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Summary

The increase in size, prize and power production of modern wind turbines con-
tinue to improve the overall economy of their installation and maintenance.
A suitable place to install these mega wind turbines is on the sea as their is
a more stable wind. These water based wind farms are confined to reefs near
land where the construction of the foundations doesn’t become to expensive and
problematic. It has been suggested to build floating wind turbines instead and
thus enabling previous unsuited locations to become potential wind farms. This
thesis investigates control of both wind turbines mounted on solid foundations
and their floating counter parts.

The wind turbine operates over a wide wind speed range and the control ob-
jectives changes over that range. It has been investigated how to identify and
switch between these different modes of operation.

The turbulent nature of the wind causes the control of the gigantic structures to
react within fractions of a second. Such rapid response should cross certain limits
otherwise the fatigue of the actuator systems is greatly accelerated leading to
uneconomic operation of the wind turbine. Model predictive control have been
investigated as a method to keep within these constraints.
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Nomenclature

v [m/s] - Wind speed
vm [m/s] - Mean wind speed
vt [m/s] - Turbulent wind speed
vr [m/s] - Relative wind speed
Pw [W ] - Wind power in the absence of a rotor disc
Pr [W ] - Power absorbed from wind to rotor (driveshaft)
Pm [W ] - Mechanical power from driveshaft to generator
Pe [W ] - Electrical power of generator from mechanical power
η [−] - Generator efficiency
ṁ [kg/s] - Mass flow of air
ρ [kg/m3] - Mass density of air
Ng [−] - Gear ratio
R [m] - Rotor blade length and rotor disc radius
CP [−] - Quasi-stationary aerodynamic power coefficient
CT [−] - Quasi-stationary aerodynamic thrust coefficient
θ [◦] - Collective pitch of rotor blades
λ [−] - Tip-speed-ratio



vi Nomenclature

Qr [N m] - Aerodynamic torque from wind to rotor (driveshaft)
Qg [N m] - Mechanical torque from generator to driveshaft
xt [m] - Displacement of nacelle
φr [rad] - Azimuth angle of rotor
φg [rad] - Azimuth angle of generator
φ∆ [rad] - Azimuth angular torsion of driveshaft
Ωr [rad/s] - Angular velocity of rotor
Ωg [rad/s] - Angular velocity of generator
Ir [kg m2] - Moment of inertia of rotor
Ig [kg m2] - Moment of inertia of generator
Ks [N/rad] - Driveshaft spring constant
Ds [N/rad s] - Driveshaft dampening constant
Mt [kg] - Mass of part of tower and nacelle
Kt [N/m] - Tower spring constant
Dt [N/m s] - Tower dampening constant
Qt [N ] - Thrust force on tower
ωn [rad/s] - Natural frequency (of pitch actuator)
ζ [−] - Damping (of pitch actuator)
τ [s] - Time constant (of generator torque actuator)

x ∈ R
nx - State vector

u ∈ R
nu - Control vector

v ∈ R
nu - Control deviation vector

z ∈ R
nz - Optimization vector

y ∈ R
ny - Measured output vector

yr ∈ R
nr - Reference controlled output vector

r ∈ R
nr - Reference vector

d ∈ R
nd - State disturbance vector

p ∈ R
np - Output disturbance vector

c ∈ R
nc - Constraints vector

q ∈ R
nz - Optimization weight vector



vii

A ∈ R
nx×nx - State transition matrix

B ∈ R
nx×nu - Input matrix

C ∈ R
ny×nx - State output matrix

D ∈ R
ny×nu - Direct input output matrix

E ∈ R
nz×nx - Optimization state matrix

F ∈ R
nz×nu - Optimization input matrix

H ∈ R
nr×ny - Reference output matrix

Bd ∈ R
nx×nd - State disturbance matrix

Cp ∈ R
ny×np - Output disturbance matrix

Φ ∈ R
nx×nx - Closed loop state transition matrix

Ψ ∈ R
nz×nx - Closed loop optimization transition matrix

M ∈ R
nc×nz - Constraints matrix

W ∈ R
nz×nz - Optimization weight matrix
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Chapter 1

Introduction

The purpose of modern wind energy conversion systems (WECS) is to extract
the aerodynamic power from the wind and convert it to electric power. Today
the most wide spread version of WECS is the horizontal axis wind turbine
(HAWT) with a 3 blade upwind rotor. Before the introduction of variable speed
generators, the rotor speed on the HAWT was kept constant. This constraint
limited the efficiency of the wind power capture. New wind turbines are able
to operate more efficient over a wider range of wind speeds, which has lead to
more sophisticated control strategies with the added degrees of freedom.

Modern wind turbines are controlled by the pitch of the rotor blades, the elec-
tromagnetic torque of the generator and by the yaw of the nacelle. Although
their orientation toward the wind is controlled by a yaw controller this degree of
freedom will be omitted in this project. The reason for this simplification will
be discussed in section 2.1 on page 8.

Traditionally wind turbines are placed on land or on solid foundations if placed
in the water. This limits their deployment to locations of relatively shallow water
because the construction costs of an underwater monopile are to expensive or
technically impossible. Recently it has been suggested to place floating HAWTs
in deep water and anchor them with mooring cables to bottom of the sea.

The concept of a floating HAWT poses new challenges as the vertical stability
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Monopile

(a) Mounted tower

Nacelle

Tower

Rotor blade

Floating hull

Mooring line

(b) Floating tower

Figure 1.1: Horizontal axis wind turbines

of the HAWT is heavily reduced by the lack of solid foundation. The chal-
lenges can be somewhat accommodated mechanically by adding supporting and
stabilizing structures with additional construction costs as a drawback. But
the changed dynamics of the HAWT can’t be completely compensated. Modern
control techniques offers the handling of the demanding dynamics within a more
systematic framework thus giving better performance and enhances the ability
of prioritizing operation parameters from an economic point of view.

The displacement of the nacelle is only modeled in the direction of the wind.
Any oscillatory behavior in the other directions and the fact that the motion is
not linear is disregarded in this project. Intuition suggests that such a crude
assumption significantly diverts from the behavior of a real floating wind tur-
bine, nevertheless to keep focus on control methods this simplification has been
decided. The sanity of the simplification will be validated by simulations in the
more elaborate model in HAWC2, which is complex wind turbine simulation
environment developed Risø.
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In reality the drive shaft and rotor are inclined 5◦ from horizontal, this is also
omitted from the model.

Different wind speed means different control objectives, in this project control
objectives for the entire operational wind speed range have been developed.
Advanced control theory known as model predictive control (MPC) have been
implemented to control the wind turbines in all the operating regions. This
is contrary to typical projects that solely focus on the top region of the wind
spectrum to be controlled by advanced methods and leaves the lower wind speed
regions to be controlled by PI(D) controllers or lookup tables.

The report is divided into different parts

• I - Modeling and analysis presents linear models of the wind turbine
and control strategies for the different operating modes.

• II - Theory of methods presents the control theory part of the project.

• III - Implementation and results presents the results obtained by
implementing the presented controllers and testing them in Matlab and
HAWC2.

• IV - Conclusion and perspectives discusses the results obtained in
the project and which paths could be taken in the future to extend the
work of the project.

It assumed that the reader of this report has a solid foundation within linear
control theory. More advanced topics such as invariant set theory and static
and dynamic optimization are introduced and explained in the report. The
fundamentals of wind turbine dynamics is explained in the report and a basic
knowledge of physics and mechanical systems is required.
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Part I

Modeling and analysis





Chapter 2

Modeling

This chapter will introduce the different part of a wind turbine and present
linear model models for the subsystems.

FlexibleAero-

rotor
dynamic

Qr

Ωr

Pitch
actuator

θ

θref

v

Generator
Ωg

Pe

Generator

actuator

Qgref

torque

Qg

tower

-ẋt Qt

Wind

vm

driveshaft

Flexible

Σ

vr

Figure 2.1: Nonlinear dynamic model of a wind turbine and the wind
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2.1 The wind

The variations of the wind speed can be divided into different classifications
based either on time of geography. Geographic classifications can fx. be:

• Water which could be oceans, gulfs etc.

• Coastal land which could be the west coast of Denmark, etc.

• Continental land which is deep inland and far from water.

The wind speeds are typically higher near water than inland. Due to complex
weather systems the wind is also more likely to come from one direction rather
than another (fx. north west). This takes us to another classification where long
time measurements are used to make statistical charts known as wind roses
that show in which directions the usually blows. A change of wind direction
usually takes hours or quarters of hours. Variations with time constants on that
magnitude are not within the scope of this project and should be modeled as
parameter changes or input steps or ramps. Hence the yaw rotation of the wind
turbine is omitted from the project and is assumed to be handled by another
controller.

As just mentioned time variation is also measure that can be used classify the
wind:

• Annual and seasonal variations such as El Niño and autumn storms
etc.

• Synoptic and diurnal variations is the passing of large weather system
and the difference between night and day.

• Turbulence is caused by friction with surface and temperature differ-
ences.

The annual, seasonal, synoptic and diurnal variations are considered to be a
constant or slowly varying mean wind speed vm which is modeled as a constant,
a step or a ramp and without any dynamics in this project. The only dynamic
components of the wind which should be modeled is thus the turbulent wind vt.
In a cross section perpendicular the wind direction the turbulent wind can be
divided into a finite or ideally infinite number of point wind velocities. These are
both correlated in time and space. In this project only the time component is
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considered and the wind field is assumed equally distributed for design modeling
purposes.

The wind speed variation can be modeled as a complicated nonlinear stochastic
process but for practical purposes it is an approximation based on a more com-
plex model described in (Østergaard, 1994) and (Larsen and Mogensen, 2006)

v = vm + vt (2.1)

where

vt =
k(vm)

(p1(vm)s + 1)(p2(vm)s + 1)
e; e ∈ N(0, 1) (2.2)

the turbulent wind model can be formulated in a state space description

(
v̇t

v̈t

)

=

[

0 1

− 1
p1(vm)p2(vm) −p1(vm)+p2(vm)

p1(vm)p2(vm)

](
vt

v̇t

)

+

[

0
k(vm)

p1(vm)p2(vm)

]

e (2.3)

The coefficients of the filter can be seen in Fig. (2.2)

Another factor omitted from the design modeling is wind shear. Wind shear is
the effect that rough terrain has on the turbulence on the wind. The rougher
the terrain, the higher the friction between the surface and the wind. This leads
to the wind moving slower near ground than farther from ground. This again
means that as the rotor passes from top to bottom in its rotation it is subject to
different wind speeds giving and effect that is time correlated with the rotation
speed of the rotor.
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Figure 2.2: Properties of stochastic wind given by existing material
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2.2 Wind turbine subsystems

2.2.1 Aerodynamics

From (Burton et al., 2001) and (Hansen, 2000) the following aerodynamic equa-
tions of a wind turbine are given. The available power of the wind in a circular
cross section with the same area as the rotor disc, but with the absence of the
rotor disc is given by

Pw =
1

2
ṁv2 =

1

2
ρπR2v3 (2.4)

where ṁ is the mass flow of the wind, v is the speed of the wind, ρ is the air
density and R is the radius of the rotor disc.

Only a fraction of the available power Pw can be converted to rotor power Pr.
The ratio is given by the power coefficient CP

Pr = PwCP (2.5)

CP have a theoretical upper limit of 16/27 ≈ 0.593 known as the Betz limit. This
is due to the fact the wind cannot be completely drained of energy, otherwise the
wind speed at the rotor front would reduce to zero and the rotation of the rotor
would stop. It can be noted that modern wind turbines have a maximum power
coefficient of about 0.5, which is considered to be the optimum for standard
design horizontal axis wind turbines. The aerodynamic torque exerted by the
wind on the rotor is given by

Qr =
1

Ωr

Pr (2.6)

Besides the aerodynamic torque the wind turbine is also influenced by the thrust
force Qt exerted by the wind on the tower and rotor which is given by

Qt =
1

2
ρπR2v2CT (2.7)

where CT is the thrust force coefficient.

The aerodynamic coefficients of power CP and of thrust CT are given by com-
plicated measurements and calculations, which shall not be discussed here. In
quasi-stationarity, i.e a steady-state mass flow, the coefficients are functions of
the rotor blade pitch angle θ, the rotor rotation speed Ωr and the wind speed.
The concept of tip-speed-ratio λ is introduced for simpler a notation

λ ≡
v

ΩrR
(2.8)



12 Modeling

R

φr

θ

Figure 2.3: Rotor model. The blue circle represents the rotor disc abstraction.
The gray blades are out of plane deflections, which are not modeled in this
project
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Leading to the coefficients variable dependencies can be written as CP (θ, λ) and
CT (θ, λ). It should be noted that in some parts of the literature the tip-speed-
ratio is defined as the inverse of the definition given here.

2.2.1.1 Linear aerodynamic torque

The nonlinear rotor torque is given by eq. (2.6)

Qr =
Pr

Ωr

=
1
2ρπR2v3

rCP ( vr

ΩrR
, θ)

Ωr

(2.9)

The rotor torque has to be linearized, around a linearization point denoted with
subscript 0, to implement linear control strategies on the HAWT. The notation
is the same as in Jannerup and Sørensen (2000). Where the subscript 0 denotes
the linearization points.

