.hat.all = ts(All$X%*%Beta,frequeny=4,start=diff.off[1℄)# Fitssig = (t(resid(MODEL.ECM))%*%resid(MODEL.ECM))/(dim(Off$X)[1℄-dim(Off$X)[2℄)Hat = list('Off'=Y.hat.off,'On'=Y.hat.on,'All'=Y.hat.all,'sigma.hat.sq'=sig)# Returns four sublist in the output list objet.return(list('OLS'=MODEL.ECM,'Off'=Off,'On'=On,'All'=All,'Hat'=Hat))}MONA.Model = funtion(Data,Times){# Calulates Restrited Ordinary Least Squares (ROLS). Input as before Data# with time series objets and Times with start of in-sample, end of# in-sample and end of all data.Sta = Times$Sta; # Start of in-sample or Offline.End = Times$End; # End of in-sample or start of Online.Clo = Times$Clo; # End of all or Offline.diff.off =(Sta,End)diff.on =(diff.off[2℄,Clo)# OfflineOff = TimePeriod(Data,diff.off[1℄,diff.off[2℄)# OLSHouseP.lm = lm(Off$Y~Off$X1+Off$X2+Off$X3+Off$X4+Off$X5+Off$X6+Off$X7+Off$X8)# ROLSR = MONA.ROLS(Off) # The ROLS funtion see below.Beta_R = R$Beta_RY.hat.off = ts(Off$X%*%Beta_R,frequeny=4,start=diff.off[1℄)# OnlineOn = TimePeriod(Data,diff.on[1℄,diff.on[2℄)Y.hat.on = ts(On$X%*%Beta_R,frequeny=4,start=diff.on[1℄)# AllAll = TimePeriod(Data,diff.off[1℄,diff.on[2℄)Y.hat.all = ts(All$X%*%Beta_R,frequeny=4,start=diff.off[1℄)# FitsHat = list('Off'=Y.hat.off,'On'=Y.hat.on,'All'=Y.hat.all,'sigma.hat.sq' = R$sigma.hat.sq)# Returns five sublists 'ROLS' has the ROLS oeffiients.return(list('OLS'=HouseP.lm,'ROLS'=R,'Off' = Off,'On'=On, 'All' = All,'Hat'=Hat))}



C.2 Modeling Funtions.R 155TimePeriod = funtion(Data,From,To){# A data utting funtion. Input is Data objet with time series objets# From and To mark the time window whih is sought. Uses the ts funtion# window.# Model Variables.Y = window(diff(log(Data$KP)),From,To)X1 = window(diff(log(Data$PCP)),From,To)X2 = window(diff(Data$RENTE.SSATS),From,To)X3 = window(diff(Data$RENTE.SSATS),From-0.25,To-0.25)X4 = window(Data$RENTE.SSATS,From-0.25,To-0.25)X5 = window(Data$DPCPE,From-0.25,To-0.25)X6 = window(Data$DKPE,From-0.25,To-0.25)X7 = window(log(Data$KP/Data$PCP),From-0.25,To-0.25)X8 = window(log((Data$YDP-Data$IPV)/Data$PCP)-log(Data$FWH),From-0.25,To-0.25)KP = Data$KP;# Time vetor.ts = time(Y);# Tax with out Interest.SSATS.X2 = window(diff(Data$SSATS),From,To)SSATS.X3 = window(diff(Data$SSATS),From-0.25,To-0.25)SSATS.X4 = window(Data$SSATS,From-0.25,To-0.25)# Interest with out Tax.INT.X2 = window(diff(Data$RENTE+0.01),From,To)INT.X3 = window(diff(Data$RENTE+0.01),From-0.25,To-0.25)INT.X4 = window(Data$RENTE+0.01,From-0.25,To-0.25)X0 = ts(rep(1,length(Y)),frequeny=4,start=From);Zip = ts(rep(0,length(Y)),frequeny=4,start=From);# The Fixed vetor.FA = ts.union(X0,X1,"S2"=SSATS.X2,"S3"=lag(SSATS.X3,-1),"S3"=lag(SSATS.X4,-1),"X5"=lag(X5,-1),"X6"=lag(X6,-1),"X7"=lag(X7,-1),"X8"=lag(X8,-1))FA = window(FA,From,To);# Interest Only Vetor.AA = ts.union(Zip,Zip,"I2"=INT.X2,"I3"=lag(INT.X3,-1),"I4"=lag(INT.X4,-1),Zip,Zip,Zip,Zip)AA = window(AA,From,To);ECM = ECM.4.lag(Data,From,To);# Design or Explanatory Matrix.X = as.matrix(data.frame("X0"=rep(1,length(Y)),X1,X2,X3,X4,X5,X6,X7,X8))# Returns a list with numerous sublist inluding all the data needed for# analysis and foreasting.return(list('Y' = Y,'X'=X, 'X1'=X1,'X2'=X2,'X3'=X3,'X4'=X4,'X5'=X5,'X6'=X6,'X7'=X7,'X8'=X8,'S2'=SSATS.X2,'S3'=SSATS.X3,'S4'=SSATS.X4,'I2'=INT.X2,'I3'=INT.X3,'I4'=INT.X4,'t'=ts,'KP'=KP,'FA'=FA,'AA'=AA,'ECM'=ECM) )}ECM.4.lag = funtion(Data,st,en){# A data utting funtion. Input is Data objet with time series objets



