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Summary

In this thesis, a number of possible solutions to source separation are suggested.
Although they differ significantly in shape and intent, they share a heavy reliance
on prior domain knowledge. Most of the developed algorithms are intended for
speech applications, and hence, structural features of speech have been incorpo-
rated.

Single-channel separation of speech is a particularly challenging signal process-
ing task, where the purpose is to extract a number of speech signals from a single
observed mixture. I present a few methods to obtain separation, which rely on
the sparsity and structure of speech in a time-frequency representation. My own
contributions are based on learning dictionaries for each speaker separately and
subsequently applying a concatenation of these dictionaries to separate a mixture.
Sparse decompositions required for the decomposition are computed using non-
negative matrix factorization as well as basis pursuit.

In my work on the multi-channel problem, I have focused on convolutive mix-
tures, which is the appropriate model in acoustic setups. We have been successful
in incorporating a harmonic speech model into a greater probabilistic formula-
tion. Furthermore, we have presented several learning schemes for the parameters
of such models, more specifically, the expectation-maximization (EM) algorithm
and stochastic and Newton-type gradient optimization.
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Resumé

Jeg foreslår i afhandlingen en række løsninger på kildeseparationsproblemet. Me-
toderne er væsensforskellige, men har det til fælles, at de i høj grad er afhængige
af problemspecifik viden. Flertallet af algoritmerne er udviklet med henblik på
taleanvendelser, og netop derfor er strukturelle egenskaber ved tale blevet ind-
bygget.

Enkeltkanalseparation af tale er en særlig krævende signalbehandlingsdisci-
plin, hvor formålet er at udtrække en række talesignaler fra et enkelt observeret
mikstursignal. Jeg præsenterer en række separationsmetoder, som udnytter tales
meget spredte fordeling i en tids-frekvens-repræsentation. Mine egne bidrag er
baseret på at lære ‘ordbøger’ for hver enkelt taler, som senere kan bruges til at
adskille signalerne. Matrixfaktorisering og basis pursuit bruges til at beregne
dekompositionerne.

I forbindelse med mit arbejde med fler-kanalproblemet, har jeg koncentreret
mig om foldningsmiksturer, som er en passende model i akustiske problemer. Det
er lykkedes os at indbygge en harmonisk talemodel i en sandsynlighedsteoretisk
ramme. Desuden har vi præsenteret flere fremgangsmåder til indlæring af model-
lens parametre. Mere specifikt, har vi benyttet EM algoritmen, stokastisk gradient
samt en Newton-forbedret gradientmetode.
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Preface

The preparation of a thesis is one of the requirements to obtain a Ph.D. degree
from the Technical University of Denmark (DTU). The main objective is to put
into context the research conducted and published in my three years as a Ph.D.
student. I do not repeat the narrative flows of the articles, but rather, I introduce
the field, citing the relevant literature. Below, I have listed the published works,
the roman numeral identifying their location in the appendix.
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I B. A. Pearlmutter and R. K. Olsson, Algorithmic Differentiation of Linear
Programs for Single-channel Source Separation, in proceedings of IEEE
International Workshop on Machine Learning and Signal Processing, 2006

II M. N. Schmidt and R. K. Olsson, Single-Channel Speech Separation using
Sparse Non-Negative Matrix Factorization, in proceedings of International
Conference on Spoken Language Processing, 2006

III M. N. Schmidt and R. K. Olsson, Feature Space Reconstruction for Single-
Channel Speech Separation, in submission to Workshop on Applications of
Signal Processing to Audio and Acoustics, 2007

- H. Asari, R. K. Olsson, B. A. Pearlmutter and A. M. Zador, Sparsifica-
tion for Monaural Source Separation, in Blind Speech Separation, eds. H.
Sawada, S. Araki and S. Makino, Springer, 2007 - in press

In the field of multi-channel separation:

IV R. K. Olsson and L. K. Hansen, Probabilistic Blind Deconvolution of Non-
stationary Sources, in proceedings of European Signal Processing Confer-
ence, 1697-1700, 2004
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Chapter 1

Introduction

It is a non-negotiable condition of agents operating in the real world that the en-
vironment is observed only through sensors, obscuring the objects of interest.
Humans are equipped with advanced sensory devices and formidable processing
which partially alleviate this limitation. Imagine, for instance, that you are attend-
ing a cocktail party, listening to your friend speaking. Depending on the condi-
tions, you are able isolate your friend’s speech and recognize the words at little
effort, despite a number of interfering voices and other sounds (Cherry, 1953) .
This is a clear indication that the human auditory system has a mechanism for
separating incoming signals, and indeed, much research has been directed at de-
scribing the psychoacoustics more closely (Bregman, 1990). Not only are we
interesting in employing a machine to emulate human auditory perception, more
generally, we hope to devise algorithms that can extract hidden source signals
in a large range of sensory domains. Applications range from automatic speech
recognition to analysis of brain images.

This thesis is concerned with constructing algorithms for source separation,
thus rendering it possible to treat the cocktail party problem and related scenar-
ios. More generally, source separation is a relevant procedure in cases when a
set of source signals of interest has gone through a unspecified mixing process
and has been recorded at a sensor array. Given the observed mixture signals, the
objective is to invert the unknown mixing process and estimate the source signal
(Figure 1.1). In many cases, this is possible, even when placing only limited as-
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CHAPTER 1. INTRODUCTION

Figure 1.1: Conceptualized visualization of the source separation problem. In A,
we are presented with the premise: the source signals of interest are observed
only through the sensors. It is the end goal to retrieve the sources as illustrated
in B. The mixing process is often unknown and has to be estimated as part of the
procedure. Whether the problem can be solved depends on the properties of the
mixing process and the sources.

sumptions on the mixing process, such as linearity. The main method for such a
relatively general attempt at source separation is independent component analysis
(ICA, Hyvärinen et al., 2001). However, a truly general solution to source separa-
tion does not exist, e.g., the mixing mapping may be non-invertible.1 Hence, the
solution often have to be tailored to the problem at hand.

Thus, rather than committing to developing a canonical method, the focus of
the thesis is on combining machine learning techniques and expert knowledge
specific to the data domain: flexible, data-driven signal models are infused with

1Consider for example the sum of two i.i.d. Gaussian sources, y = s1 + s2, where s1 and s2

are Gaussian stochastic variables. Hence, the mixture, y, is also i.i.d. Gaussian. By observing y,
we can estimate its mean and variance, each the sum of the means and variances s1 and s2. As
a result, the individual statistics of s1 and s2 are unavailable due to the fact that a continuum of
solutions exists. Hence, the sources, s1 and s2, cannot be inferred from the observable.

2



1.1. ORGANIZATION

all available knowledge. We often know which types of sources to expect being
present in the mixture and how they are mapped into the mixture.

There are more ways to make the fullest use of priori knowledge in machine
learning. The first way is to simply make clever choices regarding the representa-
tion of data. For instance, many natural sounds reveal patterns of interest once they
are mapped to a time-frequency representation. Furthermore, mixed signals may
decompose in the transformed domain. In computational auditory scene analysis
(CASA), algorithm researchers and designers seek to copy the internal represen-
tations of the human auditory system. CASA builds on detailed knowledge of
psychoacoustics, ranging from the pinna to neuronal processing. Bregman (1990)
described how humans perform ASA (and thus, source separation) by employing
cues appearing along the auditory pathway to group and segregate the fragments
of the various audio sources.

The second way consists in formulating a generative model of the problem
which can be a full physical model, or, at least incorporate the relevant structure
of the signals into probability density functions. This naturally applies to speech,
where hidden Markov models (HMM) and sinusoidal models are widely used
in automatic speech recognition as well as in efficient coding (Rabiner, 1989;
McAulay and Quateri, 1986). It is a sensible hypothesis, and one that is em-
pirically justified, that source separation can benefit from sensible preprocessing
as well as detailed speech modelling. In fact, combining the two approaches to
knowledge inclusion is a key objective of my research.

1.1 Organization

The thesis is mainly structured according to a specific property of the problem,
namely the number of sensors, Q, available to the source separation algorithm.
Single-channel separation (Q = 1), which is the hardest case, is treated in chapter
2. Assuming additive mixing, the problem is to estimate the source signals from
the sum alone.2 This is only possible when the sources are sufficiently structured
in time, or, trivially, defined on separate intervals. Typically the difficulty of the

2That is, estimate si from y =
∑P

i=1 si, where P is the number of sources.
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CHAPTER 1. INTRODUCTION

problem is dramatically reduced when more sensors are allowed (Q > 1). In
multi-channel separation, fairly general tools can be used in some cases. A com-
mon example occurs when the mixing process is linear and time-instantaneous.3

For such problems, independent component analysis (ICA) can be used, see chap-
ter 4. Many basic ICA methods require that the number of sensors cannot be
smaller number of sources. When the number of sources is larger than the number
sensors, we say that the problem is underdetermined. In some special cases, a
solution to underdetermined source separation can be obtained using ICA algo-
rithms, as long as the number of sensors is larger than two, Q ≥ 2.

While ICA provides an elegant solution to multi-channel separation of linear
instantaneous mixtures, it does not when the mixture model is in disagreement
with the nature of the problem. For instance, in real-room acoustic mixtures, the
source signals travel by multiple paths from the point of emission to the sensors,
that is, there are multiple delays involved. As a consequence, a socalled convo-
lutive mixture model is required to do any useful processing, complicating the
algorithms significantly. The room impulse functions of the paths between the
sources and the sensors are generally unknown and have to be estimated from
data. Chapter 3 treats source separation in convolutive mixtures. Further com-
plications of the mixing model in the form of non-linearities can occur if, for
example, microphones are used as sensors, but this falls outside the scope of this
text. Varying degrees of knowledge about the mixing process can be integrated
into the model. In this thesis, the derived separation algorithms are mostly blind,
indicating that the mixing process is unknown. However, the oft-used term, blind

source separation seems to be somewhat of a misnomer, since a minimal set of
assumptions always is implicitly assumed, typically linear mixing and the source
dimensionality.

1.2 Applications

Within academia, a general interest in source separation has been demonstrated,
as it provides researchers and scientists with a new tool to inspect phenomena of

3The instantaneous mixture at the j’th sensor can be described as yj(t) =
∑P

i Ajixi(t), where
t. As such, there are no dependencies across time in the observation model.

4



1.2. APPLICATIONS

nature. For instance, it allows for previously unavailable views at seismic and
cosmic data (Cardoso et al., 2002; Acernese et al., 2003). McKeown et al. (2003)
reviews the application of ICA to brain images. Importantly, the algorithms used
may apply to situations not predicted by their inventors, just as number theory is
a foundation to the field of computer science.

In the shorter term, the research of source separation models and algorithms
can be motivated from an applications point-of-view. Inspired by Mitianoudis
(2004) and others, I provide a list of possible ways to exploit source separation
algorithms in audio systems.

• In digital hearing aids, source separation may be used to extract the sounds
of interest. This would constitute an improvement of today’s beamforming
methods, which merely perform directional filtering.4 Taking advantage of
communication between the devices at the left and right ears may boost the
performance further of the source separation algorithm due to the increased
distance between the sensors.

• In a number of cases, it is desirable to obtain transcriptions of speech.
Sometimes, automatic speech recognition (ASR) can replace manual tran-
scription, but in cross-talk situations and other noisy, adverse conditions
the software may fail to provide useful results. It has been proposed that
source separation could serve as a preprocessor to ASR, thus broadening
the applicability of automatic transcription. A few examples of possible
applications are: recordings of police interrogations, judicial proceedings,
press conferences, multimedia archives.

Happy reading!

4Modern hearing aids are equipped with multiple microphones.
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Chapter 2

Single-channel Separation

Generally, we cannot expect to be able to meaningfully map a single mixture sig-
nal into multiple separated channels. Rather it is a special feature of the source
signals involved. For example, it has been demonstrated that a separating map-
ping can actually be performed on mixed speech (Roweis, 2001). This is not com-
pletely surprising, though, considering the fact that humans can separate speech
from mono recordings, or at least, recognize the words (Cherry, 1953).

Paradoxically, the solution can be applied in a more general setting. For in-
stance in audio scenarios, single-channel methods can be applied in all cases
where a single microphone is already available in the hardware, such as cell-
phones and laptop computers. Multi-channel methods, on the other hand, would
require versions of the appliances to be equipped with multiple microphones.

The chapter is organized as follows: first, single-channel separation is defined
mathematically and issues of representation, preprocessing and postprocessing are
addressed. Secondly, important methods of the relevant literature are mentioned
and own contributions are placed in their proper context. Finally, a short discus-
sion of the (subjective or objective) evaluation of algorithms follows.

In this thesis, only the linear version of the problem will be addressed, that is

y(t) =
P∑
i

aisi(t) (2.1)

where y(t) is the mixture signal and si(t) is the i’th source signal. In general,

7



CHAPTER 2. SINGLE-CHANNEL SEPARATION

Figure 2.1: Single-channel separation is the art of mapping a single mixture of
multiple sources into their components. Important inspiration can be taken from
the human auditory system, which possesses a powerful ability to segregate and
separate incoming sounds.

the gain coefficients, ai, cannot be recovered and are assumed to be 1. This is
due to a scaling ambiguity, which is inherent to the problem: from the point of
view of y(t) we can freely multiply a gain coefficient by a factor and divide the
corresponding source signal with the same factor. In some situations, on the other
hand, the powers of the sources can be assumed to have been acquired by some
separate process and it is desirable to retain the ai’s in the model.

2.1 Preliminaries

The aim of machine learning methods (with which we are concerned) is to solve
a given problem by adapting a general model to data. However, in practice the
success often relies to a high degree on the preprocessing and postprocessing of
the data, and to a lesser extend on the particular model applied. The search for
suitable transformations of the problem can sometimes be described as ‘lineariza-
tion’, suggesting that a difficult non-linear problem has been reduced to a simpler
linear one which can be solved using our favorite, linear method. In fact, Michie
et al. (1994) found that for 9 out of 22 different classification problems, linear
discriminant analysis was among the best 5 out of 23 algorithms. The lack of
robustness of complex non-linear models has to do with issues of generalization,

8



2.1. PRELIMINARIES

the models become overfitted to the training data. Motivated by such considera-
tions, I will move on to describe feature representations of audio that has turned
out to help achieve single-channel separation using machine learning methods. In
reality, this indicates a compromise between knowledge-based and purist machine
learning approaches.

In the context of single-channel separation of audio signals, it is common prac-
tice to use a time-frequency representation of the signal. Thus a the transforma-
tion, Y = TF{y(t)}, is performed as a preprocessing step. Often, Y is termed the
‘spectrogram’. A common choice of calculating the TF, is the short-time Fourier
transform (STFT), which efficiently computes amplitude and phase spectra on a
time-frequency grid. It turns out that the phase spectrogram is irrelevant to many
of the separating algorithms and may be imposed in an unaltered form to the out-
putted source estimates.1 Hence, we define TF such that Y is a real-valued matrix
with spectral vectors, y, as columns. A common alternative option for computing
TF is to employ a scale which has a high resolution at lower frequencies and a
low resolution at higher frequencies, e.g., that of a gammatone filterbank, or a mel
scale. The mentioned TF mappings, which have turned out to be essential to ob-
tain useful results, are clearly similar in spirit to the frequency analysis effectively
carried out by the human auditory system (in the inner ear).2 It is tempting to
believe that this is not a coincidence: mimicking nature’s way of sensing nature’s
signals may be near-optimal.

In order to qualify the usefulness of TF representations in audio processing,
let us inspect the effect of the mapping on a sample. In figure 2.2, amplitude
spectrograms of two audio are displayed along with their time-domain versions.
The signals clearly become sparse in the TF domain, meaning that few of the TF

cells are non-zero. This facilitates the separation of a mixture, because the energy
of independent sources is unlikely to be overlapping. Further evidence is provided
in figure 2.3, which shows the joint distribution of two speech sources, confirming
the sparsity hypothesis. The chosen signals are quasi-periodic, meaning that most

1This is akin to spectral subtraction (Boll, 1979), a noise reduction technique for speech ap-
plications, which subtracts the estimated noise amplitude spectrum from the mixture amplitude
spectrum. The ‘noisy phase’ carries over to the ‘enhanced’ signal.

2In a seminar session at the department, CASA pioneer DeLiang Wang reported that in his
work on single-channel separation, the algorithms were relatively tolerant to the choice of TF.
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CHAPTER 2. SINGLE-CHANNEL SEPARATION

Figure 2.2: Time-domain (TD) and the corresponding TF representation (FD)
of 2s excerpts from recordings of female speech and piano music (Beethoven).
As a consequence of the mapping to the frequency domain, the signals become
sparsely representable, that is, few elements are non-zero. The TF transformation
were computed using the short-time Fourier transform.

segments of the signals are close to being periodic, a consequence of the speech
production apparatus. As a result, the signals become sparse in the TF domain,
i.e., periodic signals are represented as ‘combs’.

As a byproduct of the increased sparsity, linearity is approximately preserved
in the transformed mixture,

y ≈
P∑

i=1

aixi (2.2)

where xi is the transformed source signal. The time-index was dropped for ease
of notation. Importantly, linearity enables a class of methods that rely on linear
decompositions of y, see section 2.6.

A further common practice in audio processing applications is to perform an

10



2.1. PRELIMINARIES

Figure 2.3: The energies at one frequency of two simultaneous speech signals in
a TF representation, sampled at across time. It happens rarely that the sources are
active at the same time. From Roweis (2003).

amplitude compression of y, e.g., by computing the squared cube root. This is
biologically motivated by the fact that the human auditory system employs a sim-
ilar compression, e.g., as modelled by Stevens’ power law (Stevens, 1957), and
empirically motivated, see section 2.6.3.

We might consider the fixed resolution of the discussed TF transformations
an unnecessary restriction. In fact, Gardner and Magnasco (2006) proposed that
human audition uses a reassigned version of spectrogram, which adjusts the TF

grid to a set of time-frequency points that is in closer accordance with the signal.
In their framework, a pure sine wave is represented at its exact frequency rather
than being smeared across a neighborhood of frequency bins. A delta-function
(click) is similarly represented at its exact lag time. A major challenge in using
the reassigned spectrogram for signal processing applications lies in adapting ex-
isting machine learning methods to handle the set representation (time-frequency-
amplitude triplets). One possible solution is to quantize the reassigned spectro-
gram. This may, however, hamper the inversion to the time-domain.

2.1.1 Masking

The sparsification of signals via TF representation, which was described above,
allows for an important class of solutions to single-channel separation that essen-

11



CHAPTER 2. SINGLE-CHANNEL SEPARATION

Figure 2.4: Single-channel separation of two speakers using ideal masks. Signal-
to-error ratios (SER) in dB are reported for all combinations of 8 speakers from the
GRID database. The SER figures were computed on a sample of 300s from each
speaker. The ideal binary masks were constructed by performing a max-operation
on the signal powers in the TF domain.

tially amounts to a (soft) classification of the TF cells. This is known as mask-
ing or refiltering (Wang and Brown, 1999; Roweis, 2001). For a given mixture,
algorithm design effectively breaks down to (i) compute the TF representation,
(ii) construct a mask, classifying all TF cells as belonging to either targets or in-
terferers, and (iii) invert to the time-domain. The mask may be binary or ‘soft’,
e.g., a probability mask.

I will proceed to estimate an upper bound on the performance of binary mask-
ing algorithms, which follows the scheme described above. To achieve this, a
specific second step is assumed: The optimal mask is computed by simply as-
signing all energy of the mixture to the dominant source in each TF cell. This
was done for 4 male and 4 female speakers from a speech database (Cooke et al.,
2006). For all combinations of 2 speakers, a 0dB additive mixture of duration
300s was constructed. The mixtures were separated using ideal masks and the
resultant signal-to-error ratios (SER) were computed. In figure 2.4, the figures
are reported. The improvements as measured in SER are substantial, but more
importantly, the masked speech sources sound almost completely separated. This
can be explained by the hearing phenomenon of masking,3 where one sound (A)

3Note that masking has two meanings: it is a separation method as well as an psychoacoustic

12



2.2. FILTERING METHODS

is inaudible due to the presence of a second sound (B). Frequency masking is one
important case where the hearing threshold of (A) in a given frequency band is
raised by the presence of (B) in the same band. Hence, the errors introduced by
applying a binary mask to the mixture signal become largely inaudible due to the
limitations of human hearing.

2.2 Filtering Methods

Noise-reduction techniques based on filtering have a history of being applied to,
e.g., audio applications. The objective is to estimate a target signal in noise. In
this context, they can be viewed as a special case of single-channel separation
algorithms, and the generative model of equation (2.1) reduces to,

y(t) = s(t) + n(t)

where s(t) is the target signal and n(t) is the interfering noise signal.4

Wiener (1949) proposed a method, which exactly minimizes the expected
square error between inferred ŝ(t) and s(t), optimally infusing knowledge of the
second-order-statistics of s(t) and n(t), which are further assumed stationary.5

The Kalman filter (Kalman, 1960; Rauch et al., 1965) relies on nearly identical as-
sumptions as formulated in a linear state-space model, but relaxes the stationarity
requirement so that the solution is also optimal at the end-points of the time-series
and across non-stationarities. From a Bayesian point of view, the Wiener/Kalman
filter provides optimal inference when the signals involved are Gaussian and their
distributions have been correctly specified.

Wiener and Kalman filtering are limited in their application due to the as-
sumptions of stationarity and the availability of signal statistics. For instance,

phenomenon.
4While filtering is commonly associated with inference of s(t) based exclusively on past and

present observations of y(t) and thus suited for real-time applications, smoothing includes future
samples. Prediction uses only past samples. In this text, I use filtering as an umbrella term which
includes smoothing and prediction.

5When applied in the time-domain, the Wiener filtering requires that the auto and cross-
correlation functions of n(t) and s(t) are available. Sometimes it is beneficial to transfer to the
Fourier domain. Then the variances at each frequency are assumed known.

13



CHAPTER 2. SINGLE-CHANNEL SEPARATION

in separation of multiple speakers, the second-order-statistics cannot be specified
before-hand due to the fact that speech is non-stationary. However, if these can
be provided through a parallel process, then Wiener filtering can play a role in
single-channel speech separation (Benaroya et al., 2003). Speech can be regarded
as stationary on the short term, and hence Wiener filtering can be applied to sig-
nal segments independently, provided that the required second-order-moments are
available.

2.3 Incoherence

Cauwenberghs (1999) suggested to use phase incoherence in a separation algo-
rithm, exploiting the effect of ‘jitter’ noise on the relative phase of the signals as
well as that of amplitude modulation. The i’th source s(t) is modelled as,

si(t) = Bi(t)pi(t− θi(t)) (2.3)

where pi(t) is a periodic signal, Bi(t) is the time-dependent amplitude, and θi(t)

is the time-dependent phase. The key idea is to adapt sources that fulfill (2.3)
for slowly varying random processes Bi(t) and θi(t). Mutual independency is
assumed of Bi(t) and θi(t) across the sources, ideally restricting the estimated
solution to the one sought.

Judging from the subsequent literature, the technique has not yet been widely
applied, perhaps because it is limited to modulated periodic sources. Many real-
life signals, such as audio sources, are non-stationary in ways that does not comply
with (2.3). This does not exclude however, that phase (in)coherence as a grouping
cue could be integrated in e.g. CASA methods, see section 2.7.

2.4 Factorial-Max Approximation

I will now return to methods that operate in the TF domain, where the sparsity of
certain types of sources, notably speech, is exploited to the fullest extent. Roweis
(2003) suggests a solution that extends on vector quantization, which in its basic
form assigns each data point to the most similar prototype taken from a code-
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book.6 In order to be applied to single-channel separation of speech, as a first
step, codebooks must be learned for each speaker. A socalled factorial vector
quantizer is applied to decompose a given observed mixture vector into a sum of
prototype vectors, one from each speaker codebook. However, this is a combi-
natorial problem which scales unfavorably with the codebook sizes, Ni. In fact,∏P

i Ni likelihood evaluations must be performed for each mixture vector. This
problem is further aggravated by the fact that we at (very) least we must require
that Ni ≥ 100 for all i in order to capture the variations of each speaker, e.g., the
pitch and phonemes. In order to alleviate the problem, the sparsity of the speech
sources is formalized in the max approximation,

y = max {s1, s2, . . . , sP} (2.4)

where max operates on the source vectors, si, such that the output is the elemen-
twise maximum. The max approximation combined with a white noise model
allows for a substantial cut in the number of likelihood evaluations: elements of
prototype vectors exceeding y incur an upper bound on the likelihood for all com-
binations including that particular prototype vector. Once the most likely compo-
nent has been found for each source at each time, the sources are reconstructed
using the masking technique.

Speech evidently has time structure (see figure 2.2), switching between fun-
damental states corresponding to atomic sound units, i.e. phonemes. In fact,
each phoneme possesses a characteristic TF fingerprint. Hidden Markov models
(HMM) employ state transition probabilities to quantify transitions between dis-
crete states and associate an emission distribution to each of the states. HMM’s
have a long history of being employed to automatic speech recognition (Rabiner,
1989). Roweis (2001) suggested in his first paper on single-channel separation
that each speech source should be modelled by a HMM. In analogy with the above
discussion of the factorial vector quantizer, the resultant model of the observed
mixture is a factorial HMM. Inference of the most probable state sequence is ob-
tained via the Viterbi algorithm, but all combinations of source states need to be

6From a probabilistic point of view, mixture models such as Gaussian mixture models (GMM)
can be regarded as a formalization of vector quantization. In fact, Roweis expresses his model in
terms of a GMM.
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considered at each time point. Hence, the number of likelihood evaluations is∏P
i Ni in the naive implementation. However, the max approximation (2.4) can

be used as described above, pruning the search tree dramatically. Roweis (2003)
reports on the merits of the use of the more descriptive HMM model that ‘in our
experience the frame-independent MAXVQ model performs almost as well’, an
indication that dynamic models produce only modest improvements over time-
instantaneous ones.

2.5 Inference in Factorial Models

One may argue that the factorial-max approximation is too removed from the real-
ity of the signals. Kristjansson et al. (2004) did not compromise in the formulation
of the generative model which assumes full additivity of the sources (assumed to
follow a GMM) as well as a log-normal noise distribution. Instead, the source
posterior was approximated by a Gaussian. Later, Kristjansson et al. (2006) ex-
tended the model to include HMM’s describing the acoustical dynamics of speech
as well as a dynamic language grammar model. This more sophisticated model
helped achieve superior results in some cases. Evaluated on the GRID data set
(Cooke et al., 2006), which contains speech sentences constructed from a limited
vocabulary and grammar, the algorithm achieved a high level of separation, even
in the hardest case of speaker separation where a speaker is (synthetically) mixed
with itself.7 Furthermore, the system performed better than humans in many cases.

Virtanen (2006b) also employs a factorial HMM, but suggests that the signals
are represented by their mel-cepstral coefficients (MFCC). The computation of
the MFCC in a time window consists of evaluating the power in the mel spec-
trum, taking the logarithm, performing a discrete cosine transform and retaining
(the lower) part of the coefficients. MFCCs can be regarded as a compact repre-
sentation of the spectral envelope and are often used directly in automatic speech
recognition. Importantly, the MFCCs are insensitive to pitch variation. However,
they do not preserve the linearity such as the high-resolution TF mappings dis-
cussed up until this point. Thus, the factorial-max approximation does not apply,

7Applications of same-speaker separation are arguably limited, but results may extend to cases
where the speakers are acoustically similar.
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and instead, the source MFCCs are inferred by imposing a log-normal approxi-
mation on their sum. Furthermore, a scheme is suggested to synthesize the source
signals from their MFCCs.

2.6 Sparse Factorization

The vector quantization approaches described above are limited in the sense that
the mixture vector at any time is modelled as a sum of prototype vectors, one for
each source.8 This restriction can be relaxed by employing a factorization model,
that is, the contribution of each source is a weighted sum of prototypes. The
i’th source, si, is decomposed in terms of a dictionary (or, codebook) dij and its
encodings cij ,

si =

Ni∑
j=1

dijcij = Dici (2.5)

where the dictionary matrix Di holds the dij in its columns, and ci is defined
accordingly. The combination of the models (2.2) and (2.5) results in,

y =
P∑

i=1

Dici = Dc (2.6)

The number of dictionary elements,
∑

i Ni is allowed to be larger than the dimen-
sionality of y, meaning that D is potentially overcomplete, i.e., many possible
decompositions exist. This has been shown to result in more natural and compact
representations (Olshausen and Field, 1996).

In order to apply the factorization (2.6) to the problem of signal separation,
two decoupled steps must be completed: a set of dictionaries, Di, is learned from
a training set of unmixed xi as a first step. Subsequently, the joint encoding,
c, is computed on the basis of the concatenated source dictionaries, D. Finally,
the sources are re-synthesized according to 2.5. The method assumes that the
dictionaries of the sources in the mixture are sufficiently different. When this is

8The narrative flow is inspired by the one used in (Asari et al., 2007)
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not the case, they do no become separated in the encoding.

Different matrix factorization methods can be conceived based on various a
priori assumptions of the dictionaries and encodings. Since computing c (given
D) from 2.6 is generally ill-posed, the model should at least impose sufficient
constraints for the inversion to produce a well-defined solution. Jang and Lee
(2003) applied independent component analysis (ICA) in the time-domain to learn
the dictionaries from unmixed audio data and later employed them to a sparse
decomposition of the mixture signal, achieving a level of separation. Similarly
Benaroya et al. (2003) used sparse non-negative matrix factorization (NMF) to
learn dictionaries from isolated recordings of musical instruments and compute a
decomposition. Smaragdis (2004, 2007) also uses NMF, but further extends the
model to a convolutive version in order to capture atoms that have a time-structure.

Some methods combine the learning of the dictionaries and the encoding into
a single stage. Casey and Westner (2000) projects the mixture spectrogram to
a subspace and then performs ICA. The ICs are projected back into the original
space and clustered, forming source estimates. The algorithm provides an alterna-
tive in cases where samples of the isolated sources are unavailable, but it should
be expected that the method would require a larger sample to learn the optimal
basis functions.