Qr0 =
Pr0

Ωr0

=

1
2ρπR2vr

3
0CP ( vr0

Ωr0R
, θ0)

Ωr0

(2.10)

The linearization is done with a first order Taylor series expansion of Qr with
respect to its parameters vr, Ωr and θ. The ∆ denotes the difference between
the real variable and the linearization variable (e.g. ∆Ωr = Ωr − Ωr0).

Qr
∼= Qr0 +

∂Qr

∂Ωr

∣
∣
∣
∣
Ωr0

· ∆Ωr +
∂Qr

∂θ

∣
∣
∣
∣
θ0

· ∆θ +
∂Qr

∂vr

∣
∣
∣
∣
vr0

· ∆vr (2.11)

giving the direct term of a linearized state space model

∆Qr
∼=

[

∂Qr

∂Ωr

∣
∣
∣
Ωr0

∂Qr

∂θ

∣
∣
∣
θ0

∂Qr

∂vr

∣
∣
∣
vr0

]




∆Ωr

∆θ
∆v



 (2.12)

and the individual partial derivatives of eq. (2.11) are

∂Qr

∂Ωr

∣
∣
∣
∣
Ωr0

=
1

Ωr0

∂Pr

∂Ωr

∣
∣
∣
∣
Ωr0

−
Pr0

Ωr0
2 (2.13)

∂Qr

∂θ

∣
∣
∣
∣
θ0

=
1

Ωr0

∂Pr

∂θ

∣
∣
∣
∣
θ0

(2.14)

∂Qr

∂vr

∣
∣
∣
∣
vr0

=
1

Ωr0

∂Pr

∂vr

∣
∣
∣
∣
vr0

(2.15)
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the partial derivatives of Pr (given in eq. (2.5)) are

∂Pr

∂Ωr

∣
∣
∣
∣
Ωr0

=
1

2
ρπR2vr0

3 ∂CP

∂λ

∣
∣
∣
∣
λ0

·
∂λ

∂Ωr

∣
∣
∣
∣
Ωr0

(2.16)

∂Pr

∂θ

∣
∣
∣
∣
θ0

=
1

2
ρπR2vr0

3 ∂CP

∂θ

∣
∣
∣
∣
θ0

(2.17)

∂Pr

∂vr

∣
∣
∣
∣
vr0

=
1

2
ρπR23vr0

2CP 0 + vr0
3 ∂CP

∂λ

∣
∣
∣
∣
λ0

·
∂λ

∂vr

∣
∣
∣
∣
vr0

(2.18)

The partial derivatives of λ (given in eq. (2.8)) are

∂λ

∂Ωr

∣
∣
∣
∣
Ωr0

= −
vr

Ωr0
2R

(2.19)

∂λ

∂vr

∣
∣
∣
∣
vr0

=
1

Ωr0R
(2.20)

The partial derivatives (2.21) and (2.22) on the CP -curve Fig. (2.5) can be found
using any number of different numerical interpolation methods.

∂CP

∂λ

∣
∣
∣
∣
λ0

(2.21)

∂CP

∂θ

∣
∣
∣
∣
θ0

(2.22)

2.2.1.2 Linear aerodynamic thrust

The force exerted by the wind on the tower has to be linearized, around a lin-
earization point denoted with subscript 0, to implement linear control strategies
on the HAWT. This is done with a first order Taylor series expansion of Qt with
respect to its parameters vr, Ωr and θ

Qt
∼= Qt0 +

∂Qt

∂Ωr

∣
∣
∣
∣
Ωr0

· ∆Ωr +
∂Qt

∂θ

∣
∣
∣
∣
θ0

· ∆θ +
∂Qt

∂vr

∣
∣
∣
∣
vr0

· ∆vr (2.23)
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the linerization point Qt0 is given by Qt(Ωr0, θ0, vr0) and the partial derivatives
of Qt (given in eq. (2.7)) are

∂Qt

∂Ωr

∣
∣
∣
∣
Ωr0

=
1

2
ρπR2vr0

2 ∂ct

∂λ

∣
∣
∣
∣
λ0

·
∂λ

∂Ωr

∣
∣
∣
∣
Ωr0

(2.24)

∂Qt

∂θ

∣
∣
∣
∣
θ0

=
1

2
ρπR2vr0

2 ∂ct

∂θ

∣
∣
∣
∣
θ0

(2.25)

∂Qt

∂vr

∣
∣
∣
∣
vr0

=
1

2
ρπR22vr0ct0 + vr0

2 ∂ct

∂λ

∣
∣
∣
∣
λ0

·
∂λ

∂vr

∣
∣
∣
∣
vr0

(2.26)

The partial derivatives of λ (given in eq. (2.8)) are already given in eq. (2.19)
and eq. (2.19).

The partial derivatives (2.27) and (2.28) on the CT -curve Fig. (2.6) can be found
using any number of different numerical interpolation methods.

∂CT

∂λ

∣
∣
∣
∣
λ0

(2.27)

∂CT

∂θ

∣
∣
∣
∣
θ0

(2.28)

2.2.1.3 Omitted aerodynamic phenomena

As mentioned earlier the aerodynamic coefficients are only valid under the as-
sumption of a steady-state mass flow of the air. In reality the mass flow does
not settle to a new equilibrium infinitely fast during a transition and contribu-
tions from the dynamics of the fluid (air) should be added to the coefficients.
These contributions are significant and lead to an aerodynamic dampening of
the interaction between the wind and the rotor. If the blades are pitching
fast or even oscillating the actual coefficients might differ significantly from the
quasi-stationary coefficients. Hence, care should be taken not to induce such a
situation during control of the wind turbine.

The rotor blades are bended backwards in steady state operation. This means
the blades are not rotational symmetric with regards to their masses and when
pitched this gives rise to oscillations in both blades and tower. This oscillating
behavior also disrupts the quasi-stationary assumptions of the power and thrust
coefficients.

Another significant phenomenon is the aerodynamic shadow of the tower. It is
especially apparent on new wind turbines with tubular steel towers as opposed
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to older type lattice towers. As the blades pass by the tower, they enter an area
of lower wind speed which gives rise to periodic disturbance correlated in time
with the rotor speed.

And finally as mentioned the wind section, the wind shear is also omitted from
the model.

2.2.2 Electrical generator

The mechanical power captured by the rotor is transfered via the drive train
shaft to electrical generator. The generator impose a electrical counter torque
on the drive shaft and thereby extract electrical power.

Pr = Pm = ΩgQg (2.29)

However, due to less than perfect efficiency, the generator is only able to convert
some of the mechanical power to elecrical power. This is a simplification and
any losses in drivetrain bearings, gearbox etc are omitted and simply included
in this measure of efficiency

Pe = ηPm (2.30)

The generator is only able to operate within some limited bounds, generators
with a wider operating range are available but are increasingly expensive.

Ωgmin
≤ Ωg ≤ Ωgmax

(2.31)

0 ≤ Pe ≤ Pnom (2.32)

The electrical counter torque is also subjected to constraints. These constraints
are discussed in subsection 2.2.6 on page 23.

2.2.2.1 Linear generator

Pe
∼= Pe0 +

∂Pe

∂Ωg

∣
∣
∣
∣
Ωg0

· ∆Ωg +
∂Pe

∂Qg

∣
∣
∣
∣
Qg0

· ∆Qg (2.33)
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where

∂Pe

∂Ωg

∣
∣
∣
∣
Ωg0

= Qg0 (2.34)

∂Pe

∂Qg

∣
∣
∣
∣
Qg0

= Ωg0 (2.35)

2.2.3 Flexible drivetrain shaft

The driveshaft transfers power from the rotor to the generator. In steady state
operation the gear ratio between the rotor and the generator are given by a
constant. The gear is assumed free of losses.

Ωg = ΩrNg (2.36)

The driveshaft on the rotor side is assumed flexible while the driveshaft on the
generator side is assumed rigid. This leads to a dynamic angular displacement,
between the angle of the rotor φr and the angle of the generator φg, in normal
operation The angular velocities are derivatives of the angles and to simplify
notation, the following definitions are introduced

Ωr ≡ φ̇r Ωg ≡ φ̇g φ∆ ≡ φr −
φg

Ng

φ̇∆ ≡ Ωr −
Ωg

Ng

The mechanical flexibility of the rotor side driveshaft is modeled as a rotational
2-mass, 1-spring, 1-damper system where the physical properties on the gener-
ator side of the gear side translated into physical properties on the rotor side of
the gear.

The mechanical equations for the system are (Larsen and Mogensen, 2006)) ,
see Fig. (2.7)

Qr = IrΩ̇r + φ̇∆Ds + φ∆Ks (2.37a)

−QgNg = IgN
2
g

Ω̇g

Ng

− φ̇∆Ds − φ∆Ks (2.37b)

where the angular displacement in stationary mode (φ̈r = 0, φ̈g = 0 and φ̇∆ = 0)
is

φ∆0 =
Qr

Ks

=
QgNg

Ks

(2.38)
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Eq. (2.37) can be written in a state space formulation





Ω̇r

Ω̇g

φ̇∆



 =






−Ds

Ir

Ds

IrNg
−Ks

Ir

Ds

IgNg
− Ds

IgN2
g

Ks

IgNg

1 − 1
Ng

0










Ωr

Ωg

φ∆



+





1
Ir

0

0 − 1
Ig

0 0





(
Qr

Qg

)

(2.39)

To determine the parameters of the driveshaft in Eq. (2.37) the generator side
of the driveshaft is be fixed, i.e. φg = 0, φ̇g = 0 and φ̈g = 0. This enables
the identification of Ks,Ds and Ir. These conditions in conjunction with Eq.
(2.37a) gives

Qr = Irφ̈∆ + Dsφ̇∆ + Ksφ∆ (2.40)

The simulations on the HAWC2 model seen in Fig. (2.8) is used two determine
the parameters of the approximating 2. order model. The approach is elaborated
in appendix B.
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Figure 2.7: Mechanical drive shaft model
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2.2.4 Flexible tower

The force (a.k.a thrust) Qt (eq. (2.7)) exerted by the wind on the wind turbine
(mainly the rotor) causes the flexible tower to bend and sway. To simplify the
model only the back and forth motion of the nacelle is modeled. The displace-
ment of the nacelle from its original position is denoted xt.

The tower is modeled as spring-mass-damper system not influenced by gravity
(Larsen and Mogensen, 2006), see Fig. (2.9).

Qt = Mtẍt + Dtẋt + Ktxt (2.41)

where the displacement of the nacelle in steady state (ẍt = 0 and ẋt = 0) is

xt0 =
Qt

Kt

(2.42)

Eq. (2.41) can be written in a state space formulation

(
ẋt

ẍt

)

=

[
0 1

−Kt

Mt
−Dt

Mt

](
xt

ẋt

)

+

[
0
1

Mt

]

Qt (2.43)

The swaying movement of the nacelle changes the relative wind speed on the
rotor. If the nacelle moves forward the relative wind speed is higher than normal
and vice versa.

vr = v − ẋt (2.44)

The simulations on the two HAWC2 models seen in Fig. (2.10(a)) and Fig. (2.10(b))
are used two determine the parameters of the approximating 2. order model.
The approach is elaborated in appendix B. The fact that they don’t match
the model indicates that the real towers have more complex dynamics than the
approximation but that is expected and will hopefully not prove to be a problem.
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xt

QtKt

Dt
Mt

Figure 2.9: Mechanical tower model

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x1

Time [s]

x
t

[m
]

− Simulink −−− HAWC2

(a) Mounted tower

0 20 40 60 80 100 120 140 160 180 200 220

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time [s]

x
t

[m
]

− Simulink −−− HAWC2

(b) Floating tower

Figure 2.10: Step responses of nacelle displacements approximated to a 2. order
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2.2.5 Collective pitch actuator

(This model is taken from Larsen and Mogensen (2006)). The pitch of the
rotor blade is controlled by a hydraulic or electric motor. The actuator can be
described by a 2. order transfer function where θref is the desired pitch and θ
is the actual pitch

ω2
nθref = θ̈ + 2ζωnθ̇ + ω2

nθ (2.45)

giving the state equation
(

θ̇

θ̈

)

︸︷︷︸

ẋθ

=

[
0 1

−ω2
n −2ζωn

]

︸ ︷︷ ︸

Aθ

(
θ

θ̇

)

︸︷︷︸

xθ

+

[
0

ω2
n

]

︸ ︷︷ ︸

Bθ

θref (2.46)

the pitch actuator is only approximated as a linear system and is in reality
subject to several constraints.

θmin ≤ θ ≤ θmax (2.47)

θ̇min ≤ θ̇ ≤ θ̇max (2.48)

θ̈min ≤ θ̈ ≤ θ̈max (2.49)

The consequences of these constraints are seen in Fig. (2.11).

2.2.6 Generator torque actuator

(This model is taken from Larsen and Mogensen (2006)). The electromagnetic
torque of the generator can be described by a 1. order transfer function where
Qgref

is the desired torque and Qg is the actual torque

Qgref
= τQ̇g + Qg (2.50)

giving the state equation
(

Q̇g

)

︸ ︷︷ ︸

ẋQg

=
[
− 1

τ

]

︸ ︷︷ ︸

AQg

Qg
︸︷︷︸

xQg

+
[

1
τ

]

︸︷︷︸

AQg

Qgref
(2.51)

the torque actuator is only approximated as a linear system and is in reality
subject to several constraints.

