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Abstract age variations due to light direction changes. In this al-
gorithm, both self shadow and cast-shadow were consid-
Face recognition systems are typically required to work ered and its experimental results outperformed most exist-
under highly varying illumination conditions. This leads ing methods. The main drawbacks of the illumination cone
to complex effects imposed on the acquired face image thamodel are the computational cost and the strict requirement
pertains little to the actual identity. Consequently, illumi- of seven input images per persof].[ Ramamoorthi T]
nation normalization is required to reach acceptable recog- and Basri §] proposed a spherical harmonic representation
nition rates in face recognition systems. In this paper, we for face images under various lighting conditions. Basri et
propose an approach that integrates the face identity and al [8] represent lighting using a spherical harmonic basis
illumination models under the widely used Active Appear- wherein a low-dimensional linear subspace is shown to be
ance Model framework as an extension to the texture modelquite effective for recognition. The harmonic images can
in order to obtain illumination-invariant face localization. easily be computed analytically given surface normals and
the albedos. Shashua’] employ a very simple and practi-
cal image ratio method to map the face images into different
1. Introduction lighting conditions.
There are many recent works on illumination invariant

Face recognition is an active research topic in image -
. . face recognition. The most successful methods for the par-
processing and computer vision. Recent years have seen

large efforts in searching for a face recognition system thattICUIar problem of face recognition under varying illumina-

: : o N tion are image-based][[20] [21] [19 [1€]. Image-based

is capable of working with images captured under "real- : ) o T X

o o P ) methods are increasingly used in illumination invariant face
life” conditions. However, profound difficulties remain un-

. N . CT . recognition due to their their robustness to illumination vari-
solved including i) changes in pose, mimic, ii) changes in

illumination source direction and strength, iii) changes in ations [ 7] , .
scale, iv) real-time constraints, and v) search in large face. Cenerally, appearance-based methods require training
databases. The proposed algorithms in the literature carfM29€s of individuals taken under different illumination
be classified into three categories as sketch-based, featuréconditions. A method proposed by Sim and Kanad [
based and appearance-based methods. Most of these a|ggyerqomes this restr!ctlon py using a statistical shapg-from-
rithms either assume a constant background, or that the fac€h@ding model.  Using this method they generate images
images are already segmented from the background. Furof the each |nd|V|duaI_s under _dlfferent I|g_ht|ng conditions
ther, many methods require a frontal view of the face lit us- [© S€rve as database images in a recognizer based on PCA
ing homogeneous illumination. In particular, illumination
variation is a challenging problem for face recognition. The ~ Face alignment is also a very important step to extract
same individual with the same facial expression may havegood facial features to obtain high performance in face
dramatically different appearances under various lightning recognition, expression analysis and face animation appli-
conditions []. cations. Several face alignment methods were proposed: for
In this paper, we focus on the problems induced by vary- shape alignment Kass et alf introduced Active Contour
ing illumination. Our primary aim is to eliminate the neg- Models which is based on energy minimization; Kirby and
ative effect of illumination on the face recognition system Sirovich [15] described statistical modeling of grey-level
performance J] through illumination-invariant face mod- appearance; Active Shape Models (ASMj] and Active
eling. Several recent studies are centered around this isAppearance Models (AAM)I[3], proposed by Cootes et al,
sue: symmetric shape from shadirij, llumination cones  are two successful models for object localization.
method }I] theoretically explained the property of face im- ASM [14] uses local appearance models to find the can-



didate shape and global model to constrain the search¢ g Aligned  Identity Texture

shape. AAM [.5] combines constraints on both shape vari- ™* Foces Voo o "
ation and texture variation in its characterization of facial —s[Mecaf Caleulate
appearance. In searching for a solution, it assumes line m i E —=H H E_’Eg—ﬁfﬁ
relationships between appearance variation and texture va ] = v
ation and between texture variation and position variation Difference Uiumination Texture T &
These two linear regression models are learned from trair Fages Vectass g
ing data. In the context of this paper, texture means th 1 o Cpca
intensity patch contained in the face shape after warping t - : = ——
the mean face shape. -0 &

. . . L . . Face - 7] Combined

AAM is sensitive to illumination, particularly if the Shapes ~ o des of ] Madel

lighting during testing is significantly different from the e B e ] Parasters
lighting during training [L6]. To overcome the problem, we . I LA E
propose a general framework for face modeling under vary -0 TBH T
ing illumination conditions. We present a robust Active Ap- Shape
pearance Model, called AlA, in which face illumination and Vectors

a face identity sub-spaces are used to model the appearance

of the image. Our proposed model combines constraints not

only on both shape and texture variation but also on illumi- Figure 1. Overview of proposed method.
nation variation in its characterization of facial appearance.