Alternatively, it has been shown that source signals from identical distributions
can be separated provided that information about the signal path is available (Asari
et al., 2006). In an audio context, this is essentially an extension of equation 2.2
to a convolutive model in the time-domain. In the TF domain this translates to a
multiplicative modification of the dictionary of the i’th source,

d̃ij = hi • dj (2.7)

where hi is the frequency response of the path between the i’th source and the mi-
crophone and • indicates elementwise multiplication. The modified dictionaries,
d̃ij , provide additional contrast for ‘similar’ sources, but require knowledge of the
signals paths.
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2.6.1 Contribution I

Pearlmutter and Olsson (2006) explore sparse decompositions for single-channel
speech separation. The observation model is identical to equation (2.6), and the
assumed prior distribution of the coefficients is i.i.d. Laplacian. This model for-
mulation leads to an L1 norm optimization problem which can be solved using
linear programming (LP). In fact, LP is used to (i) learn the dictionaries, and
(ii) compute the sparse decomposition required in (2.6) for the separation of the
sources. The first is achieved through a stochastic-gradient (Robbins and Monro,
1951) optimization of the (L1) sparsity of the decomposition. The second amounts
to a version of basis pursuit (Chen et al., 1998). The paper has been incorporated
into a book chapter on sparse single-channel separation (Asari et al., 2007).

2.6.2 Contribution II

Essentially attacking the same problem as above, we (Schmidt and Olsson, 2006)
exploit the fact that all quantities involved in the TF domain decompositions are
non-negative. We use a sparse version of non-negative matrix factorization (Eg-
gert and Körner, 2004) to learn the dictionaries as well as to compute a separating
decomposition. This implies a Gaussian model for the error in equation (2.6) and
a one-sided exponential prior distribution for the coefficients. Virtanen (2006a)
mentioned our article.

2.6.3 Contribution III

Generative models are often used to motivate particular applications of ICA, NMF
or sparse decompositions, e.g., we may say that the coefficients are mutually in-
dependent and follow a long-tailed distribution. In reality, these models are often
mismatched to the data. For instance, linearity might not hold. Sometimes we
do not get independent components from ICA but rather a set of inter-dependant
features. We (Schmidt and Olsson, 2007) suggest to perform linear regression on
non-linear features (e.g., the NMF used in Schmidt and Olsson, 2006), achieving
a performance boost over naive re-synthesization from the features.
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2.7 CASA methods

The model-based approaches described so far attempt to learn structure from data
and apply the models to the inversion from the mixture to the sources. Alterna-
tively, separation algorithms can be designed to emulate the sound segregation
processes of the human auditory system, that is, perform computational auditory
scene analysis (CASA, Bregman, 1990). Working in the TF domain, Hu and
Wang (2003) proposes a method, which can extract a speech signal from a mix-
ture. In a number of stages, the TF cells are grouped according to cues such as
temporal continuity, correlation across channels and periodicity. By visual inspec-
tion of, e.g., figure 2.2, it is clear that speech patterns (‘harmonic stacks’) lend
themselves to these affinity measures. The higher frequencies are treated sepa-
rately, assigning them to the grouping established in the lower frequencies based
on amplitude modulation patterns. The method works better for intrusions other
than speech (and similar signals), due to the fact that the employed segregation
mechanisms are specifically designed to send the speech parts to the foreground
stream.

Bach and Jordan (2005) perform clustering of the TF elements based on pa-
rameterized distance measures inspired by CASA. The parameters of the distance
measures are adapted to a training set.

2.8 Algorithm Evaluation & Comparison

Many of the described algorithms are developed from a machine learning outset,
where the goal is to maximize the signal-to-error ratio (SER) on the test set: the
higher the better.

However, in audio applications, the evaluation should take into account how
the output of the algorithm would sound. Thus, a source separation algorithm
should be evaluated according to the degree to which the sounds are perceived
as separated. A related issue is audio coding such as MP3,9 where an increased
SER is acceptable, so long as the deteriorations are inaudible to a human listener.

9Short for MPEG-1 Audio Layer 3
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Conversely, serious artifacts in the processed audio caused by some algorithms
may result in relatively small decline in SER.

Ideally, the output of all the mentioned algorithms for single-channel separa-
tion of speech should be exposed to human subjective evaluation. In the case of
speech, the second best solution may be to expose the algorithms to a standard au-
tomatic speech recognizer (ASR). This was done in the 2007 Speech Separation
Challenge.10 However, this approach has its own inherent weakness in that the
ASR may exhibit an undesired pattern of sensibilities. Ellis (2004) discusses the
evaluation of speech separation algorithms.

One might speculate that a purist Bayesian machine learner might dislike the
idea of using different cost-functions for learning parameters and for evaluating
those. A more fundamentally sound approach would consist in optimizing a dis-
tance measure which is founded on the proper psychoacoustic principles.

10See http://www.dcs.shef.ac.uk/∼martin/SpeechSeparationChallenge.
htm.
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Chapter 3

Multi-channel Separation

Multiple sensors are exploited in naval surveillance, where hydrophone arrays are
used to map the positions of vessels. In electroencephalography (EEG), electrodes
are placed on the scalp to monitor brain activity. Similarly, modern hearing aids
are equipped with multiple microphones. It is common to these examples that the
intensity interfering signals is significant in relation to the target signals. Multiple
sensors are used to amplify signals originating from a given direction in space
and to suppress the signals from other directions, thus increasing the target-to-
interferer ratio. In its basic form, this is known as beamforming, a term which
usually refers to linear array processing and can be regarded as a spatial general-
ization of classical filtering techniques (Krim and Viberg, 1996). More generally,
signal separation algorithms, linear as well as non-linear, may benefit from the
added discrimination power provided by multiple sensors and this is indeed the
topic of the chapter.

The content is organized as follows: the convolutive model for multi-channel
mixtures is defined in in section 3.1. The major part of the coverage focuses on
methods that are based on second-order statistics, or, Gaussian signal assump-
tions (section 3.2). Other methods, e.g., those based on higher-order statistics
and non-Gaussian distributions, are reviewed briefly in section 3.3. Comments on
published work co-authored by me are situated in the vicinity of the their relatives
in the literature.
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3.1 Scope and Problem Formulation

In the context of separation of audio signals, multiple microphones have been em-
ployed with some level of success. Weinstein et al. (1993); Yellin and Weinstein
(1996) provide the earliest evidence that speech signals could be separated from
their mixtures, which were recorded in a real room. Interest in the field has since
surged, so much that Pedersen et al. (2007) can cite 299 articles on the subject.
The count is much higher if the more general problem of multi-channel separa-
tion is considered: At the 2006 conference on Independent Component Analysis
(ICA) and Blind Source Separation in Charleston, 120 papers were presented.1

This is the sixth meeting on the topic since 1999. The major part of the research
is concerned with blind separation of instantaneous linear mixtures, that is, given
the observation model x(t) = As(t), estimate A and infer the sources s(t). Under
assumptions of independency and non-Gaussian sources, this problem can some-
times be solved using ICA, see chapter 4.

The coverage here, on the other hand, is exclusively devoted to the set of
problems that are best described by a convolutive model,

y(t) =
L−1∑
τ=0

A(τ)s(t− τ) + v(t) (3.1)

where the observed y(t) is a vector of mixture signals at time t, s(t) and v(t) are
the source and noise vectors, respectively. The mapping is governed by A(τ),
which is a set of mixing matrices at L different lags. Assuming that the sources,
s(t), are mutually, statistically independent and that the channel, A(τ), is un-
known, the overall goal is to estimate A and infer s(t).

The convolutive model arises when the mixture is not instantaneous, that is,
when the sources mix into the sensors as filtered versions. One instance of this
arises when there are different time-delays between a given source and the sensors.
This naturally occurs in acoustics scenarios, e.g.rooms, where the sounds travel
different distances between the sources and the sensors, and, additionally, multiple
echoes of an emitted sound are observed at a sensor (see figure 3.1). In acoustic

1The conference web site is located at http://www.cnel.ufl.edu/ica2006/
papers accepted.php
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Figure 3.1: The convolutive mixing model exemplified: the sounds are reflected
by the walls of the room and arrive at the microphones with various delays and
attenuations. The corresponding observation model is a convolution sum of the
source signals and the impulse responses.

mixtures, we can thus regard (A)ij (τ) as describing the room impulse response
between source j and sensor i. In general, the model cannot be inverted, and the
sources cannot be retrieved, but a solution exists in many special cases, which are
described in the following sections.

Nothing entirely general can be said about the identifiability of the sources
and the channel, since it naturally depends on the assumptions included in the
separation algorithm. However for the set of methods that assume little, e.g.,
that the sources are independent or uncorrelated, the source signals, s(t), can be
determined only up to an arbitrary filtering. This is because filtered versions of
the room impulse functions in (A)ij (τ) may be cancelled by applying the inverse
filter to (s)j (t). However, if the source separation algorithms have been informed
of, e.g., the scale or the coloring of s(t), the ambiguity is reduced accordingly.
Sometimes the arbitrary filtering of the inferred sources is undesirable, and we
may choose to project back to the sensor space, in which case the ambiguities in
(A)ij (τ) and (s)j (t) cancel out. Practically speaking, this means that we infer
the audio sources as they sound at the microphones.

Furthermore, the source index may be permuted arbitrarily, in that the model
is invariant to a permutation of the elements of s(t) and the columns of A(τ). In
the case of equal number of sources and sensors (Q = P ), we can only hope to
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estimate Ps(t) and A(τ)P−1, where P is a permutation matrix.

An important simplification occurs when the convolutive mixing model (3.1)
reduces to a pure attenuate-and-delay model, where only a single filter tap is non-
zero. In this case, the i, j’th element of A(τ) is redefined as(

Ã
)

ij
(τ) = δ(τ −∆ij) (3.2)

where δ(τ) is the Kronecker delta function and ∆ij is the delay involved between
the j’th source and the i’th sensor. Acoustic mixing in an anechoic room is ap-
propriately represented by (3.2).

3.1.1 Frequency Domain Formulation

Many algorithms work in the (Fourier) frequency domain, where multiplication
approximately replaces convolution. Therefore, I redefine (3.1) by applying the
discrete Fourier transform (DFT) to windowed frames of y(t), obtaining,

y
(n)
k = Aks

(n)
k + e

(n)
k (3.3)

where y
(n)
k , s

(n)
k and Ak are the frequency domain versions of the correspond-

ing time-domain signals at discrete frequencies k. The window (time) index is
n. There is a residual term, e

(n)
k , which is partly due to additive noise, v(t), and

partly due to the fact that equation 3.1 is a linear convolution rather than a cir-
cular one. When the window length is much larger than L, the latter mismatch
vanishes, that is 〈 |ek|

|xk|
〉 → 0. The notation used indicates that the channel, Ak, is

assumed constant on the the time-scale of the estimation, which may sometimes
be a rather strict constraint, e.g., excluding a cocktail party situation with overly
mobile participants.

3.1.2 Frequency Permutation Problem

The transformation to the frequency domain is particularly useful, because it al-
lows efficient ICA methods to be applied independently to each bin, k, in equa-
tion 3.3. However, there is a serious challenge associated with following such an
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approach, namely that the permutation problem (described above) also becomes
decoupled across frequencies. This has the consequence that the inversion to the
time-domain has been made difficult unless the permutation can be harmonized,
so that it is the same for all bins. Assumptions regarding the channel and the
sources can be exploited for this purpose. Consider for example a pure delay-and-
attenuate mixing system (3.2), which can be regarded as modelling an anechoic
room. Then the estimated Â(τ) should be sought permutation-corrected so that
the amplitude is constant across frequency and the phase is linear in frequency.

Alternatively, the frequency permutation problem can be fixed by using the
structure in the sources. One possibility is to optimize the correcting permuta-
tion so that it maximizes the correlation of the amplitudes across frequencies. In
fact, Anemüller and Kollmeier (2000) turned this criterion into a full separation
algorithm.

3.2 Decorrelation

In signal processing, it is a common theme to base a solution on the second-
order statistics of the signals. Ignoring the means, which can be pre-subtracted
and post-added, this means that the relevant information is contained in the auto
and cross-correlation functions. In the context of multi-channel separation, this
translates to ensuring that the cross-correlation between the sources is zero at all
lags. The time-lagged covariance of the source estimate ŝ(t) is defined

Λ(τ) =
〈
ŝ(t)ŝ>(t− τ)

〉
(3.4)

where τ is the lag time. The goal is to diagonalize Λ(τ). Molgedey and Schus-
ter (1994) showed that for instantaneous mixtures (those that are constrained to
L = 1 in equation 3.1) diagonalization in fact retrieves the actual sources, ex-
cept for a scaling and permutation uncertainty. In fact, they showed that Λ(τ)

is only required to be diagonal at τ = 0 and additionally at a lag different from
zero τ = τ0. The solution to A is obtained by solving an eigenvalue problem.2

It is a condition that the ratio between the auto-correlation coefficients at these
2It is assumed that A is invertible.
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lags is different across sources in order for the problem to be solvable using this
technique. Parra and Sajda (2003) generalized the eigenvalue solution to other
statistics than lagged covariance matrices, providing a quick-and-dirty method in
many instances.

In the case of the full convolutive model (3.1), the decorrelation of stationary
sources does not achieve the identification of the mixing system or the inference
of the sources as noted by, e.g., Gerven and Compernolle (1995). This can be real-
ized by considering the decorrelation criterion (3.4) in the frequency domain. The
auto/cross power spectra of x

(n)
t , C(n)

k , depend on the spectra of s
(n)
t as follows,

Ck = AkDkA
H
k + Ek (3.5)

where D
(n)
k is a diagonal matrix with the powers of the sources as elements. The

power spectrum residual, Ek vanishes when ek is small. Now it can be seen
that the channel and the source spectra are ill-determined because {Ak,Dk} and{
AkUD

1
2
k , I
}

are solutions that produce identical statistics, Λ(τ) and hence in-
distinguishable. The orthogonal matrix, U, obeys to UU> = I. Hence, additional
discriminative properties of the sources need to be present in order to overcome
this limitation.

In order to identify the model, Weinstein et al. (1993) suggested to take advan-
tage of a fairly common quality of real-world signals, namely that their statistics
vary in time. For example, speech signals can be considered non-stationary if
measured across windows that are sufficiently short (but still long enough to ob-
tain a reliable estimate). Thus, we extend (3.5) to account for the non-stationarity,

C
(m)
k ≈ AkD

(m)
k AH

k (3.6)

where m is the window index not the be confused with the index in (3.3). The key
point is that, if different auto/cross power spectra are measured at multiple times
(with Ak fixed), then the the number of constraints increase at a higher rate than
the number of unknowns. Parra and Spence (2000) turned (3.6) into a practical
algorithm employing gradient descent as the vehicle of optimization. The problem
of different permutations across frequency was approached by constraining the
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filter length, L, to be sufficiently smaller than the window length of the DFT,
effectively ensuring smooth frequency responses.

Rahbar and Reilly (2005); Olsson and Hansen (2006a) note that the non-
stationary observation model (3.6) fits in the framework of multi-way analysis
(Smilde et al., 2004). This can be seen by comparing to the symmetric version of
the parallel factor (PARAFAC) model which is defined xijk =

∑F
f=1 aifbjfakf ,

where aif and bjf are the loading matrices and F is the number of factors. The
loading matrices have been shown to be identifiable for quite a high number of
factors, lower bounded by a theorem by Kruskal (1977). The treatment of (3.6)
may still be to gain further from the body of analysis and algorithm accumulated
in the field of multi-way analysis.

3.2.1 Contributions IV-VI

Cost-functions which depend on second-order-statistics only often result from
placing Gaussian assumptions on the variables of a linear generative model. In
my work on time-domain algorithms, I indeed assumed Gaussianity and was able
to derive maximum posterior (MAP) inference for the sources and maximum-
likelihood estimators for the parameters. A linear state-space model which allows
time-varying parameters was employed, including an autoregressive (AR) process
with Gaussian innovation noise as a source model.3 Olsson and Hansen (2004b)
applied maximum-likelihood learning to the parameters of the model using an
expectation-maximization (EM) algorithm to do so (Dempster et al., 1977). On
the E-step, the sources are inferred using the Kalman smoother. The parameters
are re-estimated on the M-step. In order to reach convergence, the E and M steps
were invoked alternatingly. We successfully separated speech signals that were
mixed in a convolutive model and showed that the method is resilient to additive
Gaussian noise. As an integral part of the Kalman filter implementation, the like-
lihood of the model parameters given the observed data is computed in the process
of inferring the sources. This can be used in a model control framework, where
the objective is to estimate the number of active sources in each time-window.
For this purpose, Olsson and Hansen (2004a) employed the Bayesian Information

3See the papers for details.
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Criterion (BIC, Schwartz, 1978), which is an approximation of the Bayes fac-
tor/marginal likelihood of the model. The main computational component in BIC
is the likelihood computation.

An effort was made to tailor the algorithm to a specific domain, namely the
separation of speech signals. For that purpose, a native part of linear-state space
models, known as the control signal, can be used to shift the mean of the inno-
vation noise process that drives the sources. Olsson and Hansen (2005) used a
parameterized speech model as a control signal, effectively attracting the solution
to be in agreement with the speech model. We used the model of McAulay and
Quateri (1986), who coded fragments of speech signals in terms of a sum of a
period signal and colored noise. As a necessary addition to the algorithm, the
time-varying fundamental frequencies and harmonic amplitudes and phases are
estimated.

Zhang et al. (2006) extended our algorithm to account for a non-linear distor-
tion of the observed mixtures and showed that the new method performs better
than ours on synthetic data. Särelä (2004); Chiappa and Barber (2005); Pedersen
et al. (2007) referred to our work on this topic.

3.2.2 Contribution VII

Having formulated our favorite generative model of data, it is often a major obsta-
cle to choose the parameters of that model. In this case and in many other cases,
there are a number of unobserved sources or missing data which influence the
model. This precludes direct maximum-likelihood (ML) learning, as the complete
likelihood function depends on data which are unavailable. Rather, the marginal

likelihood should be optimized, requiring the formulation of a prior probability
distribution for the sources. However, the resulting marginalization integral may
not be easily optimized with respect to the parameters. The EM algorithm is an
iterative approach to obtaining the ML estimate, both in terms of simplicity of
analysis and ease of implementation.

Slow convergence is a major caveat which is associated with the EM algorithm
but also with, e.g., steepest gradient descent. We (Olsson et al., 2007) discuss
the possibility of extracting the gradient information from the EM algorithm and
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feeding it to an off-the-shelf, state-of-the-art Newton-type optimizer. The result
is a sizable speedup for three different problems. Pontoppidan (2006) noted our
work.

3.2.3 Contribution VIII

Beside summarizing the works mentioned above, we (Olsson and Hansen, 2006b)
introduce stochastic gradient (SG) learning for the parameters of the state-space
models. It is well-known that SG can reduce significantly the computation time
to reach convergence when the number of data-points is large. For the state-space
model whose parameters vary in time, the number of parameters is proportional
to the length of the supplied audio sample. Thus, the gradient method and EM
algorithm are impractical for large data volumes, whereas SG is well suited.

Furthermore, the potential benefit of incorporating the detailed speech model
is documented, namely that the learning of the parameters may converge faster
than a (blinder) baseline method. Some caution should be given to the fact that
the proposed algorithm suffers from local minima of the cost function and a high
computational intensity.

3.3 Other methods

The previous section dealt with methods that are based on second-order-statistics,
which in many cases is similar to placing Gaussian assumptions on the source
signals and deriving the according estimators. Naturally, other distributions can
pose as source models. In fact, evidence from problems that are best described
by linear instantaneous mixtures, strongly suggests that non-Gaussianity helps
identify the mixing matrix and thus facilitates the separation of the sources (see
the chapter on independent component analysis (ICA), 4). In this connection, it is
a fortunate fact that many real-life signals are non-Gaussian, e.g., speech follows
a long-tailed, sparse distribution (see figure 2.3 in chapter 2).

A significant number of authors describe algorithms which address the gen-
eralization of ICA to convolutive ICA (CICA). Already in 1999 the number is
considerable, Torkkola (1999) cites 115 works in his paper ‘Blind separation for
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CHAPTER 3. MULTI-CHANNEL SEPARATION

audio signals - are we there yet?’, predominantly CICA references.

Thi and Jutten (1995) generalized the decorrelation approach to include the
minimization of the magnitude of higher-order moments. The mixing matrix can
be identified up to the usual permutation and filtering ambiguities, also in the case
of stationary sources, which could not be treated by decorrelation.

A number of authors, e.g., Pearlmutter and Parra (1997) and Moulines et al.
(1997), formulated the problem in turns of a generative model, specifying den-
sities for the sources. Subsequently, the parameters are estimated by likelihood
function optimization. Attias and Schreiner (1998) derived algorithms from prob-
abilistic principles in the time-domain as well as in the frequency-domain. They
noted, as was pointed out in the previous section, that the frequency permutation
problem could be made less severe by constraining the filter length, L, to be much
smaller than the window length.

A separate issue is the functional form of the source inference, which is some-
times subjected to a deliberate design choice. In hardware applications, for in-
stance, it may be beneficial to obtain a mathematical function that fits into a
multiply-and-add framework. The noise-free version of (3.1) has a recursive so-
lution,

ŝ(t) = A(τ)

(
y(t)−

L−1∑
τ=1

A(τ)ŝ(t− τ)

)
(3.7)

that is, if the mixing process is invertible. However, linear systems of this type (in-
finite impulse response, IIR) are known to suffer from instability in some cases.
Lee et al. (1997) and Dyrholm et al. (2007) discuss the advantages and disad-
vantages of the IIR solution as contrasted with a finite impulse response (FIR)
separator,

ŝ(t) =
L′−1∑
τ=0

W(τ)y(t− τ) (3.8)

It should be noted that optimal inference of the sources in (3.1) is a generally
non-linear endeavor, the functional form depending on the assumptions made.

An important and appealingly simple approach to convolutive ICA is to apply
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ICA independently to each frequency bin in (3.3). Among the authors, which have
experimented with ICA in the frequency domain, are Murata et al. (2001), who
applied the Molgedey and Schuster (1994) method to each frequency bin. The
permutation problem was attacked by maximizing amplitude correlation across
frequency as mentioned in section 3.1.1.

3.3.1 Masking Methods

In chapter 2, I discussed turning a particular property of speech to our advantage,
namely that it is sparse in a time-frequency (TF) representation. As a result, the
max-approximation applies, and each TF cell is likely to contain energy deriving
from, at most, a single source.

A number of multi-channel separation methods exploit this fact by treating the
problem as that of assigning each cell to a source. In a blind setup, where the chan-
nel is unknown, this amounts to performing clustering of a feature mapping on the
mixture TF representations. Yilmaz and Rickard (2004) treat blind separation of
many speech sources which have been mixed into two channels. The mixture
model is attenuate-and-delay (3.2) as opposed to full convolutive mixing, corre-
sponding to anechoic room mixing. A two-dimensional feature representation,
based on the ratio of amplitudes and the phase differences between the channels,
is subsequently used to group the sources (see figure 3.2). Similar features have
been suggested from a CASA point-of-view, where interaural time/intensity dif-
ferences (ITD/IID) are the preferred terms corresponding to psychoacoustic quan-
tities (Roman et al., 2004). It is important to note that the ITD is ambiguous at
higher frequencies, as the wavelength decreases below the difference in travelled
distance to the ears.

3.3.2 Contribution IX

Following in the footstep of, e.g., Bofill and Zibulevsky (2001), Araki et al. (2003)
and Yilmaz and Rickard (2004), we (Olsson and Hansen, 2006a) attack the prob-
lem of separating more sources than sensors in convolutive mixtures. The al-
gorithm, which works in the frequency domain, exploits the non-stationarity of
speech and applies k-means clustering to IID/ITD-like features at each frequency
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CHAPTER 3. MULTI-CHANNEL SEPARATION

Figure 3.2: The empirical distribution of amplitude, α, and delay variables, δ, for
a attenuate-and-delay mixture of 6 speech sources. The α and δ correspond to
interaural intensity and time differences, respectively (IID/ITD). The peaks of the
distribution correspond to the sources and can be used to construct a TF mask,
which assigns the energy to 6 different channel, allowing for the separation of the
sources. From Yilmaz and Rickard (2004).

separately. As a result, a permuted version of the channel, Ak, is estimated along
with the power spectra of the sources, D

(m)
k . The permutation is corrected by

greedily maximizing the amplitude correlation within a source. Subsequently, the
sources are inferred by Wiener filtering, benefitting from having estimated the rel-
evant statistics. In controlled conditions, the results are excellent. However, in a
real reverberant room, the sparsity of the speech at the microphone may be too
low to achieve overcomplete separation (more sources than sensors).
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Chapter 4

Independent Component Analysis

Whereas source separation is a designation assigned to a class of problems, inde-
pendent component analysis (ICA) is more often used to refer to a more restricted
set of methods. For instance, Comon (1994) states that ‘the independent com-
ponent analysis (ICA) of a random vector consists of searching for a linear trans-
formation that minimizes the statistical dependence between its components’. Re-
search in ICA and related topics have surged and there are now multiple textbooks
on the subject, e.g.the one by Hyvärinen et al. (2001).

In the following, I will briefly describe ICA as it may be defined from a gen-
erative model point-of-view. By this is meant that parameterized probability den-
sity functions are assumed for the involved stochastic variables, from which we
can draw samples. When a generative model has been formulated, the derivation
of statistical inference such as maximum likelihood (ML) or maximum posterior
(MAP) is often mechanical (MacKay, 1996; Højen-Sørensen et al., 2002). The
assumptions are as follows

1. The observable is a linear mixture of the source signals,

y = As + v (4.1)

where y is the mixture vector, A is the mixing matrix, s is the source vector
and v is additive noise.

2. The sources are mutually independent, that is, the prior probability density
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CHAPTER 4. INDEPENDENT COMPONENT ANALYSIS

function factorizes, p (s) =
∏P

i p (si), where si are the individual sources.

3. The sources are distributed according to non-Gaussian probability density
functions. The noise, v, may be zero, or something else.1

Having stated the assumptions, ICA can simply be defined as: given a sample
{yn}, infer {sn}. In the case of zero-noise conditions and an equal number of
sources and sensors (P = Q), and invertible A, ICA simplifies to two steps.
The first step is to estimate A, e.g.in ML fashion, where the likelihood function,
p(yn|A), is optimized. The second step is to map back to the source space, s =

A−1y. (MacKay, 1996) derives efficient update rules for the inverse of A that are
based on ML learning.2

It is apparent that the scale of the si cannot be estimated from data alone, just
as the ordering in the reconstructed source vector is undeterminable. These are
known as the scaling and permutation ambiguities.

A much broader definition of ICA is sometimes given rather than the nar-
row linear and instantaneous3 definition stated above. Alternatively, taking the
acronym ‘ICA’ more literally we could define it simply as: invert a general map-
ping of the sources to the mixtures. Obviously, this is in general impossible, but
specialized solutions have been proposed, e.g., for convolutive mixtures (Pedersen
et al. (2007) provides a comprehensive review).

4.1 Why does it work?

While this question is addressed in detail by Hyvärinen et al. (2001), I will give
a brief, informal summary of the key points. First of all, ICA can be viewed as a
generalization of principal component analysis (PCA) where data is linearly trans-
formed to the subspace that retains the largest variance. Roweis and Ghahramani
(1999) describes PCA in terms of a generative model, where the assumptions are

1In fact, it is permissable that at most 1 source is Gaussian.
2Originally, Bell and Sejnowski (1995) derived these exact update rules from an information-

theoretic outset.
3Derived from signal or time-series contexts, the instantaneousness of the model refers the

assumption that the sources exclusively map to the sensors/mixtures at the same time instance (see
chapter 3).
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identical to ones applying to ICA, except for the crucial difference that, a priori,
the sources are assumed to be Gaussian. From this formulation it is found that
the sources can only be inferred up to a multiplication by a rotation matrix, that
is, srot = Us, where U is an orthogonal matrix. This is because the rotated source
exhibit identical sufficient statistics

〈
xx>

〉
= A

〈
ss>
〉
A> = AA> (4.2)

AU>U
〈
ss>
〉
U>UA> = AA> (4.3)

where s is assumed to have zero mean and unit variance.
As a result, the PCA can estimate decorrelated components but not retrieve

the sources of interest. In order to estimate the correct rotation of the sources,
ICA methods exploit the hints provided by non-Gaussian distributions. In figure
4.1, the the rotation problem is illustrated for Gaussian sources versus uniformly
distributed sources.
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CHAPTER 4. INDEPENDENT COMPONENT ANALYSIS

Figure 4.1: Cues provided by non-Gaussianity help identify sources in linear mix-
tures. The scatter plots show A) two Gaussian sources, B) two uniformly distrib-
uted sources. In C and D, the sources have been mixed by pre-multiplying with a
rotation matrix. Whereas the Gaussian mixtures reveal no hints as to the correct
de-rotation, this is not the case for the uniformly distributed sources. Reproduced
from Hyvärinen et al. (2001).
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Chapter 5

Conclusion

In this thesis is described a multitude of methods for source separation, employ-
ing a wide range of machine learning techniques as well as knowledge of speech
and perception. In fact, a major feat of the author’s contributions is the successful
merger of fairly general models and specific audio domain models. In single-
channel separation, the preprocessing was particularly important, since the sparse
and non-negative factorizations are only viable in the time-frequency representa-
tion. The linear state-space model for multi-channel separation was augmented
to contain a speech model, which may facilitate a faster adaptation to changes in
the environment. Of course, the increased complexity of the models poses some
additional challenges, namely the learning of the parameters and the inference of
the sources. A great deal of research was devoted to overcoming these challenges,
leading to an in-depth analysis of the expectation-maximization algorithm and
stochastic/Newton-type gradient optimization.