Qgmin
≤ Qg ≤ Qgmax

(2.52)

Q̇gmin
≤ Q̇g ≤ Q̇gmax

(2.53)

The consequences of these constraints are seen in Fig. (2.12).
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2.3 Level of modeling detail

The controller design model can have various levels of detail. Here is chosen a
model with drive shaft torsion and nacelle displacement. That level of detail
is denoted wt2, whereas wt1 only includes the drive shaft and wt0 assumes all
structure to be rigid. Combing the tower (2.43), the linearized thrust (2.23)

(
ẋt

ẍt

)

=

[
0 1

−Kt

Mt
−Dt

Mt

](
xt

ẋt

)

+

[
0

1
Mt

∂Qt

∂Ωr

∣
∣
∣
Ωr0

]

Ωr +

[
0

1
Mt

∂Qt

∂θ

∣
∣
∣
θ0

]

θ +

[
0

1
Mt

∂Qt

∂v

∣
∣
∣
v0

]

vr (2.54)

and the relatve wind speed (2.44) gives

(
ẋt

ẍt

)

=

[
0 1

−Kt

Mt
−Dt

Mt
− 1

Mt

∂Qt

∂v

∣
∣
∣
v0

](
xt

ẋt

)

+

[
0

1
Mt

∂Qt

∂Ωr

∣
∣
∣
Ωr0

]

Ωr +

[
0

1
Mt

∂Qt

∂θ

∣
∣
∣
θ0

]

θ +

[
0

1
Mt

∂Qt

∂v

∣
∣
∣
v0

]

v (2.55)

Combing the driveshaft (2.37), the linearized rotor torque (2.11), the tower
(2.41), the linearized thrust (2.23) and the relatve wind speed (2.44) gives









Ω̇r

Ω̇g

φ̇∆

ẋt

ẍt









︸ ︷︷ ︸

ẋwt2

=












−Ds

Ir
+ 1

Ir

∂Qr

∂Ωr

∣
∣
∣
Ωr0

Ds

IrNg
−Ks

Ir
0 − 1

Ir

∂Qr

∂v

∣
∣
∣
v0

Ds

IgNg
− Ds

IgN2
g

Ks

IgNg
0 0

1 − 1
Ng

0 0 0

0 0 0 0 1
1

Mt

∂Qt

∂Ωr

∣
∣
∣
Ωr0

0 0 −Kt

Mt
−Dt

Mt
− 1

Mt

∂Qt

∂v

∣
∣
∣
v0




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





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Awt2


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



Ωr

Ωg

φ∆

xt

ẋt









︸ ︷︷ ︸

xwt2

+











1
Ir

∂Qr

∂θ

∣
∣
∣
θ0

0
0
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1
Mt

∂Qt
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∣
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∣
θ0











︸ ︷︷ ︸

Bθ
wt2
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


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

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0
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Ig

0
0
0







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︸ ︷︷ ︸

B
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
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





1
Ir

∂Qr
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


︸ ︷︷ ︸

Bv
wt2

v (2.56)
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the wind turbine model is then augmented with actuator models





ẋwt2

ẋθ

ẋQg





︸ ︷︷ ︸

ẋ

=





Awt2

[
Bθ

wt2 0
]

B
Qg

wt2

0 Aθ 0
0 0 AQg





︸ ︷︷ ︸

Ac





xwt2

xθ

xQg





︸ ︷︷ ︸

x

+





0 0
Bθ 0
0 BQg





︸ ︷︷ ︸

Bc

(
θref

uref

)

+





Bv
wt2

0
0



 v (2.57)



Chapter 3

Full wind range analysis of the
HAWT

This chapter will explorer the stationary and dynamic properties of the wind
turbine without actuator models over the full operational wind range.

3.1 Operation modes

The objective for controlling a wind turbine is to maximize power production
minimizing mechanical stress on the components of the wind turbine. At least
between the cut-in wind speed v1 and the power max wind speed v4. In the
interval

v = [v1; v4] (3.1a)

determine

(Ω∗
r(v), θ∗(v)) = argmax

(Ω∗

r(v),θ∗(v))

Pr(Ωr, θ, v) (3.1b)

subject to

Ωgmin
≤ ΩrNg ≤ Ωgmax

(3.1c)

0 ≤ ηPr ≤ Pnom (3.1d)
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after v4 the objective is to keep primary controlled variables at their nominal
values until the cut-out wind speed is reached. The wind turbine has different
modes of operation depending on the wind speed and the properties of the wind
turbine. The limitations of operation are determined by the properties of the
generator, it is only able to work within a limited range of generator speed Ωg

and generator power Pe. The wind turbine can operate in continuous mode
within these bounds

Region v Ωg ηPr

I (v1, v2) Ωgmin
(0, PL)

II (v2, v3) (Ωgmin
,Ωgmax

) (PL, PH)
III (v3, v4) Ωgmax

(PH , Pnom)
IV (v4, ...) Ωgmax

Pnom

Table 3.1: Operation modes

The critical wind speeds are the wind speeds where the wind turbine changes
form one mode of operation to another.

ηPr(v1,Ωrmin, θ∗) = 0 (3.2)

v2 = ΩrminRλ∗ (3.3)

v3 = ΩrmaxRλ∗ (3.4)

ηPr(v4,Ωrmin, θ∗) = Pnom (3.5)

v1 v2 v3 v4

2.7 [m/s] 6.5 [m/s] 11.4 [m/s] 11.6 [m/s]

Table 3.2: Critical wind speed

The values of the table show a very narrow region III that could be widened by
lowering the generator speed or increasing the generator power, it as arguable
whether or not it should even be included in the control design but for a sense
of completion it has been left untouched.

The figures Fig. (3.1), Fig. (3.2), Fig. (3.3) and Fig. (3.4) show the quasi-
stationary values of the variables depicted over wind speed sweep for the floating
wind turbine the only difference between these and those for the mounted wind
turbine is in Fig. (3.3) where the nacelle displacement is significantly smaller.
There a two versions one with an optimal pitch and one with a fixed pitch. The
fixed pitch version is the one to be used in this project to simplify the control
problem, this will also be explained in chapter 4.
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3.2 Dynamic analysis of the HAWT

A sweep of the eigenvalues of the time continuous system gives the following
results for the two wind turbines. Fig. (3.5) and Fig. (3.6) shows plots of the
eigenvalues of the floating wind turbine. For both wind turbines the tables and
figures show that λ1 and λ2 are fairly constant whereas λ4 and λ5 are varying
with wind speed to some degree but the real nonlinearity is λ3 which varies a
lot with respect to the wind speed.

v λ1, λ2 λ3 λ4, λ5

5 −9.5786 ± 10.4259i −0.0220 −0.0698 ± 0.3332i
10 −9.5796 ± 10.4250i −0.0415 −0.0982 ± 0.3461i
15 −9.5818 ± 10.4228i −0.1162 −0.0914 ± 0.3041i
20 −9.5868 ± 10.4180i −0.29575 −0.0573 ± 0.2904i

Table 3.3: Eigenvalues of floating wind turbine

v λ1, λ2 λ3 λ4, λ5

5 −9.5786 ± 10.4259i −0.0223 −0.0932 ± 1.9767i
10 −9.5796 ± 10.4250i −0.0470 −0.1205 ± 1.9786i
15 −9.5818 ± 10.4228i −0.1032 −0.1231 ± 1.9713i
20 −9.5868 ± 10.4180i −0.2295 −0.1153 ± 1.9659i

Table 3.4: Eigenvalues of fixed wind turbine

The control theory used in this project is time discrete and the continuous
time formulation of the linear dynamic systems has to be time-discretized. The
sampling time is chosen to be Ts = 0.02s giving a sampling frequency of fs =
50Hz. From (Poulsen, 2007) we have the zero-order-hold time discretization of
a continuous time system

A = eAcTs (3.6)

B =

∫ Ts

0

eAcsBcds (3.7)

Considering that the fastest eigenvalue in the model is λ3 = −0.02 giving a
eigenfrequency of f = 2π

|−0.02| ≈ 314Hz the sampling time might not be suffi-

ciently fast, but its has not been a problem in this project, since the eigenvalue
belongs to the aerodynamic pitching dynamics which are not active at the low
wind speeds.
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Chapter 4

Control strategies

This chapter will discuss the control strategies for the different operation modes.
The control problem of a plant can be divided into different levels.

• The strategic level is where decisions concerning overall operation are
made. This could be if the wind farm or a part of it should shut down due
to repairs or the production of electricity is greater than the consumption.
The time constants at this level are typically in the range of hours or days.

• The tactical level is where local decisions concerning the local operation
are made. This could be to shut down the wind turbine or to switch from
one mode of operation to another. The time constants at this level are
typically in the range of minutes or seconds.

• The operational level is where the actual control of the plant is being
performed. This could be a PID or LQ controller. The time constant at
this level are typically in the range of milliseconds.

In this project attention will only be on the tactical and operational levels of
control. Figures showing system blocks at either the tactical or operational level
are colored respectively magenta and cyan.
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4.1 The tactical level

The tactical supervisor governs which of the control objectives should be ac-
tive. The supervisor switches between the operation modes with the switching
conditions seen in Fig. (4.1). The setup is inspired by (Hammerum, 2006) but
additional criteria has been added to avoid unstable switching between the op-
eration modes.

The two power levels PL and PH are the power levels at the transition between
region I to region II and from region II to region III which can be seen in
Fig. (3.1)

The primary objective of controlling the HAWT is of course to capture as much
power from the wind as possible. But pursuing this objective without regards to
other factors might prove to be impractical. In the power maximizing regions,
i.e. I, II and III, the operating point on the CP curve is placed on the flat
top of the CP curve. It therefore customary to avoid pitching control at these
operating modes to prevent the pitch actuators from being used without much
effect. Furthermore linear control at the ridge of the CP curve might prove
to be fatal if the wind turbine enters the stall region Fig. (2.4) and the wind
turbine thus reacts opposite of what is expected. It is therefore decided that
the collective pitching of the rotor blades should not be used in regions I, II and
III. Instead the pitch angle is kept constant

θ∗ = 0◦ (4.1)

which is used as a switching criteria of the tactical supervisor when the wind
turbine goes from region IV to region III.

The power values at the borders of region II are

PL = η
1

2
ρR5λ∗3Ωr

3
min (4.2)

PH = η
1

2
ρR5λ∗3Ωr

3
max (4.3)



4.1 The tactical level 35

I II III IV

Pe ≥ Pnom

Ωg ≥ Ωgmax

Pe ≥ PL

θ ≤ θ∗Pe ≤ PHΩg ≤ Ωgmin

Ωg > Ωgmin

and

and
Ωg ≤ Ωgmax

and
Ωg ≥ Ωgmax

and
Ωg ≤ Ωgmax

Figure 4.1: Mode transition criteria for the tactical supervisor
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4.2 The operational level

At the operational level the control objectives for each operation mode has
to defined. In this project they are simply defined by solely focusing efficient
power capture within the allowed mechanical limits. Other operation modes
could focus on these objectives as well as for instance reducing noise or fatigue
damage. There could for instance be several region IV modes where slightly
different objectives where defined for each of them depending on the time of
day etc. The different control objectives could either be controlled different
controllers with different control objectives, i.e. hybrid controller Fig. (4.2),
or by a single controller with different control objectives, i.e. multi objective
controller Fig. (4.3). The latter could be a nonlinear or gain scheduling controller
but that path will be not be explored in this project.

4.2.1 Pitch controller for region I, II and III

In region I, II and III the pitch should be fixed. A separate pitch controller
will control the pitch and keep it at the fixed set point. This especially useful
when the controller switches from region IV to region III, where the pitch is in
downward motion which should be carefully stopped and kept steady at the set
point.

r = θ = θ∗ = 0◦ (4.4)

u = θref (4.5)

4.2.2 Low region controller - KI

In region I the wind is to slow to ensure an optimal CP while keeping the
rotational speed of the generator within its allowed limits. Hence the rotational
speed should be kept constant at its lower limit to capture as much wind energy
as possible. The wind turbine is only controlled with the generator torque.

r = Ωg = Ωgmin
(4.6)

u = Qgref
(4.7)
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4.2.3 Middle region controller - KII

In region II the primary operational objective is maximize wind power capture
by optimizing CP . Since no measurement of the effective wind speed is available
another approach has to implemented.

r = Pe = η P ∗
r (v) (4.8)

u = Qgref
(4.9)

unless the wind speed is being measured or estimated thats objective is difficult
to obtain directly.

A widely used method known as PΩ control can be used to track the optimal
power production. Under optimal operation the following equation holds

P ∗
r (v) =

1

2
ρπR2v3C∗

P (4.10)

this imply control at the maximum of the CP -curve, i.e. C∗
P = CP (λ∗, θ∗). Since

the pitch is fixed at this region only the tip-speed-ratio can be used to maximize
CP , i.e. λ∗ = v

Ω∗

rR
. This results in

P ∗
r (v) =

1

2
ρπR5λ∗3

︸ ︷︷ ︸

K2

Ω∗
r
3 (4.11)

this means that the optimal power reference can be tracked by a function de-
pendent on the rotor speed

P ∗
r (v) ≈ P ∗

r (Ωr) = K2 Ω3
r (4.12)

An adaptive method of this approach have been suggested (Johnson et al., 2004)

Region II is the only region with a variable reference and the method sanity of
the method is validated in the illustrative example at the end of chapter 5.

