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Summary

This thesis is a comprehensive comparative study of survival analysis methods,
in particular the application of the Cox Proportional Hazards (CPH) model to
real life data: A data set with 48 right-censored (end of study) patients suffering
from multiple myeloma, and the COpenhagen Stroke study (COST) database
with 993 right-censored (10 year follow-up) stroke patients.

The most frequently applied method, stepwise selection, is a variable selec-
tion technique that fits a single model by searching for significant predictors of
the survival time in terms of p-values. However, stepwise selection ignores the
between-model uncertainty. This leads to biased and overconfident estimates.
We compare stepwise selection to a more advanced approach, Bayesian Model
Averaging (BMA), to average over all or a subset of models weighted by their
posterior model probabilities. We show how to identify a subset of models using
Occam’s window subset selection with results comparable to an average over all
models.

We show that BMA has several advantages over stepwise selection. Using an
average over models, we can evaluate the model uncertainty and obtain more
reliable estimates of the risk factor coefficients. BMA also gives probabilistic
evaluations of each risk factor, and we can ask questions such as: “What is the
probability that this risk factor coefficient is non-zero, i.e. has an effect?” In
stepwise selection, risk factors are either significant or not. We also show how
to evaluate and compare the predictive power of competing models using the
predictive log-score and a novel evaluation score, the predictive Z-score. We
show that BMA improves the predictive power of our models.
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The CPH model is based on an assumption of proportional hazards. We im-
plement two methods for validating this assumption. One can be used before
and the other after a model has been fitted. We also show how to implement
time-dependent variables and parameters to give a more general Cox regression
(CR) model, and how to apply BMA on this model.

Most real-life data sets have subjects where all values have not been recorded.
Standard survival analysis methods cannot handle missing values, and a lot of
valuable information is lost. We present three ways to address this problem:
Combining BMA and variable selection, we propose a stepwise BMA method,
where variables are removed by evaluating the probability of an effect. When
we remove variables with missing values, we reduce the number of subjects with
missing values, and significantly increase the size of the data set, leading to
more accurate parameter estimates and increased predictive power.

Bayesian Networks (BN) have been used in numerous contexts to infer missing
values. We show that they are also useful for estimating the missing values in
survival data sets. Having estimated the missing values, we apply BMA to the
augmented data set with improved evaluation of the risk factors and increased
predictive power. We compare several methods for learning the structure and
the parameters of a network connecting the risk factors, and show that the
best results are obtained using a structural Expectation Maximization (EM)
algorithm that is able to handle missing values.

In a final approach, we use a CR model for the failure time distribution, and
place fully parametric distributions on the missing data mechanisms and the
risk factors. Using an EM algorithm, we iteratively estimate missing values and
model parameters. In a simulation, we show how the results of this method
depend on the chosen parametric distributions, but that we obtain improved
evaluation of risk factors and increased predictive power, when we use the BN
structure to propose a distribution on the risk factors. We also propose an
improvement to the original EM algorithm by substituting stepwise selection
with BMA in the M-step, leading to improved parameter and missing value
estimates and increased predictive power.

Results suggest that survival time for stroke patients is lower for male patients,
decreases with ageing, severity of stroke, presence of another disabling disease,
diabetes, and intermittent claudication, or if the patient has previously experi-
enced a stroke. However, the effect of stroke severity decreases with time. Some
results also indicate that survival time decreases with the presence of atrial
fibrillation, or if the admission body temperature is ≥ 37.0◦ C. Data showed
positive evidence against an effect of hypertension, alcohol consumption, smok-
ing habits, type of stroke, and the presence of an ischemic heart disease, when
we adjusted for the possibility of the other risk factors.



Resumé

Denne afhandling er et omfattende komparativt metodestudie med særligt hen-
blik p̊a overlevelsesanalyse, specielt anvendelsen af en Cox Proportional Hazards
model (CPH) p̊a virkelige data: Et datasæt best̊aende af 48 højre-censorerede
(afslutning p̊a studiet) patienter med udbredt myelomatose (knoglemarvskræft),
og COpenhagen Stroke study (COST) databasen med 993 højre-censorerede
(opfølgning efter 10 år) slagtilfælde patienter.

Sædvanligvis anvendes stepwise selection til at evaluere, ved hjælp af p-værdier,
hvilken variabel, der vil forbedre modellen mest, hvis den til-/fravælges. Meto-
den tager hensyn til usikkerheden p̊a parameterestimaterne, men ikke usikker-
heden modellerne imellem. Dette medfører biased og overkonfidente estimater.
Vi sammenligner metoden med Bayesian Model Averaging (BMA) til at beregne
et gennemsnit over alle modeller eller en delmængde heraf. Hver model vægtes
med modellens a posteriori sandsynlighed. Vi viser, hvordan man kan identifi-
cere en delmængde af modeller ved hjælp af Occam’s window subset selection
med resultater, der er sammenlignelige med et gennemsnit over alle modeller.

Ved at benytte et gennemsnit over modeller kan vi evaluere modelusikkerhe-
den og opn̊a mere p̊alidelige estimater af risikofaktorernes koefficienter. BMA
giver ogs̊a en probabilistisk evaluering af den enkelte risikofaktor, der giver os
mulighed for at stille spørgsmål som: “Hvad er sandsynligheden for, at koeffi-
cienten for denne risikofaktor er nul, dvs. har en effect?”. Vi viser ogs̊a, at BMA
forbedrer modellens prædiktive evne evalueret ved hjælp af den prædiktive log-
score og en ny score, den prædiktive Z-score.

Vi beskriver desuden metoder til at validere CPH modellens antagelse om pro-
portionale hazards og implementere tidsafhængige variable og parametre til at
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opn̊a en mere generel Cox regressionsmodel (CR).

Endelig kan mange overlevelsesanalysemetoder ikke h̊andtere manglende værdier,
og dermed g̊ar store mængder af værdifuld information ofte tabt. Ved at an-
vende en kombination af BMA og stepwise selection foresl̊ar vi en stepwise BMA
metode, hvor variable fjernes p̊a baggrund af sandsynligheden for en effekt. N̊ar
vi fjerner variable med manglende værdier, reducerer vi antallet af patienter,
der har manglende værdier. Vi viser, at denne metode kan øge størrelsen af
datasættet markant og føre til mere præcise parameter estimater og styrket
prædiktionsevne.

Vi demonstrerer desuden, hvordan Bayesianske Netværk (BN) kan anvendes
til at estimere de manglende værdier, hvorefter vi anvender BMA p̊a det ud-
videde datasæt og viser forbedringer i evalueringen af risikofaktorerne og øget
prædiktionsevne. Vi sammenligner forskellige metoder til at lære strukturen og
parametrene i det netværk, der forbinder risikofaktorerne og viser, at de bedste
resultater opn̊as ved at benytte en strukturel Expectation Maximization (EM)
algoritme.

Endelig anvendes parametriske fordelinger til at modellere sammenhænge mellem
risikofaktorerne og de mekanismer, der resulterer i manglende værdier, mens vi
anvender en CR model til at modellere fordelingen af levetiderne. Ved at benytte
en EM algoritme kan vi skiftevis estimere parametre og manglende værdier og
opn̊a forbedringer i evalueringen af risikofaktorerne samt øget prædiktionsevne
ved at anvende BN strukturen til at modellere sammenhængen mellem risiko-
faktorerne. Ved at erstatte stepwise selection med BMA i den originale algo-
ritmes M-skridt vises, at vi kan opn̊a bedre estimater af parametre og manglende
værdier samt en styrket prædiktionsevne.

Resultaterne viser, at levetiden for slagtilfældepatienter er kortere for mænd,
falder med alderen, slagtilfældets sværhedsgrad, tilstedeværelsen af anden in-
validerende sygdom, sukkersyge og forbig̊aende krampe i benene, eller hvis pa-
tienten tidligere har haft et slagtilfælde. Effekten af slagtilfældets sværhedsgrad
aftager dog med tiden.

Den forventede levetid falder muligvis ogs̊a med tilstedeværelsen af hjerteflim-
mer, eller hvis patientens kropstemperatur er ≥ 37.0◦ C ved indlæggelse, men
data kunne ikke entydigt p̊avise disse effekter. Endelig viste analyserne, at der
ikke var bevis for en effekt af levetiden ved rygning, indtagelse af alkohol, højt
blodtryk, typen af slagtilfælde eller tilstedeværelsen af en iskæmisk hjertesyg-
dom, n̊ar vi korrigerede for de øvrige risikofaktorer.
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Notation

• X: upper-case letter usually refers to an uncertain variable.

• x: lower-case letter usually refers to a sampled value of an uncertain vari-
able.

• X: column vectors or matrices are usually printed in bold type. This also
applies to vector or matrix functions.

• XT: a row vector is a transposed column vector indicated by T.

• β = (β1, . . . , βp): vector notation is also used to indicate a list of objects,
and in this case we do not distinguish between row and column vectors.

• p(X): probability (distribution) of X.

• p(x): probability of x, corresponds to P (X = x).

• p(x|y): probability of x conditional on y.

• F (·) and f(·) usually denote a function and its density or derivative (also
in vector or matrix versions), i.e.

∫
. . . f(t)dt = F (t) it F has density f .

• t usually denotes a time, while T is usually a random time (a stopping
time, in fact).

• E[f(·)] or E(f(·)) is the expected value of f(·).

• V[f(·)] or V(f(·)) is the variance or covariance matrix of f(·).
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Chapter 1

Introduction

In Denmark, stroke is the third highest cause of death after cardiovascular dis-
orders. Each year, 10,000 Danes experience a stroke, and 1 of 7 Danes will
experience a stroke at least once in their lifetime. The disease is very much a
lifestyle-related disease, most and foremost caused by arteriosclerosis. All age
groups suffer, but the frequency increases strongly with age. Men suffer twice
as frequently as women, and blood pressure, diet, exercise habits, smoking, di-
abetes, and heart diseases are known as predisposing factors. The disease is
very important on a community scale, stroke being the most expensive, isolated
disease in the Danish hospital service system, and the disease that seizes most
bedsides, (www.vfhj.dk, 2007), (Davidsen, 2007).

40% die within a year of stroke onset.

Hence, if we could identify explanatory variables for the survival time of stroke
patients, we would be able to guide physicians and patients on how to extend
the survival time after a stroke. As the statistics indicate, this would be of value
for a very large group of patients worldwide. If the results suggest that, say,
smoking has a negative effect on the survival time, physicians could advise the
patient to stop smoking, and if, say, the stroke severeness is a significant risk
factor, physicians could look for ways to limit the severity, e.g. cool the patient
as suggested by Boysen and Christensen (2001), or establish special stroke units
as suggested by (Jørgensen et al., 1999a).



2 Introduction

In this thesis, which is primarily a comparative method study, we explore possi-
ble predictors of the survival time in days from admission to death in a commu-
nity based, Danish stroke study, the COpenhagen Stroke Study (COST), and
possible predictors of the survival time in months from diagnosis of multiple
myeloma to death in a smaller study from the Medical Center of University of
West Virginia, USA.

The main objective is to identify methods that can make reliable evaluations of
how possible risk factors affect the survival time, but the methods should also be
able to identify models capable of making reliable predictions of the (expected)
survival time for future patients. When a new stroke patient is admitted to the
hospital, the doctor should be able to advise the patient on ways to increase the
survival time, and what to expect, if he or she does/does not take the advice.

There has been extensive research in survival analysis in general, see e.g. (Col-
let, 2003), (Lee and Wang, 2003) and (Ibrahim et al., 2005) for many good case
studies. Examples of survival analysis on the COST data set includes (Jørgensen
et al., 1999a), (Kammersgaard and Olsen, 2006), (Andersen et al., 2006c), (An-
dersen et al., 2006d), (Andersen et al., 2006b), and (Olsen et al., 2006) just to
mention a few.

Although much of the work in this thesis focuses on stroke patients, the explored
methods are much more general. We can apply them to any survival analysis
study, but in this work we consider the methods in a Cox Proportional Hazards
(CPH) and Cox Regression (CR) setting. In survival analysis, we typically have
access to various patient information and the time of death or the censoring time.
The most common approach is to fit a CPH model, (Cox, 1972), and search for
significant, in terms of p-values, independent predictors of the survival time
using a stepwise selection method, (Lee and Wang, 2003), (Collet, 2003), which
iteratively proposes models that differ from the current one by just one variable,
and accepts or rejects the new model based on a significance test statistic.

Queries in Google, Scholar using various search strings gave the following re-
sults: “survival analysis stroke patients” (105,000 hits), “survival analysis cox
proportional hazards” (50,100), “stroke cox proportional hazards” (8,370), and
“copenhagen stroke study cox proportional hazards” (611), indicating the large
amount of literature on survival analysis, the application of a CPH model, and
stroke data.

Particularly, survival analysis of stroke data using stepwise fitting of a CPH
model is very popular, and there are numerous publications based on this ap-
proach, (Knuiman et al., 1992), (Tuomilehto et al., 1996), (Anderson et al.,
1994), (Gulløv et al., 1998), and (Broderick et al., 1992) just to mention a few.
Using the COST database alone, examples are (Andersen et al., 2005b), (Pe-
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tersen et al., 2006), (Kammersgaard et al., 2002), and (Kammersgaard et al.,
2004). These publications all relate to the time of death, but survival analysis,
including the CPH model, could easily be used for data sets where the event
time is not death. An example of this is (Lee et al., 1999), where the event is
the stroke itself.

Stepwise selection is a variable selection method that identifies a single model,
and makes inference as if the selected model was the true model. However, if
we have, say, 20 variables, we have 220 = 1, 048, 576 potential models, and by
selection just 1(!) model, we subsequently ignore the variables not selected,
but we also ignore the uncertainty in the variable selection process. Conse-
quently, the true uncertainty is often limited to the parameter uncertainty. If
we ignore the model uncertainty, we underestimate the true uncertainty and get
over-confident and biased estimates, (Little and Rubin, 1987), (Ibrahim et al.,
2005). This approach will also underestimate the uncertainty about quantities
of interest, see e.g. (Madigan and York, 1995), (Raftery, 1994), and (Kass and
Raftery, 1994). We will show that the ignored model uncertainty is substantial,
even for small data sets with just a few variables.

To address this problem, Raftery et al. (1995), show that accounting for model
uncertainty in survival analysis using Bayesian Model Averaging (BMA), im-
proves predictive performance. In BMA we average over all or a subset of models
weighted by their posterior model probabilities (PMP), (Hoeting et al., 1999),
(Ibrahim et al., 2005). The “significance” of a variable is the sum of posterior
model probabilities for models that include the given variable. This gives us an
estimate of the importance of each variable that is interpretable, more reliable,
and makes a distinction that the p-values cannot. Using p-values we may fail to
reject the null hypothesis “no effect” because either a) there is not enough data
to detect the effect, or b) the data provide evidence for the null hypothesis.
Using posterior probabilities we can make this very valuable distinction. No
variables are excluded. If they have no effect, they will not appear in any of the
selected models.

However, stepwise selection is still, as of today, the preferred method, although it
has been shown in several studies that the method is far from adequate, see e.g.
(Miller, 1990) for a thorough review, (Viallefont et al., 2001) for a comparison
of BMA and stepwise methods using simulated data, while Wang et al. (2004)
compare BMA and stepwise methods in logistic regression. Stepwise selection
is very popular, because it is easy to use, is implemented in most statistical
software packages, give interpretable models, and is based on familiar terms
such as p-values and significance levels. Physicians also find it difficult to adapt
to solutions where all variables are included, and are not classified as either
significant or not. Furthermore, we do not have a single model, but an average
model, and we use unfamiliar terms such as posterior probabilities.
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As mentioned, there has been numerous survival studies on fitting a CPH model
to COST data. However, all these studies have used stepwise selection. Further-
more, we have not found any study analyzing the survival time of stroke patients
using selective model averaging besides (Andersen et al., 2006e), which is also
part of this thesis preparation. Volinsky et al. (1997) used BMA and CPH in
a study of stroke/non-stroke patients, but assessed the risk of a stroke rather
than the survival time of stroke patients. BMA in survival analysis, includ-
ing the application of a CPH model, has been explored in several publications,
e.g. Volinsky and Raftery (2000), Volinsky (1997), Volinsky et al. (1997), and
Raftery et al. (1995). However, there are several important aspects that are
not addressed in these works, including validation of the proportional hazards
assumption, how to include time dependent variables if this assumption is vio-
lated, and last, but not least, the problem of missing values was not addressed.

Stepwise selection and other variable selection methods cannot handle cases
with missing values, i.e. subjects where one or more of the variables have not
been observed. Missing values are very common, especially in data sets that
include patient information. In the COST data set, we have 993 subjects and
examine 14 potential risk factors. Of the 993 subjects, 441 subjects or 44.4%
had missing values in at least one of these risk factors!

These numbers are not unusual for stroke data sets, or other health related data
sets for that matter. With such a significant number of subjects with missing
values, we would expect that every (survival) analysis of this data set included
a missing values analysis. However, such analyses are themselves missing alto-
gether, and it is common practice to simply ignore any subjects with missing
values.

Obviously, ignoring such a significant number of subjects can have a great im-
pact on the results, and bias the estimates of the model parameters and the
assessment of the uncertainty decisively, (Little and Rubin, 1987). In any case,
we significantly reduce the size of the available data and neglect a lot of valuable
information stored in the ignored subjects. This is not at all plausible. Another
approach is to use fully observed risk factors only. Obviously, it challenges the
validity of an analysis to limit the set of possible explanatory variables in the
light of such trends. We cannot exclude a variable that we suspect to be a sig-
nificant predictor of the survival time, simply because it has not been observed
for all subjects! A more decent approach to the missing values problem is im-
putation, the practice of “filling in” missing data with plausible values, e.g. the
series mean of the observed values. It is an easy and thus attractive approach to
analyze incomplete data, but a naive or unprincipled imputation method may
create more problems than it solves, distorting estimates, standard errors and
hypothesis tests, as documented by (Little and Rubin, 1987) and others.
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The question of how to obtain valid inferences from imputed data was addressed
by (Little and Rubin, 1987) using Multiple Imputation (MI). MI is a Monte
Carlo technique in which the missing values are replaced by m > 1 simulated
versions, where m is typically small (e.g. 2-10) to keep the computational chal-
lenges at a fair level. Each of the complete data sets is analyzed using standard
methods, and the results are combined to produce estimates and confidence
intervals that incorporate missing data uncertainty.

Most of the MI techniques presently available, assume that the missing values
are Missing At Random (MAR), (Ibrahim et al., 2005), i.e. they assume the
missing values carry no information about the probabilities of missingness. This
assumption is mathematically convenient, because it allows one to express an
explicit probability model for non-response. In most applications, however,
ignorability seems artificial or implausible. In the COST database, for example,
the stroke severity is estimated using an evaluation of the level of consciousness;
eye movement; power in arm, hand, and leg etc. It is easy to associate a missing
evaluation with a severe stroke, because the patient will be in such a poor
condition that an evaluation is not possible. Most imputing methods have also
proven to bias the solution, see e.g. (Little and Rubin, 1987), (Herring and
Ibrahim, 2001) and (Ramoni and Sebastiani, 2001).

Instead, we will explore two different approaches to the missing data problem.

Acknowledging the fact that our major concern, in the COST data set at least,
are missing discrete data values, we suggest the use of Bayesian Networks (BN),
(Jensen, 1996), (Heckerman, 1995), (Murphy, 2001a), to identify possible rela-
tions between potential risk factors. The method offers a variety of choices as
to whether we learn the model structure and parameters separately, using the
fully observed cases only, or we include subjects with missing values to learn
the structure and parameters interchangeably using a structural Expectation
Maximization (EM) algorithm due to Friedman (1998). Furthermore, we can
compare different learning algorithms with respect to scoring function and point
vs. Bayesian parameter estimates, different inference techniques, and whether
we use the most probable assignment of values to the missing variables given
the observed evidence, or use the estimated joint distribution to assign a weight
to each possible assignment of missing values. Each assignment would then be
considered a unique data point with a corresponding weight given by the joint
probability of the observed values, and the missing value pattern. Having es-
timated the missing values using either method, we can use stepwise selection
and BMA on the augmented data set.

The other is a semi-parametric approach using an Expectation Maximization
(EM) algorithm, (Dempster et al., 1977), (Thiesson et al., 1999), to estimate the
missing values in the E-step, and update the parameter estimates in the M-step.
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To be completely general in terms of the type of missing data, and the type and
number of variables subject to missingness, we specify the joint distribution of
the missing data mechanism R, the failure time T , and the variable vector Z.
A general approach would be to specify conditional distributions on [R|T,Z]
and [T |Z], and a marginal distribution for Z. In this work, we place fully
parametric distributions on [R|T,Z] and Z, while we use the CPH model for
the distribution of [T |Z]. However, the original algorithm presented in (Herring
et al., 2004) uses stepwise selection to fit a single CPH model. An obvious
improvement would be to use BMA on the final, augmented data set.

Using either BN or a semi-parametric approach, we combine the strengths of
BMA with an increased data set augmented by estimation of the missing values.
This is a very plausible strategy! However, we still apply the techniques sepa-
rately: First we estimate the missing values, then we apply BMA. Merging BMA
and missing values estimation has not yet been addressed, although it seems to
be an interesting “all-round” solution applicable to many problems. Using BN
to estimate the missing values, there is no obvious way to merge the two, since
we do not use the estimates of the parameters in the CPH model to estimate
the missing values in the BN. However, the semi-parametric model does. As-
suming that we manage the merging, we would then select the subset of models
with the highest posterior probabilities, p(Mi|D), given data D for model Mi.
To evaluate the posterior probability, we need the marginal likelihood, p(D|Mi)
(the Bayesian score), and the model prior, p(Mi). The marginal likelihood is
obtained by averaging over the parameters. However, learning models from in-
complete data is much harder than learning from complete data as shown by
e.g. Volinsky (1997) and (Nielsen, 2003), because the posterior over parameters
is no longer a product of independent terms. In other words, there exists a
posterior distribution for every completion of the database.

For the same reason, the probability of the data is no longer a product of inde-
pendent terms. Since the posterior distribution over the parameters of a given
model is no longer a product of independent posteriors, we generally cannot
represent it in closed form. Instead, we can attempt to approximate it. The
simplest approximation is to use the Maximum Likelihood (ML) or the Max-
imum A Posteori (MAP) parameters. We obtain an approximation to these
parameters using either gradient ascent methods, (Bishop, 2006), or an EM al-
gorithm. Since the probability of the data given a model no longer decomposes,
we need to approximate it using either stochastic simulation, (Kuo and Smith,
1992), (Liu, 2001), which is extremely expensive in terms of computation, or us-
ing large-sample approximations based on Laplace’s approximation, e.g. Bayes
Information Criterion (BIC), (Weakliem, 1999), (Volinsky and Raftery, 2000).

These approximations require the ML/MAP parameters for each model, before
we can score them. Thus, a search in model space requires an expensive eval-
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uation of each candidate. When we are searching in a large space of possible
models, this is infeasible. One solution is to use an heuristic search algorithm
to quickly remove the majority of candidates. We adopt the approach from
(Volinsky, 1997), and use a Leaps and Bounds (L&B) algorithm, (Furnival and
Wilson, 2000), (Lawless and Singhal, 1978), to scan the structure × parameter
space, and select a (much) smaller set of models using Occam’s window subset
selection, (Madigan and Raftery, 1994a), small enough to allow a feasible eval-
uation of each model, but large enough to make fairly sure that we include the
important models.

Another aspect of survival analysis using the CPH model is the assumption of
proportional hazards. The BMA solutions presented in (Raftery et al., 1995),
(Volinsky, 1997), (Volinsky et al., 1997) and other are all based on this assump-
tion. There exist several methods to validate the assumption, before and after
the model(s) have been estimated, see e.g. (Collet, 2003) and (Lee and Wang,
2003). Collet (2003) also show how to include time dependent variables, trans-
forming the CPH model into a more general Cox Regression (CR) model. We
can use this to implement a more general BMA approach to survival analysis.

All algorithms are implemented using Matlab.

The thesis is divided in two parts, a theoretical part (Chapter 2-4) and an
experimental part (Chapter 5-7), and is outlined as follows:

Chapter 2. Survival Analysis. First, we give an introduction to survival
analysis and the concept of censoring. We define the survival function,
the density function, the hazard function, and their equivalence relation-
ships. We show how to use parametric and non-parametric methods for
estimating parameters in survival models, how to include variables, and
present various variable selection techniques, including the most widely
applied method, stepwise selection. Finally, we introduce the CPH model
and the partial likelihood that we will use throughout the thesis.

Chapter 3. The Bayesian View and what it is all about. Then we in-
troduce and discuss the concept of probability, and how it is interpreted
by the “frequentists” and their counter-colleagues, the “Bayesians”. We
discuss various modeling approaches, model learning, model inference, and
model selection. The concept of model uncertainty is introduced, and we
present methods for comparing and selecting models. We present BMA to
average over a subset of models that we select using Occam’s razor, and
apply it to the CPH. We discuss the concepts of posterior model proba-
bility and posterior parameter probability, and compare the latter to the
well-known p-value. To round off, we present two methods for evaluating
the predictive model performance.
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Chapter 4. Missing Values. In this chapter we discuss the importance of
missing values in data, and introduce the reader to the MI technique.
Furthermore, we show how to use MCMC to estimate the missing values
as well as the parameters in the CPH model.
However, MCMC methods can be tricky to implement and computation-
ally expensive. Instead, we present the use of BNs to represent inter-
variable connections between the risk factors. We outline several methods
for learning the graph structure, discuss exact as well as approximate tech-
niques for inferring the missing values, and describe an open source Matlab
toolbox to do learning and inference in BNs.
We also present a semi-parametric approach to the missing values prob-
lem. The method places fully parametric distributions on the missing data
mechanisms and the risk factors, and uses the CPH to model the failure
times. We define, and give examples of, different missing data mecha-
nisms, and show how to use an EM algorithm to iteratively estimate the
missing values and the parameters. We also show how to include discrete
as well as continuous valued variables, and how to improve the algorithm
by implementing BMA in the M-step.

Chapter 5. Databases. This is the first chapter in the experimental part of
the thesis, and here we outline the two real-life data sets that we apply
our methods to. First, we describe the multiple myeloma data set, and
then the COST data set.

Chapter 6. Comparison of Stepwise Selection and Bayesian Model
Averaging Applied to Real Life Data. In our first experiment, we
compare the stepwise selection method to BMA. We apply our methods
to the multiple myeloma data set, and then the COST data set. We also
outline two methods for validating the proportional hazards assumption,
and show how to include time dependent variables.

Chapter 7. Estimating Missing Values in the COST Data Set. In the
second experiment, we compare various techniques to estimate the miss-
ing values in the COST data set. The chapter is divided in four sections.
First, we simple remove variables one by one using the posterior parameter
probability to evaluate each risk factor. With fewer variables, there will
also be fewer subjects with missing values. Next, we use a BN to estimate
the missing values. We compare different algorithms for learning the struc-
ture and parameters of the network, and for estimating the missing values.
Finally, we estimate the missing values using a semi-parametric approach,
and show how to improve the algorithm by incorporating BMA. We also
simulate how results are influenced by different distributions. Having in-
creased the size of the data set in either of the three ways, we re-apply
stepwise selection and BMA to update the our (model) parameter es-
timates. In the last section we compare the different approaches with
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respect to predictive performances, and show examples of survival curves
using an estimated model.

Chapter 8. Conclusion and Discussion. We end the thesis with a discus-
sion of the experimental results, and suggest directions for future work.
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Chapter 2

Survival Analysis

In survival analysis, (Cox and Oakes, 1984), (Collet, 2003), (Lee and Wang,
2003), (Ibrahim et al., 2005), (Andersen et al., 1993) our objective is to model the
survival time, i.e. the time to the occurrence of a given event. The event could
be just about anything. Within the medical field, common examples are the
time to development of a disease, response to a treatment, and of course death.
The available data often include the survival time, patient characteristics (such
as gender, age, and blood pressure), disease information, treatment information,
examination data and much more. Often we attempt to predict the probability
of survival, response, or mean lifetime given a set of observed variables, compare
survival distributions, and identify risk and/or prognostic factors. The aim of
this chapter is to give an introduction to survival analysis.

2.1 Censoring

First, however, we need to introduce the concept of censored data. Often, one
is tempted to consider survival analysis as the application of a parametric (if
the survival times follow a known distribution), or non-parametric method (if
the distribution is unknown) to some survival data. However, this is only true
if all survival times are exact and known, which is rarely the case. Instead, non-
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parametric tests based on the rank ordering of survival times should be applied.
For example, in a clinical study it is very common that some patients are still
alive, or not disease-free, at the end of the study. It is also possible to lose
patients during the study period, e.g. if the patients are not able to participate
because they for some reason no longer qualify, they die by accident, or because
they have moved abroad. The survival times for these patients are unknown,
and we refer to them as censored observations. We have three types of censoring
(Lee and Wang, 2003).

Type I censoring Imagine an animal study where the animals are given a
lethal dose of some drug at the same time. However, due to limited fi-
nancial and/or time constraints, the researcher cannot wait for all test
subjects to die, and he needs to end the study prematurely. The animals
that are still alive at the end of the study are censored, but we do know
that their survival time is at least the length of the study period. Also,
an animal could be lost, in which case it is censored, but we know that
it survived at least to the time is was lost. With no losses, all censored
observations are equal to the length of the study period.

Type II censoring If the researcher chooses to end the study when a prede-
termined number of the animals have died, all censored observations are
equal to the largest uncensored observation, if there are no losses.

Type III censoring For many studies involving humans, the study period is
time/resource limited, but patients enter the study at different times. The
COST data used in this thesis, where patients experience stroke at dif-
ferent times, and the study period ends at a given date, fall within this
category. Lost patients that do not want to participate in follow-up, move
abroad etc. are censored, and their survival times are at least the time
between the stroke and the last contact. Patients that are still alive at
the end of the study are censored with survival times at least the time
between the stroke and the end of the study. The other data set used in
this work, the multiple myeloma data, are also Type III censored.

Figure 2.1 shows examples of these three types of censoring, all right-censoring
techniques. Type I and II censored observations are called singly censored obser-
vations, while Type III censored data are known as progressively or randomly
censored data. Left-censoring occurs when all we know is that the event oc-
curred prior to some time t. Interval-censoring is when the event is known to
occur between times t1 and t2. (Lee and Wang, 2003, chap. 1)
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Figure 2.1: Examples of Type I, II, and III censoring.

2.2 Distribution of Survival Times

The distribution of survival times, the time to a given event, is described by
three mathematically equivalent functions, i.e. given one of the functions, we
can derive the others.

2.2.1 Survival Function

(According to definitions in (Lee and Wang, 2003, chap. 2)). Let T be the
survival time for a subject, and let S(t) be the survival function, the probability
that the subject survives longer than time t, defined as

S(t) ≡ p(T > t) (2.1)

S(t) is a non-increasing function with

S(t) =
{

1, t = 0
0, t = ∞ (2.2)
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The cumulative distribution function, F(t) of T, is given by

F (t) ≡ 1− S(t) (2.3)

and represents the probability that a patient dies before time t.

Given these definitions, it is clear why S(t) is also known as the cumulative
survival rate, and F (t) as the cumulative failure rate. If there are no censored
observations, S(t) is estimated by the proportion of patients surviving longer
than time t

Ŝ(t) =
# patients surviving longer than t

total # of patients
(2.4)

However, with censored observations, we may not be able to calculate the nu-
merator of (2.4).

2.2.2 Density Function

(According to definitions in (Lee and Wang, 2003, chap. 2)). The survival time,
T , has a density function, f(t), defined as the limit of the probability that a
patient dies (or more generally fails) in the interval t to t + ∆t per unit width
∆t, i.e. the probability of failure within a small interval per unit time

f(t) ≡ lim∆t→0 P [patient dies in the interval (t; t + ∆t)]
∆t

(2.5)

=
lim∆t→0 p(t < T ≤ t + ∆t)

∆t
(2.6)

The density function, also known as the unconditional failure rate, satisfies

f(t) ≥ 0 t ≥ 0 (2.7)
f(t) = 0 t < 0 (2.8)

and ∫ ∞

0

f(t) = 1 (2.9)

If there are no censored observations, f(t) is estimated as the proportion of
patients dying in a short interval per unit width

f̂(t) =
# patients dying in the short interval beginning at time t

(total # of patients)
(2.10)

Again, with censored observations, we may not be able to calculate the numer-
ator of 2.10.
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2.2.3 Hazard Function

(According to definitions in (Lee and Wang, 2003, chap. 2)). Finally, let h(t)
be the hazard function, or the conditional failure rate, defined as the limit of
the probability of failure during a very small time interval, t + ∆t, given that
the patient has survived to time t

h(t) ≡ lim∆t→0 P [patient dies in (t; t + ∆t)|patient survived to time t]
∆t

=
lim∆t→0 p(t < T ≤ t + ∆t|T ≥ t)

∆t
(2.11)

or expressed in terms of the density function

h(t) =
f(t)

1− F (t)
(2.12)

In many studies, as is also the case in this thesis, the time t represents the
patients age, and thus h(t) expresses the risk of death per unit time, say, days
or years, during aging. With no censored observations, h(t) is estimated as the
proportion of patients dying in an interval per unit time given survival to the
beginning of the interval

ĥ(t) =
# patients dying in the interval (t; t + ∆t)

(# patients surviving at time t)× (∆t)
(2.13)

The hazard function can increase (cancer patients that are not treated), decrease
(patients undergoing surgery, patients responding to treatment), be constant
(the hazard of the patient being struck by lightning), or a combination hereof.
Human life, for example, is described by a decreasing hazard rate from the time
we are born (high infant mortality), then it remains more or less constant for
a period of time, and then it increases as we get older and are more likely to
catch diseases, or simply because our body has reached its “use-by”date. We
also use the cumulative hazard function, H(t), defined as

H(t) ≡
∫ t

0

h(u)du (2.14)

in the interval zero to infinity.

2.2.4 Relationships between Survival Functions

Inserting (2.3) in (2.12), we get the relationship

h(t) =
f(t)
S(t)

(2.15)
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Furthermore, since the density function is defined as the derivative of the cu-
mulative distribution function, we get

f(t) =
d

dt
[1− S(t)] = −S′(t) (2.16)

Inserting (2.16) in (2.15), we have

h(t) = −S′(t)
S(t)

= − d

dt
log S(t) (2.17)

If we integrate (2.17) from 0 to t using S(0) = 1, we get

−
∫ t

0

h(u)du = log S(t) (2.18)

Using (2.14) we get
H(t) = − log S(t) (2.19)

or

S(t) = exp[−H(t)] = exp
[
−
∫ t

0

h(u)ux

]
(2.20)

Inserting (2.20) in (2.15) yields

f(t) = h(t) exp[−H(t)] (2.21)

Hence, we have shown that it is possible to derive any of the three functions
given the two others are known.
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2.3 Estimation of Parameters

Survival analysis in a nutshell is to estimate the three survival (survivorship,
density, and hazard) functions defined in the previous chapter. There exist
parametric as well as non-parametric methods for this purpose. In case we do
not know the exact survival times, estimation of the survival functions becomes
much more difficult.

In the most common situation, as with the applications presented in this thesis,
we have right-censored data where the patients are followed to death or are
censored. Let t1, t2, . . . , tk, t+k+1, . . . , t

+
n be the survival times of n patients with

k exact times (patients have died) and (n−k) right-censored times. We assume
that the survival times follow a given distribution with density function f(t, β)
and survivorship function S(t, β) using β = (β1, . . . , βp) to denote p unknown
parameters in the distribution. As shown later, for the exponential distribution
we would have p = 1 parameter (λ).

With a discrete survival time, T , say, using the date the patient died, f(t, β) is
the probability of observing the survival time t (an uncensored survival time),
and S(t,β) is the probability that the survival time is greater than t (a right-
censored survival time). Hence, the product

∏k
i=1 f(ti,β) represents the joint

probability of the k uncensored survival times, and
∏n

i=k+1 S(t+i ,β) represents
the joint probability of the remaining right-censored survival times. The product
of these two factors represents the joint probability of the complete data set,
and is called the likelihood function of the parameter set, β, (Lee and Wang,
2003), Collet (2003)

L(β) =
k∏

i=1

f(ti,β)
n∏

i=k+1

S(t+i ,β) (2.22)

or the likelihood of observing the data given a set of parameters.

2.3.1 Maximum Likelihood Estimation

In Maximum Likelihood Estimation (MLE), (Lee and Wang, 2003), Collet (2003),
(Ibrahim et al., 2005) we estimate the set of parameters that maximizes the
likelihood function. For computational ease we use the Log-Likelihood (LL)
function, l(·), turning products into sums

l(β) = log L(β) =
k∑

i=1

log [f(ti,β)] +
n∑

i=k+1

log
[
S(t+i ,β)

]
(2.23)



18 Survival Analysis

The MLE, β̂, is the parameter set that maximizes l(β)

l(β̂) = max
{
l(β)

}
(2.24)

corresponding to the solution of

∂l(β)
∂βj

= 0 j = 1, . . . , p (2.25)

if
∂2l(β)
∂βj∂βj

< 0 j = 1, . . . , p (2.26)

evaluated at β̂. Otherwise, the solution is a minimum or a saddle-point. In
most cases we do not have a closed form solution to (2.25). Instead, we use the
numerical Newton-Raphson procedure:, (Bishop, 2006), (Lee and Wang, 2003)

1. Initialize the parameters (β1, . . . , βp) to 0, i.e. let

β(0) = 0 (2.27)

2. Take a small step in the likelihood space that increases the LL, that is let
the change in β be

∆(j) =

[
−∂2l(βj−1)

∂β∂βT

]−1
∂l(βj−1)

∂β
(2.28)

3. Using 2.28, the updated parameter value at the j’th iteration is

β(j) = β(j−1) + ∆(j) j = 1, 2, . . . (2.29)

The procedure determines if the step change is below some preselected thresh-
old value, or if the algorithm exceeds a maximum number of iterations. The
estimated covariance matrix of β̂ is

V̂ (β̂) = Ĉov(β̂) =

[
− ∂2l(β̂)

∂β∂βT

]−1

(2.30)

2.3.1.1 An Example: The Exponential Distribution

As an example, consider the one-parameter exponential distribution with density
function

f(t) =
{

λe−λt t ≥ 0, λ > 0
0 t < 0 (2.31)
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survivorship function
S(t) = e−λt t ≥ 0 (2.32)

and hazard function
h(t) = λ t ≥ 0 (2.33)

Concentrating on right-censored data, let the study begin at time t = 0 and
terminate at t = t′ with n patients entering the study. Let k be the number of
patients who die before or at time t′, and let n − k be the number of patients
who are lost or remain alive at time t′. We order the uncensored data such that

t1 ≤ t2 ≤ . . . ≤ tk, t+k+1, t
+
k+2, . . . , t

+
n (2.34)

Inserting (2.31) and (2.32) in (2.22), we get the likelihood function

L(λ) =
k∏

i=1

λe−λti

n∏
i=k+1

e−λt+i (2.35)

and the LL function

l(λ) = k log(λ)− λ
k∑

i=1

ti − λ
n∑

i=k+1

t+i (2.36)

Differentiating with respect to λ gives

∂l(λ)
∂λ

=
k

λ
−

k∑
i=1

ti −
n∑

i=k+1

(2.37)

and using (2.25) we get the estimator of λ

λ̂ =
k∑k

i=1 ti +
∑n

i=k+1 t+i
(2.38)

2.3.2 Including Risk Factors

We often need to take into account, especially when working on studies involv-
ing humans, that every patient is unique, and that individual differences may
influence the survival times significantly. When a physician makes a diagnosis
or a prognosis for a patient, he needs to gather a lot of information on the pa-
tient, such as personal data, medical history, test results etc. All these patient
characteristics, ranging from blood pressure over CT scan results to marital
status, are referred to as prognostic factors or risk factors, see examples of com-
monly used risk factors for stroke patients in (Andersen et al., 2005b), (Petersen
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et al., 2006), (Kammersgaard and Olsen, 2006), (Kammersgaard et al., 2002),
(Andersen et al., 2006a), (Jørgensen et al., 1999a).