156 R Code# From and To mark the time window whih is sought. Uses the ts funtion# window.RE = Data$RENTE+0.01KP = log(Data$KP)DKP = diff(KP)DRE = diff(RE)DRE.1 = window(lag(DRE,-1),st,en);DRE.2 = window(lag(DRE,-2),st,en);DRE.3 = window(lag(DRE,-3),st,en);DRE.4 = window(lag(DRE,-4),st,en);DKP.1 = window(lag(DKP,-1),st,en);DKP.2 = window(lag(DKP,-2),st,en);DKP.3 = window(lag(DKP,-3),st,en);DKP.4 = window(lag(DKP,-4),st,en);KP.1 = window(lag(KP,-1),st,en)RE.1 = window(lag(RE,-1),st,en)DKP = window(DKP,st,en)DRE = window(DRE,st,en);RE = window(RE,st,en)# Design or Explanatory Matrix.#X = as.matrix(data.frame("X0"=rep(1,length(DKP)),DRE,DKP.1,KP.1,RE.1))# Returns a list with numerous sublist inluding all the data needed for# analysis and foreasting.return(list('DKP' = DKP, 'DRE' = DRE, 'DRE.1'=DRE.1,'DRE.2'=DRE.2,'DRE.3'=DRE.3,'DRE.4'=DRE.4, 'DKP.1'=DKP.1, 'DKP.2'=DKP.2, 'DKP.3'=DKP.3, 'DKP.4'=DKP.4,'KP.1'=KP.1, 'RE'=RE, 'RE.1' = RE.1,'KP' = KP, 'DRE' = DRE))#, 'X' = X))}MONA.ROLS = funtion(Data){# The atual Restited Oridnary Least Squares is alulated for the MONA house# prie model. Returning all the same values as OLS with lm does. Input is Data# list of the format as TimePeriod outputs.Y = Data$Yn = length(Y)# OLSX = Data$XXX.1 = solve(t(X) %*% X)Beta = XX.1%*%t(X)%*%Y# Constraint R%*%Beta_R = ra = (Int=0,X1=0.25,X2=0,X3=0,X4=1,X5=1,X6=1,X7=0,X8=0);R = t(as.matrix(a));r = 0.25# Coeffiient for ROLS, Beta_R.b = t(R)%*%solve(R%*%XX.1%*%t(R)) = (r-R%*%Beta);Beta_R = Beta + XX.1%*%b%*%;# Y.hat, fit with Beta_R.Y.hat <- X %*% Beta_R



