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ABSTRACTNon-negative matrix factorization (NMF) has becomea widely used blind source separation technique due toits part based representation and ease of interpretabil-ity. We currently extend the NMF model to allow fordelays between sources and sensors. This is a naturalextension for spectrometry data where a shift in on-set of frequency pro�le can be induced by the Dopplere�ect. However, the model is also relevant for biomed-ical data analysis where the sources are given by com-pound intensities over time and the onset of the pro�leshave di�erent delays to the sensors. A simple algo-rithm based on multiplicative updates is derived and itis demonstrated how the algorithm correctly identi�esthe components of a synthetic data set. Matlab imple-mentation of the algorithm and a demonstration dataset is available from [1].

1. INTRODUCTION
Non-negative matrix factorization (NMF) is a blindsource separation algorithm (BSS) given by the decom-position

Vn;m =Xd Wn;dHd;m +En;m; (1)
where V 2 RN�M+ , W 2 RN�D+ and H 2 RD�M+ , i.e.such that the variables V, W and H are non-negativewhile E is noise. The decomposition is useful as it re-sults in easy interpretable part based representations[2]. Non-negative decompositions is also named pos-itive matrix factorization [3] but was popularized byLee and Seung due to a simple algorithmic procedurebased on multiplicative updates [4]. The decomposi-tion has proven useful for a wide range of data wherenon-negativity is a natural constraint. These encom-pass data for text-mining based on counts, image data,biomedical data and spectral data. The algorithm can

also be useful even when the data in itself is negative byconsidering the amplitude of a spectral representation[5]. Presently, we will advance the non-negative matrixfactorization to incorporate delays between sources andsensors based on the following shifted non-negative ma-trix factorization (ShiftNMF) model
Vn;m =Xd Wn;dHd;m��n;d +En;m; (2)

where �n;d denotes an arbitrary delay from the dthsource to the nth sensor. Notice, the above model canbe considered a special case of the Non-negative Ma-trix Factor Deconvolution (NMFD) introduced in [6]where only one delay is present between each sensorand source and �n;d takes integer values. In �gure 1 isillustrated the impact of the delays for equally mixedsources into 9 sensors. In �gure 2 is shown an exam-ple of how a given W, H and � generates the dataV, see �gure 3. Notice, the above model without non-negative constraints has previously been treated in theliterature. In [7, 8] a procedure based on integer shiftswas derived while Bell and Sejnowski [9] sketched howto handle time delays in networks based on a similarmodel. This was further explored in [10]. In [11] amodel based on equally mixed sources, i.e. W = 1 (amatrix of ones), formed by moving averages incorpo-rated non-integer delays by signal interpolation. Yere-dor [12] solved the model by joint diagonalization ofthe source cross spectra based on the AC-DC algorithmwith non-integer shifts for the 2 � 2 system. This ap-proach was extended to complex signals in [13]. In [14]we derived an algorithm for shifted sources based onthe estimation of a shift-invariant subspace while ro-tating and shifting the sources found using maximumlikelihood ICA to achieve unique solutions. However,despite the recent popularity of NMF, to our knowl-edge, delays have not previously been treated for mod-els with non-negative constraints. Thus, the aim ofthe current paper: To form an algorithm for ShiftNMF



Fig. 1. Example of activities obtained (black graph)when summing three non-negative components (gray,blue dashed and red dash-dotted graphs) each shiftedto various degrees (given in samples by the colorednumbers). Clearly, the resulting activities are heavilyimpacted by the shifts such that a regular instanta-neous NMF analysis would be inadequate.
based on multiplicative updates similar to the simpleupdates of regular NMF.Recently, NMF has proven useful in the analysisof magnetic resonance spectra [15] and for analyzingdata obtained using astronomical spectrometers for theidenti�cation and classi�cation of space objects [16].NMF has also been used in the analysis of �uorescencespectra [17]. For these types of data, ShiftNMF is po-tentially useful since shift in the spectral pro�les oftenoccurs for instance as a result of the Doppler e�ect.Furthermore, NMF has proven useful for extracting in-tensity pro�les over time from biomedical data such asPET imaging [18, 19, 20]. Here, potential delays inthe onset of the various pro�les can be handled by theShiftNMF model. Consequently, ShiftNMF might beuseful for a wide range of data where NMF has previ-ously been applied.

2. METHOD AND RESULTS
2.1. Notation
In the following U will denote a matrix in the time do-main, while eU denotes the corresponding matrix in thefrequency domain. U and eU denotes 3-way arrays in thetime and frequency domains respectively. Furthermore,eUH denotes the conjugate transpose of eU while U �Vdenotes the direct product, i.e. element-wise multipli-cation. Also, ! = 2� f�1M and eU(f) = U � e�i2� f�1M �

where e�i2� f�1M � denotes element wise raising the ele-ments, i.e.(e�i2� f�1M � )n;d = e�i2� f�1M �n;d . Finally, letUd denote the dth column, Un;: the nth row and Un;da given element of U.
2.2. Multiplicative updatesMultiplicative updates were introduced in [2, 4] to solvethe NMF model. Given a cost function C(H) over thenon-negative variables H, de�ne @C(H)+@Hd;m and @C(H)�@Hd;mas the positive and negative part of the derivative withrespect to Hd;m. Then the multiplicative update hasthe following form