The rest of the paper is structured as follows: Section 22 1 Active Appearance Model
introduces the identity and illumination modeling method- . .
ology, Section 3 the proposed combined active appearance Active Appearance Models are generative models capa-

models. The experimental results and the conclusion areble of synthesizing images of a given object class. By es-
presented in Section 4 and 5, respectively. timating a compact and specific basis from a training set,

model parameters can be adjusted to fit unseen images and
hence perform image interpretation. The modeled object
properties are usually shape and pixel intensities (here de-
2. Face and Facial lllumination Modeling noted texture). Training objects are defined by marking up
each example image with points of correspondence. Us-
One perspective on the problems induced by varying il- ing prior knowledge of the optimization space, AAMs can
lumination is that commonly used linear normalization is no be rapidly fitted to unseen images, given a reasonable ini-
longer sufficient to counter-balance the illumination which tialization. Variability is modeled by means of principal
can be perceived as an unwanted noise contamination of th€omponent analysis (PCA). Prior to PCA modeling shapes
signal of interest: the face geometry and appearance, and ulare Procrustes aligned and textures are warped into a shape-
timately, the identity. In general, the illumination problem free reference frame and sampled. Drawing samples from
is quite difficult in image-understanding literature. In the the respective PCA models of shape and texture can gener-
case of face recognition, many approaches for this problemate synthetic examples by warping the texture samples into
have been proposed. For more details about illuminationthe shape samples. Such synthetic examples can now be
models seel[7]. matched to an unseen image using a least-squares criterion

o in an iterative updating scheme.
We treat the problem as an advanced normalization pro-

cess being able to estimate the contribution of a light source
onto an arbitrary face image. This estimate can be em-
ployed partly in estimating the position of the light source  An identity and illumination model can be established
and partly in re-lighting the face image and thus compen- after eliminating variation stemming from pose and shape
sating for arbitrary illumination effects. Specifically, an il- of face dataset. This elimination is in the current work car-
lumination model is built from shape-compensated imagesried out by i) annotating prominent facial features, ii) fil-
of faces with known lighting conditions using a principal tering out effects stemming from pose (translation, rotation
component analysis (PCA). The final aim of this work is to and scaling) and shape by a piece-wise affine warp onto a
embed the illumination model into an Active Appearance given reference shape. The remaining variation can now be
Model and thus be able to estimate and compensate for thenodeled by a principal component analysis of these shape-
actual light conditions. compensated images by employing the Eckhart-Young the-

2.2. Identity and lllumination Model
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mination variations from the average, frontally illuminated 28>

o face. 286
In order to estimate these parameters we used a train- 2%/
E ing set from Yale B facial database which is comprised of 2%¢
two subsets, Set 1 and Set 2. We estimatnd Djgentity 289
] from Set 1 that contains frontally illuminated faces of dif-  “°°
S ferent identity (Fig2). We can assume thafj,y, = O for 2oL
e Set 1. Thereforey can be estimated as the mean texture and  *°7
=3 Pidentity S the set objgentity igenvectors of the texture 23431
(b) covariance matrix corresponding to the largest eigenvalues. Sos
Set 2 contains the illumination variations for a single in-
dividual (Fig.3). By subtracting the frontally illuminated 23?
Figure 4. Mode variation plots of the identity and illumination face texture from all others we have - according to our 208
model. a) Three largest identity modes from top to bottom; model - removed all identity variations from this data set.