C.2 Modeling Funtions.R 157# Estimated variane of residuals.sigma.hat.sq <- sum((Y - Y.hat)^2) / (n - nol(X)+1)# Covariane matrix, V, for Beta_R.M = diag(1,9) - XX.1%*%b%*%RC = M %*% XX.1 %*% t(M)V = sigma.hat.sq * Cse = sqrt(diag(V))# t - valuest = Beta_R/se# p - valuep.value = 2*pt(-abs(t),df=n-nol(X)+1)All=data.frame('Estimate'=round(Beta_R,5),'Std.Error'=round(as.matrix(se),5),'t.value'=round(t,3),'p.value'=p.value)# Returns many values in a list 'Summary' returns a omprihensive desription# similar to a summary(lm-objet).return(list('Beta_R'=Beta_R, 'Beta'=Beta, 'XX.1'=XX.1, 'Cov.ROLS'=V,'sigma.hat.sq'= sigma.hat.sq, 'Std.Error.Beta_R' = se,'t.value.R' = t, 'p.value.R' = p.value, 'Y.hat' = Y.hat, 'M'=M,'Summary'=All))}Pred.ROLS = funtion(List,alpha=0.05){# Calulates predition intervals for the MONA ROLS model. The ovariane matrix is# different and the predition therefor also. alpha sets the predition intervals# onfidene interval by onf.int = 1-(alpha/2). alpha is set to 0.05 by default.yOFF=List$Hat$OffyON =List$Hat$On #Out of sample, or Online Point Estimate.xOFF=List$Off$XxON =List$On$Xsigma = List$Hat$sigma.hat.sqM = List$ROLS$MXX = solve(t(xOFF)%*%xOFF);n = length(yOFF);p = dim(XX)[1℄ - 1;tt = qt(1-alpha/2,n-p)tmp=();# For eah out of sampe point alulate the predition interval.for(i in 1:length(yON)){TEM = sqrt( sigma * (1 + xON[i,℄%*%M%*%XX%*%t(M)%*%as.matrix(t(xON)[,i℄)));tmp[i℄ = tt * TEM}predit = bind(yON-tmp,yON,yON+tmp,tmp)# Returns a time series objet with four series, point estimat - variane, point# estimate, point estimate + variane, variane.return(predit)}Pred.OLS = funtion(List,alpha=0.05){



158 R Code# Calulates predition intervals for the OLS model. alpha sets the predition intervals# onfidene interval by onf.int = 1-(alpha/2). alpha is set to 0.05 by default. List is# a list of type as output from TimePeriod.yOFF=List$Hat$OffyON =List$Hat$On #Out of sample, or Online Point Estimate.xOFF=List$Off$XxON =List$On$Xsigma = List$Hat$sigma.hat.sqXX = solve(t(xOFF)%*%xOFF);n = length(yOFF);p = dim(XX)[1℄;tt = qt(1-alpha/2,n-p)tmp=();# For eah out of sampe point alulate the predition interval.for(i in 1:length(yON)){tmp[i℄ = tt * sqrt( sigma * (1 + xON[i,℄%*%XX%*%as.matrix(t(xON)[,i℄)));}predit = bind(yON-tmp,yON,yON+tmp,tmp)# Returns a time series objet with four series, point estimat - variane, point# estimate, point estimate + variane, variane.return(predit)}################################################################################ Funtions for simulating error in hange and levels for time series, along# with many sub funtions. In the following order:## BOOT, GenerateCoeffiients, GenerateEstimatChange, Erro.Cal, AggHPsim, MS,# Print.Boot, Plot.C, Lines.Boot, PreditInt, YLIM###############################################################################BOOT = funtion(ROLS,INT,ECM,k,N=10000,t.st=1997.75,Coeff=F){# BOOT is a simulation of the error when bootstrapping three different models, it# estimates the hange in house pries error for MONA full, MONA fixed and INT only.# The inputs are: ROLS objet whih is the output from MONA.Model.# INT obejet whih is the output from Int.Only.# k the predition horizon.# N repetitions for eah simulation, default set to N=10000.# t.st the start of predition. Default set to last Offline, 1997.75.# Coeff a logial variable, see below default set to FALSE.# DataAll = ROLS$AllX = All$X; S2 = All$S2; S3 = All$S3; S4 = All$S4Y = All$Y; I2 = All$I2; I3 = All$I3; I4 = All$I4# Setting up for the ROLS.V.R = ROLS$ROLS$Cov.ROLSBeta.R = ROLS$ROLS$Beta_Rsig.R = ROLS$ROLS$sigma.hat.sqB.A = Beta.RB.F = Beta.R# Setting up for the Interest Only Regression.X.In = INT$All$X