Hd;m  Hd;m
0@ @C(H)�@Hd;m@C(H)+@Hd;m

1A�
: (3)

A small constant " = 10�9 is added to the numeratorand denominator to avoid division by zero or forcingHd;m to zero. If the gradient is positive @C(H)+@Hd;m >@C(H)�@Hd;m , hence, Hd;m will decrease and vice versa ifthe gradient is negative. Thus, there is a one-to-onerelation between �xed points and the gradient beingzero. The attractive property of multiplicative updatesis that they automatically ensure non-negativity as theupdates is based on multiplication, division and raisingto the power of purely non-negative variables. � is a"step size" parameter that potentially can be tuned.Notice, when � ! 0 only very small steps in the neg-ative gradient direction are taken. In [4] it was proventhat for the least squares error and Kullback-Leibler di-vergence � = 1 will keep decreasing the cost function.
2.3. Algorithm for ShiftNMFConsider the ShiftNMF model as stated in both thetime and frequency domain (using the DFT)

Vn;m = X
d Wn;dHd;m��n;d +En;m; (4)

eVn;f = X
d Wn;d eHd;fe�i2� f�1M �n;d + eEn;f : (5)

In matrix notation the model is in the frequency do-main stated as eVf = fW(f) eHf + eEf : (6)We focus here on minimizing the least squares error
CLS(W;H) = 12Xn;m(Vn;m �Xd Wn;dHd;m��n;d)2

= 12M keVf � fW(f) eHfk2F :



Fig. 2. The true factors forming a synthetic data set.To the left, the strength of the mixingW of each sourceis indicated in gray color scale. In the middle, the threesources are shown and to the right is given the timedelays of each source to each channel.
The algorithm will be based on alternatingly solvingforW, H and � .
2.3.1. W update:

Let eH(n)d;f denote the delayed version of the source signaleHd;f to the nth channel, i.e. eH(n)d;f = eHd;fe�i2� f�1M �n;d .Then equation 4 can be restated as
Vn;: =Wn;:H(n) +En;:; (7)

Notice, since H(n) corresponds to H where each sourcehas been shifted a given amountH(n) is still non-negative.Thus, this is the regular NMF problem which can besolved by the least squares NMF-update as given in [4]
Wn;d =Wn;d Vn;:H(n)Td;:Wn;:H(n)H(n)Td;: : (8)

Thus, theW update follows straight-forward from theupdate of regular NMF and will keep decreasing thecost function for � = 1. The H update is howeverslightly more complicated.
2.3.2. H update:Consider the model as stated in the frequency domaingiven in equation 6. Calculating the gradient of the

Fig. 3. The synthetic dataset generated from the fac-tors given in �gure 2 when mixed into each of the 9sensors.
least squares cost function in the frequency domaingives [21]
Gf = @CLS

@ eHf = � 1
M
fW(f)H (eXf � fW(f) eHf ): (9)

By taking the inverse DFT of the gradient in the fre-quency domain the corresponding gradient in the timedomain is obtained. Splitting the gradient in the fre-quency domain into what constitutes the positive andnegative part of the corresponding gradient in the time-domain gives
eG+f = 1

M
fW(f)HfW(f) eHf ; (10)

eG�f = 1
M
fW(f)H eXf : (11)

Consequently, by taking the inverse DFT of eG+f andeG�f the corresponding positive and negative part ofthe gradient in the time-domain can be found. As aresult, H can be updated using multiplicative updatesas
Hd;n = Hd;n G�d;nG+d;n

!�
: (12)

Due to interpolation G�d;n and G+d;n can potentiallytake small negative values. In these rare cases thesevalues are for stability reasons treated as zero. Sincethe gradient is interpolated through the DFT the stepsize � has to be tuned in order to guarantee that thecost function decreases.



Fig. 4. Results obtained by regular instantaneousNMF for the synthetic data given in �gure 3. To theleft, the strength of the mixing W of each source isindicated in gray color scale. In the middle, the threesources are shown. Clearly, since the model can't ac-count for the shifts in the data the sources estimatedare mixtures of the 3 true sources. Notice, only 68 %of the variance of the data is accounted for.
2.3.3. � update:The delays � are unconstrained. Consequently, we willestimate these by the Newton-Rhapson method as alsoproposed in [14]. The least square error for the Shift-NMF model as stated in equation 7, is given by
CLS = 1

2M X
f (eVf � fW(f) eHf )H(eXf � fW(f) eHf ):

De�ne TND�1 = vec(� ), i.e. the vectorized version ofthe matrix � such that Tn+(d�1)N = �n;d. Let furthereQn;d;f = fW(f)n;d eHd;f ; eEf = eVf � fW(f) eHf : (13)
Then the gradient of CLS with respect to �n;d is givenas

gn+(d�1)N = @CLS@Tn+(d�1)N = @CLS@�n;d (14)
= �1M X

f 2!=[ eQn;d;f eE�n;f ] (15)
The Hessian has the following structure
Bt;t0 = n �2M Pf !2<[ eQn;d;f eQ�n0;d0;f ] if n 6= n0 ^ d 6= d0