4.2.4 High region controller - KIII

In region III the upper limit of the generator rotational speed is reached but the
upper limit of generator is not. This means that the controller should keep the
generator speed at is maximum to obtain as much power production as possible
in order to optimize CP .

r = Ωg = Ωgmax
(4.13)

u = Qgref
(4.14)
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4.2.5 Top region controller - KIV

In region IV both the upper power and upper speed limit of the generator is
reached and the control objective is to keep both these stable at their desired
set points. Both the pitch and the generator torque is now used to control the
wind turbine.

r =

(
Ωg

Pe

)

=

(
Ωgmax

Penom

)

(4.15)

u =

(
θref

Qgref

)

(4.16)

it is typically in this region that more advanced control methods is developed
since it is a multiple-input multiple-output control problem.



Part II

Theory of methods





Chapter 5

Unconstrained Linear
Quadratic Control

In this chapter an offset-free unconstrained linear quadratic controller is in-
troduced. The offset-free mechanisms of this particular setup (known as dis-
turbance estimation and origin shifting) requires and state observer to obtain
offset-free control. The setup is widely used in MPC implementations since it
enables a method to respect constraints even under the influence of disturbances
and model/plant mismatch, as seen in chapter 7.

5.1 The standard linear quadratic problem

Linear quadratic control (LQ) offers a systematic approach to control plants with
multiple inputs and multiple outputs (MIMO) and with cross coupling states.
The control problem is stated as quadratic minimization problem that should
resemble the real control objectives of the plant. The minimization problem can
be formulated in discrete- or continuous time and describes the plant progress
within a given future time horizon. In the discrete time case the cost function
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J , with the horizon sample length N , of the minimization problem is

J(k) =

N+k∑

i=k

‖zi‖
2
W =

N+k∑

i=k

(Exi + Fui)
T W(Exi + Fui) =

N+k∑

i=k

xT
i ET WE
︸ ︷︷ ︸

Q1

xi + uT
i FT WF
︸ ︷︷ ︸

Q2

ui + 2xT
i ET WF
︸ ︷︷ ︸

Q12

ui (5.1)

The problem should be formulated such that deviation from the desired op-
erating point of the respective optimization variables is penalized by the cost
function. To prioritize the minimization of the individual variables a quadratic
weight is placed on of them where a high weight indicates that the variable
should be minimized heavily whereas a low weight or even no weight at all in-
dicates the deviation of the variable away from the origo is unimportant. The
unconstrained dynamic optimization problem can be solved using dynamic pro-
gramming. This entails dividing the problem into a sequence of unconstrained
minimization problems, one at each sample, starting from the future incident
i = N + 1 and then iterating through the minimization problems until i = 0.
This approach is described in (Poulsen, 2007, page 100)

The minimal value of the criterion

V (xk) = min
−→u k

J(k) (5.2)

is given by the (Bellmans equation) recursion

V (xi) = min
ui

{J(i)} = min
ui

{‖zi‖
2
W + V (xi+1)} (5.3)

There is no loss beyond the horizon

V (xN+1) = 0 (5.4)

this means that the minimal cost at i = N is given by

uN = 0 (5.5)

thus giving the the terminal cost (terminal costs can also be defined indepen-
dently, from the rest of the cost function)

V (xN ) = xT
NQ1xN (5.6)

a candidate value function is applied

V (xi) = xT
i Sixi (5.7)
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inserting the candidate function (5.7) into the recursion (5.3) gives the inner
part of the minimization

J(i) = ‖zi‖
2
W + xT

i+1Si+1xi+1 = xT
i

[
AT Si+1A + Q1

]
xi

+ uT
i

[
BT Si+1B + Q2

]
ui + 2xT

i

[
AT Si+1B + Q12

]
ui (5.8)

the optimal solution to minimization problem is given by

0 =
∂J(i)

∂ui

= 2uT
i

[
BT Si+1B + Q2

]
+ 2xT

i

[
AT Si+1B + Q12

]
(5.9)

the control law with the optimal feed back gain Ki which minimizes J(i) is then

ui = −
[
BT Si+1B + Q2

]−1 [
BT Si+1A + Q12

T
]

︸ ︷︷ ︸

Ki

xi (5.10)

inserting the optimal control law (5.10) into the inner part (5.8) gives the min-
imal cost

V (xi) = xT
i

[
AT Si+1A + Q1

]
xi − xT

i

[
AT Si+1B + Q12

]
Kixi (5.11)

this leads to the recursive discrete-time Riccati equation

Si = Q1 + AT Si+1A −
[
AT Si+1B + Q12

]
Ki (5.12)

The minimal total loss of the optimal control strategy is given by the recursion
(5.3) and the candidate function (5.7)

V (xk) = min
−→u k

J(k) = xT
k Skxk (5.13)

For a infinite horizon, i.e. N → ∞, the recursive discrete Riccati equation
becomes an algebraic discrete Riccati equation since SN = SN+1

J(k) =

∞∑

i=k

‖zi‖
2
W (5.14a)

K =
[
BT SB + Q2

]−1 [
BT SA + Q12

T
]

(5.14b)

S = Q1 + AT SA −
[
AT SB + Q12

]
K (5.14c)

The minimal loss of the optimal control strategy is then

V (xk) = min
−→u k

J(k) = xT
k Sxk (5.15)

ui = −Kxi for i = (k, . . . ,∞) (5.16)
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giving the closed loop

xk+1 = Φxk; Φ = A − BK (5.17)

The infinite horizon can be shown to be stabilizing either by Lyapunov stability
theory or by invariant set theory. The latter approach will be demonstrated
here. A set is invariant if, once a state enters that set it can no longer leave.
So, for instance, a set X is invariant if

xk ∈ X ⇒ xk+1 ∈ X (5.18)

this implies that

xk ∈ X ⇒ xk+i ∈ X ; ∀i > 0 (5.19)

a good candidate for such an invariant set is an ellipsoidal set Xe ⊂ X based on
the hessian S determined from the Riccati equation eq. (5.14c)

Xe = {x|xT Sx ≤ c)}; S > 0 (5.20)

where c is the outer rim of the invariant set. This is similar to local stability in
Lyapunov stability theory. The ellipsoidal set is invariant if

ΦT SΦ − S ≤ 0 (5.21)

shown by inserting eq. (5.17) into eq. (5.18)

xT
k Sxk = c ⇒ xT

k+1Sxk+1 ≤ c

xT
k Sxk = c ⇒ xT

k ΦT SΦT xk ≤ c

= c ⇒ xT
k [ΦT SΦ − S]xk ≤ 0; ∀xk ∈ X

≡ ΦT SΦ − S ≤ 0

(5.22)

if no constraints are present then the invariant set can be infinitely large, i.e.
c → ∞. Similar to global stability in Lyapunov stability theory. The results
presented here are explained in (Rossiter, 2003) and (Blanchini, 1999).

5.2 Offset-free reference tracking

Closed-loop performance of model-based controllers is directly related to model
accuracy. In practice, modeling error and unmeasured disturbances can lead to
a steady-state offset between the desired output and the measured output unless
precautions are taken in the control design. In this section two precautionary
measures will be discussed: 1. Reference tracking error integration Fig. (5.1) and
2. Shifting of stationary points based on references and modeled disturbances
Fig. (5.2). It will discussed why the latter approach is superior, especially when
applied to constrained MPC.
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5.2.1 Reference error integration (LQI)

A simple way of ensuring offset-free reference tracking is to integrate the error
between the reference signal and the output signal, augmenting the system with
the reference error integration state and minimize the augmented state in the
controller cost function. This type of LQ controller is sometimes called an LQI
controller where I means integration of the reference error. The LQI approach is
similar to that of the integral part of a traditional PI(D) controller. Reference
tracking error integration has several major shortcomings: Integrator wind-
up when the reference is unreachable, e.g. when another controller is active.
Furthermore, the computational burdens that the augmented system system
puts on the control algorithms increase with the order of the model.

5.2.2 Disturbance modeling and origin shifting controller

This approach was introduced in (Kwakernaak and Sivan, 1972) and have re-
cently been discussed in (Muske and Badgwell, 2002) and (Pannocchia and
Rawlings, 2003) where disturbance modeling has been applied to MPC. Dis-
turbance modeling offers a different approach to achieve offset-free control. The
method involves augmenting the plant model to include a constant step distur-
bance model. The unmeasured disturbances are estimated with an estimator
and their undesired influence on the plant is negated by shifting the origin of
the controller to a new operating point that ensures stable offset-free control of
the plant.

5.2.2.1 Nonzero reference tracking

Before the disturbance rejection concept is introduced, the concept of origin
shifting is presented with nonzero reference tracking. This method works on
a nominal model that matches an undisturbed plant perfectly but does not
guarantee offset-free set point tracking otherwise. The variables are denoted
with subscript t to indicate which steady state target value they should have to
be at a equilibrium point for the desired reference. The steady state equations
of the system are

xtk = Axtk + Butk (5.23)

ytk = Cxtk + Dutk (5.24)

rtk = ytk (5.25)
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Not all outputs can be steered to any number of linear independents references.
In general it is not possible to steer more outputs than there is linear independent
inputs. Thus only a subset of the outputs should be considered when deciding to
track references. The reference controlled outputs yr should be steered toward
the references r. The subset of outputs is defined by the transformation matrix
H

rk = yrk = H(Cxtk + Dutk) (5.26)

giving the linear reference tracking problem known as target calculation or origin
shifting calculation

[
A − I B
HC HD

](
xtk

utk

)

=

(
0
rk

)

(5.27)

which can only be solved the if problem has full rank and thus as many inputs
and controlled outputs (Pannocchia and Rawlings, 2003, eq. (11))

rank

[
A − I B
HC HD

]

= nx + nr (5.28)

The shifted variables are denoted with a subscript s are defined as the difference
between the real variables and the target variables giving the shifted optimiza-
tion variable

(z − zt)
︸ ︷︷ ︸

zs

= E (x − xt)
︸ ︷︷ ︸

xs

+F (u − ut)
︸ ︷︷ ︸

us

(5.29)

5.2.2.2 Disturbance model and estimator

The concept of constant step disturbance modeling can be used to counter actual
disturbances or model/plant mismatch. The disturbances can be modeled as
either constant input/state disturbances, i.e. d

xk+1 = Axk + Bddk + Buk + wxk (5.30a)

dk+1 = dk + wdk (5.30b)

or constant output disturbances, i.e. p

pk+1 = pk + wpk
(5.30c)

yk = Cxk + Cppk + Duk + wyk
(5.30d)
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which can be formulated as the nominal model augmented with the disturbances





xk+1

dk+1

pk+1





︸ ︷︷ ︸

ek+1

=





A Bd 0
0 I 0
0 0 I





︸ ︷︷ ︸

Â





xk

dk

pk





︸ ︷︷ ︸

ek

+





B
0
0





︸ ︷︷ ︸

B̂

uk +





wxk

wdk

wpk





︸ ︷︷ ︸

wek

(5.31a)

yk =
[
C 0 Cp

]

︸ ︷︷ ︸

Ĉ





xk

dk

pk



+
[
D
]

︸︷︷︸

D̂

uk + wyk
(5.31b)

where the state and output noise is assumed zero-mean Gaussian distributed
white noise with the variances vx, vd, vp and vy

wek ∈ N(0,Re); Re = diag (rxI rdI rpI) (5.32)

wyk
∈ N(0,Ry); Ry = ryI (5.33)

Deciding how to structure the augmented model can prove to be difficult. (Pan-
nocchia and Rawlings, 2003, Lemma 3) states that there should be as many
disturbances as there are measurement

nd + np = ny (5.34)

In order to obtain estimates leading to offset-free control the pair (A,C) should
be observable and the augmented system should have full rank (Pannocchia and
Rawlings, 2003, Theorem 1)

rank

[
A − I Bd 0

C 0 Cp

]

= nx + ny (5.35)

Even though this requirement ensure offset-free control, the task of structuring
a disturbance model still remains a problem. It should be noted that state
disturbances trust the measured state itself but not its relation to other states
and inputs. Output disturbances trust measured output but not the relation to
the states and inputs. These relations leads to a rule of thumb for disturbance
modeling

• State disturbances should be included in the disturbance model for each
directly measured state.

• Output disturbances should be included in the disturbance model for
each directly measured output that is not a state directly but a function
of states and inputs.
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Since the disturbances can’t be measured they have to be estimated. Ordinary
or predictive Kalman filters are appropriate candidates for such an estimation.
In this project outputs which are dependent on control signals are present and
the direct term in the output equation is thus not equal to zero, i.e. D 6= 0.
This leads to the predictive Kalman filter as the appropriate estimator since the
ordinary Kalman filter would have a problem regarding causality.

The steady-state predictive Kalman filter has the form of an optimal observer

êk+1 = Âêk + B̂uk + L(yk − ŷk) (5.36)

ŷk = Ĉêk + D̂uk (5.37)

and it seeks to minimize the covariance P = E{ẽT ẽ} of the one-step-ahead
estimation error ẽ

(ek+1 − êk+1)
︸ ︷︷ ︸

ẽk+1

= (Â − LĈ)ẽk + wek + Lwyk
(5.38)

The predictive Kalman gain is given by

L = ÂPĈT (ĈPĈT + Ry) (5.39)

where the covariance of the estimation error is given by the discrete-time alge-
braic Riccati equation

P = Re + ÂPÂT − ÂPĈT (ĈPĈT + Ry)−1ĈPÂT (5.40)

The design parameters of the Kalman filter is the state, disturbance and output
covariance. Ideally information about state and output noise variance should be
available but the noise variance of the unmeasured disturbances is not available.
So another rule of thumb is given instead. The values are relative and if infor-
mation about real state and output variance is available then the disturbance
variances should be dimensioned according to that.