However, a lot of variables also means a lot of information. All information is
valuable, but some information is more useful than other depending on the task
we are currently working on. The difficult task is to figure out which variables are
important to estimate the survival time and how to include them in the model.
Usually, an experienced physician is able to eliminate most of the variables that
he knows have no influence on the survival time. As an example, the subjects
eye color is probably not relevant for the survival time of rats being exposed to
a lethal drug, while the gender is important if male rats do not absorb the drug
as well as female rats. We need statistical tools to map the relationship between
the variables and the survival time, but we often use experienced physicians to
limit the domain of variables of potential interest. Otherwise, we would have
too many variables, and thus parameters, compared to the amount of available
data. Also, we can use the physicians to provide other useful information such
as model constraints.

One way to identify the relevant variables is to assume that data are generated
by a certain class of models and then fit the parameters of the model. Often, we
use regression models for this purpose. To include variables, we assume that we
can express the relation between the variables and the survival time explicitly.
As with conventional regression methods, we can model the logarithm of the
survival time using the Accelerated Failure Time (AFT) Model , (Lee and Wang,
2003), (Collet, 2003), (Andersen et al., 1993), as the variables either accelerates
or decelerates the time to failure, the survival time. The model assumes a linear
relationship between the logarithm of the survival time, T , and the variables, Z

log T = β0 +
p∑

j=1

βjZj + εi = µi + εi (2.39)

where Zj , j = 1, . . . , p are the variables, βj , j = 0, 1, . . . , p their coefficients, and
the εi’s are independent, identically distributed (i.i.d.) uncertain error terms.
Consequently, T is exponentially distributed with the following hazard, density,
and survivorship functions

h(t, λi) = λi = exp

−
β0 +

p∑
j=1

βjzji

 = exp(−µi) (2.40)

f(t, λi) = λi exp(−λit)εi (2.41)
S(t, λi) = exp(−λit)εi (2.42)

The model assumes linearity between the variables and the logarithm of the
hazard. If we have two patients with hazards hi(t, λi) and hk(t, λk), the hazard
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ratio (HR), (Lee and Wang, 2003), (Collet, 2003), (Andersen et al., 1993), of
these two patients is

hi(t, λi)
hk(t, λk)

=
λi

λk
= exp[−(µi − µk)] = exp

 p∑
j=1

βj(zji − zjk)

 (2.43)

The ratio is not time dependent, but only depends on the difference between
the variables. This shows that the exponential regression model is a special case
of a broader class of models known as proportional hazard models, (Cox, 1972),
(Lee and Wang, 2003), (Collet, 2003), (Andersen et al., 1993) where the HR of
any two patients is assumed time independent.

2.3.3 Variable Selection

As mentioned, we need to identify the most important variables or risk factors in
terms of their effect on the survival time. Hence, we need a method that allows
us to compare and choose between models with different subsets of variables.
For a known parametric model, e.g. the exponential model, we can use different
methods briefly described below. Usually, when researchers publish their results,
they compare the outcome of several of these methods and comment on any
differences in the selected subsets. This is known as multivariate analysis, as we
include more than one variable in our model. We can also apply a univariate
analysis, and, for each potential variable, check if the variable is a significant
risk factor when all other variables are neglected. If it is not, there is no reason
to include it in a multivariate analysis. Whether or not a variable is significant
is determined by the controversial p-value, see (Collet, 2003), (MacKay, 2003),
(Gelman et al., 2004) or any textbook on statistics, e.g. (Johnson, 2005). We say
that a variable is significant if the p-value is below some preselected threshold,
(MacKay, 2003), (Hubbard and Armstrong, 2005).

2.3.3.1 Forward Selection

In the forward selection method, (Lee and Wang, 2003), Collet (2003), (Gelman
et al., 2004), we begin with an empty variable set, unless we have variables that
we force into the model, e.g. in view of expert knowledge. In this case we might
include, say, age, even if it is not significant, because we for some reason would
like to adjust for age. Otherwise, we add one variable at a time, and once a
variable is included, it cannot be removed. The variable that we attempt to add
in the next step is the variable with the largest, adjusted χ2 test statistic, see
(Lee and Wang, 2003), Collet (2003), (Andersen et al., 1993) or any textbook
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on statistics e.g. (Johnson, 2005). If the test statistic is significant at a, say,
α = 0.05 level, we accept the variable for entrance.

If β1 is the parameter vector for the variables already included in the model,
we select Zk to enter the model if the difference between the log-likelihood with
and without Zk is the largest among all Zj ’s not in the model, i.e. the coefficient
βk of Zk satisfies

Xk = 2
[
l(β̂k, β̂1k(0))

]
(2.44)

= max
k

{
2
[
l(β̂j , β̂1)− l(β1j(0))

]
,∀Zj not in the model

}
(2.45)

and Xk > χ2
1,α, where βj is the parameter of Zj not in the model, (β̂j , β̂1) is the

MLE of (βj ,β1), β̂1j(0) is the MLE of β1 given βj = 0, and χ2
1,α is the α-level

of the χ2 distribution with one degree of freedom.

2.3.3.2 Backward Selection

The backward selection method, (Lee and Wang, 2003), Collet (2003), (Gelman
et al., 2004), is in some sense the opposite of the forward selection method. We
begin with the complete set of variables and eliminate them one by one using
the Wald test statistic, (Collet, 2003), compared against a χ2-distribution. In
each step, the variable with lowest test statistic that is not above the specified
α-level is removed, i.e. we remove Zk if

Xk =
β̂2

k

v̂2
kk

= min
j

{
β̂2

j

v̂2
jj

,∀Zj not in the model

}
(2.46)

and Xk ≤ χ2
1,α, where β̂j is the estimated parameter of Zj , and v̂2

jj is the
estimated variance of β̂j . Again, if a variable is removed, it cannot re-enter the
model.

2.3.3.3 Stepwise Selection

Stepwise selection, (Lee and Wang, 2003), Collet (2003), (Gelman et al., 2004),
combines the forward and backward selection procedures. We begin with an
empty set of variables and add variables as in forward selection. However,
entered variables may now be removed in a later iteration if the variable is no
longer significant. The algorithm terminates if there are no significant variables
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to add, or if the variable just entered is removed and no more variables can be
added.

However, many studies show that model selection and in particular stepwise
methods have some serious drawbacks, e.g. (Hoeting et al., 1999), Wang et al.
(2004), (Volinsky, 1997), (Raftery, 1995), (Viallefont et al., 2001). The most
important are:

Credibility of model exaggerated The model appears to have more explana-
tory power than it really does. Typically we overestimate the goodness-
of-fit.

Level of testing procedure unknown We use a complex iterative applica-
tion of hypothesis tests, and the overall probability of a Type 1 error,
(Johnson, 2005), for the family of tests exceeds the specified level for the
individual test. The true level for the entire selection procedure is hard to
compute.

Criterion level No agreement on the best criterion for addition and deletion
of variables. Optimally, we should exclude noise variables and include
predictive variables. Suggested significance levels range from 0.01 to 0.50
and affect the results dramatically.

Dichotomization of variables Variables are either “in” or “out”. In reality,
the variables affect the response on a continuum. It is possible, that
non-significant variables, when taken in aggregate, may have important
estimation or prediction information.

Most of these problems are related to the use of p-values. We discuss this in
more details in Section 3.3.1.4, where we also outline a method that does not
use p-values.
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2.4 Cox Proportional Hazards Model

So far, we have assumed that we know the underlying survival distribution that
we can fit with a parametric model. Then we estimate and hypothesis test the
parameters using standard asymptotic likelihood techniques. Non-parametric
or distribution free methods are more general in the sense that they are more
efficient than parametric distributions when survival times do not follow a the-
oretical distribution or we do not know the theoretical distribution.

The most commonly used survival model is the Cox Proportional Hazards (CPH)
model, (Cox, 1972), (Cox and Oakes, 1984), (Andersen and Gill, 1982), (Herring
and Ibrahim, 2001), (Lee and Wang, 2003), (Collet, 2003), (Andersen et al.,
1993). The model is not based on an assumption of a known distribution, and
the hazard function can take on any form. The only assumption is that the
hazard functions of different patients are proportional and independent of time.

Another justification for the CPH model is that in our main data domain, stroke
data, almost any paper published on the subject is based on the application of
this model. A query search for “stroke survival analysis cox proportional hazard”
in Goggle, Scholar gave 6,150 hits. Dr. Tom Skyhøj Olsen from the stroke unit
at Hvidovre Hospital, responsible for collecting the data in the COST database
explored in the experimental sections, has published numerous papers on stroke
survival analysis, and is co-author on several of the publications written during
the preparation of this thesis. According to Dr. Olsen, submitting a research
paper for a medical journal or conference not based on the CPH model, will
most like take flak for analyzing survival data in a way that is not understood
or accepted by most readers/reviewers. It is the standard model to analyze
survival data in the medical field, physicians understand this model and use it
extensively. Indeed, one of the aims of this thesis is to extend the basic use of
this model, and show that we can obtain better models using more advanced
techniques based on the CPH model.

2.4.1 Partial Likelihood

Usually, we calculate the LL function and use it to obtain a point estimate of
the parameters in the model. In the CPH model we do not have a theoretical
distribution and cannot compute the (log)-likelihood. Instead, we use a quantity
known as the Partial Likelihood (PL), (Raftery et al., 1995), (Volinsky, 1997),
(Lee and Wang, 2003), (Ibrahim et al., 2005). As we showed for the exponential
distribution, all proportional hazard models have the property that the ratio
between the hazard functions of any two individuals is constant (independent
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of time). Hence, we can write the hazard function for any individual as the
product of an underlying (common) baseline hazard function, and a function of
the variables

h(t|Z) = h0(t)g(Z) (2.47)

where g(Z) is the variable effect and Z = (Z1, . . . , Zp). The baseline hazard,
h0(t), expresses the hazard change over time when all variables are ignored (or
rather have their baseline/reference values). The CPH model assumes that g(Z)
is an exponential function of the variables

g(Z) = exp

 p∑
j=1

βjzj

 = exp(βTZ) (2.48)

which implies
h(t|Z) = h0(t) exp(βTZ) (2.49)

where β is the variable coefficient vector. To exemplify the effect of a variable
in a treatment study, let there be only one (binary) treatment variable, Z1, say,
gender, where Z1 = 0 for males and Z1 = 1 for females. The HR between female
and male patients is

h(t|Z1 = 1)
h(t|Z1 = 0)

= exp(β1) (2.50)

and so the treatment is equally effective if β1 = 0, and the treatment introduces
lower (higher) risk for females than males if β1 < 0 (β1 > 0). Using (2.49) and
(2.20), we get

S(t|Z) = exp
[
−
∫ t

0

h(u)du

]
= exp

[
−
∫ t

0

h0(u) exp(βTZ)du

]
= exp

[
− exp(βTZ)

∫ t

0

h0(u)du

]
(2.51)

= exp
[
−
∫ t

0

h0(u)du

]exp(βTZ)

= exp
[
−H0(t) + H0(0)

]exp(βTZ)

=
{

exp[−H0(t)] exp[H0(0)]
}exp(βTZ)

=
[
S0(t)

1
S0(0)

]exp(βTZ)

= [S0(t)]
exp(βTZ) (2.52)
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i.e. we have incorporated the variables into the survival function. Furthermore,
we can rewrite (2.51) using (2.14) to give

S(t|Z) = exp
[
− exp(βTZ)

∫ t

0

h0(u)du

]
= exp

[
− exp(βTZ)H0(t)

]
(2.53)

i.e. we have expressed the survivor function in terms of the cumulative baseline
hazard function, H0(t), which will come in handy in Section 4.4.2.

To identify the subset of the p variables that affects the survival time signifi-
cantly, we cannot use the likelihood function in (2.22). In the likelihood function
we compute the joint probability that each observed failure occurred at the ob-
served times, f(t), and the censored individuals survived at least to the time of
censoring, S(t). As we do not have a known (baseline) hazard distribution, we
cannot compute the density function nor the survival function. In fact, we do
not even assume anything on the form of the baseline hazard function, except
that it should always be positive and only defined for t > 0. All we require is
the hazard functions of any two individuals to be proportional.

However, we can use this assumption to calculate the PL by comparing failing
subjects to those not failing at each time, t. Let there be n observations, k
distinct and observed failures, and (n − k) right-censored observations. Let
t1 < t2 < . . . < tk be the k ordered failure times and z1,z2, . . . ,zk their
variable vectors.

Furthermore, let R(ti) be the risk set at time ti, i.e. the set of all individuals
with survival time at least ti. The probability that, for failure at time ti, the
failure is on the individual as observed, conditionally on the risk set R(ti), is
the ratio between the hazard function for the observed individual and the sum
of hazard functions for the risk set. Using (2.47), we get the PL, Lp, for the
variable coefficient vector, β, at time i

Lp(β)i = p(subject with zi fails at ti|some subject failed at ti)

=
p(subject with zi fails at ti)

p(some subject in risk set failed at ti)

=
h(ti|zi)∑

l∈R(ti)
h(ti|zl)

=
exp(βTzi)∑

l∈R(ti)
exp(βTzl)

(2.54)

As the baseline hazard function, h0(ti), cancels out, we do not need to estimate
it, and implies that the actual times of failure are not important - just the
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ordering. Censoring times are not important either, as long as we keep track of
the risk sets. The key idea is that the PL shifts focus from survival times and
the survival distribution to the (relative) hazard of failure.

We get a contribution for each of the k failures, and the joint probability or the
PL is

Lp(β) =
k∏

i=1

exp(βTzi)∑
l∈R(ti)

exp(βTzl)
(2.55)

giving us the Log-Partial Likelihood (LPL)

lp(β) =
k∑

i=1

βTzi − log

 ∑
l∈R(ti)

exp(βTzl)

 (2.56)

To estimate the parameters we use the Newton-Raphson iterative method de-
scribed in (2.27)-(2.29) to obtain the Maximum Partial Likelihood Estimate
(MPLE), β̂, (Raftery et al., 1995), (Volinsky, 1997), (Lee and Wang, 2003),
(Ibrahim et al., 2005), by solving

∂lp(β)
∂βj

=
k∑

i=1

[zji −Aji(β)] = 0 j = 1, . . . , p (2.57)

where

Aji(β) =

∑
l∈R(ti)

zjl exp(βTzl)∑
l∈R(ti)

exp(βTzl)
(2.58)

is the derivative stemming from the second part of the summation in (2.56).
The second partial derivatives of the LPL, that we can use to validate that β̂ is
a maximum, are

Ijj′(β) =
∂2lp(β)
∂βj∂β′j

= −
k∑

i=1

Cjj′i(β) j, j′ = 1, . . . , p (2.59)

where

Cjj′i(β) =

∑
l∈R(ti)

zjlzj′l exp(βTzl)∑
l∈R(ti)

exp(βTzl)
−Aji(β)Aj′i(β) (2.60)

The covariance matrix of β̂ is

V̂(β̂) = Ĉov(β̂) =
[
−∂2lp(β)

∂β∂βT

]−1

(2.61)

To identify significant risk factors we can use hypothesis testing and selection
methods as described earlier for the parametric models. We simple replace the
log-likelihood function with the LPL function.
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As mentioned, the above derivation assumes that we have k distinct failure
times. Now, assume that we have k distinct uncensored times t1 < t2 < ... < tk
among n observed survival times. Let mi be the number of patients who fail at
ti, R(ti) the risk set at time ti, and ri the size of the risk set. From R(ti) we
can randomly select mi subjects, each selection denoted ui. Let U i denote the
set that contains all the ui’s.

When the survival times are discrete observations, e.g. number of days post
stroke, the tied observations are true ties (happen at exact same time). In this
case, (Cox, 1972) has proposed a logistic model for the hazard function

hi(t)dt

1− hi(t)dt
=

h0(t)dt

1− h0(t)dt
exp

 p∑
j=1

βjzji

 =
h0(t)dt

1− h0(t)dt
exp(βTzi) (2.62)

which corresponds to (2.49) for continuous survival times. Replacing the i’th
term in (2.55) with the corresponding term for tied survival times

exp(βTzu∗
i
)∑

ui∈Ui
exp(βTzui

)
(2.63)

we get the PL function for tied (discrete) survival times, (Lee and Wang, 2003),
(Ibrahim et al., 2005)

Lp(β) =
k∏

i=1

exp(βTzu∗
i
)∑

ui∈Ui
exp(βTzui

)
(2.64)

where zui
=
∑

k∈ui
zk = (z1ui

, . . . , zpui
), using zlui

for the sum of the j’th
variable of the mi subjects in ui. Furthermore, u∗i is the set of mi subjects who
failed at time ti and zu∗

i
=
∑

k∈u∗
i
zk = (z1u∗

i
, . . . , zpu∗

i
), using zju∗

i
for the sum

of the j’th variable of the mi subjects in u∗i .

2.4.2 Estimation of Survival Function

As we do not know the exact form of the baseline hazard function or the sur-
vival function, we cannot estimate the survival function simply be inserting the
estimates of the parameters and coefficients. Instead, (Breslow, 1974) assumes
that the baseline hazard function is constant between each pair of successive
observed failure times and propose the following estimate of the baseline cumu-
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lative hazard function

Ĥ0(t) =
∑
ti≤t

number of failures at time ti
p(some subject in risk set failed at time ti)

=
∑
ti≤t

mi∑
l∈R(ti)

exp(β̂
T
zl)

(2.65)

Using (2.20), the estimate of the baseline survival function is

Ŝ0(t) = exp
[
−Ĥ0(t)

]
=
∏
ti≤t

exp

 mi∑
l∈R(ti)

exp(β̂
T
zl)

 (2.66)

Inserting this into (2.52) gives

Ŝ(t,Z) =
[
Ŝ0(t)

]exp(β̂
T

Z)

(2.67)

that we can use to estimate the probability that a patient survives longer than
time t, when the patient has risk factors z.

2.4.3 Neural Interpretation

As shown in the previous section, an advantage of the CPH model is that once
we have estimated the variable coefficients, we can estimate the parameters of
the time dependent baseline hazard function. This sequential estimation can
be used to express the CPH model using a Multi Layer Perceptron (MLP)multi
layer perceptron, Bishop (2006), as shown in (Bakker et al., 2000) and (Bakker
et al., 2004).

Recall that the usual likelihood function, the probability of observing the sur-
vival data, D, given the risk factor coefficients, β, is

L(β) = p(D|β) =
∏

ti∈ uncensored

f(ti,β)
∏

t+i ∈ censored

S(t+i ,β) (2.68)

as given in (2.22). Note that in (Bakker et al., 2000) and (Bakker et al., 2004),
the symbol w is used to denote the parameter vector β, and F is used to
denote the survival function S. The input to the neural network is the risk
factor vector Z. The weights in the first layer (input to hidden neurons) are
w. Using exponential transfer functions, Bishop (2006), and a fully connected
network, see Figure (1), p. 3 in (Bakker et al., 2000), the output of the hidden
units is h(Z) = exp(wTZ), corresponding to the proportional part of the hazard
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function. One hidden unit corresponds to the proportional hazards model. With
more hidden units we can model non-proportional hazards.

The weights, v, in the second layer (hidden to output neurons) are minus the
integral up to time ti of the baseline hazard. Again, using exponential transfer
functions, the output of the network at neuron i is Fi(z) = exp [vih(z)] where
vi = −

∫ ti

0
h0(u)du, i.e. the output corresponds to the survival function for a

patient with risk factor vector z, i.e. the probability that the patient survives
up to time ti.

We can assume that the baseline hazard has a specific form, or we can assume
that the baseline hazard is constant between each pair of successive observed
failure times, and use the Breslow estimate in (2.65). The latter approach cor-
responds to the key idea in the CPH model, where we do not need to model the
baseline hazard. The update (estimation) of the parameters (network weights)
is done sequentially by feeding the network with cases and update using e.g.
back-propagation, Bishop (2006). We need one output node for each time, ti,
making the MLP interpretation a discrete version of survival analysis.

We included this section to show that we do not necessarily need a commercial
statistical package to use the CPH model, but can express the CPH model using
neural networks normally used in pattern recognition, Bishop (2006).

2.4.4 Time Dependent Variables

A fundamental assumption of the CPH model is the proportional hazards as-
sumption. If the hazards are not proportional, the linear component of the
model varies with time. To examine whether this assumption is valid, we use
two types of plots for each risk factor, the Schoenfeld plot and the log-cumulative
hazard plot. The log-cumulative hazard plot is a straightforward plot that we
can use in advance of model fitting to test for non-proportional hazards, while
the Schoenfeld plot is based on the residuals of the fitted CPH model.

2.4.4.1 The Log-Cumulative Hazard Plot

According to (2.49), the hazard at time t for the i’th subject is

h(t|zi) = h0(t) exp(βTzi) (2.69)

Integrating over t on both sides gives

H(t|zi) = H0(t) exp(βTzi) (2.70)
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where H(t|zi) and H0(t) are cumulative hazard functions. Taking the logarithm
on both sides yields

log H(t|zi)− log H0(t) = exp(βTzi) (2.71)

which shows that in the CPH model, the difference in the log-cumulative haz-
ards does not depend on time. Hence, if we plot the log-cumulative hazards
for subjects with different risk factor values against time, the lines should be
parallel, and for discrete risk factors, we can plot lines for each category. For
continuous risk factors we need to transform the values into categorical values,
e.g. using quartiles. If we plot the log-cumulative hazards against log(t) instead
of t, the vertical separation will be an estimate of the logarithm of the relative
hazard.

An estimate of the cumulative hazard function is obtained from an estimate
of the survival function using . The survival function is estimated using the
Breslow estimate in (2.67).

2.4.4.2 The Schoenfeld Plot

Another approach is to fit the residuals of the fitted CPH model(s). We can use
the residuals to detect whether there is any time dependency for each variable
after allowing for the effects of the variable that is expected to be independent
of time.

There exist numerous residuals, but the Schoenfeld residual has the advantage
that we do not require an estimate of the cumulative hazard function, and that
there is not a single value of the residual for each individual, but a set of values,
one for each variable included in the fitted CPH model. The i’th Schoenfeld
residual for Zj , the j’th variable in the model, is given by

rPji
= δi{zji − âji} (2.72)

where

âji =

∑
l∈R(ti)

zjl exp(β̂
T
zl)∑

l∈R(ti)
exp(β̂

T
zl)

(2.73)

and R(ti) is the risk set at time ti. We get non-zero contributions for uncensored
observations only. The i’th Schoenfeld residual for Zj is an estimate of the i’th
component of the first derivative of the logarithm of the LPL function with
respect to βj , which, from (2.56), is given by

∂l(β)
∂βj

n∑
i=1

δi{zji − aji} (2.74)
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where

aji =
∑

l zjl exp(β̂
T
zl)∑

l exp(β̂
T
zl)

(2.75)

The i’th term in the summation, evaluated at β̂, is the Schoenfeld residual for
Zj given in (2.72). Since

∂l(β)
∂βj

∣∣∣∣
β̂

= 0 (2.76)

the Schoenfeld residuals must sum to zero. However, (Grambsch and Therneau,
1994) showed that the scaled Schoenfeld residuals, r∗Pij

, defined as

r∗Pji
= kV(β̂)rPji

(2.77)

where k is the number of failures among the n individuals, and V(β̂) is the
covariance matrix of the parameter estimates in the fitted CPH model, are
more effective at detecting departures from the assumed model. (Grambsch
and Therneau, 1994) also show that the expected value of (2.77) is given by

E(r∗Pji
) ≈ βj(ti)− β̂j (2.78)

where βj(ti) is the time varying coefficient of Zj at the i’th failure time ti, and
β̂j is the estimated value of βj in the fitted CPH model. If we plot the values
of r∗Pji

+ β̂j against the failure times we get information on the form of the time
dependent coefficient, βj(ti). If these values are well fitted by a horizontal line
(linear model with slope zero), the coefficient of Zj does not depend on time (is
constant) and the proportional hazards assumption is satisfied.



Chapter 3

The Bayesian View and what
it is all about

Probability is relative, in part to our ignorance, in part to our knowledge.

P.S. de Laplace (1840)

Modeling in science remains, partly at least, an art. Some principles exist,
however, to guide the modeler. The first is that all models are wrong; some
though, are better than others, and we can search for the better ones. At the
same time we must recognize that eternal truth is not within our grasp. The
second principle (which applies also to artists) is not to fall in love with one
model, to the exclusion of alternatives.

McCullagh and Nelder (1983)

The previous chapter showed a common approach to survival analysis, and in
particular how to apply the CPH model to survival data. It was also an example
of how a “frequentist” or a “classical statistician” would approach the problem.
Much has been written about the differences between the “frequentists” and
their counter-colleagues, the “Bayesians”, see e.g. (MacKay, 2003) for a thor-
ough (and sometimes quite amusing) discussion. In this chapter we will outline
a few important (and interesting) differences, and we will show Bayesian ways
to approach survival analysis.
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3.1 Bayesians vs. frequentists

A classical probability is a physical property of the world, e.g. the probability
that a peanut (more exotic than jelly) butter sandwich will land upside down.
A Bayesian probability is a subjective quantity defined as the degree of belief
that the sandwich will land upside down. In the former case, we can repeat the
experiment a number of times (hence the name frequentist) to get an estimate
of the probability (and a messy floor), while it is up to the individual Bayesian
to assign a degree of belief.

Bayesian probabilities can, by definition, change depending on who assigns
them, or how much information is available. Indeed, one name for Bayesian
probability is “personal probability”. Well, at the end of the day, the sandwich
does obey Newton’s laws, and in theory, although difficult, we are able to model
how the sandwich will behave. The validity of this model and the accuracy of
our prediction will certainly depend on how much information is available!

Take an everyday statement from a newspaper weather forecast. Does it make
sense to say that there is a 90% chance of rain today? It will either rain or not.
A 90% shower does not exist! Should we dump the newspaper? No, because
the forecast says that in 90% of previously known weather situations like the
one right now (in terms of available information about the atmosphere etc.), it
has rained.

How do we use this information? We translate it into advice. If we have an
important errand to do, we might get lucky and have a dry day, but chances
are that we are better off bringing our umbrella. If we always respond in that
way to that advice, on our deathbed, we will have been glad we did about 90%
of the time, and we would have brought along a superfluous umbrella only 10%
of the time. On average.

So what do we do if the prediction is a 50% chance of rain? As with any other
percentage, it is up to you. This is where other factors come in to play. If
we live in Waikiki (southern part of the Hawaiian island Oahu with nice little
showers) rather than the North Shore (same island, drenching monsoons), we
prefer not to carry too much stuff around, but if we are on our way to a date with
the Sports Illustrated cover girl, wearing an expensive Armani suit, we cannot
afford taking the risk - and we definitely cannot repeat the experiment! The
point is that the statistical statement leaves it up to us to decide. It is a report
of experience and a projection from experience, but it is also fundamentally a
recommendation.

The Bayesian’s concede that there is some meaning to objective probability for
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repeated events like coin (or sandwich) tosses, but not for single events like F.C.
Copenhagen qualifying for Champions League. Bayesian’s complicate the psy-
chology of decisions like in the Prisoner’s Dilemma case1, and also believe that
psychologizing the problem changes the fact that a 75% rain day is 3 times riskier
than a 25% rain day for a person who is afraid of umbrellas (umbrellafobia?).

The subjective element is the major point of criticism, as (Bayesian) probabil-
ities at a first glance seem rather arbitrary. Bayesians acknowledge this, but
argue that you cannot make inference without making assumptions - as in the
examples above. This has also led to the phrase, “Bayes is optimal - when you
are!”.

Consequently, Bayesians typically refer to X as an uncertain variable, because
the value of X is uncertain, not random, as the classical statisticians claim. The
variable is not random - nothing is! Variables are (just) uncertain and the more
information we have on a variable, the less uncertain it is. Even random number
generators are not random, but governed by deterministic albeit quite complex
processes.

Now that we have illustrated the difference between frequentist and Bayesian
statistics, let us return to what is all about - modeling. Everything in life can be
modeled: traffic, speech, stock prices. The machine learning approach to data
modeling is to propose or select a rather flexible model, and then search for the
parameter configuration that best (according to some goodness-of-fit measure)
explains the data. We say that we learn the model parameters allowing us to
infer information about one or more of the variables in the model.

The question is, do we need to consider more than one model, and one set of
parameters? “Well, usually model G is a good choice for modeling this kind of
data. Now, all we need to do is fit the model, and use a goodness-of-fit test to
see if the model is significant”. However, in many cases a model with a given
parameter configuration will be significant, but there may be other models or
parameter configurations that are capable of explaining the data just as well or
even better. These models should not be ignored! How to select a model, or
how to use more than one model is the topic of the sections to come.

1See e.g. http://plato.stanford.edu/entries/prisoner-dilemma/ for a description.
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3.2 Model Selection

Imagine that an evil researcher has persuaded us to use a single model to explain
some data. He also tells us that we do not need to average over all possible
parameter settings. All we need is to search for the parameters that maximize
the probability of the observed data given the parameters, p(D|θ), known as
the likelihood of θ, and not the likelihood of the data, as it is a function of
the parameters rather than the data. The optimal parameter estimate is the
Maximum Likelihood (ML), (MacKay, 2003), estimate given by

θ∗ML = arg max
θ

p(D|θ) (3.1)

If we allow hidden variables X in the model, we need to integrate (or sum for
discrete variables) over all possible values of the hidden variables to get the
likelihood

p(D|θ) =
∫
X

p(X|θ)p(D|X,θ)dX (3.2)

The integrand in (3.2) is the complete-data likelihood, and (3.2) itself is the
incomplete-data likelihood. The observed data is an incomplete account of all
factors in the model. For a given data set and parameter setting, we can infer
the posterior distribution over the hidden variables using Bayes’ rule

p(X|D,θ) =
p(X|θ)p(D|X,θ)

p(D|θ)
(3.3)

The prior, p(X|θ), is a subjective quantity that should reflect our a priori be-
liefs about the hidden variables based on all available information, e.g. expert
knowledge.

We recognize the denominator in (3.3) as (3.2). With hidden variables, the
optimal parameter setting in (3.1) is hard to find, an we need to alternate
between estimating the posterior distribution over the hidden variables for a
particular setting of the parameters, and re-estimating the optimal parameter
setting given that distribution over the hidden variables. We know this scheme
as the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).

Not satisfied with his results, the evil researcher allows us to use a prior over
the parameters, p(θ), to obtain the Maximum A Posteriori (MAP) parameter
configuration, (MacKay, 2003), (Gelman et al., 2004), (Ibrahim et al., 2005),
(Heckerman, 1995)

θ∗MAP = arg max
θ
{p(θ)p(D|θ)} (3.4)

However, it is still a point estimate of the true posterior distribution over pa-
rameters, and it is possible to find different ML or MAP estimates for different
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model parameterizations even though the prior and the likelihood are the same.
Hence, the MAP estimate is not strictly a Bayesian approach, although often
incorrectly claimed to be. The key to a Bayesian approach is not just to include
a prior, but to average over all uncertain variables.

We also have to accept that we cannot model all aspects of our data exactly.
The aspects of the data that our model cannot account for are referred to as
noise. Which aspects are relevant to model and which could be considered noise
is hard to know, but we need to find a model that is not too complex nor too
simple. More complex models will be better to adapt their shape to fit the
data, e.g. a sixth-order polynomial can exactly fit six points, but the additional
parameters may not represent anything useful, perhaps those six points are
really just distributed about a line. The complexity is generally measured by
counting the number of free parameters in the model. If our model is too
complex, predictions will be poor, as we have not just fitted the trends in the
data, but also the noise (over-fitting), and if the model is too simple, it will not
be able to capture all the trends in the data, also giving poor predictions. This
is the well-known bias-variance trade-off, Bishop (2006). ML or MAP methods
do not account for model complexity, and ways to overcome this such as cross-
validation are computationally prohibitive with a large number of parameters
or large parameter intervals. If we average over all possible configurations, we
penalize models with more degrees of freedom and favor simpler models. The
phenomena is referred to as Occam’s razor , (MacKay, 2003), and is illustrated
in Figure 3.1, where Dr. Jones has an archaeological digging somewhere in South
America.

Figure 3.1: Illustration of Occam’s razor.

When Dr. Jones start digging, he discovers what he believes to be a skeleton
from a rare dinosaur species, R. Unfortunately, some very bad German guys
are in Dr. Jones’ tail, and he needs to hurry away. Dr. Jones returns to the
University with just a single bone and then realizes that the bone could also be
a bone from a very common species, C. Dr. Jones looks in his diary to find that
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the particular bone is believed to have been within the following dimensions
(length l cm, diameter d cm):

C : l ε [50; 200] ,d ε [10; 60] R : l ε [60; 70] ,d ε [15; 20] (3.5)

The bone has dimensions D : {l = 62,d = 19} which could be any of the
species. Dr. Jones is still puzzled! However, he also knows that the common
species is believed to have outnumbered the rare species 100:1 that we can
express in the ratio of the model priors

p(MR)
p(MC)

=
1

100
(3.6)

Recalling what he learned in “Introduction to Probability Theory”, Dr. Jones
knows that

p(D|MR)p(MR) = p(MR|D)p(D) (3.7)
p(D|MC)p(MC) = p(MC |D)p(D) (3.8)

yielding
p(MR|D)
p(MC |D)

=
p(D|MR)p(MR)
p(D|MC)p(MC)

(3.9)

To compute the probability of the data, D, given MR, we need to average over
the parameters, l and d

p(D|MR) =
∫

l

∫
d

p(D|MR, l, d)p(l)p(d)dl dd (3.10)

and similar for MC . For simplicity, Dr. Jones assumes that the parameters can
take on only integer values in the given intervals, and that there is a uniform
prior over the parameters, i.e. that any length and diameter is equally likely,
yielding

p(MR|D)
p(MC |D)

=
1

100

1
11

1
6

1
151

1
51

= 1.1668 (3.11)

Although C is a much more common species, it is also known to have a large
variety of bone length and diameter, and this makes Dr. Jones finding slightly
more in favor of the rare species!

Both species models have the same number of free parameters, bone length and
diameter, and in this case we can relate the model complexity to the range of
data sets (bone findings) they can capture. In the rare species model, the prob-
ability is concentrated over a small range of data, making it capable of modeling
potentially fewer data sets than the common species model with the ability to
model a wide range of data. We also note that the rare species model is in
fact a sub-model of the common species model. Since the marginal likelihood
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as a function of the data, D, should integrate to one, the rare species model
can assign a higher marginal likelihood to Dr. Jones bone than the common
species model. For another quite amusing (homemade) example of Occam’s ra-
zor, please see Appendix A. Having shown how to use Occam’s razor to perform
model selection, we will move onto model averaging and apply it to survival
analysis.
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3.3 Bayesian Model Averaging

Historically, statisticians have focused much more on within model uncertainty
(the parameter uncertainty) than between model uncertainty (model uncertainty
in short). Once we have selected and fitted a model, the uncertainty reported
for values such as predicted values or parameters estimates, is limited to the
uncertainty associated with the statistical distributions embedded in the model.
If we ignore the uncertainty associated with the model selection procedure, we
underestimate the total uncertainty leading to overconfident conclusions.

If our aim is to predict, say, the survival time of a stroke patient, models could
have different subset of risk factors as predictors of the survival time. The model
with subset A may be able to predict the survival times for female patients above
80, while another with parameter subset B can predict male, diabetes patients
and so forth. Using stepwise selection, model A might be the best model, but
if the model is only able to explain 70% of the data, we would probably obtain
better predictive results if we used a combination or an average of model A
and B. A historical overview of model combination can be found in (Volinsky,
1997), Chapter 1.

The truly Bayesian approach would be to average over all possible models and
all possible parameter values as discussed in Section 4.2. However, this can be a
quite complicated and computational expensive approach. Instead, we average
over all possible models, and for each model we use a point estimate of the
parameters. This allows us to use an ensemble of models, and is in some way
the happy medium between frequentist statistics and a fully Bayesian approach.

Imagine a data set D = {d1,d2, . . .dN}, and let the models have parameters
θ = {θ1, θ2, . . . θp}. To select a model, Bayesians calculate the posterior distri-
bution over a set of K possible models, M = {M1,M2, . . . ,Mk}, given some a
priori knowledge and the observations. The a priori knowledge is expressed in
the prior over models, p(M), and their parameters, p(θ|M).

For some quantity of interest, ∆, e.g. a future observation, we can use Bayes’
rule, (MacKay, 2003), to compute the posterior distribution of ∆ given the data,
D

p(∆|D) =
K∑

k=1

p(∆|Mk,D)p(Mk|D) (3.12)

where p(∆|Mk,D) is the predictive distribution and p(Mk|D) is the Posterior
Model Probability (PMP), (MacKay, 2003), for model Mk. Hence, we have a
weighted average of the predictive distributions for each model weighted by their
posterior probability. This approach is known as Bayesian Model Averaging



3.3 Bayesian Model Averaging 41

(BMA),, (Hoeting et al., 1999), (Gelman et al., 2004), (Ibrahim et al., 2005),
(Volinsky, 1997), (Volinsky et al., 1997), and has the obvious advantage that
we do not have to select a single model, we do not use (artificial) p-values
and significance levels, and variables are not “in” or “out”. BMA has been
successfully applied to generalized linear models, (Raftery, 1996).

However, even if we define a set of discrete models, it is often practically im-
possible to average over all models. Instead, we need a way to quickly and
efficiently locate a smaller subset of data supported models to average over. We
could also use p(Mk|D) to locate the model with maximum posterior probabil-
ity. This would give K = 1, and we call it model selection. We saw an example
of this in the previous section. Madigan et al. (1993) present strategies for
graphical model selection, Raftery (1995) use Bayesian model selection in social
research, and Shan (2001) use model selection for learning in belief networks
with incomplete data.

Note, however, that BMA is not model combination as pointed out by (Minka,
2000). BMA is best thought of as “soft model selection” and answers the ques-
tion: “Given that all of the data so far was generated by exactly one of the
hypotheses, what is the probability of observing the new data point, ∆?”. The
weights (PMPs) in BMA only reflect a statistical inability to distinguish the hy-
pothesis based on limited data. As more data becomes available, it will be easier
to compare and value the models, and BMA will always assign its maximum
weight to the most probable hypothesis, like a posterior mean of a Gaussian will
approximate the sample mean. So the assumption is that just one hypothesis
is responsible for the data. If the true hypothesis is not within the hypothesis
space, BMA will not be able to select the true model even with unlimited data
available.