An important lesson to draw is that, although the source separation problem
can be formulated in very general terms, the solution cannot. The search for global
solutions is tantamount to seeking an inverse for general systems. We should
rather conciliate ourselves with the fact that there is not a single cure for ‘mixed-
ness’, but rather a swarm of techniques that applies in different settings. The
author’s comments on two of the subproblems follow here.
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CHAPTER 5. CONCLUSION

5.1 Single-Channel Separation

The problem of separating more speakers from a microphone recording was treated
in the first part of the thesis. On one hand it is difficult to perceive a meaningful
mapping from a single dimension to many dimensions, but the operation is per-
formed routinely by humans on a daily basis. This is the gold standard: to be
able to perform on the level of humans, and it seems like we are getting closer.
The research community has taken a big leap forward in the last few years with
the application of advanced machine learning methods, such as the factorial hid-
den Markov model and new matrix factorization algorithms. Kristjansson et al.
(2006) reported that their system outperformed humans in certain cases, measured
in turns of word-error-rate on a recognition task.

The redundancy of speech plays a vital role, but also the detailed modelling
of the speakers seems crucial to the results. Asari et al. (2006) make the argu-
ment that human perception also has library built-in sound models. However, it is
an open problem to reduce the required amount of training data for learning the
source-specific models. How to make the fullest use of psychoacoustic relations is
another important question, specifically how to integrate information across time.

In this work, primarily speech was considered, but it is hugely interesting to
extend the results to, e.g., noise-removal. Schmidt et al. (2007) have taken the first
steps in this direction, experimenting on wind noise.

5.2 Multi-Channel Separation

Despite a huge research effort, the problem of separating speech sources from
convolutive mixtures is still largely unsolved. Consider as an example the level
of flexibility which is available in mobile communication. It is possible to walk
around with your cell-phone, in and out of buildings, even be a passenger in a
car, and all the time, the transmission algorithms are tolerant to the changes in the
signal path. At the same time the number of users (sources) in the network varies.
These are features that would be necessary in order to use speech separation in,
e.g., conference room applications. But we do not have that, yet. The available
algorithms require the signal channels to remain constant for seconds at a time, in
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5.2. MULTI-CHANNEL SEPARATION

order to reach convergence of the filter coefficients. Also, the number of sources
must be known in advance and remain constant, which is further unrealistic in
applications.

Although I have found no magic bullet, I feel that some of the right ingredients
have been presented in the thesis.

• The models are probabilistic or Bayesian up to a point, providing a frame-
work for the incorporation of further priors on, e.g., the filter taps. Addi-
tionally, it was demonstrated to be able to determine the correct model order
on a sample (Olsson and Hansen, 2004a).

• A speech model was built into the framework, but more research is required
to derive a practical algorithms. For example, a dynamic prior distribution
could be formulated for the parameters of the speech model, e.g., the fun-
damental frequency typically varies smoothly in time.

All in all, unanswered questions remain . . .
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ABSTRACT

Many apparently difficult problems can be solved by re-
duction to linear programming. Such problems are often
subproblems within larger systems. When gradient opti-
misation of the entire larger system is desired, it is neces-
sary to propagate gradients through the internally-invoked
LP solver. For instance, when an intermediate quantityz

is the solution to a linear program involving constraint ma-
trix A, a vector of sensitivitiesdE/dz will induce sensitiv-
ities dE/dA. Here we show how these can be efficiently
calculated, when they exist. This allows algorithmic differ-
entiation to be applied to algorithms that invoke linear pro-
gramming solvers as subroutines, as is common when using
sparse representations in signal processing. Here we apply
it to gradient optimisation of overcomplete dictionaries for
maximally sparse representations of a speech corpus. The
dictionaries are employed in a single-channel speech sepa-
ration task, leading to 5 dB and 8 dB target-to-interference
ratio improvements for same-gender and opposite-gender
mixtures, respectively. Furthermore, the dictionaries are
successfully applied to a speaker identification task.

1. INTRODUCTION

Linear programming solvers (LP) are often used as subrou-
tines within larger systems, in both operations research and
machine learning [1, 2]. One very simple example of this is
in sparse signal processing, where it is common to represent
a vector as sparsely as possible in an overcomplete basis;
this representation can be found using LP, and the sparse
representation is then used in further processing [3–9].

To date, it has not been practical to perform end-to-end
gradient optimisation of algorithms of this sort. This is due
to the difficulty of propagating intermediate gradients (ad-
joints) through the LP solver. We show below how these
adjoint calculations can be done: how a sensitivity of the

∗Supported by Science Foundation Ireland grant 00/PI.1/C067 and the
Higher Education Authority of Ireland.

†Thanks to Oticon Fonden for financial support for this work.

output can be manipulated to give a sensitivity of the in-
puts. As usual in Automatic Differentiation (AD), these do
not require much more computation than the original primal
LP calculation—in fact, rather unusually, here they may re-
quire considerably less.

We first introduce our notational conventions for LP, and
then give a highly condensed introduction to, and notation
for, AD. We proceed to derive AD transformations for a
simpler subroutine than LP: a linear equation solver. (This
novel derivation is of independent interest, as linear equa-
tions are often constructed and solved within larger algo-
rithms.) Armed with a general AD transformation for lin-
ear equation solvers along with suitable notation, we find
the AD transformations for linear program solvers simple
to derive. This is applied mechanically to yield AD rules
for a linearly-constrainedL1-optimiser.

The problem of finding an overcomplete signal dictio-
nary tuned to a given stimulus ensemble, so that signals
drawn from that ensemble will have sparse representations
in the constructed dictionary, has received increasing atten-
tion, due to applications in both neuroscience and in the
construction of efficient practical codes [10]. Here we de-
rive a gradient method for such an optimisation, and apply
it to learn a sparse representation of speech.

Single-channel speech separation, where the objective is
to estimate the speech sources of the mixture, is a relevant
task in hearing aids, as a speech recognition pre-processor,
and in other applications which might benefit from better
noise reduction. For this reason, there has been a flurry
of interest in the problem [9, 11–17]. We encode the au-
dio mixtures in the basis functions of the combined person-
alised dictionaries, which were adapted using the devised
gradient method. The sparse code separates the signal into
its sources, and reconstruction follows. Furthermore, we
show that the dictionaries are truly personal, meaning that
a given dictionary provides the sparsest fit for the particu-
lar speaker, which it was adapted to. Hence, we are able to
correctly classify speech signals to their speaker.



2. BACKGROUND AND NOTATION

We develop a convenient notation while briefly reviewing
the essentials of linear programming (LP) and algorithmic
differentiation (AD).

2.1. Linear Programming

In order to develop a notation for LP, consider the general
LP problem

arg min
z

w⊤z s.t.Az ≤ a andBz = b (1)

We will denote the linear program solverlp, and write the
solution asz = lp(w,A,a,B,b). It is important to see
that lp(·) can be regarded as either a mathematical function
which maps LP problems to their solutions, or as a computer
program which actually solves LP problems. Our notation
deliberately does not distinguish between these two closely
related notions.

Assuming feasibility, boundedness, and uniqueness, the
solution to this LP problem will satisfy a set of linear equal-
ities consisting of a subset of the constraints: theactivecon-
straints [18–20]. An LP solver calculates two pieces of in-
formation: the solution itself, and the identity of the active
constraints. We will find it convenient to refer to the ac-
tive constraints by defining some very sparse matrices that
extract the active constraints from the constraint matrices.
Let α1 < · · · < αn be the indices of the rows ofA corre-
sponding to active constraints, andβ1 < · · · < βm index
the active rows ofB. Without loss of generality, we assume
that the total number of active constraints is equal the di-
mensionality of the solution,n + m = dim z. We letPα

be a matrix withn rows, where thei-th row is all zeros ex-
cept for a one in theαi-th column, andPβ similarly havem
rows, with itsi-th row all zeros except for a one in theβi-th
column. SoPαA andPβB hold the active rows ofA andB,
respectively. These can be combined into a single matrix,

P ≡

[

Pα 0

0 Pβ

]

Using these definitions, the solutionz to (1), which pre-
sumably is already available having been computed by the
algorithm that identified the active constraints, must be the
unique solution of the system of linear constraints

P

[

A

B

]

z = P

[

a

b

]

or

lp(w,A,a,B,b) = lq(P

[

A

B

]

,P

[

a

b

]

) (2)

wherelq is a routine that efficiently solves a system of lin-
ear equations,lq(M,m) = M−1m. For notational con-
venience we suppress the identity of the active constraints

as an output of thelp routine. Instead we assume that it is
available where necessary, so any function with access to
the solutionz found by the LP solver is also assumed to
have access to the correspondingP.

2.2. Algorithmic Differentiation

AD is a process by which a numeric calculation specified
in a computer programming language can be mechanically
transformed so as to calculate derivatives (in the differential
calculus sense) of the function originally calculated [21].
There are two sorts of AD transformations: forward accu-
mulation [22] and reverse accumulation [23]. (A special
case of reverse accumulation AD is referred to as backprop-
agation in the machine learning literature [24].) If the entire
calculation is denotedy = h(x), then forward accumula-
tion AD arises because a perturbationdx/dr induces a per-
turbationdy/dr, and reverse accumulation AD arises be-
cause a gradientdE/dy induces a gradientdE/dx. The Ja-
cobian matrix plays a dominant role in reasoning about this
process. This is the matrixJ whosei, j-th entry isdhi/dxj .

Forward AD calculateśy = Jx́ =
−⇀
h (x, x́), and reverse

AD calculates̀x = J⊤ỳ =
↼−
h (x, ỳ). The difficulty is that,

in high dimensional systems, the matrixJ is too large to
actually calculate. In AD the above matrix-vector products
are found directly and efficiently, without actually calculat-
ing the Jacobian.

The central insight is that calculations can be broken
down into a chained series of assignmentsv := g(u), and
transformed versions of these chained together. The trans-
formed version of the above internal assignment statement
would bev́ := −⇀g (u, ú, v) in forward mode [22], or̀u :=
↼−g (u, v, v̀) in reverse mode [23]. The most interesting prop-
erty of AD, which results from this insight, is that the time
consumed by the adjoint calculations can be the same as that
consumed by the original calculation, up to a small constant
factor. (This naturally assumes that the transformations of
the primitives invoked also obey this property, which is in
general true.)

We will refer to the adjoints of original variables in-
troduced in forward accumulation (perturbations) using a
forward-leaning accentv 7→ v́; to the adjoint variables in-
troduced in the reverse mode transformation (sensitivities)
using a reverse-leaning accentv 7→ v̀; and to the forward-
and reverse-mode transformations of functions using for-
ward and reverse arrows,h 7→

−⇀
h and h 7→

↼−
h . A de-

tailed introduction to AD is beyond the scope of this paper,
but one form appears repeatedly in our derivations. This is
V := AUB whereA andB are constant matrices andU
andV are matrices as well. This transforms toV́ := AÚB

andÙ := A⊤ V̀B⊤.



2.3. AD of a Lin. Eq. Solver

We first derive AD equations for a simple implicit function,
namely a linear equation solver. We consider a subroutine
lq which finds the solutionz of Mz = m, written z =
lq(M,m). This assumes thatM is square and full-rank,
just as a division operationz = x/y assumes thaty 6= 0.
We will derive formulae for both forward mode AD (théz
induced byḾ andḿ) and reverse mode AD (thèM andm̀

induced bỳz).
For forward propagation of perturbations, we will write

ź =
−⇀
lq (M, Ḿ,m, ḿ, z). Because(M + Ḿ)(z + ź) =

m + ḿ which reduces toMź = ḿ − Ḿz, we conclude
that

−⇀
lq (M, Ḿ,m, ḿ, z) = lq(M, ḿ− Ḿz).

Note thatlq is linear in its second argument, where the per-
turbations enter linearly. For reverse propagation of sensi-
tivities, we will write

[

M̀ m̀
]

=
↼−
lq (M,m, z, z̀). (3)

First observe thatz = M−1m and hencèm = M−⊤z̀ so

m̀ = lq(M⊤, z̀).

For the remaining term we start with our previous forward
perturbationḾ 7→ ź, namelýz = −M−1Ḿz, and note that
the reverse must be the transpose of this linear relationship,
M̀ = −M−⊤z̀z⊤, which is the outer product

M̀ = −m̀z⊤.

2.4. AD of Linear Programming

We apply equation (3) followed by some bookkeeping, yields
[

À à

B̀ b̀

]

=
↼−
lp (w,A,a,B,b, z, z̀)

= P⊤
↼−
lq (P

[

A

B

]

,P

[

a

b

]

, z, z̀)

ẁ = 0

Forward accumulation is similar, but is left out for brevity.

2.5. ConstrainedL1 Optimisation

We can find AD equations for linearly constrainedL1-norm
optimisation via reduction to LP. Consider

arg min
c
‖c‖1 s.t.Dc = y.

Although‖c‖1 =
∑

i|ci| is a nonlinear objective function,
a change in parametrisation allows optimisation via LP. We
name the solutionc = L1opt(y,D) where

L1opt(y,D) =
[

I −I
]

lp(1,−I,0,D
[

I −I
]

,y)

in which0 and1 denote column vectors whose elements all
contain the indicated number, and eachI is an appropriately
sized identity matrix. The reverse-mode AD transformation
follows immediately,

↼−−
L1opt(y,D, c, c̀) =

[

D̀ ỳ
]

=

[

0′ I
] ↼−

lp (1,−I,0,D
[

I −I
]

,y, z,

[

I

−I

]

c̀)





I 0

−I 0

0⊤ 1





wherez is the solution of the internal LP problem and0′ is
an appropriately sized matrix of zeros.

3. DICTIONARIES OPTIMISED FOR SPARSITY

A major advantage of the LP differentiation framework, and
more specifically the reverse accumulation of the constrained
L1 norm optimisation, is that it provides directly a learning
rule for learning sparse representation in overcomplete dic-
tionaries.

We assume an overcomplete dictionary in the columns
of D, which is used to encode a signal represented in the
column vectory using the column vector of coefficients
c = L1opt(y,D) where each dictionary element has unit
L2 length. A probabilistic interpretation of the encoding
as a maximum posterior (MAP) estimate naturally follows
from two assumptions: a Laplacian prior p(c), and a noise-
free observation modely = Dc. This gives

c = arg max
c′

p(c′|y,D)

We would like to improveD for a particular distribu-
tion of signals, meaning changeD so as to maximise the
sparseness of the codes assigned. Withy drawn from this
distribution, an ideal dictionary will minimise the average
code length, giving maximally sparse coefficients. We will
updateD so as to minimiseE = 〈‖L1opt(y,D)‖1〉 while
keeping the columns ofD at unit length. This can be re-
garded a special case of Independent Component Analysis
[25], where measures of independence across coefficients
are optimised. We wish to use a gradient method so we cal-
culate∇DEy whereEy = ‖L1opt(y,D)‖1 makingE =
〈Ey〉. Invoking AD,

∇DEy = D̀ =
[

D̀ ỳ
]

[

I

0⊤

]

=
↼−−
L1opt(y,D, c, sign(c))

[

I

0⊤

] (4)

where sign(x) = +1/0/−1 for x positive/zero/negative, and
applies elementwise to vectors.

We are now in a position to perform stochastic gradient
optimisation [26], modified by the inclusion of a normali-
sation step to maintain the columns ofD at unit length and
non-negative.



Fig. 1. A sample of learnt dictionary entries for male (left) and female (right) speech in the Mel spectrum domain. Clearly,
harmonic features emerge from the data but some broad and narrow noise spectra can also be seen. The dictionaries were
initialised toN = 256 delta-like pulses, lengthL = 80 and were adopted fromT = 420 s of speech.

1. Drawy from signal distribution.
2. CalculateEy.
3. Calculate∇DEy by (4).
4. StepD := D− η∇DEy.
5. Set any negative element ofD to zero.
6. Normalise the columnsdi of D to unitL2 norm.
7. Repeat to convergence ofD.

This procedure can be regarded as a very efficient exact
maximum likelihood treatment of the posterior integrated
using a Gaussian approximation [7]. However, the formu-
lation here can be easily and mechanically generalised to
other objectives.

A set of personalised speech dictionaries were learnt by
sparsity optimisation in the Grid Corpus [27] which is avail-
able at http://www.dcs.shef.ac.uk/spandh/gridcorpus. This
corpus contains 1000×34 utterances of 34 speakers, con-
fined to a limited vocabulary. The speech was preprocessed
and represented to (essentially) transform the audio signals
into a Mel time-frequency representation, as presented and
discussed by Ellis and Weiss [14]. The data was down-
sampled to8 kHz and high-pass filtered to bias our objective
towards more accuracy in the high-end of the spectrum. The
short-time Fourier transform was computed from windowed
data vectors of length32ms, corresponding toK = 256
samples, and subsequently mapped intoL = 80 bands on
the Mel scale. FromT = 420 s of audio from each speaker,
the non-zero time-frames were extracted for training and
normalised to unity L2 norm. The remainder of the audio
(> 420 s) was set aside for testing. The stochastic gradient
optimisation of the linearly constrainedL1 norm was run for
40,000 iterations. The step-sizeη was decreased throughout
the training. TheN = 256 columns of the dictionaries were
initialised with narrow pulses distributed evenly across the
spectrum and non-negativity was enforced following each
iteration. In Figure 1 is displayed a randomly selected sam-

ple of learnt dictionary elements of one male and one fe-
male speaker. The dictionaries clearly capture a number of
characteristics of speech, such as quasi-periodicity and de-
pendencies across frequency bands.

3.1. Source Separation

This work was motivated by a particular application: single-
channel source separation.1 The aim is to recoverR source
signals from a one-dimensional mixture signal. In that con-
text, an important technique is to perform a linearly con-
strainedL1-norm optimisation in order to fit an observed
signal using a sparse subset of coefficients over an over-
complete signal dictionary. A single column of the mixture
spectrogram is the sum of the source spectra:y =

∑R

i yi.
In the interest of simplicity, this model assumes a0 dB target-
to-masker ratio (TMR). Generalization to general TMR by
the inclusion of weighting coefficients is straightforward.

As a generative signal model, it is assumed thatyi can
be represented sparsely in the overcomplete dictionaryD,
which is the concatenation of the source dictionaries:
D =

[

D1 . . . Di . . . DR

]

. Assuming that theDi

are different in some sense, it can be expected that a sparse
representation in the overcomplete basisD coincides with
the separation of the sources,i.e.we compute

c =
[

c⊤
1

. . . c⊤i . . . c⊤R
]⊤

= L1opt(y,D)

where theci are the coefficients pertaining to theith source.
The source estimates in the Mel spectrum domain are then
re-synthesised aŝyi = Dici. The conversion back to the
time-domain consists of mapping to the amplitude spectro-

1The INTERSPEECH 2006 conference hosts a special session on
this issue, based on the GRID speech corpus. See www.dcs.shef.ac.uk/
∼martin/SpeechSeparationChallenge.htm.
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Fig. 2. Dependency of the separation performance mea-
sured as signal-to-noise ratio (SNR) as a function of the
data volume (left), and, the dictionary size,N (right). Only
T = 7 s of speech is needed to attain near-optimal perfor-
mance. The performance increases about 0.5 dB per dou-
bling of N .

Genders SNR (dB)

M/M 4.9±1.2
M/F 7.8±1.3
F/F 5.1±1.4

Table 1. Monaural two-speaker signal-to-noise separation
performance (mean±stderr of SNR), by speaker gender.
The simulated test data consisted of all possible combina-
tions,T = 6 s, of the 34 speakers.

gram and subsequently reconstructing the time-domain sig-
nal using the noisy phase of the mixture. Due to the sparsity
of speech in the transformed domain, the degree of over-
lap of the sources is small, which causes the approximation
to be fairly accurate. Useful software in this connection is
available at http://www.ee.columbia.edu/∼dpwe/. In the fol-
lowing, the quality ofŷi are evaluated in the time-domain
simply as the ratio of powers of the target to reconstruction
error, henceforth termed the signal-to-noise ratio (SNR).

In order to assess the convergence properties of the algo-
rithm, the SNR was computed as a function of the amount
of training data, see figure 2. It was found that useful re-
sults could be achieved with a few seconds of training data,
whereas optimal performance was only obtained after a few
minutes. It was furthermore investigated how the SNR varies
as a function of the number of dictionary elements,N . Each
doubling ofN brings an improvement, indicating the po-
tential usefulness of increased computing power. The above
results were obtained by simulating all possible mixtures
of 8 speakers (4 male, 4 female) at0 dB and computing
the SNR’s on6 s segments. Performance figures were com-
puted on the complete data set of 34 speakers, amounting to
595 combinations, withN = 256 andT = 420 s; see Ta-
ble 1. The test data is available at www2.imm.dtu.dk/∼rko/
singlechannel.
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Fig. 3. The maximum-likelihood correct-classification rate
as computed in aT = 2 s test window on all combination of
the 34 speakers and 34 dictionaries. If all time-frames are
included into computation, the classification is perfect, but
the performance decreases as smaller windows are used.

3.2. Speaker identification

In many potential applications of source separation the speak-
ers of the mixture would be novel, and have to be estimated
from the audio stream. In order to perform trulyblind sep-
aration, the system should be able to automatically apply
the appropriate dictionaries. Here we attack a simpler sub-
problem: speaker identification in an audio signal with only
a single speaker. Our approach is straightforward: select the
dictionary that yields the sparsest code for the signal. Again,
this can be interpreted as maximum-likelihood classifica-
tion. Figure 3 displays the percentage of correctly classified
sound snippets. The figures were computed on all combina-
tions of speakers and dictionaries, that is34 × 34 = 1156
combinations. The complete data (2 s) resulted in all speak-
ers being correctly identified. Shorter windows carried a
higher error rate. For the described classification framework
to be successful in a source separation task, it is required
that each speaker appears exclusively in parts of the audio
signal. This is not at all unrealistic in normal conversation,
depending on the politeness of the speakers.

4. CONCLUSION AND OUTLOOK

Linear programming is often viewed as a black-box solver,
which cannot be fruitfully combined with gradient-based
optimisation methods. As we have seen, this is not the
case. LP can be used as a subroutine in a larger system,
and perturbations can be propagated forwards and sensitivi-
ties propagated backwards through the LP solver. The only
caution is that LP is by nature only piecewise differentiable,
so care must be taken with regard to crossing through such



discontinuities.
The figures carry evidence that the adapted Mel scale

dictionaries to a large extent perform the job, and that the
generalisation of the results to spontaneous speech depends
to a large extent on designing a sensible scheme for pro-
viding the algorithm with a balanced training data. Further-
more, the system should be able to manage some difficult
aspects of real-room conditions, in particular those in which
the observed signal is altered by the room dynamics. We
feel that a possible solution could build on the principles
laid out in previous work [9], where a head-related trans-
fer function (HRTF) is used to provide additional contrast
between the sources.

We found that using spectrogram patches rather than
power spectra improved the results only marginally, in agree-
ment with previous reports using a related approach [16].

References

[1] O. L. Mangasarian, W. N. Street, and W. H. Wol-
berg. Breast cancer diagnosis and prognosis via linear
programming. Operations Research, 43(4):570–577,
July-Aug. 1995.

[2] P. S. Bradley, O. L. Mangasarian, and W. N. Street.
Clustering via concave minimization. InAdv. in Neu.
Info. Proc. Sys. 9, pages 368–374. MIT Press, 1997.

[3] I. F. Gorodnitsky and B. D. Rao. Sparse signal re-
construction from limited data using FOCUSS: A re-
weighted minimum norm algorithm.IEEE Trans. Sig-
nal Proccessing, 45(3):600–616, 1997.

[4] M. Lewicki and B. A. Olshausen. Inferring sparse,
overcomplete image codes using an efficient coding
framework. InAdvances in Neural Information Pro-
cessing Systems 10, pages 815–821. MIT Press, 1998.

[5] S. S. Chen, D. L. Donoho, and M. A. Saunders.
Atomic decomposition by basis pursuit.SIAM Jour-
nal on Scientific Computing, 20(1):33–61, 1998.

[6] T.-W. Lee, M. S. Lewicki, M. Girolami, and T. J. Se-
jnowski. Blind source separation of more sources than
mixtures using overcomplete representations.IEEE
Signal Processing Letters, 4(5):87–90, 1999.

[7] M. S. Lewicki and T. J. Sejnowski. Learning over-
complete representations.Neu. Comp., 12(2):337–65,
2000.

[8] M. Zibulevsky and B. A. Pearlmutter. Blind source
separation by sparse decomposition in a signal dictio-
nary. Neu. Comp., 13(4):863–882, Apr. 2001.

[9] B. A. Pearlmutter and A. M. Zador. Monaural source
separation using spectral cues. InICA, pages 478–485,
2004.

[10] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan,
T.-W. Lee, and T. J. Sejnowski. Dictionary learning

algorithms for sparse representation.Neu. Comp., 15
(2):349–396, 2003.

[11] S. T. Roweis. One microphone source separation. In
Adv. in Neu. Info. Proc. Sys. 13, pages 793–799. MIT
Press, 2001.

[12] G.-J. Jang and T.-W. Lee. A maximum likelihood
approach to single-channel source separation.J. of
Mach. Learn. Research, 4:1365–1392, Dec. 2003.

[13] M. N. Schmidt and M. Mørup. Nonnegative ma-
trix factor 2-D deconvolution for blind single channel
source separation. InICA, pages 123–123, 2006.

[14] D. P. W. Ellis and R. J. Weiss. Model-based monau-
ral source separation using a vector-quantized phase-
vocoder representation. InICASSP, 2006.

[15] M. N. Schmidt and R. K. Olsson. Single-channel
speech separation using sparse non-negative matrix
factorization. InInterspeech, 2006, submitted.

[16] S. T. Roweis. Factorial models and refiltering for
speech separation and denoising. InEurospeech,
pages 1009–1012, 2003.

[17] F. Bach and M. I. Jordan. Blind one-microphone
speech separation: A spectral learning approach. In
Advances in Neural Information Processing Systems
17, pages 65–72, 2005.

[18] G. B. Dantzig. Programming in a linear structure.
USAF, Washington D.C., 1948.

[19] S. I. Gass.An Illustrated Guide to Linear Program-
ming. McGraw-Hill, 1970.

[20] R. Dorfman. The discovery of linear programming.
Annals of the History of Computing, 6(3):283–295,
July–Sep. 1984.

[21] A. Griewank.Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Number 19
in Frontiers in Appl. Math. SIAM, Philadelphia, PA,
2000. ISBN 0–89871–451–6.

[22] R. E. Wengert. A simple automatic derivative evalua-
tion program.Commun. ACM, 7(8):463–464, 1964.

[23] B. Speelpenning.Compiling Fast Partial Derivatives
of Functions Given by Algorithms. PhD thesis, De-
partment of Computer Science, University of Illinois,
Urbana-Champaign, Jan. 1980.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning representations by back–propagating errors.
Nature, 323:533–536, 1986.

[25] A. J. Bell and T. J. Sejnowski. An information-
maximization approach to blind separation and blind
deconvolution.Neu. Comp., 7(6):1129–1159, 1995.

[26] H. Robbins and S. Monro. A stochastic approximation
method.Ann. Mat. Stats., 22:400–407, 1951.

[27] M. P. Cooke, J. Barker, S. P. Cunningham, and
X. Shao. An audio-visual corpus for speech perception
and automatic speech recognition, 2005. Submitted.



CHAPTER 5. CONCLUSION

50



Appendix II

M. N. Schmidt and R. K. Olsson, Single-Channel Speech Separation using Sparse
Non-Negative Matrix Factorization, in proceedings of International Conference
on Spoken Language Processing, 2006

51



Single-Channel Speech Separation using Sparse Non-Negative Matrix
Factorization

Mikkel N. Schmidt and Rasmus K. Olsson

Informatics and Mathematical Modelling, Technical University of Denmark
mns,rko@imm.dtu.dk

Abstract
We apply machine learning techniques to the problem of separat-
ing multiple speech sources from a single microphone recording.
The method of choice is a sparse non-negative matrix factorization
algorithm, which in an unsupervised manner can learn sparse rep-
resentations of the data. This is applied to the learning of person-
alized dictionaries from a speech corpus, which in turn are used
to separate the audio stream into its components. We show that
computational savings can be achieved by segmenting the training
data on a phoneme level. To split the data, a conventional speech
recognizer is used. The performance of the unsupervised and su-
pervised adaptation schemes result in significant improvements in
terms of the target-to-masker ratio.
Index Terms: Single-channel source separation, sparse non-
negative matrix factorization.

1. Introduction
A general problem in many applications is that of extracting the
underlying sources from a mixture. A classical example is the so-
called cocktail-party problem in which the problem is to recognize
or isolate what is being said by an individual speaker in a mix-
ture of speech from various speakers. A particular difficult version
of the cocktail-party problem occurs when only a single-channel
recording is available, yet the human auditory system solves this
problem for us. Despite its obvious possible applications in, e.g.,
hearing aids or as a preprocessor to a speech recognition system,
no machine has been built, which solves this problem in general.

Within the signal processing and machine learning communi-
ties, the single channel separation problem has been studied exten-
sively, and different parametric and non-parametric signal models
have been proposed.

Hidden Markov models (HMM) are quite powerful for mod-
elling a single speaker. It has been suggested by Roweis [1] to use
a factorial HMM to separate mixed speech. Another suggestion
by Roweis is to use a factorial-max vector quantizer [2]. Jang and
Lee [3] use independent component analysis (ICA) to learn a dic-
tionary for sparse encoding [4], which optimizes an independence
measure across the encoding of the different sources. Pearlmutter
and Olsson [5] generalize these results to overcomplete dictionar-
ies, where the number of dictionary elements is allowed to exceed
the dimensionality of the data. Other methods learn spectral dic-
tionaries based on different types of non-negative matrix factoriza-
tion (NMF) [6]. One idea is to assume a convolutive sum mixture,
allowing the basis functions to capture time-frequency structures
[7, 8].

A number researchers have taken ideas from the computa-
tional auditory scene analysis (CASA) literature, trying to incorpo-

rate various grouping cues of the human auditory system in speech
separation algorithms [9, 10]. In the work by Ellis and Weiss [11]
careful consideration is given to the representation of the audio sig-
nals so that the perceived quality of the separation is maximized.