• State variance should be small.

• State disturbance variance should be small to smooth out the distur-
bance compensation.

• Output disturbance variance should be larger than the state variance
if the state measurement are to trusted more than the linearized output
functions dependent of the states and inputs.

• Output variance should be small.
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The tuning rules presented here might be not make sense if the goal of the
estimator was to estimate a constant step disturbance. But that is not the
purpose of this estimator. The purpose is to compensate plant/model mismatch
where the plant might be nonlinear.

The influence of the estimated disturbances can be rejected by taking them into
account in the target calculation.

xtk = Axtk + Bdd̂k + Butk (5.41)

ytk = Cxtk + Cpp̂k + Dutk (5.42)

rk = yrk = Hytk (5.43)

[
A − I B
HC HD

](
xtk

utk

)

=

(

−Bdd̂k

rk − HCpp̂k

)

(5.44)

The unmeasured integrating disturbances are not controllable and there is no
point in including them in the dynamic optimization problem. Instead the orig-
inal controllable system should be object of optimization and the disturbances
should only be used to determine an offset-free equilibrium.

Giving the estimated and target optimization variable

ẑk = Ex̂k + Epp̂k + Fûk (5.45)

ztk = Extk + Epp̂k + Futk (5.46)

The origin shifted variables are redefined as the difference between the estimates
and the targets

(ẑk − ztk)
︸ ︷︷ ︸

zsk

= E (x̂k − xtk)
︸ ︷︷ ︸

xsk

+F (ûk − utk)
︸ ︷︷ ︸

usk

(5.47)
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5.3 Illustrative example

An illustrative example is given by a Matlab simulation in region II. The con-
troller is the full sensor KII controller given in chapter 8. The estimator is
tuned with 4 different tuning sets:

rx rd rp ry

s1 1e-6 0 1e6 1e-6
s2 1e-6 0 0 1e-6
s3 1e-6 1e-6 0 1e-6
s4 1e-6 1e-6 1e6 1e-6

Table 5.1: Estimator tuning sets

The figures Fig. (5.4), Fig. (5.5) and Fig. (5.6) indicates that all of the tuning
sets behave similar, on the surface at least. Fig. (5.4) also shows that CP is
maximized quickly after the step and the reference control law eq. (4.12) that
governs KII works as intended.

A closer look at the generator torque velocity Fig. (5.7) shows that s3 and s4

with low weights on the state disturbance estimations gives a slower/smoother
response unlike the dead beat response of s1 and s2. This is also reflected in
Fig. (5.8(b)) where the disturbance corresponding to the generator speed reacts
with a dead beat and smooth behavior for the same combination of tuning sets.

Fig. (5.9) shows that the sets s1 and s4 have the smallest overall estimation
error on the selected variables. This is because the output disturbance weights
are high and the output disturbance estimations are thus allows to react fast to
changes.

Overall s4 is chosen as the best suited tuning set since is gives good smooth
estimated which avoids dead beat control but is still able to track output dis-
turbances which is important in chapter 7 in order to respect output constraints.
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Figure 5.8: Disturbances
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Chapter 6

Model Predictive Control

In this chapter the concept of model predictive control (MPC) is presented.
MPC has traditionally found is application at the strategic level of plant control
(see chapter 4) because of its heavy computing load. But with the ongoing
development of powerful computers MPC can be implemented at the lower levels
of control which has faster time constants.

A model is either obtained by physical equations or by system responses from
e.g. step inputs. Known respectively as white- and black box modeling. The
model can also be a combination of the two, which naturally is called gray box
modeling. The complexity or order of the model is usually lower than the actual
plant to lighten the computational burden. Only the significant states of the
plant are modeled.

The behavior of the model is predicted based on past measurements and com-
puted future inputs.

6.1 Receding Prediction Horizon

In discrete time the receding prediction horizon constitutes the predictions of
the system for the next N samples, in continuous time the prediction horizon
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have a length T seconds. Only the discrete time case will be dealt with in this
project. The predictions are based on the model and current state properties as
well as any control inputs from the controller. In a time discrete and open-loop
paradigm the predictions would be given by the following equations

x̂k+i+1|k = f(x̂k+i|k,uk+i), 0 ≤ i ≤ N (6.1)

ŷk+i|k = g(x̂k+i|k,uk+i), 0 ≤ i ≤ N (6.2)

where

x̂k|k = xk (6.3)

The actual and predicted progress of a state x can be seen in Fig. (6.1). The state
x have until time t = k evolved by the influences of the system dynamics and any
inputs. The future predictions of the state should be controlled by a sequence
of control signals to a desired set-point, the computation of this sequence of
control signals is of course the objective of Model Predictive Control.

k k + N

Prediction horizon Unpredicted futureMeasured past

x̄ - set-point

x̂ - predicted state

x - past state x - actual future state

Figure 6.1: Prediction horizon

The actuation of that particular sequence of control signals might reveal that
the predicted states and the actual states in the future would differ. This could
be due to model/plant mismatch, unknown disturbances etc. With an ade-
quate model at least the initial predictions should correspond to the actual
state progress. The solution to this problem is to only actuate the first control
signal of the sequence and then at the next sample calculate a new sequence
of control signals based on the state at that time, hence using a receding hori-
zon. There exist many variations of this principle, e.g. the prediction horizon
is divided into a controlled horizon and an uncontrolled horizon and if any time
delays exist in the system these can also be incorporated into the framework.
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The predictions could be calculated using dynamic (Belman) programming as
in chapter 5 or the prediction problem can be formulated to a static problem
where the iterative predictions are gathered in one prediction vector denoted
with a −→. For a linear system the open-loop predictions can be written as

x̂k+1|k = Axk + Buk (6.4)

x̂k+2|k = Ax̂k+1|k + Buk+1 = A2xk + ABuk + Buk+1 (6.5)

... (6.6)

x̂k+N |k = Ax̂k+N−1|k + Buk+N−1 = ANxk + AN−1Buk + . . . + Buk+N−1

(6.7)

where the predicted states in the prediction horizon can be written in matrix
form










x̂k|k

x̂k+1|k

x̂k+2|k

...
x̂k+N |k










︸ ︷︷ ︸

x
−→k

=










I
A
A2

...
AN










︸ ︷︷ ︸

A
−→

xk +










0 0 . . . 0
B 0 . . . 0

AB B . . . 0
...

...
. . .

...
AN−1B AN−2B . . . 0










︸ ︷︷ ︸

B
−→










uk

uk+1

uk+2

...
uk+N










︸ ︷︷ ︸

u
−→k

(6.8)

If the system has unstable modes then the computations of the open-loop pre-
dictions might give cause to numerical problems for large prediction horizons
since the stable modes moves toward origo and the unstable modes move toward
infinity, giving a ill-conditioned problem. This can be remedied by the introduc-
tion of the closed-loop paradigm where the progress of states is computed under
the assumption that they are controlled by a stabilizing feedback controller and
any desired deviation in the control signal is given by the addition of control
deviation signal v.

ûk+i|k = −Kx̂k+i|k + vk+i (6.9)

x̂k+i+1|k = Ax̂k+i|k + Bûk+i|k (6.10)

giving the closed-loop description

x̂k+i+1|k = Φx̂k+i|k + Bvk+i; Φ = (A − BK) (6.11)

and the closed-loop paradigm state predictions

x−→k =










I
Φ
Φ2

...
ΦN










︸ ︷︷ ︸

Φ
−→

xk +










0 0 . . . 0
B 0 . . . 0

ΦB B . . . 0
...

...
. . .

...
ΦN−1B ΦN−2B . . . 0










︸ ︷︷ ︸

Γ
−→










vk

vk+1

vk+2

...
vk+N










︸ ︷︷ ︸

v
−→k

(6.12)
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and the closed-loop paradigm control signal predictions

u−→k = −Kdiag x−→k + v−→k = −Kdiag[Φ−→xk + Γ−→ v−→k] + v−→k =

− KdiagΦ−→xk − [Kdiag Γ−→− I] v−→k (6.13)

the closed-loop paradigm optimization variable predictions are given by the state
(6.12) and control (6.13) predictions

z1−→k = Ediag x−→k + Fdiag u−→k =

Ediag[Φ−→xk + Γ−→ v−→k] + Fdiag[−KdiagΦ−→xk − (Kdiag Γ−→− I) v−→k] =

[EdiagΦ−→ + FdiagKdiagΦ−→]
︸ ︷︷ ︸

E1
−→

xk + [Ediag Γ−→− Fdiag[Kdiag Γ−→− I]]
︸ ︷︷ ︸

F1
−→

v−→k (6.14)

6.2 Constrained Predictive Control

The static formulation of the prediction horizon leads to an alternative to dy-
namic programming to solve the control problem given by eq. (5.1). To simpilfy
notation the following definition is introduced W−→ ≡ Wdiag.

J1 =

k+N∑

i=k

‖zi‖
2
W = ‖ z−→k‖

2
W
−→

= z1−→
T
k W−→z1−→k =

(xT
k E1−→

T + u−→
T
k F1−→

T )W−→(E1−→
xk + F1−→

v−→k) =

xT
k E1−→

T W−→E1−→
xk + 2xT

k E1−→
T W−→F1−→

︸ ︷︷ ︸

q1
−→

T

v−→k + v−→
T
k F1−→

T W−→F1−→
︸ ︷︷ ︸

Q1

−→

v−→k (6.15)

Since the prediction horizon is given by the closed-loop paradigm the cost func-
tion variable is the control signal deviation variable v−→k instead of the control
signal u−→k itself. In an open-loop paradigm the cost function variable would be
u−→k. In the unconstrained case the optimal deviation control sequence v−→k is of
course zero. In the open-loop paradigm the optimal control sequence would be
determined by differentiation of the optimization problem with regards to the
control sequence.

6.2.1 Constraints and feasibility

So far all control problems in the project has been assumed unconstrained.
But as described in chapter 2 the actuators have constraints on their states
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and outputs. Constraints can be divided into two categories of priority: Soft
and hard constraints. Soft constraints are constraints which can be violated
but shouldn’t. A soft constraint could be a limit of temperature, pressure etc.
which would cause an greatly increased damage to the system if crossed. Hard
constraints are constraints which can’t be crossed under any circumstances. A
hard constraint could be the mechanical limits of the pitch of a rotor blade on
a wind turbine. The constraints of the system can be expressed as limits on
optimization variable

zmin � zi � zmax; ∀i ∈ N (6.16)

which can be formulated as single linear inequality

[
I
−I

]

zi �

(
zmax

−zmin

)

; ∀i ∈ N (6.17)

only a subset of the optimization variable might be constrained and a more
compact formulation can be used which only contains actual constraints

Mzi � c; ∀i ∈ N (6.18)

the linear inequality given in eq. (6.18) can be represented as a polyhedral set

zi ∈ Z; Z = {z|Mz � c}; ∀i ∈ N (6.19)

The optimization variable can expressed in terms of the deviation control signals
and the states and the constraints will only considered within the prediction
horizon

M[Exi − FKxi + vi] � c; k ≤ i ≤ N (6.20)

The static prediction formulation of constraints and optimization variable en-
ables the use of quadratic programming (QP) algorithms to solve the constrained
convex quadratic optimization problem. For an elaboration on constrained op-
timization see appendix C

v−→k = arg min
v
−→k

1

2
v−→

T
k Q1
−→

v−→k + (xT
k q1
−→

T ) v−→k (6.21a)

subject to

[MdiagF1−→
] v−→k � [ccol − MdiagE1−→

xk] (6.21b)

The first control signal of the computed sequence can then be actuated

uk = −Kxk + vk (6.22)
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Sometimes the problem can be so strict that it is infeasible. This means that
it can’t be solved within the given constraints. This could be due to the fact
the constraints are in fact violated at the beginning of the problem or that
some constraints are contradictive e.g. 1 ≤ z ≤ −1. If optimization of the cost
function is infeasible due to overly stringent constraints one method of handling
this is to introduce a slack variable which try to minimize the violation of the
constraint but removes the violated constraint from the constrains. This won’t
be discussed further since the constraints in this project are assumed to be hard
constraints.

6.2.2 Dual Mode Horizon and nominal stability

The finite horizon problem given by eq. (6.21) has a major flaw: It doesn’t con-
sider the systems behavior after the prediction horizon and could inadvertently
be sending the system to a undesired state. This can be remedied by dividing
the problem into a dual mode horizon problem (more modes could be added to
suit a specific problem)

J = J1 + J2 + . . . (6.23)

where each cost function covers a specific part of the prediction horizon and
each cost function can be subjected to different constraints.

In a dual mode setup the first part of the horizon is called the control horizon
is subjected to constraints and is similar to the finite horizon problem in eq.
(6.21). The second mode is the prediction mode where the system is assumed
to inside an invariant and unconstrained set. This could be obtained by adding
a dead-beat constraint to the final control signal, i.e. uk+N = 0. But that
requires a long control horizon and result in a very aggressive control.