To illustrate the difference between BMA and model combination, Minka (2000)
gives an example similar to the following. Let the true class assignments be as
illustrated in Figure 3.2. A data point is in class “o” if it is within at least
two of the circles. Let the circles be our three hypotheses. The optimal way
to combine them is to use the uniform weighting scheme giving 100% accuracy.
However, BMA will focus on the top-most circle which is most homogenous and
thus most likely to have generated the data (note that the circle placement is not
symmetric). With more data available, BMA will assign greater weight to the
top-most circle, and in the limit assign it weight 1. As long as the error rates
are just slightly different, BMA will assign a larger weight to the hypothesis
with the lowest error rate. To do model combination we should not use BMA
on the models themselves, rather we should ask the question “Given that all of
the data so far was generated by a linear combination of the hypotheses, what
is the probability of observing the new data point, ∆?”. If we apply BMA to
this new hypothesis space, the true hypothesis is now included, and on the circle
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Figure 3.2: Classification problem. Data point is in class ’o’ if it is inside at
least two of the circles. The optimal solution is a uniform voting between the
circles.

problem it will converge to the uniform vote.

3.3.1 BMA for Cox Proportional Hazards Models

If we have p potential risk factors, we have K = 2p potential models (without
other constraints). Fortunately, most of the models get very little support from
the data. If we are unable to average over all possible models, a good approx-
imation is to average over the subset of “best” models with respect to their
posterior probabilities, including only models belonging to the set

A =
{

Mk :
maxl{p(Ml|D)}

p(Ml|D)
≤ C

}
(3.13)

where (Madigan and Raftery, 1994a) have shown that C = 20 is a good approx-
imation to an average over the complete model space, i.e. we include models
whose posterior probability is at least 1/20 of that of the best model. Of course,
the value of C can differ from problem to problem, and is a trade-off between
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accuracy (the model set should account for most of the PMP mass) and com-
plexity (too many models can make the problem intractable). If we look closer
at (3.12), we note that it has three components, each associated with computa-
tional difficulties.

3.3.1.1 Predictive Distribution

We get the predictive distribution by integrating over the parameters, θk, for
model k

p(∆|Mk,D) =
∫

p(∆|θk,Mk,D)p(θk|Mk,D)dθk (3.14)

In general, for censored survival models such as the CPH model, the integral
cannot be computed analytically, (Volinsky, 1997), (Ibrahim et al., 2005). In-
stead, we use the ML estimate, θ̂k, of the model parameters to give

p(∆|Mk,D) ≈ p(∆|Mk, θ̂k,D) (3.15)

However, we are able to compute the exact predictive distribution using Markov
Chain Monte Carlo (MCMC) methods, see Section 4.2. Unfortunately, these
methods are computationally quite expensive, and for the purpose of model
averaging, we need to compute the predictive distribution for many models.

3.3.1.2 Posterior Model Probability

The posterior probability for model Mk is proportional to the product of the
likelihood and the prior for model Mk

p(Mk|D) ∝ p(D|Mk)p(Mk) (3.16)

where
p(D|Mk) =

∫
p(D|θk,Mk)p(θk|Mk)dθk (3.17)

is the integrated likelihood of model Mk, and p(θk|Mk) is the prior density of
the model parameters, θk, under model Mk. To compare two models, M1 and
M2, we compute the ratio of the two posterior distributions

p(M1|D)
p(M2|D)

=
p(M1)p(D|M1)
p(M2)p(D|M2)

(3.18)

Assuming the two models are equally likely a priori, p(M1) = p(M2) = 1
2 , we get

the ratio of the marginal likelihoods known as the Bayes factor . Approximate
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Bayes factors and accounting for model uncertainty in generalized linear models
are discussed in (Kass and Raftery, 1994).

Again, however, it is not possible to compute the integrated likelihood ana-
lytically. Instead, we use Bayes Information Criterion (BIC) approximation,
(Ibrahim et al., 2005), (Heckerman and Chickering, 2000), (Volinsky, 1997),
and Section 4.3.1.3.

log p(D|Mk) = log p(D|θ̂k,Mk)− dk

2
log n (3.19)

where n is the number of observations, dk the number of free parameters to be
estimated in model Mk, and θ̂k the ML parameter estimate. We see that the
first term increases with the model complexity (number of free parameters). A
more complex model (that includes the simpler model) will always fit the data
as well or better, but the second term also increases with dk and penalizes more
complex models, making BIC a way to balance gain and penalty. Given any
two estimated models, the model with the lower value of BIC is the one to be
preferred.

However, Volinsky (1997) and Volinsky and Raftery (2000) argue that for cen-
sored survival models, setting n to be the number of uncensored individuals
rather than the total number of individuals, gives better predictive performance
and corresponds to more appropriate priors on the parameters. See also Weak-
liem (1999) for a critique of the BIC for model selection.

When we apply BMA to the CPH model, the parameter vector is θ = {β,h},
where h = {h0(t) : t ∈ R+} is the baseline hazard and β are the risk factor
coefficients. Using the PL in (2.55) as the likelihood for θ with h integrated
out, we get

p(D|Mk) =
∫

PL(θk|Mk)p(θk|Mk)dθk (3.20)

as an approximation to (3.17).

The justification for this approximation is that if we discard the time of failure
(death), the PL becomes a full likelihood for the reduced data composed of
the order in which individuals die, and the risk set, Ri, for each failure. The
actual time of failure does not, as also mentioned in Section 2.4.1, contain much
information about the risk factor coefficients, β, the primary arguing point for
competing models.

The second part of (3.16), the model prior, can be expressed as

p(Mk) =
p∏

j=1

π
δkj

j (1− πj)1−δkj (3.21)
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where πj ∈ [0; 1] is the prior probability that βj 6= 0, and δkj is an indicator
of whether or not variable j is included in model Mk. Using πj = 0.5 for all
j corresponds to a uniform prior, while πj < 0.5 for all j implies a penalty
for complex models. Finally, πj = 1 ensures that variable j is included in all
models. In this thesis all models are assumed equally likely a priori, as we do
not want to rule out any models. Instead, we let the data decide which models
too choose, but as shown, it is easy to specify explicit prior model knowledge.

3.3.1.3 Subset Selection

As mentioned in Section 3.3, we need a way to quickly search through our model
space, and select a subset of models to average over, when the hypotheses space
is too large to include all models.

Let the full model have parameter vector θ, and sub-model Mk parameter vector
θk. Then we can rewrite θk as (θ1,θ2) so that model Mk corresponds to θ2 = 0
of length q. The standard way to test a sub-model versus the full model is to
use either (i) the Likelihood Ratio Test (LRT) statistic, (Collet, 2003), (Lee and
Wang, 2003), (Volinsky, 1997)

Λ = −2
[
l(θ̃)− l(θ̂)

]
(3.22)

where l(·) is the LL, θ̂ the MLE of θ under the full model, and θ̃ the MLE with
the restriction that θ2 = 0, or (ii) the asymptotic normal distribution to the
distribution of θ̂.

In (i) we assume that Λ is approximately χ2
q distributed under the hypothesized

sub-model, with large Λ supporting evidence against the sub-model. In (ii) we
use

Λ′ = θ̂
T

2 C−1
22 θ̂2 (3.23)

where C = I−1 =
(

C11 C12

CT
12 C22

)
is the inverse of the observed information

matrix I with entries I(θuv) = −∂2l(θ)
∂θuθv

for the full model so that C22 has size
q × q.

Recall that θ2 is the vector of parameters that are 0 in the sub-model. We can
consider θ2 as the “error” source that we introduce in the sub-model versus the
full model. Hence, under the hypothesized sub-model, Λ′ is asymptotically χ2

q

distributed, again with large Λ′ supporting evidence against the sub-model.

The “best” models with p variables are the models with the smallest Λ or Λ′

values, where p is the length of θ1. If we use Λ we need to (iteratively using
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Newton-Raphson) compute ML estimates for each model considered. If we use
Λ′, we need to compute the inverse C−1

22 matrices for each model considered.
This can be very expensive, but we can avoid this when the number of possible
models, K, is not very large. Consider the normal linear model

Y 1×n = θT
1×pXp×n + ε (3.24)

where εi ∼ N(0, σ2
i ), i = 1, . . . , n. In (Furnival and Wilson, 2000), the authors

present algorithms for sequentially generating and evaluating, in terms of the
Residual Sum of Squares (RSS)2, all 2p possible sub-models of (3.24), or the m
best models of each size. All information in the data is contained in

A =
[

XXT XY T

Y XT Y Y T

]
(3.25)

of size (p + 1)× (p + 1). (Furnival and Wilson, 2000) then use sweep operations
on this matrix to search for and evaluate models.

The principle is adopted in (Lawless and Singhal, 1978), where the authors
present algorithms to search for sub-models in the non-linear regression model
domain, and show that for non-linear models, we can substitute XXT with the
information matrix, I, to give

B =

[
I Iθ̂

θ̂
T
I θ̂

T
Iθ̂

]
(3.26)

onto which we can apply the same sweep operations and “fit” each of the 2p

models. Note that θ̂ is the MLE of θ under the full model.

However, each model is not truly fitted, as the estimate θ̃ of θ for each sub-model
are not the ML estimates of θ, but only approximations to these based on the
asymptotic normal approximation to l(θ). Analogous to the RSS and covariance
matrix for θ̃ in the normal model, we get the approximate LRT statistic, Λ′, of
(3.23), and the asymptotic covariance matrix C−1

11 for θ̃1.

Using the algorithms of (Furnival and Wilson, 2000), we get (for each sub-model)

• the first order approximation to the MLE θ̃ of θ under the sub-model.

• the asymptotic covariance matrix C−1
11 for θ̃1.

• the approximate LRT statistic, Λ′, of (3.23).

2In RSS, the error for each case in the data set is squared, then added together and the
square root is taken.
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As our objective is model screening, we do not have to compute the exact MLE,
θ̃, of θ under each sub-model, and the exact LRT statistic, Λ, of (3.22), as the
approximate values are adequate. To identify a subset of models to average
over, we do not want to fit all 2p models, just the m ≥ 1 best models of size
1, . . . , p.

In (Furnival and Wilson, 2000), the authors develop a Leaps and Bounds (L&B)
algorithm based on the statistical fact that for two linear models, A and B, if
A ⊂ B then RSS(A) > RSS(B), because model B includes model A, and
therefore model B is able to explain at least the data that model A is able to
explain. By representing all models using a tree structure with the full model
as the root node, the algorithm can compare RSS values and select subsets for
further investigation.

The principle is best explained using the example in Figure 3.3. We have 4
potential variables A, B, C, and D and the full model ABCD is the root node
with RSS value 5 (shown in parenthesis). As all other models are sub-models
of this model, the full model has the lowest RSS. In the next level we have
all 3 parameter models and their respective RSS values. Model ABC has the
lowest RSS value, so we calculate all 2 parameter models in this subset. Then
we realize that model AB has a lower RSS value (12) than the three parameter
model BCD (22). As the RSS can only increase when we remove variables,
it implies that any of the two parameter models in model BCD have a higher
RSS value than model AB. Same argument applies for model ACD (15), but
not necessarily for model ABD (11). If we are looking for the best 2 parameter
model, we do not have to consider the sub-models of model ACD and BCD. In

Figure 3.3: Demonstration of the L&B algorithm. Full model is ABCD. Two-
parameter model AB has lower RSS than three-parameter model BCD.
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(Furnival and Wilson, 2000) it is noted that the computational cost associated
with the location of, say, the 10 best models of a given size is not much more
than the cost of finding the single best model of the given size.

When we have non-linear models, we use the fact that LL(A) > LL(B), if
B ⊂ A, and when we apply the modified L&B algorithm to our hypotheses
space, we get the previously listed output plus the m best models of each size.
Optimally, we would like the models in (3.13), but as long as m is large enough,
we get all the models included in (3.13) plus many not included, (Madigan
and Raftery, 1994b). We can use the approximate LRT statistic to identify
the models most likely to be in (3.13) by keeping only those models whose
(approximate) PMP is at least 1/C ′ the PMP of the best model, where C ′ is
greater than C from (3.13). In this work we use C ′ = C2 as in (Madigan and
Raftery, 1994b).

Practically, we use the logarithm of the PMP given by (3.16), where the LL
is given by the BIC approximation in (3.19) with the LRT statistic inserted.
We refer to this subset selection as the soft Occam window subset selection.
Next, we loop all these models and make the true ML fit for each model. In
turn this gives us the exact LRT statistic, Λ, and the exact BIC value for
each model. Finally, we use the exact PMP values for the hard Occam window
subset selection, accepting only those models that are in (3.13), (Hoeting et al.,
1999), (Ibrahim et al., 2005), (Madigan and Raftery, 1994a), (Volinsky, 1997),
(Madigan et al., 1993).

After normalizing the PMP over the model set, we can use them as weights
in our model averaging. We can also use them as a measure of the model
uncertainty. If we have many models with non-negligible posterior probabilities,
we have a substantial amount of model uncertainty. On the other hand, if the the
majority of the posterior probability mass is assigned to one model, the model is
a reasonable stand-alone fit to the data. Whereas the standard methods such as
stepwise selection identifies a single, “optimal” model, BMA selects an ensemble
of models capable of fitting the data better or at least as good as the single,
“best” model. In the experimental sections we will explore whether stepwise
selections and BMA agree on which model is the best, and if these models are
capable of fitting the data by themselves. Otherwise, we need more models to
explain the data.

Because the L&B algorithm selects the m best models of each size, we can
choose whether models with more likely sub-models are eliminated. Otherwise,
the algorithm returns all models whose posterior model probability is within a
factor of 1/C of that of the best model. In this work we keep the sub-models as
we feel that this will give a more correct evaluation of the risk factors.
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3.3.1.4 Evidence of Effect - those p-values again...

For a given model parameter, βj , representing the j’th variable or risk factor,
the point mass at zero represents the probability that this parameter equals zero
and should not be included in the model. The sum of the PMPs for models that
include this variable tells us how likely it is that this variable has an effect in
the average model given the selected sub-domain of models. It is known as the
Posterior Probability of the Parameter (PPP) or p(βj 6= 0), (Kass and Raftery,
1994), (Volinsky, 1997), (Volinsky et al., 1997). In (Kass and Raftery, 1994),
the authors give standard rules of thump for interpreting this value. These
are shown in Table 3.1. If we compare the PPP with the infamous p-value for

PPP Interpretation
< 50% positive evidence against an effect

50− 75% weak evidence for an effect
75− 95% positive evidence for an effect
95− 99% strong evidence for an effect
> 99% very strong evidence for an effect

Table 3.1: PPP levels and their interpretation.

measuring the significance of a variable, we will see that they are indeed very
different. (Hubbard and Armstrong, 2005) provide a historical background on
the widespread confusion of the p-value. Using p-values, we may fail to reject
the null hypothesis “no effect” because either a) there is not enough data to
detect the effect, or b) the data provide evidence for the null hypothesis. Using
the PPP we can make this distinction.

There are also several common misunderstandings about p-values, see e.g. (Sterne,
2001)

- The p-value is not the probability that the null hypothesis is true, and
it is not a “rule” that p-values close to zero are significant. Frequentist
statistics does not, and cannot, assign probabilities to hypotheses. Com-
parison of Bayesian and classical approaches shows that a p-value can be
very close to zero, while the posterior probability of the null hypotheses is
very close to unity. This is the Jeffreys-Lindley paradox, (Lindley, 1957).

- The p-value is not the probability that a finding is just a fluke. As the
calculation of a p-value is based on the assumption that a finding is the
result of chance alone, it cannot, at the same time, be used to measure
the probability of that assumption being true.
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- The p-value is not the probability of falsely rejecting the null hypothesis.

- The p-value is not the probability that a replicating experiment would
not yield the same conclusion.

- [1− (p-value)] is not the probability of the alternative hypothesis being
true.

- The significance level of the test is not determined by the p-value. The
significance level of a test is a value that should be decided a priori by the
researcher, and is compared to the p-value or any other statistic calculated
after the test has been performed.

The standard level of significance used to justify a claim of a statistically sig-
nificant effect is 0.05 (see (Dallal, 2007) and (Bross, 1971) for a historical back-
ground to the origins of p-values and the choice of 0.05 as the cut-off for signif-
icance), and a p-value of 0.05 is often interpreted in the sense that the variable
has a 5% chance of being zero, or that the null hypothesis (H0 : βj = 0) has a
5% chance of being true. The true interpretation is that, “If the null hypothesis
is true, the probability of collecting data as extreme as or more extreme than the
observed is 5%, assuming the observed data were the result of chance alone.” See
any textbook in statistics or (Johnson, 2005), (MacKay, 2003), (Bross, 1971).
On the contrary, Bayesians are more interested in relevant questions to which
you can assign a probability, such as “What is the probability that the model
is true?”, or, “What is the probability that the coefficient is non-zero?”.

Many people believe that the p-value is a Bayesian probability (for example the
posterior probability of the null hypothesis), but as shown in several examples
in (MacKay, 2003) it is not, and in cases where we have a p-value below the
“magical” 0.05 value, data can actually be in favor of the null-hypothesis (in
the Bayesian sense)!

As mentioned, we can compute the posterior probability that a given risk factor
has an effect, p(βj 6= 0), simply by summing the posterior probabilities of the
models that include this variable. How large is the effect, given that there is
one? The answer is given by the posterior distribution over βj , namely

p(βj |D) =
∑
T

p(βj |Mk,D)p(Mk|D) (3.27)

where T = {Mk : βj 6= 0}. A possible objection to this solution is that βj

has different meanings in different models depending on what risk factors are
included, and so it does not make sense to combine inferences from different
models. However, (3.27) can be viewed in two ways: the first as a mixture
across different models. This is the one that is hard to interpret. It can also,
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however, be viewed as the posterior distribution from the single model with all
risk factors, but with a prior distribution that assigns probability 1/2 to each
coefficient being equal to zero. When viewed this way, we see no problem with
the interpretation of p(βj |D) as the posterior distribution distribution of βj

controlling for all the risk factors, but allowing for the possibility that they have
no effect. An appropriate terminology would be “the effect of the treatment
after adjustment for the possibility of (all) the risk factors”.

Furthermore, we can compute the posterior mean of the coefficient vector by

β̂BMA = EM (β̂) =
K∑

k=1

β̂kp(Mk|D) (3.28)

=
∑K

k=1 β̂kp(Mk|D)∑K
k:βk∈Mk

p(Mk|D)
×

K∑
k:βk∈Mk

p(Mk|D) (3.29)

= E(β̂|βk ∈ Mk)× p(β 6= 0) (3.30)

corresponding to the conditional posterior mean of β multiplied by its posterior
probability. We will use exp(β̂BMA) as the posterior estimate of the vector
of hazard ratios using the ensemble of models. Each element of this vector
expresses how each variable changes the hazard.

Let pk = p(Mk|D) and Vk = V (β̂|Mk,D), then we can compute the variance
of the regression coefficient vector as

V (β̂) = E(β̂
2
)−

(
K∑

k=1

pkβ̂k

)2

=
K∑

k=1

pk(Vk + β̂
2

k)−

(
K∑

k=1

pkβ̂k

)2

=
K∑

k=1

pkVk +
K∑

k=1

pkβ̂
2

k −

(
K∑

k=1

pkβ̂k

)2

=
K∑

k=1

pkVk +
K∑

k=1

pk

(
β̂k −

K∑
k=1

pkβ̂k

)2

(3.31)

The first term is the weighted variance over models. The second term expresses
the variance of the parameter estimates across models. The more the parameter
estimates differ over models, the higher the posterior variance. This implies that
the regression coefficient variance includes the model uncertainty.
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3.3.2 Predictive Performance

Reading medical journals and conference papers, we noticed that physicians are
mostly interested in which risk factors are significant (they all use p-values)
predictors of the survival time. However, we (and others) also find it important
to investigate and compare the predictive performance of competing models to
assess which model(s) and modeling strategy to prefer. If we split our data set
into a training set, Dtrain, and a test set, Dtest, we can use the training set to
select models, estimate the parameters, and compute the PMP, PPP etc. If we
use all available data for training we can compare models using Bayes Factors,
but if we leave some data for the test set, we can compare models in terms of
generalization error or test error, i.e. how well the models fit data they have not
seen before.

3.3.2.1 Partial Predictive Log Score

The first score we use to measure the predictive performance (test error) is
a predictive log score. The log score for model Mk is based on the observed
ordinate of the predictive density for the subjects in the test set (using log to
transform the product of predictive densities in the test set into a sum)

Ntest∑
i=1

log p(di|Mk,Dtrain) (3.32)

In stepwise selection we have just one model, but In BMA we need to average
over all models considered

Ntest∑
i=1

log

{
K∑

k=1

p(di|Mk,Dtrain)p(Mk|Dtrain)

}
(3.33)

Unfortunately, as we estimate the cumulative hazard in the CPH model rather
than the hazard itself, we do not have a predictive density, but an estimated
predictive cumulative distribution function, a step function like the cumulative
hazard, (Breslow, 1974), that we cannot differentiate into a density. Instead,
inspired by the PL, (Volinsky, 1997) have proposed the alternative predictive
density

p(di|Mk,Dtrain) =

 exp(β̂
T

k zi)∑
l∈Ri

exp(β̂
T

k zl)

δi

(3.34)

If we insert (3.34) into (3.32) and (3.33), we get the Partial Predictive log Score
(PPS), which is greater (less negative) for the method that best fits the data in
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the test set, i.e. it is the inverse test error. We can use this score to compare
BMA to any single model. Note that we only get a non-zero contribution for an
event (failure).

3.3.2.2 Predictive Z-score

In a subsequent discussion of (Raftery et al., 1995) (included in (Raftery et al.,
1995)), Draper claims that the PPS has the drawback that it shifts from survival
times to a “less relevant domain”. We still believe that the PPS is a valid and
very useful scoring method, since we consider each subject in the test set and
calculate the (log) probability of observing the given survival time for a subject
with a given set of risk factor values. Even though we transform the survival
time into a probability, PPS still expresses how well each method predicts the
data points in the test set.

However, Draper proposes that it would be interesting to pretend at random
that some of the uncensored survival times were censored (this will be our test
set), compute predictive distributions for these subjects, and calculate predictive
Z-scores3

Zi =
log(ti)− t̄i

σi
(3.35)

where ti is the true survival time, t̄i the predictive mean or median of the
log survival time, and σi the predictive standard deviation of the log survival
time for the i’th subject in the test set. A “better” method should give pre-
dictive distributions with lower standard deviations (large predictive standard
deviations implies uncertain predictions) that we are and say, 95% Confidence
Intervals (CI) (see any textbook in statistics, e.g. (Johnson, 2005)) that more
often contain the true survival times.

The estimated mean survival time is estimated as the area under the estimated
survival curve, Ŝ(t). We get an estimate of the survival function using (2.67).
The estimator is based upon the entire range of data. (DW and Lemeshow,
1999) point out that it will bias the estimate of the mean downwards, if we use
only the data up to the last observed event, and they recommend that the entire
range of data is used.

However, instead of the mean (log) survival time we use the median (log) survival
time. Samples of survival times are often highly skewed and the median is gen-
erally a better measure of central location than the mean, (DW and Lemeshow,

3Z is normally used to denote a test statistic variable, but to avoid confusion with the
variable vector, we use Z.
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1999). The median survival time is calculated as the smallest survival time for
which the survival function is less than or equal to 0.5.

Using Greenwood’s formula, (Collet, 2003), we can also calculate the estimated
variance of the survival function

V
[
Ŝ(t)

]
≈ [Ŝ(t)]2

p∑
i=1

di

ni(ni − di)
(3.36)

for tk ≤ t < tk+1 where ni is the number of individuals at risk at time (interval)
i, and di is the number of individuals who fail (die) at time (interval) i. Because
we have discrete times, we sum over time (intervals) instead of integrating. We
can use this formula to find the predictive variance and in turn the standard error
by evaluating (3.36) at the estimated mean or median survival time. Once the
predictive standard error has been calculated, we can calculate corresponding
95% CIs for the estimated mean or median survival time by assuming that the
estimated value of the survival function at t is normally distributed with mean
S(t) and estimated variance given by (3.36).



Chapter 4

Missing Values

So far, we have assumed that the available data are fully observed, that is we
do not have any missing risk factors or failure times. This is the Complete Case
(CC) scenario. However, it is more a rule than an exception to have missing
values: Unavailable risk factors because the patient died or was too weak to
collect information such as the results of CT scans, motor skill tests, survey
non-response, patients failing to report for evaluations, patients unable to or
refuse to answer questionnaires, lost data, lack of time or finances to perform
tests and evaluations etc.

Most methods for analyzing survival data including the stepwise selection method
cannot handle missing values. The standard solution is to discard all subjects
with missing values and perform a CC analysis. The shortcomings of various
case-deletion strategies have been well documented, (Little and Rubin, 1987),
(Ramoni and Sebastiani, 2001), (Herring and Ibrahim, 2001), (Herring et al.,
2004). If the discarded cases form a representative and relatively small portion
of the entire data set, case deletion may be a reasonable approach, but only when
missing data are missing completely at random (see Section 4.4.1) in the sense
that the probability of response does not depend on any data values, observed
or missing. For example, if the CT scan information for stroke patients is only
available for those patients that do not die within the first week of admittance,
the missingness of the CT variable is related to the failure time, and our CC
analysis would then be based on patients with less severe strokes, leading to
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biased results. When we discard data, the efficiency of the analysis decreases as
the fraction of missing data increases, whether or not bias is involved.

In other words, case deletion implicitly assumes that the discarded cases are like
a random sub-sample. When the discarded cases differ systematically from the
rest, estimates may be seriously biased. Moreover, in multivariate problems,
case deletion often results in a large portion of the data being discarded and an
unacceptable loss of power. After conducting a CC, it is common to mention
the fraction of missing data and to add some assessment about whether these
missing data are likely to bias the results.

Hence, there is substantial reason to look for ways to incorporate subjects with
missing values. In the COST data set for example, 441 (44.1%) of the 993
patients have one or more missing values. If we could include these subjects,
we would almost double the amount of available data! In this chapter we will
present several techniques for estimating the missing values. We will assume
that the response (failure time or censoring) is always observed and focus on
missing risk factor data.
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4.1 Imputation

Imputation, the practice of “filling in” missing data with plausible values, is an
attractive approach to analyze incomplete data, (Little and Rubin, 1987). If
the proportion of missing values is small, then single imputation in which we
replace a missing value with a single estimate may be reasonable. Standard
statistical procedures for complete data analysis can then be applied on the
filled-in data set. For example, each missing value can be imputed using the
variable mean of the complete cases, or the mean conditional on observed values
of other variables. This approach treats missing values as if they were known in
the complete-data analysis. Single imputation does not reflect the uncertainty
about the predictions of the unknown missing values, and the resulting estimated
variances of the parameter estimates will be biased towards zero. Without
special corrective measures, single-imputation inference tends to overstate the
precision because it omits the between-imputation component of variability,
(Little and Rubin, 1987).

Multiple Imputation (MI) is a Monte Carlo technique in which the missing values
are replaced by m > 1 simulated versions, where m is typically small (e.g. 2-
10). In Rubin’s, (Little and Rubin, 1987), method for “repeated imputation”
inference, each of the simulated complete data sets are analyzed using standard
methods, and the results are combined to produce estimates and confidence
intervals that incorporate missing data uncertainty. With the advent of new
computational methods and software for creating MI, the technique has become
increasingly attractive for researchers in the biomedical, behavioral, and social
sciences whose investigations are hindered by missing data.

In order to generate imputations for the missing values, we must impose a prob-
ability model on the complete data (observed and missing values). Except in
trivial settings, the probability distributions that we must draw from to produce
proper MI tend to be complicated and intractable. For this purpose, MCMC
methods have spawned a small revolution. See e.g. (Leong et al., 2001) for an
MCMC EM analysis of uncomplete variables in the Cox model with applications
to biological marker data. In this work, however, we will focus on two other
methods to estimate the missing values, but we incorporate MCMC methods as
part of the proposed solution in Section 4.4.
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4.2 The Truly Bayesian Approach

The paradigmatic setting for missing data imputation is regression, where we
are interested in the model p(t|z,θ), but have missing values in the risk factor
matrix z. The parameter matrix θ = (β,h0) includes the risk factor coefficients
as well as the baseline hazards for all possible models.

To be Bayesian at heart we would then average over all models, their parameters,
and the missing value distributions. One approach would be to apply an MCMC,
(Liu, 2001), (Gilks et al., 1996), (MacKay, 2003), (Gelman et al., 2004), (Neal,
1993), method to sample from both the missing variables and the parameters
of the CPH model, and then sum over the models. We could also sample the
models, but assuming we have a finite number of models, we are better off just
summing over all possible models.

The samples are used to approximate the joint posterior density, p(θ,zmiss|D),
of the model parameters, θ, and the missing risk factors, zmissing, given the
data, D = (zobs, t), i.e. the observed risk factor matrix and the survival times.

We would then compute the expectation of this distribution to get the expected
risk factor coefficients, and in turn the HRs. In general, the expectation value
of some function, f(X), e.g. f(X) = X, is

E[f(X)] =
∫

f(X)p(X|D)dX =
∫

g(X)dX (4.1)

In straight Monte Carlo integration we pick n points uniformly distributed in
a multi-dimensional volume V that covers all regions where g(X) contributes
(significantly) to the integral. Then we get

E[f(X)] =
∫

V

g(X)dX ≈ V × E[g(X)]± V ×
√

E[g2(X)]− E[g(X)]2

n
(4.2)

where

E[g(X)] =
1
n

n∑
i=1

g(Xi) E[g2(X)] =
1
n

n∑
i=1

g2(Xi) (4.3)

and n is the number of random samples of g(X). Although the law of large
numbers guarantees that the approximation can be made arbitrarily accurate
when the samples are independent, we waste too much time sampling in regions
of low probability in terms of p(X|D). However, the samples do not have to
be independent as long as we generate samples from the target distribution,
p(X|D), in the correct proportions.
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MCMC methods are algorithms for sampling from any probability distribution
by constructing a Markov chain that has the desired distribution as its station-
ary distribution. First, we take a large number of steps/samples, forget them
and then use the present state of the chain as a sample from the desired dis-
tribution. It is difficult to determine how many steps are needed to converge
to the stationary distribution within an acceptable error margin, so we would
like to have a chain with rapid mixing, i.e. the stationary distribution is reached
quickly independent of the starting position.

Random walk methods1, (Liu, 2001), (Gilks et al., 1996), where an ensemble of
“walkers” move around randomly is an example of a Monte Carlo method, but
whereas the random samples used in a conventional Monte Carlo algorithm are
statistically independent, samples in MCMC are correlated. MCMC methods
move around the equilibrium distribution in steps that are relatively small and
not necessarily in the same direction. These methods are fairly easy to imple-
ment and analyze, but may not converge as it takes a long time to explore the
entire sample space, and they tend to move around in space already explored.

4.2.1 Metropolis-Hastings

In general, we generate a random walk using a Markov chain such that the
probability of being in a region is proportional to the posterior density for that
region. The new sample, xt, depends only on the previous state, xt−1, through
the transition probability, p(xt+1|xt), assumed to be time-independent.

Optimally, we would like to sample from our target density , p(X), the density
that we would like our Markov chain to have as its stationary distribution.
Unfortunately, this distribution is often hard to sample from. Instead, we use a
proposal density , Q(X ′;xt), that depends on the current state xt to propose a
new state/sample x′, e.g. a Gaussian proposal density centered on the current
state xt

Q(X ′;xt) ∼ N(xt, σ
2)I (4.4)

This proposal density would generate samples centered around the current state,
xt, with variance σ2I. Having drawn a new proposal state, x′, with probability
Q(X ′;xt), we compute the likelihood ratio between the proposed state, x′, and
the previous state, xt, multiplied with the ratio of the proposal density in two
directions (from xt to x′ and vice versa)

a =
p(x′)
p(xt)

Q(xt;x′)
Q(x′;xt)

(4.5)

1Ever heard of uncertain walk methods?
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We use a to decide whether or not to keep the proposed state based on the rule

xt+1 =
{

x′ if a > 1
x′ with probability a if a < 1 (4.6)

The original algorithm proposed by (N. Metropolis and Teller, 1953) considered
only symmetric proposal densities where the density ratio is equal to 1, and the
new state is accepted with probability 1 if the likelihood increases, and with
probability p(x′)

p(xt)
otherwise.

The generalization of this algorithm as outlined above is referred to as the
Metropolis-Hastings (MH) algorithm, (Liu, 2001), (Gilks et al., 1996), (Neal,
1993). We can use this algorithm to draw samples from any probability dis-
tribution, p(X), as long as we can to evaluate the density at x. The Gibbs
sampling algorithm is a special case of the MH algorithm. A simple explanation
of Gibbs sampling can be found in (MacKay, 2003). To initialize the algorithm
we choose the first state at random2. As we do not expect the first state and
the states visited shortly here-after to be representative of the target distribu-
tion, we let the algorithm run for, say, a few hundred iterations so that this
initial state is “forgotten”. This phase is known as the “burn-in” phase and the
samples are simply discarded.

Obviously, we get the best samples if the proposal density matches the shape of
the target distribution, Q(X ′;xt) ≈ p(X ′), but as p(X ′) can be hard to sample
from, Q(X ′;xt) is chosen as a distribution that is easier to sample from. If
p(X ′) is unknown, we cannot evaluate p(x′) exactly, and we have to choose a
p(X ′) that we believe is close to the true target density. When the algorithm
runs, we can survey the acceptance rate, i.e. the fraction of samples that are
accepted within the last N samples according to the above rule, and use it to
optimize our proposal density during the burn-in period. For example, for the
Gaussian proposal distribution, we can tune the variance parameter σ2. If the
proposal steps are too small, the acceptance rate will be high, but the chain will
mix slowly, i.e. it will move around the space and converge slowly to p(X). If
the proposal steps are too large, the acceptance rate will be very low, because
the proposals are likely to occur in regions of much lower probability density
causing p(x′)

p(xt)
to be very small, Liu (2001).

In this work we do not implement a method that averages over all possible mod-
els, all possible parameter settings and the missing values. We acknowledge that
this is, in theory at least, an ideal solution, but we leave it to others. However,
we use the MH algorithm to sample and estimate the missing continuous values
in the solution presented in Section 4.4.

2Bayesian would probably say, “without any prior preference” instead of random.
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4.3 Graphical Models

Our first approach to the missing data problem is to use graphical models, (Mur-
phy, 2001a), (Jensen, 1996), (Jensen, 1996), (Heckerman, 1995). to represent
inter-dependence between risk factors, and use them to infer or estimate the
values of the missing variables.

To represent our knowledge or rather our beliefs about a domain using proba-
bilistic relations is known as a probabilistic model , (MacKay, 2003). Statistical
modeling problems often involve a large number of interacting uncertain vari-
ables, and it is often convenient to express the dependencies between these vari-
ables graphically. The key idea in these graphical models is modularity, i.e. that
we - graphically - represent a complex system of uncertain variables, and rela-
tions between these variables, by a set of simpler subsystems and use probability
theory to ensure consistency. In particular, graphical models are used as a visual
tool aiding humans in capturing the conditional independency, (Murphy, 2001a),
relationships between variables. The variable a is said to be conditionally inde-
pendent of b, given c (written a⊥⊥b|c) if and only if p(a, b|c) = p(a|c)p(b|c). If
a⊥⊥b|c then b gives us no new information about a once we know c.

In a (probabilistic) graphical model nodes represent variables, and arcs represent
conditional dependencies, and missing arcs represent conditional independence
assumptions. More formally, we can use the graphical model to represent a set of
variables Z = {X,Y } by the joint distribution p(X,Y ). Here, X represents the
set of hidden (never observed) variables, and Y the set of observable variables.
Our data set D would then be instances of Y , possibly with missing values.

To represent the joint distribution of N variables, we would normally require
O(2N ) parameters. In a graphical model we can take advantage of the indepen-
dence assumptions using (possibly) exponentially fewer parameters, (Murphy,
2001a). This is a major advantage for learning and inference problems as de-
scribed in Section 3.2 and 4.3.1.

We distinguish between two kinds of graphical models: Undirected graphical
models (a.k.a. Markov networks or Markov random fields), and directed graphi-
cal models (a.k.a. Bayesian networks, belief networks, generative models, causal
models, etc.), where the arcs have directionality only in the latter case, (Mur-
phy, 2001a), (Bishop, 2006). A model with both directed and undirected arcs is
known as a chain graph. In this work we will focus on directed graphical mod-
els, and we will refer to them as Bayesian Networks (BN). It is important to
understand that Bayesian networks do not imply the use of Bayesian methods.
The Bayesian reference is to Bayes’ rule, used for inference as in (3.3).



62 Missing Values

A BN for a set of variables Z = {Z1, Z2, . . . , ZN} is represented by a Directed
Acyclic Graph (DAG), (Murphy, 2001a), or structure S, where each variable
corresponds to a node in the graph, and directed arcs between nodes implies
variable dependencies. A DAG is a graphical model in which there exist no
directed path including the same variable more than once. In combination with
a set of local probability distributions P for each variable, the joint distribution
for Z is defined.

This often leads to the interpretation that the directed arcs in the graph imply
causality. Hence, in the case A → B we would say that A causes B, which is
why BNs are also referred to as causal models.

The joint distribution for a graphical structure, S, is given by

p(Z) =
N∏

i=1

p(Zi|pa(Zi)) (4.7)

where pa(Zi) denotes the parent nodes of the i’th node in the network, i.e. the
nodes that have directed arcs going into the i’th node. In the same terminology,
Zi is referred to as the child of pa(Zi). Hence, the local probability distribu-
tions, P , are the conditional probability distributions of (4.7). Note that there
is no need for a normalization constant in (4.7), because, by the definition of the
conditional probabilities, it is equal to one. The descendants of a node includes
its children and its children’s descendants, and the ancestors of a node are its
parents and the parents’ ancestors.

As a simple example, consider the network depicted in Figure 4.1. In this
strictly boolean network, we have a node, Sleep (S), representing whether or
not we easily fall asleep on a given night. The value of this node depends on its
two parent nodes, Coffee (C) and scary Movie (M), whether or not we had
coffee and/or watched a scary movie just before turning in. Furthermore, the
value of the M node is conditioned on whether or not we are home Alone (A).

Using the chain rule of probability, the joint distribution is given by

p(A,M,C, S) = p(A)× p(M |A)× p(C|A,M)× p(S|A,M,C) (4.8)

Taking advantage of the conditional independence assumptions we get

p(A,M,C, S) = p(A)× p(M |A)× p(C)× p(S|M,C) (4.9)

using the fact that C has no parents and that S⊥⊥A|M . The conditional in-
dependence assumptions give a more compact representation of the joint dis-
tribution, and fewer parameters makes learning easier. In general, N binary
nodes requires O(2N ) parameters to represent the joint distribution, while the
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Figure 4.1: Simple Bayesian network example where drinking Coffee (C)
and/or watching a scary Movie (M) affect the probability of falling a Sleep
(S). Value of M depends on whether or not we are home Alone (A).

factored form requires O(N2q) parameters, where q is the maximum fan-in of a
node (one plus the number of parents).