In this work we propose to use the sparse non-negative ma-
trix factorization (SNMF) [12] as a computationally attractive ap-
proach to sparse encoding separation. As a first step, overcom-
plete dictionaries are estimated for different speakers to give sparse
representations of the signals. Separation of the source signals is
achieved by merging the dictionaries pertaining to the sources in
the mixture and then computing the sparse decomposition. We
explore the significance of the degree of sparseness and the num-
ber of dictionary elements. We then compare the basic unsuper-
vised SNMF with a supervised application of the same algorithm
in which the training data is split into phoneme-level subproblems,
leading to considerable computational savings.

2. Method

In the following, we consider modelling a magnitude spectrogram
representation of a mixed speech signal. We represent the speech
signal in the non-negative Mel spectrum magnitude domain, as
suggested by Ellis and Weiss [11]. Here we posit that the spec-
trogram can be sparsely represented in an overcomplete basis,

Y = DH (1)

that is, each data point held in the columns of Y is a linear combi-
nation of few columns of D. The dictionary, D, can hold arbitrar-
ily many columns, and the code matrix, H, is sparse. Furthermore,
we assume that the mixture signal is a sum of R source signals

Y =
R�
i

Yi.

The basis of the mixture signal is then the concatenation of the
source dictionaries, D = [D1 . . .Di . . .DR], and the complete
code matrix is the concatenation of the source-individual codes,
H = � H>

1 . . .H>

i . . .H>

R � >. By enforcing the sparsity of the
code matrix, H, it is possible to separate Y into its sources if the
dictionaries are diverse enough.

As a consequence of the above, two connected tasks have to
be solved: 1) the learning of source-specific dictionaries that yield
sparse codes, and, 2) the computing of sparse decompositions for
separation. We will use the sparse non-negative matrix factoriza-
tion method proposed by Eggert and Körner [12] for both tasks.



2.1. Sparse Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) computes the decom-
position in Equation (1) subject to the constraints that all matri-
ces are non-negative, leading to solutions that are parts-based or
sparse [6]. However, the basic NMF does not provide a well-
defined solution in the case of overcomplete dictionaries, when
the non-negativity constraints are not sufficient to obtain a sparse
solution. The sparse non-negative matrix factorization (SNMF)
optimizes the cost function

E = ||Y − D̄H||2F + λ
�
ij

Hij s.t. D,H ≥ 0 (2)

where D̄ is the column-wise normalized dictionary matrix. This
cost function is the basic NMF quadratic cost augmented by an
L1 norm penalty term on the coefficients in the code matrix. The
parameter, λ, controls the degree of sparsity. Any method that
optimizes Equation (2) can be regarded as computing a maximum
posterior (MAP) estimate given a Gaussian likelihood function and
a one-sided exponential prior distribution over H. The SNMF can
be computed by alternating updates of D and H by the following
rules [12]

Hij ← Hij •
Y
>

i D̄j

R>i D̄j + λ

Dj ← Dj •

�
i
Hij � Yi + (R>i D̄j)D̄j �

�
i
Hij � Ri + (V>

i D̄j)D̄j �
where R = DH, and the bold operators indicate pointwise multi-
plication and division.

We first apply SNMF to learn dictionaries of individual speak-
ers. To separate speech mixtures we keep the dictionary fixed and
update only the code matrix, H. The speech is then separated by
computing the reconstruction of the parts of the sparse decompo-
sition pertaining to each of the used dictionaries.

2.2. Two Ways to Learn Sparse Dictionaries

We study two approaches to learning sparse dictionaries, see Fig-
ure 1. The first is a direct, unsupervised approach where the dic-
tionary is learned by computing the SNMF on a large training data
set of a single speaker. The second approach is to first segment
the training data according to phoneme labels obtained by speech
recognition software based on a hidden Markov model. Then, a
sparse dictionary is learned for each phoneme and the final dic-
tionary is constructed by concatenating the individual phoneme
dictionaries. As a consequence, a smaller learning problem is ad-
dressed by the SNMF for each of the phonemes.

The computational savings associated with this divide-and-
conquer approach are significant. Since the running time of the
SNMF scales with the size of the training data and the number
of elements in the dictionary, dividing the problem into SNMF
subproblems for each phoneme reduces the overall computational
burden by a factor corresponding to the number of phonemes. For
example, if the data is split into 40 phonemes, we need to solve 40
SNMF subproblems each with a complexity of 1/402 compared
to the full SNMF problem. In addition to this, since the phoneme
SNMF subproblems are much smaller than the total SNMF prob-
lem, a faster convergence of the iterative SNMF algorithm can
be expected. These advantages makes it desirable to compare the
quality of sparse dictionaries estimated by the two methods.
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Figure 1: Two approaches for learning sparse dictionaries of
speech. The first approach (a) is to learn the dictionary from
a sparse non-negative matrix factorization of the complete train-
ing data. The second approach (b) is to segment the training
data into individual phonemes, learn a sparse dictionary for each
phoneme, and compute the dictionary by concatenating the indi-
vidual phoneme dictionaries.
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Figure 2: The automatic phoneme transcription as computed by
the trained hidden Markov model (HMM) for an example sentence
from the Grid Corpus. A manual transcription is provided for com-
parison, confirming the conventional hypothesis that the HMM is
a useful tool in segmenting a speech signal into its phonemes.

3. Simulations
Part of the Grid Corpus [13] was used for evaluating the proposed
method for speech separation. The Grid Corpus consists of simple
structured sentences from a small vocabulary, and has 34 speakers
and 1000 sentences per speaker. Each utterance is a few seconds
and word level transcriptions are available. We used half of the
corpus as a training set.

3.1. Phoneme Transcription

First, we used speech recognition software to generate phoneme
transcriptions of the sentences. For each speaker in the corpus a
phoneme-based hidden Markov model (HMM) was trained using
the HTK toolkit1. The HMM’s were used to compute an align-
ment of the phonemes in each sentence, taking the pronuncia-
tions of each word from the British English Example Pronuncia-
tion (BEEP) dictionary2. This procedure provided phoneme-level
transcriptions of each sentence. In order to evaluate the quality

1Avaiable from htk.eng.cam.ac.uk.
2Available by anonymous ftp from

svr-ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz.
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Figure 3: A few samples of columns of phoneme dictionaries
learned from female speech. The SNMF was applied to data,
which had been phoneme-labelled by a speech recognizer. Not
surprisingly, the basis functions exhibit the some general proper-
ties of the respective phonemes, and additional variation is cap-
tured by the algorithm, such as the fundamental frequency in the
case of voiced phonemes.

of the phoneme alignment, the automatic phoneme transcription
was compared to a manual transcription for a few sentences. We
found that the automatic phoneme alignment in general was quite
reasonable. An example is given in Figure 2.

3.2. Preprocessing and Learning Dictionaries

We preprocessed the speech data in a similar fashion to Ellis and
Weiss [11]: the speech was prefiltered with a high-pass filter,
1 − 0.95z−1, and the STFT was computed with an analysis win-
dow of 32ms at a sample rate of 25kHz. An overlap of 50 percent
was used between frames. This yielded a spectrogram with 401
frequency bins which was then mapped into 80 frequency bins on
the Mel scale. The training set was re-weighted so that all frames
containing energy above a threshold were normalized by their stan-
dard deviation. The resulting magnitude Mel-scale spectrogram
representation was employed in the experiments.

In order to assess the effects of the model hyper-parameters
and the effect of splitting the training data according the phoneme
transcriptions, a subset of four male and four female speakers were
extracted from the Grid Corpus. We constructed a set of 64 mixed
sentences by mixing two randomly selected sentences for all com-
binations of the eight selected test speakers.

Two different sets of dictionaries were estimated for each
speaker. The first set was computed by concatenating the spec-
trograms for each speaker and computing the SNMF on the com-
plete training data for that speaker. The second set was com-
puted by concatenating the parts of the training data correspond-
ing to each phoneme for each speaker, computing the SNMF for
each phoneme spectrogram individually, and finally concatenat-
ing the individual phoneme dictionaries. To save computation,
only 10 percent of the training set was used to train the dictionar-
ies. In a Matlab environment running on a 1.6GHz Intel proces-
sor the computation of the SNMF for each speaker took approxi-
mately 30 minutes, whereas the SNMFs for individual phonemes
were computed in a few seconds. The algorithm was allowed
to run for maximally 500 iterations or until convergence as de-
fined by the relative change in the cost function. Figure 3 shows
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Figure 4: Average signal-to-noise ratio (SNR) of the separated sig-
nals for dictionaries trained on the complete speech spectrograms
and on individual phonemes, (a) as a function of the dictionary
size, N , with sparsity λ = 0.1, and (b) as a function of the spar-
sity with N = 560. We found that the SNMF algorithm did not
give useful results when λ = 1.

samples from a dictionary which was learned using SNMF on
the phoneme-segmented training data for a female speaker. The
dictionaries were estimated for four different levels of sparsity,
λ = {0.0001, 0.001, 0.01, 0.1}, and four different dictionary
sizes, N = {70, 140, 280, 560}. This was done for both the com-
plete and the phoneme-segmented training data.

3.3. Speech Separation

For each test sentence, we concatenated the dictionaries of the
two speakers in the mixture, and computed the code matrix using
the SNMF updates. Then, we reconstructed the individual magni-
tude spectra of the two speakers and mapped them from the Mel-
frequency domain into the linear frequency STFT domain. Sepa-
rated waveforms were computed by spectral masking and spectro-
gram inversion, using the original phase of the mixed signal. The
separated waveforms were then compared with the original clean
signals, computing the signal-to-noise ratio.

The results in Figure 4 show that the quality of separation in-
creases with N . This agrees well with the findings of Ellis and
Weiss [11]. Furthermore, the choice of sparsity, λ, is impor-
tant for the performance of the separation method, especially in
the case of unsegmented data. The individual phoneme-level dic-
tionaries are so small in terms of N that the gain from enforc-
ing sparsity in the NMF is not as significant; the segmentation
in itself sparsifies the dictionary to some extend. Table 1 shows
that the method works best for separating speakers of opposite
gender, as would be expected. Audio examples are available at
mikkelschmidt.dk/interspeech2006 .



Complete Segmented

Same gender 4.8±0.4 dB 4.3±0.3 dB
Opp. gender 6.6±0.3 dB 6.4±0.3 dB

Table 1: Average signal-to-noise ratio (SNR) of the separated
signals for dictionaries trained on the complete speech spectro-
grams and on individual phonemes. Dictionaries were learned with
N = 560 and λ = 0.1.

TMR 6dB 3dB 0dB −3dB −6dB −9dB
Human Performance

ST 90% 72% 54% 52% 60% 68%
SG 93% 85% 76% 72% 77% 80%
DG 94% 91% 86% 88% 87% 83%
All 92% 83% 72% 71% 75% 77%

Proposed Method
ST 56% 53% 45% 38% 31% 28%
SG 60% 57% 52% 44% 37% 32%
DG 73% 72% 71% 63% 54% 41%
All 64% 62% 58% 51% 42% 35%

Table 2: Results from applying the SNMF to the Speech Sepa-
ration Challenge: the word-recognition rate (WRR) on separated
mixtures of speech in varying target-masker ratios (TMR) in same
talker (ST), same gender (SG) different gender (DG), and overall
(All) conditions compared with human performance on the mix-
tures. The WRR should be compared to that of other algorithms
applied to the same test set (see the conference proceedings).

3.4. Interspeech 2006: Speech Separation Challenge

We evaluated the algorithm on the Speech Separation test set,
which was constructed by adding a target and a masking speaker
at different target-to-masker ratios (TMR)3. As an evaluation cri-
terion, the word-recognition rate (WRR) for the letter and number
in the target speech signal was computed using the HTK speech
recognizer trained on data separated by the proposed method. A
part of the test was to blindly identify the target signal as the one
separated signal, which containing the word ‘white’. A total of 600
mixtures were evaluated for each TMR. The source signals were
separated and reconstructed in the time-domain as described pre-
viously. In Table 2, the performance of the method is contrasted
with the performance of human listeners [14]. A subtask in ob-
taining these results was to estimate the identities of the speak-
ers in the mixtures. This was done by exhaustively applying the
SNMF to the signals with all pairs of two dictionaries, selecting
the combination that gave the best fit. We are currently investigat-
ing methods to more efficiently determine the active sources in a
mixture.

4. Discussion and Outlook
We have successfully applied sparse non-negative matrix factor-
ization (SNMF) to the problem of monaural speech separation.
The SNMF learns large overcomplete dictionaries, leading to a
more sparse representations of individual speakers than for exam-
ple the basic NMF. Inspection of the dictionaries reveals that they
capture fundamental properties of speech, in fact they learn ba-

3This test set is due to Cooke and Lee. It is available at
http://www.dcs.shef.ac.uk/ martin/SpeechSeparationChallenge.htm.

sis functions that resemble phonemes. This has lead us to adopt
a working hypothesis that the learning of signal dictionaries on a
phoneme level is a computational shortcut to the goal, leading to
similar performance. Our experiments show that the practical per-
formance of sparse dictionaries learned in this way performs only
slightly worse than dictionaries learned on the complete dataset.
In future work, we hope to benefit further from the phoneme la-
belling of the dictionaries in formulating transitional models in the
encoding space of the SNMF, hopefully matching the dynamics of
speech.

5. Acknowledgements
This work made possible in part by funding from Oticon Fonden.
We would like to thank Lars Kai Hansen and Jan Larsen for fruit-
ful discussions, and acknowledge Dan Ellis for making available
useful software at his homepage.

6. References
[1] S. T. Roweis, “One microphone source separation,” in NIPS,

2001, pp. 793–799.

[2] S. T. Roweis, “Factorial models and refiltering for speech
separation and denoising,” in Eurospeech, 2003, pp. 1009–
1012.

[3] G. J. Jang and T. W. Lee, “A maximum likelihood approach
to single channel source separation,” JMLR, vol. 4, pp. 1365–
1392, 2003.

[4] B. A. Olshausen and D. J. Field, “Emergence of simple-cell
receptive field properties by learning a sparse code for natural
images,” Nature, vol. 381, pp. 607–609, 1996.

[5] B. A. Pearlmutter and R. K. Olsson, “Algorithmic differen-
tiation of linear programs for single-channel source separa-
tion,” in MLSP, submitted, 2006.

[6] D. D. Lee and H. S. Seung, “Learning the parts of objects
by non-negative matrix factorization,” Nature, vol. 401, pp.
788–791, 1999.

[7] P. Smaragdis, “Discovering auditory objects through non-
negativity constraints,” in SAPA, 2004.

[8] M. N. Schmidt and M. Mørup, “Nonnegative matrix factor 2-
D deconvolution for blind single channel source separation,”
in ICA, 2005.

[9] B. A. Pearlmutter and A. M. Zador, “Monaural source sepa-
ration using spectral cues,” in ICA, 2004, pp. 478–485.

[10] F. Bach and M. I. Jordan, “Blind one-microphone speech
separation: A spectral learning approach,” in NIPS, 2005,
pp. 65–72.

[11] D. P. W. Ellis and R. J. Weiss, “Model-based monaural
source separation using a vector-quantized phase-vocoder
representation,” in ICASSP, 2006.

[12] J. Eggert and E. Körner, “Sparse coding and nmf,” in Neural
Networks. 2004, vol. 4, pp. 2529–2533, IEEE.

[13] M. P. Cooke, J. Barker, S. P. Cunningham, and X. Shao,
“An audio-visual corpus for speech perception and automatic
speech recognition,” submitted to JASA.

[14] M. P. Cooke, M. L. Garcia Lecumberri, and J. Barker, “The
non-native cocktail party (in preparation),” .



CHAPTER 5. CONCLUSION

56



Appendix III

M. N. Schmidt and R. K. Olsson, Feature Space Reconstruction for Single-Channel
Speech Separation, in submission to Workshop on Applications of Signal Process-
ing to Audio and Acoustics, 2007

57



1

Feature Space Reconstruction for

Single-Channel Speech Separation
Mikkel N. Schmidt*, Student Member, IEEE,

Rasmus K. Olsson, Student Member, IEEE

Technical University of Denmark

Richard Petersens Plads, Bldg. 321

DK-2800 Kgs. Lyngby, Denmark

Email: mns@imm.dtu.dk

Fax: +45 45872599

Telephone: +45 45253888

Abstract

In this work we address the problem of separating multiple speakers from a single microphone

recording. We formulate a linear regression model for estimating each speaker based on features derived

from the mixture. The employed feature representation is a sparse, non-negative encoding of the speech

mixture in terms of pre-learned speaker-dependent dictionaries. Previous work has shown that this feature

representation by itself provides some degree of separation. We show that the performance is significantly

improved when regression analysis is performed on the sparse, non-negative features.

Index Terms

Speech separation, single-channel, monaural, sparse non-negative matrix factorization.
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I. INTRODUCTION

The cocktail-party problem can be defined as that of isolating or recognizing speech from an individual

speaker in the presence of interfering speakers. An impressive feature of the human auditory system, this

is essentially possible using only one ear, or, equivalently, listening to a mono recording of the mixture.

It is an interesting and currently unsolved research problem to devise an algorithm which can mimic this

ability.

A number of signal processing approaches have been based on learning speaker-dependent models on

a training set of isolated recordings and subsequently applying a combination of these to the mixture.

One possibility is to use a hidden Markov model (HMM) based on a Gaussian mixture model (GMM)

for each speech source and combine these in a factorial HMM to separate a mixture [1]. Direct (naive)

inference in such a model is not practical because of the dimensionality of the combined state space of

the factorial HMM, necessitating some trick in order to speed up the computations. Roweis shows how to

obtain tractable inference by exploiting the fact that in a log-magnitude time-frequency representation, the

sum of speech signals is well approximated by the maximum. This is reasonable, since speech is sparsely

distributed in the time-frequency domain. Recently, impressive results have been achieved by Kristjansson

et al. [2] who devise an efficient method of inference that does not use the max-approximation. Based on

a range of other approximations, they devise a complex system which in some situations exceeds human

performance in terms of the error rate in a word recognition task.

Bach and Jordan [3] do not learn speaker dependent models but instead decompose a mixture by

clustering the time-frequency elements according to a parameterized distance measure designed with the

psychophysics of speech in mind. The algorithm is trained by learning the parameters of the distance

measure from a training data set.

Another class of algorithms, here denoted ‘dictionary methods’, generally rely on learning a matrix

factorization, in terms of a dictionary and its encoding for each speaker, from training data. The dictionary

is a source dependent basis, and the method relies on the dictionaries of the sources in the mixture being

sufficiently different. Separation of a mixture is obtained by computing the combined encoding using the

concatenation of the source dictionaries. As opposed to the HMM/GMM based methods, this does not

require a combinatorial search and leads to faster inference. Different matrix factorization methods can

be conceived based on various a priori assumptions. For instance, independent component analysis and

sparse decomposition, where the encoding is assumed to be sparsely distributed, have been proposed for

single-channel speech separation [4], [5]. Another way to constrain the matrices is achieved through the
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assumption of non-negativity [6], [7], which is especially relevant when modeling speech in a magnitude

spectrogram representation. Sparsity and non-negativity priors have been combined in sparse, non-negative

matrix factorization [8] and applied to music and speech separation tasks [9], [10], [11].

In this work, we formulate a linear regression model for separating a mixture of speech signals based

on features derived from a real-valued time-frequency representation of the speech. As a set of features,

we use the encodings pertaining to dictionaries learned for each speaker using sparse, non-negative matrix

factorization. The resulting maximum posterior estimator is linear in the observed mixture features and

has a closed-form solution. We evaluate the performance of the method on synthetic speech mixtures by

computing the signal-to-error ratio, which is the simplest, arguably sufficient, quality measure [12].

II. METHODOLOGY

The problem is to estimate P speech sources from a single microphone recording,

y(t) =
P∑

i=1

yi(t), (1)

where y(t) and yi(t) are the time-domain mixture and source signals respectively. The separation is

computed in an approximately invertible time-frequency representation, Y = TF {y(t)}, where Y is a

real-valued matrix with spectral vectors as columns.

A. Linear estimator

In the following we describe a linear model for estimating the time-frequency representations of the

sources in a mixture based on features derived from the mixture. The linear model reads,

Y i = W >

i (X − µ1>) + m i1
> + N , (2)

where Y i = TF {yi(t)} is the time-frequency representation of the i’th source, W i is a matrix of

weights, X is a feature matrix derived from Y , µ is the mean of the features, m i is the mean of the

i’th source and N is an additive noise term.

If we assume that the noise follows an i.i.d. normal distribution, vec(N ) ∼ N (0 , σ2

nI ), and put an

i.i.d. zero mean normal prior over the weights, vec(W i) ∼ N (0 , σ2

wI ), the maximum posterior (MAP)

estimator of the i’th source is given by

Ŷ i = Γ iΣ
−1(X ∗ − µ1>) + m i1

>, (3)
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where X ∗ is the feature mapping of the test mixture Y ∗ and

Γ i =
(
Y i −m i1

>
)(

X − µ1>
)>

, (4)

Σ =
(
X − µ1>

)(
X − µ1>

)>
+

σ2

n

σ2
w

I . (5)

Here, X is a matrix with feature vectors computed on a training mixture with mean µ, and Y i is the

corresponding time-frequency representation of the source with mean m i. For a detailed derivation of

the MAP estimator, see e.g. Rasmussen and Williams [13].

When an isolated recording is available for each of the speakers, it is necessary to construct the feature

matrix, X , from synthetic mixtures. One way to exploit the available data would be to generate mixtures,

X , such that all possible combinations of time-indices are represented. However, the number of sources

and/or the number of available time-frames would be prohibitively large.

A feasible approximation can be found in the limit of a large training set by making two additional

assumptions: i) the features are additive, X =
∑P

i X i with means µi, which is reasonable for, e.g.,

sparse features, and ii) the sources are independent such that all cross-products are negligible. Then,

Γ i ≈
(
Y i −m i1

>
)(

Xi − µi1
>
)>

, (6)

Σ ≈
P∑

i=1

(
X i − µi1

>
)(

X i − µi1
>
)>

. (7)

B. Features

In this work, two sets of feature mappings are explored. The first, and most simple, is to use the

time-frequency representation itself as input to the linear model,

X i = Y i, X ∗ = Y ∗. (8)

A second, more involved, possibility is to use the encodings of a sparse, non-negative matrix

factorization algorithm (SNMF) [8] as the features (see appendix A for a summary of SNMF). Possibly,

other dictionary methods provide equally viable features.

In the SNMF method, the time-frequency representation of the i’th source is modelled as Y i ≈ D iH i

where D i is a dictionary matrix containing a set of spectral basis vectors, and H i is an encoding which

describes the amplitude of each basis vector at each time point. In order to use the method to compute

features for a mixture, a dictionary matrix is first learned separately on a training set for each of the

sources. Next, the mixture and the training data is mapped onto the concatenated dictionaries of the

sources,

Y i ≈ DH i, Y ∗ ≈ DH ∗, (9)
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where D = [D1, . . . ,DP ]. The encoding matrices, H i and H ∗, are used as features,

X i = H i, X ∗ = H ∗. (10)

In previous work, the sources were estimated directly from these features as Ŷ i = D iH
∗

i [11]. For

comparison, we include this method in our evaluations. This method yields very good results when the

sources, and thus the dictionaries, are sufficiently different from each other. In practice, however, this

will not always be the case. In the factorization of the mixture, D1 will not only encode Y 1 but also Y 2

etc. This indicates that the encodings should rather be used as features in an estimator for each source.

III. EVALUATION

The proposed speech separation method was evaluated on a subset of the GRID speech corpus [14]

consisting of the first 4 male and first 4 female speakers (no. 1, 2, 3, 4, 5, 7, 11, and 15). The data was

preprocessed by concatenating T = 300 s of speech from each speaker and resampling to Fs = 8 kHz.

As a measure of performance, the signal-to-error ratio (SER) averaged across sources was computed in

the time-domain. The testing was performed on synthetic 0 dB mixtures of two speakers, Ttest = 20 s,

constructed from all combinations of speakers in the test set.

In figures 1 and 2, the performance is shown for a collection of feature sets. The acronyms MAP-mel

and MAP-SNMF refer to using the mel spectrum or the SNMF encoding as features, respectively. For

reference, figures are provided for the basic SNMF approach as well [11]. The numeral suffix, ’1’ or

’5’, indicates whether using one or stacking five consecutive feature vectors, spaced 32 ms. The best

performance is achieved for MAP-SNMF-5, reaching an ' 1.2 dB average improvement over the SNMF

algorithm. It is noteworthy that the improvement is larger for the most difficult mixtures, those involving

same-gender speakers.

In order to verify that the method is robust to changes in the relative gain of the signals in the mixtures,

the performance was evaluated in a range of different target-to-interference ratios (TIR) (see figure 3).

The results indicate that the method works very well even when the TIR is not known a priori. In figure

5, the performance is measured as a function of the available training data, indicating that the method is

almost converged at 300 s.

The time-frequency representation was computed by normalizing the time-signals to unit power and

computing the short-time Fourier transform (STFT) using 64 ms Hamming windows with 50% overlap.

The absolute value of the STFT was then mapped onto a mel frequency scale using a publicly available

toolbox [15] in order to reduce the dimensionality. Finally, the mel-frequency spectrogram was amplitude-

compressed by exponentiating to the power p. By cross-validation we found that best results were obtained
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Fig. 1. The distribution of the signal-to-error (SER) performance of the method for all combinations of two speakers. The

mel magnitude spectrogram (MAP-mel) and the SNMF encodings (MAP-SNMF) were used as features to the linear model. The

results of using basic SNMF are given as a reference. The box plots indicate the extreme values along with the quartiles of the

dB SER, averaged across sources.

at p = 0.55 which gave significantly better results compared with, e.g., operating in the amplitude (p = 1)

or the power (p = 2) domains (see figure 4). Curiously, this model prediction is similar to the empirically

determined p ≈ 0.67 exponent used in power law modelling of perceived loudness in humans, known as

Stevens’ Law, (see for example Hermansky [16]).

In the dictionary learning phase, the SNMF algorithm was allowed 250 iterations to converge from

random initial conditions drawn from a uniform distribution on the unit interval. The number of dictionary

atoms was fixed at r = 200 and the level of sparsity was chosen by cross-validation to λ = 0.15.

When computing the encodings on the test mixtures, we found that non-negativity alone was sufficiently

restrictive, hence λ = 0.

Time-domain reconstruction was performed by binary masking in the STFT spectrogram and subse-

quent inversion using the phase of the original mixture as described for example by Wang and Brown

[17]. The phase errors incurred by this procedure are not severe due to the sparsity of speech in the

spectrogram representation. Audio examples of the reconstructed speech are available online [18].

IV. DISCUSSION

The presented framework enjoys at least two significant advantages. First and foremost, computation in

the linear model is fast. The estimation of the separation matrix is closed-form given the features, and the

most time-consuming operation in the separation phase is a matrix product scaling with the dimensions

of spectrogram and the number of features. Secondly, it is possible to fuse different features sets. Here,
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Fig. 2. The performance of the methods given as signal-to-error (SER) in dB, depending on the gender of the speakers. Male

and female are identified by ‘M’ and ‘F’, respectively. The improvement of MAP-SNMF-5 over MAP-mel-5 and SNMF is

largest in the most difficult (same-gender) mixtures.
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Fig. 3. The performance of the MAP-mel-5 algorithm given as the signal-to-error ratio (SER) of the target signal versus the

target-to-interference ratio (TIR) of the mixture. The solid and dashed curves represent training on 0dB or the actual TIR of the

test mixture, respectively. Clearly, the method is robust to a mismatch of the TIR between the training and test sets.

the spectrogram and sparse NMF were used, but many others could be imagined, possibly inspired by

auditory models. The estimator integrates features across time, although the effect is relatively small,

confirming previous reports that the inclusion of a dynamical model yields only marginal improvements

[2], [19].
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APPENDIX

A. Sparse Non-negative Matrix Factorization

Let Y ≥ 0 be a non-negative data matrix. We model Y by

Y = DH + N , (11)
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where N is normal i.i.d. zero mean with variance σ2

n. This gives rise to the likelihood function,

p(Y |D ,H ) ∝ exp

(
−
|Y −DH |2F

2σ2
n

)
, (12)

where | · |F denotes the Frobenius norm. We put a prior on D that is uniform over the part of the unit

hyper-sphere lying in the positive orthant, i.e., D is non-negative and column-wise normalized. To obtain

sparsity, the prior on H is assumed i.i.d. one-sided exponential, p(H ) ∝ exp(−β|H |1), H ≥ 0 , where

|H |1 =
∑

ji |hji|. Now, the log-posterior can be written as

log p(D ,H |Y ) ∝ −
1

2
|Y −DH |2F − λ|H |1, (13)

s.t. D ≥ 0 , |d j |2 = 1, H ≥ 0 ,

where d j is the j’th column vector of D .

The log-posterior can be seen as a quadratic cost function augmented by an L1 norm penalty term

on the coefficients in H . The hyper-parameter λ = βσ2

n controls the degree of sparsity. A maximum

posterior (MAP) estimate can be computed by optimizing (13) with respect to D and H .

Eggert and Körner [8] derive a simple algorithm for computing this MAP estimate based on alternating

multiplicative updates of D and H

H ← H •
D̄
>
Y

D̄
>
Ỹ + Λ

, (14)

d j ← d̄ j •

∑
i hji

[
y i + (ỹ>i d̄ j)d̄ j

]

∑
i hji

[
ỹ i + (y>i d̄ j)d̄ j

] , (15)

where Ỹ = D̄H , D̄ is the column-wise normalized dictionary matrix, Λ is a matrix with elements λ,

and the bold operators indicate pointwise multiplication and division.
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ABSTRACT
We solve a class of blind signal separation problems us-
ing a constrained linear Gaussian model. The observed
signal is modelled by a convolutive mixture of colored
noise signals with additive white noise. We derive a
time-domain EM algorithm ‘KaBSS’ which estimates
the source signals, the associated second-order statistics,
the mixing filters and the observation noise covariance
matrix. KaBSS invokes the Kalman smoother in the E-
step to infer the posterior probability of the sources, and
one-step lower bound optimization of the mixing filters
and noise covariance in the M-step. In line with (Parra
and Spence, 2000) the source signals are assumed time
variant in order to constrain the solution sufficiently.
Experimental results are shown for mixtures of speech
signals.