C.2 Modeling Funtions.R 159sig.I = as.numeri(INT$Hat$sigma.hat.sq)Beta.I = as.matrix(oeffiients(INT$OLS))V.I = sig.I*solve(t(INT$Off$X)%*%INT$Off$X)B.I = Beta.I# Setting up for the Error-orretion Model.X.Em = ECM$All$Xsig.E = as.numeri(ECM$Hat$sigma.hat.sq)Beta.E = as.numeri(oeffiients(ECM$OLS))V.E = sig.E * solve(t(ECM$Off$X)%*%ECM$Off$X)B.E = Beta.E# Initializing variables.k = k + 1; # Add one to k to add last In-sample point.Y.tF = matrix(0,nol=k,nrow=N);Y.tA = matrix(0,nol=k,nrow=N);Y.tI = matrix(0,nol=k,nrow=N);Y.tE = matrix(0,nol=k,nrow=N);ind.F = whih(time(Y)==t.st); # Index of Fixing.ind = ind.F; # Index without fixing. Initially set to fixed index.# For t=0,...,k, sine now k = k+1.for(p in 1:k){tp = t.st + (p-1)*0.25; # Time period inrement.ind = ind.F + (p-1); # Index inrement.X.A = X[ind,℄; # X.A set to orrespoding explt.X.F = X[ind.F,℄; # X.F set to fixed explt.X.F[3℄=S2[ind.F℄+I2[ind℄ # Interest elemtents set.X.F[4℄=S3[ind.F℄+I3[ind℄ # eplanitory variables.X.F[5℄=S4[ind.F℄+I4[ind℄X.I = X.In[ind,℄;X.E = X.Em[ind,℄;# Repeat the following proess N times.for(i in 1:N){# Add error to oeffiients. If Coeff=T.if(Coeff){B.F = GenerateCoeffiients(B=Beta.R,CVar=V.R); # Subfuntion see below.#B.I = GenerateCoeffiients(B=Beta.I,CVar=V.I);#B.A = GenerateCoeffiients(B=Beta.R,CVar=V.R);#B.F[3℄=B.A[3℄; B.F[4℄=B.A[4℄; B.F[5℄=B.A[5℄;}# Error estimate of Fixed and All explanitory vetors.Y.tF[i,p℄=GenerateEstimatChange(X=X.F,te=B.F,sdt=sig.R) # Subfuntion.Y.tA[i,p℄=GenerateEstimatChange(X=X.A,te=B.A,sdt=sig.R)Y.tI[i,p℄=GenerateEstimatChange(X=X.I,te=B.I,sdt=sig.I)Y.tE[i,p℄=GenerateEstimatChange(X=X.E,te=B.E,sdt=sig.E)}}Y.F = list('Y'=Y.tF,'MS'=MS(Y.tF,t.st)) # lists with value, mean and sd.Y.I = list('Y'=Y.tI,'MS'=MS(Y.tI,t.st)) # MS subfuntion.Y.A = list('Y'=Y.tA,'MS'=MS(Y.tA,t.st))Y.E = list('Y'=Y.tE,'MS'=MS(Y.tE,t.st))E.F = Erro.Cal(Y,Y.F,t.st,k) # Error.Cal subfuntion.E.I = Erro.Cal(Y,Y.I,t.st,k)E.A = Erro.Cal(Y,Y.A,t.st,k)E.E = Erro.Cal(Y,Y.E,t.st,k)Mis = list('KP'=All$KP,'Y' = Y,'k'=k-1,'t.st'=t.st);Ret = list('Y.F'=Y.F,'E.F'=E.F,'Y.I'=Y.I,'E.I'=E.I,