Using Bayesian networks, we can represent many statistical models, e.g. Prin-
cipal Component Analysis, Independent Component Analysis, Hidden Markov
Models etc. For a nice overview, please see (Murphy, 2001a).
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4.3.1 Inference in Graphical Models

In a nutshell, inference in a Bayesian network is to infer information about an
unobserved (set) of variables given the observed variables (the data). When we
observe the leaves of a network and try to infer the values of the hidden causes,
we call it diagnosis, or bottom-up reasoning. When we observe the roots, and
try to predict the effects, we call it prediction, or top-down reasoning.

To infer information about the unobserved variable, X, based on some data set,
D, we can use (3.3) and integrate over the uncertain parameters

p(X|D) =
∫

p(D|X)p(X|θ)dθ∫
p(D|θ)dθ

(4.10)

We could be interested in the distribution itself or moments hereof. In most
cases we are not interested in the distribution over all unobserved or hidden
variables in the model, but a subset hereof (perhaps just a single variable). The
hidden nodes can represent physical quantities that we for some reason cannot
observe, or hidden nodes introduced to obtain a certain network structure that
do not necessarily have a physical interpretation. These variables also need to be
integrated or marginalized out, and often leaves us with very complex integrals
that are not analytically tractable. To overcome this we can use approximate
schemes.

4.3.1.1 Exact Inference

Consider the network in Figure 4.1 where we observe the following probabilities
(using 0 ≡ false and 1 ≡ true for clarity).

Prior on Alone

p(A=0) p(A=1)
0.9 0.1

Prior on Coffee

p(C=0) p(C=1)
0.4 0.6

Movie conditioned on Coffee
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A p(M=0|A) p(M=1|A)
0 0.9 0.1
1 0.7 0.3

Sleep conditioned on Movie and Alone

M C p(S=0|M,C) p(S=1|M,C)
0 0 0.01 0.99
0 1 0.3 0.7
1 0 0.4 0.6
1 1 0.9 0.1

If we cannot easily fall asleep, S = 0, we can explain it by a late cup of coffee
or the memories of a late night scary movie. To infer which explanation is
more likely, we use Bayes’ rule to compute the posterior probability of the two
variables

p(M = 1|S = 0) =
M = 1, S = 0

p(S = 0)

=

∑
A,C p(A = a,M = 1, C = c, S = 0)

p(S = 0)

=
0.0264
0.3593

= 0.0735

and

p(C = 1|S = 0) =
C = 1, S = 0

p(S = 0)

=

∑
A,M p(A = a,M = m,C = 1, S = 0)

p(S = 0)

=
0.2232
0.3593

= 0.6212

with

p(S = 0) =
∑

A,M,C

p(A = a,M = m,C = c, S = 0)

= 0.3593

as the normalizing constant. We have used the fact that both the numerator
and the denominator of (3.3) correspond to marginalized versions of the joint
distribution (4.7) with evidence d1 = {S = 0,M = 1} and d2 = {S = 0, C = 1}.
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Comparing the two explanations shows that it is more than 8 times more likely
to have been our weakness for hot coffee that caused an unpleasant night’s sleep

p(C = 1|S = 0)
p(M = 1|S = 0)

=
0.2232
0.0264

= 8.4545 (4.11)

As indicated by this simple example with just a few binary nodes, it quickly
gets very complicated to compute posterior estimates using Bayes’ rule, e.g. the
normalizing constant, in general, involves a sum over an exponential number
of terms. For continuous variables, the sum is replaced by integrals that are
analytically intractable (except for special cases like Gaussian’s).

4.3.1.2 Variable Elimination

However, we can take advantage of the conditional independence assumptions
encoded in the graph and can compute the normalizing constant using the fac-
tored representation of the joint distribution

p(S = s) =
∑

a

∑
m

∑
c

p(A = a,M = m,C = c, S = s) (4.12)

=
∑

a

∑
m

∑
c

p(A = a)× p(M = m|A = a) (4.13)

× p(C = c)× p(S = s|M = m,C = c)

The trick in variable elimination is to make as few summations as possible using
the distributivity law of × over +. In the example, only the Sleep node and the
Movie have parents, and there is no need to sum p(A = a) or p(C = c) for all
instances of Movie yielding

p(S = s) =
∑

a

p(A = a)
∑

c

p(C = c)
∑
m

p(M = m|A = a) (4.14)

× p(S = s|M = m,C = c)

where we first sum the variables with no parents, and push the conditional
p(M = m|A = a) as far possible. If we substitute the inner-most sum with the
term

L1(A,C, S) =
∑
m

p(M = m|A = a)× p(S = s|M = m,C = c) (4.15)

that does not depend on the summed variable M , we get

p(S = s) =
∑

a

p(A = a)
∑

c

p(C = c)× L1 (4.16)
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Repeating this we get

L2(A,S) =
∑

c

p(C = c)× L1(A,C, S) (4.17)

and obtain
p(S = s) =

∑
a

p(A = a)× L2(A,S) (4.18)

This principle is the foundation of many algorithms, such as the Baum-Welch
algorithm, the Fast Fourier Transform, Viterbi’s algorithm and Pearl’s Be-
lief Propagation algorithm, see e.g. (Aji and McEliece, 2000), (Lauritzen and
Spiegelhalter, 1988), and (Spiegelhalter and Lauritzen, 1990).

The algorithm’s complexity is bounded by the size of the largest term. Choos-
ing a summation (elimination) ordering to minimize this is NP-hard, (Arnborg
et al., 1987), although greedy algorithms work well in practice (Kjaerulff, 1990),
(Huang and Darwiche, 1994).

Usually we are not interested in computing just one marginal, but several
marginals at a time by repeating the variable elimination algorithm for each
marginal, leading to a large number of redundant computations. If the corre-
sponding undirected graph is also acyclic, i.e. a tree, we can apply a local message
passing algorithm due to Pearl, (Pearl, 1988). The algorithm is a generalization
of the forwards-backward algorithm for Hidden Markov models, (Rabiner and
Juang, 1986). If the BN has (undirected) loops, a local message passing algo-
rithms may double count evidence and not converge. For example, if we had
connected the Alone and Coffee nodes as shown in Figure 4.2, the information
from M and C passed on to S would no longer be independent, because it came
from a common parent, A. To solve this, we convert the graphical model into

Figure 4.2: Simple Bayesian network example (loopy version).
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a tree by clustering nodes together, and then run a local message passing algo-
rithm. The network in Figure 4.1 is already a tree, but the network in Figure 4.2
is not. In this case we would cluster the nodes as illustrated in Figure 4.3. The

Figure 4.3: Simple Bayesian network example (clustered version).

most common algorithm is the Junction Tree algorithm due to Pearl (1988),
where the original graph is converted into a Junction Tree where probabilistic
information can be locally distributed and collected.

The complexity of the Junction Tree algorithm is exponential in the size of the
largest clique in the moralized, triangulated graph, assuming all hidden nodes
are discrete. Although the largest clique size may be much smaller than the
total number of nodes for a sparsely connected graph, exact inference using the
Junction Tree algorithm is still intractable in most cases. There exist more effi-
cient algorithms for graphical models with special structures, see e.g. (Guo and
Hsu, 2002), but there is still a demand for approximate alternatives. Especially,
when we have continuous valued nodes where the corresponding integrals in
Bayes’ rule cannot be evaluated in closed form. For more on exact inference, see
e.g. (Agresti and Hitchcock, 2005), (Huang and Darwiche, 1994), (Heckerman,
1989), (Beinlich et al., 1989), (Morris, 2002), and (El-Hay, 2001).
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4.3.1.3 Approximate Inference

When the integrals (or summations) in (4.10) are analytically intractable, we
need to use approximate techniques. As we saw in Chapter 3.2, we also face
complicated integrals when we compute the posterior distribution over models
or parameters. To compute the posterior distribution, we need the marginal
likelihood which averages over parameters. These integrals quickly become an-
alytically intractable. Hence, there is an over-all need for numerical integration
techniques, and we therefore treat the problem in general, and then apply it to
the inference problem and for the purpose of computing the marginal likelihood.

Roughly speaking, we have two alternatives: deterministic or non-deterministic
(Monte Carlo) methods. The latter approach was discussed in Section 4.2.
Instead, we will focus on deterministic or analytical approximations. We will
review the Laplace method (the Gaussian approximation), (de Bruijn, 1981),
and Bayes Information Criterion, (Schwarz, 1978). Both methods are analytical
and in different ways try to account for the probability mass around the MAP
parameter configuration. The MAP value is usually easy to find and makes
these approximations attractive.

The Gaussian approximation is based on the idea that for large samples,
the true integrand can often be approximated by a multi-variate Gaussian dis-
tribution. Let

h(X) ≡ log [f(X)] (4.19)

If we make a second order Taylor expansion of h(X) around its mode X̂, we
get

h(X) ≈ h(X̂) + gT(X − X̂) +
1
2
(X − X̂)H(X − X̂)T (4.20)

g =
∂h(X)

∂X
)
∣∣∣∣
X=X̂

(4.21)

H =
∂2h(X)
∂X∂XT

∣∣∣∣
X=X̂

(4.22)

At the mode, X = X̂, the first order derivative, g, must be 0 yielding

h(X) ≈ h(X̂) +
1
2
(X − X̂)H(X − X̂)T (4.23)

If we insert (4.19) into (4.23) and raise to the power of e, we get

f(X) ≈ f(X̂) exp
(

1
2
(X − X̂)H(X − X̂)T

)
(4.24)



70 Missing Values

yielding the integral

I =
∫

A

f(X)dX ≈ f(X̂)(2π)d/2| −H|−1/2 (4.25)

where d is the dimension (number of parameters) of f(X). This technique is also
known as Laplace’s method of approximation, see for example (de Bruijn,
1981) and (Kass and Raftery, 1994). As an example, let us derive the approxi-
mation for the marginal likelihood, i.e. we set

h(θ) ≡ log [p(θ|M)p(D|θ,M)] (4.26)

=
N∑

i=1

log [p(θ|M)] + log [p(di|θ,M)] (4.27)

as our data set contains N examples assumed to be i.i.d. Furthermore, let θ̂
be the value of θ that maximizes h(θ). This value also maximizes the posterior
distribution, p(θ|D), according to (4.10), and is the MAP estimate. Inserting
(4.26) in (4.24) yields

p(θ|M)p(D|θ,M) ≈ p(θ̂|M)p(D|θ̂,M) exp
(

1
2
(θ − θ̂)H(θ − θ̂)T

)
(4.28)

- a multi-variate Gaussian with mean θ̂ and covariance matrix Σ̂ = (−H)−1.
This gives us the approximate marginal likelihood according to (4.25)

p(D|M)Laplace =
∫

p(θ|M)p(D|θ,M)dθ (4.29)

= p(θ̂|M)p(D|θ̂,M)(2π)d/2| −H|−1/2 (4.30)

where d is the dimension of θ or the number of rows/columns in H. The
dimensionality of the parameter space is the number of free parameters. For
complete data this equals the number of parameters, but with hidden variables
the dimensionality might be less, (Geiger et al., 1996).

The Laplace approximation consists of a likelihood term at the MAP setting,
a penalty term from the prior, and a volume term calculated from the local
curvature. The approximation is based on the assumption of a highly peaked
integrand near its maximum θ̂. This is usually true when the likelihood is highly
peaked around θ̂, and will often be the case for large sample sizes. In (Kass
et al., 1990) the authors show that relative errors of this method are O(N−1)
(under certain conditions), where N is the number of cases in the data set.

Using this method leaves us with two challenges: calculating the MAP estimate
θ̂ and the Hessian matrix H. If we have a large data set, the effect of the prior
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p(θ|M) decreases as the sample size increases. In that case we can approximate
the MAP estimate of θ̂ by the MLE

θ̂ML = arg max
θ

{
p(D|θ,M)

}
(4.31)

We can use gradient based methods to find local maxima of the posterior or
the likelihood function. For example, (Buntine, 1996) discuss the case where
the likelihood function belongs to the exponential family. Another solution
would be to use the EM algorithm of Dempster et al. (1977). The volume
term requires the calculation of | −H|. It takes O(Nd2) operations to compute
the derivatives in the Hessian, see e.g. (Buntine, 1994) and Thiesson (1997),
and then a further O(d3) operations to calculate the determinant. This can be
very demanding for high-dimensional models. An easy way of avoiding this is
to approximate the true Hessian matrix with its diagonal elements, or assume
a block-diagonal structure. However, this also implies independencies among
the parameters, leading to an even worse approximation. Finally, the second
derivatives themselves may be intractable to compute.

To overcome these computational difficulties, we can take the logarithm of (4.30)

log [p(D|M))] ≈ log
[
p(θ̂|M)

]
︸ ︷︷ ︸

O(1)

+ log
[
p(D|θ̂,M)

]
︸ ︷︷ ︸

O(N)

+
d

2
log (2π)︸ ︷︷ ︸
O(1)

− 1
2

log | −H|︸ ︷︷ ︸
O(d log(N))

(4.32)
and use only those terms that increase with N (the number of examples in D)
as indicated in (4.32)

log [p(D|M))] ≈ log
[
p(D|θ̂,M)

]
− 1

2
log | −H| (4.33)

In (4.19) we note that the entries in H, defined by (4.22), scales linearly with
N , and so we can re-write the last term to get

lim
N→∞

1
2

log | −H| = 1
2

log | −NH0| =
d

2
log(N) +

1
2
| −H0|︸ ︷︷ ︸
O(1)

(4.34)

For large N we can also use the MLE of θ̂ to get

log [p(D|M)] ≈ log
[
p(D|θ̂ML,M)

]
− d

2
log(N) (4.35)

The approximation in (4.35) is known as the Bayes Information Criterion
approximation, (Schwarz, 1978). The approximation makes intuitively sense.
The first terms gives information on how well the model fits the data, while the
second term increased and thus punishes the model complexity when d increases.
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There exist numerous approximate inference techniques, such as Variational
Bayes, (Jordan et al., 1998), (Wainwright and Jordan, 2005), (Geiger and Meek,
2005), (Attias, 2000), (Beal, 2003), (Jaakkola, 1997), Expectation Propagation,
(Minka, 2001a), (Minka, 2001b), (Murphy, 2001b), Expectation Consistent ap-
proximate inference, (Opper and Winther, 2005), (Csato et al., 2003), (Opper
and Winther, 2004), the Cluster Variation Method, (Kappen, 2002), and Vari-
ational Message Parsing, (Winn and Bishop, 2004), (Winn, 2003), and (Bishop
et al., 2002), just to mention a few.
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4.3.2 Bayes Net Toolbox

Kevin Murphy3 has developed a very nice open source Bayes Net Toolbox (BNT)
for Matlab, (Murphy, 2001a). It is very comprehensive and allows us to learn
the structure and the parameters as well as do inference in a BN. We will
not describe how to use the toolbox in details, a documentation is found at
http://bnt.sourceforge.net/usage.html. In this work we will use and compare
several different of the methods to learn the structure and the parameters of
the BN. For more on parameter and structure learning in BNs, please refer to
(Larsen, 2006), (, editor), (Heckerman, 1995), (Frey and Jojic, 2003), (MacKay,
2003), (Heckerman et al., 1995), (Chickering, 1996), (Cooper, 1995) and (Bun-
tine, 1996).

4.3.2.1 Parameter Learning

We can divide the parameter estimation routines into 4 types, depending on
whether we need a full (Bayesian) posterior over the parameters or a point
estimate like ML or MAP, and whether or not we have missing data (partial
observability). BNT supports point as well as Bayesian estimates for full ob-
servability and point estimates for partial observability using an EM algorithm.

4.3.2.2 Structure Learning

We can divide structure learning into constraint-based and search-and-score
methods. In the constraint-based approach we have a fully connected graph and
remove an edge between nodes if the data shows a conditional independency.
However, repeated independence tests lose statistical power. Instead, we focus
on the search-and-score methods, where we search the space of possible DAGs for
the best model (a point estimate), or a sample of models (an approximation to
the Bayesian posterior). Unfortunately, as shown in (Cooper, 1998), the number
of DAGs as a function of the number of nodes, G(N), is super-exponential in
N , so we cannot exhaustively search the space. Instead, we use a local search
algorithm like greedy hill climbing, (Bishop, 2006), or a global search algorithm
like MCMC.

To compare the models we need a scoring function, either the BIC as described
in Section 4.3.1.3, or the Bayesian score that integrates over the parameters, i.e.
it is the marginal likelihood of the model. The BIC has the advantage of not

3http://bnt.sourceforge.net/
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requiring a prior.

As with parameter learning, handling missing data is much harder than the CC.
The structure learning routines in BNT can be classified into 4 types:

Full observability Partial observability
Point K2 Structural EM
Bayes MCMC not supported

The brute-force approach to structure learning is to enumerate all possible DAGs
and score each one, but in practice this is not feasible for more than 5 nodes.
Instead, we focus on approximate algorithms.

If we know a total ordering of the nodes, we can find the best structure by
searching for the best set of parents for each node independently. This is what
the greedy K2 search algorithm by (Cooper and Herskovits, 1992) does. We
initialize the algorithm with all nodes having no parents. In each step we add
the parent that increases the score (of the resulting graph) most. When the
addition of a single parent cannot increase the score, it stops adding parents to
the node. Since we have a fixed ordering, we can choose the parents for each
node independently and do not need to check for cycles.

In the MCMC search algorithm we use the MH algorithm described in Sec-
tion 4.2.1 to search the space of all DAGs. For this purpose we need a proposal
distribution. Normally, we would consider moving to all nearest neighbors. A
neighbor is a graph that can be generated from the current graph by adding,
deleting or reversing a single arc (subject to the acyclicity constraint). When
there is partial observability, it is very difficult to compute the Bayesian score,
because the parameter posterior is multi-modal (mixture distribution). Instead,
we use the BIC approximation. However, to compute the score of each model
we need the MLE. This implies running EM at each step of the algorithm, a
computationally very expensive procedure. Alternatively, we can perform the
local search steps inside the M-step, which is much cheaper as we have now
filled in the missing values. This algorithm is the structural EM algorithm
by (Friedman, 1998), (Friedman, 1997), (Cooper, 1998), and converges to a local
maximum of the BIC score.

4.3.2.3 Inference

As explained in Section 4.3.1-4.3.1.3, there exist both exact and approximate
inference techniques. BNT supports many inference engines of both types. We
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use the inference algorithms to estimate the missing values in our data set. We
can choose between the joint distribution over the missing nodes and the Most
Probable Explanation (MPE).

MPE is the most probable assignment of values to the hidden nodes, or the
mode of the joint distribution. This gives us a single, complete “pseudo” data
set that we can use as input to our survival algorithms.

If we compute the joint distribution, we can use it to sample values of the
hidden nodes. This gives us the opportunity to do multiple imputation, i.e.
that we can generate several complete “pseudo” data sets, where each set is a
realization of the joint distribution for the missing values. We can also compute
all realizations of the missing values and create an artificial data point for each
missing data pattern. Then we assign a weight to each data point defined as
the joint probability of this pattern. A fully observed subject has weight 1. We
implement the latter solution in this work.
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4.4 A Semi-Parametric Approach

Our second approach to the missing data problem is to use an EM algorithm,
where we estimate the missing values in the E-step and update our (ML) pa-
rameter estimates in the M-step. To understand the algorithm we need to
understand that data are not just missing. There is (perhaps) a reason why
they are missing.

4.4.1 Missing Data Mechanisms

Missing data are divided into three categories depending on “why” they are
missing, random processes, processes which are measured, and processes which
are not measured.

4.4.1.1 Missing Completely at Random

Data are Missing Completely At Random (MCAR), (Gelman et al., 2004),
(Ibrahim et al., 2005), (Herring et al., 2004), if the probability that the data
are missing is independent of any data, observed as well as missing. In survival
analysis, let ti be the observed failure/censoring time for the i’th subject, and
zi = {zobs

i ,zmiss
i } be the variable vector for the i’th subject where zobs

i are the
observed variables and zmiss

i the variables with missing values. The values. The
missing variables, zmiss

i , are MCAR if the probability of observing zi does not
depend on ti, zobs

i , or the value of zmiss
i . If data are MCAR, the observed data

zobs
i is a random sample of all the data, and missing cases are no different than

non-missing cases in terms of the performed analysis. Hence, a CC analysis will
not introduce bias, but is still inefficient if the proportion of missing data is
significant, (Gelman et al., 2004), (Ibrahim et al., 2005).

4.4.1.2 Missing at Random

Data are Missing At Random (MAR), (Gelman et al., 2004), (Ibrahim et al.,
2005), (Herring et al., 2004), if the missingness is independent of the values of
the missing data conditioned on the observed data. Hence, the conditional prob-
ability of missingness may depend on the observed data, and the un-conditional
probability of missingness data may also depend on the unobserved data. The
missing variables, zmiss

i , are MAR if, conditional on zobs
i , the probability of ob-
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serving zi is independent of the values of zmiss
i . However, this probability does

not have to be independent of zobs
i and ti.

If data are MAR, and the missingness does not depend on ti, the missing data
are fully described by variables observed in the data set, and a CC analysis will
give unbiased, yet inefficient, results, (Little and Rubin, 1987). However, if the
missingness depends on ti, the results will be biased. Although we observe ti,
we cannot account for its relation to zmiss

i when we set up a model to predict ti
given zi.

If we assume that the parameters of the missingness distribution are distinct
from the parameters of the joint distribution of (zi, ti), and data are either
MCAR or MAR, we have ignorable missing data. In this case we can ignore the
missing data mechanism when we estimate the parameters of the joint distribu-
tion using (partial) likelihood inference.

4.4.1.3 Non-Ignorable Missing Data

If the missingness depends on the missing values that would have been observed,
we have Non-Ignorable (NI) missing data, (Gelman et al., 2004), (Ibrahim et al.,
2005), (Herring et al., 2004), e.g. if the probability of observing zi, conditional on
zobs

i , depends on the values of zmiss
i . When the missing data depends on events

or items that are not measured, we have a problem. Again, a CC analysis will
be inefficient, but lead to unbiased results if the missingness depends only on
zi and not ti, (Gelman et al., 2004), (Ibrahim et al., 2005), (Herring et al.,
2004). NI missing data is the most common situation, and a valid inference
technique requires the specification of the correct model for the missing data
mechanism and distributional assumptions for the variables with missing values.
Martinussen (1999) used an EM algorithm to estimate missing values in Cox
Regression, but assumed that the values were missing at random. In this work
we use a semi-parametric approach to specify the joint distribution of the missing
data mechanism R, the failure time T , and the variable vector Z. A general
approach would be to specify conditional distributions for [R|T,Z] and [T |Z],
and a marginal distribution for Z. In this approach, we place fully parametric
distributions on [R|T,Z] and Z, but use the CPH model on [T |Z]. The method
is completely general in terms of the type of missing data and the type and
number of variables subject to missingness. The algorithm was first presented
in (Herring and Ibrahim, 2001) omitting the missingness distribution, but was
later incorporated by Herring et al. (2004) in a case-study of an international
breast cancer study.
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4.4.2 EM Estimation

Inserting (2.49) and (2.53) in (2.15), we get the failure time density, the proba-
bility of failure at time t, using the CPH model

f(t|zi,β) = h(t|zi,β)S(t|zi,β)

= h0(t) exp(βTzi) exp
[
− exp(βTzi)H0(t)

]
(4.36)

where we keep the baseline hazard function unspecified. We include the risk
factor parameter vector, β, in the conditions to highlight that the distribution
changes with the parameter vector.

In this work we use right-censored data, where the observation of T is censored
by a variable U so that the observable responses are X = min(T,U), and the
failure indicator δ = I(T≤X) is equal to 1 if the observed event is a failure and
0 otherwise.

In the case of non-informative censoring, where the censoring distribution does
not depend on the unknown parameters in the model, the probability distri-
bution for the i’th data point conditional on the variables, (xi, δi|zi), consists
of a failure part and a censoring part. One part has weight 1 and the other 0
depending upon the indicator variable

p(xi, δi|zi,β,H0(xi)) ∝ f(xi|zi,β,H0(xi))δiS(xi|zi,β,H0(xi))1−δi (4.37)

= h(xi|zi,β)δiS(xi|zi,β,H0(xi)) (4.38)

=
[
h0(xi) exp(βTzi)

]δi

exp
[
− exp(βTzi)H0(xi)

]
(4.39)

according to (4.36). The LL for the i’th individual is

l(β) = δi

[
log(h0(xi)) + βTzi

]
− exp(βTzi)H0(xi) (4.40)

As we would like to keep the (cumulative) baseline hazard function unspecified,
we use the LPL in (2.56) to give

lp(β) =
n∑

i=1

δi

{
βTzi − log

[
n∑

l=1

I(xl≥xi) exp(βTzl)

]}
(4.41)

using the score in (2.57), and the Newton-Raphson solution outlined in (2.58)-
2.60. The only difference between (2.56) and (4.41) is notational: in (2.56) we
sum over the k failure times whereas in (4.41) we sum over all n individuals, but
each contribution is then multiplied by the indicator variable. Furthermore, the
sum over the risk set corresponds to the sum over all individuals where I(xl≥xi).
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To further simplify the notation, we write the score equation, ∂l(β)
β , as a stochas-

tic integral using process notation, (Herring et al., 2004), (Andersen et al., 1993)

u(β) =
n∑

i=1

∫ ∞

0

[
zi − Z̄(β, u)

]
dNi(u) (4.42)

where

Z̄(β, u) =
∑n

i=1 ziYi(u) exp(βTzi)∑n
i=1 Yi(u) exp(βTzi)

(4.43)

and Ni(t) = I(xi≤t,δi=1) and Yi(t) = I(xi≥t). The process Ni(t) takes the value
1 if the i’th subject fails at or before time t, and 0 otherwise. The process Yi(t)
takes the value 1 if the i’th individual is still at risk at time t, and 0 otherwise.

With missing risk factors (we assume fully observed responses), we need to
specify parametric distributions for the risk factors with missing values. We
refer to these distributions using the parameter vector α for the values of the
missing risk factors, and φ for the parameters of the missing data mechanism.

Unfortunately, we also have to estimate the cumulative base-line hazard func-
tion, H0(t). This gives us the following complete score equations

u(θ̂) =


uβ(β̂)
uH0(Ĥ0(t))
uα(α̂)
uφ(φ̂)

 = 0 (4.44)

If we take expectations with respect to the conditional distribution of the missing
variables given the observed data, we can estimate the parameters by solving
the resulting estimation equations

ũ(θ|θ(m)) =


∂E[lβ(β|θ(m))|observed data]

∂β
∂E[lH0 (H0|θ(m))|observed data]

∂H0
∂E[lα(α|θ(m))|observed data]

∂α
∂E[lφ(φ|θ(m))|observed data]

∂φ

 = 0 (4.45)

where the observed data are the observed risk factors, zobs, the event times,
X, the failure indicators, δ, and the current estimates of the missing variables,
zmiss. From now on we will omit the EM iteration index, (m), for clarity. The
missing values can be categorical or continuous, and the missing data mechanism
can be either MCAR, MAR, or NI; if we know they are MCAR, however, we do
not need to model the missing data mechanism. Assume the missing variables
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are categorical. As in (Herring and Ibrahim, 2001) we approximate

∂E
[
lβ(β|θ)|observed data

]
∂β

(4.46)

to the first order using

ũβ(β|θ) =
n∑

i=1

ni∑
k=1

∫ ∞

0

{
pik

[
zik − Z̃(β, u)

]}
dNi(u) (4.47)

where

Z̃(β, u) =
∑n

i=1

∑ni

k=1 pikzikYi(u) exp(βTzi)∑n
i=1

∑ni

k=1 pikYi(u) exp(βTzi)
(4.48)

using zik = {zobs
i ,zmiss

ik } where zmiss
ik is the k’th of ni possible missing value

patterns for the i’th subject. The weights, pik, are the conditional (posterior)
probabilities that the missing data for individual i takes on the pattern k where

pik = pik(θ)

= p
(
zmiss

ik |zobs
i , xi, δi, ri,θ

)
=

p(ri|xi, δi,φ)p(xi, δi|zik,β,H0(xi))p(zik|α)∑ni

k=1 p(ri|xi, δi,φ)p(xi, δi|zik,β,H0(xi))p(zik|α)

=
p(ri|xi, δi,φ)p(xi, δi|zmiss

ik ,zobs
i ,β,H0(xi))p(zmiss

ik ,zobs
i |α)∑ni

k=1 p(ri|xi, δi,φ)p(xi, δi|zik,β,H0(xi))p(zik|α)
(4.49)

where ri is the missingness vector for the i’th subject with rji = 1, if variable j
is missing for the i’th subject, and

∑ni

k=1 pik = 1.

For each case with missing variables we replace the individual with all possible
combinations (patterns) of the missing values. Say, for example, we have a data
set with 10 individuals and one of these individuals have one missing binary
variable. The original data set is then replaced by a data set with 11 cases,
where the missing value case is replaced by two complete cases: one where the
missing variable has the value 0, and one where it has the value 1. Each case
is then weighted with the probability that the missing values took on pattern
j conditional on the observed variables. Cases with no missing values all have
weight 1. Although the baseline hazard, h0(xi), is used in

p(xi, δi|zik,β,H0(xi)) =
[
h0(xi) exp(βTzik)

]δi

exp
[
− exp(βTzik)H0(xi)

]
(4.50)

we do not need to estimate it, since it only depends on the event time xi and
cancels out when we compute pik.

The algorithm proceeds as follows
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1. Estimate θ(0) = {β,H0(t),α,φ} using the complete cases.

2. At the (m + 1)’th EM iteration, compute pik, solve ũ(θ|θ(m)) for θ(m+1),
and update the estimates of β and the nuisance parameters H0(t), α and
φ.

3. Iterate until convergence.

At each iteration of the EM algorithm we estimate the weights, pik, depending
on the nuisance parameters H0(t), α and φ, and the parameters of the weighted
CPH model, β. The estimates of β at each iteration of the EM algorithm are
obtained by treating the weights as fixed and solving for β̃.

4.4.3 Estimation of Nuisance Parameters

As we have chosen a semi-parametric approach to the missing values problem,
we need to specify distributional assumptions for the risk factor distributions
and the missingness distributions.

4.4.3.1 Variable Distributions

When a subject has missing values, we specify a distribution for the missing
variables conditioned on the observed variables and estimate its parameters
from the data. The parameters are nuisance parameters, i.e. they are not of
inferential interest. Optimally, we would like to specify the joint distribution
for all missing risk factors, but since we allow both categorical and continuous
missing risk factors, there may not be a natural joint distribution. Instead, we
allow the joint distribution to factorize, i.e. we assume we can write the joint
distribution as a series of one-dimensional conditional distributions.

Let data have i.i.d. uncertain risk factor vectors zi, i = 1, . . . , n with density
p(zi|α), where α is distinct from β, H0(t) and φ. Furthermore, write the risk
factor vector zi = {zmiss

i ,zobs
i } = {(zmiss

i,1 , . . . , zmiss
i,p ),zobs

i } where (zmiss
i,1 , . . . , zmiss

i,p )
are missing for at least one i, and zobs

i are observed for all i. Then we write the
joint distribution of the missing variables as

p(zmiss
i,1 , . . . , zmiss

i,p |α) = p(zmiss
i,p |zmiss

i,1 . . . , zmiss
i,p−1,z

obs
i ,αp)

× p(zmiss
i,p−1|zmiss

i,1 . . . , zmiss
i,p−2,z

obs
i ,αp−1)× . . .

× p(zmiss
i,1 |zobs

i ,α1) (4.51)
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where αj is the parameter vector for the j’th conditional distribution, the αj ’s
are distinct and α = (α1, . . . ,αp). Hence, we need only specify conditional
distributions for risk factors not completely observed. The estimation equation
for α is uα(α̂) = 0 where

uα(α|θ) =
n∑

i=1

∂ [log(p(zi|α))]
∂α

(4.52)

With missing data, we use the expectation with respect to the conditional dis-
tribution of the missing data given the observed data

ũα(α|θ) =
∂

∂α
E
[
lα(α|θ)|observed data

]
=

n∑
i=1

ni∑
k=1

pik

∂
[
log(p(zik|α))

]
∂α

(4.53)
where k is the index of the missing value pattern for the p missing variables,
and not the variable index j. This technique has the obvious drawback that
we need to specify a conditioning order, and compare various main effects and
interaction models for the risk factor.

4.4.3.2 Missingness Distributions

Again, we use a sequence of one-dimensional conditional distributions to model
the missing data mechanism

p(ri,1, . . . , ri,p|xi,zi,φ) = p(ri,p|ri,1 . . . , ri,p−1, xi,zi,φp)

× p(ri,p−1|r,i,1 . . . , ri,p−2, xi,zi,φp−1)× . . .

× p(ri,1|xi,zi,φ1) (4.54)

where φj is the parameter vector for the j’th conditional distribution and φ =
(φ1, . . . ,φp).

Because each rji is dichotomous, a sequence of logistic regressions may be used
for (4.54). This greatly reduces the number of nuisance parameters and closely
approximates a joint log-linear model for the missing data indicators. The
estimation equation for φ is uφ(φ̂) = 0 where

uφ(φ|θ) =
n∑

i=1

∂ [log(p(ri|xi,zi,φ))]
∂φ

(4.55)

With missing data, we use the expectation with respect to the conditional dis-
tribution of the missingness given the observed data

ũφ(φ|θ) =
∂

∂φ
E
[
lφ(φ|X,Z)

]
=

n∑
i=1

ni∑
k=1

pik

∂
[
log(p(ri|xi,zi,φ))

]
∂φ

(4.56)
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4.4.3.3 Estimation of the Cumulative Baseline Hazard

We also need to estimate the cumulative hazard rate, H0(t), using the estimate
proposed by (Breslow, 1974)

Ĥ0(t) =
n∑

i=1

ni∑
k=1

∫ t

0

pik

∑n
i=1 dNi(u)∑n

i=1 Yi(u) exp(β̃
T
zi,k)

(4.57)

to get an estimate of p(xi, δi|zi,β,H0(xi)) used in the computation of the
weight, pik.

4.4.3.4 Estimation of Weights

We get estimates of pik at the m’th iteration of the EM algorithm by inserting
the m’th estimate of the parameters β, H0(t), α and φ, in (4.49).

4.4.4 Monte Carlo EM method for Continuous or Mixed
Variables

In most practical applications we have categorical as well as continuous miss-
ing variables which complicates the situation even further. With continuous
variables we integrate instead of summing over missing values

ũ(β|θ) =
n∑

i=1

∫
zmiss

i

[∫ ∞

0

{
p
(
zmiss

i |zobs
i , xi, δi, ri,θ

) [
zi − Z̃(β, u)

]}
dNi(u)

]
dzmiss

i

(4.58)

In general, we cannot evaluate this integral analytically. However, as (4.58) is
an expectation with respect to p

(
zmiss

i |zobs
i , xi, δi, ri,θ

)
we may evaluate the

integral by drawing samples from this distribution using an MCMC algorithm,
see Section 4.2.

Furthermore, we can write p
(
zmiss

i |zobs
i , xi, δi, ri,θ

)
in terms of the missingness
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distribution, the variable distribution, and the event distribution

p
(
zmiss

i |zobs
i , xi, δi,θ

)
=

p
(
ri|xi,z

miss
i ,zobs

i ,φ
)
p
(
xi, δi|zmiss

i ,zobs
i ,β,H0(t)

)
p
(
zmiss

i ,zobs
i |α

)∫
zmiss

i
p
(
ri|xi,zmiss

i ,zobs
i ,φ

)
p
(
xi, δi|zmiss

i ,zobs
i ,β,H0(t)

)
p
(
zmiss

i ,zobs
i |α

)
dzmiss

i

(4.59)

∝ p
(
ri|xi,z

miss
i ,zobs

i ,φ
)
p
(
xi, δi|zmiss

i ,zobs
i ,β,H0(t)

)
× p

(
zmiss

i ,zobs
i |α

)
All these distributions are known (have been specified). In (Neal, 1993) it is
shown that p

(
xi, δi|zmiss

i ,zobs
i ,β,H0(t)

)
is log-concave in the components of zi.

If we select each one-dimensional conditional distribution in (4.51) and (4.54)
from the exponential family, then p

(
zmiss

i ,zobs
i |α

)
and p

(
ri|xi,z

miss
i ,zobs

i ,φ
)

are also log-concave in the components of zi. A sum of log-concave densities is
also concave, and we can use a MCMC method along with an adaptive rejection
algorithm to sample the missing variables as explained in Section 4.2.

We can evaluate (4.58) as follows. For each subject i we take a sample si,1, . . . , si,n′
i

of size n′i from p
(
zmiss

i ,zobs
i |α

)
and p

(
ri|xi,z

miss
i ,zobs

i ,φ
)

where each sik′ ,
k′ = 1, . . . , n′i is a vector of length mi, the length of zmiss

i .

Obviously, each sik′ also depends on the EM iteration number. Assigning equal
weights 1

n′
i

to each sample, we obtain the following E-step for β

ũ(β|θ) =
n∑

i=1

 1
n′i

n′
i∑

k′=1

∫ ∞

0

{
zik′ − Z̃(β, u)

}
dNi(u)

 (4.60)

where zik′ = {zobs
i , sik′}, k′ = 1, . . . , ni is the joint vector of the observed risk

factors and the sampled values of the missing variables for the i’th individual
and

Z̃(β, u) =

∑n
i=1

[
1
n′

i

∑n′
i

k′=1 zik′Yi(u) exp(βTzik′)
]

∑n
i=1

[
1
n′

i

∑n′
i

k′=1 Yi(u) exp(βTzik′)
] (4.61)

Having drawn the samples, we proceed to the maximization step. If we have
both categorical as well as continuous missing variables, we still write the joint
distribution of the missing variables as a product of one-dimensional conditional
distributions. For example, if Z2 is binary and Z1 follows a normal distribution,
we use logistic regression models for p(Z2|Z1,α2), p(R2|X, Z1, Z2, R1,φ2), and
p(R1|X, Z1,φ1) and a normal linear regression model for p(Z1|α1).

To simplify the sampling process, we separate the missing continuous and cat-
egorical variables and write zmiss

i = {zmiss,d
i ,zmiss,c

i } using d for discrete (cat-
egorical) and c for continuous variables. For each missing categorical pattern
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we sample the continuous variables. By summing over the categorical patterns,
we can avoid sampling values from their distribution. If we take a sample
{sc

i,1, . . . , s
c
i,n′

i
} of size n′i from p

(
zmiss,c

i |zobs
i , xi, δi,θ

)
we get the Monte Carlo

expectation of the score distribution

ũ(β|θ) =
n∑

i=1

ni∑
k=1

 1
n′i

n′
i∑

k′=1

∫ ∞

0

pikk′

(
zikk′ − Z̃(β, u)

)
dNi(u)

 (4.62)

where

Z̃(β, u) =

∑n
i=1

∑ni

k=1

[
1
n′

i

∑n′
i

k′=1 zikk′Yi(u) exp(βTzikk′)
]

∑n
i=1

∑ni

k=1

[
1
n′

i

∑n′
i

k′=1 Yi(u) exp(βTzikk′)
] (4.63)

and zikk′ = {zobs
i ,zmiss,d

ik , sik′}, k = 1, . . . , ni, k′ = 1, . . . , n′i is the joint vector
of the observed variables, the discrete missing value patterns, and the sampled
values of the missing variables for the i’th individual. The weights are given by

pikk′ = p
(
zmiss,d

ik |sc
ik′ ,zobs

i , xi, δi,θ
)

(4.64)
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Chapter 5

Databases

In this chapter we present two real-life data sets, the multiple myeloma patients
data set, and the Copenhagen Stroke Study database used in the experimental
sections.