1. INTRODUCTION

Reconstruction of temporally correlated source signals
observed through noisy, convolutive mixtures is a fun-
damental theoretical issue in signal processing and is
highly relevant for a number of important signal pro-
cessing applications including hearing aids, speech pro-
cessing, and medical imaging. A successful current ap-
proach is based on simultaneous diagonalization of mul-
tiple estimates of the source cross-correlation matrix [5].
A basic assumption in this work is that the source cross-
correlation matrix is time variant. The purpose of the
present work is to examine this approach within a prob-
abilistic framework, which in addition to estimation of
the mixing system and the source signals will allow us
to estimate noise levels and model likelihoods.

We consider a noisy convolutive mixing problem
where the sensor input xt at time t is given by

xt =
L−1∑

k=0

Akst−k + nt. (1)

The L matrices Ak define the delayed mixture and st

is a vector of possibly temporally correlated source pro-
cesses. The noise nt is assumed i.i.d. normal. The objec-
tive of blind source separation is to estimate the sources,
the mixing parameters, and the parameters of the noise
distribution.

Most blind deconvolution methods are based on
higher-order statistics, see e.g. [4], [1]. However, the
approach is proposed by Parra and Spence [5] is based
on second order statistics and is attractive for its rela-
tive simplicity and implementation, yet excellent perfor-

mance. The Parra and Spence algorithm is based on es-
timation of the inverse mixing process which maps mea-
surements to source signals. A heuristic second order
correlation function is minimized by the adaptation of
the inverse process. The scheme needs multiple correla-
tion measurements to obtain a unique inverse. This can
be achieved, e.g., if the source signals are non-stationary
or if the correlation functions are measured at time lags
less than the correlation length of the source signals.

The main contribution of the present work is to pro-
vide an explicit statistical model for the decorrelation of
convolutive mixtures of non-stationary signals. As a re-
sult, all parameters including mixing filter coefficients,
source signal parameters and observation noise covari-
ance are estimated by maximum-likelihood and the ex-
act posterior distribution of the sources is obtained. The
formulation is rooted in the theory of linear Gaussian
models, see e.g., the review by Ghahramani and Roweis
in [7]. The so-called Kalman Filter model is a state
space model that can be set up to represent convolutive
mixings of statistically independent sources added with
observation noise. The standard estimation scheme for
the Kalman filter model is an EM-algorithm that im-
plements maximum-likelihood (ML) estimation of the
parameters and maximum-posterior (MAP) inference of
the source signals, see e.g. [3]. The specialization of the
Kalman Filter model to convolutive mixtures is covered
in section 2 while the adaptation of the model parame-
ters is described in section 3. An experimental evalua-
tion on a speech mixture is presented in section 4.

2. THE MODEL

The Kalman filter model is a generative dynamical state-
space model that is typically used to estimate unob-
served or hidden variables in dynamical systems, e.g.
the velocity of an object whose position we are track-
ing. The basic Kalman filter model (no control inputs)
is defined as

st = Fst−1 + vt (2)
xt = Ast + nt

The observed dx-dimensional mixture, xt =
[x1,t, x2,t, .., xdx,t]T , is obtained from the multipli-
cation of the mixing matrix, A, on st, the hidden state.
The source innovation noise, vt, and the evolution ma-
trix, F, drive the sources. The signals are distributed
as vt ∼ N (0,Q), nt ∼ N (0,R) and s1 ∼ N (µ,Σ).

By requiring F,Q and Σ to be diagonal matrices,
equation (2) satisfies the fundamental requirement of
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Figure 1: The AR(4) source signal model. The mem-
ory of st is updated by discarding si,t−4 and composing
new s1,t and s2,t using the AR recursion. Blanks signify
zeros.

any ICA formulation, namely that the sources are sta-
tistically independent. Under the diagonal constraint,
this source model is identical to an AR(1) random pro-
cess. In order for the Kalman model to be useful in
the context of convolutive ICA for general temporally
correlated sources we need to generalize it in two as-
pects, firstly we will move to higher order AR processes
by stacking the state space, secondly we will introduce
convolution in the observation model.

2.1 Model generalization

By generalizing (2) to AR(p) source models we can
model wider classes of signals, including speech. The
AR(p) model for source i is defined as:

si,t = fi,1si,t−1 + fi,2si,t−2 + .. + fi,psi,t−p + vi,t. (3)

In line with e.g. [2], we implement the AR(p) process in
the basic Kalman model by stacking the variables and
parameters to form the augmented state vector

s̄t =
[

sT
1,t sT

2,t .. sT
ds,t

]T

where the bar indicates stacking. The ‘memory’ of the
individual sources is now represented in si,t:

si,t = [ si,t si,t−1 .. si,t−p+1 ]T

The stacking procedure consists of including the last p
samples of st in s̄t and passing the (p − 1) most recent
of those unchanged to s̄t+1 while obtaining a new st by
the AR(p) recursion of equation (3). Figure 1 illustrates
the principle for two AR(4) sources. The involved
parameter matrices must be constrained in the following
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Figure 2: The convolutive mixing model requires a full
¯̄A to be estimated.

way to enforce the independency assumption:

F̄ =




F̄1 0 · · · 0
0 F̄2 · · · 0
...

...
. . .

...
0 0 · · · F̄L




F̄i =




fi,1 fi,2 · · · fi,p−1 fi,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




Q̄ =




Q̄1 0 · · · 0
0 Q̄2 · · · 0
...

...
. . .

...
0 0 · · · Q̄L




(Q̄i)jj′ = { qi j = j′ = 1
0 j 6= 1

∨
j′ 6= 1

Similar definitions apply to Σ̄ and µ̄. The generaliza-
tion of the Kalman Filter model to represent convolutive
mixing requires only a slight additional modification of
the observation model, augmenting the observation ma-
trix to a full dx × p× ds matrix of filters,

¯̄A =




aT
11 aT

12 .. aT
1ds

aT
21 aT

22 .. aT
2ds

aT
dx1 aT

dx2 .. aT
dxds




where aij = [aij,1, aij,2, .., aij,L]T is the length L(= p)
impulse response of the signal path between source i
and sensor j. Figure 2 illustrates the the convolutive
mixing matrix.

It is well-known that deconvolution cannot be per-
formed using stationary second order statistics. We
therefore follow Parra and Spence and segment the sig-
nal in windows in which the source signals can be as-
sumed stationary. The overall system then reads

s̄n
t = F̄ns̄n

t−1 + v̄n
t

xn
t = ¯̄As̄n

t + nn
t



where n identify the segment of the observed mixture.
A total of N segments are observed. For learning we will
assume that during this period the mixing matrices ¯̄A
and the observation noise covariance, R are stationary.

3. LEARNING

A main benefit of having formulated the convolutive
ICA problem in terms of a linear Gaussian model is that
we can draw upon the extensive literature on parameter
learning for such models. The likelihood is defined in
abstract form for hidden variables S and parameters θ

L(θ) = log p(X|θ) = log
∫

dSp(X,S|θ)

The generic scheme for maximum likelihood learning of
the parameters is the EM algorithm. The EM algorithm
introduces a model posterior pdf. p̂(·) for the hidden
variables

L(θ) ≥ F(θ, p̂) ≡ J (θ, p̂)−R(p̂) (4)

where

J (θ, p̂) ≡
∫

dSp̂(S) log p(X,S|θ)

R(p̂) ≡
∫

dSp̂(S) log p̂(S)

In the E-step we find the conditional source pdf based on
the most recent parameter estimate, p̂(S) = p(S|X, θ).
For linear Gaussian models we achieve F(θ, p̂) = L(θ).
The M-step then maximize J (θ, p̂) wrt. θ. Each com-
bined M and E step cannot decrease L(θ).

3.1 E-step

The Markov structure of the Kalman model allows an
effective implementation of the E-step referred to as the
Kalman smoother. This step involves forward-backward
recursions and outputs the relevant statistics of the pos-
terior probability p(s̄t|x1:τ , θ), and the log-likelihood of
the parameters, L(θ)1. The posterior source mean (i.e.
the posterior average conditioned on the given segment
of observations) is given by

ˆ̄st ≡ 〈s̄t〉

for all t. The relevant second order statistics, i.e. source
i autocorrelation and time-lagged autocorrelation, are:

Mi,t ≡ 〈si,t(si,t)T 〉
≡ [ mi,1,t mi,2,t .. mi,L,t ]T

M1
i,t ≡ 〈si,t(si,t−1)T 〉

The block-diagonal autocorrelation matrix for s̄t is de-
noted M̄t., It contains the individual Mi,t, for i =
1, 2, .., ds.

1For notational brevity, the segment indexing by n has been
omitted in this section.

3.2 M-step

In the M-step, the first term of (4) is maximized with
respect to the parameters. This involves the average of
the logarithm of the data model wrt. the source posterior
from the previous E-step

J (θ, p̂) = −1
2

N∑
n=1

[
ds∑

i=1

log detΣn
i + (τ − 1)

ds∑

i=1

log qn
i

+τ log detR +
ds∑

i=1

〈(sn
i,1 − µn

i )T (Σn
i )−1(sn

i,1 − µn
i )〉

+
τ∑

t=2

ds∑

i=1

〈 1
qn
i

(sn
i,t − (fn

i )T sn
i,t−1)

2〉

+
τ∑

t=1

〈(xn
t − ¯̄As̄n

t )T R−1(xn
t − ¯̄As̄n

t )〉]

where fT
i = [ fi,1 fi,2 .. fi,p ]. The derivations are

analogous with the formulation of the EM algorithm in
[3]. The special constrained structure induced by the
independency of the source signals introduces tedious
but straight-forward modifications. The segment-wise
update equations for the M-step are:

µi,new = ŝi,1

Σi,new = Mi,1 − µi,newµT
i,new

fT
i,new =

[ τ∑
t=2

(m1
i,t)

T
][ τ∑

t=1

Mi,t−1

]−1

qi,new =
1

τ − 1

[ τ∑
t=2

mi,t − fT
i,newm1

i,t

]

Reconstruction of µ̄new, Σ̄new, F̄new and Q̄new from
the above is performed according to the stacking defi-
nitions of section 2. The estimators ¯̄Anew and Rnew

include the statistics from all observed segments:

¯̄Anew =
[ N∑

n=1

τ∑
t=1

xt,n(ˆ̄st,n)T
][ N∑

n=1

τ∑
t=1

M̄t,n

]−1

Rnew =
1

Nτ

N∑
n=1

τ∑
t=1

diag[xt,nxT
t,n − ¯̄Anewˆ̄st,nxT

t,n]

We accelerate the EM learning by a relaxation of the
lower bound, which amounts to updating the parame-
ters proportionally to an self-adjusting step-size, α, as
described in [6]. We refer to the Kalman filter based
blind source separation approach as ‘KaBSS’.

4. EXPERIMENTS

The proposed algorithm was tested on a binaural convo-
lutive mixture of two speech signals with additive noise
in varying signal to noise ratios (SNR). A male speaker
generated both signals that were recorded at 8kHz. This
is a strong test of the blind separation ability, since
the ‘spectral overlap’ is maximal for a single speaker.



The noise-free mixture was obtained by convolving the
source signals with the impulse responses:

¯̄A =
[

1 0.3 0 0 0 0.8
0 0.8 0.24 1 0 0

]

Subsequently, observation noise was added in each sen-
sor channel to construct the desired SNR. Within each
experiment, the algorithm was restarted 10 times, each
time estimating the parameters from 10 randomly sam-
pled segments of length τ = 70. Based on a test log-
likelihood, Ltest(θ), the best estimates of ¯̄A and R were
used to infer the source signals and estimate the source
model (F̄ and Q̄). The model parameters were set to
p = 2 and L = 3.

The separation quality was compared with the State-
of-the-Art method proposed by Parra and Spence2[5].
A signal to interference ratio (SIR): SIR = P11+P22

P12+P21
is

used as comparison metric. Pij is the power of the
signal constituting the contribution of the ith original
source to the jth source estimate. The normalized cross-
correlation function was used to estimate the powers in-
volved. The ambiguity of the source assignment was
fixed prior to the SIR calculations. The results are
shown in figure 3. Noise-free scenarios excepted, the
new method produce better signal-to-interference val-
ues peaking at an improvement of 4dB for an SNR of
20dB. It should be noted that the present method is
considerably more computational demanding than the
reference method.

5. CONCLUSION

Blind source separation of non-stationary signals has
been formulated in a principled probabilistic lin-
ear Gaussian framework allowing for (exact) MAP-
estimation of the sources and ML-estimation of the
parameters. The derivation involved augmentation of
state-space representation to model higher order AR
processes and augmentation of the observation model
to represent convolutive mixing. The independency con-
straint could be implemented exactly in the parameter
estimation procedure. The source estimation and the
parameter adaptation procedures are based on second-
order statistics ensuring robust estimation for many
classes of signals. In comparison with other current con-
volutive ICA models the present setup allows blind sep-
aration of noisy mixtures and it can estimate the noise
characteristics. Since it is possible to compute the like-
lihood function on test data it is possible to both use
validation sets for model order estimation as well as ap-
proximate schemes such as AIC and BIC based model
order selection. A simulation study was used to validate
the model in comparison with a State-of-the-Art refer-
ence method. The simulation consisted in a noisy con-
volutive mixture of two recordings of the same speaker.
The simulation indicated that speech signals are de-
scribed well-enough by the colored noise source model
to allow separation. For the given data set, the pro-
posed algorithm outperforms the reference method for
a wide range of noise levels. However, the new method

2See ”http://newton.bme.columbia.edu/ lparra/publish/”.
The hyper-parameters of the reference method were fitted to the
given data-set: T = 1024, Q = 6, K = 7 and N = 5. It should be
noted that the estimated SIR is sensitive to the hyper-parameters.
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Figure 3: The separation performance for varying SNR
of KaBSS and the reference method proposed by Parra
and Spence (PS) [5]. The signals are two utterances by
the same speaker. Two convolutive mixtures were cre-
ated with variable strength additive white noise. The
SIR measures the crosstalk between the two sources in
the source estimates. The error bars represent the stan-
dard deviation of the mean for 10 experiments at each
SNR.

is computationally demanding. We expect that signifi-
cant optimization and computational heuristics can be
invoked to simplify the algorithm for real-time applica-
tions. Likewise, future work will be devoted to monitor
and tune the convergence of the EM algorithm.
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Abstract. The number of source signals in a noisy convolutive mixture
is determined based on the exact log-likelihoods of the candidate models.
In (Olsson and Hansen, 2004), a novel probabilistic blind source separa-
tor was introduced that is based solely on the time-varying second-order
statistics of the sources. The algorithm, known as ‘KaBSS’, employs a
Gaussian linear model for the mixture, i.e. AR models for the sources,
linear mixing filters and a white Gaussian noise model. Using an EM al-
gorithm, which invokes the Kalman smoother in the E-step, all model pa-
rameters are estimated and the exact posterior probability of the sources
conditioned on the observations is obtained. The log-likelihood of the
parameters is computed exactly in the process, which allows for model
evidence comparison assisted by the BIC approximation. This is used to
determine the activity pattern of two speakers in a convolutive mixture
of speech signals.

1 Introduction

We are pursuing a research program in which we aim to understand the prop-
erties of mixtures of independent source signals within a generative statistical
framework. We consider convolutive mixtures, i.e.,

xt =
L−1∑

k=0

Akst−k + nt, (1)

where the elements of the source signal vector, st, i.e., the ds statistically in-
dependent source signals, are convolved with the corresponding elements of the
filter matrix, Ak. The multichannel sensor signal, xt, are furthermore degraded
by additive Gaussian white noise.

It is well-known that separation of the source signals based on second order
statistics is infeasible in general. Consider the second order statistic

〈xtx>t′ 〉 =
L−1∑

k,k′=0

Ak〈st−ks>t′−k′〉A>
k′ + R,

where R is the (diagonal) noise covariance matrix. If the sources are white noise
stationary, the source covariance matrix can be assumed proportional to the unit



matrix without loss of generality, and we see that the statistic is symmetric to a
common rotation of all mixing matrices Ak → AkU. This rotational invariance
means that the statistic is not informative enough to identify the mixing matrix,
hence, the source time series.

However, if we consider stationary sources with known, non-trivial, autocor-
relations 〈sts>t′ 〉 = C(t− t′), and we are given access to measurements involving
multiple values of C(t−t′), the rotational degrees of freedom are constrained and
we will be able to recover the mixing matrices up to a choice of sign and scale
of each source time series. Extending this argument by the observation that the
mixing model (1) is invariant to filtering of a given column of the convolutive
filter provided that the inverse filter is applied to corresponding source signal, we
see that it is infeasible to identify the mixing matrices if these arbitrary inverse
filters can be chosen to that they ‘whiten’ the sources.

For non-stationary sources, on the other hand, the autocorrelation functions
vary through time and it is not possible to choose a single common whitening filter
for each source. This means that the mixing matrices may be identifiable from
multiple estimates of the second order correlation statistic (2) for non-stationary
sources. Parra and Spence [1] provide analysis in terms of the number of free
parameters vs. the number of linear conditions.

Also in [1], the constraining effect of source non-stationarity was exploited by
simultaneously diagonalizing multiple estimates of the source power spectrum.
In [2] we formulated a generative probabilistic model of this process and proved
that it could estimate sources and mixing matrices in noisy mixtures. A state-
space model -a Kalman filter- was specialized and augmented by a stacking
procedure to model a noisy convolutive mixture of non-stationary colored noise
sources, and a forward-backward EM approach was used to estimate the source
statistics, mixing coefficients and the diagonal noise covariance matrix. The EM
algorithm furthermore provides an exact calculation of the likelihood as it is
possible to average over all possible source configurations. Other approaches
based on EM schemes for source inference are [3], [4] and [5]. In [6], a non-linear
state-space model is proposed.

In this presentation we elaborate on the generative model and its applica-
tions. In particular, we use the exact likelihood calculation to make inference
about the dimensionality of the model, i.e. the number of sources. Choosing the
incorrect model order can lead to either a too simple, biased model or a too
complex model. We use the so-called Bayes Information Criterion (BIC) [7] to
approximate the Bayes factor for competing hypotheses.

The model is stated in section 2, while the learning in the particular model
described in section 3. Model order selection using BIC is treated in section 4.
Experiments for speech mixtures are shown in section 5.

2 The model

As indicated above, the sources must be assumed non-stationary in order to
uniquely retrieve the parameters and sources, since the estimation is based on



second-order statistics. In line with [1], this is obtained by segmenting the signals
into frames, in which the wide-sense stationarity of the sources is assumed. A
separate source model is assumed for each segment. The channel filters and
observation noise covariance are assumed stationary across segments in the entire
observed signal.

The colored noise sources are modelled by AR(p) random processes. In seg-
ment n, source i is represented by:

sn
i,t = fn

i,1s
n
i,t−1 + fn

i,2s
n
i,t−2 + . . . + fn

i,ps
n
i,t−p + vn

i,t (2)

where n ∈ {1, 2, .., N} and i ∈ {1, 2, .., ds}. The innovation noise, vi,t, is white
Gaussian. In order to make use of well-established estimation theory, the above
recursion is fitted into the framework of Gaussian linear models, for which a
review is found in e.g. [8]. The Kalman filter model is an instance of this model
that particularly treats continuous Gaussian linear models used widely in e.g.
control and speech enhancement applications. The general Kalman filter with
no control inputs is defined:

st = Fst−1 + vt (3)
xt = Ast + nt

where vt and nt are white Gaussian noise signals that drive the processes.
In order to incorporate the colored noise sources, equation (2), into the

Kalman filter model, the well-known principle of stacking must be applied, see
e.g [9]. At any time, the stacked source vector, s̄n

t , contains the last p samples
of all ds sources:

s̄n
t =

[
(sn

1,t)
> (sn

2,t)
> . . . (sn

ds,t)
> ]>

The component vectors, sn
i,t, contain the p most recent samples of the individual

sources:

sn
i,t =

[
sn

i,t sn
i,t−1 . . . sn

i,t−p+1

]>

In order to maintain the statistical independency of the sources, a constrained
format must be imposed on the parameters:

F̄n =




F̄n
1 0 · · · 0

0 F̄n
2 · · · 0

...
...

. . .
...

0 0 · · · F̄n
ds


 , F̄n

i =




fn
i,1 fn

i,2 · · · fn
i,p−1 fn

i,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




Q̄n =




Q̄n
1 0 · · · 0

0 Q̄n
2 · · · 0

...
...

. . .
...

0 0 · · · Q̄n
ds


 , (Q̄n

i )jj′ =
{ qn

i j = j′ = 1
0 j 6= 1

∨
j′ 6= 1
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Fig. 1. The multiplication of F̄ on s̄t and the addition of innovation noise, vt, shown
for an example involving two AR(3) sources. The special contrained format of F̄ simul-
taneously ensures the storage of past samples.

The matrix A of (3) is left unconstrained but its dimensions must be expanded
to dx × (p× ds) to reflect the stacking of the sources. Conveniently, its elements
can be interpreted as the impulse responses of the channel filters of (1):

Ā =




a>11 a>12 .. a>1ds

a>21 a>22 .. a>2ds

a>dx1 a>dx2 .. a>dxds




where aij = [aij,1, aij,2, .., aij,L]> is the filter between source i and sensor j.
Having defined the stacked sources and the constrained parameter matrices, the
total model is:

s̄n
t = F̄ns̄n

t−1 + v̄n
t

xn
t = Ās̄n

t + nn
t

where v̄n
t ∼ (0, Q̄n) and nn

t ∼ (0, F̄n). Figures 1 and 2 illustrate the updating of
the stacked source vector, s̄t and the effect of multiplication by Ā, respectively.

3 Learning

Having described the convolutive mixing problem in the general framework
of linear Gaussian models, more specifically the Kalman filter model, opti-
mal inference of the sources is obtained by the Kalman smoother. However,
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Fig. 2. The effect of the matrix multiplication Ā on s̄t is shown in the system diagram.
The source signals are filtered (convolved) with the impulse responses of the channel
filters. Observation noise and the segment index, n, are omitted for brevity.

since the problem at hand is effectively blind, the parameters are estimated.
Along the lines of, e.g. [8], an EM algorithm will be used for this purpose, i.e.
L(θ) ≥ F(θ, p̂) ≡ J (θ, p̂) − R(p̂), where J (θ, p̂) ≡ ∫

dSp̂(S) log p(X,S|θ) and
R(p̂) ≡ ∫

dSp̂(S) log p̂(S) were introduced. In accordance with standard EM
theory, J (θ, p̂) is optimized wrt. θ in the M-step. The E-step infers the model
posterior, p̂ = p(S|X, θ). The combined E and M steps are guaranteed not to
decrease L(θ).

3.1 E-step

The forward-backward recursions which comprise the Kalman smoother is em-
ployed in the E-step to infer the source posterior, p(S|X, θ), i.e. the joint pos-
terior of the sources conditioned on all observations. The relevant second-order
statistics of this distribution in segment n is the posterior mean, ˆ̄sn

t ≡ 〈s̄n
t 〉,

and autocorrelation, Mn
i,t ≡ 〈sn

i,t(s
n
i,t)

>〉 ≡ [mn
i,1,t mn

i,2,t .. mn
i,L,t ]>, along with

the time-lagged covariance, M1,n
i,t ≡ 〈sn

i,t(s
n
i,t−1)

>〉 ≡ [m1,n
i,1,t m1,n

i,2,t .. m1,n
i,L,t ]>.

In particular, mn
i,t is the first element of mn

i,1,t. All averages are performed over
p(S|X, θ). The forward recursion also yields the likelihood L(θ).

3.2 M-step

The estimators are derived by straightforward optimization of J (θ, p̂) wrt. the
parameters. It is used that the data model, p(X,S|θ), factorizes. See, e.g., [8] for
background, or [2] for details. The estimators for source i in segment n are:

µn
i,new = ŝn

i,1

Σn
i,new = Mn

i,1 − µn
i,new(µn

i,new)>

(fn
i,new)> =

[ τ∑
t=2

(m1,n
i,t )>

][ τ∑
t=1

Mn
i,t−1

]−1

qn
i,new =

1
τ − 1

[ τ∑
t=2

mn
i,t − (fn

i,new)>m1,n
i,t

]



The stacked estimators, µ̄n
new, Σ̄n

new, F̄n
new and Q̄n

new are reconstructed from
the above as defined in section 2. The constraints on the parameters cause the
above estimators to differ from those of the general Kalman model, which is not
the case for Ānew and Rnew:

Ānew =
[ N∑

n=1

τ∑
t=1

xn
t (ˆ̄sn

t )>
][ N∑

n=1

τ∑
t=1

M̄n
t

]−1

Rnew =
1

Nτ

N∑
n=1

τ∑
t=1

diag[xn
t (xn

t )> − Ānewˆ̄sn
t (xn

t )>]

4 Estimating the number of sources using BIC

In the following is described a scheme for determining ds based on the likelihood
of the parameters. A similar approach was taken in previous work, see [10].
Model control in a strictly Bayesian sense amounts to selecting the most probable
hypothesis, based on the posterior probability of the model conditioned on the
data:

p(ds|X) =
p(X|ds)p(ds)∑

ds
p(X, ds)

(4)

In cases where all models, a priori, are to be considered equally likely, (4) reduces
to p(ds|X) ∝ p(X|ds). The Bayes factor, p(X|ds), is defined:

p(X|ds) =
∫

dθp(X|θ, ds)p(θ|ds) (5)

Bayes information criterion (BIC), see [7], is an approximation of (5) to be
applied in cases where the marginalization of θ is intractable:

p(X|ds) ≈ p(X|θML, ds)τ−
|θ|
2 (6)

The underlying assumptions are that (5) can be evaluated by Laplace integration,
i.e. log p(X|θ, ds) is well approximated by a quadratic function for large amounts
of data (τ →∞), and that the parameter prior p(θ|ds) can be assumed constant
under the integral.

5 Experiments

In order to demonstrate the applicability of the model control setup, a convolu-
tive mixture of speech signals was generated and added with observation noise.
The four models/hypotheses that we investigate in each time frame are that
only one of two speakers are active, 1 and 2, respectively, that both of them are
active, 1+2, or that none of them are active, 0.



Recordings of male speech1, which were also used in [11], were filtered through
the (2× 2 = 4) known channel filters:

Ā =
[

1.00 0.35 −0.20 0.00 0.00, 0.00 0.00 −0.50 −0.30 0.20
0.00 0.00 0.70 −0.20 0.15, 1.30 0.60 0.30 0.00 0.00

]

Observation noise was added to simulate SNR=15dB in the two sensor signals.
KaBSS was then invoked in order to separate the signals and estimate Ā and
R, as shown in [2]. The signals were segmented into frames of τ = 160 samples.
The obtained estimates of Ā and R were treated as known true parameters in
the following. In each segment and for each model-configuration, KaBSS was
separately reinvoked to estimate the source model parameters, F̄n, Q̄n, and
obtain the log-likelihood, L(θ), of the various models. The four resulting L(θ)’s
were then processed in the BIC model control scheme described in section 4.
The number of samples in (6) were set to τ although the sensor signals are not
i.i.d. This approximation is, however, acceptable due to the noisy character of
speech. Figure 3 displays the source signals, the mixtures and the most likely
hypothesis in each time frame. Convincingly, the MAP speech activity detector
selects the correct model.

6 Conclusion

An EM algorithm, ‘KaBSS’, which builds on probabilistic inference in a gen-
erative linear convolutive mixture model with Gaussian sources was introduced
in [2]. This contribution expands the model and its utility by showing that the
exact computation of the log-likelihood, which is readily available as an output
of the forward-backward recursion, can be exploited in a BIC-based model selec-
tion scheme. The result is an exploratory tool capable of determining the correct
number of sources in a convolutive mixture. In particular, it was shown that the
activity pattern of two speech sources in a convolutive mixture can be well esti-
mated. Potential applications include the ability to select the correct model in
speech enhancement and communication algorithms, hopefully resulting in more
robust estimation.
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Abstract

We discuss an identification framework for noisy speech mixtures. A
block-based generative model is formulated that explicitly incorporates
the time-varying harmonic plus noise (H+N) model for a number of latent
sources observed through noisy convolutive mixtures. All parameters
including the pitches of the source signals, the amplitudes and phases of
the sources, the mixing filters and the noise statistics are estimated by
maximum likelihood, using an EM-algorithm. Exact averaging over the
hidden sources is obtained using the Kalman smoother. We show that
pitch estimation and source separation can be performed simultaneously.
The pitch estimates are compared to laryngograph (EGG) measurements.
Artificial and real room mixtures are used to demonstrate the viability
of the approach. Intelligible speech signals are re-synthesized from the
estimated H+N models.

1 Introduction

Our aim is to understand the properties of mixtures of speech signals within a generative
statistical framework. We considerconvolutivemixtures, i.e.,

xt =
L−1∑

k=0

Akst−k + nt, (1)

where the elements of the source signal vector,st, i.e., theds statistically independent
source signals, are convolved with the corresponding elements of the filter matrix,Ak.
The multichannel sensor signal,xt, is furthermore degraded by additive Gaussian white
noise.

It is well-known that separation of the source signals based on second order statistics is
infeasible in general. Consider the second order statistic

〈xtx>t′ 〉 =
L−1∑

k,k′=0

Ak〈st−ks>t′−k′〉A>
k′ + R, (2)

whereR is the (diagonal) noise covariance matrix. If the sources can be assumed stationary
white noise, the source covariance matrix can be assumed proportional to the unit matrix



without loss of generality, and we see that the statistic is symmetric to a common rotation
of all mixing matricesAk → AkU. This rotational invariance means that the acquired
statistic is not informative enough to identify the mixing matrix, hence, the source time
series.