160 R Code'Y.A'=Y.A,'E.A'=E.A,'Y.E'=Y.E,'E.E'=E.E,'Mis'=Mis);# Return a list with many sublist, e.g. one for eah model.return(Ret)}GenerateCoeffiients = funtion(Beta,CVar){# Sub funtion of BOOT, generates a sample from a normal distribution# where N(Beta,CVar).p = length(Beta);B = numeri(p);for(i in 1:p){B[i℄ = rnorm(1,mean=Beta[i℄,sd=sqrt(CVar[i,i℄));}# Returns a vetor with a sample from the oeffiient distribution.return(B)}GenerateEstimatChange = funtion(X,te,sdt,mean=0){# Sub funtion of BOOT, alulates a sample from a normal distribution# using the residual variane and adding to the model part.Model = X%*%teResid = rnorm(1,mean=mean,sd=sqrt(sdt))Y = Model+Resid;# Return a sample value of Y with a residual and regression error.return(Y)}Erro.Cal = funtion(Y,Y.S,t,k){# A simple funtion for moving the point estimate to zero, i.e. basing the# hange from 0. YY.S=Y.S$Yp = min(dim(Y.S))N = max(dim(Y.S))temp = matrix(0,nrow=N,nol=p)D = matrix(0,nrow=N,nol=p)Y.obs = window(Y,t,t+(k-1)*0.25)for(i in 1:p){temp[,i℄=rep(Y.obs[i℄,N)}D = temp-Y.S;A = list('Y'=D,'MS'=MS(D,t));# Returns the Y.S matrix entered around 0.return(A)}AggHPsim = funtion(Ret,N=10000){# A simulation for the aggregate effet of the house prie model. Three models are# simulated MONA full, MONA fixed and INT only. The input is a list objet from the



C.2 Modeling Funtions.R 161# BOOT funtion above.Mis = Ret$Mis;Y.A=Ret$Y.A; k = Mis$k;Y.F=Ret$Y.F; t.st = Mis$t.st;Y.I=Ret$Y.I; KP = Mis$KP;Y.E=Ret$Y.E;Y = Mis$Y;# Observed Nominal House Prie.#Y.OBS = Nominal.Dev(KP,Y);ln.kp = log(KP);A = window(ln.kp,t.st,t.st) # Start Value of House Prie.A.on = window(ln.kp,t.st)Y.A = matrix(0,nol=k+1,nrow=N);Y.I = matrix(0,nol=k+1,nrow=N);Y.F = matrix(0,nol=k+1,nrow=N);Y.E = matrix(0,nol=k+1,nrow=N);# For t=0,...,k, sine now k = k+1.for(p in 1:(k+1)){# Repeate eah forast N times.for(i in 1:N){if(p==1){# First t is known.Y.A[i,p℄ = A;Y.I[i,p℄ = A;Y.F[i,p℄ = A;Y.E[i,p℄ = A;}else{# t>0 sample hange for from distibutions gotten from the# BOOT output.RCA = rnorm(1,mean=Y.A$MS[p,1℄,sd=Y.A$MS[p,2℄)RCI = rnorm(1,mean=Y.I$MS[p,1℄,sd=Y.I$MS[p,2℄)RCF = rnorm(1,mean=Y.F$MS[p,1℄,sd=Y.F$MS[p,2℄)RCE = rnorm(1,mean=Y.E$MS[p,1℄,sd=Y.E$MS[p,2℄)# t>0 aggregate effet by adding the sample hange to a# sample from a distribution of previous aggregate prie.Y.A[i,p℄ = RCA + rnorm(1,mean=tMA,sd=tSA);Y.I[i,p℄ = RCI + rnorm(1,mean=tMI,sd=tSI);Y.F[i,p℄ = RCF + rnorm(1,mean=tMF,sd=tSF);Y.E[i,p℄ = RCE + rnorm(1,mean=tME,sd=tSE);}} tMA = mean(Y.A[,p℄); tSA = sd(Y.A[,p℄);tMI = mean(Y.I[,p℄); tSI = sd(Y.I[,p℄);tMF = mean(Y.F[,p℄); tSF = sd(Y.F[,p℄);tME = mean(Y.E[,p℄); tSE = sd(Y.E[,p℄);}Y.F = list('Y'=Y.F,'MS'=MS(Y.F,t.st)) # lists with value, mean and sd.Y.I = list('Y'=Y.I,'MS'=MS(Y.I,t.st))Y.A = list('Y'=Y.A,'MS'=MS(Y.A,t.st))Y.E = list('Y'=Y.E,'MS'=MS(Y.E,t.st))Ret = list('Y.F'=Y.F,'Y.I'=Y.I,'Y.A'=Y.A,'Y.E'=Y.E);# Return a list with a hierahy of lists.return(Ret)}MS = funtion(Y,t=F){