5.1 Survival of Multiple Myeloma Patients

The Multiple Myeloma Patients (MMP) data set is presented in (Collet, 2003),
and relates to the survival of 48 patients with multiple myeloma.

Multiple myeloma, (Lonial, 2005), also known as MM, myeloma, plasma cell
myeloma, or as Kahler’s disease after Otto Kahler, is a malignant disease, where
abnormal plasma cells accumulate rapidly in the bone marrow causing pain,
destruction of bone tissue, anaemia, haemorrhages, infections, and weakness.
The affected cells are plasma cells (a type of white blood cell), which are our
antibody- (immunoglobulin-) producing cells. Myeloma is called “multiple”,
since there are frequently multiple patches or areas in the bones, where tumors
or lesions have developed. Its prognosis, despite therapy, is generally poor,
and treatment may involve chemotherapy and stem cell transplant. With no
treatment, the disease is fatal. The study was performed out at the Medical
Center of University of West Virginia, USA, and the aim was to investigate the
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patient time status age sex bun ca hb cells protein
1 13 1 66 1 25 10 14.6 18 1
2 52 0 66 1 13 11 12.0 100 0
3 6 1 53 2 15 13 11.4 33 1
4 40 1 69 1 10 10 10.2 30 1
5 10 1 65 1 20 10 13.2 66 0
6 7 0 57 2 12 8 9.9 45 0
7 66 1 52 1 21 10 12.8 11 1
8 10 0 60 1 41 9 14.0 70 1
9 10 1 70 1 37 12 7.5 47 0
10 14 1 70 1 40 11 10.6 27 0
11 16 1 68 1 39 10 11.2 41 0
12 4 1 50 2 172 9 10.1 46 1
13 65 1 59 1 28 9 6.6 66 0
14 5 1 60 1 13 10 9.7 25 0
15 11 0 66 2 25 9 8.8 23 0
16 10 1 51 2 12 9 9.6 80 0
17 15 0 55 1 14 9 13.0 8 0
18 5 1 67 2 26 8 10.4 49 0
19 76 0 60 1 12 12 14.0 9 0
20 56 0 66 1 18 11 12.5 90 0
21 88 1 63 1 21 9 14.0 42 1
22 24 1 67 1 10 10 12.4 44 0
23 51 1 60 2 10 10 10.1 45 1
24 4 1 74 1 48 9 6.5 54 0

Table 5.1: Survival of multiple myeloma patients data set - first half.

role of a number of risk factors on the survival time in months from diagnosis
to death from multiple myeloma. The data are presented in Table 5.1 and 5.2,
and are available for download, see (Collet, 2003).

When the study ended, some patients were still alive and thus (right)-censored,
indicated by status = 0 in Table 5.1 and 5.2. When the patient was diagnosed,
the values of a number of possible risk factors were noted (name in parenthesis
is the abbreviation used in the experimental work): Age of patient in years
(age), sex of patient (sex), level of blood urea nitrogen (bun), serum calcium
(ca), haemoglobin (hb), percentage of plasma cells in the bone marrow (pcells),
and an indicator of whether or not Bence-Jones protein was present in the urine
(protein). Bence-Jones protein is a protein often found in the blood and urine of
patients with multiple myeloma. The proteins are produced by defective plasma
cell function. Table 5.3 shows the range and mean of the possible risk factors,
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patient time status age sex bun ca hb cells protein
25 40 0 72 1 57 9 12.8 28 1
26 8 1 55 1 53 12 8.2 55 0
27 18 1 51 1 12 15 14.4 100 0
28 5 1 70 2 130 8 10.2 23 0
29 16 1 53 1 17 9 10.0 28 0
30 50 1 74 1 37 13 7.7 11 1
31 40 1 70 2 14 9 5.0 22 0
32 1 1 67 1 165 10 9.4 90 0
33 36 1 63 1 40 9 11.0 16 1
34 5 1 77 1 23 8 9.0 29 0
35 10 1 61 1 13 10 14.0 19 0
36 91 1 58 2 27 11 11.0 26 1
37 18 0 69 2 21 10 10.8 33 0
38 1 1 57 1 20 9 5.1 100 1
39 18 0 59 2 21 10 13.0 100 0
40 6 1 61 2 11 10 5.1 100 0
41 1 1 75 1 56 12 11.3 18 0
42 23 1 56 2 20 9 14.6 3 0
43 15 1 62 2 21 10 8.8 5 0
44 18 1 60 2 18 9 7.5 85 1
45 12 0 71 2 46 9 4.9 62 0
46 12 1 60 2 6 10 5.5 25 0
47 17 1 65 2 28 8 7.5 8 0
48 3 0 59 1 90 10 10.2 6 1

Table 5.2: Survival of multiple myeloma patients data set - second half.
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Variable Range Mean
age 50 - 77 62.9
sex 0 = male, 1 = female 1.4
bun 6 - 172 33.9
ca 8 - 15 9.9
hb 4.9 - 14.6 10.3

cells 3 - 100 42.9
protein 0 = absent, 1 = present 0.3

Table 5.3: Risk factors in the multiple myeloma patients data set.

Min Mean Max 25% 50% (median) 75%
1 23.4 91 6.5 14.5 38

Table 5.4: Distribution of survival times (in months) in the multiple myeloma
patients data set.

Table 5.4 the distribution of survival times, and Figure 5.1 the histogram of
survival times.
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Figure 5.1: Histogram of survival times (in months) in the multiple myeloma
patients data set.
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5.2 Copenhagen Stroke Study Database

The COpenhagen Stroke Study (COST), see e.g. (Andersen et al., 2005b), (An-
dersen et al., 2005a), (Nakayama et al., 1994), (Jørgensen et al., 1995a), (Jørgensen
et al., 1995b), (Jørgensen et al., 1994b), (Jørgensen et al., 1994a), (Jørgensen
et al., 1996b), (Jørgensen et al., 1997), (Jørgensen et al., 1996a), (Jørgensen
et al., 1999b), (Jørgensen et al., 1999c), (Reith et al., 1997), (Jørgensen et al.,
1999a), (Kammersgaard et al., 2004), (Kammersgaard et al., 2002), (Kammers-
gaard and Olsen, 2006), (Nakayama et al., 1996), is a prospective, community-
based study of consecutive acute stroke patients treated on a single, 63-bed
stroke unit within the neurological ward of Bispebjerg Hospital from the time
(in days) of acute admission to the end of rehabilitation. This stroke unit
receives all stroke patients admitted from a well-defined catchment area (pop-
ulation, 238,886) of Copenhagen City, Denmark. The stroke unit handles all
stages of acute care, workup, and all stages of rehabilitation in all patients,
regardless of the age of the patient, the severity of the stroke, and the condi-
tion of the patient prior to the stroke. The stroke admission rate in the area is
high, 88%. All persons from the community who have an acute cerebrovascular
disease that requires admission are referred to the neurological department of
Bispebjerg Hospital. Those not admitted are patients who die before they reach
the hospital and some patients with mild strokes. Inclusion started September
1, 1991, and ended September 30, 1993. Data were kindly provided by Dr. Tom
Skyhøj Olsen from the stroke unit at Hvidovre Hospital.

On admission, all patients underwent a standardized examination program in-
cluding CT-scan, electrocardiography, and a thorough cardiovascular risk fac-
tor evaluation using a standardized questionnaire. If patients were unable to
communicate sufficiently, information was obtained from relatives or care givers.
Stroke was defined according to the World Health Organization criteria, (WHO,
1993). Subarachnoid hemorrhage (bleeding into the subarachnoid space sur-
rounding the brain) was not included.

In total, we have 999 patients with more than 1000 attributes. Some of these
attributes are categorized versions of other attributes and many of the attributes
are only sparsely recorded. The following prognostic factors were suggested as
relevant to our work by Dr. Olsen (name in parenthesis is the abbreviation used
in the experimental work): age (age), gender (sex), hypertension (hyp), ischemic
heart disease (ihd), previous stroke (apo), other disabling disability (odd), daily
alcohol consumption (alco), diabetes mellitus (dm), smoking (smoke), atrial
fibrillation (af), type of stroke (hemo), initial stroke severity (sss), intermittent
claudication (cla), and body temperature on admission (temp).
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hyp Hypertension was present if a patient received antihypertensive treatment
before admission, or if hypertension was diagnosed during hospital stay
by repeated detection of blood pressure = 160/95 mmHg.

ihd Ischemic heart disease was present if a patient had a history of IHD, or
had IHD diagnosed during the hospital stay.

apo Previous stroke was recorded if the patient had previously experienced a
stroke.

odd Information concerning other disabling disease was obtained on admission
and included disabling diseases other than previous stroke (e.g., amputa-
tion, multiple sclerosis, severe dementia, heart failure, latent or persistent
respiratory insufficiency). Thus, various diseases were not registered sep-
arately, and the influence of specific diseases was not evaluated.

alco Alcohol was coded if a patient was drinking on a daily basis. Ex-alcohol
consumers were coded as non-alcohol consumers.

dm Patients with known diabetes before stroke and patients with diabetes
diagnosed after stroke onset either during the hospital stay or because
admission plasma glucose was ¿0.11 mmol/L, in accordance with the World
Health Organization diagnostic criteria for diabetes.

smoke Smoking was coded if a patient smoked any kind of tobacco on a daily
basis. Ex-smokers were coded as non-smokers.

af Atrial fibrillation was diagnosed if the Electrocardiogram obtained on ad-
mission revealed AF.

hemo A CT scan determined stroke type as hemorrhage (bleeding) or infarct
(an artery is blocked by some obstruction, e.g. a blood clot or cholesterol
deposit).

sss The initial neurological stroke severity was assessed with the Scandinavian
Stroke Scale (SSS) at the time of the acute admission. The SSS evaluates
level of consciousness; eye movement; power in arm, hand, and leg; orien-
tation; aphasia; facial paresis; and gait on a total score from 0 (worst) to
58 (best) 1.

cla Intermittent claudication was present if a patient had a history of inter-
mittent claudication, or had intermittent claudication diagnosed during
the hospital stay. Intermittent claudication is a cramping sensation in the

1The scale is available at http://www.strokecenter.org/Trials/scales/scandinavian.html.
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legs that is present during exercise or walking and occurs as a result of
decreased oxygen supply 2.

temp Body temperature on acute admission was recorded with a Diatek model
9000 infrared aural thermometer (Diatek); this device registers tympanic
membrane temperature, which correlates well with core body temperature.
Body temperature was coded as temperature < 37.0◦ C or ≥ 37.0◦ C.

The long-term follow-up data on mortality and date of death were obtained from
the Danish Central Registry of Persons, where date of death for all residents in
Denmark is recorded through a unique 10-digit identification code containing
information on birth date. Another experienced neurologist (L.P. Kammers-
gaard) who was blinded to data obtained on admission prospectively recorded
the follow-up data. Follow-up was performed during the year 1999 with Decem-
ber 29, 1999, as censoring date. Furthermore, the database was updated with
survival information during the year 2004 with November 3, 2003, as censoring
date. Six patients had immigrated to another country and were lost on follow-up
(reducing the sample size to 993).

The distribution of the categorial risk factors, and the mean values (standard
deviations) of the continuous factors (of the 993 patients included) are shown
in Table 5.5 and Table 5.6 respectively. All risk factors, except for age and sex,
have missing values. 552 patients had no missing values in any of the selected
variables.

Table 5.7 and Figure 5.2 show the distribution of survival times. In Table 5.8
we compute the percentage of subjects failing (dead) within a given time from
admission. We note that the survival times are distributed over a time interval
spanning more than 11 years, and just 19 subjects, or less than 2%, were dead
on arrival. However, more than 10% died within the first week, more than
22% within 3 months, and almost 1/3 of all patients were dead within a year,
indicating very high short-term mortality rate. However, as indicated in Table
5.7, the 25% quartile is 153 days or 5 months, while the median survival time
is 1259 days or 4 years! As the histogram also illustrates, the mortality is very
high in the days and weeks after stroke onset, but once a patient has survived
this critical stage, the chances of surviving on longer terms increase rapidly.

The strength of this study is that it is prospective and community-based includ-

2This cramping usually occurs in the calf, but may also occur in the feet. When intermittent
claudication is discussed it is measured by the number of “blocks” (e.g. 1 or 2 blocks) one
can walk comfortably. It often indicates severe atherosclerosis. One of the hallmarks of this
clinical entity is that it occurs intermittently. It disappears after a brief rest and the patient
can start walking again until the pain recurs. Intermittent claudication is often a symptom of
severe atherosclerotic disease of the peripheral vascular system.
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Variable Yes No
sex (men/women) 438 (44.1%) 555

hyp 306 (32.9%) 625
ihd 189 (20.6%) 728
apo 195 (20.7%) 748
odd 205 (21.5%) 747
alco 261 (31.5%) 569
dm 148 (15.6%) 795

smoke 364 (44.4%) 455
af 162 (16.5%) 820
cla 107 (12.2%) 773

infarct hemorrhage
hemo 61 (7.6%) 744

< 37.0◦ C ≥ 37.0◦ C
temp 502 (58.3%) 358

Table 5.5: Distribution of categorical COST variables.

Variable Mean Std.
age 74.3 11.0
sss 38.0 17.5

Table 5.6: Distribution of continuous COST variables.

] subjets with t = 0 Min Mean Max 25% 50% (median) 75%
19 0 1587 4262 153 1259 2828

Table 5.7: Distribution of survival times (in days) in the COST data set.

1 week 2 weeks 3 weeks 1 month 3 months 6 months 1 year
10.5 13.3 15.2 16.7 22.1 26.7 32.0

Table 5.8: Percentage of subjects failing (dead) within a given time from ad-
mission in the COST data set.
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Figure 5.2: Histogram of survival times (in days) in the COST data set.

ing all patients in a well-defined community hospitalized with stroke regardless
age, stroke severity, or other complicating diseases. Moreover, the stroke admit-
tance rate in the area is high and close to the incidence reported in population-
based studies. A limitation is that patients who die at home are not included
and this may underestimate mortality. However, the small number of patients
with minor strokes not being admitted to hospital may counterbalance it. Fi-
nally, because we have a sizeable study population and a lengthy follow-up, we
consider bias to be of no major importance for the main conclusions of this
study.
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Chapter 6

Comparison of Stepwise
Selection and Bayesian Model

Averaging Applied to Real
Life Data

In our first analysis we compare stepwise selection to BMA using the real life
data sets presented in the previous chapter.

6.1 Survival of Multiple Myeloma Patients

The multiple myeloma patients data set is the simpler of the two data sets: It
has much fewer subjects, a small number of risk factors and no missing values.
To validate the proportional hazards assumption before any models are fitted,
we use the log-cumulative hazard plots from Section 2.4.4.1. We compute his-
tograms for each of the continuous variables, and decide to categorize age, bun,
hb, and pcells using quartiles, [.25 .50 .75 1.0], while the distribution of ca shows
that two categories (below and above the median value) are sufficient. In Figure
6.1 - 6.7 we show the log-cumulative hazard plots for all variables indicating that
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the proportional hazard assumption is not violated.
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Figure 6.1: Log-cumulative hazard
plot for age. Quartiles: 58.5 (blue,
dotted), 62.5 (magenta, solid), 68.5
(green, solid), 77.0 (red, dotted).
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Figure 6.2: Log-cumulative hazard
plot for bun. Quartiles: 13.5 (blue,
dotted), 21.0 (magenta, solid), 39.5
(green, solid), 172.0 (red, dotted).
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Figure 6.3: Log-cumulative hazard
plot for sex. Male (green, solid),
women (blue, dotted).
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Figure 6.4: Log-cumulative hazard
plot for protein. Yes (green, solid),
no (blue, dotted).

Having validated the proportional hazards assumption, we proceed to the model
fitting stage and use the stepwise selection algorithm implemented in a commer-
cial statistical software package (SPSS, Statistical Package for the Social Sci-
ences, SPSS Inc, Chicago, IL) to validate the results of our own implementation.
Significance of predictors was based on the probability of the Wald test statistic
and a significance level of α = 0.05.

Results are presented in Table 6.1. For each variable, the second column shows
the p-value at the time of removal, and in parenthesis the iteration in which
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Figure 6.5: Log-cumulative hazard
plot for hb. Quartiles: 8.5 (blue,
dotted), 10.2 (magenta, solid), 12.7
(green, solid), 14.6 (red, dotted).
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Figure 6.6: Log-cumulative hazard
plot for ca. ≤ 10 (green, solid), > 10
(blue, dotted).
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Figure 6.7: Log-cumulative hazard plot for pcells. Quartiles: 20.5 (blue, dot-
ted), 33.0 (magenta, solid), 64.0 (green, solid), 100.0 (red, dotted).

it was removed. If the variable is included in the final model, the value in
the third column is the HR, exp(β), defined as the change in hazard given
a one unit increase from the mean value (continuous variables), or a shift in
category (binary variables), e.g. from sex = male to sex = female. Cate-
gorial variables are transformed into a set of binary variables, each including
the reference category and one other category, e.g. sex1 = {male, female} and
sex2 = {male, hermaphrodite}. A HR > 1 corresponds to an increased hazard
and vice versa.

The analysis shows that the level of blood urea nitrogen, bun, and haemoglobin,
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hb, are the only significant risk factors. A unit increase in bun increases the
HR by a factor 1.02, while a unit increase in hb decreases the HR by a factor
0.87. Hence, a possible treatment should attempt to lower the level of blood
urea nitrogen or increase the level of haemoglobin. A naive comparison of the
hazard ratios shows that an increased level of haemoglobin is more profitable
(pr. unit).

Variable p-value HR
age 0.56 (4)
sex 0.53 (3)
bun < 0.01 1.02
ca 0.92 (1)
hb 0.03 0.87

cells 0.81 (2)
protein 0.13 (5)

Table 6.1: p-values and HRs using stepwise selection in the MMP data set.

Age of patient in years, age, sex of patient, sex, serum calcium, ca, percentage of
plasma cells in the bone marrow, pcells, and the Bence-Jones protein indicator,
protein, are not significant predictors of the survival time using α = 0.05.

After fitting the CPH model, we can use the Schoenfeld from Section 2.4.4.2
plots to validate the proportional hazards assumption. In Figure 6.8 - 6.14 we
plot the scaled Schoenfeld residuals vs. survival times for each variable. For each
variable we fit a linear model (shown on plot) and calculate 95% CIs for the slope
presented in Table 6.2. Each CI includes the value zero, i.e. we cannot reject
a linear model with slope zero using α = 0.05, and we accept the proportional
hazards assumption. One drawback of this method is that even though we
cannot reject a linear model with slope zero, there could still be a higher order
non-linear time dependency. Furthermore, as we have already stressed, we do
not applaud the use of (artificial) significance levels. However, the method is a
useful indicator of time dependence like the log-cumulative hazard plot.

Next, we apply our BMA method and include all possible models. With seven
variables we have 27 = 128 models to analyze and with no prior information
available, we use a flat prior, i.e. we let all models be equally likely a priori.
Results are presented in Table 6.3. The table shows the Top5 models in terms
of PMP and for each model (row), included risk factors are indicated by a •

The final model in stepwise selection is also the best model in terms of PMP,
and we would use this model if we had performed model selection. However, the
PMP is not more than 17%. So, given equal priors, we can explain less than 1/5
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Variable 95% CI 1.0e-002 ×
age -0.22 ; 0.29
sex -4.48 ; 2.85
bun -0.08 ; 0.03
ca -1.81 ; 0.74
hb -0.67 ; 0.50

cells -0.07 ; 0.04
protein -2.41 ; 5.78

Table 6.2: 95% CIs for the value of the slope fitting a linear model to Schoenfeld
residuals for the variables in the MMP data set.
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Figure 6.8: Schoenfeld plot for age.
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Figure 6.9: Schoenfeld plot for sex.
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Figure 6.10: Schoenfeld plot for hb.
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Figure 6.11: Schoenfeld plot for ca.

of the data with this model implying severe model uncertainty. In fact, the Top5
models were just assigned about half of the posterior probability mass. Thus,
we expect an average model to be much better than the single “best” model at
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Figure 6.12: Schoenfeld plot for
protein.
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Figure 6.13: Schoenfeld plot for
pcells.
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Figure 6.14: Schoenfeld plot for bun.

explaining the observed data, and hopefully also at predicting the survival time
for new subjects.

We also note that the “most significant” variable in stepwise selection, bun,
appears in all the Top5 models with 93.0 in PPP corresponding to positive
evidence for an effect according to Table 3.1. In stepwise selection, hb is also
significant, but appears only in three of the Top5 models with 55.7 in PPP
implying just weak evidence for an effect.

The remaining variables all have PPPs corresponding to positive evidence against
an effect and do not appear in the final stepwise selection model. Note that the
variable with highest PPP, protein, was also the last variable to be excluded in
the stepwise selection process.
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The HR for bun corresponds to the HR in stepwise selection, while the HR for
hb is 0.93 and thus closer to one (corresponding to no effect) compared to the
HR of 0.87 in stepwise selection. We conclude that hb is indeed an explanatory
variable, but the BMA estimate of the effect is more conservative due to the
model uncertainty.

Model age sex bun ca hb cells protein PMPA PMPO

1 • • .17 .20
2 • • .12 .14
3 • .10 .12
4 • • • .09 .11
5 • • • .03 .04

PPPO 10.3 10.5 96.9 9.6 55.1 10.0 42.1
PPPA 15.4 15.7 93.0 14.6 55.7 14.9 42.1
HRB 1.02 0.87
HRO 1.00 0.99 1.02 1.00 0.93 1.00 0.75
HRA 1.00 0.98 1.02 1.00 0.93 1.00 0.75

Table 6.3: Top5 models using BMA on the MMP data set (All, Occam, and
Best). Total PMP for Top5: 0.52 (all) and 0.61 (Occam). 22 models included
in Occam’s window.

Table 6.3 also includes the results of a BMA analysis using Occam’s window
subset selection. The algorithm selects just 22 of 128 potential models, but the
results are comparable with the results using all models. The Top5 models are
identical, but the PMPs have increased slightly as a result of the reduced model
domain. The HRs are also comparable. The PPPs, however, have decreased for
age, sex, ca, and pcells, while the PPP for bun has increased from positive to
strong evidence for an effect. Just hb and protein have preserved their posterior
probabilities. The reduced model domain is now limited to models with PMP
within range of the best model and will most likely strengthen the evidence
for variables with high PPP and weaken those with low PPP. Variables in-
between, hb and protein, will be more or less unaffected. If we use all available
models, we are able to capture more of the model uncertainty and consequently
more conservative parameter estimates. However, the main trends are easily
captured using Occam’s window subset selection. If we have many variables,
subset selection is critical for obvious computational reasons.

Earlier, we used the final model from stepwise selection to calculate the scaled
Schoenfeld residuals. We can also average over the set of BMA models to cal-
culate the corresponding scaled Schoenfeld residuals of the average model, but
we saw no indications of a violation.
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In Table 6.4 we compare the p-values to the PPPs. Significant variables in
stepwise selection are highlighted. We plot the PPPs (all models and Occam)
against the (log) p-values in Figure 6.15 and Figure 6.16 respectively. Vertical
lines indicate significance levels α = 0.05, 0.01, and 0.001, while horizontal lines
indicate the PPP levels in Table 3.1.

As the results from the stepwise selection and the BMA analysis are in agree-
ment, significant variables (α = 0.05) have PPPs above 50 and vice versa as
indicated by the solid lines, but BMA does not label risk factors as in or out
according to a more or less arbitrary significance criteria. As mentioned, the
stepwise selection has a tendency to give overconfident estimates, and we can-
not use the p-values to measure the evidence of an effect. Variables bun and
hb are simple in; the rest are out. In BMA, however, we can comment on all
risk factors and evaluate them relative to each other. At least the two methods
agree on the best model, but BMA also revealed that several other models have
significant posterior probability. In this experiment the evidence for an effect
of hb, although above the 50% level, is not as strong as the evidence for bun.
In fact, hb is close to the insignificant variable protein in terms of PPP. These
aspects are not captured in stepwise selection.

Method age sex bun ca hb cells protein
p-value 0.56 0.53 < 0.01 0.92 0.03 0.81 0.13
PPPO 10.3 10.5 96.9 9.6 55.1 10.0 42.1
PPPA 15.4 15.7 93.0 14.6 55.7 14.9 42.1

Table 6.4: PPPs vs. p-values for variables in the MMP data set.

6.1.1 Predictive Performance

Stepwise selection can infer significant explanatory variables, but does not con-
sider the predictive performance of the model. When a model has predictive
power, it can be used to inform the patient of his expected lifetime and, if
possible, how to increased the expected lifetime, e.g. with a change in lifestyle.
The predictive power is also, as discussed earlier, a valuable tool for comparing
competing models.

To evaluate the predictive power we randomly split the data set into a training
set (70%) that we use to estimate the parameters, and a test set (remaining 30%)
that we use for evaluation. Therefore the parameter estimates will be different
from earlier, where we used the complete data set to estimate the parameters.
We evaluate the models using the PPS and the predictive Z-score from Section
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Figure 6.15: PPPs (BMA, all) vs. p-values (stepwise selection) for variables in
the MMP data set.

3.3.2.1 and 3.3.2.2 respectively. To evaluate the latter score we pretend that the
un-censored survival times in the test set are censored, and the actual size of
the test set will therefore alternate depending un the number of subjects that
are not censored. We average over 500 runs, and use the (log) median survival
time in the evaluation of the predictive Z-score (mean was comparable).

The PPP and HR for each variable are presented in Table 6.5. In stepwise
selection, the PPP is the fraction of runs the variable appears in the final model,
and the HR is exp(¯̂β), where ¯̂

β is the average (over runs) of the estimated
coefficient vector. If risk factor j is not included in the final model in the
i’th run, the estimated coefficient, β̂ji, will be zero. As expected, the “highly
significant” variable bun is included in about 90% of the final models, while hb
is in roughly 40%. As the BMA analysis showed data are much more uncertain
about the effect of bh. With less data available for training, stepwise selection
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Figure 6.16: PPPs (BMA, Occam) vs. p-values (stepwise selection) for variables
in the MMP data set.

does not include hb in more than 4 out of 10 runs although it was significant
when we used all available data to estimate the model. Same argument applies
to protein appearing in just 22% of the final models although it was “almost”
significant. As expected, the remaining variables all have very low PPP. The
HRs have changed accordingly and we note that the average stepwise selection
differs from the other models with respect to the HRs for sex, hb, and especially
protein reflecting the large differences in PPPs.

The BMA results on other hand are much more consistent, and the PPPs confirm
our earlier findings. However, we note that the a large amount of the evidence
for an effect, especially for bun, has been transferred to the remaining variables,
because we have lost confidence in this “strong” variable given the reduced data
set. This induces more radical HRs (moving away from the neutral value 1)
for the “weaker” variables, sex and protein. We also see that the estimate of
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the HR for hb in the best model is much more conservative and in line with
the other methods. This is because the reduced data set has introduced more
model uncertainty implying smaller PMP for the best model and thus more
conservative parameter estimates. Less data means less evidence to support
the parameter estimates and the estimates of the posterior model probabilities.
Remember, the assumption is that data are generated by a single model within
our model domain. With unlimited data, this model will have PMP = 1.
Increasing the size of the data set induces fewer models with high PMP, while
less data induce more models with lower PMP. Using all available data, we
included 28 models in Occam’s window, now we include 32 on average. With
less data, more models are able to explain the data “well enough” to be included
in Occam’s window.

age sex bun ca hb cells protein
PPPS 2.4 2.8 89.2 1.6 39.8 0.8 22.0
PPPB 2.8 4.4 85.6 1.4 42.6 1.0 33.0
PPPO 17.2 18.8 78.2 15.4 49.7 15.3 38.5
PPPA 22.1 23.6 75.0 20.7 50.0 20.6 40.0
HRS 1.00 0.96 1.02 1.00 0.93 1.00 0.78
HRB 1.00 0.95 1.02 1.00 0.92 1.00 0.70
HRO 1.00 0.93 1.02 1.00 0.92 1.00 0.71
HRA 1.00 0.93 1.02 1.00 0.92 1.00 0.71

Table 6.5: PPPs and HRs using Stepwise selection and BMA (All, Occam, and
Best) on the MMP data set averaged over 500 runs. Mean number of models
included in using Occam’s window: 32.

To explore the predictive power we compute the mean of the PPS, the IC, and
σpred in Table 6.6. In Table 6.7 we compare the methods with respect to the
mean of the differences in PPS, IC, and σpred.

Method PPS IC σpred

Stepwise -19.9 0.87 1.7
BMAB -20.0 0.86 1.7
BMAO -19.4 0.93 1.6
BMAA -19.3 0.93 1.6

Table 6.6: PPS, IC, and σpred using stepwise selection, BMA (All, Occam, and
Best) on the MMP data set averaged over 500 runs.

In the PPS column, the number in parenthesis is the increase in predictive
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Method PPS IC σpred

BMAO − stepwise 0.47 (6.1%) 0.06 -0.12
BMAA − stepwise 0.54 (6.9%) 0.06 -0.12
BMAO − BMAB 0.66 (8.2%) 0.08 -0.14
BMAA − BMAB 0.73 (9.1%) 0.08 -0.15
BMAA − BMAO 0.07 (0.7%) 0.00 0.00

Table 6.7: Difference in PPS, IC, and σpred using stepwise selection, BMA (All,
Occam, and Best) on the MMP data set averaged over 500 runs.

performance pr. event

exp
(∆PPS

ncases

)
(6.1)

Since PPS is a log score (transforming the product of predictive densities in the
test set into a sum), we use exp to get a predictive performance score pr. event.
As mentioned in Section 3.3.2.1, we only get non-zero contributions for failures
(deaths) in the test set. In the i’th run, ni

cases is the number of subjects failing
in the test set. As we split the data randomly, this number may change in each
run, so we use

1
N

∑
i

exp
(

∆PPSi

ni
cases

)
(6.2)

where N =
∑

i ni
cases to compute the predictive performance pr. event. The

results show that the BMA methods have more predictive power, indicated by
a higher PPS, a higher IC, and a lower σpred. On average, BMA is 6-7% (vs.
stepwise selection) and 8-9% (vs. best model) better pr. event, when we use
the PPS as indicator of predictive power. We also see significant improvements
in IC on the scale 6-8% which makes it obvious that model uncertainty is an
important aspect of survival analysis. Note that although the improvements in
PPS and IC seem to be of a similar order, the two scores are very different, and
we cannot make a naive comparison.

A 95% CI on the predictive median survival time with σpred = 1.6 (BMA, all
models/Occam) is t̄ ± 3.1, i.e. we are able to predict the true survival time
within a ∼ 6 month interval in more than 9 of 10 cases using BMA. With
a predicted median survival time of, say 10 months, the predicted 95% CI is
[6.9; 13.1] months. The values of σpred (and the CI) should be viewed in light of
the distribution of the true survival times presented in Table 5.4. As the table
shows, half the subjects have survival times less than 14.5 (months), but with a
minimum survival time of 1 month and a maximum survival time of 91 months
(7.6 years), we find the predictive CIs acceptable. Using stepwise selection, the
average CI is t̄± 3.4, but although the average CI is wider, it does not include
the true survival times in more than 87% of the time.
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We also note that using all models is just slightly better than using Occam’s
window subset selection, even though we just include 32 of the 128 possible
models (on average). The increased computational effort does not justify the
0.7% increase in predictive performance pr. event, and there is no measurable
difference in terms of IC. Both methods clearly outperform stepwise selection
showing that an average over (a subset) of models also improves the predictive
power. We note that the best model has predictive scores close to the scores
using stepwise selection, and at least in this case stepwise selection obtains
results comparable with the results we would get using model selection, but we
still see a significant gain in predictive power using an average over models.

In conclusion, all experiments indicate the importance of accounting for model
uncertainty, even for a small data set. We improve the predictive power and
the evaluation of the risk factors using BMA to compute a true probability
to evaluate the evidence of an effect for each risk factor. We do not need an
arbitrary significance level, factors are not “in‘” or “out”, and more data will
only strengthen the PPP and PMP estimates rather than make all variables
significant.
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6.2 Copenhagen Stroke Study

In the next analysis we apply our methods to the COST data set. Of the 993 pa-
tients, only 552 have no missing values in any of the risk factors. Using stepwise
selection we can choose between two strategies. The standard method (imple-
ment in statistical software packages) is to exclude all subjects with missing
values in any of the considered variables to get a CC data set that we can use
no matter which variables are in the model. However, this leaves us with just
55.6% of the original data.

Another approach is to begin with the CC data set. Then, in each step of the
selection process, if the set of variables changes, we review the original data set
and build a new CC data set, removing only subjects with missing values in
one or more of the remaining variables. In this way we include the maximum
number of subjects in each step of the algorithm. However, we could also argue
that once we have removed a subject, it is not correct to let it re-enter the data
set later in the selection process, as the variables that we decided to remove were
evaluated using a data set where the subject was not included. We investigate
how the data inclusion strategy affects the results of the analysis. In BMA we
cannot alter the data set as we never exclude any variables. Otherwise, the
analysis is comparable with the analysis on the multiple myeloma patients.

The results using stepwise selection and not allowing re-entry of data (column
2-3) respectively allowing re-entry (column 4-5) are shown in Table 6.8. Both
methods select age, sex, apo, odd, dm, cla, and sss as significant variables
using α = 0.05. They also agree on the HRs for age, sss, and cla, while they
are comparable for sex and dm. For apo and odd, the HRs decrease when we
allow re-entry of data. If we look at the p-values we see that when we allow
re-entry of data, almost all variables have the same or smaller p-value than when
we do not allow re-entry of data. Variables af and temp are now significant,
and the remaining variables have p-values much closer to the significance level.
As shown, the results of stepwise selection depend heavily on the amount of
available data. More data seem to imply more significant variables with smaller
significance values, and also illustrates the importance of the significance level!
In further analysis, and to compare with BMA, we use the CC results not
allowing re-entry of data to avoid any discussions.

Next, we apply BMA using all possible models. With fourteen possible vari-
ables, we have 214 = 16384 models to analyze. Again, we do not use any prior
information making all models equally likely a priori. The Top10 models are
shown in Table 6.9.

As in the analysis of the multiple myeloma patients, the results show that we
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No re-entry of data Re-entry of data
Variable p-value HR p-value HR

age <0.001 1.05 <0.001 1.05
sex <0.01 1.37 <0.001 1.40
hyp 0.28 (4) 0.30 (3)
ihd 0.64 (2) 0.51 (2)
apo <0.01 1.43 <0.01 1.30
odd 0.02 1.34 0.02 1.26
alco 0.60 (3) 0.17 (4)
dm 0.04 1.30 <0.01 1.32

smoke 0.15 (6) 0.06 (5)
af 0.14 (5) 0.02 1.30

hemo 0.77 (1) 0.67 (1)
cla 0.02 0.72 <0.01 0.72

temp 0.10 (7) <0.01 1.24
sss <0.001 0.97 <0.001 0.97

Table 6.8: p-values and HRs using stepwise selection in the COST data set.
Column 2-3 (no re-entry), column 4-6 (re-entry).

have a large amount of model uncertainty. The Top10 models account for just
37% of the posterior model probability, and the best model has a PMP of just
0.08! This time, the final model in stepwise selection is not the model with the
highest PMP, but is ranked 10’th with a PMP as low as 0.02, and we expect
that using an average model is much better than using stepwise selection or the
best (in terms of PMP) model alone.

The variables age, sex, and sss appear in all Top10 models and have high PPPs
as shown in Table 3.1. The data indicate positive evidence for an effect of sex
and very strong evidence for an effect of age and sss. These three variables
all have p-values < 0.01 in stepwise selection, and the estimated HRs shown in
Table 6.11 are almost identical, except for sex, where the BMA estimate is a
little more conservative, and we feel confident that these variables are important
risk factors with reliable HR estimates.

Variables apo, odd, dm, and cla are also significant risk factors in stepwise
selection, but in the BMA analysis we have just weak evidence for an effect of
apo, odd, and cla, while there is positive evidence against an effect of dm! This
also affects the estimate of the HRs which are much more conservative (closer
to 1) when we use BMA.

Variables af and temp, who were significant in stepwise selection allowing re-



112
Comparison of Stepwise Selection and Bayesian Model Averaging Applied

to Real Life Data

entry of data, have just 11.5 and 18.2 in PPP. These values correspond to positive
evidence against an effect and are far from the positive evidence for an effect
level. Hence, we are confident that af and temp are not important explanatory
variables.

The remaining variables all have PPPs corresponding to positive evidence against
an effect in agreement with the exclusion of these variables in stepwise selection,
regardless of whether or not we allow re-entry of data.

The results using Occam’s window to select a subset of just 47 of the possible
16384 models are also presented in Table 6.9-6.11. As in the MMP analysis,
results using Occam’s window subset selection are comparable with the results
using all models. The Top10 models are identical, but the PMPs have increased,
and the total PMP for Top10 is 0.58. The HRs are also comparable, with slightly
increased/decreased HR for variables with high/low PPP. The PPP values have
changed such that variables with low PPP (hyp, ihd, alco, dm, smoke, af ,
hemo, and temp) have decreased, and variables with high PPP (age, sex, apo,
and sss) have increased as a result of the reduced model domain, and sex has
even moved from positive to strong evidence for an effect. The PPPs for odd
and cla were close to 0.5 and remain so.

Again, when we use all models in the BMA analysis, the evaluation of such a
large number of models induce more conservative estimates of the PPPs and
the HRs, but still Occam’s window subset selection is able to identify the very
few important models that account for the majority of the PMP mass and give
reliable estimates of the PPPs and the HRs using much less computational
resources. In fact, we have reduced the number of models with more than a
factor 348!

In Table 6.10 we compare p-values and PPPs for each variable. Significant
variables in stepwise selection are highlighted. PPPs from the BMA analysis
(all models and Occam) are plotted against the (log) p-values in Figure 6.17
and Figure 6.18 respectively. Vertical lines indicate the common significance
levels α = 0.05, 0.01, and 0.001, while horizontal lines indicate the PPP levels
in Table 3.1.