However, if we consider stationary sources withknown, non-trivial, autocorrelations
〈sts>t′ 〉 = G(t − t′), and we are given access to measurements involving multiple val-
ues ofG(t − t′), the rotational degrees of freedom are constrained and we will be able to
recover the mixing matrices up to a choice of sign and scale of each source time series.
Extending this argument by the observation that the mixing model (1) is invariant to filter-
ing of a given column of the convolutive filter provided that the inverse filter is applied to
corresponding source signal, we see that it is infeasible to identify the mixing matrices if
these arbitrary inverse filters can be chosen to that they are allowed to ‘whiten’ the sources,
see also [1].

For non-stationary sources, on the other hand, the autocorrelation functions vary through
time and it is not possible to choose a single common whitening filter for each source.This
means that the mixing matrices may be identifiable from multiple estimates of the second
order correlation statistic (2) for non-stationary sources. Analysis in terms of the number
of free parameters vs. the number of linear conditions is provided in [1] and [2].

Also in [2], the constraining effect of source non-stationarity was exploited by the simul-
taneous diagonalization of multiple estimates of the source power spectrum. In [3] we
formulated a generative probabilistic model of this process and proved that it could esti-
mate sources and mixing matrices in noisy mixtures. Blind source separation based on
state-space models has been studied, e.g., in [4] and [5]. The approach is especially useful
for including prior knowledge about the source signals and for handling noisy mixtures.
One example of considerable practical importance is the case of speech mixtures.

For speech mixtures the generative model based on white noise excitation may be improved
using more realistic priors. Speech models based onsinusoidalexcitation have been quite
popular in speech modelling since [6]. This approach assumes that the speech signal is
a time-varying mixture of a harmonic signal and a noise signal (H+N model). A recent
application of this model for pitch estimation can be found in [7]. Also [8] and [9] exploit
the harmonic structure of certain classes of signals for enhancement purposes. A related
application is the BSS algorithm of [10], which uses the cross-correlation of the amplitude
in different frequency. The state-space model naturally leads to maximum-likelihood esti-
mation using the EM-algorithm, e.g. [11], [12]. The EM algorithm has been used in related
models: [13] and [14].

In this work we generalize our previous work on state space models for blind source sepa-
ration to include harmonic excitation and demonstrate that it is possible to perform simul-
taneous un-mixing and pitch tracking.

2 The model

The assumption of time variant source statistics help identify parameters that would other-
wise not be unique within the model. In the following, the measured signals aresegmented
into frames, in which they are assumed stationary. The mixing filters and observation noise
covariance matrix are assumed stationary acrossall frames.

The colored noise (AR) process that was used in [3] to model the sources is augmented to
include a periodic excitation signal that is also time-varying. The specific choice of periodic
basis function, i.e. the sinusoid, is motivated by the fact that the phase is linearizable,



facilitating one-step optimization. In framen, sourcei is represented by:

sn
i,t =

p∑

t′=1

fn
i,t′s

n
i,t−t′ +

K∑

k=1

αn
i,k sin(ωn

0,ikt + βn
i ) + vn

i,t

=
p∑

t′=1

fn
i,t′s

n
i,t−t′ +

K∑

k=1

cn
i,2k−1 sin(ωn

0,ikt) + cn
i,2k cos(ωn

0,ikt) + vn
i,t (3)

wheren ∈ {1, 2, .., N} and i ∈ {1, 2, .., ds}. The innovation noise,vn
i,t, is i.i.d Gaus-

sian. Clearly, (3) represents a H+N model. The fundamental frequency,ωn
0,i, enters the

estimation problem in an inherent non-linear manner.

In order to benefit from well-established estimation theory, the above recursion is fit-
ted into the framework of Gaussian linear models, see [15]. The Kalman filter model
is an instance of this model. The augmented state space is constructed by includ-
ing a history of past samples for each source. Source vectori in frame n is defined:

sn
i,t =

[
sn

i,t sn
i,t−1 . . . sn

i,t−p+1

]>
. All sn

i,t’s are stacked in the total source vec-

tor: s̄n
t =

[
(sn

1,t)
> (sn

2,t)
> . . . (sn

ds,t)
> ]>

. The resulting state-space model is:

s̄n
t = Fns̄n

t−1 + Cnun
t + v̄n

t

xn
t = As̄n

t + nn
t

wherev̄t ∼ N (0,Q), nt ∼ N (0,R) ands̄n
1 ∼ N (µn,Σn). The combined harmonics in-

put vector is defined:un
t =

[
(un

1,t)
> (un

2,t)
> . . . (un

ds,t)
> ]>

, where the harmonics
corresponding to sourcei in framen are:

un
i,t =

[
sin(ωn

0,it) cos(ωn
0,it) . . . sin(Kωn

0,it) cos(Kωn
0,it)

]>

It is apparent that the matrix multiplication byA constitutes aconvolutivemixing of the
sources, where thedx × ds channel filters are:

A =




a>11 a>12 .. a>1ds

a>21 a>22 .. a>2ds

...
...

. ..
...

a>dx1 a>dx2 .. a>dxds




In order to implement the H+N source model, the parameter matrices are constrained as
follows:

Fn =




Fn
1 0 · · · 0

0 Fn
2 · · · 0

...
...

. . .
...

0 0 · · · Fn
ds


 , Fn

i =




fn
i,1 fn

i,2 · · · fn
i,p−1 fn

i,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




Qn =




Qn
1 0 · · · 0

0 Qn
2 · · · 0

...
...

. ..
...

0 0 · · · Qn
ds


 , (Qn

i )jj′ =
{

qn
i j = j′ = 1

0 j 6= 1
∨

j′ 6= 1

Cn =




Cn
1 0 · · · 0

0 Cn
2 · · · 0

...
...

.. .
...

0 0 · · · Cn
ds


 , Cn

i =




cn
i,1 cn

i,2 · · · cn
i,2K

0 0 · · · 0
0 0 · · · 0
...

...
. ..

...
0 0 · · · 0






3 Learning

Having described the convolutive mixing problem in the general framework of linear Gaus-
sian models, more specifically the Kalman filter model, optimal inference of the sources is
obtained by the Kalman smoother. However, since the problem at hand is effectivelyblind,
we also need to estimate the parameters. Along the lines of, e.g. [15], we will invoke an EM
approach. The log-likelihood is bounded from below:L(θ) ≥ F(θ, p̂) ≡ J (θ, p̂)−R(p̂),
with the definitionsJ (θ, p̂) ≡ ∫

dSp̂(S) log p(X,S|θ) andR(p̂) ≡ ∫
dSp̂(S) log p̂(S).

In accordance with standard EM theory,J (θ, p̂) is optimized wrt. θ in the M-step. The
E-step infers the relevant moments of the marginal posterior,p̂ = p(S|X, θ). For the Gaus-
sian model the means are also source MAP estimates. The combined E and M steps are
guaranteed not to decreaseL(θ).

3.1 E-step

The forward-backward recursions which comprise the Kalman smoother are employed in
the E-step to infer moments of the source posterior,p(S|X, θ), i.e. the joint posterior of
the sources conditioned on all observations. The relevant second-order statistic of this
distribution in segmentn is the marginal posterior mean,ˆ̄sn

t ≡ 〈s̄n
t 〉, and autocorrelation,

Mn
i,t ≡ 〈sn

i,t(s
n
i,t)

>〉 ≡ [ mn
i,1,t mn

i,2,t .. mn
i,L,t ]>, along with the marginal lag-one

covariance,M1,n
i,t ≡ 〈sn

i,t(s
n
i,t−1)

>〉 ≡ [ m1,n
i,1,t m1,n

i,2,t .. m1,n
i,L,t ]>. In particular,

mn
i,t is the first element ofmn

i,1,t. All averages are performed overp(S|X, θ). The forward
recursion also yields the log-likelihood,L(θ).

3.2 M-step

The M-step utility function,J (θ, p̂), is defined:

J (θ, p̂) = −1
2

N∑
n=1

[
ds∑

i=1

log detΣn
i + (τ − 1)

ds∑

i=1

log qn
i

+τ log detR +
ds∑

i=1

〈(sn
i,1 − µn

i )T (Σn
i )−1(sn

i,1 − µn
i )〉

+
τ∑

t=2

ds∑

i=1

〈 1
qn
i

(sn
i,t − (dn

i )T zn
i,t)

2〉+
τ∑

t=1

〈(xn
t −As̄n

t )T R−1(xn
t −As̄n

t )〉]

where〈·〉 signifies averaging over the source posterior from the previous E-step,p(S|X, θ)
andτ is the frame length. The linear source parameters are grouped as

dn
i ≡

[
(fn

i )> (cn
i )>

]>
, zn

i ≡
[

(sn
i,t−1)

> (un
i,t)

> ]>

where

fn
i ≡ [ fi,1 fi,2 .. fi,p ]> , cn

i ≡ [ ci,1 ci,2 .. ci,p ]>

Optimization ofJ (θ, p̂) wrt. θ is straightforward (except for theωn
0,i’s). Relatively minor

changes are introduced to the estimators of e.g. [12] in order to respect the special con-
strained format of the parameter matrices and to allow for an external input to the model.
More details on the estimators for the correlated source model are given in [3].

It is in general difficult to maximizeJ (θ, p̂) wrt. to ωn
i,0, since several local maxima exist,

e.g. at multiples ofωn
i,0, see e.g. [6]. This problem is addressed by narrowing the search

range based on prior knowledge of the domain, e.g. that the pitch of speech lies in the range



50-400Hz. A candidate estimate forωn
i,0 is obtained by computing the autocorrelation

function ofsn
i,t − (fn

i )>sn
i,t−1. Grid search is performed in the vicinity of the candidate.

For each point in the grid we optimizedn
i :

dn
i,new =

[
τ∑

t=2

[
(Mn

i,t−1) ŝn
i,t−1(u

n
i,t)

>

un
i,t(ŝ

n
i,t−1)

> un
i,t(u

n
i,t)

>

]]−1 τ∑
t=2

[
mn

i,t,t−1

ŝn
i,tu

n
i,t

]
(4)

At each step of the EM-algorithm, the parameters are normalized by enforcing||Ai|| = 1,
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Figure 1: Amplitude spectrograms of the frequency range 0-4000Hz, from left to right: the
true sources, the estimated sources and the re-synthesized source.

that is enforcing a unity norm on the filter coefficients related to sourcei.

4 Experiment I: BSS and pitch tracking in a noisy artificial mixture

The performance of a pitch detector can be evaluated using electro-laryngograph (EGG)
recordings, which are obtained from electrodes placed on the neck, see [7]. In the following
experiment, speech signals from the TIMIT [16] corpus is used for which the EGG signals
were measured, kindly provided by the ‘festvox’ project (http://festvox.org ).

Two male speech signals (Fs = 16kHz) were mixed through known mixing filters and
degraded by additive white noise (SNR∼20dB), constructing two observation signals. The
pitches of the speech signals were overlapping. The filter coefficients (of2 × 2 = 4 FIR
filter impulse responses) were:

A =
[

1.00 0.35 −0.20 0.00 0.00, 0.00 0.00 −0.50 −0.30 0.20
0.00 0.00 0.70 −0.20 0.15, 1.30 0.60 0.30 0.00 0.00

]

The signals were segmented into frames,τ = 320 ∼ 20ms, and the order of the AR-
process was set top = 1. The number of harmonics was limited toK = 40. The pitch
grid search involved30 re-estimations ofdn

i . In figure 1 is shown the spectrograms of
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Figure 2: The estimated (dashed) and EGG-provided (solid) pitches as a function of time.
The speech mixtures were artificially mixed from TIMIT utterances and white noise was
added.

approximately 1 second of 1) the original sources, 2) the MAP source estimates and 3) the
resynthesized sources (from the estimated model parameters). It is seen that the sources
were well separated. Also, the re-synthesizations are almost indistinguishable from the
source estimates. In figure 2, the estimated pitch of both speech signals are shown along
with the pitch of the EGG measurements.1 The voiced sections of the speech were manually
preselected, this step is easily automated. The estimated pitches do follow the ’true’ pitches
as provided by the EGG. The smoothness of the estimates is further indicating the viability
of the approach, as the pitch estimates are frame-local.

5 Experiment II: BSS and pitch tracking in a real mixture

The algorithm was further evaluated on real room recordings that were also used in [17].2

Two male speakers synchronously count in English and Spanish (Fs = 16kHz). The mix-
tures were degraded with noise (SNR∼20dB). The filter length, the frame length, the order
of the AR-process and the number of harmonics were set toL = 25, τ = 320, p = 1 and
K = 40, respectively. Figure 3 shows the MAP source estimates and the re-synthesized
sources. Features of speech such as amplitude modulation are clearly evident in estimates
and re-synthesizations.3 A listening test confirms: 1) the separation of the sources and
2) the good quality of the synthesized sources, reconfirming the applicability of the H+N
model. Figure 4 displays the estimated pitches of the sources, where the voiced sections
were manually preselected. Although, the ’true’ pitch is unavailable in this experiment, the
smoothness of the frame-local pitch-estimates is further support for the approach.

1The EGG data are themselves noisy measurements of the hypothesized ‘truth’. Bandpass filtering
was used for preprocessing.

2The mixtures were obtained fromhttp://inc2.ucsd.edu/˜tewon/ica_cnl.html .
3Note that the ’English’ counter lowers the pitch throughout the sentence.
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Figure 3: Spectrograms of the estimated (left) and re-synthesized sources (right) extracted
from the ’one two . . . ’ and ’uno dos . . . ’ mixtures, source 1 and 2, respectively

6 Conclusion

It was shown that prior knowledge on speech signals and quasi-periodic signals in general
can be integrated into a linear non-stationary state-space model. As a result, the simultane-
ous separation of the speech sources and estimation of their pitches could be achieved. It
was demonstrated that the method could cope with noisy artificially mixed signals and real
room mixtures. Future research concerns more realistic mixtures in terms of reverberation
time and inclusion of further domain knowledge. It should be noted that the approach is
computationally intensive, we are also investigating means for approximate inference and
parameter estimation that would allow real time implementation.
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Slow convergence is observed in the EM algorithm for linear state-space
models. We propose to circumvent the problem by applying any off-the-
shelf quasi-Newton-type optimizer, which operates on the gradient of
the log-likelihood function. Such an algorithm is a practical alternative
due to the fact that the exact gradient of the log-likelihood function can
be computed by recycling components of the expectation-maximization
(EM) algorithm. We demonstrate the efficiency of the proposed method in
three relevant instances of the linear state-space model. In high signal-to-
noise ratios, where EM is particularly prone to converge slowly, we show
that gradient-based learning results in a sizable reduction of computation
time.

1 Introduction

State-space models are widely applied in cases where the data are generated
by some underlying dynamics. Control engineering and speech enhance-
ment are typical examples of applications of state-space models, where the
state-space has a clear physical interpretation. Black box modeling consti-
tutes a different type of application: the state-space dynamics have no direct
physical interpretation, only the generalization ability of the model matters,
that is, the prediction error on unseen data.

A fairly general formulation of linear state-space models (without deter-
ministic input) is:

st = Fst−1 + vt (1.1)

xt = Ast + nt, (1.2)

where equations 1.1 and 1.2 describe the state and observation spaces, re-
spectively. State and observation vectors, st and xt , are random processes

Neural Computation 19, 1097–1111 (2007) C© 2007 Massachusetts Institute of Technology
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driven by independent and identically distributed (i.i.d.) zero-mean gaus-
sian inputs vt and nt with covariance Q and R, respectively.

Optimization in state-space models by maximizing the log likelihood,
L(θ ), with respect to the parameters, θ ≡ {Q, R, F, A}, falls in two main
categories based on either gradients (scoring) or expectation maximization
(EM).

The principal approach to maximum likelihood in state-space models,
and more generally in complex models, is to iteratively search the space
of θ for the local maximum of L(θ ) by taking steps in the direction of the
gradient, ∇θL(θ ). A basic ascend algorithm can be improved by supply-
ing curvature information, such as second-order derivatives or line search.
Often, numerical methods are used to compute the gradient and the Hes-
sian, due to the complexity associated with the computation of these quan-
tities. Gupta and Mehra (1974) and Sandell and Yared (1978) give fairly
complex recipes for the computation of the analytical gradient in the linear
state-space model.

The EM algorithm (Dempster, Laird, & Rubin, 1977), is an important
alternative to gradient-based maximum likelihood, partly due to its sim-
plicity and convergence guarantees. It was first applied to the optimization
of linear state-space models by Shumway and Stoffer (1982) and Digalakis,
Rohlicek, & Ostendorf (1993). A general class of linear gaussian (state-
space) models was treated in Roweis and Ghahramani (1999), in which the
EM algorithm was the main engine of estimation. In the context of inde-
pendent component analysis (ICA), the EM algorithm has been applied in,
among others, Moulines, Cardoso, and Cassiat (1997) and Højen-Sørensen,
Winther, and Hansen (2002). In Olsson and Hansen (2004, 2005), the EM
algorithm was applied to the convolutive ICA problem.

A number of authors have reported the slow convergence of the EM
algorithm. In Redner and Walker (1984), impractically slow convergence
in two-component gaussian mixture models is documented. This critique
is, however, moderated by Xu and Jordan (1996). Modifications have been
suggested to speed up the basic EM algorithm (see, e.g., Lachlan & Krishnan,
1997). Jamshidian and Jennrich (1997) employ the EM update, g̃n ≡ θn+1 −
θn, as a so-called generalized gradient in variations of the quasi-Newton
algorithm. The approach taken in Meilijson (1989) differs in that the gradient
of the log likelihood is derived from the expectation step (E-step), from a
theorem originally shown by Fisher. Subsequently, a Newton-type step can
be devised to replace the maximization step (M-step).

The main contribution of this letter is to demonstrate that specialized
gradient-based optimization software can replace the EM algorithm, at lit-
tle analytical cost, reusing the components of the EM algorithm itself. This
procedure is termed the easy gradient recipe. Furthermore, empirical evi-
dence, supporting the results in Bermond and Cardoso (1999), is presented
to demonstrate that the signal-to-noise ratio (SNR) has a dramatic effect on
the convergence speed of the EM algorithm. Under certain circumstances,
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such as in high SNR settings, the EM algorithm fails to converge in reason-
able time.

Three applications of state-space models are investigated: (1) sensor
fusion for the black box modeling of speech-to-face mapping problem,
(2) mean field independent component analysis (mean field ICA) for esti-
mating a number of hidden independent sources that have been linearly
and instantaneously mixed, and (3) convolutive independent component
analysis for convolutive mixtures.

In section 2, an introduction to EM and the easy gradient recipe is given.
More specifically, the relation between the various acceleration schemes is
reviewed in section 2.3. In section 3, the models are stated, and in section 4
simulation results are presented.

2 Theory

Assume a model with observed variables x, state-space variables s, and
parameters θ . The calculation of the log likelihood involves an integral over
the state-space variables:

L(θ ) = ln p(x|θ ) = ln
∫

p(x|s, θ )p(s|θ )ds. (2.1)

The marginalization in equation 2.1 is intractable for most choices of distri-
butions, hence, direct optimization is rarely an option, even in the gaussian
case. Therefore, a lower bound, B, is introduced on the log likelihood, which
is valid for any choice of probability density function, q (s|φ):

B(θ ,φ) =
∫

q (s|φ) ln
p(s, x|θ )
q (s|φ)

ds ≤ ln p(x|θ ). (2.2)

At this point, the problem seems to have been made more complicated, but
the lower bound B has a number of appealing properties, which makes the
original task of finding the parameters easier. One important fact about B
becomes clear when we rewrite it using Bayes’ theorem,

B(θ ,φ) = ln p(x|θ ) − K L[q (s|φ)||p(s|x, θ )], (2.3)

where K L denotes the Küllback-Leibler divergence between the two dis-
tributions. In the case that the variational distribution, q , is chosen to be
exactly the posterior of the hidden variables, p(s|x, θ ), the bound, B, is
equal to the log likelihood. For this reason, one often tries to choose the
variational distribution flexible enough to include the true posterior and
yet simple enough to make the necessary calculations as easy as possible.
However, when computational efficiency is the main priority, a simplistic
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q is chosen that does not necessarily include p(s|x, θ ), and the optimum of
B may differ from that of L. Examples of applications involving both types
of q are described in sections 3 and 4.

The approach is to maximize B with respect to φ in order to make the
lower bound as close as possible to the log likelihood and then maximize
the bound with respect to the parameters θ . This stepwise maximization
can be achieved via the EM algorithm or by applying the easy gradient
recipe (see section 2.2).

2.1 The EM Update. The EM algorithm, as formulated in Neal and
Hinton (1998), works in a straightforward scheme that is initiated with
random values and iterated until suitable convergence is reached:

E: Maximize B(θ,φ)w.r.t. φ keeping θ fixed.

M: Maximize B(θ,φ)w.r.t. θ keeping φ fixed.

It is guaranteed that the lower-bound function does not decrease on any
combined E- and M-step. Figure 1 illustrates the EM algorithm. The con-
vergence is often slow; for example, the curvature of the bound function,
B, might be much higher than that of L, resulting in very conservative
parameter updates. As mentioned in section 1, this is particularly a prob-
lem in latent variable models with low-power additive noise. Bermond and
Cardoso (1999) and Petersen and Winther (2005) demonstrate that the EM
update of the parameter A in equation 1.2 scales with the observation noise
level, R. That is, as the signal-to-noise ratio increases, the M-step change in
A decreases, and more iterations are required to converge.

2.2 The Easy Gradient Recipe. The key idea is to regard the bound,
B, as a function of θ only, as opposed to a function of both the parameters
θ and the variational parameters φ. As a result, the lower bound can be
applied to reformulate the log likelihood,

L(θ ) = B(θ ,φ∗), (2.4)

where φ∗ = φ∗(θ ) satisfies the constraint q (s|φ∗) = p(s|x, θ ). Comparing
with equation 2.3, it is easy to see that φ∗ maximizes the bound. Since φ∗ is
exactly minimizing the KL divergence, the partial derivative of the bound
with respect to φ evaluated in the point φ∗ is equal to zero. Therefore, the
derivative of B(θ ,φ∗) is equal to the partial derivative,

d B(θ,φ∗)
dθ

= ∂ B(θ ,φ∗)
∂θ

+ ∂ B(θ ,φ)
∂φ

∣∣∣
φ∗

∂φ

∂θ

∣∣∣
φ∗

= ∂ B(θ ,φ∗)
∂θ

, (2.5)
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Figure 1: Schematic illustration of lower-bound optimization for a one-
dimensional estimation problem, where θn and θn+1 are iterates of the standard
EM algorithm. The log-likelihood function, L(θ ), is bounded from below by the
function B(θ , φ∗). The bound attains equality to L in θn due to the choice of
variational distribution: q (s|φ∗) = p(s|x, θn). Furthermore, in θn, the derivatives
of the bound and the log likelihood are identical. In many situations, the cur-
vature of B(θ , φ∗) is much higher than that of L(θ ), leading to small changes in
the parameter, θn+1 − θn.

and due to the choice of φ∗, the derivative of the log likelihood is the partial
derivative of the bound

dL(θ )
dθ

= d B(θ,φ∗)
dθ

= ∂ B(θ ,φ∗)
∂θ

,

which can be realized by combining equations 2.4 and 2.5.
In this way, exact values and gradients of the true log likelihood can be

obtained using the lower bound. This observation is not new; it is essentially
the same as that used in Salakhutdinov, Roweis, and Ghahramani (2003) to
construct the so-called expected conjugated gradient algorithm (ECG). The
novelty of the recipe is, rather, the practical recycling of low-complexity
computations carried out in connection with the EM algorithm for a much
more efficient optimization using any gradient-based optimizer. This can
be expressed in Matlab-style pseudocode where a function loglikelihood

receives as argument the parameter θ and returns L and its gradient dL
dθ

:
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function [L, dL
dθ

] = loglikelihood(θ )

1. Find φ∗ such that ∂ B
∂φ

∣∣
φ∗ = 0

2. Calculate L = B(θ ,φ∗)

3. Calculate dL
dθ

= ∂ B
∂θ

(θ ,φ∗)

Step 1, and to some extent step 2, are obtained by performing an E-step,
while step 3 requires only little programming, which implements the gra-
dients used to solve for the M-step. Compared to the EM algorithm, the
main advantage is that the function value and gradient can be fed to any
gradient-based optimizer, which in most cases substantially improves the
convergence properties. In that sense, it is possible to benefit from the
speed-ups of advanced gradient-based optimization. In cases when q does
not contain p(s|x, θ ), the easy gradient recipe will converge to generalized
EM solutions.

The advantage of formulating the log likelihood using the bound func-
tion, B, depends on the task at hand. In the linear state-space model, equa-
tions 1.1 and 1.2, a naive computation of dL

dθ
involves the somewhat compli-

cated derivatives of the Kalman filter equations with respect to each of the
parameters in θ ; this is explained in, for example, Gupta and Mehra (1974).
Consequently, it leads to a cost of dim[θ ] times the cost of one Kalman
filter filter sweep.1 When using the easy gradient recipe, dL

dθ
is derived via

the gradient of the bound, ∂ B
∂θ

(see the appendix for a derivation example).
These derivatives are often available in connection with the derivation of
the M-step. In addition, the computational cost is dominated by steps 1 and
2, which require only a Kalman smoothing, scaling as two Kalman filter fil-
ter sweeps, hence constituting an important reduction of computation time
as compared to the naive gradient computation. Sandell and Yared (1978)
noted in in their investigation of linear state-space models that a reformu-
lation of the problem resulted in a similar reduction of the computational
costs.

2.3 Relation to Other Speed-Up Methods. In this section, a series
of extensions to the EM algorithm is discussed. They have in common
the utilization of conjugate gradient or quasi-Newton steps, that is, the
inverse Hessian is approximated, for example, using the gradient. Step-
lengthening methods, which are often simpler in terms of analytical cost,
have been explored in Salakhutdinov and Roweis (2003) and Honkela,
Valpola, and Karhunen (2003). They are, however, out of the scope of this
presentation.

1 The computational complexity of the Kalman filter isO[N(ds )3], where N is the data
length.
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Table 1: Analytical Costs Associated with a Selection of EM Speed-Ups Based
on Newton-Like Updates.

Method M B ′ B ′′ L

EM (Dempster et al., 1977) x - - -
QN1 (Jamshidian & Jennrich, 1997) x - - -
QN2 (Jamshidian & Jennrich, 1997) x x - x
CG (Jamshidian & Jennrich, 1993) x x - x
LANGE (Lange, 1995) - x x x
EGR x x - x

Notes: The x’s indicate whether the quantity is required by the
algorithm. It should be noted that B ′, required by the easy gra-
dient recipe (EGR) as well as QN2, CG, and LANGE, often is a
by-product of the derivation of M.

In order to conveniently describe the methods, additional notation along
the lines of Jamshidian and Jennrich (1997) is introduced: the combined
EM operator, which maps the current estimate of the parameters, θ , to
the new one, is denoted θ̂ = M(θ ). The change in θ due to an EM update
then is g̃(θ ) = M(θ) − θ . In a sense, g̃(θ ) can be regarded a generalized
gradient of an underlying cost function, which has zeros identical to those
of g(θ ) = dL(θ)

dθ
. The Newton-Raphson update can then be devised as

�θ = −J(θ )−1g̃(θ ),

where the Jacobian is defined J(θ ) = M′(θ ) − I. A number of methods ap-
proximate J(θ )−1 or M′(θ ) in various ways. For instance, the quasi-Newton
method QN1 of Jamshidian and Jennrich (1997) approximates J−1(θ ) by em-
ploying the Broyden (1965) update. The QN2 algorithm of the same publica-
tion performs quasi-Newton optimization on L(θ ), but its update direction
can be written as an additive correction to the EM step: d = g̃(θ ) − �g(θ).
The correction term is updated through � by means of the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update (see, e.g., Bishop, 1995). A search
is performed in the direction of d so as to maximize L(θ + λd), where λ is
the step length. QN2 has the disadvantage compared to QN1 that L(θ ) and
g(θ ) have to be computed in addition to g̃(θ ). This is also the case of the
conjugate gradient (CG) accelerator of Jamshidian and Jennrich (1993).

Similarly in Lange (1995), the log likelihood, L(θ ), is optimized directly
through quasi-Newton steps, that is, in the direction of d = −J−1

L (θ )g(θ ).
However, the iterative adaptation to the Hessian, JL(θ ), involves the com-
putation of B ′′(θ ,φ∗), which may require considerable human effort in many
applications. In Table 1, the analytical cost associated with the discussed
algorithms are summarized.
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The easy gradient recipe lends from QN2 in that quasi-Newton opti-
mization on L(θ ) is carried out. The key point here is that the specific
quasi-Newton update of QN2 can be replaced by any software package of
choice that performs gradient-based optimization. This has the advantage
that various highly sophisticated algorithms can be tried for the particular
problem at hand. Furthermore, we emphasize, as does Meilijson (1989),
that the gradient can be computed from the derivatives involved in solving
for the E-step. This means that the advantages of gradient-based optimiza-
tion are obtained conveniently at little cost. In this letter, a quasi-Newton
gradient-based optimizer has been chosen. The implementation of the BFGS
algorithm is due to Nielsen (2000) and has built-in line search and trust re-
gion monitoring.

3 Models

The EM algorithm and the easy gradient recipe were applied to three models
that can all be fitted into the linear state-space framework.

3.1 Kalman Filter-Based Sensor Fusion. The state-space model of equa-
tions 1.1 and 1.2 can be used to describe systems where two different types
of signals are measured. The signals could be, for example, sound and im-
ages in as (Lehn-Schiøler, Hansen, & Larsen, 2005), where speech and lip
movements were the observables. In this case, the observation equation 1.2,
can be split into two parts,

xt =
(

x1
t

x2
t

)
=

(
A1

A2

)
st +

(
n1

t

n2
t

)
,

where n1
t ∼ N(0, R1) and n2

t ∼ N(0, R2). The innovation noise in the state-
space equation 1.1, is defined as vt ∼ N(0, Q). In the training phase, the
parameters of the system, F, A1, A2, R1,R2,Q, are estimated by maximum
likelihood using either EM or a gradient-based method. When the param-
eters have been learned, the state-space variable s, which represents un-
known hidden causes, can be deduced from one of the observations (x1 or
x2), and the missing observation can be estimated by mapping from the
state-space.

