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Abstract

Face recognition systems are typically required to work
under highly varying illumination conditions. This leads
to complex effects imposed on the acquired face image that
pertains little to the actual identity. Consequently, illumi-
nation normalization is required to reach acceptable recog-
nition rates in face recognition systems. In this paper, we
propose an approach that integrates the face identity and
illumination models under the widely used Active Appear-
ance Model framework as an extension to the texture model
in order to obtain illumination-invariant face localization.

1. Introduction

Face recognition is an active research topic in image
processing and computer vision. Recent years have seen
large efforts in searching for a face recognition system that
is capable of working with images captured under ”real-
life” conditions. However, profound difficulties remain un-
solved including i) changes in pose, mimic, ii) changes in
illumination source direction and strength, iii) changes in
scale, iv) real-time constraints, and v) search in large face
databases. The proposed algorithms in the literature can
be classified into three categories as sketch-based, feature-
based and appearance-based methods. Most of these algo-
rithms either assume a constant background, or that the face
images are already segmented from the background. Fur-
ther, many methods require a frontal view of the face lit us-
ing homogeneous illumination. In particular, illumination
variation is a challenging problem for face recognition. The
same individual with the same facial expression may have
dramatically different appearances under various lightning
conditions [1].

In this paper, we focus on the problems induced by vary-
ing illumination. Our primary aim is to eliminate the neg-
ative effect of illumination on the face recognition system
performance [2] through illumination-invariant face mod-
eling. Several recent studies are centered around this is-
sue: symmetric shape from shading [3], illumination cones
method [4] theoretically explained the property of face im-

age variations due to light direction changes. In this al-
gorithm, both self shadow and cast-shadow were consid-
ered and its experimental results outperformed most exist-
ing methods. The main drawbacks of the illumination cone
model are the computational cost and the strict requirement
of seven input images per person [6]. Ramamoorthi [7]
and Basri [8] proposed a spherical harmonic representation
for face images under various lighting conditions. Basri et
al [8] represent lighting using a spherical harmonic basis
wherein a low-dimensional linear subspace is shown to be
quite effective for recognition. The harmonic images can
easily be computed analytically given surface normals and
the albedos. Shashua [10] employ a very simple and practi-
cal image ratio method to map the face images into different
lighting conditions.

There are many recent works on illumination invariant
face recognition. The most successful methods for the par-
ticular problem of face recognition under varying illumina-
tion are image-based [9] [20] [21] [19] [18]. Image-based
methods are increasingly used in illumination invariant face
recognition due to their their robustness to illumination vari-
ations [17].

Generally, appearance-based methods require training
images of individuals taken under different illumination
conditions. A method proposed by Sim and Kanade [9]
overcomes this restriction by using a statistical shape-from-
shading model. Using this method they generate images
of the each individuals under different lighting conditions
to serve as database images in a recognizer based on PCA
[11].

Face alignment is also a very important step to extract
good facial features to obtain high performance in face
recognition, expression analysis and face animation appli-
cations. Several face alignment methods were proposed: for
shape alignment Kass et al [12] introduced Active Contour
Models which is based on energy minimization; Kirby and
Sirovich [13] described statistical modeling of grey-level
appearance; Active Shape Models (ASM) [14] and Active
Appearance Models (AAM) [15], proposed by Cootes et al,
are two successful models for object localization.

ASM [14] uses local appearance models to find the can-
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didate shape and global model to constrain the searched
shape. AAM [15] combines constraints on both shape vari-
ation and texture variation in its characterization of facial
appearance. In searching for a solution, it assumes linear
relationships between appearance variation and texture vari-
ation and between texture variation and position variation.
These two linear regression models are learned from train-
ing data. In the context of this paper, texture means the
intensity patch contained in the face shape after warping to
the mean face shape.

AAM is sensitive to illumination, particularly if the
lighting during testing is significantly different from the
lighting during training [16]. To overcome the problem, we
propose a general framework for face modeling under vary-
ing illumination conditions. We present a robust Active Ap-
pearance Model, called AIA, in which face illumination and
a face identity sub-spaces are used to model the appearance
of the image. Our proposed model combines constraints not
only on both shape and texture variation but also on illumi-
nation variation in its characterization of facial appearance.