Significant risk factors (α = 0.05) should give confidence values above 50 and
vice versa as indicated by the solid lines. However, as we have a large amount
of model uncertainty, this is not the case. As already mentioned, dm has a
significant p-value, but does not have a PPP above 50. Otherwise, all variables
are “classified” alike and close to the “optimal” straight line from PPP=100 to
p-value = 1.
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Model age sex hyp ihd apo odd alco PMPA PMPO

1 • • • • .08 .13
2 • • • • .06 .10
3 • • • .05 .08
4 • • • • .03 .05
5 • • • .03 .04
6 • • • .03 .04
7 • • • .03 .04
8 • • • .02 .03
9 • • • • .02 .03
10 • • • • .02 .03

step • • • • .02 .03
dm smoke af hemo cla temp sss

1 •
2 • •
3 • •
4 • •
5 • • •
6 •
7 •
8 • •
9 • •
10 • • •

step • • •

Table 6.9: Top10 models using BMA (All and Occam) on the COST data set.
Total PMP for Top10: 0.37 (all) and 0.58 (Occam). 47 models included in
Occam’s window.

Method age sex hyp ihd apo odd alco
p-value (step) <0.001 <0.01 0.28 0.64 <0.01 0.02 0.60

PPPO 100 95.0 2.8 3.5 82.5 61.7 0
PPPA 100 87.8 9.2 9.5 74.3 57.3 4.9

dm smoke af hemo cla temp sss
p-value (step) 0.04 0.15 0.14 0.77 0.02 0.10 <0.001

PPPO 25.0 7.1 4.7 0 52.6 12.9 100
PPPA 30.4 14.3 11.5 4.7 53.0 18.2 100

Table 6.10: PPPs vs. p-values for variables in the COST data set.
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age sex hyp ihd apo odd alco
HRS 1.05 1.37 1.00 1.00 1.43 1.34 1.00
HRB 1.05 1.41 1.00 1.00 1.43 1.43 1.00
HRO 1.05 1.36 1.00 1.01 1.35 1.23 1.00
HRA 1.05 1.33 1.01 1.01 1.31 1.21 1.00

dm smoke af hemo cla temp sss
HRS 1.30 1.00 1.00 1.00 0.72 1.00 0.97
HRB 1.00 1.00 1.00 1.00 1.00 1.00 0.98
HRO 1.07 1.01 1.01 1.00 0.83 1.02 0.98
HRA 1.09 1.03 1.02 1.00 0.82 1.03 0.98

Table 6.11: HRs using Stepwise selection and BMA (All, Occam, and Best) on
the COST data set.
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Figure 6.17: PPP (BMA, all models) vs. p-values (stepwise selection) for vari-
ables in the COST data set.
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Figure 6.18: PPP (BMA, Occam) vs. p-values (stepwise selection) for variables
in the COST data set.

6.2.1 Time Dependent Variables

We are aware that we could validate the proportional hazards assumption before
applying any models - and we did. However, to compare the results of the two
methods, we show the log-cumulative hazard plots together with the plots of
the Schoenfeld residuals that we calculate after a model has been fitted.

6.2.1.1 Log-Cumulative Hazard Plots

In Figure 6.19 - 6.32 we show the log-cumulative hazard plots for each variable.
For the continuous variables we use duo-deciles, [.2 .4 .6 .8 1.0]. Most plots
indicate that the proportional hazard assumption is not violated, but for sss,
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alco, smoke, and hemo there are indications of a time dependency as the log-
cumulative hazard for subjects in the first duo-decile (data points marked ’o’
and connected by a dotted, blue line) do not seem to be proportional to the
log-cumulative hazards for the remaining subjects. However, for hemo we have
very few data point for hemo = yes, so it is quite difficult to conclude whether
or not we have proportional hazards.
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Figure 6.19: Log-cumulative haz-
ard plot for age. Duo-deciles: 66
(blue, dotted), 73 (magenta, solid),
78 (green, solid), 83 (red, dotted),
98 (black, dashed).
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Figure 6.20: Log-cumulative haz-
ard plot for sss. Duo-deciles: 26
(blue, dotted), 42 (magenta, solid),
49 (green, solid), 54 (red, dotted),
58 (black, dashed).
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Figure 6.21: Log-cumulative hazard
plot for sex. Male (green, solid),
women (blue, dotted).
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Figure 6.22: Log-cumulative hazard
plot for hyp. Yes (green, solid), no
(blue, dotted).
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Figure 6.23: Log-cumulative hazard
plot for ihd. Yes (green, solid), no
(blue, dotted).
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Figure 6.24: Log-cumulative hazard
plot for apo. Yes (green, solid), no
(blue, dotted).
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Figure 6.25: Log-cumulative hazard
plot for odd. Yes (green, solid), no
(blue, dotted).
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Figure 6.26: Log-cumulative hazard
plot for alco. Yes (green, solid), no
(blue, dotted).

6.2.1.2 Schoenfeld Plots

To get another opinion we plot the Schoenfeld residuals vs. the survival times
for each variable after fitting a CPH model in Figure 6.33 - 6.46. For each
variable we fit a linear model (shown on plot) and calculate 95% CIs for the
slope presented in Table 6.12. For CIs including the value zero we cannot reject
a linear model with slope zero using α = 0.05, and we accept the proportional
hazards assumption for those variables. As the log-cumulative hazard plots
indicated, we believe the sss variable to be time dependent, since the CI does
not include 0. Although the log-cumulative hazard plots did not indicate a time
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Figure 6.27: Log-cumulative hazard
plot for dm. Yes (green, solid), no
(blue, dotted).
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Figure 6.28: Log-cumulative hazard
plot for smoke. Yes (green, solid),
no (blue, dotted).
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Figure 6.29: Log-cumulative hazard
plot for af . Yes (green, solid), no
(blue, dotted).
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Figure 6.30: Log-cumulative hazard
plot for hemo. Yes (green, solid), no
(blue, dotted).

dependency for alco and smoke, the Schoenfeld residuals suggest otherwise, and
we include a time dependent term for alco and smoke. As we expect subjects
to quit drinking and smoking once they have experienced a stroke, it seems
plausible that the effect of alco and smoke might change (decrease) over time.
For sss we might expect that the stroke severeness has a great influence on the
short-term survival, while the effect on the long-term survival is decreasing, as
also reported in Andersen et al. (2006c) For hemo, the Schoenfeld residuals can
not reject a linear model with slope, and we do not include a time dependent
term for hemo.
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Figure 6.31: Log-cumulative hazard
plot for cla. Yes (green, solid), no
(blue, dotted).
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Figure 6.32: Log-cumulative hazard
plot for temp. < 37.0◦ C (green,
solid), ≥ 37.0◦ C (blue, dotted).

Variable 95% CI, 1.0e-003 ×
age -0.0179 ; 0.0041
sex -0.2615 ; 0.1711
hyp -0.3904 ; 0.0163
ihd -0.3313 ; 0.1779
apo -0.1402 ; 0.3450
odd -0.0514 ; 0.4666
alco 0.0410 ; 0.4890
dm -0.3858 ; 0.1522

smoke -0.5219 ; -0.0839
af -0.3892 ; 0.1613

hemo -0.7959 ; 0.0303
sss 0.0092 ; 0.0236
cla -0.2700 ; 0.3037

temp -0.2591 ; 0.1161

Table 6.12: 95% CIs for the value of the slope fitting a linear model to Schoenfeld
residuals for variables in the COST data set.

6.2.1.3 Including a Time Dependent Variable

To include time dependent variables we distinguish between internal and exter-
nal variables. Internal variables relate to a particular subject, and are measured
while the subject is alive, e.g. blood pressure. External variables can be mea-
sured without the subject being alive, and their values at any future time are
sometimes known in advance, e.g. the subject’s age or gender. It could also be



120
Comparison of Stepwise Selection and Bayesian Model Averaging Applied

to Real Life Data

0 1000 2000 3000 4000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Survival time

S
ca

le
d 

S
ch

oe
nf

el
d 

re
si

du
al

 +
 β

j

Age

Figure 6.33: Schoenfeld plot for age.
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Figure 6.34: Schoenfeld plot for sex.
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Figure 6.35: Schoenfeld plot for dm.
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Figure 6.36: Schoenfeld plot for ihd.
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Figure 6.37: Schoenfeld plot for apo.
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Figure 6.38: Schoenfeld plot for odd.

a variable that is not subject related, e.g. air temperature.
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Figure 6.39: Schoenfeld plot for
alco.
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Figure 6.40: Schoenfeld plot for
temp.
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Figure 6.41: Schoenfeld plot for
smoke.

0 1000 2000 3000 4000
−10

−5

0

5

10

15

20

Survival time

S
ca

le
d 

S
ch

oe
nf

el
d 

re
si

du
al

 +
 β

j

Hemorrhage

Figure 6.42: Schoenfeld plot for
hemo.
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Figure 6.43: Schoenfeld plot for cla.
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Figure 6.44: Schoenfeld plot for sss.
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Figure 6.45: Schoenfeld plot for af .
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Figure 6.46: Schoenfeld plot for hyp.

We also have time dependent variables if the coefficient of a time constant
variable varies with time, e.g. the sss variable is constant over time (measured
on admittance), but is suspected to have a time dependent coefficient. As
explained in Section 2.4, the coefficient of a variable in the CPH model is a
log-hazard ratio, i.e. the hazard ratio is constant over time. If this ratio varies
with time, the coefficient is a time varying coefficient, and we refer to such a
model as a Cox Regression (CR) model.

Suppose a variable Zj with coefficient βj is a linear function of time, t. Then we
can write this term as βjzjt or βjZj(t), where Zj(t) = Zjt is a time dependent
variable. If the model has a variable Zj with time varying coefficient βj(t), the
model term is βj(t)Zj or βjZj(t), i.e. a time varying coefficient can be expressed
as a time dependent variable with a constant coefficient.

According to (2.69) the hazard of death at time t for the i’th subject is

h(t|zi) = h0(t) exp(βTzi) (6.3)

= h0(t) exp

 p∑
j=1

βjzji

 (6.4)

If some of the variables are time dependent we write zji(t) for the j’th variable
at time t for the i’th subject. The hazard of death at time t for the i’th subject
in the CR model is then

h(t|zi) = h0(t) exp(βTzi) = h0(t) exp

 p∑
j=1

βjzji(t)

 (6.5)

The baseline hazard, h0(t), is the hazard for an individual where all variables
are zero (have baseline values) at the time origin and remain so throughout
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time. The ratio of hazards at time t for the r’th and the s’th individual is

h(t|zr)
h(t|zs)

= exp
{
β1 [z1r(t)− z1s(t)] + . . . + βp [zpr(t)− zps(t)]

}
(6.6)

and we can interpret the coefficient βj , j = 1, . . . , p as the log-hazard ratio for
two subjects whose values of the j’th variable at time t differ by one unit, while
the other p− 1 variables have the same value for the two subjects.

The LPL function from (2.56) can be generalized to include time dependent
variables

n∑
i=1

δi


p∑

j=1

βjzji(ti)− log
∑

l∈R(ti

exp

 p∑
j=1

βjzjl(ti)

 (6.7)

where R(ti) is the risk set at time ti, the failure time of the i’th subject, and δi

is the failure indicator for the i’th subject.

As in the CPH model, we would like to maximize this expression with respect to
the β parameters using (2.57), but we need to know the values of each variable
at each failure time for all subjects in the risk set at time ti. This is no problem
for external variables with preordained values, but for external variables with
values that are independent of the subjects, and for internal variables, it is a
problem. If, for example, we measure the blood pressure on admittance and at
regular intervals hereafter, the value of this variable is time dependent. When
the i’th subject dies at time ti, we need the value of the blood pressure variable
for the i’th subject and all other subjects in the risk set at time ti. If these blood
pressure values have not been measured, we need to estimate them. Several ways
of doing this approximation is described in (Collet, 2003).

Luckily, we have no such variables in the COST data set. All our variables are
measured on admittance, and their values do not change over time, except for
age which is an explicit (linear) function of time, and we know its value at any
point in time.

Having fitted a CR model, we can estimate the cumulative baseline hazard
function, H0(t), and the corresponding baseline survival function, S0(t). We
use the results for the CPH model in (2.65) and (2.66) respectively, and modify
them to include time dependent variables.

The Breslow estimate of the cumulative baseline hazard function is

Ĥ0(t) =
∑
ti≤t

mi∑
l∈R(ti)

exp(β̂
T
zl(t))

(6.8)
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and the baseline survival function is

Ŝ0(t) = exp
[
−Ĥ0(t)

]
=
∏
ti≤t

exp

− mi∑
l∈R(ti)

exp(β̂
T
zl(t))

 (6.9)

where zl(t) are the risk factors for the l’th subject at time t, and mi is the
number of failures at the i’th ordered failure time, ti, i = 1, . . . , r.

The estimate of the survival function for a particular subject is difficult to
estimate, because Si(t) cannot be expressed as a power of S0(t) as in (2.67) for
the CPH model. Instead, we need to integrate over time because the values
of the variables change over time. The estimated survival function for the i’th
subject is then

Ŝi(t) = exp

−
∫ t

0

exp

 p∑
j=1

βjzji(u)

h0(u)du

 (6.10)

The survival function depends on the time-dependent variables over the interval
from 0 to t, which could be future, unknown values. To handle this, we can
estimate the conditional probability that a subject survives in a certain time
interval using a method described in (Collet, 2003). Fortunately, we do not have
this problem in the COST data set. However, since the COST is a long-term
study, and our survival times are measured in days, we have quite large values
for t. To avoid numerical problems we use log t to model the time-dependent
variables.

In Table 6.13 and 6.14 we show the stepwise selection results, and the BMA
using Occam’s window subset selection results. Based on the results from the
previous experiments, we did not perform an analysis using all models.

First, we note that although we include more variables, we actually include
fewer models in the Occam window (37 vs. 47), and we have also increased the
maximum and Top10 PMP from 0.13/0.58 to 0.16/0.63, i.e. the inclusion of time
dependent variables has decreased the amount of model uncertainty. The reason
is that we now include the sss∗t term in all models, making it possible to explain
the data much better than earlier. Actually, all time dependent variables are
significant in stepwise selection, while BMA suggests positive evidence against
an effect for alco ∗ t with PPP=2.5 and smoke ∗ t with PPP=0. On the other
hand, the PPP for sss ∗ t is 100, showing strong evidence for an effect. The HR
is 1.0019 for a 100 unit increase in sss ∗ t, and compared to the HR of 0.95 for
sss alone, it implies that a higher sss value (baseline value is 0) decreases the
relative hazard, but that the effect decreases slightly with time.

For apo, dm, and especially odd, the PPPs and HRs have increased, while they
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have decreased for all other risk factors, especially cla. This is as a result of the
entry of sss∗t that we now believe is able to explain phenomena in the data that
we earlier explained otherwise. This has also lead to changes for other variables,
most significantly are the increased PPPs for odd and dm. Consequently, cla
has moved from weak evidence for an effect, to positive evidence against an
effect, while odd has moved from weak to positive evidence for an effect.

On the other hand, in stepwise selection we do not see any effect for odd, while
the p-value for cla has just increased from 0.02 to 0.04, and we are not able to
capture the consequences that sss∗t introduced. However, as already mentioned,
stepwise selection also finds alco ∗ t and smoke ∗ t significant, with the effect
that alco and smoke themselves, along with af , also become significant! It is
needless to say that stepwise selection and BMA do not agree on the results,
and again we have much more confidence in the BMA results, where we include
all variables throughout the analysis, and calculate real probabilities of an effect
for each variable. This makes it possible to measure the effect of including new
variables, both in terms of model uncertainty and parameter uncertainty.

Method age sex hyp ihd apo odd
p-value (step) <0.001 <0.01 0.33 (3) 0.52 (2) <0.01 0.02

PPPO 100 96.9 2.0 1.4 77.9 75.1
alco dm smoke af hemo cla

p-value (step) 0.02 0.12 (5) 0.03 <0.01 0.76 (1) 0.04
PPPO 0 28.9 5.7 3.6 0 39.3

temp sss alco*t smoke*t sss*t
p-value (step) 0.13 (4) <0.001 0.01 0.03 <0.001

PPPO 9.3 100 2.5 0 100

Table 6.13: p-values and PPPs using stepwise selection and BMA (Occam) on
the COST data set with time dependent variables. Max. PMP: 0.16. Total
PMP for Top10: 0.63. 37 models included in Occam’s window.

To explore the predictive power, we randomly split the data set into a training
set (90%) that we use to estimate the parameters, and a test set (remaining 10%)
that we use for evaluation. We evaluate the mean of the PPS, the IC, and σpred

averaged over 200 runs in Table 6.15. In Table 6.16 we compare the methods
with respect to the mean of the differences in PPS, IC, and σpred. In the PPS
column, the number in parenthesis is the increase in predictive performance pr.
event

Again, the results show that BMA (Occam) has more predictive power indicated
by higher PPS, higher IC, and lower σpred, and is on average more than 3-4% (vs.
stepwise selection) and ∼5% (vs. best model) better pr. event. BMA (Occam)
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Method age sex hyp ihd apo odd alco
HRS 1.05 1.36 1.45 1.34 0.65
HRB 1.05 1.41 1.42 1.45
HRO 1.05 1.38 1.00 1.00 1.32 1.31 1.00

dm smoke af hemo cla temp sss
HRS 1.33 1.62 1.35 0.96
HRB 0.96
HRO 1.09 1.01 1.01 1.00 1.15 1.02 0.96

alco*t smoke*t sss*t
HRS 1.03 0.98 1.0019
HRB 1.0018
HRO 1.00 1.00 1.0017

Table 6.14: HRs using Stepwise selection and BMA (Occam and Best) on the
COST data set with time dependent variables. Max. PMP: 0.16. Total PMP for
Top10: 0.63. 37 models included in Occam’s window. Hazard ratio for xxx ∗ t
is pr. 100 unit increment.

Method PPS IC σpred

Stepwise -252.0 0.74 35.9
BMAB -253.0 0.73 36.1
BMAO -249.5 0.78 30.8

Table 6.15: PPS, IC, and σpred using stepwise selection, BMA (Occam and
Best) on the COST data set averaged over 200 runs.

Method PPS IC σpred

BMAO − stepwise 2.45 (3.6%) 0.04 -5.1
BMAO − BMAB 3.48 (5.2%) 0.05 -5.3

Table 6.16: Difference in PPS, IC, and σpred using stepwise selection, BMA
(Occam and Best) on the COST data set averaged over 200 runs.

produces 95% CIs that contain the true survival times in 78% of the runs.
Although it is a reasonable sized database for a medical study, we have only
used 90% of 863 subjects (∼ 777) to train the algorithms. CIs that contain the
true survival time in almost 4/5 of the time is quite acceptable. On average,
BMA produces CIs that include the true survival times 3.6% and 5.2% more
often compared to stepwise selection and the best model respectively.

A 95% CI on the predictive median survival time with σpred = 30.8 (BMA,
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Occam) is t̄ ± 60.3. With a predicted median survival time of, say 1095 days
(3 years), the predicted 95% CI is (on average) [1034.7; 1155.3] days or [2.8; 3.2]
years, i.e. with 78% in IC, we are able to predict the survival time within a
∼ 4 month interval in more than 3 of 4 cases using BMA. As shown in Table
5.7, half the subjects (in the complete data set!) have survival times less than
1259 (days), but with a minimum survival time of 0 (19 patients were dead on
arrival or died shortly after) and a maximum survival time of 4262 days (11.7
years), the survival times are scattered on a very large interval, and we find the
predictive CIs acceptable. Using stepwise selection, the average CI is t̄ ± 70.3
corresponding a 4.5 month interval. Although the CIs are wider, they do not
include the true survival times in more than 74% of the time.
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Chapter 7

Estimation of Missing Values
in the COST Data Set

So far, we have seen the effect of including model uncertainty. It is obvious that
the model as well as the parameter uncertainty should decrease when we see
more data. To increase the amount of available data we use three different ap-
proaches. First, we remove variables that are clearly not important explanatory
variables, and then we use BNs and a semi-parametric approach to estimate the
missing values of the remaining variables.

7.1 Increasing the Amount of Available Data by
Removing Variables

In the COST data set, 552 patients have no missing values in any of the 14
remaining variables, while 441 patients have one or more missing values dis-
tributed as shown in Table 7.1.

In the last chapter we concluded that there was positive evidence against an
effect for several of the risk factors, and for some of the variables the PPPs were
close to zero. Hence, we see no harm in removing these variables, and by doing so
we can increase the amount of available data significantly. To remove variables
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age sex hyp ihd apo odd alco
Missing cases 0 0 62 76 50 41 163

dm smoke af hemo cla temp sss
Missing cases 50 174 11 188 113 133 7

Table 7.1: Number of missing values for each variable in the COST data set.

one at a time, we adopt the principle of stepwise selection, and remove the
variable with lowest PPP, if the PPP is very low, i.e. in the area of 0− 5%, and
preferable has a lot of missing values. Since we combine BMA with principles
of stepwise selection, we refer to this technique as stepwise BMA ;-)

Both alco and hemo have PPP=0, but since hemo has a larger number of missing
values and no time dependent term, we decide to remove this risk factor first.
The results of removing hemo, and increasing the size of the data set to 641
subjects are presented in Table 7.2 and 7.3.

Method age sex hyp ihd apo odd
p-value (step) <0.001 <0.001 0.65 (1) 0.29 (2) <0.01 0.02

PPPO 100 96.9 0.5 13.0 64.5 39.8
alco dm smoke af cla temp

p-value (step) 0.13 (5) 0.02 0.21 (4) 0.06 (8) <0.01 0.13 (7)
PPPO 0 39.0 1.1 15.0 70.0 6.8

sss alco*t smoke*t sss*t
p-value (step) <0.001 0.21 (6) 0.18 (3) <0.001

PPPO 100 2.4 0 100

Table 7.2: p-values and PPPs from stepwise BMA with hemo removed.

Method age sex hyp ihd apo odd alco dm
HRS 1.05 1.37 1.35 1.29 1.32
HRB 1.05 1.35 1.36
HRO 1.05 1.35 1.00 1.03 1.22 1.12 1.00 1.12

smoke af cla temp sss alco*t smoke*t sss*t
HRS 1.39 0.95 1.0020
HRB 0.68 0.95 1.0019
HRO 1.00 1.04 1.30 1.01 0.95 1.0002 1.0000 1.0019

Table 7.3: HRs from stepwise BMA with hemo removed. Max. PMP: 0.09.
Total PMP for Top10: 0.47. 62 models included in Occam’s window. HR for
xxx ∗ t is pr. 100 unit increment.
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Now, since alco still has PPP=0, we decide to remove alco as the next variable.
The results of removing alco (and alco ∗ t), and increasing the size of the data
set to 655 subjects are presented in Table 7.4 and 7.5.

Method age sex hyp ihd apo
p-value (step) <0.001 <0.001 0.62 (2) 0.46 (3) <0.01

PPPO 100 97.1 0.5 6.3 72.3
odd dm smoke af cla

p-value (step) 0.02 <0.01 0.27 (4) 0.11 (5) <0.01
PPPO 43.3 59.1 0.8 7.9 69.3

temp sss smoke*t sss*t
p-value (step) 0.10 (6) <0.001 0.89 (1) <0.001

PPPO 11.7 100 3.4 100

Table 7.4: p-values and PPPs from stepwise BMA with alco removed.

Method age sex hyp ihd apo odd dm
HRS 1.05 1.36 1.36 1.29 1.35
HRB 1.05 1.34 1.36 1.37
HRO 1.05 1.35 1.00 1.01 1.25 1.13 1.21

smoke af cla temp sss smoke*t sss*t
HRS 1.39 0.95 1.0019
HRB 0.69 0.95 1.0019
HRO 1.00 1.02 1.30 1.02 0.95 1.00 1.0019

Table 7.5: HRs from stepwise BMA with alco removed. Max. PMP: 0.10. Total
PMP for Top10: 0.55. 54 models included in Occam’s window. HR for xxx ∗ t
is pr. 100 unit increment.

Next, hyp is actually the risk factor with lowest PPP, but since the PPP for
smoke is just marginally higher, and we have 174 missing values for smoke
versus 62 for hyp, we decide to remove smoke. This will also have the positive
side-effect of removing smoke∗t. The results of removing smoke (and smoke∗t),
and increasing the size of the data set to 725 subjects are presented in Table
7.6 and 7.7.

This time we remove hyp, since hyp and ihd have a comparable number of
missing subjects. Furthermore, we expect ihd to be removed next, since BMA
has shown quite consistent results so far. Removing a handful of subjects will
probably not alter the results for ihd markedly. The results of removing hyp,
and increasing the size of the data set to 730 subjects are presented in Table
7.8 and 7.9.
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Method age sex hyp ihd apo odd
p-value (step) <0.001 <0.001 0.46 (2) 0.69 (1) <0.01 0.02

PPPO 100 100 0.6 0.7 78.8 49.0
dm af cla temp sss sss*t

p-value (step) <0.01 0.05 <0.01 0.03 <0.001 <0.001
PPPO 72.2 16.7 64.7 31.7 100 100

Table 7.6: p-values and PPPs from stepwise BMA with smoke removed.

Method age sex hyp ihd apo odd
HRS 1.05 1.42 1.34 1.27
HRB 1.05 1.36 1.35
HRO 1.05 1.39 1.00 1.00 1.27 1.14

dm af cla temp sss sss*t
HRS 1.36 1.25 1.37 1.21 0.95 1.0019
HRB 1.39 0.69 0.95 1.0019
HRO 1.26 1.04 1.25 1.06 0.95 1.0019

Table 7.7: HRs from stepwise BMA with smoke removed. Max. PMP: 0.11.
Total PMP for Top10: 0.55. 46 models included in Occam’s window. HR for
sss ∗ t is pr. 100 unit increment.

Method age sex ihd apo odd dm
p-value (step) <0.001 <0.001 0.77 (1) <0.01 0.02 <0.01

PPPO 100 100 0.6 75.1 52.5 73.5
dm af cla temp sss sss*t

p-value (step) 0.05 (2) 0.01 0.03 <0.001 <0.001
PPPO 15.7 59.9 36.4 100 100

Table 7.8: p-values and PPPs from stepwise BMA with hyp removed.

Rightfully so, ihd still has very low PPP, and the results of removing ihd, and
increasing the size of the data set to 742 subjects are presented in Table 7.10
and 7.11.

Now all PPPs are (significantly) different from zero, and we decide not to remove
any more variables. We notice that throughout the selection process, the PPPs
have changed significantly, while the p-values are more or less the same. In
Table 7.12 and 7.13 we summarize the changes in p-values and PPPs for each
of the remaining variables. In stepwise selection, only the final p-values for dm
and temp (marked in bold) are noticeably different from their “starting” values,
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Method age sex ihd apo odd dm
HRS 1.05 1.40 1.36 1.27 1.36
HRB 1.05 1.37 1.34 1.39
HRO 1.05 1.40 1.00 1.25 1.15 1.27

dm af cla temp sss sss*t
HRS 1.35 1.20 0.95 1.0019
HRB 0.70 0.95 1.0019
HRO 1.03 1.22 1.07 0.95 1.0019

Table 7.9: HRs from stepwise BMA with hyp removed. Max. PMP: 0.09. Total
PMP for Top10: 0.52. 49 models included in Occam’s window. HR for sss ∗ t
is pr. 100 unit increment.

Method age sex apo odd dm
p-value (step) <0.001 <0.001 <0.01 0.02 <0.01

PPPO 100 100 73.5 56.9 78.5
af cla temp sss sss*t

p-value (step) 0.03 0.02 0.03 <0.001 <0.001
PPPO 26.5 51.9 33.4 100 100

Table 7.10: p-values and PPPs from stepwise BMA with ihd removed.

Method age sex apo odd dm
HRS 1.05 1.41 1.33 1.28 1.37
σHR, S ∼ 0 0.12 0.13 0.13 0.15
HRB 1.05 1.40 1.35 1.34 1.38
HRO 1.05 1.40 1.24 1.17 1.30
σHR, O ∼ 0 0.12 0.19 0.18 0.22

af cla temp sss sss*t
HRS 1.27 1.34 1.20 0.95 1.0019
σHR, S 0.14 0.16 0.10 ∼ 0 ∼ 0
HRB 0.95 1.0019
HRO 1.07 1.18 1.06 0.95 1.0019
σHR, O 0.13 0.22 0.11 ∼ 0 ∼ 0

Table 7.11: HRs from stepwise BMA with ihd removed. Max. PMP: 0.09. Total
PMP for Top10: 0.49. 49 models included in Occam’s window. HR for sss ∗ t
is pr. 100 unit increment.

and all we have learned is that dm and temp are also significant explanatory
risk factors.
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age sex apo odd dm af cla temp sss sss*t
0.001 0.01 0.01 0.02 0.12 0.01 0.04 0.13 0.001 0.001
0.001 0.001 0.01 0.02 0.02 0.06 0.01 0.13 0.001 0.001
0.001 0.001 0.01 0.02 0.01 0.11 0.01 0.10 0.001 0.001
0.001 0.001 0.01 0.02 0.01 0.05 0.01 0.03 0.001 0.001
0.001 0.001 0.01 0.02 0.01 0.05 0.01 0.03 0.001 0.001
0.001 0.001 0.01 0.02 0.01 0.03 0.02 0.03 0.001 0.001

Table 7.12: Change in p-values using stepwise BMA.

age sex apo odd dm af cla temp sss sss*t
100 96.9 77.9 75.1 28.9 3.6 39.3 9.3 100 100
100 96.9 64.5 39.8 39.0 15.0 70.0 6.8 100 100
100 97.1 72.3 43.3 59.1 7.9 69.3 11.7 100 100
100 100 78.8 49.0 72.2 16.7 64.7 31.7 100 100
100 100 75.1 52.5 73.5 15.7 59.9 36.4 100 100
100 100 73.5 56.9 78.5 26.5 51.9 33.4 100 100

Table 7.13: Change in PPPs using stepwise BMA.

On the other hand, using BMA we constantly update the evidence of an effect
for each variable, reflecting the changes in the data set as well as the variable set,
and thus reflecting the parameter as well as the model uncertainty. Inspecting
the values, we learn that the data show very strong evidence for an effect of age,
sex, and sss. Although the PPPs for sex have increased a little throughout the
selection process, we were, and remain, confident of an effect of these variables.
Although the PPP for apo varied, the changes were within a 15% interval around
the borderline between weak and positive confidence for an effect, and the extra
data has not added significantly to our knowledge about an effect of apo.

On the other hand, we started out with positive evidence for an effect of odd, but
the removal of hemo changed the “relative strength” of odd and cla. The extra
data induced positive evidence against an effect of odd, while cla moved from
positive evidence against an effect, to weak and almost positive evidence for an
effect. This evened out in the end, however, and both odd and cla ended up with
PPPs indicating (very) weak evidence for an effect. For dm, there was positive
evidence against an effect when we used all variables, but the extra evidence
and fewer variables has induced positive evidence for an effect. Especially the
removal of hemo, alco, and smoke gave extra data that increased the evidence
for an effect of dm.

The PPPs for af and temp were both very low when we included all variables
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and had little data available, but this changed throughout the selection process,
and the extra data increased the evidence for an effect of both variables, but
they ended up with PPPs around 30 still indicating positive evidence against
an effect. Finally, the PPP for sss ∗ t started and remained at 100.

If we look at the model uncertainty in terms of the number of models included
in Occam’s window, the maximum PMP, and the Top10 PMP, the maximum
PMP has been fairly stable around 10%, and the Top10 PMP increased from
0.47 to 0.55, when we removed hemo, but ended up at 0.49, i.e. about half
of the posterior probability mass was assigned to 10 models at any stage. On
the other hand, the number of models included in Occam’s window decreased
significantly from 62 to 49, i.e. that fewer models were within reasonable range
of the best model in terms of PMP. Remembering that BMA assumes that data
is generated by a single model within the model domain, it will assign full PMP
to this model with unlimited data available and, eventually, fewer and fewer
models will be included in Occam’s window.

The important point is that all these aspects of the parameter and model un-
certainty are not discovered in regular stepwise selection using p-values and
significance levels. Finally, we calculate the standard deviation of the HRs

σ(HRj) = σ(exp(βj)) =
√

V(exp(βj)) (7.1)

using the second-order Taylor expansion to approximate the variance of a func-
tion

V[f(x)] ≈
(

∂f(x)
∂x

∣∣
x=E(x)

)2

V(x) (7.2)

where f(x) = exp(βj), and we use (3.31) to calculate V(x) = V(βj) in BMA.
The results are presented in Table 7.11, and for all variables except age, sex,
sss, and af , the estimated variances using stepwise selection are smaller than
using BMA. As explained in Section 3.3.1.4, the regression coefficient variance
in BMA includes the model uncertainty. By ignoring the model uncertainty,
stepwise selection underestimates the total uncertainty leading to overconfident
parameter estimates.
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7.2 Using Bayesian Networks to Estimate Miss-
ing Values

Although we have shown the advantages of (stepwise) BMA, we cannot use the
information stored in subjects with missing values. With fewer variables we
have limited the number of missing values, and with the removal of hyp, ihd,
alco, smoke and hemo, we have 742 subjects with no missing values, and just
251 subjects with one or more missing values. Our next approach is to use BNs
to estimate these values.

If we can make reliable estimates, we can increase the data set with another
17.5%. If we had included all 14 potential risk factors, only 552 subjects have
no missing values. In that case we would have increased the size of the data set
by 79.9% by estimating the missing values!

7.2.1 Estimation of Simulated Missing Values

Of these 251 subjects, no subjects have missing age values, and only 7 subjects
have missing sss values (of which 5 were missing just the sss value and no other
value). The sss values are probably missing because the patients were in a very
bad condition and died shortly after admission (survival times were 0, 1, 1, 1,
4, 6, and 10 days after admission), making it impossible to record the complex
SSS score. To avoid estimating a continuous variable, we simply replace the
missing sss values with a mean value. However, we use the mean sss value of
patients with survival times less than or equal to 10 (13.9), instead of the mean
value for all patients (38.0), to reflect our assumption that missing sss values
are related to short survival times.

However, as the number of DAGs is super-exponential in the number of variables,
(Heckerman, 1995), 9 variables are still a lot. Furthermore, we would like to
use information from the discarded variables to estimate the missing values of
the remaining variables. To address this problem, we split it in two. First,
we learn the structure and parameters of a network connecting the remaining
variables with the restriction that the fully observed variables, age, sex, and
now sss, do not have any incoming connections. In that way we limit the
number of possible DAGs, and it also allows us to use a tabular distribution for
sex, and continuous distributions other than the soft-max distribution, (Bishop,
2006), for age and sss. For the other variables we use the soft-max conditional
probability distribution which allows both discrete and continuous parents. We
refer to this network as the blue network, and the remaining variables are the
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blue nodes.

Next, we learn the structure and parameters of a network connecting the dis-
carded variables with those remaining variables that have missing values. We
apply the restriction that the discarded variables cannot have any incoming
arcs to greatly limit the number of possible DAGs, but also to avoid using our
limited amount of data to learn the parameters of the distributions connecting
the discarded variables. Our main concern is the inference of the missing values
of the remaining variables, and we simply estimate the tabular distributions of
the discarded variables using a prior distribution over these variables. Since all
variables in this network are discrete, all distributions are tabular distributions.
We refer to this network as the red network, and the discarded variables are the
red nodes.

Of the 251-5 = 246 subjects with missing values in one or more of the discrete,
blue nodes, 136 (blue) subjects also have missing values in some of the red nodes,
so we use the blue network to estimate the missing values of these subjects. This
leaves 110 (red) subjects with no missing values in the red nodes, and we use a
combination of the two networks to estimate the missing values.

First, we use the CC data set to see if we can estimate simulated missing values
in the blue nodes. We split the CC data set into a training set (90%), and a
test set (10%), where we pretend that some of the values are missing in the
test set. We also use the test set for training, which is valid, as we do not use
the (known) values of the missing values during training. We create separate
test sets for the blue and the combined network, where we do not allow missing
values for the red nodes in the test set for the combined blue network.

The missing values are selected at random, but we remove values for apo, odd,
dm, af , cla, and temp only, as we are not interested in estimating variables that
are always observed. We remove values such that the total fraction of missing
values in the test set is 10%. This implies that some subjects can have more
missing values than others.

7.2.1.1 Structure and Parameter Learning

We begin by learning the structure. Actually, we should learn the structure
in each run using the new training (+ test) set, but as the estimated structure
hardly ever changed, we decide to estimate the structure once and for all to save
a lot of computation time. We can choose between the 8 different methods for
learning the structure and the parameters (CC) outlined in Figure 7.1.
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Figure 7.1: Methods available in BNT for structure/parameter learning (CC),
and inference of missing values.

However, using the K2 algorithm, the final structure proved to depended heavily
on the chosen ordering. Furthermore, the BNT version of the Bayesian scoring
metric currently only works for tabular conditional probability distributions.

Using the MCMC algorithm with N = 30000 samples, and a burn-in of 500
samples to avoid that the results are influenced by the choice of initial structure,
we get 30000 sampled DAGs distributed between 1000-1200 different DAGs for
both the blue and the red network. Then we assign a weight, ωk, to each of the
K different sampled structures

ωk =
freq(Mk)

N
, k = 1, . . . ,K (7.3)

defined as the frequency of the sampled structure divided by the total number of
samples. The weights did not change significantly for N > 25000 samples. We
saw no significant differences in parameter estimates, comparing point estimates
(ML) to the full (Bayesian posterior) over parameters.

For each of the K structures we estimate the missing values, giving us K dif-
ferent estimates of the joint distribution of the missing values. The probability
of subject i having missing value pattern j, given that we use structure k to
estimate the missing values, is then

p(xijk) = p(xijk|Mk,θ)p(θ|Mk), j = 1, . . . , 2J , k = 1, . . . ,K (7.4)

where J is the number of missing binary variables for subject i.

Using MCMC we could take advantage of the entire sample of models (an ap-
proximation to the Bayesian posterior), using the approximated posterior to
first sample a DAG, then learn the parameters, and finally estimate the missing
values. This would give a new “sampled, CC data set”. Using a large number of
samples, we could obtain a very large sampled data set with no missing values.
However, this is beyond the scope of this thesis.



7.2 Using Bayesian Networks to Estimate Missing Values 139

With missing values in our data set, we can also use the structural EM algorithm.
The algorithm is able to learn the structure and parameters interchangeably us-
ing the in-complete data set with missing values (training + test set). However,
as mentioned in Section 4.3.2, we cannot use the Bayesian scoring metric for
this purpose. The structural EM algorithm also needs a starting point, i.e.
an initial structure. Our approach is to use the MCMC sampled structures as
initial structures. This gives us a new set of (EM) samples that we can use
to compute augmented data sets, using the sampled structures to estimate the
missing values. The pattern weights are identical to the weights in the MCMC
samples.

This leaves us with 2 sets (2 blue and 2 red) of sampled structures and param-
eters, MCMC (BIC) and EM (BIC), using point estimates of the parameters.
We combine these sets to give a combined MCMC (BIC), and a combined EM
(BIC) network that we can use along with the blue networks to estimate the
missing values. For the purpose of validating/comparing the structures and pa-
rameters, we begin with the simple MPE, allowing us to make a single estimate
of each missing value that we can use to calculate the percentage of correctly
estimated values in our simulation.