3.2 Mean Field ICA. In independent component analysis (ICA), one
tries to separate linearly mixed sources using the assumed statistical inde-
pendence of the sources. In many cases, elaborate source priors are neces-
sary, which calls for more advanced separation techniques such as mean
field ICA. The method, which was introduced in Højen-Sørensen et al.
(2002), can handle complicated source priors in an efficient approximative
manner.
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The model in equation 1.2 is identical to an instantaneous ICA model
provided that F = 0 and that p(vt) is reinterpreted as the (nongaussian)
source prior. The basic generative model of the instantaneous ICA is

xt = Ast + nt, (3.1)

where nt is assumed i.i.d. gaussian and st = vt is assumed distributed by a
factorized prior

∏
i p(vi t), which is independent in both time and dimension.

The mean field ICA is only approximately compatible with the easy gradient
recipe, since the variational distribution q (s|φ) is not guaranteed to contain
the posterior p(s|x, θ ). However, acceptable solutions (generalized EM) are
retrieved when q is chosen sufficiently flexible.

3.3 Convolutive ICA. Acoustic mixture scenarios are characterized by
sound waves emitted by a number of sound sources propagating through
the air and arriving at the sensors in delayed and attenuated versions.
The instantaneous mixture model of standard ICA, equation 3.1, is clearly
insufficient to describe this situation. In convolutive ICA, the signal path
(delay and attenuation) is modeled by an FIR filter, that is, a convolution of
the source by the impulse responses of the signal path,

xt =
∑

k

Ckst−k + nt, (3.2)

where Ck is the mixing filter matrix. Equation 3.2 and the source inde-
pendence assumption can be fitted into the state-space formulation of
equations 1.1 and 1.2 (see Olsson & Hansen, 2004, 2005), by making the
following model choices: (1) noise inputs vt and nt are i.i.d. gaussian;
(2) the state vector is augmented to contain time-lagged values, that is,

s̄t ≡ [s1,ts1,t−1 . . . s2,ts2,t−1 . . . sds ,ts1,t−1 . . .]�;

and (3) state-space parameter matrices (e.g., F) are constrained to a special
format (certain elements are fixed to 0’s and 1’s) in order to ensure the
independence of the sources mentioned above.

4 Results

The simulations that are documented in this section serve to illustrate the
well-known advantage of advanced gradient-based learning over standard
EM. Before advancing to the more involved applications described above,
the advantage of gradient-based methods over EM will be explored for a
one-dimensional linear state-space model: an ARMA(1,1) process. In this
case, F and A are scalars as well as the observation variance R and the
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Figure 2: Convergence of EM (dashed) and a gradient-based method (solid) in
the ARMA(1,1) model. (a) EM has faster initial convergence than the gradient-
based method, but the final part is slow for EM. (b) Zoom-in on the log-
likelihood axis. Even after 50 iterations, EM has not reached the same level
as the gradient-based method. (c) Parameter estimates convergence in terms of
squared relative (to the generative parameters) error.

transition variance Q. Q is fixed to unity to resolve the inherent scale ambi-
guity of the model. As a consequence, the model has only three parameters.
The BFGS optimizer mentioned in section 2 was used.

Figure 2 shows the convergence of both the EM algorithm and the
gradient-based method. Initially, EM is fast; it rapidly approaches the max-
imum log likelihood, but slows down as it gets closer to the optimum. The
large dynamic range of the log likelihood makes it difficult to ascertain the
final increase in the log likelihood; hence, Figure 2b provides a close-up of
the log-likelihood scale. Table 2 gives an indication of the importance of the
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Table 2: Estimation in the ARMA(1,1) Model.

Generative Gradient EM 50 EM ∞
Iterations - 43 50 1800
Log likelihood - −24.3882 −24.5131 −24.3883
F 0.5000 0.4834 0.5626 0.4859
A 0.3000 0.2953 0.2545 0.2940
R 0.0100 0.0097 0.0282 0.0103

Notes: The convergence of EM is slow compared to the gradient-based
method. Note that after 50 EM iterations, the log likelihood is relatively
close to the value achieved at convergence, but the parameter values
are far from the generative values.

final increase. After 50 iterations, EM has reached a log-likelihood value
of −24.5131, but the parameter values are still far off. After convergence,
the log likelihood has increased to −24.3883, which is still slightly worse
than that obtained by the gradient-based method, but the parameters are
now near the generative values. The BFGS algorithm used 43 iterations
and 52 function evaluations. For large-scale state-space models, the com-
putation time is all but dominated by the E-step computation. Hence, a
function evaluation costs approximately one E-step. Similar results are ob-
tained when comparing the learning algorithms on the Kalman filter-based
sensor fusion, mean field ICA, and convolutive ICA problems.

As argued in section 2, it is demonstrated that the number of iterations
required by the EM algorithm to converge in state-space type models crit-
ically depends on the SNR. Figure 3 shows the performance of the two
methods on the three problems. The relevant comparison measure is com-
putation time, which in the examples are all but dominated by the E-step for
EM and function evaluations (whose cost is also dominated by an E-step)
for the gradient-based optimizer. The line search of the latter may require
more function evaluations per iteration, but that was most often not the case
for the BFGS algorithm of choice. The plots indicate that in the low-noise
case, the EM algorithm requires relatively more time to converge, whereas
the gradient-based method performs equally well for all noise levels.

5 Conclusion

In applying the EM algorithm to maximum likelihood estimation in state-
space models, we find, as have many before us, that it has poor convergence
properties in the low noise limit. Often a value “close” to the maximum
likelihood is reached in the first few iterations, while the final increase,
which is crucial to the accurate estimation of the parameters, requires an
excessive number of iterations.

More important, we provide a simple scheme for efficient gradient-based
optimization achieved by transformation from the EM formulation; the
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Figure 3: Number of function evaluations for EM (dashed) and gradient-based
optimization (solid) to reach convergence as a function of signal-to-noise ratio
for the three problems. (a) Kalman filter-based sensor fusion. (b) Mean field
ICA. (c) Convolutive ICA. The level of convergence was defined as a relative
change in log likehood below 10−5, at which point the parameters no longer
changed significantly. In the case of the EM algorithm, this sometimes occurred
in plateau regions of the parameter space.

simple math and programming of the EM algorithms is preserved. Follow-
ing this recipe, one can get the optimization benefits associated with any
advanced gradient based-method. In this way, the tedious, problem-specific
analysis of the cost-function topology can be replaced with an off-the-shelf
approach. Although the analysis provided in this letter is limited to a set
of linear mixture models, it is in fact applicable to any model subject to the
EM algorithm, hence constituting a strong and general tool to be applied
by the part of the neural community that uses the EM algorithm.
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Appendix: Gradient Derivation

Here we demonstrate how to obtain a partial derivative of the constrained
bound function, B(θ ,φ∗). The derivation lends from Shumway and Stoffer
(1982). At q (s|φ∗) = p(s|x, θ ), we can reformulate equation 2.2 as

B(θ ,φ∗) =
〈
ln

p(s, x|θ )
q (s|φ∗)

〉

= 〈
ln p(s, x|θ )

〉 − 〈
ln q (s|φ∗)

〉
,

where the expectation 〈·〉 is over the posterior q (s|φ∗) = p(s|x, θ ). Only the
first term, J (θ ) = 〈

ln p(s, x|θ )
〉
, depends on θ . The joint variable distribution

factors due to the Markov property of the state-space model,

p(s, x|θ ) = p(s1|θ )
N∏

k=2

p(sk |sk−1, θ )
N∏

k=1

p(xk |sk, θ ),

where N is the length of the time series and the initial state, s1 is normally
distributed with mean µ1 and covariance �1. Using the fact that all variables
are gaussian, the expected log distributions can be written out as:

J (θ ) = −1
2

{
dim(s) ln 2π + ln |�1|

+ 〈
(s1 − µ1)��−1

1 (s1 − µ0)
〉

+(N − 1) [dim(s) ln 2π + ln |Q|]

+
N∑

k=2

〈
(sk − Fsk−1)�Q−1(sk − Fsk−1)

〉
)

+N [dim(x) ln 2π + ln |R|]

+
N∑

k=1

〈
(xk − Ask)�R−1(xk − Ask)

〉 }
.

The gradient with respect to A is:

∂ J (θ)
∂A

=−1
2

N∑
k=1

(
2R−1A

〈
sks�

k

〉 − 2R−1xk
〈
s�

k

〉)

=−R−1A
N∑

k=1

〈
sks�

k

〉 + R−1
N∑

k=1

xk
〈
s�

k

〉
).
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It is seen that the gradient depends on the marginal posterior source mo-
ments

〈
sks�

k

〉
and

〈
s�

k

〉
, which are provided by the Kalman smoother. The

gradients with respect to F and Q furthermore require the marginal mo-
ment

〈
sks�

k−1

〉
.

The derivation of the gradients for the covariances R and Q, must respect
the symmetry of these matrices. Furthermore, steps must be taken to ensure
the positive definiteness following a gradient step. This can be achieved,
for example, by adapting Q0 instead of Q where Q = Q0Q�

0 .
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Abstract
We apply a type of generative modelling to the problem of blind source separation in which
prior knowledge about the latent source signals, such as time-varying auto-correlation and quasi-
periodicity, are incorporated into a linear state-space model. In simulations, we show that in terms
of signal-to-error ratio, the sources are inferred more accurately as a result of the inclusion of
strong prior knowledge. We explore different schemes of maximum-likelihood optimization for
the purpose of learning the model parameters. The Expectation Maximization algorithm, which
is often considered the standard optimization method in this context, results in slow convergence
when the noise variance is small. In such scenarios, quasi-Newton optimization yields substantial
improvements in a range of signal to noise ratios. We analyze the performance of the methods on
convolutive mixtures of speech signals.
Keywords: blind source separation, state-space model, independent component analysis, convo-
lutive model, EM, speech modelling

1. Introduction

We are interested in blind source separation (BSS) in which unknown source signals are estimated
from noisy mixtures. Real world application of BSS techniques are found in as diverse fields as
audio (Yellin and Weinstein, 1996; Parra and Spence, 2000; Anemüller and Kollmeier, 2000), brain
imaging and analysis (McKeown et al., 2003), and astrophysics (Cardoso et al., 2002). While most
prior work is focused on mixtures that can be characterized as instantaneous, we will here inves-
tigate causal convolutive mixtures. The mathematical definitions of these classes of mixtures are
given later in this introductory section. Convolutive BSS is relevant in many signal processing ap-
plications, where the instantaneous mixture model cannot possibly capture the latent causes of the
observations due to different time delays between the sources and sensors. The main problem is
the lack of general models and estimation schemes; most current work is highly application specific
with the majority focused on applications in separation of speech signals. In this work we will
also be concerned with speech signals, however, we will formulate a generative model that may be
generalizable to several other application domains.

One of the most successful approaches to convolutive BSS is based on the following assump-
tions: 1) The mixing process is linear and causal, 2) the source signals are statistically independent,
3) the sources can be fully characterized by their time variant second order statistics (Weinstein
et al., 1993; Parra and Spence, 2000). The last assumption is defining for this approach. Keeping
to second order statistics we simplify computations but have to pay the price of working with time-

c©2006 Rasmus Kongsgaard Olsson and Lars Kai Hansen.
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variant statistics. It is well-known that stationary second order statistics, that is, covariances and
correlation functions, are not informative enough in the convolutive mixing case.

Our research concerns statistical analysis and generalizations of this approach. We formulate
a generative model based on the same statistics as the Parra-Spence model. The benefit of this
generative approach is that it allows for estimation of additional noise parameters and injection of
well-defined a priori information in a Bayesian sense (Olsson and Hansen, 2005). Furthermore, we
propose several algorithms to learn the parameters of the proposed models.

The linear mixing model reads

xt =
L−1

∑
k=0

Akst−k +wt . (1)

At discrete time t, the observation vector, xt , results from the convolution sum of the L time-lagged
mixing matrices Ak and the source vector st . The individual sources, that is, the elements of st , are
assumed to be statistically independent. The observations are corrupted by additive i.i.d. Gaussian
noise, wt . BSS is concerned with estimating st from xt , while Ak is unknown. It is apparent from
(1) that only filtered versions of the elements of st can be retrieved, since the inverse filtering can be
applied to the unknown Ak. As a special case of the filtering ambiguity, the scale and the ordering
of the sources is unidentifiable. The latter is evident from the fact that various permutation applied
simultaneously to the elements of st and the columns of At produce identical mixtures, xt .

Equation (1) collapses to an instantaneous mixture in the case of L = 1 for which a variety
of Independent Component Analysis (ICA) methods are available (e.g., Comon, 1994; Bell and
Sejnowski, 1995; Hyvarinen et al., 2001). As already mentioned, however, we will treat the class of
convolutive mixtures, that is L > 1.

Convolutive Independent Component Analysis (C-ICA) is a class of BSS methods for (1) where
the source estimates are produced by computing the ‘unmixing’ transformation that restores statis-
tical independence. Often, an inverse linear filter (e.g., FIR) is applied to the observed mixtures.
Simplistically, the separation filter is estimated by minimizing the mutual information, or ‘cross’
moments, of the ‘separated’ signals. In many cases non-Gaussian models/higher-order statistics are
required, which require a relatively long data series for reliable estimation. This can be executed in
the time domain (Lee et al., 1997; Dyrholm and Hansen, 2004), or in the frequency domain (e.g.,
Parra and Spence, 2000). The transformation to the Fourier domain reduces the matrix convolu-
tion of (1) to a matrix product. In effect, the more difficult convolutive problem is decomposed
into a number of manageable instantaneous ICA problems that can be solved independently using
the mentioned methods. However, frequency domain decomposition suffers from permutation over
frequency which is a consequence of the potential different orderings of sources at different fre-
quencies. Many authors have explored solutions to the permutation-over-frequency problem that
are based on measures of spectral structure (e.g., Anemüller and Kollmeier, 2000), where amplitude
correlation across frequency bands is assumed and incorporated in the algorithm.

The work presented here forges research lines that treat instantaneous ICA as a density estima-
tion problem (Pearlmutter and Parra, 1997; Højen-Sørensen et al., 2002), with richer source priors
that incorporate time-correlation, non-stationarity, periodicity and the convolutive mixture model to
arrive at an C-ICA algorithm. The presented algorithm, which operates entirely in the time-domain,
relies on a linear state-space model, for which estimation and exact source inference are available.
The states directly represent the sources, and the transition structure can be interpreted as describ-
ing the internal time-correlation of the sources. To further increase the audio realism of the model,
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Olsson and Hansen (2005) added a harmonic excitation component in the source speech model
(Brandstein, 1998); this idea is further elaborated and tested here.

Algorithms for the optimization of the likelihood of the linear state-space model are devised and
compared, among them the basic EM algorithm, which is used extensively in latent variable models
(Moulines et al., 1997). In line with Bermond and Cardoso (1999), the EM-algorithm is shown to
exhibit slow convergence in good signal to noise ratios.

It is interesting that the two ‘unconventional’ aspects of our generative model: the non-stationarity
of the source signals and their harmonic excitation, do not change the basic quality of the state-space
model, namely that exact inference of the sources and exact calculation of the log-likelihood and its
gradient are still possible.

The paper is organized as follows: First we introduce the state-space representation of the con-
volutive mixing problem and the source models in Section 2, in Section 3 we briefly recapitulate the
steps towards exact inference for the source signals, while Section 4 is devoted to a discussion of
parameter learning. Sections 5 and 6 present a number of experimental illustrations of the approach
on simulated and speech data respectively.

2. Model

The convolutive blind source separation problem is cast as a density estimation task in a latent
variable model as was suggested in Pearlmutter and Parra (1997) for the instantaneous ICA problem

p(X|θ) =
Z

p(X|S,θ1)p(S|θ2)dS.

Here, the matrices X and S are constructed as the column sets of xt and st for all t. The functional
forms of the conditional likelihood, p(X|S,θ1), and the joint source prior, p(S|θ2), should ideally
be selected to fit the realities of the separation task at hand. The distributions depend on a set of
tunable parameters, θ ≡ {θ1,θ2}, which in a blind separation setup is to be learned from the data. In
the present work, p(X|S,θ1) and p(S|θ2) have been restricted to fit into a class of linear state-space
models, for which effective estimation schemes exist (Roweis and Ghahramani, 1999)

st = Fnst−1 +Cnut +vt , (2)

xt = Ast +wt . (3)

Equations (2) and (3) describe the state/source and observation spaces, respectively. The parameters
of the former are time-varying, indexed by the block index n, while the latter noisy mixing process
is stationary. The randomness of the model is enabled by i.i.d. zero mean Gaussian variables,
vt ∼ N (0,Qn), and wt ∼ N (0,R) The ‘input’ or ‘control’ signal ut ≡ ut(ψn) deterministically
shifts the mean of st depending on parameters ψn. Various structures can be imposed on the model
parameters, θ1 = {A,R} and θ2 = {Fn,Cn,Qn,ψn}, in order to create the desired effects. For
equations (2) and (3) to pose as a generative model for the instantaneous mixture of first-order
autoregressive, AR(1), sources it need only be assumed that Fn and Qn are diagonal matrices and
that Cn = 0. In this case, A functions as the mixing matrix. In Section 2.1, we generalize to AR(p)
and convolutive mixing.
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Figure 1: The dynamics of the linear state space model when it has been constrained to describe
a noisy convolutive mixture of P = 2 autoregressive (AR) sources. This is achieved by
augmenting the source vector to contain time-lagged signals. In a is shown the corre-
sponding source update, when the order of the AR process is p = 4. In b, the sources are
mixed through filters (L = 4) into Q = 2 noisy mixtures. Blanks signify zeros.

2.1 Auto-Regressive Source Prior

The AR(p) source prior for source i in frame n is defined as follows,

si,t =
p

∑
k=1

f n
i,ksi,t−k + vi,t

where t ∈ {1,2, ..,T}, n ∈ {1,2, ..,N} and i ∈ {1,2, ..,P}. The excitation noise is i.i.d. zero mean
Gaussian: vi,t ∼ N (0,qn

i ). It is an important point that the convolutive mixture of AR(p) sources
can be contained in the linear state-space model (2) and (3), this is illustrated in Figure 1. The
enabling trick, which is standard in time series analysis, is to augment the source vector to include
a time history so that it contains L time-lagged samples of all P sources

st =
[

(s1,t)
> (s2,t)

> . . . (sP,t)
>

]>

where the i’th source is represented as

si,t =
[

si,t si,t−1 . . . si,t−L+1
]>

.
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Furthermore, constraints are enforced on the matrices of θ

Fn =











Fn
1 0 · · · 0

0 Fn
2 · · · 0

...
...

. . .
...

0 0 · · · Fn
P











,

Fn
i =















f n
i,1 f n

i,2 · · · f n
i,p−1 f n

i,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















,

Qn =











Qn
1 0 · · · 0

0 Qn
2 · · · 0

...
...

. . .
...

0 0 · · · Qn
P











,

(Qn
i ) j j′ =

{

(q2
i )

n j = j′ = 1
0 j 6= 1

W

j′ 6= 1
,

Cn = 0,

where Fn
i was defined for p = L. In the interest of the simplicity of the presentation, it is assumed

that Fn
i has L row and columns. We furthermore assume that p ≤ L; in the case of p < L, zeros

replace the affected (rightmost) coefficients. Hence, the dimensionality of A is Q× (p×P),

A =











a>11 a>12 .. a>1P
a>21 a>22 .. a>2P
...

...
. . .

...
a>Q1 a>Q2 .. a>QP











where ai j = [ai j,1,ai j,2, ..,ai j,L]
> can be interpreted as the impulse response of the channel filter

between source i and sensor j. Overall, the model can described can be described as the generative,
time-domain equivalent of Parra and Spence (2000).

2.2 Harmonic Source Prior

Many classes of audio signals, such as voiced speech and musical instruments, are approximately
piece-wise periodic. By the Fourier theorem, such sequences can be represented well by a harmonic
series. In order to account for colored noise residuals and noisy signals in general, a harmonic and
noise (HN) model is suggested (McAulay and Quateri, 1986). The below formulation is used

si,t =
p

∑
t ′=1

f n
i,t ′si,t−t ′ +

K

∑
k=1

[

cn
i,2k−1 sin(ωn

0,it)+ cn
i,2k cos(ωn

0,it)
]

+ vi,t

where ωn
0,i’ is the fundamental frequency of source i in frame n and the Fourier coefficients are

contained in cn
i,2k−1 and cn

i,2k. The harmonic model is represented in the state space model (2) & (3)
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through the definitions

Cn =















(cn
1)
> 0 · · · 0

0 0 · · · 0
0 (cn

2)
> · · · 0

...
...

. . .
...

0 0 · · · (cn
P)>















,

cn
i =

[

cn
i,1 cn

i,2 · · · cn
i,2K

]>
,

un
t =

[

(un
1,t)

> (un
2,t)

> . . . (un
P,t)

>
]>

,

where the k’th harmonics of source i in frame n are defined as (un
i,t)2k−1 = sin(kωn

0,it) and (un
i,t)2k =

cos(kωn
0,it), implying the following parameter set for the source mean: ψn =

[

ωn
0,1 ωn

0,2 . . . ωn
0,P

]

.

Other parametric mean functions could, of course, be used, for example, a more advanced speech
model.

3. Source Inference

In a maximum a posteriori sense, the sources, st , can be optimally reconstructed using the Kalman
filter/smoother (Kalman and Bucy, 1960; Rauch et al., 1965). This is based on the assumption
that the parameters θ are known, either a priori or have been estimated as described in Section 4.
While the filter computes the time-marginal moments of the source posterior conditioned on past
and present samples, that is, 〈st〉p(S|x1:t ,θ) and

〈

sts>t
〉

p(S|x1:t ,θ)
, the smoother conditions on samples

from the entire block: 〈st〉p(S|x1:T ,θ) and
〈

sts>t
〉

p(S|x1:T ,θ)
. For the Kalman filter/smoother to compute

MAP estimates, it is a precondition due that the model is linear and Gaussian. The computational
complexity is O(T L3) due to a matrix inversion occurring in the recursive update. Note that the
forward recursion also yields the exact log-likelihood of the parameters given the observations,
L(θ). A thorough review of linear state-space modelling, estimation and inference from a machine
learning point of view can be found in Roweis and Ghahramani (1999).

4. Learning

The task of learning the parameters of the state-space model from data is approached by maximum-
likelihood estimation, that is, the log-likelihood function, L(θ), is optimized with respect to the
parameters, θ. The log-likelihood is defined as a marginalization over the hidden sources

L(θ) = logp(X|θ) = log
Z

p(X,S|θ)dS.

A closed-form solution, θ = argmaxθ′ L(θ′), is not available, hence iterative algorithms that opti-
mize L(θ) are employed. In the following sections three such algorithms are presented.

4.1 Expectation Maximization Algorithm

Expectation Maximization (EM) (Dempster et al., 1977), has been applied to latent variable models
in, for example, Shumway and Stoffer (1982) and Roweis and Ghahramani (1999). In essence, EM
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is iterative optimization of a lower bound decomposition of the log-likelihood

L(θ) ≥ F (θ, p̂) = J (θ, p̂)−R (p̂) (4)

where p̂(S) is any normalized distribution and the following definitions apply

J (θ, p̂) =
Z

p̂(S) logp(X,S|θ)dS,

R (p̂) =
Z

p̂(S) log p̂(S)dS.

Jensen’s inequality leads directly to (4). The algorithm alternates between performing Expectation
(E) and Maximization (M) steps, guaranteeing that L(θ) does not decrease following an update.
On the E-step, the Kalman smoother is used to compute the marginal moments from the source
posterior, p̂ = p(S|X,θ), see Section 3. The M-step amounts to optimization of J (θ, p̂) with respect
to θ (since this is the only F (θ, p̂) term which depends on θ. Due to the choice of a linear Gaussian
model, closed-form estimators are available for the M-step (see appendix A for derivations).

In order to improve on the convergence speed of the basic EM algorithm, the search vector
devised by the M-step update is premultiplied by an adaptive step-size η. A simple exponentially
increase of η from 1 was used until a decrease in L(θ) was observed at which point η was reset
to 1. This speed-up scheme was applied successfully in Salakhutdinov and Roweis (2003). Below
follow the M-step estimators for the AR and HN models. All expectations 〈·〉 are over the source
posterior, p(S|X,θ):

4.1.1 AUTOREGRESSIVE MODEL

For source i in block n:

fn
i,new =

[
T+t0(n)

∑
t=2+t0(n)

〈si,t−1s>i,t−1〉
]−>[

T+t0(n)

∑
t=2+t0(n)

〈si,tsi,t−1〉
]

,

qn
i,new =

1
T −1

T+t0(n)

∑
t=2+t0(n)

[

〈s2
i,t〉−

(

fn
i,new

)>
〈si,tsi,t−1〉

]

,

where t0(n) = (n−1)T . Furthermore:

Anew =
[ NT

∑
t=1

xt〈st〉
>
][ NT

∑
t=1

〈st(st)
>〉

]−1
,

Rnew =
1

NT

NT

∑
t=1

diag[xt(xt)
>−Anew〈st〉(xt)

>],

where the diag[·] operator extracts the diagonal elements of the matrix. Following an M-step, the
solution corresponding to ||Ai|| = 1 ∀i is chosen, where || · || is the Frobenius norm and Ai =
[

ai1 ai2 · · · aiQ
]>

, meaning that A and Qn are scaled accordingly.

4.1.2 HARMONIC AND NOISE MODEL

The linear source parameters and signals are grouped as

dn
i ≡

[

(fn
i )
> (cn

i )
>

]>
, zi ≡

[

(si,t−1)
> (ui,t)

>
]>

,
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where

fn
i ≡

[

f n
i,1 f n

i,2 . . . f n
i,p

]>
, cn

i ≡
[

ci,1 cn
i,2 . . . cn

i,p

]>
.

It is in general not trivial to maximize J (θ, p̂) with respect to ωn
i,0, since several local maxima exist,

for example, at multiples of ωn
i,0 (McAulay and Quateri, 1986). However, simple grid search in a

region provided satisfactory results. For each point in the grid we optimize J (θ, p̂) with respect to
dn

i :

dn
i,new =

[

NT

∑
t=2

〈

zi,t(zi,t)
>
〉

]−1 NT

∑
t=2

〈

zi,t(si,t)
>
〉

.

The estimators of A, R and qn
i are similar to those in the AR model.

4.2 Gradient-based Learning

The derivative of the log-likelihood, dL(θ)
dθ , can be computed and used in a quasi-Newton (QN)

optimizer as is demonstrated in Olsson et al. (2006). The computation reuse the analysis of the
M-step. This can be realized by rewriting L(θ) as in Salakhutdinov et al. (2003):

dL(θ)

dθ
=

Z

p(S|X,θ)
d logp(X,S|θ)

dθ
dS =

dJ (θ, p̂)

dθ
. (5)

Due to the definition of J (θ, p̂), the desired gradient in (5) can be computed following an E-step
at relatively little effort. Furthermore, the analytic expressions are available from the derivation of
the EM algorithm, see appendix A for details. A minor reformulation of the problem is necessary
in order to maintain non-negative variances. Hence, the reformulations Ω2 = R and (φn

i )
2 = qn

i are
introduced. Updates are devised for Ω and φn

i . The derivatives are

dL(θ)

dA
= −R−1A

NT

∑
t=1

〈

sts>t
〉

+R−1
N

∑
t=1

xt

〈

s>t
〉

,

dL(θ)

dΩ
= Ω−3

NT

∑
t=1

[

xtx>t +A
〈

sts>t
〉

A>−2xt

〈

s>t
〉

A>
]

,

dL(θ)

dfn
i

=
T+t0(n)

∑
t=2+t0(n)

[

〈si,tsi,t−1〉−
〈

si,t−1s>i,t−1

〉

fn
i /qn

i

]

,

dL(θ)

dφn
i

= (1−T )/φn
i +

φ−3
i

T−1+t0(n)

∑
t=2+t0(n)

[〈

si,ts
>
i,t

〉

+(fn
i )
>

〈

si,t−1s>i,t−1

〉

fn
i −2(fn

i )
>

〈

si,ts>i,t−1

〉]

.

In order to enforce the unit L2 norm on Ai, a Lagrange multiplier is added to the derivative of A. In
this work, the QN optimizer of choice is the BFGS optimizer of Nielsen (2000).
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4.3 Stochastic Gradient Learning

Although quasi-Newton algorithms often converge rapidly with a high accuracy, they do not scale
well with the number of blocks, N. This is due to the fact that the number of parameters is asymp-
totically proportional to N, and therefore the internal inverse Hessian approximation becomes in-
creasingly inaccurate. In order to be able to efficiently learn θ2 (A and R) for large N, a stochastic
gradient approach (SGA), (Robbins and Monro, 1951), is employed.

It is adapted here to estimation in block-based state-space models, considering only a single
randomly and uniformly sampled block, n, at any given time. The likelihood term corresponding to
block n is L(θn

1,θ2), where θn
1 = {Fn,Cn,Qn,ψn}. The stochastic gradient update to be applied is

computed at the current optimum with respect to θn
1,

∆θ2 = η
dL(θ̂n

1,θ2)

dθ2
,

θ̂n
1 = argmax

θn
1

L(θn
1,θ2).

where θ̂n
1 is estimated using the EM algorithm. Employing an appropriate ‘cooling’ of the learning

rate, η, is mandatory in order to ensure convergence: one such, devised by Robbins and Monro
(1951), is choosing η proportional to 1

k where k is the iteration number. In our simulations, the SGA
seemed more robust to the initial parameter values than the QN and the EM algorithms.