J =

k+N∑

i=k

‖zi‖
2
W

︸ ︷︷ ︸

J1

+

N2∑

i=k+N+1

‖zi‖
2
W

︸ ︷︷ ︸

J2

(6.24)

A softer approach is to append the unconstrained infinite horizon problem from
eq. (5.14a) which draws the optimization towards the unconstrained invariant
set the equilibrium point

J =

k+N∑

i=k

‖zi‖
2
W

︸ ︷︷ ︸

J1

+xT
k+N+1Sxk+N+1
︸ ︷︷ ︸

J2

; N2 → ∞ (6.25)
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this of means that the prediction horizon is assumed unconstrained. That as-
sumption is not entirely bulletproof which will be illustrated in the example at
the end of this chapter.

The static formulation of the constrained control mode J1 is already given in
eq. (6.21). The static formulation of the prediction mode is

J2 = xT
k+N+1Sxk+N+1 = x̂T

k+N+1|kSx̂k+N+1|k =

(xT
k Φ2

T + v−→
T
k Γ2

T )S(Φ2xk + Γ2 v−→k) =

xT
k Φ2

T SΦ2xk + 2xT
k Φ2

T SΓ2
︸ ︷︷ ︸

q2
−→

T

v−→k + v−→
T
k Γ2

T SΓ2
︸ ︷︷ ︸

Q2

−→
T

v−→k (6.26)

where

x̂k+N+1|k = ΦN+1
︸ ︷︷ ︸

Φ2

xk +
[
ΦNB ΦN+1B . . . B

]

︸ ︷︷ ︸

Γ2

v−→k (6.27)

ẑk+N+1|k = EΦ2
︸ ︷︷ ︸

E2

xk + FΓ2
︸︷︷︸

F2

v−→k (6.28)

The dual mode prediction horizon optimization variable is then

(

z1−→k

ẑk+N+1|k

)

︸ ︷︷ ︸

z
−→k

=

[

E1−→
E2

]

︸ ︷︷ ︸

E
−→

xk +

[

F1−→
F2

]

︸ ︷︷ ︸

F
−→

vk (6.29)

The constrained infinite horizon optimization problem can now be written

v−→k = arg min
v
−→k

1

2
v−→

T
k [Q1

−→
+ Q2
−→

]
︸ ︷︷ ︸

Q
−→

v−→k + (xT
k (q1

−→
T + q2

−→
T )

︸ ︷︷ ︸

q
−→

T

) v−→k (6.30a)

subject to

[

Mdiag F−→

]

v−→k �
[

ccol − Mdiag E−→xk

]

(6.30b)

Unfortunately the problem is now constrained and X can’t be infinitely large.
A terminal invariant set can be computed via linear matrix inequalities (LMI).
A sanity check can be performed after the calculation of the QP and if the final
state is not within the terminal invariant set then a new problem should be
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formulated with a longer horizon and so on until the final predicted state is
within the terminal invariant set.

xk+N+1 ∈ Xterminal (6.31)

That is however not implemented is this project. The prediction horizon is
simply expected to be long enough.

The terminal invariant set can be any type of invariant set suited for the problem
usually a polyhedral set will be the appropriate choice. A conservative candidate
of the terminal invariant set is an ellipsoidal invariant set based on S and with
a outer rim determined off line via LMI’s. If the cost of the second mode, i.e.
J2, is larger than the outer rim of the maximal allowed invariant ellipsoidal set
then it can’t be guaranteed that constraints won’t be violated in the future.

6.3 Illustrative example

This example will illustrate the behavior of a plant in the autonomous mode 2
of the dual mode control horizon. As an example the linear pitch actuator from
subsection 2.2.5 is considered, this is suitable as the state vector of the pitch
actuator is 2-dimensional and thus presentable on a 2-dimensional paper. The
optimization variable is





θ

θ̇

θ̈





︸ ︷︷ ︸

zk

=





I 0
0 I

−ω2
n −2ζωn





︸ ︷︷ ︸

E

(
θ

θ̇

)

︸︷︷︸

xk

+

[
0

−ω2
n

]

︸ ︷︷ ︸

F

(
θref

)

︸ ︷︷ ︸

uk

(6.32)

The optimization weights are

W = diag
((

1
10

1
8

1
15

)2
)

(6.33)

The gain K and hessian S are calculated with eq. (5.14b) and eq. (5.14c).
Closing the loop gives

xk+1 = Φxk; Φ = A − BK (6.34)

zk = Ψxk; Ψ = E − FK (6.35)

The polyhedral set Z given in eq. (6.19) can be expressed in terms of the
state variable since the control law is fixed and a closed-loop description can be
formed.

xi ∈ X ; X = {x|MΨx � c} (6.36)
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The boundary of X is defined by the innermost vertices of the inequality.

c{i} = [MΨ]{i,1} x1 + [MΨ]{i,2} x2; 1 ≤ i ≤ nc (6.37)

A conservative invariant ellipsoidal set can dimensioned to be inside the con-
straints. A good candidate for the invariant set is the invariant set given by eq.
(5.20)

Xe = {x|xT Sx ≤ c} (6.38)

due to constraints the outer rim c can no longer be infinitely large and can be
determined by a rather complicated linear matrix inequality (LMI) shown in
(Rossiter, 2003). To keep things simple, c has instead been adjusted manually
by trial and error and determined to be c ≈ 4.01.

The maximal admissible set (MAS) is the set largest possible terminal invariant
set that ensures the autonomous system stays within the constraints for all
future incidents. This implies

xk ∈ X ⇒ xk+1 ∈ X ⇒ xk+2 ∈ X ⇒ . . . (6.39)

which can be written as a polyhedral set

Xp =







x

∣
∣
∣
∣
∣
∣
∣
∣
∣








MΨΦ
MΨΦ2

...
MΨΦn








x � ccol







(6.40)

the size of n need not be infinite, an iteration of linear programs (see (Rossiter,
2003)) can determine when the set is sufficient. Any redundant constraints can
be removed from the set. Such clever modifications have not been implemented
in this project, instead a polyhedral set with n = 100 is shown in Fig. (6.2).
This gives n(+1)×nc (including the original constraints) vertices where not all
are the innermost of the set and are hence redundant.

Three different trajectories with three different starting points are shown. The
three different starting point illustrate where the prediction horizon is at time
N + 1 when mode 2 of the dual mode horizon takes over the control. They are
all within the actual constraints given by X .

The first trajectory s1 is within the constraints but not within either of the in-
variant sets, it is seen on the figures that the trajectory violates constraints. The
second trajectory s2 starts within the conservative invariant ellipsoidal set Xe

and remains inside the set. The third trajectory starts just within the boundary
of the MAS Xp and remains within that set.
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s1 s2 s3

x0 (20,−7) (−3,−2) (17.1,−6)

Table 6.1: Different starting point of autonomous system

The ellipsoidal set Xe is a simple formulation. But the fact that it is quadratic
means that it cannot be implemented directly into the constraints of the quadratic
problem. The MAS Xp is very large and can be added to the constraints of
quadratic problem. Neither will however be implemented since the actual im-
plementation of MPC in the project involves disturbance detection and the
constraints and origo are therefore not static (see chapter 7). That would re-
quire a robust control formulation of the terminal invariant set with uncertainty
perturbations included in the set (see (Blanchini, 1999) and (Rossiter, 2003)).
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Figure 6.2: Trajectories of autonomous system in the vector field of x.
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Figure 6.3: Trajectories of autonomous system in the vector field of z.
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Chapter 7

Constrained Linear Quadratic
Control

In this chapter the disturbance estimation and origin shifting from chapter 5
and the constraint handling from chapter 6 is combined into the constrained
linear quadratic controller (CLQ) which is described in (Pannocchia et al., 2005)
among many other papers and books.

7.1 Constrained target calculation

The target calculation in eq. (5.44) does not consider violation of constraints
which might lead to an unreachable target, it is apparent that in the case of
constraint violations in steady state the offset-free guarantee given by the dis-
turbance estimation is no longer valid. The target calculation is bounded by
the constraints

Mztk � c (7.1)

which can be rewritten to the linear inequality

M
[
E F

]
(

xtk

utk

)

�
(
c − MEpp̂k

)
(7.2)
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Instead of the target calculation given eq. (5.44) the difference between the
reference and the reference controlled output eq. (5.43) should be minimized

min
(xtk,utk)

‖rk − Hytk‖
2 =

(
xt

T
k ut

T
k

)
[
CT HT HC CT HT HD
DT HT HC DT HT HD

]

︸ ︷︷ ︸

Qt

(
xtk

utk

)

+

2
(

−rT
k HC + p̂T

k Cp
T HT HC −rT

k HD + p̂T
k Cp

T HT HD
)

︸ ︷︷ ︸

qt

(
xtk

utk

)

+

rT
k rk − rT

k HCpp̂k − p̂T
k Cp

T HT rk + p̂T
k Cp

T HT HCpp̂k (7.3)

giving the constrained quadratic problem

(xtk,utk) = arg min
(xtk,utk)

1

2

(
xt

T
k ut

T
k

)
Qt

(
xtk

utk

)

+ qt

(
xtk

utk

)

(7.4)

which is convex if Qt > 0 and is subject to the steady state requirement in eq.
(5.41) and the constraints in eq. (7.2).

7.2 Constrained dynamic optimization

The constrained dynamic optimization is origin shifted as in eq. (5.47)

zs−→k = z−→k − zt
col
k (7.5)

where the control signal is given by

uk = utk + usk; usk = −K (x̂k − xtk)
︸ ︷︷ ︸

xsk

+vsk (7.6)

subject to

zcol
min � zs−→k + zt

col
k � zcol

max (7.7)

The control signal deviation is determined by the quadratic problem seen below
where the first incident of the deviation prediction vector is used

vs−→k = arg min
vs
−→

k

1

2
vs−→

T
k Q
−→

vs−→k + (xs
T
k q
−→

T )vs−→k (7.8a)
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subject to

[

Mdiag F−→

]

vs−→k �
[

ccol − Mdiag E−→xsk − zt
col
k

]

(7.8b)

it can be noted that

zt
col
k = Ecolxtk + Ep

colp̂k + Fcolutk (7.9)

it is apparent that the terminal invariant sets described in the previous chapter
can’t be directly implemented here. Instead robust formulations of such sets
should be formulated, but that has not been done in this project.

7.3 Illustrative example

An illustrative example is presented. It is the KIV controller designed in chapter
8 but with a different set of tuning weights for the controller. These weights
prioritize generator speed higher than generator power. This is opposite to the
tuning of KIV . In the case of a positive wind step in region IV the following
occurs depending on the tuning priority

• High priority generator power leads to a decrease in generator torque
to compensate for the increase in generator speed. This leaves the speed
control more or less in the hands of the pitch actuation.

• High priority generator speed leads to an increase in generator torque
to dampen the generator speed increase. This leads to a generator power
increase, which under normal circumstances is unacceptable. This priority
is more or less the same as the control objective for KI and KIII .

The prediction horizon length is N = 50 in this example whereas the prediction
horizon length is only needs to be N = 20 in chapter 8 because the wind turbine
doesn’t operate on the constraint limits as long as in this example.

q = (1e3 1e3 1e-1 1e-3 1e-1 1e-1 1e1 1e-1 1e0 1e2) (7.10)

Fig. (7.2), Fig. (7.3) and Fig. (7.4) shows the results for simulations done in
Simulink with a full sensors CLQ controller. The simulations are done both
on the mounted and floating wind turbine. It is seen that the constraints are
not violated and that the wind turbines and controllers react as expected. The
different tower structures give noticeably different responses.
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Figure 7.2: Step in wind speed and resulting primary controlled variables
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Part III

Implementation and results





Chapter 8

Controller designs

A tactical supervisor is implemented as suggested in chapter 4 and the differ-
ent controllers are designed. Any design requirements outlined in the previous
chapters such as controllability and observability checks are honored.

Each controller consist of a origin shifting controller and a state and disturbance
estimator. They are tuned more softly than they would have been if transition
between the operating modes where not an issue. The disturbance estimations
approach ensures somewhat bumpless transfer as the generator switches in since
no integrator wind-up is present. But as it will be seen in chapter 9 the switch-
ing criteria makes bumpless transfer impossible since the different controllers
have different control objectives. That is due to the fact that the wind turbine
is subjected to stochastic wind that means that the switching criteria designed
on stationary operation considerations are not sufficient under more difficult op-
erating conditions. This problem becomes especially apparent with the floating
wind turbine. The pitch of the controllers is also designed more conservative
than needed for the Simulink simulations. That is because fast pitching in
HAWC2 leads to a unstable behavior and the simulation fails. In order for the
simulations to be comparable the same tuning parameters have been used both
the Simulink controller and for the HAWC2 controller.
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8.1 Controllers

A common design rule of thumb is to use the inverted square of the linearized
operating point or the maximal value of a variable as tuning parameter and then
multiply the initial guess with an additional weight. The maximal stationary
values of the variables through the wind speed sweep are used as tuning weights.
Except for constrained variables in that case the maximal constraint limit is
used as the initial weight. The weight matrix W contains these basic weights
and the tuning vector q is used to adjust them manually to obtain the desired
performance.

q = (q1 . . . qnz
) (8.1)

W = diag

(
q1

z1max

. . .
qnz

znz max

)2

(8.2)

The pitch controller is only subjected to constraints concerning the collective
pitch and its derivatives. The low level controllers KI , KIII and KIII are only
subjected to constraints concerning the generator torque and its derivative. The
top level controller KIV is subjected to constraints concerning both collective
pitch and generator and there respective derivatives. The constraints naturally
only apply for the constrained linear quadratic controller. The prediction hori-
zon length of the CLQ controllers is N = 20.