Using 500 runs we get the results in Table 7.14 - more or less independent of
which method we use - when we use the MPE to estimate the missing values.
However, when we inspected the estimated parameters (conditional probability
distributions), we realized that in all structures, discrete nodes with missing
values have a very strong preference for the value no, i.e. that a patient does not
suffer from diabetes etc. This is reasonable, but also implies that the MPE will,
in the vast majority of cases, be a set of no’s, which explains why there is no
difference in estimation performance, and also explains why we get about 80%
correctly estimated values, as this is roughly the percentage of missing values
whose correct value is no! Hence, we cannot decide which method to use based
on this experiment.

min median mean max std
0.79 0.84 0.84 0.88 0.02

Table 7.14: Simulation of missing values in the COST data set. Distribution of
correctly estimated missing values using MPE.

Although we also expect the joint distribution to have a strong preference for
the no pattern, all patterns are weighted and included in the augmented data
set. Hence, using the joint distribution instead of the MPE to estimate the CPH
model(s), we expect to get better estimates of the missing values. To compare
the two sets/methods, we compare the estimated joint distributions. We use
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500 runs, and in each run we compute the probability of the correct missing
value pattern for each subject in the test set. Then we average over the test set
giving us a “mean probability of the correct pattern score” for each method to
average over the 500 runs. We rank the model that assigns higher probabilities
to the correct pattern highest. The distribution of the scores for each model is
listed in Table 7.15.

Structure min mean max
MCMCBIC 0.71 0.75 0.79

EMBIC 0.77 0.81 0.85

Table 7.15: Simulation of missing values in the COST data set. Distribution of
probabilities for the correct missing value patterns using the joint distribution.

The more complicated structural EM method performs better, taking advantage
of the additional information stored in the subjects with missing values to obtain
better structure and parameter estimates. Based on this experiment we keep
the structural EM samples (BIC) to estimate the missing values in the COST
data set. The MAP structures (most frequent samples) are shown in Figure
7.2-7.4.

Figure 7.2: BN combining risk factors remaining after application of stepwise
BMA (blue network).
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Figure 7.3: BN combining discarded risk factors with remaining risk factors
after application of stepwise BMA (red network).

Figure 7.4: Combination of blue and red network.
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7.2.2 Using an Augmented Data Set to Estimate CPH
Models

To estimate the (true) missing values, we use the joint distribution of the missing
values to get a data set where subject i is replaced with 2Ni pseudo cases, each
with a different combination of missing values, where Ni is the number of missing
values for subject i. Furthermore, each subject has assigned a weight, 1 for a
fully observed case and the joint posterior probability otherwise. In Table 7.16
and 7.17 we present the results using stepwise selection, and the results using
BMA (Occam) on the augmented COST data set. To compare, we also include
the CC results from the previous section using the same set of variables.

Method age sex apo odd dm
p-value (step) <0.001 <0.001 <0.01 0.02 <0.01

p-value (step, CC) <0.001 <0.001 <0.01 0.02 <0.01
PPPO 100 100 80.1 65.7 90.5

PPPO,CC 100 100 73.5 56.9 78.5
af cla temp sss sss*t

p-value (step) 0.03 0.02 0.03 <0.001 <0.001
p-value (step, CC) 0.03 0.02 0.03 <0.001 <0.001

PPPO 31.6 57.3 40.0 100 100
PPPO,CC 26.5 51.9 33.4 100 100

Table 7.16: p-values and PPPs using BNs to estimate missing values. Max.
PMP: 0.15. Total PMP for Top10: 0.60. 39 models included in Occam’s window.
Hazard ratio for sss ∗ t is pr. 100 unit increment.

Although we have increased the size of the data set with more than 15%, we see
no significant changes in the estimated p-values. Hence, according to stepwise
selection, all variables are “as significant” as they were in the CC analysis.
However, we do see slightly different HRs. For apo, odd, dm, af , cla, and temp,
i.e. all variables that do not have p < 0.001, the HRs have increased. At the
same time, the standard deviations of the HR estimates have not increased, in
fact they have decreased for dm and af . All in all, the augmented data set has
provided new information, leading to more accurate HR estimates that indicate
a stronger influence on the survival time than we expected in the CC analysis.

In line with the HR rise in stepwise selection, the BMA results show increased
PPPs for all variables that do not have full PPP. For apo, odd, and dm, the
PPPs have increased about 10%, while the increase is about 5− 7% for af , cla,
and temp. Hence, the estimated values provide information that confirms or
increases the evidence for an effect of all the remaining variables. This illustrates
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Method age sex apo odd dm
HRS 1.05 1.41 1.34 1.29 1.41

HRS,CC 1.05 1.41 1.33 1.28 1.37
σHR, S ∼ 0 0.12 0.13 0.13 0.14

σHR, S, CC ∼ 0 0.12 0.13 0.13 0.15
HRO 1.05 1.40 1.27 1.20 1.35

HRO,CC 1.05 1.40 1.24 1.17 1.30
σHR, O ∼ 0 0.11 0.18 0.16 0.19

σHR, O, CC ∼ 0 0.12 0.19 0.18 0.22
af cla temp sss sss*t

HRS 1.30 1.36 1.21 0.95 1.0019
HRS,CC 1.27 1.34 1.20 0.95 1.0019
σHR, S 0.13 0.16 0.10 ∼ 0 ∼ 0

σHR, S, CC 0.14 0.16 0.10 ∼ 0 ∼ 0
HRO 1.08 1.21 1.08 0.95 1.0019

HRO,CC 1.07 1.18 1.06 0.95 1.0019
σHR, O 0.11 0.20 0.09 ∼ 0 ∼ 0

σHR, O, CC 0.13 0.22 0.11 ∼ 0 ∼ 0

Table 7.17: HRs using BNs to estimate missing values. Max. PMP: 0.15. Total
PMP for Top10: 0.60. 39 models included in Occam’s window. Hazard ratio
for sss ∗ t is pr. 100 unit increment.

one of the great advantages of BMA compared to stepwise selection: When we
receive new evidence (more data), the information is reflected in updated PPPs.
If the evidence is in favor of an effect, the PPP increases, and if the evidence
speaks against an effect, the PPP decreases. In stepwise selection, new evidence
may alter the p-values, but unless they cross the significance level, we will not
note any difference. Furthermore, what if the p-value is 0.04999, and an extra
data point makes it 0.05001? Then we have not seen much new evidence, but
we have to change our classification from significant to not significant. Is that
fair?

The changes in PPP are accompanied by increased HRs for most variables, some
more than other, although there is no reason that the HRs should not remain
unchanged, or even decrease. The PPP just reflects the probability of an effect
- it does not say anything about the size or the sign of the effect. We also
note that the HRs for age, sex, sss, and sss ∗ t have not changed, although the
new evidence probably also provide evidence of an effect. However, since these
variables already appear in all models included in Occam’s window, the PPPs
can not increase.
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Finally, we note that the standard deviations of the HR estimates have all
decreased or remain at ∼ 0. Smaller standard deviations give smaller confidence
intervals and imply more confident estimates - a positive consequence of the
additional data. We also see an indication of reduced model uncertainty, as the
maximum PMP has increased from 0.09 to 0.15, the total PMP for Top10 has
increased from 0.49 to 0.60, and we just include 39 models compared to 49 in
the CC analysis.

All in all, we conclude that BNs has proven a valuable tool for estimating the
missing values in the COST data set, and that the models estimated using the
augmented data set are different from the methods obtained using the CC data
set. As we saw indications of more accurate parameter estimates, we also expect
increased predictive performance if our missing value estimates are reliable. We
compare the predictive performances in Section 7.4. However, the estimation of
simulated missing values indicated that our estimates are fairly reliable.

BNs are also attractive in the sense that we can easily incorporate prior knowl-
edge on the structure and/or the parameters, and we have access to a general
applicable toolbox, BNT, that includes structure learning, parameter learning,
and inference tools for complete as well as in-complete data sets. Hence, we do
not need to spend valuable implementation time when we face a new problem.
Instead, we can rely on the methods implemented in BNT to create multifarious
models, and possibly combine them with other methods as we have done in this
work using BMA and CPH models.
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7.3 Using a Semi-Parametric Approach to Esti-
mate Missing Values

Our final approach is to use a semi-parametric approach to estimate the missing
values in the COST data set.

7.3.1 Estimation of Simulated Missing Values

First, however, we make a simulation with nsubjects = 500 to validate and
investigate the modeling strategy in a simpler environment where we also know
the ground truth. We generate survival times according to, (Bender et al., 2006)

ti =
− log(ui)

exp(h0 + βTzi)
(7.5)

where ui is the i’th sample from a uniform distribution on the unit interval.
We use a constant baseline hazard of h0 = −6, and the samples are censored
according to a Bernoulli distribution with Psucces = 0.9. We have three discrete
variables, Z1, Bernoulli distributed with Psucces = 0.6, and Z2, Z3 distributed
according to logistic distributions

p(Z2 = 1) =
exp(α20 + α21Z1)

1 + exp(α20 + α21Z1)
(7.6)

and

p(Z3 = 1) =
exp(α30 + α31Z1 + α32Z2)

1 + exp(α30 + α31Z1 + α32Z2)
(7.7)

While Z1 is always observed, the missingness of Z2 and Z3 denoted R2 and R3

is distributed according to logistic distributions

p(Z2 = 1) =
exp(φ20 + φ21Z1)

1 + exp(φ20 + φ21Z1)
(7.8)

and

p(Z3 = 1) =
exp(φ30 + φ31Z1 + φ32Z2)

1 + exp(φ30 + φ31Z1 + φ32Z2)
(7.9)

The true coefficients are shown in Table 7.18. The φ values imply a missing
value percentage of around 20% for each variable with missing values. This
gives a minimum of 20% and a maximum of 40% percent subjects with missing
values depending on the overlap in each run.

We experiment using different α and φ distributions to see how they influence
the estimates of the parameters and the missing values. As we do not know
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α20 α21 α30 α31 α32 φ20 φ21 φ30 φ31 φ32 β1 β2 β3

-1 1.2 -1 1 1.2 -2 1 -4 1 3 3 0.5 -1

Table 7.18: True model coefficients using a semi-parametric approach to esti-
mate simulated missing values.

the true distributions in real life problems, it is interesting to see how a “false”
choice of distribution affects the results. The simulations also serve as a mean
of validating the implementations.

We set up 8 different experiments (referred to as “ex. 0” etc.).

Ex. 0) Using complete data set before deletion of values.

Ex. 1) Using CC data set after deletion of values.

Ex. 2) Using true α and φ distributions.

Hereafter we use the true distributions with the modifications listed below.

Ex. 3) Assume that Z3 does not depend on Z1.

Ex. 4) Assume that Z3 does not depend on Z2.

Ex. 5) Assume that Z3 does not depend on either Z1 nor Z2.

Ex. 6) Assume missingness or Z3 does not depend on Z1.

Ex. 7) Assume missingness for Z3 does not depend on Z2.

Ex. 8) Assume missingness for Z3 is MCAR.

In Table 7.19 - 7.21 we show the estimated values of the α, φ and β coefficients
(with standard deviation in parenthesis) for each scenario, while Table 7.22
shows the percentage of correctly estimated missing values.

When we use the CC data set (ex. 1), our estimates are within the range of
the true α values, but the results are not convincing. The estimates are greatly
improved when we use the implemented method to estimate the missing values
(ex. 2). We achieve estimates that are close to the true values and with standard
deviations that are smaller than the standard deviations using the CC data set.
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Experiment α20 = −1 α21 = 1.2 α30 = −1 α31 = 1 α32 = 1.2
0
1 -1.06 (0.24) 1.64 (0.24) -1.32 (0.20) 1.16 (0.25) 1.59 (0.24)
2 -0.97 (0.13) 1.05 (0.21) -0.98 (0.13) 1.08 (0.19) 1.25 (0.12)
3 -1.11 (0.19) 1.09 (0.19) -0.42 (0.14) 1.85 (0.23)
4 -1.17 (0.17) 1.12 (0.24) -0.50 (0.11) 1.29 (0.14)
5 -1.20 (0.11) 1.24 (0.20) 0.20 (0.04)
6 -1.04 (0.12) 1.07 (0.19) -0.95 (0.14) 1.18 (0.14) 1.59 (0.26)
7 -0.98 (0.12) 0.89 (0.19) -0.98 (0.21) 1.25 (0.21) 1.50 (0.19)
8 -1.05 (0.10) 1.07 (0.15) -1.19 (0.20) 1.49 (0.24) 1.64 (0.18)

Table 7.19: Estimated α coefficients using a semi-parametric approach to esti-
mate simulated missing values.

Next, we investigate how a false choice of α distribution affects the results. In
(ex. 3) we ignore the connection between Z3 and the always observed variable
Z1. The consequence is that the estimates of Z3’s α coefficients are now worse
than those obtained using the CC data set. The same effect is seen when we
ignore the connection between Z2 and Z3 in (ex. 4). We also notice that the
estimates of Z2’s α coefficients are slightly off in both (ex. 3) and (ex. 4). In
(ex. 5) we assume that Z3 is not connected to either Z1 or Z2, and the result
is that all our estimates are inaccurate. Most of them worse than using the CC
data set. We notice that since the true values of α31 and α32 are both positive,
ignoring them causes the remaining α3x values to increase to compensate for the
missing link(s). For α30 this means moving towards zero, and even becoming
positive in (ex. 5) where both α31 and α32 are missing.

In (ex. 6), (ex. 7) and (ex. 8) we see that the false φ distributions for Z3 do
no great harm to the α coefficient estimates for Z2, but greatly affects the α
coefficient estimates for Z3.

The conclusion is that when we loose information on a given variable using in-
correct distributions for either the value or the missingness of the variable, we
obtain incorrect coefficient estimates. We also notice that incorrect α distribu-
tions, linking the values of the variables, seem to affect the estimates for both
variables involved, whereas incorrect φ distributions, linking the missingness of
variable i to the values of other variables, seem to do most harm to the α esti-
mates for variable i. Furthermore, we see indications that the estimation error
increases the more “incorrect” α and φ we use.

For the missingness distributions, φ, we cannot compare with the CC estimation,
but we see that using the true distributions in (ex. 2) gives reliable coefficient
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Scenario φ20 = −2 φ21 = 1 φ30 = −4 φ31 = 1 φ32 = 3
0
1
2 -2.05 (0.21) 1.01 (0.25) -3.94 (0.31) 0.95 (0.28) 2.94 (0.25)
3 -2.00 (0.21) 0.98 (0.23) -3.74 (0.29) 1.17 (0.30) 2.75 (0.27)
4 -2.06 (0.18) 1.09 (0.20) -3.67 (0.34) 1.22 (0.32) 2.60 (0.29)
5 -2.07 (0.14) 1.13 (0.14) -3.75 (0.51) 1.07 (0.21) 2.87 (0.46)
6 -2.27 (0.28) 1.30 (0.26) -3.07 (0.25) 3.02 (0.28)
7 -2.06 (0.16) 1.15 (0.23) -2.15 (0.18) 1.32 (0.24)
8 -2.01 (0.13) 1.08 (0.16)

Table 7.20: Estimated φ coefficients using a semi-parametric approach to esti-
mate simulated missing values.

estimates. When we use incorrect α distributions in (ex. 3), (ex. 4) and (ex. 5),
all φ estimates are affected, but most significantly for Z3.

When we ignore the missingness link between Z3 and Z1 in (ex. 6), we still
get a reliable estimate of φ32, but the estimates of φ21 and especially φ31 have
increased to compensate for the missing, positive link (increased probability of
missingness). This has caused φ20 to decrease to compensate for the increased
φ21. When we ignore φ32 in (ex. 7), φ30 has moved even closer to zero, and
φ31 has also increased to compensate for a missing link with a large, positive
coefficient. Ignoring φ32 in (ex. 7) and (ex. 8) has removed the missingness link
between Z2 and Z3, and as a result the φ2x estimates are, surprisingly perhaps,
quite reliable, presumably because φ2x can no longer be used to compensate for
the missing links for Z3.

Scenario β1 = 3 β2 = 0.5 β3 = −1
0 3.01 (0.27) 0.53 (0.14) -1.03 (0.19)
1 3.78 (0.43) 0.40 (0.12) -1.16 (0.23)
2 3.01 (0.15) 0.55 (0.11) -1.06 (0.06)
3 3.06 (0.16) 0.70 (0.10) -1.09 (0.12)
4 2.96 (0.20) 0.61 (0.10) -1.00 (0.12)
5 2.99 (0.12) 0.79 (0.10) -1.02 (0.16)
6 3.02 (0.18) 0.65 (0.07) -1.08 (0.08)
7 3.23 (0.19) 0.70 (0.12) -1.12 (0.20)
8 3.14 (0.10) 0.81 (0.15) -1.21 (0.14)

Table 7.21: Estimated β coefficients using a semi-parametric approach to esti-
mate simulated missing values.
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The estimates of β are by far the most important, as these are the coefficients we
were originally looking for. As expected, using the true data set gives the best
estimation of the β coefficients (ex. 0), while the CC data set gives estimates
that are not acceptable (ex. 1) and have high standard deviations, i.e. unreliable
estimates. Using the true α and φ distributions (ex. 2) gives estimates that are
very close to the true values, and the estimates obtained using the true data set.

Using incorrect α distributions also affect the β estimates, but it seems that
just the β2 estimates are affected (ex. 3)-(ex. 5), even though we ignore just the
link between Z1 and Z3 in (ex. 3). In any case, we need to compensate for the
missing link, and it seems easier to estimate β1 and β3, perhaps because they
are numerically larger (β3 is also negative unlike the two other coefficients) and
thus have greater influence on the survival times than β2, and consequently the
algorithm uses β2 to compensate for the missing link. We also see that removing
both α31 and α32 in (ex. 5) causes most damage. Still, the estimates of β1 and
β3 are more accurate than the CC estimates.

Using incorrect missingness distributions (ex. 6)-(ex. 8) on the other hand seem
to affect the estimates of all β coefficients. The estimate of β2 is the most
affected, and the estimate is already negatively affected when we remove φ31 in
(ex. 6), but it is even worse when we remove φ32 in (ex. 8) and both in (ex.
9) where we also see loss of accuracy in the estimates of β1 and β3. However,
we also see that the estimates of β3 are still comparable with the CC estimate
and much better when we compare the estimates of β1. The estimates of β2,
though, are inaccurate. Again, this is probably because β2 is the preferred
coefficient to use as compensation coefficient. In this case, we achieve a more
accurate estimate using the CC estimate. When we look at the percentage of

Scenario Z2 Z3

0
1 59.6 (8.4) 79.6 (7.4)
2 88.7 (5.1) 91.8 (4.2)
3 75.2 (4.8) 86.5 (4.2)
4 71.9 (5.2) 88.2 (4.4)
5 72.3 (5.0) 85.9 (4.1)
6 84.8 (4.6) 87.6 (4.2)
7 60.8 (5.1) 87.6 (4.7)
8 60.8 (5.3) 87.4 (4.5)

Table 7.22: Correctly estimated missing values using a semi-parametric ap-
proach to estimate simulated missing values.

correctly estimated values, we see that even though we do not specify the true
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distributions, we get estimates that are comparable with or better than the
CC estimates. We also notice that especially the estimates of Z2 are affected,
when we do not use the true distributions. As mentioned earlier, Z3 (and
Z1) is considered “more important” with respect to a greater influence on the
survival times, making it easier to estimate its parameters and in turn its value.
Furthermore, the incorrect α distributions affect the Z2 estimates significantly,
while the estimates of Z3 have worsened, but not to the same extent. On the
other hand, the missing φ31 distribution causes slightly decreased estimation
performance for both Z2 and Z3, while missing φ32 (and φ31) causes a dramatic
decrease in performance for the estimation of Z3, while the estimation of Z2 is
unaffected. However, the by far best performance is obtained when we use the
true distributions.

We also experienced using different levels of missing values (using different miss-
ingness distributions). In conclusion, with higher levels of missingness, we see
increased advantage of using our model to estimate the missing values. However,
it also implies that the importance of using the true distributions increased.

All in all, we conclude that we can gain a lot by estimating the missing values
using the implemented method. However, we also see that the advantage de-
pends on how well we specify the α and φ distributions, especially for variables
that do not have a large influence on the survival times (large β coefficients).

7.3.2 Using Augmented Data Set to Estimate CPH mod-
els

Next, we use the original COST data set and estimate the missing values us-
ing the joint distribution of the missing values. This gives us a data set where
subject i is replaced with 2Ni pseudo cases each with a different combination of
missing values, where Ni is the number of missing values for subject i. Further-
more, each subject has assigned a weight; 1 for a fully observed case and the
joint posterior probability otherwise.

7.3.2.1 Variable and Missingness Models

As mentioned in Section 4.4.3.1 and 4.4.3.2, we need to specify distributions
for the variables, α-distributions of the form (4.51), and the missingness, φ-
distributions of the form (4.54). We need to specify distributions for apo, odd,
dm, af , cla, temp, and sss while age and sex are always observed and can be
conditioned upon throughout the analysis. However, we also want to use the
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discarded variables to estimate the missing values of the remaining variables,
but we do not want to use our limited amount of data to estimate conditional
distributions for the values or the missingness of the discarded variables, and we
do not include them in the CPH models. This would complicate the problem
significantly, there would be a vast number of parameters to estimate, and it
would also make it very difficult to propose an ordering of the variables. Hence,
we model the values and the missingness for the discarded variables with simple
logistic distributions that do not condition on any variables.

We still need to choose an ordering of the remaining variables though, allowing
us to specify conditional distributions, where the i’th variable in the ordering
may depend on the values of the variables 1, . . . , i − 1. For this purpose we
simply use the combined network in Figure 7.4 to give the ordering outlined in
Figure 7.5. Since a BN is a DAG, it does not allow any cycles. This makes it
a valid ordering. We estimate the values of sss using a simple, unconditional
Gaussian. There are probably much better ways to model the distribution of
the sss score, but with just 7 missing values, it will not influence the results
significantly. We could also have used a simple mean value as we did in the
BNs, but we model the sss to illustrate that the method can handle discrete as
well as continuous variables.

Figure 7.5: Illustration of α structure using a semi-parametric approach to
estimate missing values in the COST data set.

Next, we assume that the missingness of a variable does not depend on the
values of other discrete variables with missing values. Instead, we believe that
the missingness is a result of the short-time survival. We “model” the short-term
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survival by the severeness of the stroke, sss, and the patients age. If the stroke
is severe and the patient is old, the patient is most likely in a very poor condition
and often dies shortly after admission before the relevant patient information
has been recorded. For the complicated SSS score, for example, missing values
were observed for subjects with survival times 0, 1, 1, 1, 4, 6, and 10 days after
admission, but for obvious reasons we cannot condition on the survival time.

The reason why we do not let the missingness of a variable depend on the variable
itself, i.e. the missingness of the j′th discrete variable for the i’th individual, rji,
depends on zji, is that the (by far) most observed value for all the remaining
discrete variables with missing values is no. Hence, if we have a missing value,
the most likely value will also be no, and we would then associate missingness
with a no, and a yes with an observed variable. After all, there are about
15-20% observed yes values. In reality, however, we do not believe that there
is correspondence between the missingness, and the value of a variable. The
missingness must be a result of the short-time survival only.

The missingness model or missingness relations are illustrated in Figure 7.6. We
have included the relation to the variable itself using a dotted line, as we will
perform a separate experiment including these relations.

7.3.2.2 Estimation of Model Parameters

When the EM algorithm has converged, we have a new, augmented data set,
and a set of parameter estimates, including p-values, α, φ, and β estimates
that we can use to calculate HRs. As mentioned, the semi-parametric approach
originally proposed by Herring et al. (2004) uses stepwise selection to estimate
a single CPH model, and update the ML parameters in the M-step. Hence,
an obvious improvement of this algorithm is to implement BMA as part of
the M-step in the EM algorithm, and use an average model to estimate the
survival times. This will include the model uncertainty, and give more accurate
parameter estimates that in turn will improve the estimates of the missing values
and vice versa. We refer to this implementation as the “extended” algorithm,
and the original implementation as the “original” algorithm.

Estimation of α Parameters

In Table 7.23 we show the estimated α coefficients using the original algorithm,
and in Table 7.24 the α estimates using the extended algorithm. For the discrete
variables, all intercepts are negative and indicate a preference for no, or < 37.0◦

C for temp. This is in line with our expectations, as there is an excess number
of subjects with no’s respectively < 37.0◦ C records in the database. The size of
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Figure 7.6: Illustration of φ structure using a semi-parametric approach to
estimate missing values in the COST data set.

the intercepts is also in line with this distribution. There are no large differences
between the estimates using the original and the extended algorithm, but the
absolute values of the intercepts, expressing the a priori probabilities for the
most likely values, have increased slightly.

If we look at the individual distributions, we note the following:

apo: High probability that the patient has not previously experienced a stroke.
This probability increases if the stroke is mild (higher SSS score), but decreases
if hypertension or atrial fibrillation is present.

odd: High probability that the patient does not suffer from another disabling
disease. This probability increases if the patient consumes alcohol, but decreases
if the patient has an ischemic heart disease.
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Variable apo odd dm af cla temp sss
K0 -1.23 -1.47 -0.87 -4.29 -2.36 0.55 39.0
σ 4.1

age -0.02 0.08
sex -0.30
hyp 0.65 0.61
ihd 0.59 1.02 0.88
apo 0.46
odd 0.89
alco -0.43 -0.67
dm

smoke -1.03 0.75
af 0.44

hemo -2.04
cla

temp
sss -0.02 -0.02 -0.02

Table 7.23: Estimated α parameters using original algorithm in a semi-
parametric approach to estimate missing values in the COST data set.

dm: High a priori probability that the patient does not have diabetes mellitus.
This probability increases with the patients age, if the patient consumes alcohol,
or the stroke is a hemorrhage, but decreases if hypertension is present.

af: High a priori probability that atrial fibrillation is not present. This proba-
bility increases if the stroke is mild (higher SSS score), or the patient is smoking,
but it decrease with the patients age, if the patient has an ischemic heart disease,
or has previously experienced a stroke.

cla: High a priori probability that the patient does not have intermittent clau-
dication. This probability decreases if the patient is smoking, has an ischemic
heart disease, or has previously experienced a stroke.

temp: Moderate a priori probability that the patients body temperature was
< 37.0◦ C. This probability decreases if the patient is male, or the stroke is mild
(higher SSS score).

sss: The mean value of the Gaussian distribution is 39.0, and the standard
deviation is 17.1. These values are close to the mean and standard deviation of
sss for all subjects in the database.
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Variable apo odd dm af cla temp sss
K0 -1.36 -1.44 -1.13 -4.30 -2.42 0.54 39.0
σ 17.1

age -0.02 0.08
sex -0.24
hyp 0.65 0.61
ihd 0.59 1.02 0.88
apo 0.47
odd 0.79
alco -0.43 -0.67
dm

smoke -1.03 0.75
af 0.42

hemo -2.04
cla

temp
sss -0.01 -0.02 -0.02

Table 7.24: Estimated α parameters using extended algorithm in a semi-
parametric approach to estimate missing values in the COST data set.

Most of these relations seem plausible and make intuitively sense, e.g. that the
probability of an earlier stroke increases, if hypertension is present, as hyper-
tension is known to be increase the risk of a stroke 1. Other relations might
be a little surprising, such as ageing decreasing the probability that diabetes is
present. This may seem odd at first, since we would expect diabetes to occur
in older rather than younger people. However, if you have diabetes, you are at
least twice as likely to have a heart disease or a stroke as someone who does not
have diabetes. People with diabetes also tend to develop a heart disease or have
strokes at an earlier age than other people. If you are middle-aged and have
type 2 diabetes, some studies suggest that your chance of having a heart attack
is as high as someone without diabetes who has already had a heart attack,
(NDCI, 2005), (Andersen et al., 2006d), (Jørgensen et al., 1994b), (Tuomilehto
et al., 1996). Hence, it makes sense that dm is an indicator of younger patients.

Estimation of φ Parameters

In Table 7.25 and 7.26 the estimated φ coefficients, using the original and the
extended algorithm respectively, are presented. If we look at the individual es-
timates, we see that the missingness of all variables have, of course, a high a

1See e.g. the National Stroke Associations stroke risk scorecard at
http://www.stroke.org/site/DocServer/scorecardQ.pdf?docID=601.
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priori probability for no. Ageing increases the missingness probability, while it
decreases with the SSS score, which makes sense, as older patients with more
severe strokes are expected to be in a weaker condition making it less possible
to obtain the relevant patient information. However, for temp, the missingness
probability increases with the SSS score, i.e. that body temperature is more
likely not recorded, if the patient experiences a mild stroke. The reason is that
the body temperature needs to be recorded early after stroke onset. Otherwise,
the body temperature in acute stroke can change very rapidly, even within 6 to
8 hours after onset as documented by Boysen and Christensen (2001). When a
patient experiences a severe stroke, the patient is immediately admitted to hos-
pital, while patients with mild strokes are often admitted much later. Perhaps
because they were not even aware that they experienced a stroke at the time
of onset. Hence, for these patients, body temperature is not recorded. Finally,
as expected, we see a very high a priori probability of no for the missingness of
sss.

apo odd dm af cla temp sss
intercept -5.72 -6.36 -3.47 -4.30 -3.69 -3.51 -102.57

age 0.06 0.07 0.03 0.02 0.05 0.01
sss -0.07 -0.08 -0.07 -0.05 -0.06 0.04

Table 7.25: Estimated φ coefficients using original algorithm in a semi-
parametric approach to estimate missing values in the COST data set.

apo odd dm af cla temp sss
intercept -6.17 -6.21 -4.23 -4.24 -3.89 -4.47 -102.57

age 0.07 0.06 0.04 0.01 0.05 0.01
sss -0.07 -0.07 -0.07 -0.05 -0.06 0.06

Table 7.26: Estimated φ coefficients using extended algorithm in a semi-
parametric approach to estimate missing values in the COST data set.

Just for the sake of it, we also implemented a φ structure where the missingness
of a discrete variable was also conditional on the value of the variable itself. The
corresponding estimates are shown in Table 7.27. As expected, the parameters
are all large and negative because most of the observed values for zji are zero
(no).

Estimation of β Parameters

Finally, we compare the estimates of the β coefficients in Table 7.28-7.29, and
we include the CC results for comparison.
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Algorithm apo odd dm af cla temp
Original -7.36 -10.92 -8.42 -8.13 -4.32 -7.37
Extended -6.08 -11.77 -7.30 -6.28 -3.95 -8.71

Table 7.27: Estimated φjj coefficients letting p(rji) be conditioned upon age,
sex, and zji.

Method age sex apo odd dm
p-value (org) <0.001 <0.001 <0.01 0.02 <0.01

p-value (step, CC) <0.001 <0.001 <0.01 0.02 <0.01
PPPext 100 100 81.3 64.9 88.7

PPPO,CC 100 100 73.5 56.9 78.5
af cla temp sss sss*t

p-value (org) 0.03 0.02 0.03 <0.001 <0.001
p-value (step, CC) 0.03 0.02 0.03 <0.001 <0.001

PPPext 29.6 57.1 38.2 100 100
PPPO,CC 26.5 51.9 33.4 100 100

Table 7.28: p-values and PPPs using a semi-parametric method to estimate
missing values. Max. PMP: 0.16. Total PMP for Top10: 0.64. 35 models
included in Occam’s window. Hazard ratio for sss ∗ t is pr. 100 unit increment.

Overall, the results are comparable with the results from the BN approach.
Again, the changes in p-values using the original algorithm are so small that
we cannot see them using two decimals, and all variables are “as significant”
as they were in the CC analysis. For all variables that do not have p < 0.001,
except for dm, the HRs have increased slightly, while the standard deviations
of the HR estimates have not increased, neither have they decreased as we saw
a few examples of in the BN solution. Hence, we conclude that the original
semi-parametric approach - using these α and φ distributions - has not lead to
more accurate HR estimates. All in all, the augmented data set has provided
new information, leading to slightly altered HR estimates indicating stronger in-
fluence on the survival time compared to the CC results. The changes, however,
are not extreme.

The results using the extended algorithm, with BMA incorporated, show in-
creased PPPs for all variables, except for age, sex, sss, and sss ∗ t whose
PPPs are already 100. The increase has been most significant for apo, odd, and
dm with about 8 − 10%, while the increase i about 3 − 5% for af , cla, and
temp. Hence, we observe trends comparable with the BN solution, although
the changes in PPP are smaller. The conclusion is the same though, namely
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Method age sex apo odd dm
HRorg 1.05 1.43 1.35 1.29 1.37

HRS,CC 1.05 1.41 1.33 1.28 1.37
σHR, org ∼ 0 0.12 0.13 0.13 0.15

σHR, S, CC ∼ 0 0.12 0.13 0.13 0.15
HRext 1.05 1.40 1.27 1.20 1.34

HRO,CC 1.05 1.40 1.24 1.17 1.30
σHR, ext ∼ 0 0.11 0.18 0.16 0.20

σHR, O, CC ∼ 0 0.12 0.19 0.18 0.22
af cla temp sss sss*t

HRorg 1.29 1.35 1.21 0.95 1.0019
HRS,CC 1.27 1.34 1.20 0.95 1.0019
σHR, org 0.14 0.16 0.10 ∼ 0 ∼ 0

σHR, S, CC 0.14 0.16 0.10 ∼ 0 ∼ 0
HRext 1.07 1.20 1.07 0.95 1.0019

HRO,CC 1.07 1.18 1.06 0.95 1.0019
σHR, ext 0.12 0.20 0.09 ∼ 0 ∼ 0

σHR, O, CC 0.13 0.22 0.11 ∼ 0 ∼ 0

Table 7.29: HRs using a semi-parametric method to estimate missing values.
Max. PMP: 0.16. Total PMP for Top10: 0.64. 35 models included in Occam’s
window. Hazard ratio for sss ∗ t is pr. 100 unit increment.

that the augmented data set provides information that confirms or increases the
evidence for an effect of all variables. Again, the new evidence is reflected in the
updated PPPs, and the results using a semi-parametric approach to estimate
the missing values confirm our findings using BNs for the same purpose.

This time, the changes in PPPs are accompanied by increased HRs (compared
to the CC estimates) for apo, odd, dm, cla, and temp, while the HRs for age,
sex, sss, sss ∗ t, and also af have not changed. These observations are also in
line with the BN solution. Finally, the standard deviations of the HR estimates
have all decreased or remain at ∼ 0, indicating more confident estimates. We
also see an indication of reduced model uncertainty, as the maximum PMP has
increased from 0.09 to 0.16, the total PMP for Top10 has increased from 0.49
to 0.64, and we just include 35 models compared to 49 in the CC analysis.

All in all, the semi-parametric approach is also a valuable tool for estimat-
ing missing values. One of the advantages is that it combines three sources
of information: How the value of a variable is related to the values of other
variables, how the missingness of a variable is related to the values of other
variables and/or the value of itself, and finally how the estimated values affect
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the estimated survival time. Hence, we do not base our estimates of the missing
values on one source of information as we do in the BN approach, where we
do not incorporate neither the missingness nor the survival time distributions.
In the semi-parametric approach we also use an EM algorithm do update the
parameter and missing value estimates in turn to improve the estimates itera-
tively. Using BNs, we simply estimate the values once and for all, and use the
augmented data set to estimate the parameters once. However, we did use an
EM algorithm to include subjects with missing values to estimate the network
structure/parameters, and the missing values in turn. This turned out to be
the best solution, and we have now presented two examples of the advantage of
iteratively updating parameter and missing value estimates.

One of the drawbacks of the semi-parametric approach that we do not have when
we use BNs, is that we need to specify how variables are connected a priori.
Unless we have prior knowledge enabling us to do so, we need to look for other
ways to order and connect the variables. Simulations showed that the results are
clearly affected when we use different distributions, but the effects seem to vanish
when we use the extended algorithm, at least we obtained results comparable
with the BN solution, although we have to remember that we “borrowed” the α
structure from the BN solution. However, we have probably also seen an effect
of the improved CPH model estimates using BMA. Accurate β estimates are
probably more important than the specification of true α and φ distributions,
and makes the extended algorithm more robust to miss-specifications.

There are many ways to model variable distributions (especially continuous
variables), inter-variable relations and missingness distributions, making the
semi-parametric approach a comprehensive modeling area, and results should
be thoroughly evaluated and compared, e.g. with respect to predictive power,
and sensitivity analysis should always be part of the modeling. Using BNs, we
have methods that enable us to learn the network structure using the available
data - even including missing values. If we have prior knowledge that we would
like to incorporate as required or perhaps illegal connections, we can easily do
so. This makes BNs much more flexible.

Method min mean max
Original 0.76 0.78 0.80
Extended 0.79 0.83 0.88

Table 7.30: Simulation of missing values in the COST data set. Distribution of
probabilities for correct missing value patterns using the joint distribution.

We compare the semi-parametric approach to the CC and the BN solution in
terms of predictive performance in Section 7.4, but we also experimented with
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the estimation of simulated missing values. In Table 7.30 we present the distri-
bution of the probabilities for the correct missing value patterns using the joint
α distribution. Again, we randomly remove 10% of the observed discrete values,
allowing us to compare the results with the corresponding simulation using BNs.
The original algorithm obtain results that are worse than the results using BNs,
while the extended algorithm shows improved estimates of the missing values -
at least when we use this method to compare the algorithms.
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7.4 Predictive Performance and Survival Plots

Having shown the standard CC approach using the full set of variables, how to
increase the size of the database using stepwise BMA, and two ways to estimate
missing values, we would like to evaluate the predictive performance of each
method. This will allow us to compare the models in terms of generalization
error by evaluating the models on data they have not seen before. We randomly
split the data set into a training set (90%) that we use to estimate the param-
eters, and a test set (remaining 10%) that we use for evaluation. We evaluate
the mean of the PPS, the IC, and σpred averaged over 200 runs in Table 7.31,
and we compare each of the BMA approaches to the standard survival analysis
method, using stepwise selection on the CC data set including all potential risk
factors.

Since the data sets are different in each method, and the PPS is an evaluation
of how well a method fits the data, the test set has to be part of the CC data
set using the full set of variables. Otherwise, the PPS scores would not be
comparable. The predictive Z-score does not have this limitation, but it would
not be fair to include subjects with estimated values in the test set, as the
method responsible for the estimated values would have an obvious advantage.
However, the training sets are different. We simple let the training set be the
remaining part of the CC data set + the remaining complete cases for the limited
set of variables + the subjects augmented with BN/semi-parametric estimates
respectively. In other words, we use the largest possible training set for each
method.

BMA Stepwise
Method PPS IC σpred PPS IC σpred

Full -249.5 0.78 30.8 -252.0 0.74 35.9
Drop -246.2 0.82 26.4 -249.5 0.78 32.9
BN -243.4 0.86 22.3 -247.5 0.81 28.2
Semi -242.1 0.87 21.1 -247.2 0.81 28.4

Table 7.31: PPS, IC, and σpred using: CC data/all risk factors (Full), CC
data set/risk factors remaining after application of stepwise BMA (Drop), re-
maining risk factors/BN estimates of missing values (BN ), and remaining risk
factors/semi-parametric estimates of missing values (semi) averaged over 200
runs.