The rest of the paper is structured as follows: Section 2
introduces the identity and illumination modeling method-
ology, Section 3 the proposed combined active appearance
models. The experimental results and the conclusion are
presented in Section 4 and 5, respectively.

2. Face and Facial Illumination Modeling

One perspective on the problems induced by varying il-
lumination is that commonly used linear normalization is no
longer sufficient to counter-balance the illumination which
can be perceived as an unwanted noise contamination of the
signal of interest: the face geometry and appearance, and ul-
timately, the identity. In general, the illumination problem
is quite difficult in image-understanding literature. In the
case of face recognition, many approaches for this problem
have been proposed. For more details about illumination
models see [17].

We treat the problem as an advanced normalization pro-
cess being able to estimate the contribution of a light source
onto an arbitrary face image. This estimate can be em-
ployed partly in estimating the position of the light source
and partly in re-lighting the face image and thus compen-
sating for arbitrary illumination effects. Specifically, an il-
lumination model is built from shape-compensated images
of faces with known lighting conditions using a principal
component analysis (PCA). The final aim of this work is to
embed the illumination model into an Active Appearance
Model and thus be able to estimate and compensate for the
actual light conditions.

Figure 1. Overview of proposed method.

2.1. Active Appearance Model

Active Appearance Models are generative models capa-
ble of synthesizing images of a given object class. By es-
timating a compact and specific basis from a training set,
model parameters can be adjusted to fit unseen images and
hence perform image interpretation. The modeled object
properties are usually shape and pixel intensities (here de-
noted texture). Training objects are defined by marking up
each example image with points of correspondence. Us-
ing prior knowledge of the optimization space, AAMs can
be rapidly fitted to unseen images, given a reasonable ini-
tialization. Variability is modeled by means of principal
component analysis (PCA). Prior to PCA modeling shapes
are Procrustes aligned and textures are warped into a shape-
free reference frame and sampled. Drawing samples from
the respective PCA models of shape and texture can gener-
ate synthetic examples by warping the texture samples into
the shape samples. Such synthetic examples can now be
matched to an unseen image using a least-squares criterion
in an iterative updating scheme.

2.2. Identity and Illumination Model

An identity and illumination model can be established
after eliminating variation stemming from pose and shape
of face dataset. This elimination is in the current work car-
ried out by i) annotating prominent facial features, ii) fil-
tering out effects stemming from pose (translation, rotation
and scaling) and shape by a piece-wise affine warp onto a
given reference shape. The remaining variation can now be
modeled by a principal component analysis of these shape-
compensated images by employing the Eckhart-Young the-
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Figure 2. Identity face images of the Yale B dataset for ten individuals.

Figure 3. Face images of same person under 24 different lighting conditions (Yale B).

(a) (b)

Figure 4. Mode variation plots of the identity and illumination
model. a) Three largest identity modes from top to bottom;
bi = −3

√
λj , bi = 0, bi = +3

√
λj , b) Three largest illumination

modes from top to bottom;bi = −3
√

λj , bi = 0, bi = +3
√

λj

orem (since the number of variables far exceeds the number
of observations). The resulting principal scores thus give a
compact parametrization of inter and intra-variability due to
varying illumination.

Fig. 4 shows the first three modes of variation for(a)
identity and(b) illumination parts of the model.

2.3. Building AIA Model

We assume an additive model for variations in facial tex-
ture due to different identities and different illuminations.
Furthermore, we assume independence between identity
and illuminations patterns leading to the following texture
model

t = µ + Φ identityb identity+ Φ illumb illum (1)

Here,µ denotes the average facial texture of a frontally
illuminated face,Φidentity spans the space of texture vari-
ations form the average, frontally illuminated face due to
different identities, andΦillum spans the space due to illu-

mination variations from the average, frontally illuminated
face.

In order to estimate these parameters we used a train-
ing set from Yale B facial database which is comprised of
two subsets, Set 1 and Set 2. We estimateµ andΦidentity
from Set 1 that contains frontally illuminated faces of dif-
ferent identity (Fig.2). We can assume thatbillum = 0 for
Set 1. Therefore,µ can be estimated as the mean texture and
Φidentity as the set ofpidentity eigenvectors of the texture
covariance matrix corresponding to the largest eigenvalues.