162 R Code# Calulates the mean and standar deviation of matrix Y returns as time series# if is.numeri(t). Subfuntion of BOOT and AggHPsim.p = nol(Y)N = nrow(Y)mean = numeri(p)sd = numeri(p)# Simpler way for this is the funtion apply. See ?apply.for(i in 1:p){mean[i℄ = mean(Y[,i℄)sd[i℄ = sd(Y[,i℄)}if(is.numeri(t)){temp = ts(bind('Mean'=mean,'Sd'=sd),frequeny=4,start=t);}else{temp = bind('Mean'=mean,'Sd'=sd)}# Return a vetor with mean and sd of eah olumn in Y.return(temp);}Print.Boot = funtion(List){# A funtion whih prints out the result for the simulation of BOOT, input is list# of the same format as BOOT or AggHPsim export.MS=List$MSk=nrow(MS)at(" k \t Mean \t\t Stand Deviation \t\n")at("--------------------------------------------\n")for(p in 1:k){at(" ",p-1,"\t",MS[p,1℄,"\t",MS[p,2℄,"\t\n")}# No Value is Returned.}Plot.C = funtion(List,br=20,main="",ol=2,add=F,lty=2,lwd=1,type='l',xlab="",mu=F){# A home made funtion for plotting the normal disributions denerated by the data# from BOOT and AggHPsim. List is a list objet from the simulation funtions BOOT or# AggHPsim.if(is.list(List)){ # If List is a list objet.Y=List$YA=List$MS}else{ # If List is numeri.Y = List;A = MS(Y);}p = min(dim(Y))ylim = numeri(p)xlim = range(Y)tmp = 0;mu.tmp = 0;# Used to find a ommon ylim that has all distributions.for(i in 1:p){tmp = hist(Y[,i℄,freq=F,plot=F,br=br)mu.tmp = range(mu.tmp,range(Y[,i℄-A[i,1℄))ylim[i℄=max(tmp$density)



C.2 Modeling Funtions.R 163}# Swith used to get all graphs on one graph.if(mu){xlim = mu.tmp;A[,1℄=0;}else{xlim = range(Y)}ylim = (0,max(ylim))nd=seq(xlim[1℄,xlim[2℄,0.001)# If add=F then the plot is set up.if(!add){plot(Y,type='n',ylim=ylim,xlim=xlim,xlab=xlab,ylab='Density',main=main)}for(i in 1:p){y=dnorm(nd,mean=A[i,1℄,sd=A[i,2℄)lines(nd,y,type=type,ol=ol,lwd=lwd,lty=lty)}abline(h=0)abline(v=0)# No return value.}Lines.Boot = funtion(List,ol=1,lwd=1,lty=2,prod=1,on=T,pp=T){# Plots the simulated predition intervals and point estimates, prod is the# t-value of the predition interval.A=PreditInt(List,prod=prod) # Small sub funtion see below.lines(A[,2℄,ol=ol,lwd=lwd,lty=lty-1)if(pp){points(A[,2℄,ol=ol,ph=19,ex=0.8)}if(on){lines(A[,1℄,ol=ol,lwd=lwd,lty=lty)lines(A[,3℄,ol=ol,lwd=lwd,lty=lty)}# No return Value.}PreditInt = funtion(Y,prod=1){# Sub funtion of Lines.Boot. Y is a matrix with mean values and standard# deviations (MS list objet). prod is the t-value used for the width of# the predition intervals.me = Y$MS[,1℄; sd = Y$MS[,2℄;# Return a mean-(variane*t-value), mean, mean+(variane*t-value)return(bind('SD.m'=me-prod*sd,'MU'=me,'SD.p'=me+prod*sd))}YLIM = funtion(List,TSer,prod=1){# Small help funtion for plotting. Finds the range for ylim when setting up plots.# List is a MS list objet. TSer is the observed house prie value.



164 R Codea=range((List$MS[,1℄ + prod * List$MS[,2℄, List$MS[,1℄ - prod * List$MS[,2℄))tt=range(range(TSer),a)# Return the vetor with range tt.return(tt)}



Appendix D C# Code and ClassDiagram
For C# ode ontat me at snorri.pall.sigurdsson�gmail.om.
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Figure D.1: The lass diagram for the senario tree implementation in C#.
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