Comparing the results in Table 7.31 (multi) column-wise, the results clearly show
the superiority of the BMA methods compared to the corresponding stepwise
selection implementations with regard to higher PPS, higher IC, and lower σpred.
Comparing the results row by row, we see significant improvements in predictive
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Method PPS IC σpred

FullBMA − Fullstep 2.5 (3.6%) 0.04 -5.1
DropBMA − Fullstep 5.8 (8.6%) 0.08 -9.5
BNTBMA − Fullstep 8.6 (12.8%) 0.12 -13.6
SemiBMA − Fullstep 9.9 (14.8%) 0.13 -14.8

Table 7.32: Difference in PPS, IC, and σpred compared to a CC data/all risk
factors (Full) approach.

performance when we increase the amount of available information. As we
cannot handle missing values when we fit our Cox models, we do it by removing
variables, and by estimating the missing values.

The results in Table 7.32 are very interesting, and is the experimental “cli-
max”. The table shows the predictive improvements compared to the standard
approach to the survival analysis problem: using all potential risk factors in a
stepwise selection approach on the CC data set. As expected, or at least hoped,
we see improved predictive performance compared to the standard solution re-
gardless of whether we use the PPS or the predictive Z-score. Using PPS, the
predictions are on average 2.5% better pr. event and the IC 4% better when we
use BMA on the CC data set using all potential risk factors. When we remove
all risk factors with very low PPP, the average PPS improvement is 8.6% pr.
event and 8% in IC. The results are even better when we augment the data
using estimated missing values to include all potential subjects in the database.
Using BN estimates, the improvement is 12.8% pr. event on average, and 12% in
IC, while the corresponding results using the extended semi-parametric method
are 14.8% pr. event and 13% in IC. We also note that at the same time the σpred

decrease, i.e. that the estimated CIs are actually narrower, and still give more
accurate estimates of the predicted survival times.

As the main objective in standard survival analysis is to evaluate how potential
risk factors influence the survival time, and how significant this effect is, we
summarize the estimated p-values, PPPs, and HRs for the implemented methods
in Table 7.33-7.36 for the risk factors that were included after the application
of stepwise BMA. The conclusion is that we have very strong evidence for an
effect of age, sex, sss, and sss∗ t, and we are very confident that male patients,
older patients, and patients experiencing severe strokes will have shorter survival
times/increased hazard. Both the p-values, the PPPs, and the HRs for these
variables have hardly changed at any time.

We also have positive evidence for an effect of apo and dm, and as expected,
the hazard increases if the patient has already experienced a stroke, and/or if
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the patient has diabetes. We also find weak evidence of an effect of odd and cla,
with increased hazard for patients suffering from other disabling diseases, and/or
intermittent claudication. Finally, stepwise selection believes that af and temp
are significant explanatory variables, while BMA permanently suggests positive
evidence against an effect, although the PPPs have increased when we increased
the size of the data set. Anyhow, the results indicate that a potential effect
would be an increased hazard for patients with atrial fibrillation, and for patients
with hyperthermia (body temperature ≥ 37.0◦ C).

All in all, results indicate that survival times are longer for younger, female
patients who experience mild strokes, have not had an earlier stroke, and do not
suffer from an other disabling disease, diabetes, or intermittent claudication, and
perhaps atrial fibrillation and body temperature are also important explanatory
variables, but the methods do not agree on whether data show evidence for an
effect or not. We also note that hypertension, ischemic heart disease, alcohol
consumption, smoking habits, and the type of stroke were not believed to have
an effect on the survival time, or at least the implemented methods found no
evidence suggesting otherwise.

Method age sex apo odd dm
p-value (full) <0.001 <0.01 <0.01 0.02 0.1180 (5)
p-value (drop) <0.001 <0.001 <0.01 0.02 <0.01
p-value (BNT) <0.001 <0.001 <0.01 0.02 <0.01
p-value (semi) <0.001 <0.001 <0.01 0.02 <0.01

af cla temp sss sss*t
p-value (full) <0.01 0.04 0.13 (4) <0.001 <0.001
p-value (drop) 0.03 0.02 0.03 <0.001 <0.001
p-value (BNT) 0.03 0.02 0.03 <0.001 <0.001
p-value (semi) 0.03 0.02 0.03 <0.001 <0.001

Table 7.33: Summary of p-value estimates using: CC data/all risk factors (Full),
CC data set/risk factors remaining after application of stepwise BMA (Drop),
remaining risk factors/BN estimates of missing values (BN ), and remaining risk
factors/semi-parametric estimates of missing values (semi).

If we use an average of the final (average) models using BNs and the extended
semi-parametric method to estimate missing values, the CR model for predicting
the survival time of stroke patients is (including af and temp)

h(t) = h0(t) exp(1.05age + 1.40sex + 1.27apo + 1.20odd + 1.35dm

+ 1.08af + 1.21cla + 1.08temp + 0.95sss + 1.0019e-002sss ∗ t) (7.10)

If we also use an average of the estimated cumulative baseline hazards, we can
plot survival curves for hypothetical patients. These plots visualize the effect of
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Method age sex apo odd dm
PPPfull 100 96.9 77.9 75.1 28.9
PPPdrop 100 100 73.5 56.9 78.5
PPPBNT 100 100 80.1 65.7 90.5
PPPsemi 100 100 81.3 64.9 88.7

af cla temp sss sss*t
PPPfull 3.6 39.3 9.3 100 100
PPPdrop 26.5 51.9 33.4 100 100
PPPBNT 31.6 57.3 40.0 100 100
PPPsemi 29.6 57.1 38.2 100 100

Table 7.34: Summary of PPP estimates using: CC data/all risk factors (Full),
CC data set/risk factors remaining after application of stepwise BMA (Drop),
remaining risk factors/BN estimates of missing values (BN ), and remaining risk
factors/semi-parametric estimates of missing values (semi).

Method age sex apo odd dm
HRS(full) 1.05 1.36 1.45 1.34
HRS(drop) 1.05 1.41 1.33 1.28 1.37
HRS(BNT) 1.05 1.41 1.34 1.29 1.41
HRsemi 1.05 1.43 1.35 1.29 1.37

af cla temp sss sss*t
HRS(full) 1.62 1.35 0.96 1.0019
HRS(drop) 1.27 1.34 1.20 0.95 1.0019
HRS(BNT) 1.30 1.36 1.21 0.95 1.0019
HRS(semi) 1.29 1.35 1.21 0.95 1.0019

Table 7.35: Summary of stepwise selection HR estimates using: CC data/all risk
factors (Full), CC data set/risk factors remaining after application of stepwise
BMA (Drop), remaining risk factors/BN estimates of missing values (BN ), and
remaining risk factors/semi-parametric estimates of missing values (semi).

the risk factors, and give a better understanding than written numbers in a table.
Let the “reference” subject have the following risk factor profile: age = 74,
sex = female, apo, odd, dm, af, cla = no, temp < 37◦ C, and sss = 38, i.e. a
subject with ”mean” values in all categories.

In Figure 7.7-7.15 the survival curves for the reference subject is plotted along
with the survival curves for a subject, where we have changed the value of each
of the risk factors. For all discrete risk factors, the new subject has apo, odd,
dm, af , and cla = yes respectively. For age, we plot the reference subject along
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Method age sex apo odd dm
HRO(full) 1.05 1.38 1.32 1.31 1.09
HRO(drop) 1.05 1.40 1.24 1.17 1.30
HRO(BNT) 1.05 1.40 1.27 1.20 1.35

HRsemi 1.05 1.40 1.27 1.20 1.34
af cla temp sss sss*t

HRO(full) 1.01 1.15 1.02 0.96 1.0017
HRO(drop) 1.07 1.18 1.06 0.95 1.0019
HRO(BNT) 1.08 1.21 1.08 0.95 1.0019
HRS(semi) 1.07 1.20 1.07 0.95 1.0019

Table 7.36: Summary of BMA HR estimates using: CC data/all risk factors
(Full), CC data set/risk factors remaining after application of stepwise BMA
(Drop), remaining risk factors/BN estimates of missing values (BN ), and re-
maining risk factors/semi-parametric estimates of missing values (semi).

with a subject of age 50, and a subject of age 90. For sss, we plot the reference
subject along with a subject with sss = 10 (severe stroke), and a subject with
sss = 58 (mild stroke). Finally, we show the survival curve of the reference
subject along with the survival curve for the same subject, where all discrete
variables are set to one (yes) and temp ≥ 37◦ C in Table 7.16, i.e. we compare
the survival curves of a “healthy” and a seriously “unhealthy” subject with same
age and SSS score.

The visualized survival plots all aid in the understanding of the effect each risk
factor has on the survival time, indicated by the distance between the survival
curves. It suddenly becomes crystal clear how important the patients age and
the stroke severity are. Very old patients and patients with very severe strokes
have very, very poor prospects and should not expect to live more than a few
weeks. Most of these patients are also dead when they arrive at the hospital
or shortly after. Of the 19 patients (1.9%) that are dead on arrival, the mean
age is 77.7 years compared to the mean age 74.3 years of all patients, and the
mean SSS score is 4.8 compared to the general mean of 38.0. Of the 104 patients
(10.4%) that die within the first week of admittance, the mean age is 76.1 years
and the mean SSS score is 13.4.

If the patient is younger or has a mild stroke, the survival chances are much
better. For example, the median survival time for the reference subject with
age changed to 50, or the SSS score changed to 58, is about 1 year. We also
note that (in terms of survival time) it is better to be 50 years than having a
very mild stroke, as the effect of the stroke severity decreases over time due to
the sss ∗ t variable. This implies that the estimated probability of surviving 5
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years is about 0.2 for the 50 year old reference subject, while it is about 0.13
for the reference subject with 58 points in SSS score.

Finally, the survival prospects are very poor for the very unhealthy reference
subject answering yes to all discrete risk factors. In fact, the survival curve
resembles that of the reference subject with sss = 10.
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Figure 7.7: Survival plot for age.
74 years (red, solid), 50 years (blue,
dotted), 90 years (green, dashdot).
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Figure 7.8: Survival plot for sex.
Female (red, solid), male (blue, dot-
ted).
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Figure 7.9: Survival plot for apo.
No (red, solid), yes (blue, dotted).
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Figure 7.10: Survival plot for odd.
No (red, solid), yes (blue, dotted).
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Figure 7.11: Survival plot for dm.
No (red, solid), yes (blue, dotted).
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Figure 7.12: Survival plot for af .
No (red, solid), yes (blue, dotted).
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Figure 7.13: Survival plot for cla.
No (red, solid), yes (blue, dotted).
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Figure 7.14: Survival plot for temp.
< 37◦ C (red, solid), ≥ 37◦ C (blue,
dotted).
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Figure 7.15: Survival plot for sss.
39 points (red, solid), 58 points
(blue, dotted), 10 points (green,
dashdot).
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Figure 7.16: Survival plot for all.
“Healthy” (red, solid), “unhealthy”
(blue, dotted).



Chapter 8

Conclusion and Discussion

In this thesis we have thoroughly compared BMA with the most common ap-
proach to survival analysis, stepwise selection. BMA is rarely used, especially
in medical studies, because the method is based on mathematical concepts such
as Bayes’ theorem, posterior probability, subset selection, and model averag-
ing that physicians are not familiar with. In contrast, stepwise selection is
a very simple method that uses simple statistical terms such as p-values and
significance levels, and stepwise selection is an integrated part of commercial
statistical packages. The result is that any physician can perform survival anal-
ysis. However, the concept of p-values is often misunderstood and believed to
be the probability that the null hypothesis is true. Hence, physicians claim that
a p-value below an artificial significance level provides evidence for an effect of
a given risk factor.

We have identified several flaws of the stepwise selection method, among other
factors the use of a significance level that is used to include/exclude variables.
We have shown that BMA does not exclude any variables and provides real
probabilities of an effect for each variable. Furthermore, we used BMA to es-
timate the model uncertainty and provide more reliable parameter estimates.
The results showed that the final model in stepwise selection was not necessar-
ily the model with highest PMP. Furthermore, there were several other models
with significant PMP, and often the Top10 models in terms of PMP were not as-
signed more than half of the posterior probability mass. Stepwise selection does



170 Conclusion and Discussion

not take model uncertainty into account, and we have shown how this leads to
overconfident estimates of the model parameter estimates and more significant
variables.

The methods were compared on two real-life data sets, a small multiple myeloma
patients data set, and the large Copenhagen Stroke study database, using CPH
models to model the distribution of the survival times. The results showed that
the conclusions of stepwise selection were not always in accordance with the
conclusions of BMA. Often, stepwise selection found a risk factor significant,
while BMA suggested that data showed evidence against an effect. These dis-
agreements are the result of the model uncertainty. Furthermore, we showed
how stepwise selection does not distinguish between significant variables, while
BMA uses the posterior parameter probability to assess the probability of an
effect. The experiments also indicated that we can obtain results that are com-
parable with an average over all potential models using a much smaller subset
of models. The subsets were identified using Occam’s window subset selection,
and we managed to reduce the number of models to average over significantly,
in some cases more than a factor 300.

The improved evaluation of the risk factors was not the only advantage of BMA.
We also showed how the predictive performance increased. We used the existing
PPS score to evaluate the predictive performance, and also suggested a novel
evaluation score, the predictive Z-score. The proposed score computes predictive
intervals for the expected survival times. We used these intervals to compute
the interval coverage, with the advantage that the score is interpretable, and
we can easily relate to differences in interval coverage. Furthermore, we can use
the size of the predictive intervals to estimate the accuracy of the predictions.

We also showed how to evaluate the assumption of proportional hazards using
log-cumulative hazard plots and weighted Schoenfeld residuals. These methods
allow us to evaluate the assumption of proportional hazards before and after
model fitting. In the COST experiment, this assumption was violated, and
we showed how to include time-dependent variables. Data showed very strong
evidence of an effect of a new, time-dependent stroke severity variable. The
results indicated that the effect of the stroke severity decreased with time. This
aspect would not have been captured in most survival analysis studies.

Next, we proposed a stepwise BMA algorithm to remove risk factors whose pos-
terior parameter probabilities were close to zero. Hence, we removed variables
that we were confident did not have an effect on the survival times. The al-
gorithm reduced the number of potential risk factors, and in turn significantly
reduced the number of subjects with missing values. The result was more reli-
able and accurate parameter estimates and reduced model uncertainty.
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We also showed how to estimate missing values in the data set using BNs to
connect the risk factors. We showed that the best results were obtained using a
structural EM algorithm to estimate the structure/parameters and the missing
values in turn. The algorithm is able to use subjects with missing values to
learn the structure and parameters of the network. Hence, it is able to use all
available data compared to normal learning algorithms that are only able to use
completely observed cases.

Finally, we used the BN structure to propose an ordering of the risk factors
such that we could place parametric distributions on the risk factors as well
as the missingness mechanisms. By modeling the missingness mechanisms, we
do not have to assume that values are missing completely at random. Instead,
we used the missingness as extra information to improve the estimates of the
parameters and the missing values. The original algorithm use the CPH model
to model the survival times, and we showed how improve the algorithm by
replacing stepwise selection with BMA in the M-step of the EM algorithm. The
modification lead to improved parameter and missing value estimates, and also
increased the predictive power.

The results show that we are confident that the expected survival time of stroke
patients is lower for male patients, or if the patient has previously experienced
a stroke. The expected survival time also decreases with ageing, severity of
stroke, presence of another disabling disease, diabetes mellitus, or intermittent
claudication.

These observations are in line with other studies in the literature, e.g. the sugges-
tions in (Andersen et al., 2005b) and (Andersen et al., 2006f): Short-term stroke
survival is the same for men and women, whereas long-term stroke survival is
markedly better for women, (Kammersgaard et al., 2004): Age per se is a strong
predictor of outcome and mortality after stroke, (Andersen et al., 2006c): SSS
is the single most important predictor of short-term mortality (1 year), (An-
dersen et al., 2006d), (Tuomilehto et al., 1996), (Jørgensen et al., 1994b), and
(Knuiman et al., 1992): Diabetes mellitus is a strong, independent predictor of
premature death following stroke, (Knuiman et al., 1992): For stroke mortality,
intermittent claudication is a strong predictor of death and many others.

However, our results also show that the effect of stroke severity decreases with
time. Andersen et al. (2006c) also suggest that the stroke severity score mea-
sured by means of the Scandinavian Stroke Scale is the single most important
predictor of short-term mortality. For long-term mortality, cardiovascular risk
factors were predominant. However, we have not found other studies that in-
clude a risk factor expressing the stroke severity as a function of time, and we
also believe to be the first study to estimate how the effect of stroke severity on
the survival time changes with time.
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We also suspect the expected survival time to decrease with the presence of
atrial fibrillation, or if the body temperature is ≥ 37.0◦ C on admission. In
stepwise selection, these risk factors were significant, but using BMA, data did
not show positive evidence of an effect. However, these effects would be in ac-
cordance with observations documented by Jørgensen et al. (1996a), suggesting
that patients with AF have a higher mortality rate, and Kammersgaard et al.
(2002) suggesting that hypothermia (body temperature < 37.0◦ C) decreases
the short- and long-term mortality risk.

Finally, data showed evidence of an effect for the presence of hypertension,
ischemic heart disease, alcohol consumption, smoking habits, and the type of
stroke when we adjusted for the other risk factors. This conclusion is also
suggested by Andersen et al. (2005b). However, Andersen et al. (2005b) also
show how the set of significant risk factors depend on the time of censoring.
Using stepwise selection to fit a CPH model on the COST database, significant
risk factors using α = 0.05 were age, sex, dm, af , hemo, and sss using a
1 year censoring, age, sex, apo, odd, dm, af , and sss using 5 and 10 year
censoring. Hence, hemo was only found to be a significant risk factor for the 1
year survival analysis, which is also suggested by Jørgensen et al. (1995a) and
Anderson et al. (1994). In this thesis we use 10 year censoring. In (Andersen
et al., 2005b), intermittent claudication and body temperature on admission are
not included as potential risk factors.

Suggestions for future work We have many suggestions for improvements
and interesting experiments. We include some of these in the list below to
propose directions for future work.

Sensitivity analysis Using a semi-parametric approach to estimate missing
values and model parameters, a thorough sensitivity analysis should be
conducted, e.g. by changing the order of conditioning in the risk fac-
tor/missingness distributions, comparing various main effects and interac-
tion models for the risk factor/missingness, and explore how the algorithms
robustness is affected by the implementation of BMA. Furthermore, the
effect of using different distributions to model continuous variables should
be explored.

Explore new survival distribution We should explore alternatives to CPH
and CR to model the distribution of survival times, e.g. using Weibull/
Lognormal distributions or Poisson regression models.

MI using BNs In this work we used the BN samples to infer a single, aug-
mented data set with a set of estimated missing values weighted by pos-
terior probabilities. Another approach would be to draw a sample (BN)
using the posterior probability distribution, and then use this network
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to produce an augmented data set. Repeating this, we could obtain N
augmented data sets that we could explore using BMA.

Neural Networks As shown in (Bakker et al., 2000), (Bakker et al., 2004),
and Section 2.4.3, we can use neural networks to express the CPH model.
With more hidden units, we can model non-proportional hazards, and use
the network to estimate missing values in the data set.

MCMC solution We could use MCMC to sample everything! - or at least the
baseline hazard, the risk factor coefficients, and the missing values. With
enough samples, we could obtain approximations as accurate as we desire.

BN to model missingness In the same way we used BNs to model the risk
factor distributions, we could use BNs to model the missingness.

Short- and long-term survival As shown by Andersen et al. (2005b), dif-
ferent risk factors predict the short- and long-term survival. Hence, we
should explore our data set using different censoring dates, e.g. to identify
risk factors responsible for instant survival (first week), short-term sur-
vival (1 year), medio-term survival (5 years), and long-term survival (10
years) to obtain a more varied solution.

Other risk factors Diet, exercise, stroke in relatives, social relations, marital
status, work, cholesterol, Body Mass Index (BMI) are examples of poten-
tial risk factors that should definitively be explored as predictors of the
survival time. Petersen et al. (2006) suggest that increasing BMI is asso-
ciated with decreasing risk of post-stroke death; risk of death decreased
5% pr. unit increase in BMI up to a certain level.

Reference group The study should include a reference group of people from
the same community, who had not experienced a stroke. Then we would
compare the survival times of the stroke patients with the survival times
of “normal” people to adjust for differences in survival times for males vs.
females etc.
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Appendix A

Occams’ Razor Applied to
Socrates

Taking up the philosophical dialogue between Doofus, Socrates, and Ignora-
mus1, Doofus claims to have seen ducks down by the lake, but Ignoramus starts
questioning what they really were. In response, Doofus says: “If it walks like
a duck and talks like a duck, it is a duck! Surely this is evident”. However,
Socrates suggests that it could have been men that have learned to walk and talk
like ducks. Hence, we have two models that describe the observations equally
well, but surely most people would agree that Doofus’ duck model seems more
plausible.

Ignoring all other factors such as height and weight, we cannot ignore Socrates’
proposal, but let us see if the observations made by Doofus is in favor of the
ducks or the men. We make the following assumptions:

• Men also knows how to walk and talk like humans (and not any other
creature).

• Men are equally likely to walk and talk like men and ducks (remember
that Socrates lived in 469-399 BC).

• Ducks only know how to walk and talk like ducks.
1see http://www.psych.upenn.edu/ fjgil/doofus.htm
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• We do not want to favor any of the two models over one another.

Given this, we can setup the following Bayesian analysis:

p(Mducks|D)
p(Mmen|D)

=
p(Mducks)p(D|Mducks)
p(Mmen)p(D|Mmen)

=
0.5× 1

0.5× 0.5
= 2

Hence, the observation is indeed in the favor of ducks, with a ratio of 2:1, and
we can rephrase Doofus’ statement: “If it walks like a duck and talks like a
duck, it probably is a duck!”. Case closed.
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Sex Differences in Stroke Survival: 10-Year Follow-up of the
Copenhagen Stroke Study Cohort

Morten Nonboe Andersen, MS,* Klaus Kaae Andersen, MS, PhD,†

Lars Peter Kammersgaard, MD,‡ and Tom Skyhøj Olsen, MD, PhD‡

Background: Although diverging, most studies show that sex has no significant

influence on stroke survival. Methods: In a Copenhagen, Denmark, community all

patients with stroke during March 1992 to November 1993 were registered on

hospital admission. Stroke severity was measured using the Scandinavian Stroke

Scale (0-58); computed tomography determined stroke type. A risk factor profile

was obtained for all including ischemic heart disease, hypertension, diabetes

mellitus, atrial fibrillation, previous stroke, smoking, and alcohol consumption.

Date of death was obtained within a 10-year follow-up period. Predictors of death

were identified using a Cox proportional hazards model. Results: Of 999 patients,

559 (56%) were women and 440 (44%) were men. Women were older (77.0 v 70.9

years; P � .001) and had more severe strokes (Scandinavian Stroke Scale: 36.1 v

40.5; P � .001). Age-adjusted risk factors showed no difference between sexes for

ischemic heart disease, hypertension, atrial fibrillation, diabetes mellitus, and

previous stroke. Men more often were smokers and alcohol consumers. Unadjusted

survival in men and women did not differ: 70.3% versus 66.7% (1-year), 40.0%

versus 38.9% (5-year), and 17.4% versus 18.7% (10-year), respectively. Adjusting for

age, stroke severity, stroke type, and risk factors, women had a higher probability

of survival at 1 year (hazard ratio 1.47, 95% confidence interval 1.10-2.00); 5 years

(hazard ratio 1.47, 95% confidence interval 1.23-1.76); and 10 years (hazard ratio

1.49, 95% confidence interval 1.28-1.76). Before 9 months poststroke, no difference

in survival was seen. Severity of stroke had the same effect on sex. Conclusion:

Stroke is equally severe in men and women. Short-term survival is the same.

Having survived stroke, women, however, live longer. Key Words: Stroke—sex—

mortality—prognosis.

© 2005 by National Stroke Association

Sex has no significant influence on survival after stroke

in most studies.1-21 In a minority of studies, survival is

significantly better for men than women22-25 and vice

versa.26-29 This finding is surprising because women,

because of their markedly longer life expectancy,30 would

be anticipated to encompass at least a better long-term

survival. Controversies about the influence of sex on

stroke outcome may reflect diversity among studies in

respect to design, sample size, and follow-up.

Current recommendations usually support equal treat-

ments for men and women, but recent research increas-

ingly points to the need of individualization.31,32 A clar-

ification of possible differences in outcome between sexes

is, therefore, still needed.

We hypothesized that a better survival of women

would emerge if initial stroke severity measured by a

validated stroke scale and a cardiovascular risk factor

evaluation were encountered in a sizable study with a

lengthy follow-up.
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In a community-based cohort of 999 patients hospital-

ized with acute stroke, we recorded prospectively data on

10-year survival from the acute admission on March 1992

until November 1993. Based on initial stroke severity

measured by a validated stroke scale and a thorough

cardiovascular risk factor profile, we studied the influ-

ence of sex on short- and long-term stroke survival.

Methods

The study was community-based and prospective. In a

well-defined area of Copenhagen, Denmark, with 240,000

inhabitants, all having a stroke were admitted to a 62-bed

stroke department at the same hospital. The inclusion

period was March 1992 to November 1993. No preselec-

tion of patients was performed, as all who had a stroke in

the area were brought to the stroke department of our

hospital, regardless of age, stroke severity, or comorbid

diseases. In our community, all who experience symp-

toms of a stroke or transient ischemic attack (including

nursing home residents) are urged to go to the hospital

immediately. General practitioners are instructed to hos-

pitalize all patients with stroke or transient ischemic

attack. Hospital care is free, and a very high proportion

(88%)33 of the patients with stroke in the area were

admitted to this hospital during the time of inclusion. On

admission, all underwent a standardized program in-

cluding computed tomography scan, electrocardiogra-

phy, and a cardiovascular risk factor evaluation using a

standardized questionnaire. Information was obtained

from relatives or caregivers if needed.

Stroke was defined according to the World Health

Organization (WHO) criteria.34 Transient ischemic attack

or subarachnoid hemorrhage was not included. On ad-

mission, the Scandinavian Stroke Scale (SSS) was used to

assess stroke severity. SSS evaluates level of conscious-

ness; eye movement; power in arm, hand, and leg; orien-

tation; aphasia; facial paresis; and gait on a total score

from 0 (worst) to 58 (best).35 Computed tomography

determined stroke type (hemorrhage/infarct).

The following prognostic factors were investigated in

the statistical analyses: age, sex, initial stroke severity

(SSS), diabetes mellitus (DM), atrial fibrillation (AF), isch-

emic heart disease (IHD), hypertension, previous stroke,

pre-existing disability, alcohol consumption, and smoking.

DM was considered present if a patient had known

DM on admission or if plasma glucose level was greater

than 11 mmol/L on admission or during the hospital

stay. AF was diagnosed if present on admission electro-

cardiogram. Information concerning other disabling dis-

ease was obtained on admission and included disabling

diseases other than previous stroke (e.g., amputation,

multiple sclerosis, severe dementia, heart failure, latent

or persistent respiratory insufficiency). IHD was present

if a patient had a history of IHD, or had IHD diagnosed

during the hospital stay. Hypertension was present if a

patient received antihypertensive treatment before ad-

mission, or if hypertension was diagnosed during hospi-

tal stay by repeated detection of blood pressure 160/95

mm Hg or higher. Smoking was coded if a patient

smoked any kind of tobacco on a daily basis. Ex-smokers

were coded as nonsmokers. Intake of alcohol intake was

coded if consumed daily.

Follow-up

For patients who had died, information on date of

death within 10 years after the stroke onset was obtained

from the Danish Central Registry of Persons. The fol-

low-up was performed during the year 2003 ending No-

vember 3 (censoring date). Six patients had immigrated

to another country and were lost on follow-up.

Statistical Analyses

Statistical analyses were performed with the a statisti-

cal software package (SPSS, Statistical Package for the

Social Sciences, SPSS Inc, Chicago, IL). Difference in age

and SSS score for sex was analysed using a standard t

test. Logistic regression models were applied to calculate

an age-adjusted estimate of the odds ratio between sex

and all possible risk factors, each coded as binary vari-

ables. Independent predictors of death were identified

using the Cox proportional hazards (CPH) model. Signif-

icance of predictors was based on the probability of the

Wald statistic and a significance level of 5%. To assess

whether the baseline hazard functions were proportional

log-minus-log plots were performed for each variable.

Log-linearity of age and SSS score was tested by elabo-

rating these variables and performing a likelihood ratio

test. The study was approved by the ethics committee.

Results

Of the 999 patients included, 559 (56%) were women

and 440 (44%) were men. Mean age was higher in women

(77.0 v 70.9 years; P � .001) and stroke severity expressed

by the mean SSS score was more severe in women (36.1 v

40.5; P � .001). Table 1 shows the age-adjusted odds ratio

values of potential cardiovascular risk factors for men

relative to women. AF did not differ for sex (19.9 v 12.1;

P � .205), but hemorrhage (9.4% v 5.2%; P � .019) was

more often in women. Men were more often smokers

(53.8% v 36.5%; P � .014) and had daily alcohol consump-

tion (49% v 16.7%; P � .001). No significant difference

between sexes was found for hypertension, IHD, previ-

ous stroke, DM, or AF.

Survival

Three subanalyses were done for end points 1, 5, and

10 years poststroke. Unadjusted survival in men and

M.N. ANDERSEN ET AL.216
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women did not differ significantly: men 70.3%, women

66.7% (1-year); men 40.0%, women 38.9% (5-year); and

men 17.4%, women 18.7% (10-year).

One-Year Survival

The variables in Table 2 were found significant in the

CPH model for 1-year survival (P value, hazard ratio

[HR], 95% confidence interval). Women had a signifi-

cantly higher probability of survival (HR 1.465). A 10-

year increase in age decreased the probability of survival

(HR 1.460) whereas a 10-point increase in the SSS score

increased the probability of survival (HR 0.621). DM (HR

2.085), AF (HR 1.438), and hemorrhage (HR 1.980) de-

creased the probability of 1-year survival.

Five-Year Survival

The variables in Table 3 were found significant in the

CPH model for 5-year survival (P value, HR, 95% confi-

dence interval). Women had a significantly higher prob-

ability of survival (HR 1.471). A 10-year increase in age

decreased the survival probability (HR 1.649 per 10

years) whereas a 10-point increase SSS score increased

the survival probability (HR 0.696 per 10 points). DM

(HR 1.440), AF (HR 1.339), previous stroke (HR 1.334),

and other disabling disease (HR 1.306) decreased the

probability of 5-year survival.

Ten-Year Survival

The variables in Table 4 were found significant in the

CPH model for 10-year survival. The results of this anal-

ysis are almost identical to the 5-year survival analysis

and still display a significantly higher probability of

survival for women (HR 1.490).

Fig 1 illustrates the sex-specific CPH survival plot for

10-year survival.

To identify the cut-off point in the Cox regression

analysis (i.e., the survival censoring point where sex

becomes a significant explanatory variable) we increase

the censoring by 1 month starting with a 1-month cen-

soring. The analysis showed that sex became significant

using 9-month censoring.

Separate models have been applied to analyze whether

there is an interaction between sex and SSS score. The

results of this analysis are shown in Table 5. It is seen that

there is no significant interaction between sex and SSS

score (i.e., severity of the stroke has the same effect on

each sex).

Table 1. Age-adjusted odds ratio of risk factors for men compared with women

Variable

Women Men

OR 95% CIYes/no Percentage Yes/no Percentage

Hypertension 172/341 33.5 134/289 31.7 0.838 0.630-1.116

Known ischemic heart disease 102/404 20.2 87/329 20.9 1.165 0.836-1.623

Previous stroke 101/421 19.3 94/332 22.1 1.272 0.917-1.764

Other disabling disease 130/398 26.6 75/354 17.5 0.720 0.518-1.000

Alcohol consumption 75/375 16.7 188/196 49.0 0.962 0.949-0.976

DM 72/447 13.9 76/353 17.7 1.244 0.866-1.787

Smoking 162/282 36.5 204/175 53.8 1.463 1.081-1.982

Atrial fibrillation 109/440 19.9 53/385 12.1 0.786 0.542-1.141

Hemorrhage 42/404 9.4 19/345 5.2 0.497 0.278-0.890

CI, Confidence interval; DM, diabetes mellitus; OR, odds ratio.

Table 2. Significant variables in 1-year survival Cox proportional hazards regression model

Parameter estimate, B P value Hazard ratio, Exp(B)

95% CI for Exp(B)

Lower Upper

Age (units of 10 years) 0.378 �.001 1.460 1.234 1.728

SSS (units of 10 points) �0.476 �.001 0.621 0.567 0.680

Diabetes 0.735 �.001 2.085 1.458 2.981

Atrial fibrillation 0.363 .053 1.438 0.996 2.077

Hemorrhage 0.683 .005 1.980 1.224 3.201

Sex 0.382 .016 1.465 1.075 1.999

CI, Confidence interval; SSS, Scandinavian Stroke Scale.

SEX DIFFERENCES IN STROKE SURVIVAL 217



182

Discussion

Two main findings emerged from this study. Men and

women are at the same risk of dying from a stroke.

Having survived the stroke, however, women live longer

than men. In other words, short-term stroke survival is

the same for men and women whereas long-term stroke

survival is markedly better for women.

Women and men differed in respect to important con-

founders. Women were older and had more severe

strokes. This explains that short-term survival at a first

glance appears to be significantly better for men and that

long-term survival looks equal for both sexes. Moreover,

women more often had other disabling diseases and

hemorrhagic strokes whereas men more often were con-

sumers of alcohol and tobacco. The lack of adjustment for

one or more of these variables explains much of the

diverging conclusions among studies. However, as we

found no interaction between stroke severities and sex,

our study shows that severity of stroke is not influenced

by sex per se and differences in survival between men

and women are determined by other factors.

The strength of this study is that it is prospective and

community-based including all patients in a well-defined

community hospitalized with stroke regardless age,

stroke severity, or other complicating diseases. Moreover,

the stroke admittance rate in the area is high and close to

the incidence reported in population-based studies. A

limitation is that patients who die at home are not in-

cluded and this may underestimate mortality. However,

the small number of patients with minor strokes not

being admitted to hospital may counterbalance it. Finally,

as a multivariate analysis was applied and because we

had a sizeable study population and a lengthy follow-up,

we consider bias to be of no major importance for the

main conclusion of this study.

The difference in survival between sexes became sig-

nificant at 9 months poststroke. However, it appears from

the sex-specific survival plots that a difference in survival

between sexes takes effect much earlier. On the other

hand, it is also evident from these plots that there is no

difference between sexes in the very acute state. Thus,

our study does not point to the presence of a sex-specific

ability to survive stroke per se. Findings from other

large-scale studies on short-term survival are diverging:

in the WHO MONICA populations the age-adjusted 28-

day case fatality is higher among women.24 Stroke sever-

ity and other prognostic confounders are, however, not

recorded in these studies. In several studies the level of

consciousness or degree of paresis were used as markers

of stroke severity and no difference in 1- to 3-month

Table 3. Significant variables in 5-year survival Cox proportional hazards regression model

Parameter estimate, B P value Hazard ratio, Exp(B)

95% CI for Exp(B)

Lower Upper

Age (units of 10 years) 0.500 �.001 1.649 1.492 1.822

SSS (units of 10 points) �0.362 �.001 0.696 0.661 0.733

Previous stroke 0.288 �.005 1.334 1.090 1.631

Other disabling disease 0.267 .009 1.306 1.069 1.594

Diabetes 0.365 .001 1.440 1.151 1.802

Atrial fibrillation 0.292 .008 1.339 1.080 1.661

Sex 0.386 �.001 1.471 1.228 1.762

CI, Confidence interval; SSS, Scandinavian Stroke Scale.

Table 4. Significant variables in 10-year survival Cox proportional hazards regression model

Parameter estimate, B P value Hazard ratio, Exp(B)

95% CI for Exp(B)

Lower Upper

Age (units of 10 years) 0.481 �.001 1.618 1.490 1.757

SSS (units of 10 points) �0.299 �.001 0.742 0.709 0.776

Previous stroke 0.248 .006 1.281 1.072 1.531

Other disabling disease 0.283 .002 1.328 1.114 1.583

Diabetes 0.357 �.001 1.429 1.178 1.734

Atrial fibrillation 0.290 .003 1.336 1.100 1.622

Sex 0.398 �.001 1.490 1.278 1.736

CI, Confidence interval; SSS, Scandinavian Stroke Scale.
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survival between sexes was observed when adjusting for

these and other confounding variables.1-7 In a study

using the National Institutes of Health Stroke Scale as

marker of stroke severity there was no sex-specific dif-

ference in 3-month survival when adjusting for this and

other relevant confounders as done also in our study. In

the Rochester, Minn, population stroke severity was de-

termined retrospectively from hospital records and no

sex-specific difference in 3-month survival was found.10

On the other hand, in a Dutch study using Glasgow

Coma Scale as marker of stroke severity women had a

better 6-month survival,26 whereas in a Polish study

using level of consciousness as marker of stroke severity

2-week survival was poorer in women.23

In our study survival is markedly better in women 9

months poststroke and onward. Women continuously

have a 1.5 better chance of being alive up to 10 years after

the stroke. Several large-scale studies did not find any

sex-specific difference in stroke mortality in studies with

1,9 10,10 and even 2017 years follow-up, but these studies,

except for age, did not adjust for stroke severity or other

confounders of importance for stroke survival. Two

Swedish studies13,19 used validated stroke severity scores

and did not find any sex-specific difference in 1-year13

and 3-year19 survival when adjusting for stroke severity

and other relevant confounders. In other studies stroke

severity was estimated on the basis of consciousness or

various neurologic deficits; 1-year11,12,14 and 3-year20,21

survival did not differ between sexes. In the Rochester,

Minn, population10,18 sex did not influence 5-year stroke

survival whereas in the Framingham population28 5-year

survival was better among women.

Our study is the first large-scale study with a follow-up

as long as 10 years where stroke severity at stroke onset

and a thorough cardiovascular risk factor profile were

determined prospectively using a validated stroke sever-

ity scale. Other studies with a long follow-up either did

not measure stroke severity, stroke severity was deter-

mined retrospectively from hospital records, or stroke

severity was estimated without using a stroke scale.

There was no interaction between stroke severity and sex,

but stroke severity was a strong predictor not only of

short-term survival, but of long-term survival as well.

Information of stroke severity is, thus, important for

analyzing predictors of stroke survival.

In the industrialized world women live 5 to 7 years

longer than men,30 which is in agreement with the result

of our study. Women experienced stroke on average 6

years later than men. This is undoubtedly the key to the

understanding of the better long-term survival of women

with stroke. Women also experience myocardial infarc-

tion several years later than men.36 Women, therefore,

experience fatal cardiovascular diseases later than men

and, hence, live longer than men even if they have had a

stroke. Higher consumption of tobacco and alcohol fur-

ther contributes to earlier occurrence of cardiovascular

disease in men. The great diversity among studies in

respect to design, sample size, follow-up, and results

calls, however, for further study.

In conclusion, stroke is equally severe in men and

women and short-term survival is the same for men and

women. Having survived stroke, women, however, live

longer than men, most certainly because of their lower

risk of a subsequent cardiovascular event.
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