Set 2 contains the illumination variations for a single in-
dividual (Fig. 3). By subtracting the frontally illuminated
face texture from all others we have - according to our
model - removed all identity variations from this data set.
Therefore, we can estimate a set of base vectors spanning
this variationΦ∗

illum as the set ofpillum eigenvectors of the
texture covariance matrix of these difference images corre-
sponding to the largest eigenvalues.

However, because our model requires independence be-
tween the identity and illumination texture space we must
ensure that the estimates ofΦidentity andΦ∗

illum span or-
thogonal subspaces. This is achieved by projectingΦ∗

illum
into the the orthogonal subspace ofΦidentity, i.e.

Φ illum = [I − Φ identityΦ
T
identity]Φ

∗
illum (2)

For technical reasons we choose to project the observed
illumination differences to the identity-orthogonal subspace
prior to estimation of the illumination covariance, i.e.

dillum = [I − Φ identityΦ
T
identity]d

∗
illum (3)

However, this is entirely equivalent to the procedure out-
lined above. The combined illumination and identity model
in Eqn. (1) can be rewritten,

t = µ + Φ combb comb (4)

3
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whereΦcomb = [Φ identityΦ illum]. The shape vari-
ation is estimated for the Yale B data set 1 in the usual
way [15] and a combined shape and texture model is con-
structed.

3. Experimental Results

We tested the proposed method on the Yale Face
Database B [5]. For the experiments we only used one face
image for each lighting condition. The size of the face im-
ages are640 × 480 pixels. The number of images under
different lighting conditions for each individual is29 in our
experiments.

We choose just the frontal subset from the Yale B dataset,
containing300 images from10 persons, each person has30
frontal images under30 different lighting conditions. To
have a reasonable range of light source directions, we se-
lected the light directions between±60 degrees in the az-
imuth angle and±45 degrees in the elevation angle. To
compare AAM and AIA methods, we choose the frontal
face image under the standard lighting of each person as
training images, other29 images lighted under different for
testing.

To examine if any outliers are included in the texture
model, all faces are projected onto the first and second tex-
ture mode. All outliers are removed from the data set. Cor-
rupted images in the database are also removed. All images
that belong to the same individual are selected as an unseen
test set and the remaining images are used as a training set
to build the illumination model. The warped images have
approximately33000 pixels inside the facial mask. Using
normalized textures, we construct an8-dimensional texture
space to represent approximately95 percent of the observed
variation.

It is possible to synthesize a new face in different iden-
tities by changing the parameters of the identity model as
shown in Fig.4.(a). We can also synthesize faces for var-
ious illumination cases by tuning the parameters of the il-
lumination model to obtain the re-lighted version of these
faces as shown in Fig.5.

Fig. 7 shows that illumination model constructed from
one person’s face images which are taken under different
lighting conditions, can be used to model face lighting con-
ditions of the other face images with different identities.
This characteristic gives us a chance to estimate the lighting
conditions and identity of a person by using the AIA model
representation.

Using a ground truth given by a finite set of landmarks
for each example performance can easily be assessed. In a
leave-one-out setting this could be the same landmarks used
for building the models. This calls out for a distance mea-
sure,D(xgt, x), that gives a scalar interpretation of the fit
between the two shapes, the ground truth,xgt, and the opti-

Figure 5. Face re-lighting using combined model. Each row con-
tains synthesized images that belong to the same identity. Images
at each row are synthesized by changing illumination parameters
in the AIA Model for the same identity.

Figure 6. Four different initializations to test the sensitivity of lo-
calization performance of AIA and AAM to poor initialization.

mized shape,x. To assess the performance using landmarks
two distance measures are used. One of them ispoint to
point error, defined as the Euclidean distance between each
corresponding landmark. Mean pt.pt. error is expressed in
Eqn. (5). This distance measure is here forth abbreviated to
the point to curve error (pt.pt.).

Dpt.pt. =
∑ √

(xi − xgt,i)2 + (yi − ygt,i)2 (5)

The other distance measure ispoint to curve error, de-
fined as the Euclidean distance between a landmark of the
fitted shape,x, to the closest point on the border given as
the linear spline,r(t) = (rx(t), ry(t)), tε[0; 1], of the land-
marks from the ground truth,xgt. Mean point to associated
border error is given in Eqn. (6). This distance measure is
here forth abbreviated to the point to curve error (pt.crv.).