bi = —3V/\;, b; = 0,b; = +3v/\;, b) Three largest illumination ~ Therefore, we can estimate a set of base vectors spanning .t
modes from top to bottont; = —3v/\;, b; = 0, b; = +3V/); this variationds, | as the set opj,m eigenvectors of the igi

texture covariance matrix of these difference images corre-
sponding to the largest eigenvalues. a0z
orem (Since the number of variables far exceeds the number However, because our model requires independence be- 303
of observations). The resulting principal scores thus give atween the identity and illumination texture space we must -
compact parametrization of inter and intra-variability due to ensure that the estimates Bfgentity and ®jj , SPan or- 305
varying illumination. thogonal subspaces. This is achieved by projectifjg .
Fig. 4 shows the first three modes of variation fa)  into the the orthogonal subspacedfjenginy i-€- m s07
identity and(b) illumination parts of the model. entity 382

3

2.3. Building AIA Model ® jllum = [ — @ igentity® identiy®iium @ ig
We assume an ad(.jitive.njodel for \./ariation's in facigl X- Eor technical reasons we choose to project the observed °12
ture due to different |dent|t|_es and different |IIum|nat_|ons._ illumination differences to the identity-orthogonal subspace  °'°
Furthermore, we assume independence between Idenm)f)riorto estimation of the illumination covariance, i.e. 314
and illuminations patterns leading to the following texture 315
model 316
di =T - ® igentity® i dentitdd; (3) 317
bo it ® identityb dentity+ @ 1umb ilum 1) illum |dentlty(I> ldentlt)A illum e

Here, 1 denotes the average facial texture of a frontally
illuminated face"l)identity spans the space of texture vari-
ations form the average, frontally illuminated face due to
different identities, an@;,m spans the space due to illu-

However, this is entirely equivalent to the procedure out- 319
lined above. The combined illumination and identity model 320

in Eqn. () can be rewritten, 321
322
t=p+® comd comb (4) 323
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where®.omp = [@ identityq’ illum]- The shape vari-
ation is estimated for the Yale B data set 1 in the usual
way [15] and a combined shape and texture model is con-
structed.

3. Experimental Results

We tested the proposed method on the Yale Face
Database Bf]. For the experiments we only used one face
image for each lighting condition. The size of the face im-

ages ares40 x 480 pixels. The number of images under tains synthesized images that belong to the same identity. Images
different lighting conditions for each individual 29 in our at each row are synthesized by changing illumination parameters

experiments.
We choose just the frontal subset from the Yale B datase
containing300 images froml0 persons, each person s
frontal images undeB0 different lighting conditions. To
have a reasonable range of light source directions, we s
lected the light directions betweeb60 degrees in the az-
imuth angle andt45 degrees in the elevation angle. To
compare AAM and AIA methods, we choose the frontal
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Figure 5. Face re-lighting using combined model. Each row con-

in the AIA Model for the same identity.

face image under the standard lighting of each person as

training images, othe29 images lighted under different for

Figure 6. Four different initializations to test the sensitivity of lo-

testing. calization performance of AIA and AAM to poor initialization.

To examine if any outliers are included in the texture

model, all faces are projected onto the first and second tex-

ture mode. All outliers are removed from the data set. Cor- Mized shapey. To assess the performance using landmarks

rupted images in the database are also removed. All imagedWo distance measures are used. One of thepoist to

that belong to the same individual are selected as an unseeR0int error, defined as the Euclidean distance between each
test set and the remaining images are used as a training sérresponding landmark. Mean pt.pt. error is expressed in
to build the illumination model. The warped images have Egn. 6). This distance measure is here forth abbreviated to

approximately33000 pixels inside the facial mask. Using the pointto curve error (pt.pt.).

normalized textures, we construct gimensional texture
space to represent approximatgfypercent of the observed
variation.

It is possible to synthesize a new face in different iden-
tities by changing the parameters of the identity model as
shown in Fig.4.(a). We can also synthesize faces for var-
ious illumination cases by tuning the parameters of the il-
lumination model to obtain the re-lighted version of these
faces as shown in Fig.

Fig. 7 shows that illumination model constructed from
one person’s face images which are taken under different
lighting conditions, can be used to model face lighting con-
ditions of the other face images with different identities.
This characteristic gives us a chance to estimate the lighting
conditions and identity of a person by using the AIA model
representation.