�2M Pf !2<[ eQn;d;f ( eQ�n0;d0;f + eE�n0;f )] if n = n0 ^ d = d0

Fig. 5. The estimated factors obtained by a ShiftNMFanalysis of the synthetic data given in �gure 3. To theleft, the strength of the mixing W of each source. Inthe middle, the three sources are shown and to the rightis given the time delays of each source to each channel.Clearly, the model with shifts has correctly recoveredthe components of the synthetic data hence accountsfor all the variance in the data.
where t = n + (d � 1)N and t0 = n0 + (d0 � 1)N . Asa result, � can be estimated by the Newton-Raphsonmethod as T T� �B�1g; (16)where � is a step size parameter that is tuned to keepdecreasing the cost function.The above iterative update is sensitive to local min-ima. However, we found that estimating the delays bythe following cross-correlation procedure reduced thee�ect of local minima. LeteRn;f = eVn;f �Xd 6=d0 fW(f)n;d eHd;f ; (17)
i.e. the signal at the nth sensor at frequency f whenprojecting all but the d0 source out of eV. Then thecross-correlation between the d0 source and nth sensoris given as ecf = eR�n;f eHd0;f , such that �n;d can be esti-mated as

t = argmaxm cm; �n;d0 = t� (M + 1): (18)
I.e. as the delay corresponding to maximum cross-correlation between the sensor and source. The value



Fig. 6. Four runs illustrating how using the cross-correlation (CC) procedure every 20 iteration in com-bination with the Newton-Raphson (NR) update (bluecurve) rather than relying solely on the NR update toestimate the delays (red curve) improves the algorithmfrom getting stuck in suboptimal solutions. Whereasthe NR method alone does not identify the global min-ima, this is found in 3 out of the 4 trials when re-estimating the delays using the CC procedure. Notice,how the sudden jumps in the curves using the CC pro-cedure are initiated at the iterations where the cross-correlation was used to re-estimate the delays.

ofWn;d0 corresponding to this delay is given by
Wn;d0 = ctHd0;:HTd0;: : (19)

Thus, to avoid being stuck in suboptimal solutions �was re-estimated by the cross-correlation procedure aboveevery 20th iteration. In �gure 6 is demonstrated howindeed using the above cross-correlation approach im-proves the algorithm in �nding the global optimum.In �gure 4 is shown the components found using aregular instantaneous NMF analysis. In �gure 5 theresults obtained by the ShiftNMF algorithm.
3. DISCUSSION

Clearly, the ShiftNMF algorithm correctly identi�edthe components of the synthetic data set (see �gure 5)whereas the regular instantaneous NMF failed to iden-tify the correct component since the delays could notbe accounted for ( see �gure 4). Furthermore, as shownin �gure 6 using the cross-correlation approach as de-scribed in the section on the � update improved thecomponent identi�ability and avoided the algorithm toget stuck in many of the local minima.Presently, the data had a unique decomposition sinceit was based on sparse sources, i.e. sources with manyzero values. However, neither the NMF model [22] northe ShiftNMF model is in general unique. In these situ-ations additional constraints such as sparseness [23, 24]have proven useful. Furthermore, prior informationsuch as smoothness has also been proposed to improvethe component identi�cation [16]. The present algo-rithm for ShiftNMF can straight forward be extendedto incorporate these constraints in order to improve theidenti�cation where the model in general is not guar-anteed to �nd a unique decomposition.The DFT is based on the implicit assumption thatthe signals are periodic. In general, this is not thecase. However, by zero padding the ends or introducinga window function periodicity can be enforced. Bothwindowing and zero padding will favor small delays andparticularly windowing is also computationally expen-sive.Presently, we derived an algorithm for blind (unsu-pervised) identi�cation of sources and their respectivemixing and delays. However, when analyzing for in-stance spectra of mixed source pro�les the spectrum ofthe sources H are often known a priori. By keepingH �xed the algorithm presently derived can be usedsupervised. Hence, to estimate how much the variousknown sources are present in each sensor as well asto what extent the sources have been delayed to the



sensors. Future work should investigate the potentialusefulness of this.The present work investigated synthetic data. Cur-rent work focus on real data applications. It is our be-lief the algorithm derived will be useful for a range ofdata where NMF previously has been employed. Hereaccounting for delays can potentially improve compo-nent identi�cation. The approach used to form themultiplicative updates by �nding the positive and neg-ative parts of the gradient using the spectral represen-tation is valid due to Parseval's identity stating a cor-respondence between the cost function in the time andfrequency domain. This correspondence does not existfor cost functions such as the Kullback-Leibler diver-gence. Thus, future work should investigate how theShiftNMF model can be estimated for other cost func-tions than least squares. However, for least squaresminimization the technique is applicable to other typesof algorithms such as projected gradient [25] as well asthe deconvolution extension (NMFD) [6]. These topicsshould be investigated in future work.
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