Dpt.crv. =
1
n

n∑
i=1

min
t

√
(xi − ry(t))2 + (yi − rx(t))2 (6)

The optimization scheme of AAM is inherently sensi-
tive to initialization. AAM converges to the correct solu-
tion if good initialization is given, but it otherwise prone to
the local minima. To calculate the accuracy of the segmen-
tation, we applied same initializations to AAM and AIA.
As initialization the ground truth pose is systematically dis-
placed, ± 20 pixels inx andy coordinates (See Fig.6), is

4
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Table 1. Face segmentation results for test images (640× 480).

Standard AAM Proposed AIA
Mean pt.-pt. Error 23.90± 0.38 8.85± 0.64
Mean pt.-crv. Error 14.70± 0.24 5.60± 0.46
Median pt.-pt. Error 21.62 5.53

Median pt.-crv. 14.29 3.54

performed. The comparative results are given in Table1. It
can be easily seen that from the results, AIA considerably
outperforms original AAM.

To match a given image and the model, an optimal vec-
tor of parameters are searched by minimizing the difference
between synthetic image and input image. Fig.8 and Fig.9
illustrate the optimization and search procedures for fitting
the model to the input images. Examples of the optimiza-
tion/search results of the proposed method are shown in
Fig. 8 where the first column is the arbitrarily illuminated
unseen images from test dataset and the remaining images
are the optimization iterations and rendering of the fitting
results for each iteration. The last column presents final
model approximation for the input images in Fig.8. It is
seen from the last columns of Fig.8 and Fig.9 that the syn-
thesized faces are very close to input faces.

4. Discussion and Conclusion

This paper, proposes an approach that combines the face
identity and face illumination models and embed them into
the widely used Active Appearance Model framework as
an augmentation to the texture model in order to obtain
illumination-invariant localization of faces. In classic AAM
formulation there are only two variations, texture and shape.
We add illumination variation into the AAM framework in
order to build a new combined model containing both iden-
tity and illumination. Experimental results using the Yale
B database demonstrated the feasibility of the proposed
method, showing a significant increase in face localization
accuracy.

The appearance of a frontal facial image for a fixed cam-
era is determined primarily by identity and illumination -
two independent factors. It is conceivable that the 3D struc-
ture of the face may result correlation between illumination
pattern and the identity. However, since faces have roughly
the same geometry we choose to neglect this interaction,
thus allowing for a simple additive model. This simpler
model excluding the identity and illumination interaction is
assumed to have superior predictive power.

The experiments show that our AIA model can synthe-
size extremely illuminated faces successfully. For recog-
nition purpose there is no need to use full combined pa-
rameters, one needs only the identity part of the final con-
verged combined parameter vector. So, after the AAM is

converged, it is easy to re-construct face images using only
identity part. In addition to this, we have also illumination
parameters. The illumination vector can be used to analyze
global lighting (location of light source etc.) and the AIA
model can be used to re-light of arbitrarily illuminated input
faces.

By being driven by traditional 2D face images in a con-
trolled light setup the method does not require the complex
machinery of 3D face model to estimate and synthesize the
effects of varying illumination. However, this obviously
comes at the cost of establishing a sophisticated controlled
light setup for training the system. Luckily, such data sets
are now readily available. Hence, we cannot stress our ap-
preciation enough of the Yale B dataset employed in this
work. In conclusion, this paper has presented a simple and
efficient method for face modeling and face alignment with
the primary application of rendering current state-of-the-art
methods for face localization, such as the Active Appear-
ance Models, invariant to changes in illumination.
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Figure 7. Alignment results of the AIA and AAM for extremely illuminated test images. AIA alignment results are shown in the first two
rows, standard AAM results are shown in the last two rows respectively.

(a) (b) (c) (d) (e) (f)

Figure 8. AIA model results while optimizing the appearance parameters for test images (unseen) and arbitrarily illuminated faces: a) input
image, b) initial approximation (2nd iteration), c) 5th iteration, d) 9th iteration, e) 11th iteration, f) final approximation.
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(a) (b) (c) (d) (e) (f)

Figure 9. AIA model results while optimizing the appearance parameters for extremely illuminated faces: a) input image, b) initial approx-
imation (2nd iteration), c) 5th iteration, d) 9th iteration, e) 11th iteration, f) final approximation.
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