Dpt.pt.= Z \/(xz = 2gti)% + (Yi — Ygt.i)? ©)

The other distance measurepsint to curve erroy de-

fined as the Euclidean distance between a landmark of the
fitted shapey, to the closest point on the border given as
the linear spliner(t) = (ry(¢), ry(t)), te[0; 1], of the land-

marks from the ground truth,,,. Mean point to associated
border error is given in Eqn.6]. This distance measure is
here forth abbreviated to the point to curve error (pt.crv.).

Dpt.crv.= % thin \/(fvi —1y(1)? + (yi —2(t))* (6)
=1

The optimization scheme of AAM is inherently sensi-

Using a ground truth given by a finite set of landmarks tive to initialization. AAM converges to the correct solu-
for each example performance can easily be assessed. In #on if good initialization is given, but it otherwise prone to

leave-one-out setting this could be the same landmarks usedhe local minima. To calculate the accuracy of the segmen-

for building the models. This calls out for a distance mea- tation, we applied same initializations to AAM and AIA.
sure,D(zg, ), that gives a scalar interpretation of the fit As initialization the ground truth pose is systematically dis-

between the two shapes, the ground truts, and the opti-

placed, + 20 pixels inxz andy coordinates (See Fig), is
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Table 1. Face segmentation results for test imagés & 480).

I

| Standard AAM | Proposed AIA ||

Mean pt.-pt. Error | 23.90 £ 0.38 8.85 £0.64
Mean pt.-crv. Error| 14.70 4+ 0.24 5.60 + 0.46
Median pt.-pt. Error 21.62 5.53

Median pt.-crv. 14.29 3.54

performed. The comparative results are given in Tabli
can be easily seen that from the results, AlA considerably
outperforms original AAM.

To match a given image and the model, an optimal vec-

tor of parameters are searched by minimizing the difference

between synthetic image and input image. Bignd Fig.9
illustrate the optimization and search procedures for fitting
the model to the input images. Examples of the optimiza-

tion/search results of the proposed method are shown in

Fig. 8 where the first column is the arbitrarily illuminated

converged, it is easy to re-construct face images using only
identity part. In addition to this, we have also illumination
parameters. The illumination vector can be used to analyze
global lighting (location of light source etc.) and the AIA
model can be used to re-light of arbitrarily illuminated input
faces.

By being driven by traditional 2D face images in a con-
trolled light setup the method does not require the complex
machinery of 3D face model to estimate and synthesize the
effects of varying illumination. However, this obviously
comes at the cost of establishing a sophisticated controlled
light setup for training the system. Luckily, such data sets
are now readily available. Hence, we cannot stress our ap-
preciation enough of the Yale B dataset employed in this
work. In conclusion, this paper has presented a simple and
efficient method for face modeling and face alignment with
the primary application of rendering current state-of-the-art
methods for face localization, such as the Active Appear-
ance Models, invariant to changes in illumination.

unseen images from test dataset and the remaining images

are the optimization iterations and rendering of the fitting
results for each iteration. The last column presents final
model approximation for the input images in F&y. It is
seen from the last columns of Figand Fig.9 that the syn-
thesized faces are very close to input faces.

4. Discussion and Conclusion

. . 2
This paper, proposes an approach that combines the facé ]

identity and face illumination models and embed them into
the widely used Active Appearance Model framework as
an augmentation to the texture model in order to obtain
illumination-invariant localization of faces. In classic AAM
formulation there are only two variations, texture and shape.
We add illumination variation into the AAM framework in
order to build a new combined model containing both iden-
tity and illumination. Experimental results using the Yale

B database demonstrated the feasibility of the proposed

method, showing a significant increase in face localization
accuracy.

The appearance of a frontal facial image for a fixed cam-
era is determined primarily by identity and illumination -
two independent factors. It is conceivable that the 3D struc-
ture of the face may result correlation between illumination

pattern and the identity. However, since faces have roughly

the same geometry we choose to neglect this interaction
thus allowing for a simple additive model. This simpler
model excluding the identity and illumination interaction is
assumed to have superior predictive power.

The experiments show that our AIA model can synthe-
size extremely illuminated faces successfully. For recog-
nition purpose there is no need to use full combined pa-
rameters, one needs only the identity part of the final con-
verged combined parameter vector. So, after the AAM is
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