8.1.1 Pitch controller

The pitch controller has the the following control variables

r = (θ) (8.3)

u = (θref ) (8.4)

z = (θ θ̇ θ̈)T (8.5)

The pitch controller should slow down and stop the pitch movement when the
wind turbine comes from region IV to region III. A high weight has been placed
on the pitch velocity to obtain that objective. The tuning parameters of the
controller are

q = (1e-1 1e1 1e-1) (8.6)

The optimization matrices are

E =





1 0
0 1

−ω2
n −2ζωn



 Ep =





0
0
1



 F =





0
0

ω2
n



 (8.7a)



8.1 Controllers 77

8.1.2 KI and KIII

The KI controller is linearized at a wind speed of v = 6 m/s. The KIII

controller is linearized at a wind speed of v = 11.5 m/s. They both have the
following control variables

r = (Ωg) (8.8)

u = (Qgref
) (8.9)

z = (Ωr Ωg φ∆ ẋt Qg Q̇g)
T (8.10)

The fixed speed controllers should keep the generator speed fixed at its desired
set point using the generator torque as the controlling variable. High weights
have been placed on the generator and rotor speeds variables to obtain that
objective. A high weight has also been placed on the generator torque velocity
to keep it somewhat within its limits. The tuning parameters of the controller
of the mounted tower are

q = (1e3 1e3 1e-1 1e-3 1e-1 1e1) (8.11)

(8.12)

The tuning parameters of the controller of the floating tower are

q = (1e2 1e2 1e-1 1e-3 1e-1 1e1) (8.13)

The optimization matrices are

E =











1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 − 1

τ











Ep =











0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0











F =











0
0
0
0
0
1
τ











(8.14)

8.1.3 KII

The KII controller is linearized at a wind speed of v = 8 m/s and has the
following control variables

r = (Pe) (8.15)

u = (Qgref
) (8.16)

z = (Ωr Ωg φ∆ ẋt Qg Q̇g Pe)
T (8.17)
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The power maximizing controller should steer towards the optimal power pro-
duction. A high weight has been placed on the generator power to obtain that
objective. A high weight has also been placed on the generator torque velocity
to keep it somewhat within its limits. The tuning parameters of the controllers
are

q = (1e-3 1e-3 1e-1 1e-3 1e-1 1e1 1e2) (8.18)

The optimization matrices are

E =













1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
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0 0 0 0 0 0 0 − 1

τ

0 Qg0 0 0 0 0 0 Ωg0











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



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
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(8.19)

8.1.4 KIV

The KIV controller is linearized at a wind speed of v = 15 m/s and has the
following control variables

r = (Ωg Pe)
T (8.20)

u = (θref Qgref
)T (8.21)

z = (Ωr Ωg φ∆ ẋt θ θ̇ θ̈ Qg Q̇g Pe)
T (8.22)

The top level controller should keep the primary controlled variables at their
nominal values. High weight have been placed on the primary controlled vari-
ables to obtain that objective. High weights have also been placed on the pitch
acceleration and generator torque velocity to keep those somewhat within their
limits. The tuning parameters of the controllers are

q = (1e2 1e2 1e-1 1e-3 1e-1 1e-1 1e2 1e-1 1e0 1e3) (8.23)
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The optimization matrices are

E =



















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 −ω2

n −2ζωn 0
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0 0 0 0 0 0 0 − 1

τ

0 Qg0 0 0 0 0 0 Ωg0

















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(8.24a)

Ep =
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τ
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
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(8.24b)

8.2 State and disturbance estimator

All the controllers are disturbance rejecting origin shifting controllers and thus
require state and disturbance estimations. The estimators are constructed in
accordance with the design rules outlined chapter 5. They are all linearized
around the same wind speed as their corresponding controller. They are all
tuned with the values given in s4 in table 5.1.

8.2.1 Pitch controller estimator

The pitch controller has a separate estimator that is linear in it self and hence
not linearized around anything.

y =
(

θ θ̇ θ̈
)T

(8.25)



80 Controller designs

The output and disturbance matrices are

C =





1 0
0 1

−ω2
n −2ζωn



 D =





0
0

ω2
n



 (8.26a)

Cp =





0
0
1



 Bd =

[
1 0
0 1

]

(8.26b)

8.2.2 Full sensor

The full sensor estimator has available measurements of all the variables being
estimated.

y =
(

Ωr Ωg φ∆ xt ẋt ẍt θ θ̇ θ̈ Qg Q̇g Pe

)T

(8.27)

The output and disturbance matrices are

C =


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
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(8.28a)
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(8.28b)

8.2.3 Reduced sensor

The reduced sensor estimator lacks measurements of drive shaft torsion, nacelle
displacement and nacelle velocity.

y =
(

Ωr Ωg ẍt θ θ̇ θ̈ Qg Q̇g Pe

)T

(8.29)

The output and disturbance matrices are

C =
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(8.30a)
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8.3 Implementation

The calculated controller and estimator parameters are loaded to the controllers
in the simulation. In HAWC2 the parameters are imported from an file gener-
ated by Matlab.

At each sample the following actions are taken by the hybrid controller

1. All estimators are updated with current measurements

2. Tactical supervisor determines which controller is active

3. Active controller computes and actuates control signal (if this is not KIV

then the active controller computes the generator torque while the pitch
controller controls the collective pitch)



Chapter 9

Simulations in Simulink

In this chapter simulations done in Matlab/Simulink are presented.

9.1 Full sensor ULQ/CLQ

In this section a turbulent wind with a up and down going mean wind speed
(5 m/s to 15 m/s to 5 m/s) is used to test hybrid controller performance with
regards to operations mode switching and general performance of the individual
controllers. Both an the ULQ and CLQ hybrid controllers are tested. Both the
CLQ and ULQ controllers have full sensor estimators.
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Figure 9.1: Point wind speed at hub height and operation modes of hybrid
controller (Mounted tower)
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Figure 9.2: Point wind speed at hub height and operation modes of hybrid
controller (Floating tower)
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Figure 9.3: Primary controlled variables (Mounted tower)
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Figure 9.4: Primary controlled variables (Floating tower)
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Figure 9.5: Secondary structural controlled variables (Mounted tower)
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Figure 9.6: Secondary structural controlled variables (Floating tower)
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Figure 9.7: Collective pitch and derivatives (Mounted tower)
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Figure 9.8: Collective pitch and derivatives (Floating tower)
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Figure 9.9: Generator torque and derivative (Mounted tower)
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Figure 9.10: Generator torque and derivative (Floating tower)
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The figures show that both of the hybrid controllers perform acceptable. The
floating tower is performs worse than the mounted tower. This is as expected.

The figures also show switching criteria doesn’t work optimal. The only time
constraints are active are when the hybrid controller switches from on controller
to another. If for instance KIV is active and the wind speed drops, then it takes
some time before the pitch reaches the switching limit. In that period of time
the generator speed is falling below its nominal value. That causes the gener-
ator torque to increase to keep the generator power stable. When the hybrid
controller finally switches to KIII it directly switches again to KII because of
the small wind range of KIII . Now the generator speed is low but the generator
torque is high. KII sets its generator torque according the generator speed and
the generator torque drops to its new set point as fast as possible. This conflict
of objectives leads to a less than bumpless transfer between the controllers. Not
because of the controllers themselves but because of the switching conditions.

The switching criteria are determined by stationary considerations and are not
sufficient in a dynamic situation, especially for the floating tower. The tuning
weights of the controllers could be changed to prioritize this concern, but that
would give worse normal performance. Additional controllers suited for the
different situations could be designed or another set of switching criteria could
be defined, fx. based on each controllers controllers control signal.
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Chapter 10

Simulations in HAWC2

In this chapter simulations done in HAWC2 are presented. Sadly is has not been
possible to carry out extensive stochastic simulations with the CLQ controller.
The program continuously fails at some point before the simulation finishes.
That has not been a problem with the ULQ controller. HAWC2 is not able to
start the simulation at any operating point except a total stands still. This fact
has given cause to a high time consumption when trying to find errors in the
implementation.

10.1 Stationary comparison of HAWC2 vs Simulink
model

In this simulation a deterministic wind speed staircase from 3 m/s to 22 m/s
is used to compare the stationary values of the Simulink and HAWC2 models.
Furthermore the dynamic responses can be compared also be compared. The
simulations are performed with the full sensor ULQ controller.
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Figure 10.1: Wind speed and operations modes of hybrid controller (Mounted
tower)
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Figure 10.2: Wind speed and operations modes of hybrid controller (Floating
tower)
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Figure 10.3: Primary controlled variables (Mounted tower)
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Figure 10.4: Primary controlled variables (Floating tower)
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Figure 10.5: Main actuator variables (Mounted tower)
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Figure 10.6: Main actuator variables (Floating tower)
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Figure 10.7: Secondary structural controlled variables (Mounted tower)
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Figure 10.8: Secondary structural controlled variables (Floating tower)
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Figure 10.9: Mounted tower
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Figure 10.10: Floating tower
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The behavior of the Simulink and HAWC2 simulations is quite similar, but a
offset in stationary values of the collective pitch Fig. (10.5) and Fig. (10.6) is
observed. This discrepancy is correlated with the unmodeled out-of-plane tip
deflection of the rotor that occurs in HAWC Fig. (10.9(b)) and Fig. (10.10(b)).
The discrepancy affects the rest of variables in the simulations and leads to
offset in nacelle displacements etc.

In the HAWC2 mounted tower simulation both wind shear and tower shadow is
enabled. In the HAWC2 floating tower simulation tower shadow is disabled due
to simulation errors. This is clear to see in Fig. (10.9(a)) and Fig. (10.10(a)).

10.2 Full/reduced sensor ULQ

In this section a turbulent wind with a up and down going mean wind speed
(5 m/s to 15 m/s to 5 m/s) is used to test hybrid controller performance with
regards to operations mode switching and general performance of the individual
controllers. Since it hasn’t been possible to perform full scale simulations with
the CLQ controller only the ULQ controller is tested in this section. It is tested
both with a full sensor estimator and a reduced sensor estimator.

The simulations show generally good performance both by the full sensor ULQ
and by the reduced sensor ULQ hybrid controllers. The reduced sensor floating
tower simulation shows however a quite oscillating behavior of the wind turbine
as it switches from KII to KIV . And again the issue of timely switching between
the operation modes is not working satisfactory. Especially in the reduced sensor
floating tower simulation. It is seen in Fig. (10.14) where the generator power
is a good deal above the nominal value before the tactical controller switches
from KII to KIV .

Fig. (10.19) and Fig. (10.20) shows the unmeasured estimates of the reduced
sensors estimator belonging KIV . It is clear that the estimates are more accurate
when the wind turbine is actually in the KIV region.



98 Simulations in HAWC2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.5

2

2.5

3

3.5

4

Time [s]

R
eg

io
n

[−
]

v
[m

/
s]

Ω̃

− Full sensor − Reduced sensor

Figure 10.11: Point wind speed at hub height and operation modes of hybrid
controller (Mounted tower, ULQ)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.5

2

2.5

3

3.5

4

Time [s]

R
eg

io
n

[−
]

v
[m

/
s]

− Full sensor − Reduced sensor

Figure 10.12: Point wind speed at hub height and operation modes of hybrid
controller (Floating tower, ULQ)
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Figure 10.13: Primary controlled variables (Mounted tower, ULQ)
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Figure 10.14: Primary controlled variables (Floating tower, ULQ)
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Figure 10.15: Main actuator variables (Mounted tower, ULQ)
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Figure 10.16: Main actuator variables (Floating tower, ULQ)
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Figure 10.17: Secondary structural controlled variables (Mounted tower, ULQ)
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Figure 10.18: Secondary structural controlled variables (Floating tower, ULQ)
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Figure 10.19: Unmeasured variables (Mounted tower, Reduced sensor ULQ)
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Figure 10.20: Unmeasured variables (Floating tower, Reduced sensor ULQ)
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Chapter 11

Conclusion

In this chapter conclusions and results will be drawn from the different parts of
the report.

11.1 Modeling and analysis

Two models have been developed: A mounted tower model and a floating tower
model. They have been approximated as linear 2. order dynamic systems
dimensioned through experiments in HAWC2. The nonlinear dynamics of an
aerodynamic rotor have been linearized at the appropriate operating points. The
driveshaft of the wind turbine have been modeled as a linear 2. order dynamic
system and it has been dimensioned through experiments in HAWC2. Different
operating modes have been identified to ensure maximal power production and
honoring requirements to the mechanical limits of the generator.

Tactical operations mode switching criteria have been established to enable
switching between the individual controllers of a hybrid controller. All the
considerations on these issues have been on stationary conditions and the later
chapters have shown that more elaborate switching criteria are required.
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11.2 Theory of methods

The origin shifting and disturbance rejecting controller have been presented. It
enables set point tracking and offset-free control. The infinite horizon model
predictive controller have been presented. There are unsolved issues concerning
constraint violations in the infinite horizon but this issues has not proofed to
be a serious problem in the implementation of an constrained linear quadratic
controller. The constraints in this project have however only been on linear
well-known subsystems. How the CLQ controller behaves if constraints where
on the nonlinear variables have not been subject to attention.