5. Learning from Synthetic Data

In order to investigate the convergence of the algorithms, AR(2) processes with time-varying pole
placement were generated and mixed through randomly generated filters. For each signal frame,
T = 200, the poles of the AR processes were constructed so that the amplification, r, was fixed
while the center frequency was drawn uniformly from U (π/10,9π/10). The filter length was L = 8
and the coefficients of the mixing filters, that is, the ai j of A, were generated from i.i.d. Gaussians
weighted by an exponentially decaying function. Quadratic mixtures with Q = P = 2 were used: the
first 2 elements of a12 and a21 were set to zero to simulate a situation with different channel delays.
All channel filters were normalized to ||ai j||2 = 1. Gaussian i.i.d. noise was added in each channel,
constructing the desired signal to noise ratio.

For evaluation purposes, the signal-to-error ratio (SER) was computed for the inferred sources.
The true and estimated sources were mapped to the output by filtering through the direct channel
so that the true source at the output is s̃i,t = aii ∗ si,t . Similarly defined, the estimated source at the
sensor is ŝi,t . Permutation ambiguities were resolved prior to evaluating the SER,

SERi =
∑t s̃2

i,t

∑t (s̃i,t − ŝi,t)
2 .

The EM and QN optimizers were applied to learn the parameters from N = 10 frames of samples
with SNR = 20dB, r = 0.8. The algorithms were restarted 5 times with random initializations,
Ai j ∈ N (0,1), the one that yielded the maximal likelihood was selected. Figure 2 shows the results
of the EM run: the close match between the true and learned models confirms that the parameters
can indeed be learned from the data using maximum-likelihood optimization. In Table 1, the gen-
erative approach is contrasted with a stationary finite impulse response (FIR) filter separator that
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Figure 2: The true (bold) and estimated models for the first 3 frames of the synthetic data based
on the autoregressive model. The amplitude frequency responses of the combined source
and channel filters are shown: for source i, this amounts to the frequency response of
the filter, with the scaling and poles of θ1,i and zeros of the direct channel aii. For the
mixtures, the responses across channels were summed. The EM algorithm provided the
estimates.

Estimated Generative MSE FIR
AR 9.1±0.4 9.7±0.4 7.5±0.2
HN 11.8±0.7 13.2±0.4 7.9±0.5

Table 1: The signal-to-error ratio (SER) performance on synthetic data based on the autoregressive
(AR) and harmonic-and-noise (HN) source models. Mean and standard deviation of the
mean are shown for 1) the EM algorithm applied to the mixtures, 2) inferences from data
and the true model, and, 3) the optimal FIR filter separator. The mean SER and the standard
deviation of the mean were calculated from N = 10 signal frames, SNR = 20dB.

in a supervised fashion was optimized to minimize the squared error between the estimated and
true sources, LFIR = 25. Depending on the signal properties, the generative approach, which re-
sults in a time-varying filter, results in a clear advantage over the time-invariant FIR filter, which
has to compromise across the signal’s changing dynamics. As a result, the desired signals are only
sub-optimally inferred by methods that apply a constant filter to the mixtures. The performance of
the learned model is upper-bounded by that of the generative model, since the maximum likelihood
estimator is only unbiased in the limit.

The convergence speed of the EM scheme is highly sensitive to the signal-to-noise ratio of
the data, as was documented in Olsson et al. (2006), whereas the QN algorithm is more robust to
this condition. In Bermond and Cardoso (1999), it was shown that the magnitude of the update
of A scales inversely with the SNR. By varying the SNR in the synthetic data and applying the
EM algorithm, it was confirmed that the predicted convergence slowdown occurs at high SNR. In
contrast, the QN algorithm was found to be much more robust to the noise conditions of the data.
Figure 3 shows the SER performance of the two algorithms as computed following a fixed number
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Figure 3: Convergence properties of the EM and QN algorithms as measured on the synthetic data
(autoregressive sources). The signal-to-error ratio (SER) was computed in a range of SNR
following 300 iterations. As the SNR increases, more accurate estimates are provided by
all algorithms, but the number of iterations required increases more dramatically for the
EM algorithm. Results are shown for the basic EM algorithm as well as for the step-size
adjusted version.

of iterations (imax = 300). It should be noted that the time consumption per iteration is similar for the
two algorithms, since a similar number of E-step computations is used (and E-steps all but dominate
the cost).

For the purpose of analyzing the HN model, a synthetic data set was generated. The fundamental
frequency of the harmonic component was sampled uniformly in a range, see Figure 4, amplitudes
and phases, K = 4, were drawn from a Gaussian distribution and subsequently normalized such that
||ci|| = 1. The parameters of the model were estimated using the EM algorithm on data, which was
constructed as SNR = 20dB, HNR = 20dB. The fundamental frequency search grid was defined
by 101 evenly spaced points in the generative range. In Figure 4, true and learned parameters are
displayed. A close match between the true and estimated harmonics is observed.

In cases when the sources are truly harmonic and noisy, it is expected that the AR model per-
forms worse than the HN model. This is due to the fact that a harmonic mean structure is required
for the model to be unbiased. The AR model will compensate by estimating a larger variance, qi,
leading to suboptimal inference. In Figure 5, the bias is quantified by measuring the performance
gap between the HN and AR models for varying HNR. The source parameters were estimated by
the EM algorithm, whereas the mixing matrix, A, was assumed known.
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ization purposes, the estimated waveform was shifted by a small offset.
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Figure 5: The signal-to-error ratio (SER) performance of the autoregressive (AR) and harmonic-
and-noisy (HN) models for the synthetic data set (N = 100) in which the harmonic-to-
noise ratio (HNR) was varied. Results are reported for SNR = 10,20,30dB. The results
indicate that the relative advantage of using the correct model (HN) can be significant.
The error-bars represent the standard deviation of the mean.

6. Speech Mixtures

The separation of multiple speech sources from room mixtures has potential applications in hearing
aids and speech recognition software (see, for example, Parra and Spence, 2000). For this purpose,
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Figure 6: The separation performance (SER) on test mixtures as a function of the training data
duration for the autoregressive (AR) and harmonic-and-noisy (HN) priors. Using the
stochastic gradient (SG) algorithm, the parameters were estimated from the training data.
Subsequently, the learned filters, A, were applied to the test data, reestimating the source
model parameters. The noise was constructed at 40dB and assumed known. For ref-
erence, a frequency domain (FD) blind source separation algorithm was applied to the
data.

we investigate the models based on the autoregressive (AR) and harmonic-and-noisy source (HN)
priors and compare with a standard frequency domain method (FD). More specifically, a learning
curve was computed in order to illustrate that the inclusion of prior knowledge of speech benefits
the separation of the speech sources. In Figure 6 is shown the relationship between the separation
performance on test mixtures and the duration of the training data, confirming the hypothesis that
the AR and HN models converge faster than the FD method. Furthermore it is seen that the HN
model can obtain a larger SER than the AR model.

The mixtures were constructed by filtering speech signals (sampled at 8Hz) through a set of
simulated room impulse responses, that is, ai j, and subsequently adding the filtered signals. The
room impulse responses were constructed by simulating Q = 2 speakers and P = 2 microphones
in an (ideal) anechoic room, the cartesian coordinates in the horizontal plane given (in m) by
{(1,3) ,(3,3)} and {(1.75,1) ,(2.25,1)} for the speakers and microphones, respectively.1. This
corresponds to a maximum distance of 1.25m between the speakers and the microphones, and a set
of room impulse responses that are essentially Kronecker delta functions well represented using a
filter length of L = 8.

1. A Matlab function, rir.m, implementing the image method (Allen and Berkley, 1979) is available at
http://2pi.us/rir.html.
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The SG algorithm was used to fit the model to the mixtures and subsequently infer the source
signals. The speech data, divided into blocks of length T = 200, was preprocessed with a standard
pre-emphasis filter, H(z) = 1−0.95z−1, and inversely filtered prior to the SER calculations. From
initial conditions (qn

i = 1, f n
i, j = 0, cn

i, j = 0 and ai, j,k normally distributed, variance 0.01, for all
i, j,n,k except a1,1,1 = 1, a2,2,1 = 1; ωn

0,i was drawn from a uniform distribution corresponding to
the interval 50− 200Hz), the algorithm was allowed imax = 500 iterations to converge and restarts
were not necessary. The source model order was set to p = 1 (autoregression order) and in the
case of the harmonic-and-noise model, the number of harmonics was set to K = 6. The complex
JADE algorithm was employed in the frequency domain as the reference method (Cardoso and
Souloumiac, 1993). In order to correct the permutations across the 101 frequencies, amplitude
correlation between the bands was maximized (see, for example, Olsson and Hansen, 2006).

In order to qualitatively assess the effect of the two priors, a mixture of speech signals was
constructed using P = 2 speech signals (a female and a male, shown in Figure 7a and b). They were
mixed through artificial channels, A, which were generated as in Section 5. Noise was added up to
a level of 20dB. The EM algorithm was used to fit the source models to the mixtures. It is clear
from Figure 7 c-f that the estimated harmonic model to a large extent explains the voiced parts of the
speech signals, and the unvoiced parts to a lesser extent. In regions of rapid fundamental frequency
variation, the harmonic part cannot be fitted as well (the frames are too long here). In Figure 7 g
and h, the separation performances of the AR and HN models are contrasted. Most often, the HN
performs better than the AR model. A notable exception occurs in the case when either speaker is
silent, in which case the misfit of the HN model is more severe, suggesting that the performance can
be improved by model control.

7. Conclusion

It is demonstrated that careful generative modelling is a viable approach to convolutive source sepa-
ration and can yield improved results. Noisy observations, non-stationarity of the sources and small
data volumes are examples of scenarios which benefit from the higher level of modelling detail.

The performance of the model was shown to depend on the choice of optimization scheme
when the signal-to-noise ratio is high. In this case, the EM algorithm, which is often preferable for
its conceptual and analytical simplicity, experiences a substantial slowdown, and alternatives must
be employed. Such an alternative is a gradient-based quasi-Newton algorithm, which is shown to
be particularly useful in low-noise settings. Furthermore, the required gradients are obtained in the
process of deriving the EM algorithm.

The harmonic-and-noise model was investigated as a means to estimating more accurately a
number of speech source signals from the their mixtures. Although a substantial improvement is
shown to result when the sources are truly harmonic, the overall model is vulnerable to overfitting
when the energy of one or more sources is locally near-zero. An improvement of the existing
framework would be a model control scheme, such as variational Bayes, which could potentially
cancel the negative impact of speaker silence. This is a topic for future research.
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Figure 7: The source parameters of the autoregressive (AR) and harmonic-and-noisy (HN) models
were estimated from Q = 2 convolutive mixtures using the EM algorithm. Spectrograms
show the low-frequent parts of the original female (a) and male (b) speech sources. The
appropriateness of the HN model can be assessed in c and d, which displays the re-
synthesization of the two sources from the parameters (K = 6), as well as e and f, where
the estimated ratio of harmonics to noise (HNR) is displayed. Overall the fit seem good,
except at rapid variations of the fundamental frequency, for example, at (I), where the
analysis frames are too long. The relative separation performance of the AR and HN
models, which is shown in g and h for the two sources, confirms that the HN model is
superior in most cases, with a notable exception in regions such as (II), where one of the
speakers is silent. This implies a model complexity mismatch which is more severe for
the more complex HN model.

Appendix A.

Below, an example of an M-step update derivation is shown for Fn. As a by-product of the analy-
sis, the derivative for the gradient-based optimizers appears. Care must be devised in obtaining the
derivatives, since Fn is a structured matrix, for example, certain elements are one and zero. There-
fore, the cost-function is expressed in terms of fn

i rather than Fn. Since all variables, which are here
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indexed by the block identifier, n, are Gaussian, we have that:

J (θ) = −
1
2

N

∑
n=1

[ P
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{

log |Σn
i |+

〈
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sn
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i
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−1 (

sn
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∑
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logqn
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∑
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∑
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The vector derivative of J (θ) with respect to fn
i is:
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.

This was the desired gradient, which is directly applicable in a gradient-based algorithm. By equat-
ing to zero and solving, the M-step update is derived:
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ABSTRACT

We demonstrate that blind separation of more sources than sensors
can be performed based solely on the second order statistics of the
observed mixtures. This a generalization of well-known robust al-
gorithms that are suited for equal number of sources and sensors. It
is assumed that the sources are non-stationary and sparsely distrib-
uted in the time-frequency plane. The mixture model is convolutive,
i.e. acoustic setups such as the cocktail party problem are contained.
The limits of identifiability are determined in the framework of the
PARAFAC model. In the experimental section, it is demonstrated
that real room recordings of 3 speakers by 2 microphones can be
separated using the method.

1. INTRODUCTION

The human auditory system solves the so-called cocktail party prob-
lem, i.e it separates out a single speech signal from a composition
of speech signals and possibly other interfering noises. This is an
instance of blind source separation (BSS). Machines capable of em-
ulating this function have potential applications in e.g. hearing aids
and audio communication. The convolutive mixture model accounts
for the various delays and attenuations of e.g. an acoustic mixture:

x[t] =

L−1�
k=0

A[k]s[t− k] (1)

where x[t] and s[t] are an N dimensional sensor vector and an R
dimensional source vector, respectively, sampled at discrete time t.
The matrices A[k] contain the impulse responses of the signal chan-
nels. The sources can only be recovered blindly, i.e. A[k] unknown,
up to an arbitrary scale and permutation of source index.

In many cases, such as the cocktail party situation where the
speakers are independent on the timescale of interest, the problem
can to some extend be solved by algorithms that are based on inde-
pendent component analysis (ICA), [1]. In particular, the instanta-
neous mixture model, which arises as a results of L = 1, is a well-
solved problem, see, e.g., [2]. However, this mixing model (L = 1)
is inappropriate and insufficient for the separation of acoustically
mixed audio signals for the reasons already mentioned. ICA al-
gorithms determine st by assuming statistical independency of the
sources and certain properties of the distribution of st, where non-
Gaussianity, non-stationarity and non-whiteness are the most impor-
tant. Convolutive ICA algorithms, i.e. L > 1, have been devised by
e.g. [3] and [4]. The most efficient methods use transformation to
the discrete Fourier domain, where convolution approximately trans-
lates to multiplication, yielding a separate instantaneous ICA prob-

Thanks to Oticon fonden for financially supporting this work.

lem for each evaluated frequency. As a result, the resulting arbi-
trary permutations across frequency problem must be resolved. Al-
gorithms that function in the time-domain, such as [5], can benefit
more directly from domain-oriented source modelling, but typically
at a higher computational cost.

Common to the algorithms mentioned above are that they as-
sume quadratic mixtures, that is, the number of sensors equals the
number of sources, or N = R. The class of mixtures, where R > N ,
are termed underdetermined.1 Instantaneous ICA algorithms have
been devised to solve the underdetermined problem, i.e. [6], [7] and
[8]. These methods assume a sparse distribution of the sources, ei-
ther directly in the time-domain or in a transformed domain.

An alternative approach to blind source separation is the use of
binary masks in the spectrogram, i.e. assigning each point in the
time-frequency plane to a source. The masks are often constructed
using segmentation cues inspired by the human auditory system,
such as interaural intensity and time differences (IID/ITD), [9]. Ef-
forts to combine ICA with binary masks have been undertaken by
[10]. A problem introduced by binary masks is that artifacts, or un-
natural sounds, may appear in the reconstructed signals.

The major contribution of this work is to generalize to the over-
complete case the robust algorithms of [3] and [13], which han-
dle quadratic mixtures relying solely on robust time-varying sec-
ond order statistics in the power spectral domain. Since the essen-
tially non-stationary Gaussian signal model is an instance of the tri-
linear PARAFAC2 model, [11], the results from this field are em-
ployed to construct the algorithm and certify the identifiability of the
model under various assumptions. One observation derived from the
PARAFAC formulation is that the source power spectra are identifi-
able for (N = 2, R = 3) provided that the mixing process parame-
ters (A[k]) are available at that stage. As a consequence, the maxi-
mum posteriori estimates of the sources can be computed as opposed
to the usual binary mask reconstructions. A key component in de-
termining A[k] is the sparsity of the sources in the time-frequency
plane, which allows for estimation of this part of the model through
k-means clustering, [8]. As evidence of the usefulness of the ap-
proach, it is demonstrated that speech mixtures (N = 2, R = 3)
recorded in a real office environment can be handled, see
www.imm.dtu.dk/∼rko/underdetermined.

In section 2 and 3, the PARAFAC formulation of the blind source
separation problem is motivated. In sections 4 and 6, the estimation
of the parameter and source inference, respectively, are covered. The
limits of identifiability are discussed in section 5. Implementation is-
sues are summarized in section 7. The performance of the algorithm

1One-sensor separation is a topic in its own right and is not discussed
here.

2Parallel Factor Analysis. Also known as Canonical Decomposition
(CANDECOMP).



is gauged on benchmark audio data in the experimental section.

2. PARALLEL FACTOR ANALYSIS

A thorough review of the following theory can be found in [12].
Consider the 3-way array xijk indexed by i ∈ [1, .., I], j ∈ [1, .., J ],
k ∈ [1, .., K]. The trilinear PARAFAC decomposition is defined:

xijk =
F�

f=1

aifbjfckf

with loading matrices (A)if = aif , (B)jf = bjf and (C)kf =
ckf . The PARAFAC model can equivalently be expressed in terms
its matrices or ’slabs’:

Xk = Adiagk[C]B� (2)

where diagk[·] operating on a matrix constructs a diagonal matrix
with the kth row of the matrix as diagonal elements. The PARAFAC
model could equivalently be expressed along A or B. The matriza-
tion of the PARAFAC model is yet another representation:
XIJ×K = (B�A)C�, where the Khatri-Rao product is defined

(B�A) ≡

�
��

Adiag1[B]
...

AdiagJ [B]

�
��

The indices of XIJ×K indicate the direction and hence the dimen-
sions of the matrization. The former index varies more rapidly. A
sufficient condition for uniqueness was provided by Kruskal in [11]:

k[A] + k[B] + k[C] ≥ 2(F − 1) (3)

where the k-rank, denoted k[A], of a matrix A, is defined as the
maximal integer m such that any m columns of A form a linearly
independent set. Clearly, k[A] ≤ r[A], where r[A] is the rank of
A.

3. MODEL

The convolutive mixture of equation (1) will form the basis of the
model. Only the autocorrelation functions of st are considered in
the following analysis, which is similar to imposing a multivariate
Gaussian model on {s[t], s[t + 1], . . . , s[t + Tc − 1]}, where Tc is
the correlation length. The assumptions can be summarized as:
A1: the sources, s[t], are zero mean with no cross-correlation, i.e.
〈s[t]s�[t− τ ]〉 is a diagonal matrix for all τ .
A2: the signal channels, A[k], are constant on the time-scale of
analysis. No columns are collinear, as this would effectively con-
stitute a reduction of N .
A3: the autocorrelation functions 〈s[t]s�[t−τ ]〉 are time-varying as
in [3]. The variation patterns are independent for each source.
A4: At most one source is non-zero in any time-frequency block
({n, . . . , n + M − 1}, k), where M is the block length not to be
confused with the frame length, K . This effectively is an assump-
tion of sparsity as in, e.g., [8]. In figure 1, it is demonstrated that for
certain quasi-periodic signals such as speech, the number of (n, k)
bins required to represent a speech signal is indeed small.

The discrete Fourier transform (DFT) is applied to windowed
frames of xt, length K, obtaining:

x
(n)
k = Aks

(n)
k + e

(n)
k (4)
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Fig. 1. The sparsity of speech (Fs = 8kHz) under various condi-
tions presented as the minimal percentage of frequency bins required
to represent a given percentage of power. The raw time-domain
speech signal (TD) is shown as well as its time-frequency trans-
formation (FD-anechoic) and a version with simulated large-room
reverberation (FD-reverb). DFT lenght: K = 512, no overlap.

where x
(n)
k , Ak and s

(n)
k are the DFT of the corresponding time-

domain signals at discrete frequencies k ∈ [0, 1, . . . , K − 1] and
frame n. The residual term, e

(n)
k , is due to equation (1) being a

linear convolution rather than a circular one. When L 
 K, the
mismatch vanishes, that is 〈 |ek|

|xk| 〉 → 0. Furthermore, the auto/cross

power spectra of xt as a function of frame index n, C
(n)
k , can be

computed from the power time-spectra of st:

C
(n)
k = AkD

(n)
k AH

k + E
(n)
k (5)

where D
(n)
k is a diagonal matrix (due to A1) with the power of

the sources in time-frequency bin (n, k) as diagonal elements. The
channels, Ak, are independent of n due to A2. The power spectrum
residual, E

(n)
k can be neglected when e

(n)
k is small. As was also

noted in [13], any linear channel that exhibits a sufficiently rapidly
decaying autocorrelation function can be treated by our approach,
not just a convolutive channel.

By comparing with equation (2), it is seen that equation (5) is
approximately a PARAFAC model. The following reformulation of
(5) is convenient:

CNN×K [k] = (Ak �A∗
k)Λ�

k (6)

where CNN×K [k] is the matricized auto/cross power at frequency k
and (Λk)nj is the power of source j at time-frequency bin (n, k).

4. PARAMETER ESTIMATION

A standard approach to estimating the parameters of equation (6)
is the alternating least squares algorithm (ALS), which alternatingly
minimizes the Frobenius norm of RNN×K [k] − CNN×K [k] with
respect to the matrices Ak and Λ[k, n], where RNN×K [k] is the
estimated auto/cross power spectra of xt, e.g.:

Λ̂�
k = arg min

Λ

���RNN×K [k]− (Ak �A∗
k)Λ�

k

���2

(7)

The arbitrary scaling of the model is fixed by normalizing the columns
of Ak so that ‖ai,k‖2 = 1 and zeroing the phases of the 1st row:
� (A)1i,k = 0 ∀i. The solution to equation (7) is just a least-squares
fit:

Λ̂�
k = (Ak �A∗

k)
†
RNN×K [k] (8)



assumptions bound
I A1, A2, A3 2N − 2 ≥ R
II A1, A2, A3, A4 1

2
N(N + 1) ≥ R

Table 1. Bounds of identifiability of the source spectrograms de-
pending on the set of model assumptions.

where † is the pseudoinverse operator. An alternative means of esti-
mating Ak and D[k, n] from C[k, n] and equation (5) is the appli-
cation of a joint diagonalization algorithm such as in [14]. However,
the ALS is conceptually simple and has good convergence properties
under certain circumstances as was demonstrated in [13]. In the case
of a 1-component model, i.e. when Ak and Λk consist of a single
column (ak and λk), a particularly simple solution exists:	�

n

R
(n)
k



ak =

	�
n

�
λ

(n)
k

�2


ak (9)

where R
(n)
k and λ

(n)
k are the measured auto/cross power of xt and

the power of st in time-frequency bin (n, k), respectively. The ak

corresponding to the maximal eigenvalue is the least-squares esti-
mate.

5. IDENTIFIABILITY

In the following will be discussed mainly the limits of recovering the
time-varying source power spectra, Λk, i.e. the spectrograms. The
MAP inference of s

(n)
k is treated in section 6. It was mentioned in

section 1 that Λk can only be blindly recovered up to an unknown
scaling and ordering, i.e. it is only possible to estimate PkHkΛk,
where Hk and Pk are (diagonal) scaling and permutation matrices,
respectively. The frequency permutation problem, i.e. estimating Pk

for all k, can be remedied by defining a similarity measure across
frequencies as in e.g. [13]. The scaling matrix was fixed in the
parameter estimation process due to certain assumptions about the
scale of Ak.

The identifiability of the source spectrograms, Λk, is determined
in the general blind case (Ak is unknown) under assumptions A1,
A2 and A3. The uniqueness theorem (3) yields a lower bound for
identifiability:

2N ≥ R + 2

where the full rank of Ak and Λk was assumed, consequences of A2
and A3, respectively. This means that Λk can be estimated in many
cases where R > N , however notably excluding the N = 2, R = 3
case. In [15], it was shown that the bound is tight for R = 3, but not
necessarily for R > 3.

In order to retrieve the source power spectrograms in the N = 2,
R = 3 case, the sparsity assumption, A4 is required. The rationale
is that if only a single source is active in M consecutive frames, the
local dimensionality of the PARAFAC model will be R = 1, and
the corresponding column of Ak is available through equation (9).
When estimating ak across time, the estimates should ideally occupy
R discrete points in space pertaining to the R columns of Ak. In a
realistic setting, model bias and slight violations of A4 will cause
an amount of dispersion of the estimated ak around the true values.
Provided this effect is not too severe, Ak can still be estimated by
means of a clustering algorithm. The dispersion around the cluster
centers can be quantified by computing the within-class variance, Q.

After Ak has been acquired through the clustering, Λk can be
estimated via equation (8) from all frames under less strict conditions

• discrete Fourier transform Hann-windowed data
• prewhiten
• for all frequencies k:
• for all blocks of frames {n, n + 1, . . . , n + M − 1}:
• fit 1-component PARAFAC model
• estimate Ak via k-means clustering of ak estimates
• compute Λk from Âk

• compute MAP estimate of sk from Ak and Λk

• solve permutation problem using power corr. across freq.
• inverse prewhiting
• reconstruct time-domain signal by IDFT and overlap-add

Table 2. The blind source separation algorithm for underdetermined
convolutive mixtures of sources that are sparse in the time-frequency
plane.

on R and N . The typical rank of (A�A∗) is min



1
2
N(N + 1), R

�
.

Therefore, Λk generally has a unique solution if 1
2
N(N + 1) ≥ R.

As a consequence, the source spectrograms can be recovered when
N = 2, R = 3, provided Ak is known or has been estimated suffi-
ciently accurately. The identifiability of Λk including or excluding
sparsity is summarized in table 1.

6. SOURCE RECONSTRUCTION

Once the Ak and Dn
k have been estimated, the sources can be in-

ferred from the data and the parameters of the model. A maximum
posteriori (MAP) scheme, which builds on the joint Gaussianity of
st and xt and the assumptions A1-A3, is employed as suggested in
[3]:

ŝk = D
(n)
k Ak

�
AkD

(n)
k AH

k

�−1

xk

In order to cancel the effects of arbitrary scaling of Ak and Dn
k ,

the sources are computed as they appear at the sensors, e.g. the
j’th source at the i’th sensor: (Ak)ij ŝj,k. Where the number of
sources and sensors are locally equal in the time-frequency plane, the
above simply reduces to sk = A−1

k xk. In case of underdetermined
mixtures, the degree of success of the MAP estimation depends on
the sparsity assumption, A4. Reconstruction in the time domain is
performed by inverse DFT and overlap-add.

7. ALGORITHM

The full set of assumptions, A1-A4, are included in the presented
algorithm. A number of implementational issues remains. A pre-
processing step is included to better condition the data for clustering
and separation. In a band of frequencies a whitening matrix is ap-
plied to xk, i.e. x̃k = Wxk, so that 〈x̃kx̃

H
k 〉 = I, where averaging

is over a suitable bandwidth and the signal length. The clustering is
carried out in the polar coordinates of a using k-means. This requires
the distance measure to be able to handle circularity. To be more re-
silient against outliers and violations of the sparsity assumption, the
median rather than the mean was taken as the cluster center.

The problem of permutation across frequencies was solved by
iteratively growing a set in which the permutations are corrected.
The measure of similarity is correlation of amplitude as in e.g. [13].
Starting from the highest frequency index, k = K−1, to the lowest,
k = 0, the permutation matrix Pk was chosen so that it (greedily)
maximizes the correlation coefficients of
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Fig. 2. Effects of the block length M on the clustering of ak. Left:
Within-cluster variance, Q, in 4 frequency bands. Right: The sig-
nal to interference (SIR) gain as a function of the segment length
M . The results were obtained by averaging across the sources of 3
underdetermined mixtures, K = 256.

K = 256 K = 512 Araki et al.
mmf 12, 13, 11 16, 15, 10 14, 14, 7
mmm 12, 7, 15 15, 8, 16 11, 4, 14
fff 10, 11, 16 8, 9, 15 5, 18, 18

Table 3. Estimated signal to interference (SIR) ratios for R = 3,
N = 2 mixtures in a simulated reverberant room. f’s and m’s repre-
sent male and female speakers in the mixture.

|Pkŝk| to
�K−1

k′=k+1 |Pk′ ŝk′ |. This simple method proved fairly ro-
bust, and better results were not obtained with the approach of [13].
The algorithm is summarized in table 2.

8. RESULTS AND DISCUSSION

For the initial simulations, experimental audio data generated by re-
searchers Araki et al., see e.g. [10], was used.3 In each of the mix-
tures, R = 3 speech signals, sample rate Fs = 8kHz, were con-
volved with real room impulse functions of length τr = 130ms to
construct N = 2 mixtures. The microphones were situated dm =
4cm apart, the distance to the speakers was ds = 110cm and the an-
gles to the microphones were θ1 = 50◦, θ2 = 100◦ and θ3 = 135◦.
The room dimensions were ≈ 4m× 4m× 3m. Mixture fragments
of length T = 7s were used. To measure the degree of separa-
tion, the signal-to-interference ratio (SIR) quality index was com-
puted. The SIR’s were estimated from the original and estimated
sources by means of the BSS_EVAL toolbox, see [16] for defin-
itions, and provided a reasonable correlate with human subjective
evaluation.4 Using the sparse algorithm, results on mixtures of same-
sex and mixed-sex speech were obtained, see table 3. For reference,
the quality measures were also computed for the audio files of [10].
The new method appears to exhibit similar performance to the ref-
erence. These results were replicated in a real office environment
- 3 male speakers reading aloud from Hans Christian Andersen’s
fairy tales were separated using the algorithm. The room measures
4.25m×5.82m×3.28m. The values of dm, ds were left unchanged
from the generated mixtures. The estimated source signals can be
appreciated at www.imm.dtu.dk/∼rko/underdetermined/index.htm.

3The audio wave files are available at
www.kecl.ntt.co.jp/icl/signal/araki/nbficademo.html.

4The toolbox is downloadable at www.irisa.fr/metiss/bss eval/. The script
bss decomp filt.m was used with L = 100.

Furthermore, the effect of the block length M was assessed, us-
ing the same convolutive mixtures, K = 256. It is seen in figure 2
that the within-class variance Q at most frequencies approximately
peaks at M ≈ 10. The SIR index has a similar optimum, suggest-
ing that Q can be used to determine the stationarity properties of the
signal and select an optimal model order.
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