The entire CLQ formulation is time-discrete and has a built-in observer. This
makes the CLQ suited for real work applications and enables implementation
in other simulation suites such as HAWC2.

11.3 Implementation and results

CLQ and ULQ controllers have been designed and tested in Simulink and
HAWC2 with satisfactory results. It has sadly not been possible to perform
long stochastic simulations with the CLQ controller in HAWC2 due to software
problems. But the controllers have nonetheless proofed to work over the entire
wind range and with reduced sensor information available. The Simulink simu-
lations have also shown that CLQ controller is able to honor constraints under
stochastic conditions with switching of controllers.

The designed switching criteria have been seen not to be sufficient for bumpless
transfer of controllers at certain situations.

Comparative simulations between Simulink and HAWC2 have shown minor dis-
crepancies between the two models. Tower shadow and out-of-plane blade tip
deflection are among the more significant ones resulting in slightly different
behavior of the two models.

It has been established that control of floating wind turbines poses new problems
but it is definitely possible to overcome these problems and establish good robust
control via MPC and more detailed investigations in terms of bumpless transfer
between controllers.



Chapter 12

Perspectives

On the modeling side of the project attention should be paid to tower shadow
and rotor dynamics as these are seen to differ from the model developed in this
project. A better model of the rotor dynamics might also enable pitching at
lower wind speeds to ensure better power capture.

The control design model could also be augmented with a wind model to give
better performance and enable a gain schedueling controller. The CLQ formula-
tion is based on linear models. Instead nonlinear and even robust MPC-methods
could be investigated to give better performance. A nonlinear robust formula-
tion might enable a multi objective controller that was able to switch been the
different operating modes internally and thus giving a smoother transition from
one operating mode to another. Adaptive or system identification methods could
also be incorporated into the controller framework to give better performance.

Implementation of controllers on HAWC2 have been difficult. The libraries used
to program the CLQ have not been optimal and debug is made difficult since
HAWC2 is unable to start the simulation at any given different operating point.
Integration between Matlab and HAWC2 would be desirable and thus only one
controller development was required. It is possible to create dll-files with Matlab
but it has not been explored in this project, that could perhaps be a shortcut
in terms of controller development.
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On a more general perspective in can be noted that advanced control meth-
ods such as MPC is definitely the future of wind turbine control. Many other
objectives could integrated into the framework such component fatigue priori-
tization, accoustic silencing prioritization etc. depending on the location of the
wind turbine and on the time of day.
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Appendix A

Notation

Scalars are typed in lower case italic style: x1 where x1 ∈ R

Vectors are typed in lower case roman style: x = (x1, x2, . . . xn)T where x ∈ R
n

and encased in parenthesis brackets (. . .)

A column of repeated vectors is denoted with an super col:

xcol =






x
...
x




 (A.1)

A matrix, i.e. A ∈ R
n×m is typed in upper case boldface style and the scalar

elements are type like seen below

A =






a1,1 a1,m

. . .

an,1 an,m




 =






[A]{1,1} [A]{1,m}

. . .

[A]{n,1} [A]{n,m}




 (A.2)
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A matrix of diagonal matrices is denoted with an upper diag

Adiag =






A 0
. . .

0 A




 (A.3)

A positive definite matrix is written as

A > 0 (A.4)

A row-wise linear inequality is written as

A ≻ 0 (A.5)
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System parameters

B.1 Parameter identification of a mechanical 2.
order system

This approach is described in (Jannerup and Sørensen, 2000) and (Poulsen,
2007) Newtons second law applied to a classical linear motion spring-mass-
damper mechanical system gives the following differential equation

Q(t) = M
d2

dt2
x(t) + D

d

dt
x(t) + Kx(t) (B.1)

which can be transformed from the time domain to the Laplace domain

Q(s) = Ms2x(s) + Dsx(s) + Kx(s) (B.2)

and reformed to a transfer function

K
x(s)

Q(s)
= H(s) =

1
M
K

s2 + D
K

s + 1
(B.3)

if subjected to a step at time t0

Q(t) =

{

0 if t < t0,

Qss if t ≥ t0.
(B.4)
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in Laplace

Q(s) =
Qss

s
(B.5)

In steady state which given by t → ∞ in the time domain and equals s → 0 in
the Laplace domain

Kxss = lim
s→0

sH(s)Q(s) = Qss (B.6)

giving the spring constant

K =
Qss

xss

(B.7)

this can be compared to the standard formulation of a 2. order system given in
Jannerup and Sørensen (2000)

Y (s)

U(s)
=

1
1

ω2
n
s2 + 2ζ

ωn
s + 1

(B.8)

where

ζ =
|ln(Mp)|

√

π2 + ln2(Mp)
(B.9)

ωn =
ωd

√

1 − ζ2
(B.10)

which can be determined from the step response overshoot ratio Mp and damped
frequency fd

Mp =
ymax − yss

yss

(B.11)

ωd = 2πfd (B.12)

giving

M =
K

ω2
n

(B.13)

D = 2ζωnM (B.14)
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No. 1 2 3

Q 1e6 2e6 4e6
X0 4e-7 4e-7 4e-7

Xmax 1.8e-3 3.6e-6 7.1e-3
Xss 1.1e-3 2.3e-6 4.6e-3
Mp 0.57 0.56 0.55
fd 0.60 0.60 0.60
ζ 0.18 0.18 0.18
ωn 3.84 3.84 3.84
K 8.7e8 8.7e8 8.7e8
M 5.9e7 5.9e7 5.9e7
D 8.0e7 8.3e7 8.3e7

Table B.1: Drive shaft step responses

No. 1 2 3

Q 2e5 4e5 8e5
X0 -1.6e-2 -1.6e-2 -1.6e-2

Xmax 2.4e-1 4.8e-1 9.5e-1
Xss 1.2e-1 2.4e-1 4.8e-1
Mp 1.01 0.97 0.96
fd 0.31 0.31 0.31
ζ 4.4e-3 6.5e-3 1.2e-2
ωn 1.98 1.98 1.98
K 1.6e6 1.6e6 1.6e6
K 4.3e5 4.2e5 4.2e5
D 7.4e3 1.1e4 2.0e4

Table B.2: Fixed tower displacement step responses
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No. 1 2 3

Q 2e5 4e5 8e5
X0 -2.7e-1 -2.7e-1 -2.7e-1

Xmax 7.7 15.4 30.9
Xss 3.9 7.8 15.7
Mp 0.99 0.97 0.96
fd 5.3e-3 5.3e-3 5.3e-3
ζ 3.2e-3 8.9e-3 1.1e-2
ωn 0.34 0.34 0.34
K 5.1e5 5.1e5 5.1e5
M 4.5e5 4.5e5 4.5e5
D 9.7e2 2.7e3 3.5e3

Table B.3: Floating tower displacement step responses
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B.2 Mechanical data for NREL 5MW wind tur-
bine

Pnom 5e6 W - Nominal generator power
Ωgmax

122.91 rad/s - Nominal generator speed
Ωgmin

70.16 rad/s - Minimum generator speed
θmax 25 ◦ - Maximum collective pitch angle
θmin -5 ◦ - Minimum collective pitch angle

θ̇max 8 ◦/s - Maximum collective pitch angular velocity

θ̇min -8 ◦/s - Minimum collective pitch angular velocity

θ̈max 15 ◦/s2 - Maximum collective pitch angular acceleration

θ̈min -15 ◦/s2 - Minimum collective pitch angular acceleration
ρ 1.25 kg/m3 - Mass density of air
Ng 97 - Gear ratio
R 63 m - Rotor blade length and rotor disc radius
H 90 m - Height from surface to center of rotor
Ir 5.9154e7 kg m2 - Moment of inertia of rotor
Ig 500 kg m2 - Moment of inertia of generator
Ks 8.7354e8 N/rad - Driveshaft spring constant
Ds 8.3478e7 N/rad s - Driveshaft dampening constant
Mt 4.4642e5 kg - Mass of part of floating tower and nacelle
Kt 5.0871e4 N/m - Floating tower spring constant
Dt 3.5159e3 N/m s - Floating tower dampening constant
Mt 4.2278e5 kg - Mass of part of mounted tower and nacelle
Kt 1.6547e6 N/m - Mounted tower spring constant
Dt 2.0213e3 N/m s - Mounted tower dampening constant
ωn 0.88 rad/s - Natural frequency of pitch actuator
ζ 0.9 - Damping of pitch actuator
τ 0.1 s - Time constant of generator torque actuator



118 System parameters



Appendix C

Constrained optimization

C.1 Convexity

In order for a minimum to be determined the function to be optimized should
convex (and concave for maximization). Convexity means that between any two
points within the function a straight line can be drawn without the line gets
outside the interior of the function.

The minimum is a global minimum if the function is positive definite (and a
maximum if the function is negative definite). From (Slotine and Li, 1991) we
have the following definition

Definition C.1 (Positive definite function) A scalar continuous function
V (x) is said to be locally positive definite if if V (0) = 0, and in a ball BR0

x 6= 0 ⇒ V (x) > 0

If V (0) = 0 and the above property hold overt the hole state space, then V (x)
is said to be globally positive definite.

The definition means that a function a positive definite if V (x) → ∞ for x → ∞.



120 Constrained optimization

In this project only linear control theory is applied and all of the functions to
be optimized are matrices. A matrix is positive definite if the eigenvalues of the
matrix are positive.

The following notation is used to indicate positive definiteness in this report:
A > 0

C.2 Linear and Quadratic Programming

Quadratic programming is particular type of optimization capable of handling
linear matrix equalities and inequalities. (Boyd and Vandenberghe, 2004, Page
152)

x∗ = arg min
x

1

2
xT Qx + qT x (C.1a)

s.t.

Ax = b (C.1b)

Cx � d (C.1c)

where x ∈ R
n, Q ∈ R

n×n If the quadratic matrix Q is positive definite, then
the problem is convex and a global minimum can be determined. If the problem
is only subjected to equality constraints then the problem can be reformulated
to an unconstrained optimization problem.

If Q = 0 the problem becomes a LP problem instead. As a side note the Simplex
algorithm is a LP-method.

If the size of decision variables increases so does the required number of iterations
to determine a constrained suboptimal solution. That means that the QP-
algorithm usually have a upper limit of iterations, but that limit should be
increased if the QP problem itself is increased.

The QP problem is solved either an interior-points method that utilizes the
fact the function is convex or active-sets method travels along the constraints
towards the optimum. The underlying method is in it self not interesting but is
still debated which underlying methods are best suited for MPC.
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C.2.1 Implementional issues

To ensure the symmetry of the quadratic matrix due to numerical issues the
following method can be used

Q =
1

2

[
Q + QT

]
(C.2)
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Appendix D

HAWC2

Hawc2 is FEM simulation program developed by Risø. The controllers are
implemented as dll-files and their interaction with HAWC is defined in a htc-
file, which also defines the HAWC2 model.

http://risoe-staged.risoe.dk/business_relations/Products_Services/

consultancy_service/VEA_aeroelastic_simulation.aspx

D.1 Models

The mounted tower is modeled as a tower of 10 elements based on a monopile.
On the floating tower model an extra element is added between the tower and
monopile. This elements is extremely flexible and emulates the floating motion
of floating wind turbine.
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Figure D.1: Structural composition of c32f (Floating tower)
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D.2 Programming

Unfortunately the controller developed for HAWC is not sufficiently stable (seen
from a programming point of view) and time and time again the program stops
halve way into the simulation with an error message saying that no memory
could be allocated to a GSL routine.

D.2.1 IDE

The dll files used by Hawc2 are programmed in C and the integrated devel-
opment environment (IDE) is Bloodshed Dev-C++ and it is available for free
under the GNU General Public License (GPL)

http://www.bloodshed.net/devcpp.html

D.2.2 Used libraries

Besides the standard libraries: The GNU Scientific Library (GSL) is a numerical
library for C and C++ programmers. It is free software under the GNU General
Public License.

http://www.gnu.org/software/gsl/

It is however a Windows port of GSL that have been used

http://gnuwin32.sourceforge.net/packages/gsl.htm

In addition an GSL extension has been used to solve the quadratic programming
problems developed by Ewgenij Hübner it is called CQP

http://www.mathematik.uni-trier.de/~huebner/software.html
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D.3 Implementation

The controller parameters are calculated in Matlab and exported to a txt-file
which the dll-file reads when it initializes.

The CQP package by Ewgenij Hübner requires equality constraints in its func-
tion call so the QP problem have been augmented with and additional decision
variable which should be equal to zero, i.e. vk+N+1 = 0.



Appendix E

HAWC2 CLQ simulation

This appendix shows that a CLQ controller have been developed for HAWC2.
The simulation only activated the generator torque velocity constraints.
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Figure E.1: Point wind speed at hub height and operation modes of hybrid
controller (Mounted tower)
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Figure E.2: Primary controlled variable (Mounted tower)
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Figure E.3: Collective pitch and derivatives (Mounted tower)
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Figure E.4: Generator torque and derivative (Mounted tower)
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